Supplementary material for the article:

Vukojević, V.; Djurdjić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D.
M. RuO2/Graphene Nanoribbon Composite Supported on Screen Printed Electrode with Enhanced Electrocatalytic Performances toward Ethanol and NADH Biosensing. *Biosensors* and Bioelectronics 2018, 117, 392–397. https://doi.org/10.1016/j.bios.2018.06.038

Supplementary material

RuO₂/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing

Vesna Vukojević^{1*}, Sladjana Djurdjić², Miloš Ognjanović³, Bratislav Antić³, Kurt Kalcher⁴, Jelena Mutić², Dalibor M. Stanković^{1,3*}

¹ Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia

² Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia

³ The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia

⁴ Institute of Chemistry-Analytical Chemistry, Karl-Franzens University Graz, A-8010 Graz, Austria

*corresponding authors: Vesna Vukojević, Innovation center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia. Email: <u>vvukojevic@chem.bg.ac.rs</u> Phone: 00381 11 3336829

Dalibor M. Stanković, The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia. Emails: <u>dalibors@chem.bg.ac.rs</u> <u>daliborstankovic@vin.bg.ac.rs</u> Phone: 00381 11 3336829

Figure S1. (a) FE-SEM micrograph of RuO_2 ; (b) TEM micrograph of RuO_2/GNR composite; (c) FE-SEM micrographs of RuO_2/GNR nanocomposite; (d) EDS map of ruthenium atom and (e) EDS map of oxygen atom.

Figure S2. XRD patterns of GNR and RuO²/GNR composite.

Figure S3. (a) Chronoamperometric responses of NADH at different potentials; (b) Calibration curves obtained for successive addition of 0.2 mmol NADH at different operating potential with RuO₂-GNR/SPCE working electrode.

Figure S4. Effect of different pH of phosphate buffer supporting electrolyte.

Figure S5. (a) Effect of possible interfering compounds for the detection of ethanol; (b) Effect of possible interfering compounds for the quantification of NADH. All experiments are done under previously optimized experimental conditions.

Potential	Range	LOD (mmol/l)	Slope	Correlation factor
+ 0.2V	0.2 – 1 mmol	0.0964 mmol/l	0.2515	0.9965
+ 0.4V	0.2 - 1 mmol	0.1371 mmol/l	2.75	0.9929
+ 0.6 V	0.2 – 1 mmol	0.0962 mmol/l	14.54	0.9965

Table S1. Obtained parameters for NADH sensing at different working potentials.

Table S2. Results obtained for the determination of ethanol content in the three Serbian schnapps.

Sample	Expected (%)	Found (%)	Recovery (%)
Plumb	45	45.4	101
Apricot	40	40.9	102
Pear	38	39.1	103