Supplementary data for the article:

Ristivojević, P.; Tahir, A.; Malfent, F.; Milojković-Opsenica, D.; Rollinger, J. M. High-Performance Thin-Layer Chromatography/Bioautography and Liquid Chromatography-Mass Spectrometry Hyphenated with Chemometrics for the Quality Assessment of Morus Alba Samples. *Journal of Chromatography A* **2019**, *1594*, 190–198. https://doi.org/10.1016/j.chroma.2019.02.006

Supplementary information

High-performance thin-layer chromatography/bioautography and liquid chromatography-mass spectrometry hyphenated with chemometrics for the quality assessment of *Morus alba* samples

Petar M. Ristivojević^{1,2}, Ammar Tahir¹, Fabian Malfent¹, Dušanka Milojković Opsenica³, Judith M. Rollinger¹*

*Corresponding author: Judith M. Rollinger, Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria, Tel.: +431427755255, Fax: +4314277855255, *E-mail address*: judith.rollinger@univie.ac.at

¹ Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria

² Innovation Centre of the Faculty of Chemistry Ltd, Studentski trg 12-16, 11000 Belgrade, Serbia

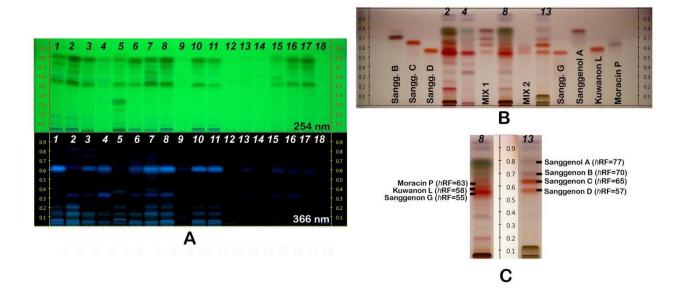
³ University of Belgrade - Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia

Content

	Page
Table S1. List of Morus alba samples	3
Table S2. Statistical performances of PCA models	7
Fig. S1. HPTLC profile of <i>M. alba</i> root bark samples	8
Fig. S2. HPTLC-DPPH profile of <i>M. alba</i> root bark samples	9
Fig. S3. HPTLC-antimicrobial assay of reference compounds against <i>B. subtilis</i>	9
Fig. S4. HPTLC-antimicrobial assay of reference compounds against <i>E. coli</i> .	9
Fig. S5. UPLC-MS/MS chromatograms of <i>Morus alba</i> root bark samples	10
S1.1. UPLC-MS/MS analysis	10

Table S1. List of *Morus alba* samples with voucher code, plant organ, geographical origin (GPS data), collection season/purchase date and image of the sample.

No.	Voucher number	Plant organ	Geographical origin	Collection season/ purchased	Image of the sample
1	RP-20180214A1	Sang bai pi (Root bark)	Latitude (N): 44 °23'38.242" Longitude (E): 19°34' 0.947"	February, 2018	
2	RP-20180122A2	Sang bai pi (Root bark)	Latitude (N): 42°36'41.396" Longitude (E): 22 °2'13.97"	November, 2017	
3	RP-20180122A3	Sang bai pi (Root bark)	Latitude (N): 42°33' 31.751" Longitude (E): 21°58'35.205"	November, 2017	
4	RP-20180122A4	Sang bai pi (Root bark)	Latitude (N): 42°24'27.123" Longitude (E): 11°3'55.878 "	November, 2017	


5	RP-20180122A5	Sang bai pi (Root bark)	Latitude (N): 42°25'8.177" Longitude (E): 22° 4'33.487"	November, 2017	
6	RP-20180122A6	Sang bai pi (Root bark)	Latitude (N): 42° 34' 13.529" Longitude (E): 22° 0'53.787"	November, 2017	
7	RP-20180122A7	Sang bai pi (Root bark)	Latitude (N): 42° 32'26.361" Longitude (E): 21°54' 37.086"	November, 2017	
8	RP-201801222A8	Sang bai pi (Root bark)	Latitude (N): 42°36' 0.445" Longitude (E): 22°2' 6.977"	November, 2017	ole 8:
9	RP-201801223A9	Sang bai pi (root bark)	Latitude (N): 44°24' 14.978" Longitude (E): 19°38'6.903"	November, August, 2017	8

10	RP-20180214A10	Sang bai pi (root bark)	Latitude (N): 44°21'16.957" Longitude (E): 20°9'31.031"	February, 2018	
11	RP-20180214A11	Sang bai pi (root bark)	Latitude (N): 44°23'35.891" Longitude (E): 19°45'27.838"	February, 2018	
12	RP-20180123A12	Sangzhi (branches)	Jiangsu, Tongrentang Beijing	September 2017	
13	RP-20180123A13	Sang bai pi (root bark)	Pharmacy in Beijing	September 2017	
14	RP-20180122A16	Sang bai pi (root bark)	Guangxi, Yiren Drug Store, Guilin	September 2017	

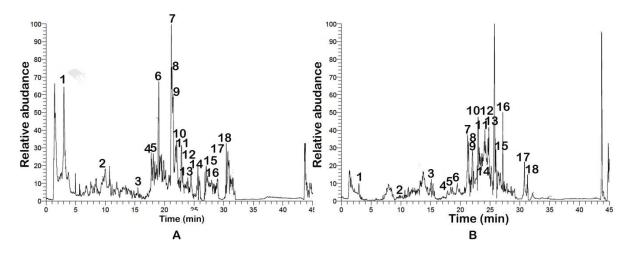
15	RP-20180123A17	Sang bai pi (root bark)	Huimintang Drug Store, Yangshou	September 2017	
16	RP-20180123A18	Sang bai pi (root bark)	LBX Pharmacy, Yulin	September 2017	
17	RP-20180123A19	Sang bai pi (root bark)	TCM Pharmacy in the first affiliation of Guangxy TCM college (Nanning)	September 2017	
18	RP-20180123A20	Sang zhi (branches)	TCM Pharmacy in the first affiliation of Guangxy TCM college (Nanning)	September 2017	

Table S2. Statistical performances of the principal component analysis (PCA) models.

	254 nm	366 nm	Vanillin-	sulphuric acid	l reagent	DPPH	B. subtilis	E.coli	LTQ-
			Red channel	Green channel	Blue channel	assay	assay	assay	MS/MS
Preprocessing techniques	Median filtering, baseline correction warping, mean centering	COW, auto scaling	COW, mean centering	COW, mean centering	COW, mean centering	Median filtering, smoothing, baseline correction, standard normal variate, COW, mean centering	SNV, mean centering	Median filtering, warping, SNV, mean centering	COW, mean centering
Number of PCs	2	5	3	3	3	3	3	3	4
% Variance captured - Total	73.02%	72.62%	78.80%	75.32%	71.71%	80.03%	81.14	83.79%	68.80 %
% Variance captured – PC1/PC2	51.59%/ 21.43%	26.59%/ 21.16%	47.01%/ 25.27%,	35.47%/ 26.10%	38.05% /20.23%	45.91%/ 22.01%	60.59%/ 13.08%	4.98%/ 16.93%	37.18/ 14.02 %

Fig. S1. HPTLC profile of *M. alba* root bark samples: A) under 254 nm and 366 nm, B) reference compounds, reference mix 1 (sanggenons B, C, D, sangenol A), reference mix 2 (sanggenon G, kuwanon L, moracin), C) Serbian (8) and Chinese (13) samples with reference compounds.




Fig. S2. HPTLC-DPPH profile of *M. alba* root bark samples *8*, *13* and reference compounds.

Moracin P			Kuwanon L			Sanggenol A									
1	2	3	4	1	2	3	4	1	2	3	4_				
Sanggenon B		Sanggenon C			Sanggenon D			Sanggenon G							
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4

Fig. S3. HPTLC-antimicrobial assay of reference compounds against *B. subtilis*.

Fig. S4. HPTLC-antimicrobial assay of reference compounds against *E. coli*.

Fig. S5. UPLC-MS/MS chromatograms (total ion chromatograms (TIC): relative abundance of the base peaks vs. retention time) of *Morus alba* root bark samples collected from Serbia (*I*) and China (*17*).

S 1.1 UPLC-MS/MS analysis

Using the negative ionization mode, compound **I** produced ions at m/z values of 405, 243, 225, and 199, corresponding to the successive neutral losses of one glucosyl group, another glucosyl group, and a H₂O moiety or a CO₂ molecule (Table 1). Compound **II** recognized as moracin M has a main fragment at m/z 197 (Table 1) [22]. Compound **III** with a molecular ion at m/z 325 gave ion species m/z 283 and 253; ion at m/z 253 was formed by elimination of a C₄H₈O group [22]. Compounds **IV** and **V** (presumably sanggenon T and its isomer) with a molecular ion at m/z 711 was identified in Chinese samples. In the case of compounds **IV** and **V**, three ions, m/z 601 and 549, 491, were obtained [22]. Compound **VI** recognized as kuwanon L produced fragment ions at m/z 499, 471, 389, whereas an ion at m/z 499 was formed by elimination of C₆H₆O₂ [20, 22] (Table 1). Compound **VII** with a molecular ion at m/z 707, and characteristic fragments at m/z 489, 369, 325, 300, 259, 227 was compared with the reference compound and was accordingly identified as sanggenon D (Table 1) [21, 22]. Compound **IX** (kuwanon G) and its

isomer (compound XVIII) with a molecular ion at m/z 691 produced two characteristic fragment ions at m/z 581 and 471, corresponding to the loss of one and two resorcinol ($C_6H_6O_2$) groups [21, 22]. Compounds VIII, X and XI with molecular ions at m/z 569, 707, 693 were recognized as sanggenons B, C, G, respectively. The mass spectra of the above mentioned compounds were confirmed with reference compounds and literature data [20, 22]. In case of sanggenon C, neutral losses of two resorcinol ($C_6H_6O_2$, 110 Da) groups were also observed for the deprotonated ion (m/z 707) of sanggenon C under negative ionization [22]. Sanggenon G with a molecular ion at m/z 693, produced an ion at m/z 583, which corresponds to $C_{34}H_{31}O_{9}^{-}$ and a fragment at m/z 531 obtained after a loss of C₉H₅O₃ corresponding to C₃₁H₃₁O₈ (Table 1). Compound XII with a molecular ion at m/z 423, recognized as sanggenol A, produced ions at m/z 298, 245, 151, 126: the fragmentation pattern was confirmed by comparison with the reference compound and literature data [22]. Compound XIII (kuwanon C) produced fragment ions of m/z 352, 309, 231, confirmed by literature data [22]. Compound XIV with a quasi-molecular ion of m/z 419, produced ions at m/z 375, 350, 309, and 297 based on the mass spectral profiles. The quasimolecular ions of compound XV (m/z 437) corresponding to morunigrol was tentatively identified based on the mass spectral profiles (Table 1) [22]. Further, the diagnostic product ions of the deprotonated ion (m/z of 243 for [M-H]) of compound XVI (sanggenol B) were generated at m/z values of 445, 364, 351, 309 and 257, as described in literature [22]. The molecular ion of compound **XVII** at m/z 487 was tentatively assigned as andalasin A: there are two characteristic ions at m/z 349 and 231 [22].