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Abstract: Cambridge Structural Database (CSD) was screened in order to find
intramolecular C−H···π interactions with a chelate ring of coordinated porphyrin. It was
found 154 crystal structures with 244 intramolecular C−H···π interactions in transition metal
complexes with derivatives of porphyrin. Comparison of interacting distances indicates that
interactions of hydrogen atoms in positions 2 and 6 of axially coordinated pyridine are more
favorable with ruffled than with planar porphyrin.
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Introduction

Noncovalent interactions with aromatic rings have been studied very intensively. It has been
documented that these interactions are important in different molecular systems, from molecular
biology to material science [1]. Noncovalent interactions in metal complexes between π-systems and
ligands with X − H (X = N, O, C) have been noticed and investigated by searching data bases of
crystal structures, by quantum chemical calculations and by spectroscopic methods [2]. Noncovalent
interactions of chelate rings with delocalized π-bonds were observed and investigated in a few studies
[3-5]. In our previous work we observed that chelate ring, as π-system, can be involved in C−H···π
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interactions. By searching Cambridge Structural Database (CSD) we found out a number of crystal
structures of metal complexes where six membered chelate ring with delocalized π-bonds is proton
acceptor in C−H···π interactions [3]. The calculated energy of the interaction is about 1 kcal/mol [3].
The calculated energy and geometry observed in crystal structures are comparable with C−H···π
interactions where proton acceptor is organic aromatic ring [6].

Metalloproteins that contain derivatives of porphyrin coordinated to a metal center are involved in
many different processes in living organisms. Studies of metal center in heme proteins and model
systems showed that many factors, including noncovalent interactions can play important role in
properties of these metalloproteins. The orientations of histidines, axially ligated to the heme, are
considered to have a strong influence on the redox potential and can control the coordination of
substrates to heme-proteins [7]. By analyzing crystal structures of heme-proteins [8] it was shown that
there are two main factors that determine the orientations of imidazole ligated to heme. Both of them
are noncovalent interactions. These are the interactions of imidazole with the propionic side groups on
porphyrin in heme and interactions with the histidine backbone. Generally the NH group of imidazole
is oriented towards the propionic groups of the heme [8].

Iron porphyrinato complexes with axially coordinated imidazoles and pyridines are model systems
of cytochromes. Quantum chemical calculations show that there is difference in behavior of complexes
with axially coordinated imidazoles and pyridines [9,10]. Axially coordinated ligands (imidazol or
pyridine) can be in mutually parallel or orthogonal orientation; in complexes with parallel orientation
of axial ligands porphyrin ring is planar, in complexes with orthogonal orientation pophyrin ring is
ruffled. Iron(III) complex with mutual orthogonal orientation of pyridines has more ruffled porphyrin
ring than complex with imidazoles. Also, for complex with pyridines orthogonal orientation of
pyridines is by 16 kcal/mol more stable than parallel orientation [10], while in complex with
imidazoles there is no difference in stability for orthogonal and parallel orientation [9]. There is open
question why there are differences in stability for complexes with imidazoles and pyridines. The
assumption was made that these differences are consequence of steric interactions of α-hydrogen
atoms of pyridine with equatorial porphyrin [10]. Namely, imidazole is five membered ring, while
pyridine is six membered ring, hence, α-hydrogen atoms (atoms in positions 2 and 6) of pyridine are
closer to the equatorial porphyrin. In complexes with parallel orientation of pyridines and ruffled
porphyrin there is less steric interaction of α-hydrogen atoms with porphirin ring.

Porphyrin molecule and derivatives of porphyrin are delocalized π-systems. When pophyrin is
coordinated to a metal as a tetradentate ligand there are four six membered chelate rings with
delocalized π -bonds, hence, there are additional rings with delocalized π -systems. The chelate rings
of the coordinated porphyrin could be involved in the C−H···π interactions and it has prompted us to
analyse C−H···π interactions in crystal structures of metal-porphyrin complexes from Cambridge
Structural Database (CSD). To the best of our knowledge this is the first report of intramolecular
C−H···π interactions with the chelate ring of porphyrinato ligand.

Data Screening and Computational Methods

Cambridge Structural Database (CSD) [11] was screened in order to find intramolecular C−H···π
interactions with a chelate ring of coordinated porphyrin. We searched for the crystal structures of
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metal complexes with coordinated porphyrin or derivatives of porphyrin. In these structures we
demanded that there is a hydrogen atom at a distance shorter than 3.0 Å from the center of the six
membered chelate ring, and presenting a X−H···Ω axis a narrow cone perpendicular to the ring (α >
110°, β < 16°) (Figure 1). These screening criteria are more restrictive than criteria used before for
similar screening [12,13].

Model system was built from geometry of crystal structure VATXIX by substituting side groups of
porphyrin with hydrogen atoms. The single point calculations were done for two different conformers.
In the conformers there are two different orientations of axial ligand, in one conformer there is the
C−H···π interaction with chelate ring, in the other conformer there is no interaction. The energy of the
C−H···π interaction is evaluated as the difference in the energy of the two conformers.

The single point calculations on model systems have been done using DFT, specifically Becke
three-parameter exchange functional (B3) [14] and the Lee-Yang-Parr correlation functional (LYP)
[15]. These B3LYP calculations have been carried out with GAUSSIAN98 program [16]. The
LANL2DZ basis set was chosen for zinc atom and 6-31G** basis sets were chosen for all other atoms.
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Figure 1. Geometrical parameters for C−H···π interaction with chelate ring of porphyrinato ligand.

Results and discussion

Searching crystal structures of transition metal complexes from the Cambridge Structural Database
(CSD) shows that specific C−H···π interactions, interactions between C-H groups and the π-system of
porphyrinato chelate ring, can be observed in many crystal structures. By using described criteria 154
crystal structures with 244 intramolecular C−H···π interactions in transition metal complexes with
derivatives of porphyrin were found. Most of these intramolecular C−H···π interactions (116
interactions) are interactions in iron complexes. Geometrical data for some of these interactions are
given in Tables 1 and 2. In Table 1 there are data for different complexes, while data for iron-
porphyrin complexes with axially coordinated pyridines are given in Table 2.

The C-H group involved in the intramolecular C−H···π interaction with the chelate ring of
porphyrinato ligand is in most cases part of axial ligand. In Figure 2 crystal structure KACGIE is
shown.
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Table 1. Some of geometrical dataa for intramolecular C−H⋅⋅⋅π interaction in metal-porphyrin
complexes

Refcode Metal β (o) H… Ω (Å) α(o) Ref.
No.

1 DIQWOP Ru4+ 12.2 2.260 123.7 17

2 HAMDII Zn2+ 5.8 2.396 118.9 18
3 MAZVAKb 2 Zn2+ 9.8 2.397 125.5 19

7.0 2.344 139.04 POZQIE Co3+

11.2 2.240 135.1
20

5 VATXIX Zn2+ 14.6 2.324 144.8 21
6 YIYPOLb 2 Zn2+ 3.9 2.145 153.1 22
7 BAFKEZ Ru2+ 15.6 2.425 120.6 23
8 LODQEA Zn2+ 1.9 2.466 125.6 24
9 NACTUGb 2 Ni2+ 11.8 2.445 135.3 25
10 HUHLEB Ru 2+ 9.6 2.454 144.9 26
11 BMPRCU Cu2+ 9.8 2.561 161.1 27
12 GITLEA Ni2+ 2.4 2.501 112.0 28

9.3 2.513 116.613 KACGIE Fe2+

8.9 2.722 110.2
29

14 ZAWBAA01 Fe3+ 10.8 2.576 163.9 30
15 BONREB Zr4+ 6.3 2.615 117.2 31
16 CAFBANb 2 Zn2+ 12.9 2.647 139.9 32
17 HAMMIR Zn2+ 15.2 2.824 117.2 33
18 PAFTUL Fe3+ 13.0 2.734 161.6 34
19 QOHWEP Ti2+ 15.6 2.601 129.7 35
20 TAKVOQb Cu2+ Fe3+ 12.2 2.858 147.2 36
21 VUPKUM Ru2+ 15.7 2.655 161.3 37
22 WAVDOM10b Cu2+ Fe3+ 12.8 2.735 127.3 38

aExplanation of geometrical parameters is given on Figure 1
bBinuclear complex

Figure 2. Crystal structure of KACGIE. Dashed lines represent C−H···π interactions. Some of atoms
have been omitted for clarity. Coordinates are taken from CSD.
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Usually there is no geometrical flexibility and the hydrogen atom of the axial ligand is forced to be
close to the chelate ring. In some cases there are very short H···Ω distances caused by constrains in
geometry of complex. The examples are structure YIYPOL and complexes with axially coordinated
pyridines (Table 2). However there are some structures with geometrical flexibility in axial ligand.
One example, crystal structure VATXIX is shown in Figure 3.

Figure 3. Crystal structure of VATXIX. Dashed line represent C−H···π interaction. Some of atoms
have been omitted for clarity. Coordinates are taken from CSD.

In this complex of zinc there is dimethylsulfoxide as axial ligand. Dimethylsulfoxide ligand can be
oriented with methyl groups toward the porphyrin ring (Figure 3) or in opposite direction.

In the first conformation there is C−H···π interaction (Figure 3), in the second conformation
interaction does not exist. For this complex calculations have been done in order to evaluate the energy
of the interaction. Evaluated energy obtained as a difference in the energy of the conformer shown on
the Figure 3 and the energy of the conformer without C−H···π interaction is 0.7 kcal/mol. The
evaluated energy is somewhat smaller than previously calculated energy for intermolecular
C−H···π interactions that was above 1 kcal/mol. The reason could be some repulsion that exist in case
of intramolecular interaction in VATXIX structure.

There are crystal structures with C−H···π interaction where C-H group is not part of axial ligand. In
Figure 4 there is crystal structure of binuclear complex NACTUG with two nickel atoms with
porphyrinato rings. The C-H of side group from one porphyrinato ligand interacts with chelate ring
from the second porpyirinato ring.

Figure 4. Crystal structure of NACTUG. Dashed lines represent C−H···π interactions. Some of atoms
have been omitted for clarity. Coordinates are taken from CSD.
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Table 2. Some of geometrical dataa for intramolecular C−H⋅⋅⋅π interaction in Fe complexes with
porphyrin derivate and two axially coordinated pyridines.

Refcode Metal β (o) H…Ω (Å) α(o) Fe…Ω (Å) P/Nb Ref. No.
3.7 2.40 119.31 CPOEFE10c Fe3+

6.2 2.21 123.0
1.98 P 39

10.3 2.22 117.22 DAJJAZc Fe2+

9.5 2.22 118.7
1.97 P 40

6.6 2.16 120.23 FUXTUNc Fe2+

3.3 2.17 119.2
1.91 P 41

4.3 2.16 117.04 NIWLOUc Fe2+

6.1 2.19 115.9
1.98 P 42

5.6 2.15 117.35 NIWLUAc Fe2+

2.7 2.22 116.5
1.95 P 42

2.9 2.24 115.76 NIWMAHc Fe2+

5.7 2.17 117.3
1.96 P 42

8.4 2.18 116.17 VOFLORc Fe3+

8.1 2.23 116.5
1.98 P 43

9.9 2.30 115.8
5.6 2.32 115.2
3.7 2.22 116.9

8 GEWKOI Fe3+

6.6 2.26 116.3

1.96 N 44

9.8 2.38 115.6
10.1 2.42 114.6
8.1 2.32 116.6

9 HERZIN Fe3+

8.9 2.35 115.4

1.93 N 45

7.6 2.40 116.4
6.3 2.37 116.3
6.8 2.38 116.2

10 KEFFOQ Fe2+

7.2 2.39 116.9

1.93 N 46

4.5 2.30 116.6
2.5 2.25 116.0
2.0 2.23 117.5

11 PALVED Fe3+

7.1 2.42 115.4

1.94 N 47

5.0 2.33 116.1
4.1 2.33 116.2
10.5 2.27 114.8

12 PALVIH Fe3+

9.8 2.29 113.4

1.95 N 47

1.2 2.15 118.9
5.8 2.42 115.2
2.6 2.19 115.3

13 PALVON Fe3+

9.0 2.47 115.1

1.94 N 47

11.6 2.45 116.7
12.1 2.38 117.9
7.2 2.37 118.5

14 TUBJAB Fe2+

7.5 2.38 117.8

1.93 N 48

9.2 2.32 116.3
10.5 2.41 115.2
5.2 2.41 114.3

15 VOFLUX Fe3+

6.0 2.32 117.1

1.94 N 43

aExplanation of geometrical parameters is given on Figure 1
bP - planar conformation of chelate ring and mutual parallel orientation of pyridines, N - ruffled

conformation of chelate ring and mutual orthogonal orientation of pyridines
cOnly two interactions are presented, the other two interactions are equivalent because of symmetry of

complexes with parallel orientation of pyridines.
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The best examples of structures with geometrical constrains are structures with axially coordinated
pyridines, where the α-hydrogen atoms of pyridine are involved in C−H···π interactions with chelate
rings (Figure 5,6,7). It is interesting that most of found intramolecular C−H···π interactions in iron-
porphyrin complexes are in complexes with axially coordinated pyridine. In these structures H···Ω
distances are very short, mainly below 2.4 Å. Some geometrical data about C−H···π interactions in
iron-porphyrin complexes with two axially coordinated pyridines are shown in Table 2.

The observation that H···Ω distances in pyridine complexes are very short is in accord with
previously made assumption that steric interactions of α-hydrogen atoms from pyridine with porphyrin
can contribute to the relative stability of conformers with parallel and orthogonal orientation of
pyridines [10]. Because of importance, as well as large number of complexes, we analyzed interactions
of α-hydrogen atoms of pyridine with chelate rings of porphyrinato ligand.

Figure 5. Crystal structure of CPOEFE10 representing some of significant distances. Some of atoms
have been omitted for clarity. Coordinates are taken from CSD.

In the complexes with two axially coordinated pyridines there are four intramolecular
C−H···π interactions with one porphyrin ring (Figures 5,6,7). Analyzing geometrical data for pyridine
and porphyrin ring shows that α-hydrogen atoms of pyridine is in suitable position (with small value of
angle в) for intramolecular C−H···π interactions with chelate ring of porphyirin. Figure 5 represents
CSD structure CPOEFE01 with C−H···π interaction between axial pyridines and chelate rings of
porphyrin. Center of the six membered chelate ring (Ω) is on Fe-C line and Fe-Ω distance (d1) is 1.96
Å. Distance between hydrogen in position 2 or 6 and normal to the porphyrin, which goes through the
Fe atom (d2), is around 2.03 Å. In the iron complexes with ruffled porphyrin, d1 distance is somewhat
smaller, 1.94 Å (Table 2). Similar values for the distances d1 and d2 show that hydrogens in position 2
and 6 of pyridine are in the favorable position in respect to the center of the six membered chelate ring.
Projection of hydrogens in 2 and 6 position of pyridine on the six membered chelate ring plane is only
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0.07 Å away from the center of the ring in case of planar porphyrin ring. Position of hydrogen in
regard to the center of the chelate ring can be described with angle β, Figure 1. If angle β is smaller
hydrogen atom is orientated closer to the center of the ring. Data for angle β given in Table 2 show that
angle β has small values, in most of cases below 10o.

Figure 6. Crystal structure of CPOEFE10 with parallel orientation of pyridine ligands. Two orthogonal
projections of molecule are shown. Dashed lines represent C−H···π interactions between four hydrogen
atoms and two chelate rings. Some of atoms have been omitted for clarity. Coordinates are taken from

CSD.

Figure 7. Crystal structure of KEFFOG with orthogonal orientation of pyridine ligands. Two
orthogonal projections of molecule are shown. Dashed lines represent C−H···π interactions between

four hydrogen atoms and four chelate rings. Some of atoms have been omitted for clarity. Coordinates
are taken from CSD.
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As it was mentioned there is correlation between porphyrin conformation and mutual orientation of
two pyridines. In the complexes with planar porphyrin mutual orientation of pyridines is parallel and in
the complexes with ruffled porphyrin pyridines are orthogonal each to other. In Figures 6 and 7 there
are crystal structures of complexes with parallel and orthogonal orientation of axially coordinated
pyridines.

Possible positions of hydrogen atom of pyridine in respect to the centre of six membered chelate
ring in the cases of planar and ruffled porphyrin are shown in Figure 8. In both cases there is
possibility for C−H···π interactions, because projections of the hydrogen atom to the plane of chelate
ring (T1 and T2) are close to the center of the ring (Ω). In case of the ruffled porphyrin H···Ω distances
are somewhat longer.

A
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Figure 8. Schematic representation of C−H⋅⋅⋅π interactions with chelate ring of porphyrin in case of
planar (A) and ruffled porphyrin (B). Only part of pyridine is presented. Porphyrin is presented as a

line. In both cases projection of the hydrogen atom to the plane of chelate ring (T1 and T2) is close to
the center of the ring (Ω). In case of ruffled porphyrin H···Ω distance is longer.

Data in Table 2 show that distances between hydrogen atom and center of the chelate ring (H···Ω)
are in range of  2.15 to 2.47 Å and that values of angle β are between 1.2 and 11.6º. There is no
important difference in values of angle β for structures with planar and ruffled porphyrins, while H···Ω
distances are shorter for structures with planar porphyrin. In structures with planar porphyrin the
distances are between 2.15 and 2.24 Å, with one exception, while in structures with ruffled porphyrin
the distances are above 2.22 Å, with two exceptions.

The H···Ω distances in structures with parallel orientations of pyridines (Table 2) are shorter than
previously reported distances for C−H···π interactions with chelate rings [3], and shorter that distances
in Table 1. In previously reported data [3] there were just a few structures with H···Ω distances below
2.35 Å and large number of interactions with H···Ω distances above 2.40 Å [3]. These data were  for
intermolecular C−H···π interactions, hence there were not geometrical constrains. We assume that
H···Ω distances for these intermolecular interactions respond to the most stable interactions.

Based on that, H···Ω distances in pyridine complexes are shorter than the most favorable distances.
By ruffling porphyrin ring in pyridine complexes with orthogonal orientation of pyridine ligands H···Ω
distances are getting longer and energetically more favorable. That contribute to the stability of
orthogonal orientations.
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Conclusion

By using geometrical criteria 244 intramolecular C−H···π interactions with chelate rings of
coordinated porphyrins were found in 154 crystal structures from CSD. In most of the structures a
hydrogen atom of the axial ligand is involved in the interaction, although there are structures where C-
H group is not part of the axial ligand. In some cases where C-H group is part of the axial ligand there
are very short H···Ω distances caused by a constrains in the geometry of the complex. Among these
structures there are structures of iron porphyrin complexes with axially coordinated pyridines.

In iron porphyrin complexes with pyridines distances between hydrogen and the center of the ring
are shorter than the most favorable distance. By ruffling porphyrin H···Ω distances are getting longer
and energetically more favorable. That contribute to the stability of conformation with orthogonal
orientations of pyridine ligands.
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