Retrieval

Inversion Scheme

- Level 1 radiances --> Level 2 products.
- Optimal estimation (Rodgers, 1976, 1990)
- Requires a priori and measurement covariances
- Prototype retrieval algorithm
- Examine appropriate combinations of radiance channels to retrieve: Temperature/pressure, aerosols, constituent gases
- Examine multiplex retrievals using the HIRDLS viewing geometry: Initially : profile-by-profile independent retrievals
- More advanced : along track/across track/whole orbit batch retrievals

Operational retrieval algorithm

- Computational considerations
- 8000 profiles x 10 products per day
- Approximations : trade-off accuracy vs speed

Retrieval Sequence

	Target			Contamina	nts			Cha	annel	s
1	T/p	CO_2	O ₃	N_2O	H ₂ O	Aerosol	2	3	4	5
2	Aerosol	H_2O	N ₂ O	CO ₂ O ₃	HN	D ₃ CH ₄	1	6	13	19
3	O ₃	CO_2	H_2O	N_2O	CFC12	Aerosol	10	11	12	
			·			•				
4	H ₂ O	CH_4	O_2	O ₃	CO ₂	Aerosol	18	20		
			·							
5	NO ₂	H ₂ O	CH_4	O ₂		Aerosol	21			
	HNO ₃						8			
6	CFC11	H_2O	CO_2	O_3		Aerosol	7			
	CFC12						9			
l.	N ₂ O ₅						14			
7	N ₂ O	H.O	CO.	HNO	CE.	Aerosol	15			
, í	ClONO ₂	1120	CO_2	11103	C1 4	1010501	16			
	CH_4						17			

General Requirements

- initial guess profile(s) for species being retrieved
- climatology (interpolated)
- or "nearest" profile at previous retrieval stage
- or co-located profile at previous retrieval stage contaminant profiles for gases contributing to emission but not
- being retrieved at same retrieval step : as listed for initial guess profile
- or co-located data at current retrieval stage
- retrieval order
- retrieve those species which contaminate other channels first retrieval grouping
- joint retrievals for channels with cross-contamination

Radiative Transfer Models

Forward Model

Aerosols

Aerosol Channels

HIRDLS has 4 "designated" aerosol channels in which the contaminants are gases retrieved in other channels.

•	Channel	Wavelength	Contaminants
	• 01	17.38 μm	CO ₂ , H ₂ O, N ₂ O
	• 06	12.07 μm	CO ₂ , O ₃ , H ₂ O
	• 13	8.26 μm	CO ₂ , O ₃ , HNO
	• 19	7.10 μm	H ₂ O

Sulfate Aerosols

- spherical liquid drops, Mie theory appropriate
- recent measurements of low temperature refractive indices
- under background conditions we may assume that scattering is negligible
- under severe volcanic conditions the single scatter albedo in the HIRDLS wavelength range may approach a few percent

 N_2O, CH_4

Polar Stratospheric Clouds / Cirrus

- Scattering becomes significant problem for large particles
- Non-sphericity of particles
- Include scattering in HIRDLS forward model (correlated-k?)
- All channels will show large effects in presence of PSC / cirrus

Cloud detection

each vertical column of detector focal plane array has an aerosol channel

- Gridded data on standard pressure surfaces Temporal and spatial resolution depends on the species A Priori Data Consider a priori constraints to be "virtual measurements" represents priori knowledge of the atmospheric state and variability combine with the direct measurements Statistical constraint regard the a priori profile and covariance (determined from climatology) as an additional measurement and its uncertainty retrieved state is a weighted mean of the true and a priori states plus a noise contribution $\hat{\mathbf{x}} = \mathbf{A}\mathbf{x} + (\mathbf{I} - \mathbf{A})\mathbf{x}_{a} + \text{noise terms}$ covariance is chosen to limit the bias introduced in the retrieved state
- Matrix Inversion
- ensures non-singular matrices Diagnostics quantified

Science Prototyping

Limb Radiance Spectra

Climatology Data

Climatological data are required for each contaminant species in the
HIRDLS channels

Field	Temporal	Spatial
CO_2	Fixed	1-D Profile
) ₃	Monthly	2-D Zonal Mean
I ₂ O	Monthly	2-D Zonal Mean
$\rm MO_2$	Monthly, Diurnal	2-D Zonal Mean
CFC11	Monthly	2-D Zonal Mean
INO ₃	Monthly	2-D Zonal Mean
CFC12	Monthly	2-D Zonal Mean
V_2O_5	Monthly, Diurnal	2-D Zonal Mean
V_2O	Monthly	2-D Zonal Mean
CIONO ₂	Monthly, Diurnal	2-D Zonal Mean
CH_4	Monthly	2-D Zonal Mean
CF_4	Monthly	2-D Zonal Mean
) ₂	Fixed	1-D Profile
Aerosol	Background to Volca nic	2-D Zonal Mean
<i>Cemperature</i>	Monthly	2-D Zonal Mean
Ieight	Monthly	2-D Zonal Mean

retrieval formalism allows the influence of the a priori on the retrieved product to be

Error Characterization

Visualization and Validation Toolkit

Line of Sight (LOS) Gradients

Limb-radiance is dependent on horizontal thermal and constituent mixing ratio gradients

- sensitivity to thermal gradients increases with decreasing wavelength (Planck function dependence) for same opacity
- optically thin channels are less sensitive to gradients
- typical errors of 2-3 K in temperature for gradient of 1K/100km

Two-Pass Approach

- first pass assume horizontal homogeneity
- retrieve and grid products
- second pass
- calculate horizontal gradients from gridded data (local or global grid) retrieve applying LOS correction

Limb-View Geometry Approach

requires significant overlap of LOS paths for successive profiles not applicable for standard HIRDLS global mode observations (5°x5°) could be applied to observation modes with finer along-track spacing

2D LOS Geometry

HIRDLS Water Vapor at 30km

Validation and Visualization

Water Vapor Differences (%) at 30 km

