

Implementation of UML Schema to RDBM
M. Nagni, S. Ventouras, and G. Parton

Centre for Environmental Data Archival, STFC, Harwell Oxford, Oxfordshire, UK OX11 OQX
maurizio.nagni@stfc.ac.uk

Numerous disciplines require information concerning phenomena implicitly or explicitly associated with a location relative to the Earth. Disciplines using Geographic Information (GI) in particular are those
within the earth and physical sciences, and increasingly those within social science and medical fields. Therefore geographic datasets are increasingly being shared, exchanged and frequently re-purposed
for uses beynd their original intended use.

The ISO Technical Committee 211 (ISO/TC 211) together with Open Geospatial Consortium (OGC) provide a series of standards and guidelines for developing application schemas which should:
a) capture relevant conceptual aspects of the data involved;
b) be sufficient to satisfy previously defined use-cases of a specific or cross-domain concerns.
In addition, the HollowWorld technology offers an accessible and industry-standardised methodology for creating and editing Application Schema UML models which conform to international standards for

interoperable GI [2]. We present a technology which seamlessly transforms an Application Schema UML model to a relational database model (RDBM). This technology, using the same UML information
model, complements the XML transformation of an information model produced by the FullMoon tool [2].

RDBMs exist to enable searching within a data collection, a process that has, over the decades, been heavily optimized. Moreover, modern non-relational DB [3] flavours (MongoDB, Cassandra,
NewSQL) are still in their infancy with associated disadvantages for ease of adoption, software reliability, etc. A UML schema, or better its XMI description, has, in contrast, an almost natural
mapping/transformation to an XSD schema and ISO19136 with well known applications, e.g. Fullmoon or Shape Change, supporting this approach. However, describing geographic information within a
widely accepted XML-encoded vendor-neutral format such as GML may not be the best option for persisting or searching operations.

Within a full model-driven approach the UML should remain at the centre of any implementation claiming to represent the model itself. In this context, a UML -> XSD -> RDBM transformation is not
possible because the both the XSD and RDBM, and even an OWL implementation, have the same goal: to represent the same model. In a typical scenario an ingested XML document is separated into core
and ancillary data: the core data map to a set of relational tables, the ancillary to a single XML-type field. This approach works well when the core data are a fraction of the whole document, and even better
if the main aim of the RDBM is not to simply return other XML objects.

The essence of a UML model consists of three components: object, relation, constraint.
● An object is typically a common, language independent, Object Oriented (OO) class with its attributes and methods
● A relation connects two objects, whose types are harmonised either when defined at class level, i.e. inheritance, or at the attribute level, i.e.
via multiplicity
● A constraint is a logical expression limiting the object’s features

In both UML and OO a child class can inherit attributes and/or methods either from one or many parent classes. However, only a few RDBMs can partially handle inheritance rules. To address this issue
the Composition over Inheritance [4] technique is utilised which transforms an inheritance relation to a composite class. Composition may appear less “natural” than inheritance but it provides a more
stable environment overall, having the advantage over inheritance by being a more thorough isolation of interests which may be described by a hierarchy of descendant classes.

A RDBM may then exploit such isolation through use of multiple foreign key relationships between tables.

1. creating a collection of OO classes and further enriching these classes with appropriate methods to satisfy the model constraints.

2. From hierarchical model to RDBM

2. enforcing the UML relationships in the RDBM with an appropriate collection of foreign keys and subsequently create additional tables (many-to-many or circular relations)

An RDBM is established through:

1. Why map an UML schema to a RDBM?

3. Inheritance vs Composition

However, it should be noted that:

● as the RDBM consist of collections of interconnected class instances the tables, and the classes that are their
counterpart, gain one or more “ID” attributes in order to reconstruct specific model/submodel instances

● those “ID” attributes are assumed to be private, being part of the persistence mechanism and not of the UML model itself

● an additional table is needed where a many-to-many relation exists, e.g. a Session contains many Parties but also a
Party may contains many sessions and is resolved creating an ad-hoc table, session_party_table, in order to fully
decouple the session_table and the party_table

● the additional table for the many-to-many relationship (the session_party_table above) also resolves also problem
arising from circular relations, e.g. Session → Talk → Party → Session

Once a XMI format of the UML model has been exported a Java application parses the XMI retrieving the necessary models to import “on-the-fly” through an inner name:httpLink lookup table,
creating an internal description of the model. The application then uses Apache Velocity to generate a python collection of OO classes and an SQLAlchemy mapping script. Within a complex
UML model the class relationships are hard to handle directly; consequently the access to the RDBM is done using Object Relational Mapping (ORM) software, in this case SQLAlchemy.
Moreover, due to the internal model description that has been created, the application can potentially generate either the collection of classes in any specific OO language and XSD or OWL
schemas.

UML Model OO Model (with Inheritance) OO Model (with Composition)

● The classes contains their parent as a private attribute
● Attributes coming from a parent are accessed through a

“getter” method

● The classes are defined through inheritance
● All attributes are public
● Constraints are realised implementing a general interface

method (through the interface we define an abstract class
containing only methods or class constants)

● A “List” class realises the attribute multiplicity of the class

● Classes defined through inheritance and relations
● All attributes are public
● Constraints are expressed in a human understandable

format. However, an Object Constraint Language (OCL)
expression would fit better a model driven approach

4. Implementation details

Clearly the application result object(s)
depend on the specific transformation (UML
to PythonRDBM, to JavaRDBM, to GML....)
that is required.

A typical python application based on xmi2rdbm uses the UML
generated library (ModelLibs) and class-to-rdbm mapping
(DBMapping) to configure a rdbm-side (SQLAlchemy) and client-
side (Django) application.

The EPB (a user written class/interface) is a single point of
access from the client-side to the rdbm-side. It exposes to the
client-side methods to create/update/delete/seach Model objects
and relays on the rdbm-side for the db persistence mapping.
The XML document generated from the Django application
complains about the GML generated from the same UML model.

Future work aims to integrate the UML2RDBM core parser into Newmoon
(http://bond.badc.rl.ac.uk/newmoon) which offers an online version of
Fullmoon. The new core parser could easily be extend to offer these UML
transformation services.

5. Reference

1. ISO 19101. Geographic information — Reference model. International Organization for Standardization, 2002.
2. P. Colodoniuc and S. Cox, Application schema modelling for interoperable geospatial information using the ISO 19100 series of
standards
3. http://en.wikipedia.org/wiki/NoSQL
4. http://en.wikipedia.org/wiki/Composition_over_inheritance

http://bond.badc.rl.ac.uk/newmoon
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Composition_over_inheritance

	Slide 1

