
Open Research Online
The Open University’s repository of research publications
and other research outputs

Automatic assessment of sequence diagrams
Conference or Workshop Item
How to cite:

Thomas, Pete; Smith, Neil and Waugh, Kevin (2008). Automatic assessment of sequence diagrams. In: 12th
International CAA Conference: Research into e-Assessment, 8-9 Jul 2008, Loughborough University, UK.

For guidance on citations see FAQs.

c© 2008 The Authors

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.materials.ac.uk/events/caa-2008.asp

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/2993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.materials.ac.uk/events/caa-2008.asp
http://oro.open.ac.uk/policies.html

AUTOMATIC ASSESSMENT OF
SEQUENCE DIAGRAMS

Pete Thomas, Neil Smith and Kevin Waugh

Automatic Assessment of Sequence Diagrams

Pete Thomas, Neil Smith, Kevin Waugh
Computing Department, Open University, UK.

p.g.thomas@open.ac.uk

Abstract

In previous work we showed how student-produced entity-relationship
diagrams (ERDs) could be automatically marked with good accuracy when
compared with human markers. In this paper we report how effective the
same techniques are when applied to syntactically similar UML sequence
diagrams and discuss some issues that arise which did not occur with ERDs.
We have found that, on a corpus of 100 student-drawn sequence diagrams,
the automatic marking technique is more reliable that human markers. In
addition, an analysis of this corpus revealed significant syntax errors in
student-drawn sequence diagrams. We used the information obtained from
the analysis to build a tool that not only detects syntax errors but also
provides feedback in diagrammatic form. The tool has been extended to
incorporate the automatic marker to provide a revision tool for learning how to
model with sequence diagrams.

Introduction

In previous work we showed how student-produced entity-relationship
diagrams (ERDs) could be automatically marked with good accuracy when
compared with human markers (Thomas et al., 2007c). In this paper we report
how effective the same techniques are when applied to UML sequence
diagrams (SDs) and discuss some issues that arise which did not occur with
ERDs.

While there are several systems being developed for grading textual material
(Burnstein et al., 2003, Haley et al., 2005) and there is a considerable
literature for describing diagrams (Anderson & McCartney, 2003, Chock &
Marriott, 1995, Kniverton, 1996, Marriott et al., 1998) there is very little work
on grading diagrams. Tsintsfas (2002) has produced a framework for the
assessment of diagram-based coursework which has fed into an ERD tool
within the CourseMarker CBA system (Higgins & Bligh, 2006) and Batmaz &
Hinde (2006) have investigated a semi-automatic marking system.

SDs are syntactically similar to ERDs, since both consist of boxes connected
by lines. In ERDs entities, represented by boxes, are associated with one
another through relationships, denoted by lines. In SDs object activations,
denoted by rectangles, are associated with one another through messages,
denoted by arrowed lines. Clearly the semantics of ERD relationships is very

different from the semantics of messages, but the underlying syntactic
structures are quite similar. Therefore, our aim is to exploit this similarity to
grade SDs in the same way that worked so well for ERDs.

Measuring the effectiveness of an automatic marker requires a substantial
corpus of student-drawn diagrams for statistically reliable testing. Therefore,
we collected a set of 169 hand-drawn sequence diagrams produced by
students in a closed-book, invigilated examination. These diagrams had
already been graded by experienced academic markers and were
independently second-marked and moderated to provide a standard against
which our automatic marker could be judged. However, it was clear that
students had made a large number and variety of syntax errors which makes
marking substantially more difficult both for experienced human markers and
an automatic marker. We refer to such error-containing diagrams as imprecise
diagrams (Smith et al., 2004). Typically, depending on the nature of the
assessment, human markers will compensate for trivial syntax errors with a
view to assessing the intended meaning of a student’s answer. It is important
that our automatic marker gives the same 'benefit of the doubt' when marking
scripts.

In this paper we discuss two areas of investigation. First, we examine the
nature of the errors made by students when drawing sequence diagrams and
how that information has influenced the design of a learning tool. Second, we
discuss the effectiveness of our automatic marking approach when applied to
SDs. We conclude with a discussion of how the two strands of this research
can be combined to provide a comprehensive revision tool to help students
construct correct sequence diagrams.

The corpus of sequence diagrams

The work reported here is based on hand-drawn sequence diagrams
produced in an end-of-course invigilated examination. Among other topics, the
course teaches subsets of certain UML diagrams (class, sequence,
collaboration, and state diagrams). The course is a distance education course
and, as a consequence, the subset of UML sequence diagrams taught and
the pedagogic approach used is recorded in the printed course materials. This
information is helpful in deciding whether an error is due to misunderstanding
or a lack of precise teaching.

Since the diagrams were hand-drawn under examination conditions, students
were under time pressure which resulted in errors that occurred because the
students ran out of time (diagrams were incomplete) or diagrams were drawn
too quickly (elements of the diagram were not well-formed). The latter issue is
similar to that of poor writing in a conventional written examination (an issue
that also occurs in diagrams in the labelling of objects and messages). In our
data, there were only two incidents of ill-formed diagram elements that could
not be interpreted.

The examination took place in October 2007 and provided 169 hand-drawn
sequence diagrams. To-date we have analysed the first 106 diagrams in this
corpus and none is totally free of syntax errors. Five of the diagrams confused
collaboration and sequence diagrams, and one used a syntax that was more
akin to an activity diagram. This left 100 sequence diagrams to be analysed in
depth.

Errors in sequence diagrams

Sequence diagrams are used to show how a group of objects interact by
exchanging messages. In the sequence diagrams dealt with in our course,
there are five essentially different drawing elements: rectangles with text
inside representing objects, rectangles representing activations (the period
when an object is processing a message it has received), vertical dashed
lines representing object lifelines (the passage of time is represented vertically
downwards), lines with arrowheads and text representing synchronous
messages, and dashed lines with an arrowhead representing a return (when
control returns to an object once its message has been dealt with – an
optional feature of sequence diagrams). The sequence diagram shown in
Figure 1 illustrates most of these features but also contains several syntax
errors. (Among other things, the drawing tool is used to capture the hand-
drawn diagrams as xml files.)

Figure 1. Sequence diagram drawing tool

We examined the diagrams and identified 33 types of syntax error. These are
listed in Table 1 and are given in order of frequency of occurrence (the
number of diagrams containing at least one example of the error).

It is quite clear that many of the errors observed were not due to
misunderstanding of sequence diagrams but occurred as the result of, for
example, poor drawing skills, time pressure causing diagram elements to be
missed or drawn inaccurately, and crossing out leading to unrecognisable
elements or a lack of space to draw accurately.

Message Errors Freq (%)
Wrong arrowhead on a synchronous message 71
Incorrect syntax for object name 65
Multiple synchronous messages sent to the same activation 46
Initiating message not at the start of an activation 39
Solid line rather than dashed line used for lifeline 37
Activation finishes after the activation which initiated it finishes 33
Incomplete activation (activation shown as not finishing) 29
Missing sub-activation 29
Missing rectangle for object 23
Missing arrowhead 21
Message text associated with return arrow 20
Solid line rather than dashed line used for return 17
Arguments in formalised message not related to objects 16
Return not at end of activation 15
Creation (new) message sent to activation/lifeline not object 12
Wrong arrowhead on return 12
Sub-activation without an initiating message 12
Missing text for message 10
Missing lifeline 7
Return sent to wrong activation 5
Activation without initiating message 5
Sub-activation in incorrect place 4
Non-creation message sent to object 4
Message sent while blocked 4
Message sent before activation initiated 2
Message sent back in time 2
Message sent from sub-activation to parent 2
Undecipherable element 2
Message from sub-activation sent back in time 1
Message does not start at an activation 1
Incorrect syntax for denoting a condition 1
Activation not situated on a lifeline 1
Invalid activation 1

Table 1. Message error frequency

Nevertheless, all errors noted in Table 1 could have arisen through
misunderstanding. It is also worth noting that the ambiguous nature of UML
diagrams (Morris & Spanoudakis, 2001) causes difficulties for automatic

identification of errors. For example, being able to express the text of
messages both formally and informally means that when the informal method
is used some errors cannot occur but this does not imply that a student
understands the constructs that have not been used.

We categorised the errors in two ways. First, we associated each type of error
with either one of the five drawing elements of an SD or the fundamental
purpose of an SD, according to whether that type of error would occur
primarily as the result of a misunderstanding of that drawing feature. This
categorisation helps with the generation of appropriate feedback.

Second, we categorised the errors into three types: those that are easy to
correct, those that could be corrected with reasonable certainty and those that
are difficult, if not impossible, to correct because to do so would rely on
knowledge (unknown) of what the student was trying to express.

Many minor syntactic errors are easily recognised and corrected. For
example, a lifeline drawn using a solid instead of a dashed line makes little
difference to the understanding of the diagram provided it is in the expected
position relative to an object (as were all the examples in our corpus).
However, a similar error in drawing a return (using a solid line rather than a
dashed line) is much less easy to detect particularly if text is present because
it is so similar to a normal synchronous message. Positioning relative to an
activation can help to distinguish the two.

Multiple messages sent to the same activation is an error that cannot be
corrected with absolute certainty but can be corrected with reasonable
certainty in some circumstances. Activations that are incomplete, that is, have
no distinguishable end point, cannot be corrected with great certainty.

One of the motivating aims of our work is to provide tools that can help
students become familiar with formal diagrams (such as those of the UML)
and help them develop solutions to design problems. Our earlier work has
resulted in a revision tool for ERDs in which the automatic marker is used to
analyse student attempts at solving problems and provide feedback (Thomas
et al., 2007b). We do not wish to use the normal professional drawing tools
which are designed to produce syntactically correct diagrams preferring
instead to allow students the freedom to make mistakes and have the tool
point out the mistakes and hence help the students to learn. However, we do
not want a tool whose drawing primitives are so basic that it becomes
laborious to produce the fundamental drawing elements of the domain (boxes
and arrows). Nor do we want a tool that contains too many distractors that
could confuse even good students, for example, by having menu items that
are illegal but give the impression of legitimacy.

The identification and classification of errors enabled us to produce a drawing
tool (see Figure 1) that would allow users to make the majority of errors
reported above. These errors could then be corrected and appropriate
feedback given. But we wanted a tool that would not be laborious to use: the
tool should be helpful when drawing elements where errors never occurred,

but provide a certain amount of latitude in areas where errors frequently
occurred. For example, in all hand-drawn diagrams in our corpus, lifelines
were drawn in the correct place relative to objects, so we decided that, when
the user wishes to draw an object, the tool should draw a rectangle with an
associated dashed lifeline leaving the student to type the object’s name.
However, when drawing a line to represent a message or return, the tool
should provide a menu of different arrowheads from which the student must
select the one they think is appropriate.

In our current implementation, the following errors are not reproducible:

• incomplete activations
• messages starting other than at an activation or lifeline
• a message sent from a sub-activation to its parent activation
• an object represented other than by a rectangle
• a lifeline represented by a solid line
• an omitted lifeline

Checking syntax and diagram repair
The tool shown in Figure 1 incorporates a syntax checking facility (within the
Tools menu). This facility can be disabled if required, for example if the tool is
used in an exam. The syntax checker identifies errors by shading (objects and
activations) and change of colour (messages) – although this mechanism may
change after usability testing. A textual description of an error can be obtained
by right-clicking on the erroneous element and requesting feedback as shown
in Figure 2.

Figure 2. Sequence diagram drawing tool showing errors

Having identified errors, the tool can be asked to repair the errors (see Figure
3). Not all errors are repaired – only those that can be dealt with with
reasonable certainty. Simple errors, by definition, are those that can be
repaired without changing the essential meaning of the diagram. Other errors
will be repaired on the basis of the most likely error – there are some patterns
which occur frequently and have highly likely causes (see Figure 4).

Figure 3. Sequence diagram drawing tool showing errors repaired

(a) (b)
Figure 4. An incorrect diagram fragment (a) and its repair (b)

If a repaired diagram is re-checked, errors may still be detected, but these are
the irreparable complex errors which the user should attempt to fix prior to
submitting the diagram to the automatic marker. Of course, the user may not
be able to fix the errors and can submit the syntactically incorrect diagram to
the automatic marker which has to operate in the face of such errors.

Automatic marking of sequence diagrams

We mark diagrams by comparing a student’s attempt with a gold standard – a
specimen solution (there could be more than one acceptable solution) – to
produce a set of similarity measures for certain diagram features known as
minimal meaningful units (MMUs) (Smith et al., 2004) to which the mark
scheme used by the human markers is applied. We then compare the results
of the automatic marker to the moderated human marks.

The similarity measures are modified by certain weights and thresholds which
have to be determined for the data set under test. The weights represent the
significance, for marking purposes, of diagram features in a particular domain
and are set by the user. Thresholds are determined by experiment and
represent limiting values; for example, two objects will be considered the
same if the measure of their similarity is above a certain threshold. Following
the approach adopted for ERDs (Thomas et al., 2007c), we determine
suitable values for the thresholds using a training set of diagrams; in this case
the first 30 diagrams in our corpus. The trained marker is then applied to the
remaining diagrams (the test set consisting of 70 diagrams) and the results
reported for this test set.

Table 2 shows the differences between the moderated human marks and the
auto marks for the test set. Most of the time, the human markers marked to
the nearest whole number (as did the automatic marker). The maximum mark
was 8.

Difference 0 0.5 1 >1
Number 47 2 21 0
% 67.14 2.86 30.0 0

Table 2. Difference between human and auto marks

The mean difference for the 70 diagrams was 0.34 with a standard deviation
of 0.468.

A good approach to comparing two markers is to use inter-rater reliability and,
in particular, Gwet’s AC1 statistic (Gwet, 2001). We also present Fleiss's
generalised kappa measure (Fleiss, 1971) to enable easier comparison with
other marking approaches. We consider Gwet's measure to be superior, as it
more accurately accounts for chance agreement between markers (see Gwet
(2001) for details). Critical values for these measures are, for two raters,
around 0.15 for both AC1 and kappa: agreement measures above these
values allow us to reject, with over 99% confidence, the null hypothesis that
the marks are being allocated randomly. The results are shown in Table 3
where we have compared the original (unmoderated) mark and the
moderated human mark with the automatically generated mark, where the
number of categories was 9 (including zero).

Raters (N=70, 8 point scale) AC1 Kappa
Unmoderated v Auto Mark 0.1916 0.0063
Moderated v Auto Mark 0.7625 0.6371

Table 2. Inter-rater reliability measures

The results in Table 3 confirm the good correspondence between the
automatically generated mark and the moderated mark and illustrate the poor
performance of the human markers and the need for moderation.

As an aside, the original, unmoderated marks were produced by three human
markers who each marked approximately one-third of the diagrams. We have
analysed their individual performance using the AC1 statistic and found
considerable differences. At this stage of our investigations we believe that
the differences are due to different interpretations of the marking scheme.
Fortunately, our University has robust procedures for identifying and dealing
with differences in the performance of markers (essential when there can be
many markers for a single examination).

Conclusions and further work

The work presented here deals with the analysis and categorisation of errors
in imprecise sequence diagrams and the performance of an automatic
marker. The analysis has informed the design of a syntax error-checking tool.
That tool not only checks and reports on syntax errors, but will also repair the
majority of error types using information gleaned from the error analysis. The
checking and repair of diagrams is intended to help students improve their
understanding of the fundamental syntactic aspects of sequence diagrams.
The semantics of a sequence diagram are dealt with in the automatic marking
algorithm.

The software drawing tool does not permit all of the observed errors to be
made. The choice of which errors to be prohibited has been pragmatic, but it
is based on the observed behaviour across the corpus of diagrams. This will
be reviewed in the light of experience with the tool. We intend to evaluate the
tool with students later this year to determine its usefulness and usability.

We have begun the development of a revision tool that will add the marking
capability to the check and repair tool to provide semantic feedback. This will
be similar to a revision tool we have already developed for ERDs (Waugh et
al., 2007). In due course, the revision tool will be augmented with wizards to
help with the creation of cliché diagrams (Thomas et al., 2006). This will allow
three levels of support. First, using it to check for simple syntax errors (aimed
at reinforcing the basic principles of SDs), then using its semantic feedback
from the automatic marker to improve modelling skills, and finally using
support for faster construction of diagrams.

The tools described here have been built on the information gained from an
analysis of the errors made by students. We want to place this work on a
more formal basis as part of our investigations into diagram understanding.
We intend to use constraint multiset grammars (CMGs) (Marriott et al., 1998)
to describe SDs. This should allow us to develop a more sophisticated parser
for the diagrams, in the manner of tools developed for other diagram domains
(Chok & Marriott, 1995), though how to extend such a parser to accommodate
the imprecise and malformed diagrams seen in our corpus remains an open
question.

References

Anderson, M., McCartney, R. (2003) Diagram processing: Computing with
Diagrams. Artificial Intelligence 145 (1-2) 181-226.

Batmaz, F. and Hinde, C.J. (2007) A Web-Based Semi-Automatic
Assessment Tool for Conceptual Database Diagram. In the Proceedings of
the Sixth IASTED International Conference on Web-Based Education.
(Chamonix, France, March 14-17, 2007), 427-432.

Chok, S.S. and Marriott, K. (1995) Parsing visual languages. Proceedings of
the Eighteenth Australian Computer Science Conference, Australian
Computer Science Communications, 17, 90-98.

Fleiss, J. L. (1971) "Measuring nominal scale agreement among many raters."
Psychological Bulletin 76(5): 378—382.

Gwet, K. (2001) Statistical Tables for Inter-Rater Agreement, Gaithersburg :
StatAxis Publishing.

Higgins, C. A. and Bligh. B. (2006) Formative Computer Based Assessment in
Diagram Based Domains. Proceedings of the 11th Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE, Bologna,
Italy, June 26-28, 2006), 98-102.

Marriott, K., Meyer, B. and Wittenburg, K.B. (1998) A survey of Visual
Language Specification and Recognition. In Visual Language Theory, eds:
Marriott, K and Meyer, B., Springer-Verlag, New York, 8-85, ISBN 0-378-
98367-8.

Morris, S. and Spanoudakis, G. (2001) UML: An Evaluation of the Visual
Syntax of the Language. In the proceedings of the 34th Hawaii International
Conference on System Sciences, 2001. IEEE. Hawaii.

Shermis, M.D, Burstein, J.C. (2003) (eds.) Automated Essay Scoring: a cross-
disciplinary approach. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
ISBN 0-8058-3973-9.

Smith, N, Thomas, P.G. and Waugh, K. (2004) Interpreting Imprecise
Diagrams. Proceedings of the Third International Conference in the Theory
and Application of Diagrams. March 22-24, Cambridge, UK. Springer Lecture
Notes in Computer Science, eds: Alan Blackwell, Kim Marriott, Atsushi
Shimojima, 2980, 239-241. ISBN 3-540-21268-X.

Thomas, P.G., Waugh, K., Smith, N. (2005) Experiments in the Automatic
marking of E-R Diagrams. Proceedings of the 10th Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE, Monte
de Caparica, Portugal, 2005), 158-162.

Thomas, P.G., Waugh, K., Smith, N. (2006) Using Patterns in the Automatic
Marking of ER-Diagrams. Proceedings of the 11th Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE, June 26-
28, Bologna, Italy, 2006), 403-413.

Thomas, P.G., Waugh, K., and Smith, N. (2007a) Computer Assisted
Assessment of Diagrams. In Proceedings of ITiCSE, Dundee, Scotland, 25-29
June 2007.

Thomas, P.G., Waugh, K., and Smith, N. (2007b) Tools for supporting the
teaching and learning of data modelling. In Proceedings of ED-MEDIA,
Vancouver, Canada, 25-29 June, 2007.

Thomas, P.G., Waugh, K., Smith, N. (2007c) Tools for learning and
automatically assessing graph-based diagrams. In Research Proceedings of
ALT-C 2007, Nottingham, 4-6 September, 2007, 61-74.

Tsintsifas A. (2002) A Framework for the Computer Based Assessment of
Diagram-Based Coursework, Ph.D. Thesis, Computer Science Department,
University of Nottingham, UK.

Waugh, K., Thomas, P.G., Smith, N. (2007) Teaching and Learning
Applications Related to the Automated Interpretation of ERDs. TLAD 07, July
2007, Glasgow.

	 Automatic Assessment of Sequence Diagrams
	Pete Thomas, Neil Smith, Kevin Waugh Computing Department, Open University, UK. p.g.thomas@open.ac.uk
	Abstract
	Introduction
	The corpus of sequence diagrams
	Errors in sequence diagrams
	Checking syntax and diagram repair

	Automatic marking of sequence diagrams
	Conclusions and further work
	 References

