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Abstract: By direct monitoring of the hydrogen peroxide concentration during its catalytic 

decomposition into water and oxygen in the presence of potassium iodate and sulfuric acid, 

that is in the Bray-Liebhafsky system, the pseudo-rate constants of overall reduction and 

oxidation pathways were determined. The dependence of the obtained rate constants on 

acidity was evaluated. It was found that the pseudo-rate constant of the overall reduction 

process increases with increasing acidity, whereas the pseudo-rate constant of the overall 

oxidation process decreases with increasing acidity. The corresponding activation energies 

were also calculated using values of this costant at two temperatures. 

Keywords: Chemical Kinetics; Nonlinear Dynamics; Bray-Liebhafsky Reaction; Rate 

Constants; Activation Energy. 

 

RezÓme: Issledovaniem koncentracii perekisi vodoroda v processe ego 

katalitiåeskogo razloæenià na vodu i kislorod v prisutstvii ïodata kalià i sernoï 

kislotì, t.e. v sisteme Bray-Liebhafsky, proveden analiz postoànnìh skorosti 

vosstanovitelênogo i okislitelênogo puteï v kaåestve postoànnìh skorosteï 

psevdopervogo ràda. Opredelenì ih zavisimosti ot kislotnosti. S uveliåeniem 

kislotnosti psevdopostoànnaà skorosti vosstanovitelênogo processa uveliåivaetsà, v 

to vremà kak psevdopostoànnaà skorosti okislitelênogo processa s uveliåeniem 

kislotnosti – umenêãaetsà. Ispolêzovaniem ih znaåeniï pri dvuh temperaturah 

rassåitannì  sootvetstvuòöie ènergii aktivacii. 

Kl¥~ev½e slova: Himiåeskaà kinetika; dinamika nelineïnìh sistem; reakcià Bray-

Liebhafsky; postoànnìe skorosti; ènergià aktivacii. 

 

Sadr`aj: Direktnim pra}ewem koncentracije vodonik-peroksida u toku wegovog 

kataliti~kog razlagawa na vodu i kiseonik u prisustvu kalijum-jodata i sumporne 

kiseline, odnosno u Bray-Liebhafsky sistemu, analizirane su konstante brzina 
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celokupnog redukcionog i oksidacionog puta kao konstante brzina pseudo-prvog 

reda. Izvedene su wihove zavisnosti od kiselosti. Na|eno je da pseudo-konstanta 

brzine celokupnog redukcionog procesa raste sa porastom kiselosti, dok pseudo-

konstanta brzine celokupnog oksidacionog procesa opada sa porastom kiselosti. 

Kori{}ewem wihovih vrednosti na dve temperature izra~unate su odgovaraju}e 

energije aktivacija. 

Kqu~ne re~i: Hemijska kinetika; nelinerna dinamika; reakcija Bray-Liebhafsky; 

konstante brzine; energija aktivacije.  

 

 

Introduction 

 
 It is well known that hydrogen peroxide decomposition into water and oxygen in 

the presence of hydrogen and iodate ions, viz. 

2222 22 OOHOH  ,       (D) 

is a complex reaction which takes place through two also complex reactions; in the 

first one, hydrogen peroxide acts as a reducing agent:  

222223 5622 OOHIOHHIO   ,     (R) 

and, in the second one, hydrogen peroxide acts as an oxidizing agent: 

OHHIOOHI 23222 4225   .     (O) 

It is also known that direct analysis of its kinetics with respect to hydrogen 

peroxide by its monitoring, besides monitoring other intermediate species, is of crucial 

importance in understanding the overall process [1-21]. 

Moreover, it is well known that a method of determining the hydrogen 

peroxide concentration exists based on the spectrophotometric measurements of the 

complex formed between titanium oxalate and hydrogen peroxide [11, 22]. However, 

although illustrations [11, 23] of hydrogen peroxide decomposition exists based on 

these measurements, no kinetic results were obtained on the ground of them. Naturally, 

we should ask ourselves why this is so? The answer is simple.  

There are two serious difficulties related to the mentioned measurements of 

hydrogen peroxide concentrations in the system considered. The first is caused by 

periodic perturbations of the system as successive aliquots are taken from it during the 

reaction, that is while the system considered is in one of its steady states far from 

thermodynamic equilibrium; particularly, if it is in an oscillatory state. 

The second difficulty is related to spectrophotometric measurements of 

hydrogen peroxide concentration by titanium oxalate in the presence of iodine species 

(in the presence of iodine species, the concentration of hydrogen peroxide cannot be 

monitored by the standard iodometric titration method [24]). More precisely, although 

this has not been noted in literature, we could observe that the absorbance obtained by 

the measurements mentioned, in some regions of parameters, is distinctly higher than 

expected for the hydrogen peroxide concentration in this system under the conditions 

considered.  

This paper deals with hydrogen peroxide concentration monitoring during its 

decomposition into water and oxygen in the presence of potassium iodate and 

sulphuric acid (the Bray-Liebhafsky reaction), and, on the basis of these results, with 
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analyzing the corresponding kinetics based on the calculated pseudo-rate constants for 

the overall processes (R) and (O).  

 

Experimental 
 

 The experiments were carried out in the manner similar to the ones described in 

our previous papers [25-26], where the same system was investigated under isothermal 

conditions. The hydrogen peroxide decomposition in the presence of potassium iodate 

and sulphuric acid was analyzed in a well stirred vessel (magnetic stirrer of 900 rpm) at 

constant temperatures T1 = 333.20.2 K (60C) and                   T2 = 328.20.2 K 

(55C). The introduction of 1 ml of hydrogen peroxide solution to the standardized 

mixture of 25 ml of potassium iodate and 25 ml of sulfuric acid solutions was taken as 

the initial moment for the reaction. The initial concentrations of hydrogen peroxide, 

potassium iodate and sulfuric acid are given in Tabs. I and II. The initial concentration 

of hydrogen peroxide was controlled by the standard iodometric titration method [24].  

 

Tab. I The values of initial concentrations of sulfuric acid and potassium iodate and the 

calculated values for hydrogen and iodate ion concentrations in the reaction system at 

temperatures of T = 333 K (60C) and T = 328 K (55C). 
 

T 

(K(C)) 

H2 SO4o 

(mol/dm3) 

KIO3o 

(mol/dm3) 

H+ 

(mol/dm3) 

IO3
- 

(mol/dm3) 

333 (60) 2.45  10-2 6.62  10-2 3.14  10-2 5.74  10-2 

333 (60) 3.37  10-2 6.88  10-2 4.19  10-2 5.74  10-2 

333 (60) 4.90  10-2 7.38  10-2 5.59  10-2 5.74  10-2 

333 (60) 8.00  10-2 8.23  10-2 8.55  10-2 5.74  10-2 

328 (55) 2.45  10-2 6.62  10-2 3.13  10-2 5.74  10-2 

328 (55) 8.00  10-2 8.23  10-2 8.53  10-2 5.74  10-2 

 

The mixture of sulfuric acid and potassium iodate solution was purified with 

nitrogen for 40 min. in order to maintain a mixture free of any dissolved oxygen before 

hydrogen peroxide was added.  

 The measurements were carried out in several independent series of 

experiments performed at different temperatures and for different acidities. In every 

series, that is at any fixed acidity and temperature, the initial concentrations of 

hydrogen peroxide had the values given in Tab. II. 

 

Tab. II The four values of initial hydrogen peroxide concentrations, all four applied to every 

combination of the parameters given in Tab. I. 

 

T 

(K (C)) 

H2O2o 

(mol/dm3) 

333 (60) 3.94   10-3 9.85   10-3 1.58   10-2 1.98   10-2 

328 (55) 4.00   10-3 1.00   10-2 1.60   10-2 2.00  10-2 
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The initial concentrations of potassium iodate and sulphuric acid  were varied 

but in such a way that the concentration of iodate in the system was kept constant at 

5.7410-2 mol/dm3 [27]. For this purpose the dissociation constant Kd at 60C was 

taken from [28]. The initial combinations of sulphuric acid and potassium iodate, 

together with corresponding concentrations of iodate and hydrogen ions in the reaction 

mixture, are presented in Tab. I.   

All measurements were carried out in two parallel independent series with the 

same initial concentrations of all species. In one of them, the time evolution of the 

system undergoing concentration oscillations of intermediates was followed 

potentiometrically, by means of iodide ion sensitive electrode connected to the 

Ag/AgCl reference electrode, with the aim to monitor the iodide ion as one of the 

intermediates in the system. In another one, the time evolution of the system was 

followed by two methods, potentiometric and spectrophotometric, at  = 405 nm, in 

paralel. The spectrophotometric method was used to monitor the hydrogen peroxide 

concentration as a reactant undergoing cascade decomposition. For hydrogen peroxide 

measurements, aliquots of 0.3 ml have been taken from the solution periodically. 

 

Results 
 

Examinations of  disturbances of the system influenced by taking aliquots  

 

 The analyzed system belongs to the class of homogeneous oscillatory chemical 

reactions. In other words, in some of its dynamic states far from equilibrium, the 

concentration oscillations of intermediate species participating in it may set in. 

Generally, such processes are very sensitive to any perturbations [29] and, 

unfortunately, we had to take aliquots from our system to measure the hydrogen 

peroxide concentration by spectrophotometric method.  
In order to investigate the influence of the permanent disturbance of the system 

introduced by taking aliquots during the reaction, we had to carry out two parallel, 

equivalent and independent experiments with one of them monitored without taking 

aliquots. As iodide is one of the most important intermediate species in the system, the 

corresponding potentiometric measurements were performed. One of the oscillograms 

obtained without taking aliquots is presented in Fig. 1a, whereas the one where 

aliquots are taken, for the same parameters of the system, is presented in      Fig. 1b. 

Aliquots were taken at the moments denoted by arrows. The reproducibility of results 

is fascinating, especially if one bears in mind that reproducibility of the oscillatory 

evolution is very difficult to achieve, even in two equivalent successive unperturbed 

experiments. The average time intervals between starts of reactions and terminations of 

their oscillatory phases, end , in the two experiments with the same parameters, except 

in two examples only, differed by less than 9 %.  

 

Spectrophotometric measurements 

 

 The dependence of absorbance (proportional to the hydrogen peroxide 

concentration) on time is presented in Figs. 1c and 2. 
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Fig. 1 The time evolution of the Bray-Liebhafsky system for two independent experiments with 

the same initial conditions are considered; the first one is presented in (a) and the second one in 

(b), (c) and (d). Potentiometric traces of the iodide ion sensitive electrode (a) without taking 

aliquots, and (b) with taking aliquots from the system. The arrows denote the moments of 

taking aliquots. (c) The absorbance of aliquots versus time, obtained at 405 nm, during 

hydrogen peroxide decomposition. (d) Cascade curves presenting hydrogen peroxide 

decomposition given in the form ln[H2O2] versus time; T = 333 K,                              [H2SO4]0 

= 2.4510-2 mol/dm3, [KIO3]0 = 6.6210-2 mol/dm3 ([H+]0 = 3.1410-2 mol/dm3,        [IO3
-]0 = 

5.7410-2 mol/dm3), [H2O2]0 = 1.9810-2 mol/dm3. 

 

In Fig. 2. one can notice an important increase of absorbance during the 

preoscillatory period, contrary to the case in Fig. 1c. This effect appeared only in 

experiments where the steady state concentration of iodine was high, as it is in the 

examples presented in Fig. 2.  
Fig. 2 The absorbance of aliquots versus time, obtained at 405 nm, during hydrogen peroxide 
decomposition in the BL system; T = 333 K, [H2SO4]0 = 3.3710-2 mol/dm3,                 
[KIO3]0 = 6.8810-2 mol/dm3 ([H+]0 = 4.1910-2 mol/dm3, [IO3

-]0 = 5.7410-2 mol/dm3). The 
cascade curves denoted by 1, 2 and 3 are obtained with [H2O2]0 = 3.9410-3, 9.8510-3 and 
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1.5810-2 mol/dm3, respectively. For the acidity considered, [H+]0 = 4.1910-2 mol/dm3, the 
influence of iodine on the overall absorbance of the Bray-Liebhafsky reaction is the highest. 

If absorbance was a measure of the hydrogen peroxide concentration only, we 

could have conclude that its concentration might have rises in the period shortly 

following the beginning of the process. However, before reaching such a conclusion, 

we had to see the influence off the iodine species on absorbance. Therefore, water 

solutions of titanium oxalate and hydrogen peroxide, titanium oxalate and iodine and 

titanium oxalate and iodate were investigated separately. Other iodine species have 

very low concentrations in the Bray-Liebhafsky system.  

Analyses of the absorbance of the solutions mentioned, have shown that 

titanium oxalate forms complexes with hydrogen peroxide and iodine only [30]. 

Therefore, the absorbance of the mixed hydrogen peroxide and iodine solutions with 

titanium oxalate was analyzed separately. The evaluated results were used for 

corrections of our cascade curves denoting absorbace versus time during hydrogen 

peroxide decomposition.  

As the iodine concentration in the Bray-Liebhafsky reaction also depends on 

acidity [11], we found that corrections in absorbance due to iodine were necessary only 

in the preoscillatory period of some oscillograms. Hence, we could proceed to kinetic 

considerations of the cascade curves presenting hydrogen peroxide concentrations as 

functions of time, either by analyzing the overall curves with corrected preoscillatory 

periods or, simply, by analyzing the same curves omitting preoscillatory periods in 

order to avoid any possible errors due to correction. The results obtained by both 

procedures appeared to be independent of the method applied.  

 

Kinetic results 

 

The process of hydrogen peroxide decomposition, under considered 

conditions, has the characteristic cascade form with two obviously different rates. 

From the potentiometric measurements, we knew that, under the conditions 

considered, the overall hydrogen peroxide decomposition (D) obeys the first order 

kinetic law [3, 8, 31]. In other words that 
   ,22

22 OHk
dt

OHd
D        (1) 

and 
  

.
ln 22

dt

OHd
k D          (2) 

Having this in mind, we presented here in one figure all four ln[H2O2]-time 

cascade curves obtained, under the same conditions, for four different initial 

concentrations of hydrogen peroxide (one example of the ln[H2O2]-time cascade curve 

is presented in Fig. 1d). We could note that linear dependence of ln[H2O2] on time is 

approximately satisfied in all (R) periods during oscillatory evolution of the system 

and that these slopes are, in a first approximation, parallel to one another . 

Moreover, from the potentiometric measurements performed earlier at 25C 

and 39C, we know that the rate constant kO is a complex function of hydrogen 

peroxide [32-33], but under considered conditions and T = 60C, the experimentally 

determined constant, noted as kO, is apparently independent of the hydrogen peroxide 
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concentration and oxidation process can be also considered as a pseudo-first order 

one*. Therefore, as well as the fact that the activation energy calculated using rate 

constants obtained in the previous measurements by the method where the pseudo-

first order kinetics is postulated and found [31] had a value characteristic for 

oxidation process [17], for periods (O), we also accept a linear and parallel 

dependence of  ln[H2O2] on time. 

From these two different linear and parallel slopes, the pseudo-first order rate 

constants of the overall processes of reduction (R) and oxidation (O) are determined. 

The rate constant with a lower value, due to process (R) [8, 12, 17-18], has been 

determined directly, since we always had several points in every such region. During 

domination of process (O) [8, 12, 17-18], where the rate constant has a higher value, 

but where we do not have a sufficient number of points in one oxidation period, we 

had to take into account the duration of an oxidation process, as obtained by 

potentiometric measurements. The change from slow to rapid hydrogen peroxide 

decomposition that corresponds to sudden decrease of iodide concentration (or 

sudden increase of potential), has been selected as the beginning of the domination of 

process (O). Similarly, the change from rapid to low hydrogen peroxide 

decomposition, that corresponds to the inflection point during the increase of the 

iodide concentration, is taken as the end of the same process [11, 23, 32]. The average 

values of the results obtained for the rate constants of processes (R) and (O) are listed 

in Tab. III. The rate constant of process (R), at the highest acidity considered, when                               

[H+] = 8.510-2 mol/dm3, could not be determined, as the “oscillogram” did not have 

any standard form in that case. The time evolution consists here of a preoscillatory 

period with some characteristics of reduction, and a sudden shift to oxidation. A very 

regular oxidation pathway permits evaluation of the rate constant of oxidation under 

these conditions. 

 

Tab. III Average pseudo-first order rate constants of processes (R) and (O). 
 

T 

(K(C)) 

H+o 

(mol/dm3) 

IO3
-o 

(mol/dm3) 

kR 

(min-1) 

kO 

(min-1) 

333 (60) 3.14  10-2 5.74  10-2            (1.62  0.03)  10-3         0.54  0.06 

333 (60) 4.19  10-2 5.74  10-2            (2.57  0.33)  10-3         0.16  0.04 

333 (60) 5.59  10-2               5.74  10-2            (3.57  0.43)  10-3         0.09  0.03 

333 (60) 8.55  10-2               5.74  10-2            / (1.36  0.22)  10-2    

328 (55) 3.13  10-2               5.74  10-2            (1.34  0.22)  10-3         0.27  0.05 

328 (55) 8.53  10-2               5.74  10-2            / (8.90  0.70)  10-3 

 

Discussion  

 
The rate constants kR and kO are, obviously, functions of acidity. Their 

dependence on acidity is presented in Fig. 3. Under the conditions considered, the rate 

                                                        
* The temperature difference between these two series of experiments can be of essential importance 
for any generalisation. A decrease of temperatures produces a similar effect as an increase of acidity 
[34-35]. Under such conditions kinetiks of the overall reaction can be changed. 
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constant kR increases with acidity, while the rate constant kO decreases with acidity. 

From linear dependences of the curves presenting log kR and log kO versus log [H+], 

the coefficients n and m in the following equations:  
n

RR Hkk ]['   ,        (3) 

and 
m

OO Hkk ]/['  ,        (4) 

have been determined. 

The values obtained are: n = 1.4 and m = 3.6. Ordinates at the point              

log [H+]=0, yield the values for '
Rk  and '

Ok . They are '
Rk  = 1.810-1 (mol/dm3)-1.4min-1 

and '
Ok  = 2.410-6 (mol/dm3)3.6min-1 (the dimensions of kR and kO are given in min-1). 

Fig. 3 The dependence of pseudo-rate constants of overall reduction and oxidation pathways, 

kR and kO, on acidity given in the form log kR and log kO versus log [H+]. 
 

Using these rate constants at two temperatures (Tab. III), we calculated the 

corresponding activation energies. At the lowest acidity considered, (i.e.                 

[H+] = 3.110-2 mol/dm3), the activation energy obtained with the aid of kR is        E(R) 

= 34 kJ/mol, and the one obtained with the aid of  kO  is E(O) = 126 kJ/mol. At the 

highest acidity considered ([H+] = 8.510-2 mol/dm3), where only kO can be obtained, 

the corresponding activation energy is E(O) = 77 kJ/mol.  

The calculated values for the activation energies in reduction and oxidation 

pathways are in excellent agreement with the ones obtained previously by other 

methods. Thus, at low acidity, the activation energy of the overall process, that can be 

ascribed to the oxidation pathway [17], is found to be 12020 kJ/mol [33]. In 

reference [17], where the activation energies at slightly higher acidities are calculated 

by several methods, the obtained activation energies of the reduction pathway were 

found to be between 31 and 35 kJ/mol, and those of the oxidation one between 75 and 

78 kJ/mol. Also, the activation energy of the oxidation pathway, as determined in [34] 

at higher acidities and by a totally different experimental and calculating procedure, 

amounted to 80 kJ/mol. 

 

Conclusion 
 

Direct monitoring of hydrogen peroxide concentration during its decomposition 

into water and oxygen in the presence of potassium iodate and sulfuric acid, that is in 

the Bray-Liebhafsky system, was carried out by the spectrophotometric method with 
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titanium oxalate. For this purpose, two problems were considered:         a) eventual 

perturbations of the system due to taking aliquots, and b) the influence of iodine on 

hydrogen peroxide measurements.  

By this direct monitoring of hydrogen peroxide decomposition in the Bray-

Liebhafsky system, the rate constants of overall reduction and oxidation pathways, kR 

and kO, were analysed as pseudo-first order ones. The dependence of the obtained rate 

constants on acidity was evaluated. It was found that the rate constant of the overall 

process of reduction increases with increasing acidity, according to the relation given 

by eq. (3), whereas the rate constant of the overall process of oxidation decreases with 

increasing acidity as given by eq. (4).  

Using values of the rate constants kR and kO at two temperatures, the 

corresponding activation energies were calculated. The obtained values of 34 kJ/mol 

for the reducing pathway and 126 kJ/mol for the oxidizing one at low acidity, and of 

77 kJ/mol for the oxidizing one at higher acidity, are all in excellent agreement with the 

corresponding values obtained by other experimental and calculating procedures. Thus, 

the previously determined values of the two activation energies, i.e. the ones during 

domination of the oxidation process at lower and higher acidities corresponding to 

different oxidation pathways, are confirmed.  

 All kinetic results are evaluated for a constant initial concentration of iodate 

ions in the reaction mixture by adjusting the initial concentrations of sulfuric acid and 

potassium iodate. These are the first kinetic results obtained for the Bray-Liebhafsky 

reaction under the conditions mentioned. 
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