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Introduction
New advances in medical technology have produced an array of 

potentially powerful tools to screen for and diagnose various medical 
conditions. Effective screening and accurate diagnosis can ensure 
optimal treatment and improve prognosis. Before a screening or 
diagnostic test can be applied in a clinical setting, rigorous statistical 
assessment of its performance in discriminating the diseased state 
from the non-diseased state is required. For tests measured on the 
continuous scale, the receiver operating characteristic (ROC) curve is 
a common statistical tool for describing the performance of such tests 
[1]. Let D be disease status (1 for disease and 0 otherwise) and Y the test 
result with positivity defined whenever Y ≥ c. Define the true positive 
fraction (TPF(c)) and the false positive fraction (FPF(c)) as P[Y ≥ c | D 
= 1] and P[Y ≥ c | D = 0], where TPF and 1− FPF are also called test’s 
sensitivity and specificity. The ROC curve is a plot of TPF(c) versus 
FPF(c) when the threshold c ranges from - ∞ to ∞. Alternatively, the 
ROC curve can be written as a function of t, by defining SD(c) = P[Y ≥ c 
| D = 1] = TPF(c), ( ) = [ | = 0] = ( )DS c P Y c D FPF c≥ , where D and D  
indicate the diseased and non-diseased population, then 

1( ) = ( ( )),  (0,1)D DROC t S S t t− ∈                                                                (1)

Different approaches have been proposed to estimate an ROC curve. 
Nonparametrically, we can obtain the empirical ROC curve based on 


=1
( ) = [ ] /nD

D Di i
TPF c I Y c n≥∑  and 

=1
( ) = [ ] /nD

D Dj j
FPF c I Y c n≥∑ ,  where 

nD and Dn  are number of diseased and non-diseased observations 
respectively.

Alternatively, we can estimate the ROC curve parametrically by 
assuming a distributional form for SD and DS  and then calculating 
the induced ROC curve with equation (1). The derived ROC curve, 
however, is not invariant to transformation of the test results. Pepe 
[2] notes that ROC curve describes only the relationship between 
the distributions of SD and DS , not the distributions themselves. 
Semiparametric estimators that directly model the ROC curve as a 
parametric function without specifying the underlying distributions of 
SD and DS  provides a desirable alternative.

Semiparametric estimations of the ROC curve starts by first 
specifying a parametric model of the ROC curve, where the binormal 
model is most popular [3], and is defined as the following: 

ROC(t) = Φ(α0 + α1Φ
−1(t)),                                                                        (2)

with Φ being the cdf of the standard normal distribution. We call α0 the 
intercept and α1 the slope of the binormal ROC curve. The binormal 
ROC curve was originally derived from normally distributed test 
results, where 2( , )D D DY N µ σ  and 2( , )D D DY N µ σ , the resulting 
ROC curve has 0 = ( ) /D DDα µ µ σ−  and 1 = / DDα σ σ . However, since 
the ROC curve is invariant to strictly increasing transformations of Y, 
to say that the ROC curve is binormal simply means that there exists 
some strictly increasing transformation, which would simultaneously 
transform the raw data, DY  and YD, into normally distributed random 
variables. In addition, under the binormal model, the area under the 
ROC curve (AUC) can be written as 2

0 1= ( / 1 )AUC α αΦ + .

Various semiparametric methods have been proposed to estimate 
the ROC curve under the binormal assumption. LABROC [4] is 
a maximum likelihood-based procedure for ordinal test results. 
Specifically, it categorizes continuous data and then applies the 
Dorfman and Alf algorithm [5] to the categorized data. ROC-GLM [6-
8] is a binary regression based method. Pepe and Cai [9] and Cai [10] 
estimated the ROC curve using the concept of placement values (PV).

The development of our method is motivated by noting that the 
binormal model in equation (2) essentially states that Φ−1(TPF) and 
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Φ−1(FPF) have a linear relationship. Hence we propose to fit a linear 
line through the points of ( 

1( )FPF−Φ , 

1( )TPF−Φ ) and obtain estimates 
of α0 and α1 by the least squares technique, and consequently, estimate 
the ROC curve itself. This method is intuitive, conceptually easy to 
understand, and very easy to implement. More importantly, it can be 
readily extended to allow for covariate (Z) effects on the ROC curve by 
writing 

Φ−1(ROCZ (t)) = α0 + α1 Φ
−1

 (t) + θ Z.	                                                     (3)

Our linear regression approach provides a simple and widely 
accessible algorithm for fitting such models.

Hsieh and Turnbull [11] described a weighted least squares 
approach to estimate the binormal ROC curve. For continuous 
data, their approach groups the data into a pre-determined number 
(independent of the number of observations) of categories, and 
the largest they chose is 12. Our framework is similar in spirits but 
allows significant improvement in efficiency by eliminating the need 
of grouping, as will be shown later in the next section. Moreover, our 
framework offers the flexibility to model additional covariate effects 
and/or to model a segment of the ROC curve. In many applications 
only a part of the ROC curve is of interest [12]. Restricting fitting of 
model (3) to a subrange [a,b] within (0,1) is likely to confer robustness 
over the region of interest compared with fitting over the entire (0,1) 
range.

Linear Regression Framework and Estimation
Estimation

 Write the empirical ROC curve as  1ˆ ˆ( ) = ( ( ))e D DROC t S S t− , where 


1ˆ ( ) = { : ( ) }.D DS t inf y S y t− ≤  As shown in Appendix I, 



1 1( (.)) ( (.)) (0, ),
D

eDn ROC ROC N− − Φ −Φ → Σ                                   (4)

meaning that the process converges to a mean zero Gaussian process 
with variance-covariance function 

{ }1 1
0 1 0 1 1 2( , ) = 1/ ( ( )) ( ( )) [ ( , ) ( , )],s t s t s t s tφ α α φ α α λ− −Σ + Φ + Φ Σ +Σ

where Σ1(s,t) = ROC(t)∧ROC(s)−ROC(s)ROC(t),

{ }
2 1 1

2 1 0 1 0 1

1 1

( , ) = ( ( )) ( ( ))

/ ( ( )) ( ( )) ( ),

s t s t

t s t s ts

α φ α α φ α α

φ φ

− −

− −

Σ + Φ + Φ

Φ Φ ∧ −

0 < s < 1,0 < t < 1, and λ is the limit of the ratio / DDn n  as Dn  approaches 
infinity.

We propose the following estimating procedure: 

1. For a fixed boundary point (a,b), choose the set T = {tp} such that 
0 < a < t1 <…< tp <…< b < 1. For each tp, find the smallest threshold 
value cp, such that 

=1
( ) = [ ] /nD

p p pD Dj j
t FPF c I Y c n≥ ≥∑ ; 

2. Calculate  

=1
( ) = ( ) = [ ] /nD

p p D p Di i
ROC t TPF c I Y c n≥∑ , exclude 

( , ( ))p pt ROC t  if ( )pROC t  is either 0 or 1;

3. Set up the linear regression model as: 



1 1
0 1( ( )) = ( ) ,p p pROC t tα α ε− −Φ + Φ +

where the normalized error vector, Dn ε , is distributed as multivariate 
normal with mean 0 and asymptotic covariance matrix Σ ;

4. Define the design matrix M as 

1 1
1 1

1 1
'

( ) ( )− −

 
=  Φ Φ 

 

 

M
t t

and the vector 

  

1 1 1
1( ( )) = ( ( ( )),..., ( ( )),...).pROC t ROC t ROC t− − −′Φ Φ Φ ; 

5. Calculate the ordinary least squares(OLS) estimator of α as 



0 1 1

1

ˆ
ˆ = = ( ) ( ( ));

ˆ
− − 

′ ′Φ 
 

M M M ROC t
α

α
α

6. Then the estimated ROC curve and its associated AUC are 



1
0 1ˆ ˆ( ) = ( ( ))ROC t tα α −Φ + Φ and



2
0 1ˆ ˆ= ( / 1 )AUC α αΦ +

Asymptotic theory

We develop the asymptotic distribution of the OLS estimator 
0 1ˆ ˆ ˆ= ( , )α α α  under the following assumptions: { }Di

Y  and { }D j
Y  are 

i.i.d. random variables with a survival functions SD and DS  and density 

functions fD and Df , respectively; / DDn n λ→ , 0 < λ < ∞, as Dn →∞ ; 

the slope of the ROC curve, 1 1( ( )) / ( ( ))D D D Df S t f S t− − , is bounded on the 

subinterval [a,b] of (0,1),0 < a < b < 1.

Theorem 1 

0 0

1 1

ˆ 0
, ,

ˆ 0
−     

→ Σ    −     

D
T

D An N A A
α α
α α

where 
11

1 1 2

1 ( )
( ) ,

( ) ( ( ))

−
−

− −

  Φ
=   

Φ Φ   
∫

b

a

t
A d t

t t
and 

2

1 12
2

12 2

= ,
 
 Σ
 
 

A A

A
A A

σ σ

σ σ
where 

2
1 11

= ( ) ( )( ( ) ( ) ( ) ( ))
b b

A a a
J s J t ROC s ROC t ROC s ROC t dsdtσ λ ∧ −∫ ∫

                         
2
1 2 2( ) ( )( ) ,

b b

a a
J s J t s t st dsdtα+ ∧ −∫ ∫

2
1 12

= ( ) ( )( ( ) ( ) ( ) ( ))
b b

A a a
K s K t ROC s ROC t ROC s ROC t dsdtσ λ ∧ −∫ ∫

                         2
1 2 2( ) ( )( ) ,

b b

a a
K s K t s t st dsdtα+ ∧ −∫ ∫

1 112
= ( ) ( )( ( ) ( ) ( ) ( ))

b b

A a a
K s J t ROC s ROC t ROC s ROC t dsdtσ λ ∧ −∫ ∫

                          2
1 2 2( ) ( )( ) ,

b b

a a
J s K t s t st dsdtα+ ∧ −∫ ∫

with J1(s) = (φ(Φ−1(ROC(s))))−1, J2(s) = (φ(Φ−1(s)))−1, K1(s) = Φ−1(s) J1 (s) 

and K2(s) = Φ−1(s) J2 (s). 

Proof: The proof for Theorem 1 can be found in the Appendix II. 

Asymptotic efficiency relative to HT method 

Here we compare the asymptotic efficiency between the OLS 
estimator and the estimator derived using Hsieh & Turnbull’s method 
(HT) for estimating α0 , α1, and ROC(t) at t = 0.2, 0.4, 0.7, when λ (the 
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limit of the ratio of Dn  and nD) varies from 0.5 to 2. We choose (α0 , α1) 
= (1.2, 0.45) so that the area under the ROC curve (AUC) is 0.863 and 
the ROC curve takes values of 0.794, 0.861 and 0.924 at t = 0.2, 0.4, 0.7, 

respectively. Note that for 
1

1
( ) ,

( )−

 
=  

Φ 
h t

t
, let Σ denote the asymptotic 

variance of 0 1ˆ ˆ( , )Dn α α  from an ROC modeling method (OLS or HT), 

the asymptotic variance expression for the corresponding ( )ROC t  are: 



1 2
0 1( ( )) 1/ {( ( ( ))) ( ) ( )}.T

Dvar ROC t n t h t h tφ α α −+ Φ Σ

Table 1 shows the asymptotic efficiency of HT relative to OLS. 
For the OLS estimator, the boundary points (a, b) chosen are (0.0001, 
0.9999). For the HT estimator, the number of categories chosen 
is eight. Note that asymptotically, the OLS estimator can lead to 
substantial efficiency gain compared to the HT estimator. The biggest 
improvement is seen when estimating α1 with efficiency gain above 
50%. The efficiency gain in estimating points on the ROC curve varies 
from 3% to 20% depending on the point of interest (Table 1).

Regression Model with Discrete Covariates
Suppose there are K categories that potentially could overlap with 

each other. For k = 1,…,K, let Z(k) be a vector of length K− 1, with value 
1 for the k−1th element and zero else where (so Z(1) is a vector of zeros), 
and let Dk

n  be the number of non-diseased observations in category k. 

Suppose the ROC curve within category k is characterized by 

Φ−1(ROCk(t)) = β1 + γΦ−1(t) + θTZ(k)

where θ = (β2,…,βk)
T.

That is, for subset 1(the reference subset) 

Φ−1(ROC1(t)) = β1 + γΦ−1(t) 	                                                       (5)

and for subset k,k = 2,…,K, 

Φ−1(ROCk(t)) = β1 + γΦ−1(t) + βk.	                                                      (6)

Hence βk is the difference in the intercept parameter of the ROC 
curves between subset k and the reference subset. The parameter of 
interest here is θ * = (β1,…,βk, γ)T. The underlying assumptions for 
equation (5) is that there exists an unknown monotone increasing 
function h1 , such that 1 ,1( ) (0,1)Dh Y N  and h1(YD,1) : N(β1 / γ,1 /γ2). 

Similarly, for subsequent subset k, k = 2, 3,…,K, (6) implies there 
exists an unknown monotone increasing function hk, such that 

,( ) (0,1)k D kh Y N and 2
1 ,1 1( ) ( / ,1/ ).Dh Y N β γ γ

 Notice that hk s are not 
required to be the same for different k.

Let  ( )kROC t  be the empirical estimate of ROCk(t) based 
on data from category k. Like in the case of equation (4), 



1 1
, ( ( ( )) ( ( )))k kD kn ROC t ROC t− −Φ −Φ  converge to a Gaussian process, 

therefore Φ−1 ROCk(t) can be approximated by 

1( ( ))kROC t−Φ , which 
motivates the following estimation procedure: 

1. Calculate pairs of ( , ( ))kp pt ROC t  for each subset separately; 

2. Let design matrix D be 

1

1

1

..

..

..
. . . .. .

..

 
 
 
 =
 
 
 
 

M O O O
M M O O

D M O M O

M O O M

         		                (7)

where 1 1
1

1 1
( ) ( )− −

 
=  Φ Φ 





T

p
M

t t
, M1 is a vector of length p 

with constant value of one, and O is a zero value matrix. 

3. Let 1 2= ( , ,..., )T
KY Y Y Y     and  

1 1
1= ( ( ( ))... ( ( )))k kk pY ROC t ROC t− −Φ Φ ; 

 4. Our linear model is: for the reference subset, 



1 1
1 1 1 1( ( )) ( ) ,p pROC t tβ γ ε− −Φ + Φ +

where 1,1Dn ε  is normally distributed with mean 0 and asymptotic 
covariance matrix Σr,1; and for subset k,k = 2,3,..,K



1 1
1 1( ( )) ( ) ,k p p k kROC t tβ γ β ε− −Φ + Φ + +

where , kD kn ε  is normally distributed with mean 0 and asymptotic 
covariance matrix Σr,k; 

5. Our OLS estimator for *θ  is 
* 1ˆ = ( )D D D Yθ −′ ′ 

The above method assumes covariate effects can be explained 
adequately by the difference in the intercept parameter (α0). If in 
addition we allow the slope of a binormal ROC curve to be different 
across covariate categories by assuming 

Φ−1(ROCk(t)) = β1 + γ1Φ
−1(t) + (1 Φ−1(t)) θTZ(k),                            (8)

where 
2

2

=
T

k

k

β β
θ

γ γ
 
 
 





then the parameter of interest is θ* = (β1, γ1,…, βk, γk)
T. The estimating 

procedure is similar to the case where only intercept parameters vary, 
but with M1 replaced by M in (7). Inference for the significance of θ* in 
both settings can be achieved by estimating the variance of θ* with the 
bootstrap resampling method.

Simulation
Estimation of the ROC curve

The estimation procedure specified in the previous section starts 
with the choice of the false positive set T. Although in theory, any 

 λ α0  α1 R(0.2) R(0.4)   R(0.7)  

 0.5  1.10  1.72  1.09  1.06  1.20 

1  1.10  1.64  1.05  1.06  1.20 

2  1.10  1.59  1.03  1.06  1.20 

Table  1: Asymptotic efficiency of OLS relative to HT (with 8 categories).
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chosen set of T would yield estimators with the same asymptotic 
property, their small sample properties need to be investigated. An 
obvious starting point is to choose the collection of the observed false 
positive fractions that fall into the interval [a,b], we call this observed 
FP (OFP) method. In the case where there are no ties in the test results 
of non-diseased subjects, this is equivalent to the method selecting the 
subset of {1 / ,2 / ,.....,( 1) / }D D D Dn n n n−  within [a,b], which we call 
the equal fraction (EF) method. Another possible choice is to divide 
interval [a,b] into 1Dn −  equally spaced sub-intervals and choose 
the midpoints of those subintervals to be the set T (midpoint(MP) 
method). For the last two methods, the number of points in T always 
equal to 1Dn −  regardless of the length of [a,b].

We compare the performance of the OLS estimators between 
those three different methods of selecting T (OFP, EF and MP). We 
simulate dataset both with and without ties and vary the values of [a,b] 
to estimate either a full curve or a partial ROC curve. 

First, we generate (0,1)DY N  and 2
0 1 1( / ,1 / )DY N α α α

. The resulting ROC curve follows a binormal model: ROC(t) = Φ(α0 
+ α1Φ

−1(t)). The parameters (α0, α1) are chosen to be (1.2, 0.45),  
corresponding to an area under the curve (AUC) value of 0.863 and 
a partial AUC (pAUC) value of 0.142 for t ∈ (0, 0.2). With sample 
size of = = 100D Dn n , we compare the biases and sampling standard 
errors in estimating AUC, ROC(0.2), ROC(0.4) and ROC(0.7) in the 
full curve estimation and pAUC(0.2) and ROC(0.1) in the partial curve 
estimation. To simulate data with ties, we chose 20% tied values within 
each population.

From Table 2, when the test results have no ties, midpoint(MP) 
method has the best performance. When data has ties, observed false 
positive fraction(OFP) method has the smallest bias when estimating 
the entire curve, but MP has the best performance for estimating the 
partial curve. We recommend using either method MP or OFP in 
practice and we choose MP method for the subsequent simulations 
(Table 2).

Next we compare performance of the OLS estimator with two 

existing semiparametric ROC modeling approach (ROC-GLM and 
PV), which have been shown to have good performance among 
others. Table 3 summarizes relative biases and standard errors for the 
three estimators for estimating either a full or a partial ROC curve. 
We observe that when the full ROC curve is of interest, the OLS and 
the GLM estimators have comparable performances while the PV 
estimator has somewhat larger biases. When estimating a partial ROC 
curve, however, the OLS estimator can have substantially smaller bias 
compared to other estimators (Table 3).

In Table 4, we demonstrate performance of the OLS estimator 
relative to the nonparametric ROC estimator and the parametric 
ROC estimator assuming normal case and control distributions after 
Box-Cox transformation. We generate data as (0,1)DY LOGN  and 

2
0 1 1( / ,1 / )DY LOGN α α α  so the resulting ROC curve is the same as 

above. We further modify the data as following: (i) inflating all data 
points by two fold (scaled log normal distribution); (ii) increasing all 
data points by 2 units (shifted log normal distribution); (iii) exp(Y1/3) 
(non Box-Cox). For the parametric method, Box-Cox transformation 
is applied to DY  and YD separately before the fitting of a normal 
distribution. For log normal data or scaled log normal data, the OLS 
estimator and the parametric estimator combined with Box-Cox 
transformation have similar performances. For shifted log normal 
and non Box-Cox data, however, the parametric estimator performs 
poorly with a large bias even after a Box-Cox transformation. Both the 
OLS estimator and the nonparametric estimator are unbiased in these 
scenarios with the former substantially more efficient (Table 4).

Lastly, we perform simulation studies to investigate the use of large 
sample inference for ROC curve and AUC based on the OLS estimator. 
Table 5 shows the mean estimated asymptotic error and the coverage of 
corresponding 95% Wald confidence intervals. The variance estimate 
from the asymptotic theory reflects the actual sampling variance and 
the coverage of 95% confidence intervals is excellent (Table 5).

Application to DPOAE Data Set
The DPOAE data set was first published by Stover et al. [13]. 

 Parameter  True value OFP EF MP 

 Percent of ties: 0% 
(a,b) = (0.0001, 0.9999)

R(0.2) 0.794 0.791(0.039) 0.792(0.039) 0.795(0.038)
R(0.4)  0.861 0.860(0.031) 0.860(0.031) 0.862(0.031) 
R(0.7)  0.924 0.923(0.024) 0.923(0.024) 0.924(0.024) 
AUC 0.863 0.861(0.027) 0.861(0.027) 0.863(0.027)

(a,b)= (0.0001,0.2)
R(0.1) 0.733 0.727(0.049) 0.729(0.048) 0.733(0.048)

pAUC(0.2) 0.142 0.141(0.010) 0.141(0.010) 0.142(0.010) 
 Percent of ties:20%
(a,b) = (0.0001, 0.9999)

R(0.2) 0.794 0.794(0.043) 0.805(0.041) 0.798(0.042)
R(0.4) 0.861 0.862(0.034) 0.879(0.031) 0.864(0.034) 
R(0.7) 0.924 0.924(0.026) 0.942(0.022) 0.926(0.025) 
AUC 0.863 0.863(0.030) 0.875(0.027) 0.865(0.030)

(a,b) = (0.0001,0.2)
R(0.1) 0.733 0.728(0.053) 0.739(0.051) 0.734(0.053)

pAUC(0.2) 0.142 0.141(0.011) 0.143(0.010) 0.143(0.011) 

Table  2: Inference of the ROC curve by the semiparametric least squares based method (OLS) with different choices of the false positive sets (OFP: observed false 
positive fraction, EF: equal fraction or MP: midpoint method). Cases and controls are drawn from normal distributions. (α0, α1) = (1.2, 0.45). D Dn , n  = (100, 100). Sample 
means and sampling standard errors from 1000 simulations are shown.
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Parameter True value OLS GLM PV 

 (a,b) = (0.0001, 0.9999)

 α0 1.2 1.09(0.150) 1.46(0.152) 2.40(0.161) 

α1 0.45 2.42(0.083) 1.38(0.080) 9.44(0.101) 

R(0.2) 0.794 -0.14(0.040) 0.16(0.038) -0.53(0.040)

R(0.4) 0.861 -0.02(0.031) 0.12(0.031) 0.15(0.032) 

R(0.7) 0.924 -0.02(0.023) -0.002(0.023) 0.38(0.024) 

 (a,b) = (0.0001,0.2)

  α0 1.2 0.18(0.246) -1.79(0.235) 7.45(0.266) 

α1 0.45 -0.62(0.141) -6.82(0.130) 14.04(0.159) 

R(0.05) 0.677 0.11(0.051) 1.27(0.049) -1.00(0.051)

R(0.1) 0.733 -0.02(0.046) 0.51(0.046) 0.11(0.045) 

R(0.15) 0.768 -0.13(0.046) 0.08(0.045) 0.61(0.045) 

Table  3: Inference of the ROC curve by the semiparametric least squares based method (OLS), the ROC-GLM method (GLM) and the placement value method (PV). 
Cases and controls are drawn from normal distributions. (α0,α1) = (1.2, 0.45), ( ,D Dn n  ) = (100, 100). Relative bias and sampling standard error from 500 simulations are 
shown. Relative bias = bias/true value × 100%.

Parameter  True value Distribution OLS EMP RES 
R(0.2) 0.794 lognormal 0.796(0.039) 0.795(0.044) 0.795(0.036)
R(0.4) 0.861  0.863(0.031) 0.864(0.036) 0.862(0.030) 
R(0.7) 0.924  0.926(0.023) 0.926(0.027) 0.924(0.023) 
AUC 0.863  0.864(0.027) 0.864(0.027) 0.863(0.026)

 R(0.2) 0.794 lognormal-scaled 0.795(0.039) 0.796(0.043) 0.794(0.036)
R(0.4) 0.861  0.862(0.032) 0.863(0.037) 0.861(0.030) 
R(0.7) 0.924  0.925(0.024) 0.925(0.028) 0.923(0.023) 
AUC 0.863  0.863(0.028) 0.863(0.028) 0.862(0.026) 

 R(0.2) 0.794 lognormal-shift 0.794(0.039) 0.795(0.043) 0.818(0.043)
R(0.4) 0.861  0.861(0.031) 0.861(0.036) 0.900(0.031) 
R(0.7) 0.924  0.923(0.023) 0.923(0.027) 0.961(0.017) 
AUC 0.863  0.862(0.027) 0.862(0.027) 0.888(0.027) 

 R(0.2) 0.794 non Box-Cox 0.796(0.038) 0.796(0.044) 0.764(0.051)
R(0.4) 0.861  0.863(0.031) 0.864(0.036) 0.887(0.037) 
R(0.7) 0.924  0.926(0.023) 0.926(0.027) 0.968(0.017) 
AUC 0.863  0.864(0.027) 0.864(0.027) 0.862(0.029) 

Table  4: Inference of the ROC curve by the semiparametric least squares based method (OLS), the nonparametric method (EMP) and the parametric method (RES). 
Cases and controls are drawn from log-normal distributions and modified as noted. (α0, α1) = (1.2, 0.45). ( ,D Dn n ) = (100, 100). Sample means and sampling standard 
errors from 1000 simulations are shown.

  Relative Bias SSE ASE CP
 ( ,D Dn n ) = (100, 100)

 α0 2.4% 0.163 0.151 94.8% 
α1 2.2% 0.085 0.083 95.4% 

R(0.2) 0.4% 0.039 0.039 94.6% 
R(0.4) 0.3% 0.032 0.031 93.4%
R(0.7) 0.1% 0.025 0.023 90.8%

 ( ,D Dn n ) = (100, 50)
α0 0.9% 0.159 0.157 95.0% 
α1 2.9% 0.088 0.088 94.6% 

R(0.2) -0.3% 0.041 0.042 94.6% 
R(0.4) -0.1% 0.033 0.033 94.6%
R(0.7) -0.1% 0.025 0.024 93.8%

 ( ,D Dn n ) = (50, 100)
 α0 1.1% 0.205 0.208 96.4% 
α1  0.9% 0.101 0.113 97.2% 

R(0.2) -0.2% 0.053 0.053 93.8% 
R(0.4)  -0.2% 0.041 0.043 94.4%
R(0.7)  -0.3% 0.030 0.033 94.6%

Table  5: Result of 1000 simulations to evaluate the application of inference based on asymptotic theory to finite sample studies. (α0, α1) = (1.2, 0.45). Relative bias = bias 
/ true value x 100%; SSE: sampling standard error; ASE: mean estimated standard error using asymptotic theory; CP: coverage of 95% Wald-confidence intervals using 
estimated asymptotic error.
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DPOAE stands for distortion product otoacoustic emission, which 
is an audiology test used to separate normal-hearing from hearing-
impaired ears.

The test is administrated under nine different auditory stimulus 
conditions with three levels of frequency (1001, 1416 and 2002 Hz) and 
three levels of intensity (55, 60 and 65 dB SPL). A total of 210 subjects 
were included in the study. The subjects were considered cases with 
hearing impairment at a given frequency if their audiometric threshold 
exceeds 20dB HL measured by a behavior test (gold standard). Each 
subject was tested in only one ear. Test result is the negative signal-to-
noise ratio, -SNR, with higher value being more indicative of hearing 
impairment. The objective of the analysis is to determine the optimal 
setting for the clinical use of DPOAE to separate normal from hearing-
impaired ears, but bear in mind an ear may be determined to be hearing 
impaired or normal at different frequencies.

We partition the data into nine subsets, corresponding to the nine 
test settings. Data is analyzed by the method specified in (8) where 
both intercept and slope parameters vary across subsets. The set T is 
chosen by the midpoint method from (0.0001, 0.9999). We choose the 
reference subset (subset 1) to be the test setting with frequency value of 
1001Hz and intensity value of 55 dB SPL. Let (β1, γ1) be the intercept 
and slope estimates for the ROC curve for setting (1001, 55) and the 
subsequent βk and γk, with k = 2,…,9, represent the differences in the 
intercept and slope parameters of the ROC curves between subset k and 
subset 1. None of the ˆkγ  is statistically significantly different from 0 at 
α = 0.05 = 0.05α  level (data are not shown).

We also develop a χ2
 test statistic ' ˆˆ ˆγγ γΣ , where γ = (γ2,…γ9) and 

ˆ
γΣ  is the estimated covariance matrix of γ̂ . Write the null hypothesis 

as H0: γ = 0 and compare the above statistic with a χ2
 distribution with 

8 degrees of freedom gives a P-value of 0.84, suggesting insignificant 
slope terms consistent with the result from testing the significance of 
each γk separately.

We re-analyze the data with the slope terms omitted and Table 6 
summarizes the results. We can see that among the nine test settings, 
the setting (1416, 55) (β4) has the largest intercept estimate and the 
difference from the intercept of the reference setting (1001, 55) is 
statistically significant (p=0.0041). The p values for other parameters 
(β2 β3 β5 to β9) are not significant. The estimated ROC curve for setting 
(1416, 55) is ROC(t) = Φ(2.54 + 0.82Φ−1(t)) with estimated AUC value 

of 0.975, which is the largest among all settings. The performance of 
the test declines with increasing intensity at each fixed frequency value. 
This analysis suggests (1416Hz, 55 dB SPL) is a better test setting than 
the reference setting. It has also shown that at fixed false positive level 
of 10%, the expected sensitivities for the nine test settings range from 
62.5% to 93.2%, demonstrating the importance of choosing an optimal 
test setting (Table 6).

Concluding Remarks
This manuscript proposes a semiparametric OLS method to 

estimate and compare performance of diagnostic tests and more 
generally, to assess potential covariate effects on the test performance. 
The asymptotic distribution theory for the OLS estimator is developed 
for the ROC curve estimation, in which the estimators are shown to 
be consistent and asymptotically normally distributed. For modeling 
covariate effects, we recommend boostrap resampling for variance 
estimation.

Our proposed estimator provides useful addition to the field of 
rank-based semiparametric ROC modeling. Those semiparametric 
approaches are more robust than parametric approaches, by assuming 
a functional form on the ROC curve itself but not the test results and 
thus invariant to monotone transformation of the test results. At the 
same time, they offer better efficiency compared to nonparametric 
method. We have done extensive simulations to compare the proposed 
OLS estimator with two other commonly used semiparametric ROC 
modeling methods (the ROC-GLM and placement value based 
method), and found the OLS estimator has comparable performance 
in general and slightly better performance in some scenarios [12]. The 
OLS estimator, however is much more intuitive compared to other 
estimators and very easy to implement using standard linear regression 
software, which could make it particularly appealing to clinical 
audience.

In summary, the proposed linear regression framework provides an 
unified approach for the ROC curve analysis. It can be used to estimate 
the ROC curve, as well as model covariate effect. The application of 
ROC curve goes beyond the medical diagnostic field and it can be used 
for evaluating any discrimination tools. It is, and will continue to be an 
important and exciting area to engage in research.
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  (Frequency, intensity)

Parameter Estimate Std.Err P value AUC ROC(0.1)

 (1001,55) β1 1.73 0.26 < 0.0001  

(1001,55) γ1 0.82 0.12 < 0.0001 0.910 0.751

(1001,60) β2 -0.20 0.14 0.1455 0.882 0.684

(1001,65) β3 -0.36 0.19 0.0607 0.855 0.625

(1416,55) β4 0.81 0.28 0.0041* 0.975 0.932

(1416,60) β5 0.36 0.29 0.2172 0.947 0.851

(1416,65) β6 0.19 0.28 0.5064 0.931 0.808

(2002,55) β7 0.47 0.29 0.1052 0.956 0.875

(2002,60) β8 0.42 0.28 0.1293 0.952 0.864

(2002,65) β9 0.10 0.27 0.7019 0.921 0.782

Table  6: Covariates effects on the ROC curves estimated by the the OLS method for the DPOAE test.
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Appendix I: Proof of Equation (4) 

 Hsieh and Turnbull(1996, Theorem 2.1) showed, as Dn  ,  

 

0 1
| ( ) ( ) | 0  . .sup e

t
ROC t ROC t a s

 
   (9) 

 They also showed (Theorem 2.2) for independent observations, under the above conditions, there 
exists a probability space on which one can define sequences of two independent versions of Brownian 

bridges ( ) ( )
1 2( , ,0 1)n nB B t  , and the following statement holds:  



1
2

1
( ) ( ) 20 1
1 1 21

( ( ))( ( ) ( )) = ( ( )) ( ) ( ( ) )
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t

   






 
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
        (10) 

 . .a s  uniformly on [ , ]a b , 0 < < < 1a b . 

The above two theorems stated the strong consistency and strong approximation properties for 
the ROC curve.  

Fix [ , ]t a b , by intermediate value theorem,  

  

1 1 1 *( ( )) ( ( )) = ( ( ( )))( ( ) ( ))e eROC t ROC t ROC t ROC t ROC t       (11) 

 where  

 

*| ( ) ( ) | | ( ) ( ) |eROC t ROC t ROC t ROC t    (12) 

 Therefore, *( ) ( )  . .ROC t ROC t a s  by (9) 

From continuous mapping theorem:  

 1 * 1( ( ( ))) ( ( ( )))  . .ROC t ROC t a s      (13) 

 Notice  

 1
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 Then we have  
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 . .a s  uniformly on [ , ]a b , 0 < < < 1a b . 

Let  

 

1 1( ) = ( ( ( )) ( ( )))en DV t n ROC t ROC t    (17) 

 ( ) ( )
1 1 21 1

1 1( ) = ( ( )) ( )
( ( ( ))) ( ( ))

n nV t B ROC t B t
ROC t t

 
  
 

 (18) 

 Equation (16) implies ( ) ( )nV t V t  in ( [ , ],|| . || )D a b   

Equation (4) resulted from the fact that V(t) is the sum of two independent Brownian Bridges. 

 

Appendix II: Proof of Theorems 1 

 Theorem 1 is a direct consequence of the equation (4), namely, asymptotic normality of the 
empirical ROC estimates. 
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