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 Introduction 

 The etiology of many common diseases such as cancer 
and coronary heart diseases is complex, involving an in-
terplay of both genes and environment. Researchers have 
collected such comprehensive risk factor information on 
study participants under various design, yet often the sta-
tistical efficiency in estimating weak-to-moderate main 
and interaction effects is limited because of a limited 
sample size in each study. It is important to be able to 
combine and analyze these data across study designs to 
enhance the efficiency in a cost and time effective man-
ner.

  Two broad types of study designs, case-unrelated con-
trol and family-based, are often used in studies of asso-
ciations of genetic polymorphisms with disease risk. The 
case-unrelated control study design is commonly used to 
study relatively rare, complex, usually late-onset pheno-
types such as coronary heart disease and cancer. When 
such studies are population-based, unrelated controls are 
recruited from the same geographic or catchment area as 
the cases and matched to cases on such characteristics as 
age, gender, and self-reported ethnicity. In contrast, fam-
ily-based studies use genotypes of blood relatives as a ref-
erence with which to compare cases’ genotypes. Family-
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 Abstract 

 Combining data collected from different sources is a cost-
 effective and time-efficient approach for enhancing the 
 statistical efficiency in estimating weak-to-modest genetic 
effects or gene-gene or gene-environment interactions. 
However, combining data across studies becomes compli-
cated when data are collected under different study designs, 
such as family-based and unrelated individual-based (e.g., 
population-based case-control design). In this paper, we de-
scribe a general method that permits the joint estimation of 
effects on disease risk of genes, environmental factors, and 
gene-gene/gene-environment interactions under a hybrid 
design that includes cases, parents of cases, and unrelated 
individuals. We provide both asymptotic theory and statisti-
cal inference. Extensive simulation experiments demon-
strate that the proposed estimation and inferential methods 
perform well in realistic settings. We illustrate the method by 
an application to a study of testicular cancer. 
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based studies are inherently more robust to population 
substructure than case-unrelated control studies. How-
ever, there are also weaknesses in the family-based de-
sign. For example, parents may not be available for late-
onset phenotypes. Moreover, in detecting the association 
of genes with disease risk, statistical power may be im-
paired, sometimes substantially, due to the correlation of 
genotypes among family members. This correlation, on 
the other hand, can be advantageous when assessing rare 
alleles or gene-gene interactions, since the chance of car-
rying the rare allele or the high risk alleles at both loci is 
higher in relatives of cases than in unrelated individuals 
[Witte et al., 1999; Hopper et al., 2005]. Many authors 
have compared extensively these two types of designs, see 
e.g. Thomas [2004]; Weinberg and Umbach [2005]; Laird 
and Lange [2006].

  Joint estimation of the effects of gene and environ-
ment on disease risk has been of considerable interest to 
many investigators. It is worth noting that estimation, 
though related, is different from testing whether any of 
these variables is associated with disease risk. Testing an 
association requires one to devise a powerful test statistic 
under the null hypothesis of no association against a spe-
cific alternative. Estimation, on the other hand, involves 
estimating unbiasedly the magnitude of the effects of 
these variables on disease risk and is particularly useful 
in characterizing the role of gene and environment in dis-
ease development. Clearly testing and estimation are re-
lated – estimates of the effects along with the uncertainty 
of these estimates can be used for testing whether a par-
ticular variable is associated with disease risk while ad-
justing for other variables. To some extent estimation ex-
amines the association in a more general fashion than 
testing only. Many of the existing work are focused on 
testing rather than on estimation and they do not always 
offer an approach to obtaining unbiased risk estimates. 
This paper is therefore concerned with methods for joint 
estimation of the effects of these variables on disease 
risk.

  There are different scenarios for data combining. One 
scenario is that some cases have family member controls 
whereas others have unrelated controls and the two sets 
of cases do not overlap with each other. Such data struc-
tures are common in a consortium setting, where some 
clinical sites have case-control samples while others have 
family-based samples. Another scenario is that both fam-
ily-based and unrelated controls are collected for the 
same set of cases. This scenario is common when the 
number of cases is limited and there is a wish to take ad-
vantage of both designs.

  Methods have been developed for combining data col-
lected under different designs particularly for data that 
arise in the first scenario. These methods include for ex-
ample a weighted estimate of odds ratios from various 
data sources [Kazeem and Farrall, 2005; Allen-Brady et 
al., 2006; Curtin et al. 2007], and a retrospective likeli-
hood approach by Dudbridge [2006]. Nagelkerke et al. 
[2004] and Epstein et al. [2005] proposed a likelihood ap-
proach that accommodate both types of data combining. 
In their approach, controls’ and/or parents of cases’ geno-
types were used to estimate the mating type, genotype, or 
allele frequencies, depending on the validity of assump-
tions regarding random mating and Hardy-Weinberg 
equilibrium. These population estimates in turn im-
proved the parameter estimation efficiency. An appeal-
ing feature of these approaches is that they are likelihood-
based and can therefore be understood and applied 
through established theory and inference procedures. 
However both approaches are limited to analysis of one 
marker at a time and no other covariates.

  In this paper we propose a pseudo-likelihood ap-
proach that can flexibly accommodate multiple genetic 
markers, environmental covariates, and gene-gene and 
gene-environment interactions for hybrid data that con-
sists of cases, parents of cases, and unrelated individuals. 
Such data conceivably could be available from studies of 
birth outcomes and conditions affecting children and 
young to middle-aged adults as in, for example, our study 
of testicular cancer. The approach is readily extended to 
allow for non-overlapping subsets of case-parents and 
case-unrelated controls. In fact, the proposed pseudo-
likelihood function becomes a likelihood function in 
this situation. In subsequent sections, we describe this 
method for hybrid data and the extension to include 
case-parent sets in which genotypes are missing for one 
parent. An approach for simplifying the family-based 
likelihood is also proposed in the presence of multiple 
unlinked markers. We assess the finite sample perfor-
mance of the proposed estimators under gene-gene and 
gene-environment interaction models. We also compare 
performance with that of existing approaches by 
Nagelkerke et al. [2004] and Epstein et al. [2005] under a 
major gene model and observed little difference in effi-
ciency for the proposed pseudolikelihood approach. To 
demonstrate our method, we present results from an 
analysis of several candidate polymorphisms in a study 
of testicular cancer.
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  Method 

 A Pseudo-Likelihood Function for Combining Cases,
Case-Parents, and Unrelated Controls 
 Consider a situation where the data consist of  I  cases,  J  unre-

lated controls, and parents of  I  cases. Let  D  denote the disease 
status of an individual,  G  the genotype of a candidate gene, and  Z  
a vector of other risk factors for disease occurrence. For notation-
al simplicity, we let  X  be a column vector representing  G ,  Z , and 
possible interactions among  G  and  Z s that might be incorporated 
in the model. Assuming that there are no parent-of-origin or ma-
ternal genotype effects, the logit form for the relationship be-
tween covariates  X  and disease risk  P ( D  = 1) is

  logit{ P ( D  = 1  �   X )} =  �  +  �  X ,                                                       (1)

  where  �  is the intercept measuring the baseline log-odds of dis-
ease risk, log{ P ( D  = 1)/ P ( D  = 0)}, for individuals with  X  = 0, and 
 �  is a row vector of regression coefficients for covariates  X  that 
quantify the log-odds ratios (OR) of disease risk for a unit incre-
ment in  X . Candidate gene  G  is coded as 0, 1, or 2 for the number 
of variant alleles under the log-additive model. This model has 
been shown performing well even when the underlying true ge-
netic model is not log-additive [Schaid, 1996]. The model also ac-
commodates other codings for  G  such as a binary variable under 
a dominant or recessive model or two indicator variables with one 
for carrying one variant allele and the other for carrying two vari-
ant alleles under an unrestricted model. The genotypes for the 
parents of cases are denoted by  G  p  = ( G  f ,  G  m ) T . 

 The data can be partitioned into two components, those from 
case-unrelated controls and those from case-parent triads, each 
of which contributes to a likelihood function. The product of the 
two likelihood functions gives

   L  comb  =  L  cc   !   L  fam ,                                                                     (2)

  where  L  cc  is the likelihood function for cases and unrelated con-
trols and  L  fam  is the likelihood function for family-based case-
parent triads. The product of the two likelihood functions,  L  comb  
where comb stands for ‘combined’, is not itself a likelihood func-
tion, however, because the same cases are used in both  L  cc  and 
 L  fam . We term  L  comb  in (2) a pseudo-likelihood function. Con-
structing  L  comb  is straightforward because each individual likeli-
hood has been extensively studied, and the asymptotic properties 
of each are well known. However, deriving the asymptotic distri-
bution for the maximum pseudo-likelihood estimators requires 
additional work because standard likelihood theory does not ap-
ply. First we give a brief review of  L  cc  and  L  fam  separately. 

 For case-unrelated control samples that are collected retro-
spectively, the proportions of cases and controls are predeter-
mined by investigators. The random elements are the covariates 
collected on these cases and controls. The retrospective likeli-
hood function therefore is a product of  P ( X  i   �   D  i ) over  i  = 1, …,
 I  +  J  cases and controls. From Bayes’ rule,  P ( X  i   �   D  i ) =  P ( D  i   �   X  i ) P ( X  i )/
 P ( D  i ), implying that a direct modeling of  P ( X  i   �   D  i ) would require 
estimating the distribution or parameters in the distribution of 
 X  i , which often are not of main interest. To avoid estimating such 
a distribution or parameters, many researchers (e.g. Anderson 
[1972], Prentice and Pyke [1979] and Whittemore [1995]) have ob-
served that the OR, exp( � ), can be consistently estimated from a 
case-unrelated control sample as if it had been prospectively col-

lected in a hypothetical population. In this hypothetical popula-
tion, the baseline log-odds of disease risk is  �   *   =  �  + log{ � /(1 –  � )} 
with  �  being the proportion of cases among all cases and controls. 
The likelihood function  L  cc  can then be written as 

1

1

exp 1
.

1 exp 1 exp

i iD DI J
cc i

i i i

X
X X
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 Note that the logistic regression model with intercept  �   *   puts con-
straints on the distribution of  X  conditional on disease status. 
Nevertheless, Anderson [1972] and Prentice and Pyke [1979] have 
shown that despite this constraint, one may make statistical infer-
ence about  �  ̂     without any particular modifications as compared 
to the same likelihood function for prospectively collected data. 

 For the case-parent data, we follow Clayton and Jones [1999] 
and Cordell et al. [2004] and represent  L  fam  as 
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 where  G  ip  is the set of offspring genotypes that are consistent with 
the parental genotypes  G  ip . Assuming an equal probability of al-
lele transmission conditional on parental genotypes and other 
risk factors  Z  i , i.e.,  P ( G  i   �   G  ip ,  Z  i ) =  P ( G  *   �   G  ip ,  Z  i ) for any  G  *   D   G  ip  
and no parent-of-origin or maternal genotype effects, the likeli-
hood function can be simplified to   
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 This representation shows that the estimable parameters are the 
relative risks (RR) associated with  G  and  Z , namely the ratio of 
 P ( D  = 1  �   G  =  g  1 ,  Z  =  z  1 ) and  P ( D  = 1  �  G =  g  0 ,  Z  =  z  0 ) with  g  0  and  z  0  
being the reference values and  g  1  and  z  1  being the high-risk allele 
and exposed for  G  and  Z , respectively. Though algebraically re-
lated, the RR is not the same as the OR, exp( � ). Considering a 
single covariate, the relationship between the two quantities un-
der model (1) is   

exp 1 expexp 1 exp .
1 exp exp 1 exp exp

RR
� �� � �

� � � � �

 This suggests that using  L  fam  alone cannot identify  �  and  �  
uniquely. To allow for estimating the log-odds ratio  �  from  L  fam , 
we propose to fix  �  by assuming that the disease is rare, i.e.
exp( � )  ;  0. In this situation, the relative risk RR  ;  exp( � ). For 
example, when the baseline disease probability is 0.7% ( �  = –5), 
1.8% ( �  = –4), or 4.7% ( �  = –3), an OR of 3 would correspond to 
RRs of 2.96, 2.90, and 2.74, respectively. The discrepancy between 
RR and OR is within 10% even when the baseline disease proba-
bility is as high as 4.7%. Additionally when there is no association 
between a covariate and disease risk, both the RR and OR are 1 
regardless of the underlying disease prevalence. Note that 
Nagelkerke et al. [2004] and Epstein et al. [2005] also employed a 
rare disease assumption when using unrelated controls to esti-
mate the allelic or mating type frequencies. 
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 Assessing the effects of multiple unlinked markers on disease 
risk is trivial, as these markers can simply be incorporated as co-
variates in model (1). The same pseudo-likelihood function (2) 
can be used in obtaining  �  ̂  , except that in the case-parent likeli-
hood  L  fam , the denominator in equation (3) becomes a summa-
tion over all combinations of offspring genotypes that are consis-
tent with parental genotypes at these marker loci.

  The estimates ( �  ̂  *  ,   �  ̂     ) can be obtained by maximizing the 
pseudo-likelihood function (2), and many statistical software 
programs e.g. R [R Development Core Team, 2006] have built-in 
routines to return parameter values that maximize (or minimize) 
an objective function such as  L  comb . Alternatively the estimates 
can be obtained by solving 

log 0, 
,

comb

� �*
                                                                (4)

 where  

1 2log , , , , ,
,

Tcomb S S S� � � � � �
� �

* * *
*

  and  
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  The Newton-Raphson algorithm can be used to iteratively solve 
the estimating equation (4). Following the law of large numbers 
and the central limit theorem [Billingsley, 1999], we showed that 
the solution to the estimating equation (4) was consistent for the 
true parameter values (see Appendix). The solution is also asymp-
totically normal with a ‘sandwich’ type variance that can be con-
sistently estimated by 

    � ̂  =     � ̂   –11        � ̂   0      � ̂   –11   ,

  where     � ̂   –11    and     � ̂   0  are given in the Appendix. The     � ̂   0  accounts for 
the correlation of the two components of the likelihood function 
due to having data from the same cases in both components. 

 The proposed pseudo-likelihood function (2) is readily ex-
tended to allow for non-overlapping case-parent and case-control 
components without any modifications to the likelihood and the 
estimation procedure. The covariances i.e. the off-diagonal ele-
ments in  �  0  is zero, and the variance is simply  � –11      . In fact, the 
proposed pseudo-likelihood function becomes a likelihood func-
tion in this situation and the maximum likelihood estimator from 
this likelihood is asymptotically equivalent to the weighted aver-
age of estimates from individual components with weight being 
the inverse of their variances [e.g. Kazeem and Farrall, 2005]. In 
this case, it is also very similar to the Dudbridge’s likelihood ap-
proach [Dudbridge, 2007] for which the software can be down-
loaded at http://www.mrc-bsu.cam.ac.uk/personal/frank/soft-
ware/unphased/. The proposed pseudo-likelihood function is 
also readily extended to allow for singleton cases, that is, cases 
whose parental genotype data are not collected. Singleton cases 
contribute to the case-control likelihood  L  cc  but not  L  fam . For 
such cases the covariance in  �  0  between case-control and case-

parent components would be due only to the subset of shared cas-
es in both components. The asymptotic theory in the Appendix 
includes both situations.

  Incorporating Missing Genotypes in Parents 
 For some cases, one or both parents may be unavailable for ge-

notyping. When both parents lack genotypes, we treat these cases 
as singletons and use them only in the case-unrelated control like-
lihood  L  cc . It is unlikely that such singleton cases contribute much 
information to  L  fam  when the association estimate in  L  fam  derives 
from the comparison between the transmitted and non-transmit-
ted genotypes. In this section, therefore, we consider only cases 
that lack genotypes for one parent but not both. Many approaches 
have been proposed to allow for incomplete triads in family-based 
association studies (e.g. Clayton [1999], Weinberg [1999], Rabi-
nowitz and Laird [2000], Rabinowitz [2002], Allen et al. [2003], 
Chen [2004], and Kistner and Weinberg [2005]). However, all of 
these methods deal with one marker or haplotype, and not all are 
readily generalizable to studies with many unlinked markers. One 
promising approach is to use multiple imputation [Little and Ru-
bin, 2002] to impute the missing genotypes. This has been pro-
posed for quantitative traits [Kistner and Weinberg, 2005], where 
complete triads are used to estimate the probability of each of a 
triad’s possible genotypic configurations given the phenotype of 
the offspring; missing genotypes are then imputed based on these 
posterior probabilities given the observed data. More recently, 
Croiseau et al. [2007] proposed a Bayesian-based multiple imputa-
tion approach in family-based association studies. In this ap-
proach, a Dirichlet prior distribution was assumed for haplotype 
(genotype) frequencies and the posterior probabilities and imput-
ed data sets were obtained via a data augmentation algorithm.

  We modify the Kistner and Weinberg approach by using a 
combination of the EM algorithm [Dempster et al., 1977] and mul-
tiple imputation [Little and Rubin, 2002] to: (1) estimate the triad’s 
genotypic configurations for each marker by using case-parents, 
and (2) fill in the missing genotypes based on these probabilities 
one marker at a time. We assume that the parental genotypes are 
‘missing at random’ [Little and Rubin, 2002] such that the geno-
type distribution among genotyped parents is the same as that 
among the ungenotyped, or missing, parents. Note that this ap-
proach is different from the Kistner and Weinberg approach, in 
which only complete triads were used in calculating the joint prob-
abilities of a triad. In our approach, we use both triads and dyads 
to estimate the frequencies of genotypic configurations by using 
the EM algorithm. The EM algorithm, though most efficient, does 
not generalize easily to multiple markers because it involves mul-
tiple levels of summation over unknown genotypes in calculating 
the likelihood function. To overcome this cumbersome manipula-
tion, in the second step we propose to use a multiple imputation 
method to impute the missing genotypes based on estimates of the 
probability of triads’ genotypic configurations obtained from the 
EM algorithm. Once missing genotypes are imputed, estimation 
procedures for   � ̂     proposed earlier in this section are readily ap-
plied. Even though there are 10 parameters associated with the 
genetic configurations of triads for each marker that need to be 
estimated, the estimation occurs only at the missing data imputa-
tion stage. It therefore has less computational bearing on the esti-
mation of   � ̂     compared with methods that would require a simul-
taneous estimation of such parameters and  � . It is worth noting 
that the frequency estimates of genotypic configuration are calcu-



 Hsu   /Starr   /Zheng   /Schwartz    Hum Hered 2009;67:88–10392

lated using case-parents trios as by the hybrid study design only 
the parents of cases are collected and thus only the parents of cas-
es, when missing, need to be imputed. This approach is also dif-
ferent from that of Croiseau et al.’s [2007] approach where we do 
not assume a prior distribution for genotype frequencies (a more 
detailed comparison is given in the Discussion Section).

  Specifically, let  G  it  = ( G  ip  1 ,  G  ip  2 ,  G  i ) denote the number of cop-
ies of the variant allele at a given locus carried by the first parent, 
the second parent, and the case in the ith triad. For each locus, 
there are 10 possible genotypic configurations  M  1 ,  M  2 , …,  M  10  
with frequencies denoted by the row vector  �  = ( �  1 ,  �  2 , …,  �  10 ) 
( table 1 ). The first step is to estimate  �  by using an EM algorithm 
that incorporates information from both triads and dyads. With-
out loss of generality, we assume that the genotypes for the second 
parent are unavailable and need to be imputed. In the E-step, the 
posterior probabilities of possible genotypes for the missing par-
ent in each dyad are calculated conditional on the observed geno-
types of the non-missing parent and the case at the current values 
of  � ̂  ( table 2 ). The  � ̂  are then updated by a weighted average in the 
M-step. Briefly, let the first  i  = 1, …,  n  1  families be the triads, and 
the next  i  = ( n  1  + 1), …, ( n  1  +  n  2 ) families be the dyads. Further-
more, let  G  ( G  ip  1 ,  G  i ) be the set of possible genotypes that the miss-
ing parent could have conditional on the genotypes for the avail-
able parent  G  ip  1  and offspring  G  i . Then the probability of  M  j  con-
figuration can be estimated by 

1

1 2

1 2 1

11

1 2 1

1
1 ,2

1 2 2

,

,ip ip i

n

it j
i

j

n n

it j ip2 ip i
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 where  G *   it  = ( G  ip  1 ,  G *   ip  2 ,  G  i ). The estimate consists of two terms: the 
first term is the proportion of triads that have configuration  M  j , 
and the second term is the proportion of dyads that could have 
configuration  M  j  weighted by its posterior probability. The over-
all estimate is a weighted average of triads and dyads with weights 
proportional to their sample sizes  n  1  and  n  2 . We alternate between 
the E- and M- steps until      �  ̂   converges. 

 We then use the multiple imputation method to randomly 
sample a genotype from the multinomial distribution with poste-
rior probabilities calculated according to  table 2 . The imputed 
genotypes along with all observed data are then treated as a com-
plete dataset, which can be analyzed by using the estimation and 
inference procedure described in previous sections. To account 
for the variability of imputation, we create multiple complete da-
tasets  b  = 1, …,  B  and obtain   � ̂     b  and associated variance    � ̂  b  for 
each of these datasets. The final estimate for  �  is 
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1 .
B

B b
b

ˆ
B

� �

 The variance of   � ̂     is the sum of the average of within-imputation 
variance and the between imputation variance [Little and Rubin, 
2002], given by  

1 1

1 1 11 ,
1

B B

b b B b B
t b b

ˆ ˆ ˆ
B B B
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Table 1. Parameters for the possible genotypic configurations of 
triads

Configuration Parents Offspring Probability

M1 0 0 0 �1
M2 0 1 0 �2
M3 0 1 1 �3
M4 0 2 1 �4
M5 1 1 0 �5
M6 1 1 1 �6
M7 1 1 2 �7
M8 1 2 1 �8
M9 1 2 2 �9
M10 2 2 2 �10

In the ‘Parents’ and ‘Offspring’ columns, 0, 1, and 2 are the 
numbers of the copies of the variant allele carried by the given 
individual.

Table 2. Posterior probabilities of the genotypes for a missing par-
ent conditional on the available parent and offspring

Off-
spring

Parent 1 Parent 2

0 1 2

0 0 0

0 1 0

1

1

0

1

0

1 2 0

2 1 0

2 2 0

We assume, with no loss of generality, that parent 2 is the par-
ent missing genotype data.
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  where (1 + 1/ B ) is an adjustment for finite  B . Depending on the 
proportions of triads and dyads, usually 3–10 imputations are 
adequate to achieve maximal efficiency [Rubin, 1987]. 

 An Approach for Reducing Computation in the Calculation of 
   L   fam    in the Presence of Multiple Unlinked Markers 
 For case-parents likelihood, the denominator in equation (3) 

involves a large number of summation because the number of the 
combinations of untransmitted genotypes at different markers 
increases exponentially as the number of loci. Exhaustive search-
ing for all these combinations is not difficult, but storing and an-
alyzing all these combinations can take much computer space and 
may become prohibitive when the number of markers is large. In 
this section, we describe a simple approach that uses only a subset 
of these combinations for estimation.

  The idea is as follows. It is well known that in population-
based case-control studies, increasing the number of controls per 
case improves the efficiency of parameter estimates, however the 
improvement is not unlimited because of the number of cases is 
fixed [Breslow and Day, 1980]. If we intuitively consider all these 
combinations of untransmitted genotypes as ‘pseudo-sibling con-
trols’, it is possible that there is a similar effect to case-control 
studies, that is, a much reduced subset of these combinations may 
be sufficient to achieve nearly full efficiency from using all com-
binations. If that is the case, we can create a subset of pseudo-sib-
ling controls prior to the analysis and use the subset to identify 
disease associated polymorphisms, for example, in a large candi-
date gene association study in which the joint effects of markers 
from different gene are considered.

  The most straightforward approach for choosing such subset 
is by random selection. We can randomly select a fixed number 
of combinations from the set of all possible genotypes condition-
al on the parental genotypes, excluding the ones that are actually 
transmitted to the diseased offspring. This strategy, although val-
id, may not be efficient in selecting ‘controls’, because the geno-
types of these controls can be quite similar to each other and the 
affected offspring genotypes.

  To overcome this over-matching, we pair up the alleles that are 
not transmitted to the diseased offspring and use this combina-
tion as the control genotypes. Since this combination is least sim-
ilar to the observed offspring genotype, it is the most efficient 
choice if only one pseudo-control is chosen. Following this idea, 
an alternative strategy would be to choose paired controls such 
that for each randomly chosen pseudo-sibling control, the com-
bination of alleles that are not transmitted to this pseudo-sibling 
control is also chosen. The reason is that in the conditional likeli-
hood function for case-parents trios, the denominator is a sum-
mation of permutations in the matched set, and therefore the con-
trols should be sampled according to the scheme of the first pair: 
the case and the counter-matching control (nontransmitted al-
leles to the case). In other words, the subsequent controls should 
be selected in pairs: for each randomly selected control, the non-
transmitted alleles to this control should also be selected. This 
way we maximize the dissimilarity among the genotypes of these 
controls while still being able to yield consistent estimators of 
log(OR). Interestingly, this sampling strategy has a similar flavor 
to the ‘counter-matching’ proposed by Langholz et al. [1995] in 
the nested case-control study design. In that setting, the authors 
proposed to counter-match the cases in the exposure values so 
that the efficiency of parameter estimates can be maximized.

  It is worth noting that sampling a subset of controls is useful 
in achieving the (nearly) maximum efficiency with fewer number 
of controls when the carrier frequencies are relatively common, 
for example, under a dominant or additive model. For recessive 
models or the frequencies of carriers are low, sampling only a sub-
set of controls, whether random or countermatched, will likely 
lose substantial efficiency and in some cases may even result in 
unstable estimates.

  Simulation Studies 
 We conducted simulation experiments to examine the finite 

sample properties of the proposed estimators and inference pro-
cedures and to compare the performance when data were incor-
porated from (1) case-parent triads only, (2) from cases and unre-
lated controls, or (3) combined from case-parent triads and unre-
lated controls. For each experiment, we considered three unlinked 
loci,  G  1 ,  G  2 , and  G  3 , and one binary environmental covariate E. 
We varied the allele frequencies and  P ( E  = 1). While the estimates 
and their variances varied from one set of parameter values to 
another, the relative performance of the proposed methods was 
similar. Therefore we present results only for an allele frequency 
of 0.1, with the heterozygote OR equal to the homozygote OR for 
each variant (i.e. a dominant model), and  P ( E ) = 0.2. We also com-
pared the proposed method with the Epstein and Nagelkerke 
maximum likelihood (ML) approach.

  We examined the performance of the proposed estimators in 
terms of bias and efficiency under two general models: gene-en-
vironment interaction and gene-gene interaction. The models 
were:

  (1)  G   !   E :

logit{ P ( D  = 1  �   G ,  E )} =  �  +  �  1  G  1  +  �  2  G  2  +  �  3  G  3  +  �  4  E  +  �  5  G  1   !   E .

  (2)  G   !   G :

logit{ P ( D  = 1  �   G ,  E )} =  �  +  �  1  G  1  +  �  2  G  2  +  �  3  G  3  +  �  4  E  +  �  5  G  1   !   G  2 .

  Under each model we simulated 1000 datasets, each consisting 
of an equal number of cases and controls in addition to the par-
ents of cases. We considered three sample sizes,  n  1  =  n  2  = 250, 375, 
and 500, where  n  1  and  n  2  are the number of cases and controls, 
respectively. We chose these particular sample sizes for two rea-
sons: (1) the sample sizes were comparable to our testicular cancer 
dataset (see below); and (2) they allow a comparison of the effi-
ciency of parameter estimates derived from triads, case-unrelated 
controls, or the combined sample if the total number of individu-
als genotyped is fixed. For example, the number of genotyped 
individuals for 250 cases and their parents is equivalent to that for 
375 cases and 375 unrelated controls, and the total of 250 cases 
and their parents and 250 unrelated controls leads to the same 
number of genotyped individuals as 500 cases and 500 unrelated 
controls.

  We set  �  = –3 so that the baseline disease risk was approxi-
mately 4.7%, yielding a difference between the OR and RR close 
to what might be considered the maximum tolerable limit,  ! 10%. 
In other words, if the estimates appear to be reasonably close 
when  �  = –3, the difference in OR and RR estimates would be even 
smaller with rarer diseases. The true values for  � ’s were 0.405, 
0.405, 0.405, 0.693, and 1.100, respectively, yielding ORs of 1.5 for 
the main effects of candidate genes, an OR of 2 for the environ-
mental covariate, and an OR of 3 for the interaction. The corre-
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sponding log(RR)s are 0.378, 0.352, 0.352, 0.635, and 0.802 under 
the gene-environment interaction model, and 0.373, 0.373, 0.355, 
0.609, and 0.842 under the gene-gene interaction model.

  Performance of Estimators Under Gene-Environment and 
Gene-Gene Interaction Models 
 The estimates from case-unrelated controls under the gene-

environment interaction model ( table 3 ) and gene-gene interac-
tion ( table 4 ) model are essentially unbiased, and the coverage 
probabilities maintain the 95% nominal levels. The estimates de-
rived from triads only are unbiased in log(RR) and as expected, 
differed slightly for log(OR) because log(OR) and log(RR) are gen-

erally different though the difference is negligible if the disease is 
rare. Using the log(OR) as the true parameter values, the esti-
mates from triads have lower than nominal 95% coverage prob-
abilities, especially for gene-gene and gene-environment interac-
tion effects. The combined analysis yields an estimate that is be-
tween those from the case-unrelated controls and triads analysis, 
and the variance estimators are smallest as compared with those 
derived from either triads alone or case-unrelated controls. The 
observed efficiency gain in combining both case-parents and un-
related controls is consistent with earlier findings reported by Ep-
stein et al. [2005]. The proposed variance estimators also work 
well in finite sample sizes, as the means of the standard error es-

Table 3. Summary statistics for estimates under a gene-environment interaction model, logit(Pr(D = 1 � G1, G2, G3, E)) = a + b1G1 + b2G2 
+ b3G3 + b4E + b5G1 ! E

Type b1 = 0.405 b2 = 0.405 b3 = 0.405 b4 = 0.693 b5 = 1.100

n1 = 250, n2 = 250
Triads 0.386 (0.295, 0.279, 94.1) 0.340 (0.214, 0.219, 94.3) 0.354 (0.224, 0.218, 94.4) – 0.834 (0.498, 0.463, 88.9)
CC 0.410 (0.270, 0.263, 94.1) 0.408 (0.246, 0.231, 93.0) 0.404 (0.230, 0.230, 95.2) 0.710 (0.246, 0.247, 95.1) 1.190 (1.020, 0.559, 97.0)
Combined 0.391 (0.243, 0.231, 94.8) 0.367 (0.195, 0.189, 93.5) 0.372 (0.192, 0.189, 94.5) 0.743 (0.241, 0.240, 94.9) 0.932 (0.418, 0.400, 91.6)

n1 = 375, n2 = 375
Triads 0.377 (0.231, 0.227, 94.4) 0.349 (0.174, 0.178, 94.2) 0.355 (0.184, 0.178, 93.0) – 0.822 (0.382, 0.373, 87.5)
CC 0.407 (0.208, 0.214, 95.6) 0.411 (0.187, 0.187, 94.8) 0.399 (0.188, 0.187, 94.7) 0.698 (0.195, 0.200, 95.2) 1.160 (0.471, 0.451, 95.3)
Combined 0.388 (0.187, 0.188, 94.7) 0.374 (0.151, 0.154, 94.0) 0.372 (0.159, 0.154, 93.6) 0.737 (0.188, 0.196, 95.4) 0.937 (0.341, 0.326, 91.0)

n1 = 500, n2 = 500
Triads 0.378 (0.198, 0.195, 94.5) 0.348 (0.150, 0.154, 94.8) 0.357 (0.159, 0.154, 92.6) – 0.813 (0.331, 0.321, 82.9)
CC 0.406 (0.187, 0.185, 94.3) 0.413 (0.163, 0.162, 95.4) 0.411 (0.161, 0.162, 95.6) 0.704 (0.172, 0.173, 95.0) 1.110 (0.389, 0.384, 95.9)
Combined 0.389 (0.164, 0.163, 94.9) 0.375 (0.134, 0.133, 94.5) 0.379 (0.135, 0.133, 93.9) 0.739 (0.166, 0.169, 94.7) 0.914 (0.281, 0.280, 89.1)

Table 4. Summary statistics for estimates under a gene-gene interaction model, logit(Pr(D = 1 � G1, G2, G3, E)) = a + b1G1 + b2G2 + b3G3 
+ b4E + �5G1 ! G2

Type b1 = 0.405 b2 = 0.405 b3 = 0.405 b4 = 0.693 b5 = 1.100

n1 = 250, n2 = 250
Triads 0.372 (0.255, 0.251, 94.4) 0.377 (0.264, 0.251, 94.3) 0.363 (0.214, 0.218, 95.0) – 0.863 (0.382, 0.369, 89.1)
CC 0.409 (0.260, 0.258, 95.6) 0.411 (0.264, 0.258, 94.8) 0.421 (0.234, 0.229, 94.9) 0.701 (0.216, 0.219, 95.2) 1.210 (1.030, 0.567, 95.1)
Combined 0.393 (0.219, 0.219, 95.0) 0.397 (0.228, 0.219, 94.5) 0.384 (0.186, 0.188, 95.3) 0.694 (0.213, 0.217, 95.7) 0.926 (0.375, 0.359, 98.0)

n1 = 375, n2 = 375
Triads 0.379 (0.200, 0.204, 95.1) 0.377 (0.213, 0.204, 94.6) 0.362 (0.179, 0.178, 95.0) – 0.857 (0.307, 0.300, 85.7)
CC 0.402 (0.208, 0.209, 95.3) 0.397 (0.217, 0.210, 95.2) 0.412 (0.176, 0.186, 95.5) 0.702 (0.177, 0.178, 94.7) 1.160 (0.456, 0.454, 95.6)
Combined 0.395 (0.173, 0.178, 96.0) 0.392 (0.187, 0.178, 94.3) 0.381 (0.147, 0.153, 96.1) 0.696 (0.176, 0.177, 94.7) 0.926 (0.299, 0.292, 90.0)

n1 = 500, n2 = 500
Triads 0.375 (0.170, 0.176, 95.7) 0.377 (0.181, 0.177, 94.6) 0.363 (0.157, 0.154, 93.6) – 0.856 (0.258, 0.260, 81.0)
CC 0.410 (0.174, 0.181, 95.8) 0.402 (0.182, 0.181, 94.2) 0.407 (0.161, 0.161, 94.7) 0.693 (0.150, 0.154, 96.2) 1.130 (0.395, 0.390, 95.6)
Combined 0.399 (0.147, 0.154, 96.4) 0.395 (0.156, 0.154, 94.0) 0.381 (0.133, 0.133, 94.9) 0.688 (0.149, 0.152, 96.1) 0.918 (0.250, 0.252, 88.2)

The results are based on 1000 simulated datasets, each consisting of n1 
case-parent triads and n2 unrelated controls. ‘Triads’ refers to using only 
triad data for estimation; ‘CC’ refers to using only cases (not parents) and 
unrelated controls; ‘Combined’ refers to using both case-parents and un-

related controls. Each entry lists the mean estimate (standard deviation of 
the estimates, mean of the estimated standard errors, 95% coverage prob-
ability) over the 1000 simulated datasets. – = The main effect of the envi-
ronmental covariate is unestimable from triads-only.

The results are based on 1000 simulated datasets, each consisting of n1 
case-parent triads and n2 unrelated controls. ‘Triads’ refers to using only 
triad data for estimation; ‘CC’ refers to using only cases (not parents) and 
unrelated controls; ‘Combined’ refers to using both case-parents and un-

related controls. Each entry lists the mean estimate (standard deviation of 
the estimates, mean of the estimated standard error, 95% coverage proba-
bility) over the 1000 simulated datasets. – = The main effect of the envi-
ronmental covariate is unestimable from triads-only.
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timates are very close to the standard deviation of estimates over 
the 1000 simulated datasets.

  When the number of genotyped individuals is fixed under the 
gene-environment interaction model, the case-unrelated control 
design is more efficient in estimating all main effects and interac-
tion effects than designs with either triads alone or combined 
data. When estimating the gene-gene interaction effect, however, 
using the triads and combined data appears to offer substantially 
greater efficiency compared with the case-unrelated control ap-
proach. Since the estimates from triads data are lower than that 
from CC data and it may result in smaller variances, we also com-
pared the coefficients of variation, a normalized measure of vari-
ance. Interestingly the gain observed in efficiency measured by 
the inverse of variance estimates is diminished when using the 
coefficient of variation estimates.

  Evaluation of Multiple Imputation Procedure for Missing 
Genotypes in Parents 
 We evaluated the effectiveness of the proposed multiple impu-

tation procedure. For each dataset, we generated 250 case-parents 
triads and dyads. Among these, there were 150 dyads for which 
parental genotypes were missing at all three loci  G  1 ,  G  2 , and  G  3 . 
We compared three methods: (1) the full-data analysis, for which 
genotypes were available for all 250 triads; (2) complete-data anal-
ysis using the 100 families that had genotypes for both parents; 
and (3) imputed data analysis by using the multiple imputation 
method proposed earlier in this paper. Five imputations were gen-
erated for each dataset. The results were based on 1000 simulated 
datasets. In general, the estimates are comparable for all three sets 
of analysis, however, the variances are quite different ( table 5 ). 
The full-data analysis is the most efficient, whereas the complete-
data analysis is the least. The multiple imputation method recov-
ers most of the efficiency lost due to missing genotypes. The stan-
dard error estimators, as measured by the means of the estimated 
standard error, are very close to the standard deviations of the 
estimates, implying that the variance estimator     � ̂   t  for the multiple 
imputation method works well in finite sample sizes.

  Comparison of Various Strategies of Choosing
Pseudo-Sibling Controls in  L  fam  
 For the counter-matching selection (‘counter’), we considered 

three different values for the number of controls selected: (a) 1, 
only the paired non-transmitted alleles from parents is chosen; 
(b) 5, that is, in addition to (a), we randomly choose 2 controls and 
their complements; (c) 9, which is same as (b) except now that we 
randomly choose 4 controls and their complements. To make the 
number of randomly selected controls comparable to the ‘counter’ 
strategy, we choose 1, 5, and 9 controls for the random selection 
strategy, respectively.

  A total of 1000 simulated datasets, each consist of 500 case-
parents triads, were used for comparing the bias and relative ef-
ficiencies of these strategies against the full pseudo-sibling 
matched set for the main effect and interaction effect. The relative 
efficiency is defined as the inverse of the variance estimator for a 
sampling strategy divided by the inverse of the variance estimator 
for the full pseudo-sibling matched set. The counter-matching 
strategy generally is much more efficient than the random-selec-
tion one under both gene-environment and gene-gene interaction 
models ( table 6 ). For example, under the gene-environment inter-
action model, using 9 controls or much fewer in the counter-
matching strategy would achieve nearly 100% of the efficiency by 
using the full set of pseudo-sibling controls, which, in the case of 
three genes, has 4 3  – 1 = 63 controls. The efficiency gain for coun-
ter-matching strategies compared to random-matching strategies 
for gene-gene interaction effects is not as much for gene-environ-
ment interaction effects. This is partly due to the fact that maxi-
mizing the discordance of genotypes among pseudo sibling con-
trols would actually to some extent penalize the number of indi-
viduals who carry both high risk alleles. As a result, the 
counter-matching strategy may not gain as much efficiency for 
gene-gene interactions as for gene-environment interactions 
compared with the random strategy. Note that the main effect of 
environmental covariate  �  4  is not estimable from case-parents 
data.

Table 5. Summary statistics for parameter estimates derived from case-parent triad data with genotypes missing for one parent

�1 = 0.405 �2 = 0.405 �3 = 0.405 �5 = 1.100

Gene-environment interaction model
Full 0.391 (0.281, 0.280) 0.355 (0.213, 0.218) 0.350 (0.216, 0.218) 0.828 (0.469, 0.464)
Complete 0.404 (0.425, 0.455) 0.350 (0.346, 0.349) 0.350 (0.351, 0.350) 1.060 (0.751, 0.767)
Imputation 0.398 (0.303, 0.309) 0.361 (0.244, 0.240) 0.357 (0.242, 0.240) 0.838 (0.442, 0.524)

Gene-gene interaction model
Full 0.378 (0.255, 0.251) 0.379 (0.245, 0.251) 0.354 (0.225, 0.218) 0.852 (0.383, 0.369)
Complete 0.405 (0.409, 0.404) 0.401 (0.407, 0.405) 0.355 (0.321, 0.349) 0.852 (0.383, 0.369)
Imputation 0.384 (0.276, 0.274) 0.386 (0.275, 0.276) 0.356 (0.255, 0.240) 0.850 (0.346, 0.399)

The results are based on 1000 simulated datasets, each consist-
ing of 100 triads and 150 dyads. ‘Full’ data analyses are based on 
all 250 triads with no missing genotypes; ‘Complete’ data analyses 
use only the 100 triads with genotypes available for both parents; 
‘Imputation’ data analyses are based on 100 triads and 150 dyads 

by using a multiple imputation method. Each entry lists the mean 
estimate (standard deviation of the estimates, mean of the esti-
mated standard errors) over the 1000 simulated datasets.

The main effect of the environmental covariate �4 is unesti-
mable from triads-only and thus omitted.
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  Comparison with the Epstein and Nagelkerke Estimators 
 We compared the performance of the proposed pseudo-likeli-

hood to the Epstein and Nagelkerke methods. The data were gen-
erated under the logistic regression model (1) with only one locus, 
as the Epstein et al. and the Nagelkerke ML methods only deal 
with one locus at a time. We simulated a dominant locus with mi-
nor allele frequency values of 0.1, 0.2, or 0.3. The intercept  �  was 
–1 or –3, yielding the disease risk of approximately 0.27 or 0.05, 
respectively, among non-carriers of the high risk allele. Two val-
ues of  �  were considered, 0 for no effect and log(2) = 0.693 for an 
OR of 2. This gave a total of 12 = 3  !  2  !  2 combinations of pa-
rameter values. For each combination, we generated 1000 simu-
lated datasets, each consisting of 500 cases and their parents and 
500 controls. The Epstein ML estimators were obtained using the 
software downloaded from http://www.genetics.emory.edu/labs/
epstein/software/chaplin/.

  The standard errors of    � ̂        are essentially the same for the pro-
posed and the Epstein methods, as are the mean point estimates 
for the analyses of combined data ( table 7 ). For both methods, the 
combined analysis is the most efficient as compared with using 
either triads or case-unrelated controls in the proposed method 
or as compared with using parents’ data in the Epstein method. 
When  �  = 0, all estimates are unbiased. When  �  = 0.693, the case-
control likelihood for the proposed method yields an unbiased 
estimate for  �  for all situations. The triads-only data yield esti-
mates of the RR and are therefore smaller than the true values of 
log(OR) because the true value of the RR is itself smaller than the 
log(OR). The magnitude of the difference is proportional to the 
disease prevalence. The estimates derived from the combined 

analysis are essentially a weighted average of the estimates de-
rived from either data configuration alone. For both triads-only 
and combined-data analyses, the Epstein estimators and the pro-
posed estimators give highly comparable results. The    � ̂        derived 
from the parents of cases for the Epstein method, on the other 
hand, are biased away from the null. This is because of the viola-
tion of the underlying rare disease assumption, which leads to 
biased estimates of mating type frequencies and, consequently, an 
upward bias in   � ̂       for the parents of cases. The extent of bias is 
greatly reduced when  �  = –3. The Nagelkerke approach which as-
sumes the Hardy-Weinberg equilibrium and random mating has 
comparable efficiency with the Epstein or the proposed approach 
for most scenarios except when the allele frequency is 0.5 where 
there appears to be a very modest gain in efficiency for the 
Nagelkerke approach.

  An Example from a Study of Testicular Cancer 

 Testicular germ cell cancers (TGCC) occur most com-
monly in men 20–44 years of age. There is strong familial 
aggregation [Dieckmann and Pichlmeier, 1997], but aside 
from white race, a history of undescended testes, and pos-
sibly taller height [Richiardi et al., 2007], risk factors have 
not been established for these malignancies. Several lines 
of evidence point to a role for steroid hormones and/or 
growth factors in the somatomedin pathway [Swerdlow, 
2003; Zavos et al., 2004], but to date attempts to identify 
lifestyle or medical characteristics as risk factors that re-
flect these pathways have not been successful. We there-
fore have initiated a research program to determine 
whether polymorphisms in genes from these pathways 
are associated with TGCC risk. A combined case-unre-
lated control and case-parent triad design is being em-
ployed, based on a single group of incident TGCC cases 
identified through the Seattle-Puget Sound Surveillance, 
Epidemiology, and End Results cancer registry [Hankey 
et al., 1999]. Population-based controls from the same re-
gion are identified and recruited using random digit tele-
phone dialing [Harlow and Davis, 1988; Hartge et al., 
1984]. Details regarding case and parent eligibility, re-
cruitment success, data and specimen collection, and ge-
notyping of 6 polymorphisms have been previously re-
ported [Starr et al., 2005].

  To illustrate the proposed method, we analyzed data 
on the 1004 non-Hispanic Caucasians in our study on 
whom genotyping has been completed: 228 cases, 257 
parents, and 519 unrelated controls. We had genotypes 
for both parents of 106 cases, for only one parent of 45 
cases, and for neither parent of 77 cases. The specific 
polymorphisms examined included three SNPs (rs274057, 
 CYP 3 A 4 A-392G; rs2665802,  GH 1 T1663A; rs2854744, 

Table 6. Relative efficiency of parameter estimates under both the 
gene-environment interaction and gene-gene interaction models 
for case-parents triads

Scheme �1 =
0.405

�2 =
0.405

�3 =
0.405

�4 =
0.693

�5 =
1.100

Gene-environment interaction model
Full 1.00 1.00 1.00 – 1.00
1 counter 0.95 0.90 0.94 – 0.96
5 counter 0.98 0.96 0.98 – 0.99
9 counter 0.98 0.97 1.00 – 1.00
1 random 0.52 0.51 0.48 – 0.48
5 random 0.77 0.71 0.75 – 0.80
9 random 0.85 0.84 0.84 – 0.86
Gene-gene interaction model
Full 1.00 1.00 1.00 – 1.00
1 counter 0.90 0.93 0.88 – 0.46
5 counter 0.97 0.97 0.94 – 0.77
9 counter 0.99 0.99 0.96 – 0.95
1 random 0.47 0.49 0.49 – 0.40
5 random 0.75 0.80 0.73 – 0.72
9 random 0.87 0.82 0.81 – 0.79

The results are based on 1000 simulated datasets, each consist 
of 500 case-parents triads. The main effect of the environmental 
covariate �4 is unestimable from triads-only and thus omitted.
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 IGFBP 3 A-202C) and one microsatellite polymorphism 
in  IGF 1 ((CA) n  located at approximately –940 bp relative 
to the transcription start site). Log-additive genetic mod-
els were used in assessing the effects of these polymor-
phisms on TGCC risk.

  Individuals who carried at least one copy of variant 
 CYP 3 A 4  G  allele were at increased risk for developing 
TGCC in both the case-parent and case-unrelated con-
trol analyses, though the magnitude of log-odds ratios 
varied approximately two-fold between these analyses 
( table 8 ). The log-odds ratio estimate for triads was 1.47 
with 95% confidence interval (CI) 0.21–2.72, and for case-

unrelated controls is 0.63 (95% CI 0.10–1.18). Combining 
triads and unrelated controls yielded    � ̂        = 0.78 and gave 
narrower 95% CI for an increased risk for the  CYP 3 A 4  G  
allele carriers compared with estimates from using either 
triads or case-unrelated controls. The p values calculated 
based on the Wald test statistic are 0.022, 0.024, and 0.003 
for triads, case-unrelated controls, and combined, re-
spectively. Adding dyads to both triads and unrelated 
controls did not greatly change the log-odds ratio esti-
mate nor the 95% confidence interval.

  For the other three polymorphisms, one each in  IGF 1, 
 GH 1 and  IGFBP 3, we observed little evidence of associa-

Table 7. Comparison of bias and efficiency between the proposed pseudo- likelihood approach, the maximum likelihood method [Ep-
stein et al., 2005], and the maximum likelihood approach that assumes the Hardy-Weinberg equilibrium and random mating 
[Nagelkerke et al., 2004]

p � � Proposed method Epstein Nagelkerke
combined

triads case-control combined triads parents combined

0.1 –1 0 0.006 (0.159) 0.004 (0.161) 0.003 (0.140) 0.007 (0.161) –0.011 (0.287) 0.003 (0.140) 0.003 (0.139)
0.693 0.457 (0.153) 0.699 (0.150) 0.572 (0.127) 0.457 (0.153) 0.851 (0.222) 0.570 (0.130) 0.560 (0.124)

–3 0 –0.001 (0.163) –0.001 (0.162) –0.002 (0.140) 0.001 (0.166) –0.012 (0.298) –0.002 (0.141) –0.002 (0.138)
0.693 0.660 (0.152) 0.706 (0.159) 0.681 (0.130) 0.660 (0.152) 0.729 (0.240) 0.680 (0.131) 0.676 (0.127)

0.2 –1 0 0.005 (0.129) 0.005 (0.134) 0.004 (0.115) 0.005 (0.129) 0.002 (0.245) 0.005 (0.116) 0.004 (0.113)
0.693 0.453 (0.130) 0.688 (0.131) 0.568 (0.113) 0.453 (0.130) 0.876 (0.207) 0.564 (0.115) 0.548 (0.108)

–3 0 0.004 (0.126) –0.001 (0.129) 0.001 (0.109) 0.004 (0.126) –0.011 (0.242) 0.001 (0.109) 0.004 (0.108)
0.693 0.655 (0.130) 0.692 (0.131) 0.673 (0.114) 0.655 (0.130) 0.722 (0.214) 0.673 (0.115) 0.669 (0.110)

0.5 –1 0 0.007 (0.136) –0.003 (0.149) 0.003 (0.126) 0.007 (0.136) 0.001 (0.305) 0.006 (0.126) 0.004 (0.120)
0.693 0.456 (0.148) 0.694 (0.152) 0.575 (0.136) 0.456 (0.148) 1.060 (0.353) 0.554 (0.143) 0.527 (0.129)

–3 0 0.005 (0.144) –0.001 (0.152) 0.003 (0.131) 0.005 (0.144) –0.003 (0.305) 0.004 (0.131) 0.004 (0.124)
0.693 0.661 (0.163) 0.700 (0.168) 0.681 (0.150) 0.661 (0.163) 0.762 (0.386) 0.676 (0.152) 0.670 (0.142)

Each entry lists the mean parameter estimate (standard deviation of the estimates) for over the 1,000 simulated datasets. Each dataset consists of 500 
cases and 500 controls.

Table 8. Log-odds ratio (OR) estimates (95% confidence intervals, p values) of the association between TGCC risk and variant alleles 
at four polymorphic loci under a log-additive model, by type of subjects included in the model

Subjects in model CYP3A4
G (vs. A)

IGF1
19 repeats (vs. others)

GH1
A (vs. T)

IGFBP3
C (vs. A)

Triads 1.47 (0.21–2.72, 0.022) –0.25 (–0.73 to 0.21, 0.28) 0.06 (–0.39 to 0.50, 0.81) 0.33 (–0.08 to 0.74, 0.11)
Triads and Dyads 1.26 (0.19–2.34, 0.022) –0.12 (–0.50 to 0.27, 0.55) 0.12 (–0.28 to 0.51, 0.56) 0.27 (–0.06 to 0.60, 0.11)
Cases and Controls 0.63 (0.10–1.18, 0.024) –0.03 (–0.26 to 0.20, 0.79) –0.10 (–0.32 to 0.12, 0.38) 0.07 (–0.14 to 0.29, 0.50)
Triads, Cases and Controls 0.79 (0.26–1.31, 0.003) –0.08 (–0.32 to 0.16, 0.51) –0.07 (–0.29 to 0.16, 0.55) 0.13 (–0.09 to 0.35, 0.24)
Triads, Dyads, Cases and Controls 0.78 (0.26–1.31, 0.003 –0.06 (–0.30 to 0.18, 0.64) –0.04 (–0.27 to 0.19, 0.73) 0.13 (–0.08 to 0.34, 0.22)

Due to missing genotypes, for CYP3A4 there are 515 unrelated controls 
and 220 cases, the latter corresponding to 95 triads (16 informative in es-
timating log OR), 46 dyads, and 79 without any parental genotypes. For 
IGF1 there are 513 controls and 216 cases, the latter corresponding to 87 
triads (57 informative), 52 dyads, and 77 without parental genotypes. For 

GH1, there are 504 controls and 216 cases, the latter corresponding to 89 
triads (62 informative), 49 dyads, and 78 without parental genotypes. For 
IGFBP3, there are 515 controls and 218 cases, the latter corresponding to 
88 triads (69 informative), 52 dyads, and 78 without parental genotypes.
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tions with TGCC risk, whether in analyses using the 
case-parent triads, the cases and unrelated controls, or 
both. Because the proteins encoded by  IGFBP 3 and  GH 1 
modulate the levels and bioavailability of  IGF 1, respec-
tively, we also examined interactions between the  IGF 1 
and  GH 1 polymorphisms and between  IGFBP 3 and  IGF 1 
polymorphisms ( table 9 ). There was little evidence to 
suggest that  GH 1 or  IGFBP 3 genotypes modified the as-
sociation between the  IGF 1 polymorphism and TGCC 
risk.

  Discussion 

 We have described a general approach to combining 
data from cases, parents, and unrelated controls that can 
easily accommodate multiple genetic loci and other risk 
factors. The main and interactive effects of gene-gene and 
gene-environment are modeled in a straightforward 
fashion by including genotypes, environmental covari-
ates, and their products in the model. Additionally, in 
contrast to other hybrid data approaches, the proposed 
method is not encumbered by the need to estimate nui-
sance parameters, which can become quite numerous 
when more than one locus is considered and when the 
assumptions of the random mating and Hardy-Weinberg 
equilibrium are violated [Epstein et al., 2005]. The pseu-
do-likelihood approach can lose efficiency compared to 
the maximum likelihood approach. However, in our sim-
ulation study, we observed little efficiency loss compared 

with the likelihood-based approaches, except perhaps 
when the allele frequency is very common, say 0.5 and 
when the random mating and Hardy-Weinberg equilib-
rium are assumed.

  While interpretation of the log(OR) estimates depends 
on an underlying rare disease assumption, this assump-
tion is satisfied for many common diseases such as many 
cancers, type I diabetes, and virtually all birth defects. 
However, for many traits that exist on a continuum of se-
verity or symptoms, such as mental disorders, an inclu-
sive definition may result in a high prevalence of the dis-
ease. In this situation,  �  may be fixed by borrowing in-
formation from external data sources, and the RR 
expressed as a function of  �  and the OR, exp( � ). The es-
timation and inference procedures follow similarly to the 
proposed approach. If the baseline disease risk is of inter-
est, one can, in fact, obtain the estimates  �  ̂   and   � ̂     from 
the pseudo-likelihood  L  comb  in (2). Essentially  �  is esti-
mated from the case-unrelated sample, whereas  �  is esti-
mated from the families. We conducted a simulation 
study and found that   �  ̂      and   � ̂     are generally unbiased 
though with large variance, and particularly large vari-
ance for   �  ̂      (results not shown).

  One key assumption for valid estimation and infer-
ence when combining cases, case-parents, and unrelated 
controls is that ORs are homogeneous in case-unrelated 
controls and case-parents. It is possible to test whether 
the ORs derived from the two study components are the 
same. If there is no strong evidence for a difference in the 
ORs between the two components, the data may be com-

Table 9. Log-odds ratio estimates (95% confidence intervals, p values) for gene-gene interactions between GH1 and IGF1 and between 
IGFBP3 and IGF1 under a log-additive model, by type of subjects included in the model

Subjects in model Gene-gene interaction

GH1 IGF1 GH1*IGF1

Triads –0.14 (–0.76 to 0.47, 0.64) –0.46 (–1.09 to 0.18, 0.16) 0.22 (–0.34 to 0.77, 0.44)
Triads and Dyads –0.10 (–0.60 to 0.40, 0.70) –0.30 (–0.80 to 0.20, 0.24) 0.24 (–0.21 to 0.69, 0.30)
Cases and Controls –0.01 (–0.32 to 0.31, 0.98) 0.06 (–0.28 to 0.40, 0.74) –0.13 (–0.46 to 0.21,0.46)
Triads and Controls –0.05 (–0.36 to 0.27, 0.76) –0.07 (–0.41 to 0.27, 0.69) –0.03 (–0.36 to 0.29, 0.84)
Triads, Dyads and Controls –0.05 (–0.36 to 0.26, 0.75) –0.07 (–0.41 to 0.26, 0.67) 0.01 (–0.32 to 0.34, 0.95)

IGFBP3 IGF1 IGFBP3*IGF1

Triads 0.70 (0.14 to 1.26, 0.01) 0.19 (–0.59 to 0.98, 0.63) –0.33 (–0.89 to 0.23, 0.25)
Triads and Dyads 0.41 (–0.05 to 0.87, 0.09) 0.08 (–0.58 to 0.74, 0.81) –0.09 (–0.53 to 0.35, 0.67)
Cases and Controls 0.14 (–0.18 to 0.45, 0.39) 0.06 (–0.36 to 0.47, 0.78) –0.09 (–0.40 to 0.24, 0.58)
Triads, Cases and Controls 0.27 (–0.04 to 0.57, 0.09) 0.10 (–0.29 to 0.50, 0.61) –0.16 (–0.47 to 0.16, 0.32)
Triads, Dyads, Cases and Controls 0.22 (–0.09 to 0.52, 0.16) 0.07 (–0.34 to 0.48, 0.73) –0.09 (–0.40 to 0.22, 0.55)
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bined. This two-step strategy, proposed by Epstein et al. 
[2005], will reduce the chance of inappropriately combin-
ing data. However, true heterogeneity may be missed if 
there is insufficient power to detect the inequality of es-
timates from the two components.

  On the other hand, several possible sources of genuine 
heterogeneity may result in differences between estimates 
from various data sources. First, the populations from 
which various data sources are derived may be different, 
and the effects of genes or nongenetic risk factors may not 
be homogeneous across populations. Secondly, it has long 
been known that in non-linear regression models, such 
as logistic regression, omission of covariates related to 
disease risk but unrelated to the exposure of interest (in 
our example genotypes) will attenuate estimates of the 
genotype-disease association toward the null [Diggle et 
al., 1994, pp 137–142]. Such a difference does not repre-
sent bias, but rather indicates a true difference in the co-
variate-adjusted and unadjusted effect estimates. Case-
parent data are implicitly adjusted for many possible risk 
factors, because the case and pseudo-sibling controls dif-
fer only at the genotypes of interest. In contrast, case-un-
related control data likely do not account for some risk 
factors, and the estimated effects of covariates in the 
model may appear to be attenuated in relation to those 
derived from case-parent data. While the magnitude of 
such true difference of estimates between analyses em-
ploying case-parents and case-unrelated controls varies 
depending on the heterogeneity among subjects and can 
be larger than 10%, this source of heterogeneity of esti-
mates is often under-appreciated.

  Thirdly, possible population structure in case-unre-
lated control samples may yield spurious associations be-
tween genetic polymorphisms and disease risk. Thomas 
and Witte [2002] have summarized strategies on how to 
minimize the impact of population stratification in case-
unrelated control studies of candidate genes. These strat-
egies (which are not all mutually exclusive) include select-
ing controls properly matched to cases’ race/ethnicity, 
collecting race information in as much detail as possible, 
and inferring population stratification molecularly by 
using markers that are not associated with disease (e.g., 
Devlin and Roeder [1999]; Pritchard and Rosenberg 
[1999]; Satten et al. [2001]; and Zhang et al. [2003]). In 
contrast, family-based studies are robust to such biases. 
However, the robustness may not hold in the presence of 
missing genotypes because multiple imputation draws 
missing genotypes based on estimated genotype frequen-
cies which would be biased if there were population strat-
ification in the parents of cases. This is rather undesirable 

as robustness to population stratification is a primary ad-
vantage for family-based studies. We can use the same 
strategies as that for case-unrelated controls, that is, strat-
ifying case families based on collected race information 
or inferred population structure from unrelated markers. 
Rabinowitz [2002] developed an innovative approach to 
this problem for family-based genetic association that ac-
counts for population heterogeneity and misspecified 
population haplotype (genotype) frequencies. Further 
extensions of these robust methods to estimation were 
considered by Whittemore [2004], Allen et al. [2005] and 
Allen and Satten [2007]. The robust score functions pro-
posed by Whittemore, Allen and colleagues can be used 
to replace the conditional likelihood-based score func-
tion and a sandwich variance estimator similar to that in 
the Appendix can be derived to account for the overlap-
ping of the cases between case-parents and case-unre-
lated controls.

  The results of our simulation experiments suggest that 
the efficiency of the case-parents design is the same as or 
slightly better than the case-unrelated control design for 
main effects, and substantially better for gene-gene or 
gene-environment interaction effects when the same 
number of cases is used and there is an equal number of 
controls. However, the triad design requires 50% more 
genotyping than the case-unrelated control design. For a 
fixed amount of genotyping regardless of design (triads, 
case-unrelated controls or a combination of both), the 
case-unrelated control design is most efficient in all situ-
ations except for gene-gene interactions, for which the 
triad design appears to yield the most efficient estima-
tors. This observation was also reported by Witte et al. 
[1999]. In addition to concerns about efficiency, the triad 
design may be sensitive to genotyping errors or stochastic 
variation, particularly when the number of families with 
informative parents (i.e. parents heterozygous for one of 
the loci) is small despite having a reasonable number of 
triads in total. This is because each family is treated as a 
matched set, a random genotyping error or a stochastic 
variation in an otherwise informative family could affect 
the RR estimate, and this impact can be substantial when 
the number of informative parents is small.

  Multiple imputation is a useful tool in dealing with 
missing data, in particular, when multiple genes and en-
vironmental risk factors are simultaneously considered 
for their effects on disease risk. In our approach, a mod-
est number of complete data sets (usually 3–10) were gen-
erated by filling in the missing data elements with values 
generated according to their (posterior) probability dis-
tribution. Croiseau et al. [2007] proposed a Bayesian-
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based approach where a prior Dirichlet distribution was 
assumed for population haplotype (genotype) frequen-
cies. This allows for the uncertainty of haplotype fre-
quencies accounted for in imputing missing genotypes. 
In contrast, we used the maximum likelihood estimator 
(MLE) of population genotype frequencies and filled the 
missing genotypes with values generated from a multino-
mial distribution with the MLE of genotype frequencies. 
The proposed approach does not make any assumption 
for genotype frequencies, however, it also does not ac-
count for the uncertainty of the estimates. From our sim-
ulation study it seems that there are few differences be-
tween the standard deviations of the estimates of regres-
sion parameters and the means of the standard error 
estimates, indicating the proposed procedure worked 
well with sample sizes considered. The variances of re-
gression parameter estimates, however, may be underes-
timated if the sample sizes are much smaller and the MLE 
of genotypic frequencies have much greater variances. 
Further investigation on the performance of both ap-
proaches in both simulated and real data sets will be 
needed.

  In candidate gene association studies, when markers 
from different genes are considered simultaneously for 
their effects on disease risk, methods proposed here are 
readily applicable.   However, with emerging high through-
put technologies, markers become increasingly dense 
and many of them are in LD or closely linked. In this 
situation, one may either treat markers as individual co-
variates and fit a regression model with interaction ef-
fects, or construct haplotypes from these markers and 
treat haplotypes as a covariate with multiple levels. Both 
approaches are applicable to case-control data, though 
the latter requires statistical reconstruction of haplotypes 
from unphased genotypes (e.g. Zhao et al. [2003] and Lin 
et al. [2005]). For case-parent data, however, the phases of 
markers need to be known in order to obtain the proper 
genotypic distribution for pseudo-sibling controls, re-
gardless of whether the markers are treated as individual 
covariates or haplotypes. A simple approach is to use only 
one pseudo-sibling control, whose genotypes consist of 
non-transmitted alleles from parents to the offspring. 
This approach yields an unbiased estimator of  �  in the 
absence of missing genotypes. However, our current al-
gorithm for handling missing genotypes would require 
modification to account for LD among markers. Alterna-
tively, haplotypes can be reconstructed from case-parents 
(e.g. Clayton and Jones [1999]; Cordell et al. [2004]; Allen 
and Satten [2007]) independent of or jointly with unre-
lated controls. The pseudo-likelihood (2) can then be 

modified by summing over the unknown haplotypes and 
weighting each individual’s contribution by the posterior 
probability of the individual’s carrying each haplotype 
given the unphased genotypes.

  The proposed method incorporates data from cases, 
parents of cases, and unrelated controls. It would be use-
ful to extend the method to allow for other types of fam-
ily members, and siblings in particular, as for many late-
onset diseases the parents of cases often are not living at 
the time that recruitment is carried out. So far little work 
has been done in combining other types of family mem-
bers with unrelated controls. This is partly due to the dif-
ficulty of handling possible residual correlation among 
family members even after adjusting for all the known 
risk factors, as well as the non-cohort ascertainment of 
families. Likelihood-based methods [Kraft and Thomas, 
2000] for family data together with the pseudo-likeli-
hood approach proposed here may be used for handling 
such a general data structure.

  Large association studies that employ both case-unre-
lated control and family-based designs have been con-
ducted for some diseases. An example is the National 
Cancer Institute-sponsored colon cancer family registry 
[Newcomb et al., 2007]. This international consortium 
includes six clinical centers, each of which has used a dif-
ferent study design involving colorectal cancer cases and 
one or more comparison groups (including several cen-
ters with both unrelated controls and cases’ relatives). 
Since neither design is universally superior to the other, 
incorporating both types of controls in the consortium 
permits investigators to study a broad spectrum of allele 
frequencies, exposures, and effects on risk for colon can-
cers. Now with the increasing number of SNPs being 
genotyped in any given study, the search for common 
genes with modest effects or gene-gene or gene-environ-
ment interactions is intensifying, with a concomitant de-
mand for large sample sizes in order to achieve adequate 
power. Combining samples, even those that have been 
collected under different designs, becomes an attractive 
option. The proposed method provides a general frame-
work for combining data collected under different de-
signs. Advantages to this approach include its ability to 
incorporate missing genotypes and data from many loci 
simultaneously. As we have mentioned, however, great 
care needs to be taken before combining samples from 
different sources because of various complicating issues 
such as population stratification and disease heterogene-
ity. There remains much work to be done to meet these 
challenges.
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  The software written in R [R Development Core Team, 
2006] for combined candidate gene analysis is available 
from the authors upon request.
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  Appendix 

 Consistency and Asymptotic Normality of ( � ̂  * ,  � ̂ ) as 
the Solution to Equation (4) 

 Consider  I  cases,  J  unrelated controls, and parents of cases. 
Some parents may be missing genotype information, and this 
missingness is denoted by the indicator function  � , which is 1 if 
both parents are available and 0 otherwise. We assume that such 
missingness is completely at random, that is, whether cases have 
parents’ genotypes available is independent of genotypic configu-
rations of the families and other covariates. The data consist of 
independent and identically distributed random variables { D  i ,  �  i , 
 X  i ,  i  = 1, …,  I  +  J } where  D  i  and  X  i  are, respectively, disease status 
and a vector of covariates for the  i -th individual. The data also 
consist of parental genotypes { G  pi   �   D  i  = 1,  �  i  = 1,  i  = 1, …,  I } for 
cases with  �  i  = 1. For simplicity of notation, let  �  = ( �   *  ,  � ) T  and 
 h ( X ;  � ) = exp( �   *   + �  X )/{1 + exp( �   *   +  �  X )}. Below we show that
for the true parameter values  �  0  = ( �   *   0 ,  �  0 ): (i)  �  ̂    ]   �  0 , and (ii)
( I  +  J ) –1/2  (  �  ̂      –  �  0 )  ]   N (0,  � ), as  I  +  J   ]   G . Define 
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 where  X  *  (0)  = 1,  X  *  (1)  =  X  * ,  X  *  (2)  =  X  *  T   X  * , G   p  is the set of offspring 
genotypes that are possible given the parental genotypes G   p , and 
 X  *  is a vector of covariates equal to  X  except that the elements in-
volving  G  are replaced by  G  *   D   G  p . Under the logistic regression 
model (1), the estimating equation (4) can be expanded and rep-
resented as   
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 We assume that the Hessian matrix of the log(pseudo-likelihood) 
is negative definite. To show that  � ̂         ]   �  0 , by the Foutz theorem 
[Foutz, 1977] we only need to prove that ( I  +  J ) –1   S ( � )  ]  0 at  �  0 . 
Following the law of large numbers, we show that ( I  +  J ) –1   S ( �  0 )  ]  

 s ( �  0 ), where  s ( �  0 ) = { s  (1) ( �  0 ),  s  a (2)   ( �  0 ) +  s  b(2)   ( �  0 )} with  s  (1) ( �  0 ) =
 E { D  –  h ( X ;  �  0 )},   s  a (2)  ( �  0 ) =  EX { D  –  h ( X ;  �  0 )}, and   s  b(2)    ( �  0 ) =  ED  �  X  – 
 ED  �  r  (1) ( � ,  X ,  G  p )/ r  (0) ( � ,  X ,  G  p ). Prentice and Pyke [1979] showed 
that both  s  (1) ( �  0 ) = 0 and  s  a (2)     ( �  0 ) = 0. The following demonstrates 
that   s  b(2)  ( �  0 ) = 0:  
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  Hence by the Foutz theorem [Foutz, 1977], there exists an unique 
sequence   � ̂     such that  S (  � ̂    ) = 0 with probability going to 1 as
 I  +  J   ]   G  and that   � ̂      ]   �  0  in probability. 

 Next we show that ( I  +  J ) 1/2 (  � ̂     –  �  0 )  ]   N (0,  � ). The Taylor ex-
pansion of  S (  � ̂    ) at the true parameter values  �  0  gives 
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 where  o  p (1) means asymptotically negligible. By the definition of 
  � ̂     we have  S (  � ̂    ) = 0. Thus ( I  +  J ) 1/2 (  � ̂     –  �  0 ) is asymptotically equiv-
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 where  X    �  2   =  X  T  X . Thus the variance  �  1  consists of two compo-
nents: the variance from the case-unrelated control sample and 
the variance from the case-parent sample. Applying the central 
limit theorem shows that 

   ( I  +  J ) –1/2   S ( �  0 )  ]   N (0,  �  0 ),
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  where  �  0  =  E { S  i ( � ) S  i ( � ) T }  �    �      =  �   0 , with  S  i ( � ) T  = { D  i  –  h ( X  i ;  � ),
[ X  i ( D  i  –  h ( X  i ;  � )) +  D  i  �  i ( X  i  –  r  (1) ( � ,  X ,  G  ip ) /  r  (0) ( � ,  X ,  G  ip ))] T} . If a 
case contributes to both the case-parent and case-unrelated con-
trol likelihoods, the variance  �  0  takes this redundancy into ac-
count by adding the covariance to each individual component. All 
together, we have shown that 

   ( I  +  J ) 1/2 (  � ̂     –  �  0 )  ]   N (0,  � ),

  where  �  =      �   –11        �  0       �   –11      , which can be estimated consistently by re-
placing the expectations with empirical averages and  �  0  with   � ̂    .   
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