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Summary:

The population-based case-control study design is perhaps one of, if not the most, commonly used

designs for investigating the genetic and environmental contributions to disease risk in epidemiologic

studies. Ages at onset and disease status of family members are routinely and systematically collected

from the participants in this design. Considering age at onset in relatives as an outcome, this paper

is focused on using the family history information to obtain the hazard function, i.e., age-dependent

penetrance function, of candidate genes from case-control studies. A frailty-model based approach

is proposed to accommodate the shared risk among family members that is not accounted for by

observed risk factors. This approach is further extended to accommodate missing genotypes in family

members and a two-phase case-control sampling design. Simulation results show that the proposed

method performs well in realistic settings. Finally, a population-based two-phase case-control breast

cancer study of the BRCA1 gene is used to illustrate the method.
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1. Introduction

The population-based case-control study design is commonly employed in epidemiologic

studies of chronic disease etiology and recently has been used in studying genetic association

with disease risk. The odds ratios associated with mutations in these genes are estimated in

the same approach as that for environmental exposures by using the logistic regression model

as if the cases and controls were prospectively collected (Prentice and Pyke, 1979). When

disease prevalence is low, the odds ratio approximates the relative but not the absolute risk.

The absolute risk, unfortunately, is not estimable directly from case-control data because the

proportion of cases in the sample is fixed artificially by design. Whittemore (1995) proposed

the use of family data to estimate population-based baseline disease probability along with

odds ratios and correlation coefficients of disease status among family members under the

case-control study design. This approach requires factors of interest to be known for all

family members, an assumption which is not satisfied in a typical case-control study because

while family history of disease data are systematically collected for these cases and controls,

relatives’ exposure information is not. Fortunately this issue is less of a problem for studies

of candidate genes than environmental exposures as the carrier status for relatives can be

inferred probabilistically from the genotypic status of cases and controls by Mendel’s law.

This paper is thus focused on using family data gleaned through a case-control study design

to estimate the disease risk of candidate genes.

Age is an important risk factor for many chronic diseases and investigators typically collect

onset ages in relatives as part of disease family history information. This allows us to treat

onset age as a censored survival outcome and to take the advantage of recent methodologic

developments in multivariate survival analysis for estimating the cumulative risk, which is

also called the age-dependent penetrance function in the genetic epidemiologic literature.

Wacholder et al. (1998) first proposed to use relatives’ age at onset data in population-
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based candidate gene studies in the context of volunteer-based studies. This study design goes

by several names including the kin-cohort design and the genotyped-proband design (Gail

et al., 1999). Methods of moments (Wacholder et al., 1998) and nonparametric maximum

likelihood (Chatterjee and Wacholder, 2001) methods have been developed for obtaining

hazard functions for individuals who do and do not carry high risk genotypes. However, these

methods tend to yield biased hazard function estimators for case-control studies because of

(i) the over-representation of cases due to the nature of the sampling and (ii) the residual

dependency among relatives even after accounting for candidate gene effects. Therefore,

methods that can both utilize relatives’ outcome and account for case-control sampling are

necessary for analyzing case-control data with family history information.

To circumvent the sampling and residual dependency issues, Chatterjee et al. (2006)

proposed to model the joint distribution of failure times of family members by a copula

model. In this approach, the Cox proportional hazards model (Cox, 1972) was used for the

marginal hazard function which represents population-averaged disease risks for carriers and

non-carriers. Such estimates are important particularly in terms of public health impact.

However, an individual is often more interested in the risk given his/her specific family

background. The latter naturally leads to a conditional hazard function formulation, in that

a frailty is assumed to represent the common unobserved risk for the family and it acts on

the hazard function in a multiplicative fashion.

The purpose of this paper is to present a newly developed frailty-model-based method

for estimating the hazard function from two-phase case-control data with family history

information. The baseline hazard function in the frailty model is left unspecified, allowing

for any arbitrary failure time distribution (age-dependent penetrance function). In Section

2, we first consider the situation where genotypes are observed for all family members and

then extend the approach to accommodate unobserved genotypes in relatives which is the
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more typical situation. We then examine the performance of the proposed methods by a

simulation study in Section 3. To demonstrate the potential insights that could be gleaned

from population-based studies with this method, we apply our approach to data on the

BRCA1 gene in Section 4. We conclude the paper with some final remarks.

2. Methods

2.1 Notation, Data structure, and Model Framework

Consider a two-phase case-control study. In the first phase a pool of cases and controls, here

termed as probands, are randomly sampled from the population and an array of risk factors

is collected from them. Stratified by certain aspects of variables collected at the first phase,

in the second phase a random subset of cases and controls from each stratum are selected for

collecting more detailed risk factor information, here, genotyping. The sampling fraction π

for a genotyped proband is therefore the fraction of individuals being randomly selected for

genotyping in the stratum to which the proband belongs. The sampling fraction is strictly

positive π > 0, i.e., all strata have representative samples, to ensure a consistent estimation

of odds ratios from two-phase data. When π = 1 for all strata, the two-phase sampling

design becomes the usual standard case-control design. The two-phase sampling scheme is

useful particularly when available resources constrain data collection for each individual.

By a careful choice of stratification variables and π, the two-phase design can improve the

efficiency of parameter estimates compared with a conventional case-control design with the

same number of subjects. This design has been used in many genetic epidemiologic studies

including the CARE study described further in Section 4 (Malone et al., 2006).

Below we introduce the notation and the model. Assume that there are n case-control

probands indexed by i = 1, . . . , n with sampling fraction π1, . . . , πn in a two-phase case-

control study. The relatives of each proband are also ascertained and we assume that members
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from different families are non-overlapping. Specifically, in the ith family, let the proband

be indexed by subscript i0 and the ni relatives be indexed by subscript ij for j = 1, . . . , ni.

Furthermore let (Xij , δij, Zij) be the observational time, disease status, and a vector of

covariates for the jth individual in the ith family; δij is a disease indicator which is 1 if the

disease occurs at or before the censoring time and 0 otherwise, and Xij is the failure time if

δij = 1 and the censoring time if δij = 0. The total number of diseased in the ith family is

denoted by Δi =
∑ni

j=0 δij. The observational time and disease status can also be equivalently

represented by the counting process notation. The right censored counting process Nij(t) is

defined as Nij(t) = I(Xij ≤ t, δij = 1), where I(·) is the indicator function. The at-risk

process Yij(t) is defined as Yij(t) = I(Xij ≥ t).

We use a shared gamma frailty with the conditional proportional hazards model to describe

the dependent failure outcomes of family members. The unobserved frailty for the ith

family, represented by ωi, induces dependence among family members on their failure times.

The family-specific frailty ωi is assumed to be iid gamma(1/θ, θ) distributed with density

θ−1/θΓ(1/θ)−1ω
1/θ−1
i exp(−ωi/θ) and mean 1. The parameter θ measures the strength of

dependence among failure times from family members, with a larger value of θ implying a

stronger dependence. The individual hazard function conditional on frailty and covariates is

given by

λij(t |Zij , ωi) = ωiλ0(t) exp(β ′Zij), j = 0, . . . , ni, i = 1, . . . , n, (1)

where λ0(t) is the conditional baseline hazard function assumed common for all individuals

and β is a vector of regression coefficients. Conditional on the frailty and the covariates,

the censoring time is assumed to be independent of the failure time and non-informative of

the frailty. In addition, we assume that the frailty is independent of the observed covariates.

These assumptions are generally required by frailty models to allow for the distribution of

frailty being separated from that of other variables. Our model specifies a parametric frailty
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distribution and a parametric form for the effect of the risk factors, but leaves the form of

λ0(t) unspecified.

2.2 A likelihood function for the frailty model when all covariates are observed

To obtain valid estimates for {β, Λ0(t), θ}, we need to account for the case-control retro-

spective sampling. As relatives are sampled because of the proband’s disease outcomes and

sometimes ages at onset, a natural consideration for a likelihood-based approach in this

setting would be to let the joint likelihood of the relatives be conditional on the data from

the proband. In this likelihood, we do not make parametric assumptions on the form of Λ0(t).

To do this, we treat the jump size at each observed failure time as a parameter, following

the same idea as in the nonparametric maximum likelihood estimator (NPMLE) (Zeng and

Lin, 2007). However, direct maximization of our likelihood with respect to the jump sizes

is difficult because no closed form solution is available. We will show below that the frailty

formulation in conjunction with an EM-based algorithm provide a closed form maximum

likelihood solution to estimating Λ0(t).

In a shared frailty model, the latent frailty is typically viewed as missing data. A standard

approach for estimating parameters in the presence of missingness is to apply an EM

algorithm (Dempster et al., 1977). We will use a variation of this approach, the expectation-

conditional-maximization (ECM) algorithm (Meng and Rubin, 1993). The ECM algorithm

differs from the conventional EM algorithm in the maximization step, where the estimates for

multiple parameters are updated sequentially in an ECM algorithm rather than simultane-

ously as in the single M-step of an EM algorithm. It is particularly helpful when simultaneous

maximization with respect to all parameters is difficult.

To carry out an ECM algorithm, we first construct the complete likelihood assuming the

frailty were known. Under the assumptions given in Section 2.1, the complete likelihood

can be decomposed into the product of several terms with only two of them, Li1 and Li2,
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involving the parameters of interest {β, Λ0(t), θ}. The first term Li1 is the likelihood for

failure outcomes of the relatives conditional on the frailty and their covariates. It is the

product of contributions from each relative because of the conditional independence of the

relatives given the frailty and the covariates, and can be written as

Li1 =

ni∏
j=1

{ωiλ0(t) exp(β ′Zij)}δij exp {−ωiΛ0(Xij) exp(β ′Zij)} .

The second term Li2 is the likelihood of the frailty conditional on proband data. Since the

gamma distribution is a conjugate prior, the posterior distribution of ωi has a convenient

mathematical form

Li2 =
ω

1/θ+δi0−1
i exp{−ωi/θ − ωiΛ0(Xi0) exp(β ′Zi0)}

Γ(1/θ + δi0){1/θ + Λ0(Xi0) exp(β ′Zi0)}−1/θ−δi0
.

Interestingly the likelihood function does not involve λ0(t) even when the proband is diseased,

but the involvement of Λ0(t) suggests that Λ̂0(t) may take jumps at the probands’ failure

times. We performed a simulation study assuming ω known for all probands who all had the

same age at onset t0 (for controls it would be age at last examination). We found that Λ0(t0)

and β were estimable from the data and the estimates appeared to be unbiased. In other

words, if Λ0(t0−) were known or estimated from the relatives’ data, the jump size at the

proband’s failure times t0 would be estimable despite Li2 does not involve λ0(t). However, the

two estimates, Λ̂0(t) and β, were highly collinear and the correlation coefficient was about

-0.90. For practical purposes it seems reasonable to allow Λ0(t) taking jumps only at the

relatives’ failure times but not the probands’, as there will be little information from the

probands for Λ0(t) taking jumps at probands’ failure times.

When the probands come from a two-phase sampling study design where each proband

is associated with a sampling fraction from the original stratum, the contribution of each

family needs to be adjusted accordingly. Research in the analysis of studies with two-phase

sampling design is very active, in the last two decades, see, e.g., Breslow and Chatterjee

(1999). We adopt perhaps the simplest approach to handle the two-phase sampling, the
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weighted likelihood approach (Flanders and Greenland, 1991), where each selected proband

is weighed by the inverse selection probability 1/πi. Therefore the parameters are estimated

by maximizing

Lw =
n∏

i=1

(Li1 × Li2)
1
πi .

In the E-step, we estimate the expectation of the weighted log complete likelihood at

current parameter estimates. From the expression of log(Lw), it is easy to see that we

would only need to calculate the posterior expectations of ωi and lnωi, {1 + θΔi}/{1 +

θ
∑ni

j=0 Λ0(Xij) exp(β ′Zij)} and φ(1/θ+Δi)−ln{1/θ+
∑ni

j=0 Λ0(Xij) exp(β ′Zij)}, respectively,

where φ(·) is the digamma function (Hougaard 2000, pp501).

In the CM-step, we update the parameter estimates sequentially between the finite dimen-

sional vector of (β, θ) and infinite dimensional vector of Λ0(t) by maximizing the expected

weighted log completed likelihood. Given the current estimate Λ̂0(t), β̂ and θ̂ can be updated

by maximizing the likelihood function via solving the score equations from taking the partial

derivative of the log-likelihood function with respect to (β, θ) using, for example, the Newton-

Raphson algorithm.

The maximization of the expected weighted log complete likelihood over Λ0(t) is more

complex. Fixing β̂ and θ̂ at their current values, we obtain a closed-form expression for

Λ̂0(t) =
n∑

i=1

ni∑
j=1

∫ t

0

1

S(u; β̂)
dNij(u), (2)

where S(u; β̂) is given by
∑n

i=1

∑ni

j=1
1
πi

ωiYij(u) exp(β̂ ′Zij)+
∑n

i=1
1
πi
{ωi−ωi0}Yi0(u) exp(β̂ ′Zi0).

Here ωi0 equals (1 + θδi0)/{1 + θΛ0(Xi0) exp(β ′Zi0)}, which is actually the expectation of

the frailty conditional on proband data. It is worth noting that the second term in S(u, β̂)

has an expectation of zero, suggesting that an alternative estimator for Λ0(t) could have the

same form as (2) with S(u, β̂) =
∑n

i=1

∑ni

j=1
1
πi

ωiYij(u) exp(β̂ ′Zij). This is the estimator that

we proposed in earlier work (Hsu et al., 2004) using a heuristic argument that is based on
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the likelihood for the relatives’ data only, i.e.,
∏n

i=1 Li1, with the addition of the weights. See

Web Appendix A for the derivation of (2).

The ECM algorithm described above is built upon formulation and maximization of a

weighted log likelihood. Since the baseline hazard function is estimated at the observed failure

times of the relatives, the dimension of the parameters involved in Λ̂0(t) increases with sample

size. The standard maximum likelihood theory for finite or fixed dimensional parameters does

not apply here. One may consider using the nonparametric information matrix weighted by

the inverse of sampling fractions to estimate the variance of the estimators following the

idea of Andersen et al. (1997) for cohort data under frailty models. The procedure involves

calculating and inverting a high dimensional matrix, which is quite complicated in both

analytical derivation and numerical implementation. As an alternative, we use bootstrap to

obtain the variance estimators. We would generate a fixed number, say, 100, of bootstrap

data sets, each consisted of the same number of case and control families resampled with

replacement from the original data set. Parameter estimates can then be obtained for each

bootstrap data set and the variance of the estimates over these bootstrap samples would be

the variance estimator of the parameter estimates from the original data set.

2.3 Extension for Relatives with Missing Genotypes

The ECM approach introduced in the previous section allows for handling the missing frailty

and now the missing genotypes in a unified fashion. Let g and Z be the genotype and the

observed covariates, and β and γ be the corresponding log-hazard ratios. Gene g is genotyped

for the probands, but not for the relatives and Z is assumed observed for each individual

including the probands and the relatives. For simplicity we assume g is a binary variable,

which is 1 if an individual carries one or two high risk alleles and 0 otherwise. This is

the dominant transmission model. The method can be easily generalized to other genetic
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transmission models such as additive, recessive or an unrestricted general model which allows

for a separate hazard ratio for each different genotype.

Missing data now include the shared frailty and the genotypes for the relatives. To carry

out the ECM algorithm, we need to calculate the joint distribution for the shared frailty

and the genotypes for the relatives conditional on the observed data. This requires obtaining

the joint distribution of the genotypes for multiple relatives conditional on the genotype of

the proband. Unfortunately such joint distribution for genotype becomes very complex when

there are more than 2 relatives, as it depends on the joint familial relationship among all

family members. Incorporating such a complex joint distribution of the genotypes into the

joint distribution of frailty and missing genotypes given other observed data would make

the algebra rather complicated. Therefore, we consider a composite likelihood approach.

That is, instead of treating a family with multiple relatives and one proband as a unit, we

consider relative-proband pairs, viewing each relative-proband pair as a unit, and construct a

composite-likelihood by taking the product of the likelihoods from these units as if they were

independent even though there are multiple relative-proband pairs from the same family. In

this approach, the joint distribution of more than two family members does not need to be

explicitly worked out. This technique was first introduced in the longitudinal data setting

by Liang and Zeger (1986) under the name of generalized estimating equations and has also

been applied to family studies by, e.g., Chatterjee et al. (2006).

For the E-step of this ECM algorithm, we evaluate the expectation of ωi, lnωi, gij ,

and ωi exp(βgij) conditional on the observed data from the proband-relative pairs. The

calculation of these expectations is in principle straightforward although it involves some

algebra. We denote those expectations by Ẽ(ωi), Ẽ(lnωi), Ẽ(gij), and Ẽ{ωi exp(βgij)}. See

Web Appendix B for their detailed experssions.
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For CM-step, we sequentially maximize the expression below with respect to β and γ:

n∑
i=1

1

πi

ni∑
j=1

[
δij{γ′Zij + βẼ(gij)} − Λ0(Xi0)Ẽ(ωi) exp(γ′Zi0 + βgi0)

−Λ0(Xij) exp(γ′Zij)Ẽ{ωi exp(βgij)} + (
1

θ
+ δi0) ln{1

θ
+ Λ0(Xi0) exp(γ′Zi0 + βgi0)}

]
,

and maximize the following expression with respect to θ:

n∑
i=1

1

πi

ni∑
j=1

[
(
1

θ
+ δi0) ln{1

θ
+ Λ0(Xi0) exp(γ′Zi0 + βgi0)} +

1

θ
{Ẽ(lnωi) − Ẽ(ωi)} − ln{Γ(

1

θ
+ δi0)}

]
.

Note that the break down of a family with ni relatives into relative-proband pair can be

treated as if there were ni families and the proband is replicated ni times.

For updating Λ̂0(t), we obtain the following estimating equation:

Λ̂0(t) =
n∑

i=1

1

πi

{
ni∑

j=1

∫ t

0

1

S0(u; β̂, γ̂)
dNij(u)

}
, (3)

where S0(u; β̂, γ̂) =
∑n

i=1
1
πi

∑ni

j=1[Yij(u) exp(γ̂′Zij)Ẽ{ωi exp(β̂gij)}+Yi0(u) exp(γ̂′Zi0+β̂gi0)

{Ẽ(ωi) − ωi0}].

From the expressions it is clear that the ECM algorithm for data with missing genotypes in

the relatives follows closely to the ECM algorithm in Section 2.2, except that a generalized

likelihood rather than the full likelihood was used as the basis for the estimation. This

simplification was mainly to make computation manageable though at the price of a potential

efficiency loss and an invalid likelihood-based variance estimator. For the latter problem, we

again use re-sampling techniques as described in Section 2.2 to obtain variance estimators

for the parameter estimates.

2.4 Inclusion of Proband Data

The likelihood function of the proband data P (Zi0, gi0|Xi0, δi0) is a retrospective likelihood for

the usual case-control data. If cases and controls are matched on age, the likelihood function

can be replaced by the conditional likelihood for estimation under the frailty model by adding

an offset term, which is a posterior expectation of ωi conditional on {Xi0, δi0 = 1, Zi0, gi0}



Frailty model for penetrance function 11

(Hsu et al., 2004). This approach, however, does not work for the two-phase design, where

cases and controls are each sampled based on their own stratum and the matched case-control

mechanism is not preserved. An alternative approach is to rewrite

P (Zi0, gi0|Xi0, δi0) =
P (Xi0, δi0|Zi0, gi0)f(Zi0)f(gi0)∫

z∗
∑

g∗ P (Xi0, δi0|z∗, g∗)f(g∗)f(z∗)dz∗ ,

assuming the independence of Z and g in the population. The distribution f(Z) and the

allele frequency in f(g) need to be estimated from the data. The proband data alone do

not allow us to uniquely identify these population parameters and {β, γ, Λ0(t)}. However, in

conjunction with the relatives’ data, they are identifiable, as {β, γ, Λ0(t)} can be estimated

from the relatives. Since f(Z) is not of main interest, we propose to take an additional

condition given Zi0, that is, P (gi0|Xi0, δi0, Zi0). Under the two-phase sampling design, the

inverse-weighted log-likelihood function of the probands is given by

log(L) =

n∑
i=1

1

πi
log

{1 + θΛ0(Xi0) exp(β ′gi0 + γ′Zi0)}−1/θ−δi0 exp(β ′gi0δi0)f(gi0)∑
g∗{1 + θΛ0(Xi0) exp(β ′g∗ + γ′Zi0)}−1/θ−δi0 exp(β ′g∗δi0)f(g∗)

,

Although the expression involves both θ and Λ0(t), intuitively the proband likelihood cannot

provide direct information on them. We therefore use the proband likelihood log(L) only for

estimating β along with the relatives’ data and q. Note that in the absence of covariates

Zi0 and under the conventional case-control design, this likelihood function was proposed

by Chatterjee et al. (2006) for estimating allele frequency q, an important quantity that

investigators often are interested in estimating.

3. Simulation Studies

We performed a simulation study to evaluate the performance of the proposed method

under several realistic settings. In these simulations, we generated a candidate gene g and

a continuous risk factor Z for each individual, where g followed Mendelian transmission

with an autosomal dominant model and Z followed a N(0, 1). We also generated a family-

specific frailty following gamma (1
θ
, θ). The conditional baseline hazard function λ0(t) was
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a Weibull distribution with p = 4.6 and λ = 0.01. The failure time for each individual was

then generated according to the frailty model (1). Each family consisted of the proband, the

mother, and a sister. The censoring distribution was N(60, 15), yielding censoring percentage

about 80% - 85%.

We considered four different sampling scenarios for the simulation: a) no stratified sampling

of cases and controls; b) stratified sampling of cases only but not controls; c) stratified

sampling of controls only but not cases; and d) stratified sampling of both cases and controls.

For each of these scenarios, we started by randomly selecting a pool of 1800 case families and

a pool of 1800 control families from the population as the first phase sampling. The second

phase sampling of the families varies for the four scenarios. For scenario a, we randomly

chose 200 case families and 200 control families from each pool. For scenario b, we randomly

selected 200 control families and performed a stratified sampling of 200 case families based

on the number of diseased relatives that they had. If both the mother and the sister were

diseased, the proband was always selected for genotyping. Among the families with only

one diseased relative, we randomly selected 100 probands for genotyping. We then randomly

sampled from the remaining families in which neither of the relatives was diseased to reach

a total number of 200 case families. We employed a similar sampling strategy for selecting

control probands in scenario c and selecting case and control probands separately in scenario

d. The selection fraction is one, about one in three, and one in six to seven for families with

two, one, and no diseased relatives, respectively.

We considered two situations for the candidate gene effect: 1) rare allele (q = 0.05) but

relatively high penetrance (β = log(5) = 1.609) (Table 1), and 2) common allele (q = 0.2)

with relatively low hazard ratio (β = log(2) = 0.693) (Table 2). There were about 46–60

carriers among 200 cases and 15–19 carriers in 200 controls under the rare allele with high

penetrance model for scenarios a–d, and about 96–100 carriers in cases and 67–72 carriers in



Frailty model for penetrance function 13

controls under the common allele with moderate penetrance model. The number of carriers

generated under the rare allele high penetrance model is comparable to that in the BRCA1

data set that we will analyze in Section 4. In addition, θ takes two values: 0.5 for moderate

dependence and 1.5 for strong dependence. For each parameter setting, a total of 500 data

sets were simulated to assess the performance of the proposed method.

[Table 1 about here.]

[Table 2 about here.]

The biases appear to be small in all simulation situations. There is about 15-30% reduction

in the standard errors (SEs) of θ̂ and Λ̂0(t) when both cases and controls are sampled by

stratification compared to the other three sampling schemes. However, there is no efficiency

gain in β̂ for the genetic effect. If only cases or controls but not both are sampled based on

stratification, the SEs of β̂ tend to be inflated compared to the sampling scheme without

any stratification. This loss of efficiency may be due to an additional variation induced by

the weights and/or the fact that a positive family history in our simulation setup is caused

not only by or the risk factors under study but also by the shared frailty. It seems that

stratifying based on positive family history with an intention of increasing the frequency of

high risk allele carriers may not necessarily translate into an efficiency gain for β̂ for candidate

genes. In these simulation settings, the inclusion of proband likelihood in the estimation of

β greatly increases the efficiency compared with the estimator without including proband

likelihood for β, the extent of which depends on the specific sampling schemes used in

the simulations (results not shown). This implies that the proband likelihood can provide

substantial information on β once other parameters are identified. Such an efficiency gain

was also observed in simulation studies in Chatterjee et al. (2006).

We used the bootstrap method to estimate the se of the ECM estimators. Here we present

the bootstrap results under scenario d, as it is the most likely approach for a real study and it
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is also the most comprehensive design. Table 3 shows empirical SE, bootstrap-based SE, and

bootstrap-based coverage probabilities (CP)of 95% confidence intervals for 200 simulated

data sets with 100 bootstrap samples from each simulated data set. Compared with the SDs

of parameter estimates over simulated data sets, the bootstrap-based SEs appear working

well for {β̂, γ̂} and q̂, but may over-estimate the SEs of θ̂ and Λ̂0(t). The CPs appear to

maintain 95% nominal level for β and q, but tend to be higher than nominal level for θ and the

later time points of Λ0(t) and lower for γ. The under- or over- estimation of 95% coverage

probabilities are, to some extent, due to the small sample size. For θ, the overestimation

could also be due to the fact that our bootstrap sampling unit is by family. The dependence

parameter estimates are influenced by the number of families with more than one affected

relatives and the number for such families is usually small. So when one or a few such families

are in (or out of) the bootstrap samples, the estimates may be affected greatly.

[Table 3 about here.]

4. Application to a Breast Cancer Dataset

As an illustration, we applied the proposed methods to a breast cancer dataset to estimate

the hazard functions of developing breast cancer (BC) for BRCA genetic mutations. This

population-based case-control study was conducted within the National Institute of Child

Health and Human Development’s Women’s Contraceptive and Reproductive Experiences

(CARE) study (Marchbanks et al., 2002). Due to funding constraints, the study could only

collect blood from approximately 33% of the interviewed women and thus a second phase

sampling design was developed, where women were stratified sampled according to their case-

control status, study site, race, family history, and age. Within each stratum, a sampling

fraction ranging from 0.05 to 1 was assigned so as to achieve a uniform distribution across
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strata. A study of the BRCA1/2 genes was conducted to evaluate their contribution to breast

cancer risk (Malone et al., 2006).

For illustrative purpose, in this analysis we focus on only the BRCA1 gene and included

only White probands and their blood-related first degree relatives. BRCA2 carriers were

considered as non-carriers of BRCA1 mutations. The first degree relatives were restricted to

those age 18 or older and had known breast cancer status at the time of study. Among the

1603 White probands with known BRCA1 mutation status, 1144 (71%) are cases. There are

42 (3.8%) BRCA1 mutation carriers in cases and only 1 in controls. A total of 4568 first

degree relatives were included, and among them 634 (13.9%) had developed breast cancer.

We applied the method proposed in section 2.3 and included the likelihood of the proband

data in Section 2.4 for estimating the allele frequency. In this analysis we did not include

the proband likelihood in estimating relative risk because we observed a collinearity problem

between estimating β and allele frequency in the proband data. The collinearity is likely

due to the rare mutational frequency of the BRCA1 gene. Such rare allele frequency, on the

other hand, makes the estimation of β using relatives quite insensitive to changes in q̂, as

the carrier probability of a relative given the proband’s carrier status changes little with the

allele frequency when the frequency is low.

Figure 1 shows the estimated population cumulative cancer-free probabilities for BRCA1

mutation carriers and noncarriers and point-wise bootstrap confidence intervals. We present

here the marginalized probabilities integrating over the frailty distribution mainly for the

comparison of our result with those that have been published on other datasets (Table 4).

Bootstrap confidence intervals were obtained based on 200 bootstrap samples. Mutation

carriers had an estimated 45.4% or 54.9% chance of developing BC by age 70 or 80, in

comparison to noncarriers who had an estimated chance of 7.2% or 10.2% at the same

age. The BC risk estimates fall within the range, though at the lower end of current
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estimates reviewed by e.g. Chen and Parmigiani (2007). The estimates (β̂, ̂theta, q̂) are 2.354

(95%CI: 1.374–3.534), 0.948 (95%CI: 0.505–1.444), and 0.181% (95%CI: 0.080%–0.401%),

respectively. The high value ̂theta suggests there remains substantial residual dependency of

ages at onset among family members, which Begg et al. (2008) observed as well. It is also

worth noting that even though we assume β constant in the frailty model (1), the resulting

population averaged hazard ratio decreases over the age and they are 8.822, 7.677, 6.371,

and 5.479 at age 50, 60, 70, and 80 years old, respectively.

[Table 4 about here.]

[Figure 1 about here.]

An advantage of the frailty model approach is to provide a woman with an individualized

risk estimate. For example, a 40 year old woman who had a mother with BC diagnosed at age

38 and carried a BRCA1 mutation would have a 86.4% cumulative probability of developing

BC by age 80. The estimated frailty value in this case is 1.77. If she were not a mutation

carrier, with all other information the same her probability would be 18.7% with ω̂ = 1.93.

Note that ω̂ is slighted lower if the woman is a carrier than if she is a non-carrier, because

the BRCA1 mutation partly explains the aggregation of BC in a family. On the other hand,

if the same age woman did not carry a BRCA1 mutation and her mother were still disease

free at age 65, she would have only 9.6% chance of developing BC before age 80 (ω̂ = 0.94).

As a bench mark, the average risk for a carrier and a non-carrier woman to develop breast

cancer regardless of family history is 54.9% and 10.2%, respectively.

We also estimated the penetrance function assuming that the breast cancer risk for family

members is independent given BRCA1 genotype, in other words, BRCA1 genotypes among

family members explain completely the dependence of ages at onset among family members

and the failure time follows a marginal proportional hazards model. As we can see, ignoring
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the residual dependence among family members over-estimated the population breast cancer

risk for both carriers and noncarriers considerably (Figure 2).

[Figure 2 about here.]

5. Final Remarks

In this paper we developed a weighted likelihood approach to estimating regression coeffi-

cients, nonparametric baseline hazard function, and dependence parameter under a shared

frailty model from two-phase case-control data with family history information. While the

work is focused on the estimation of penetrance function for the BRCA1 gene, the method

is generalizable to other candidate genes. The family history information, which is typically

collected in epidemiologic studies, if of sufficiently high quality, can provide population

estimates that are not available from using case-control data alone. Moreover, the residual

dependency estimates can shed light on whether one or more candidate genes or other shared

environmental risk factors may contribute to diseases. Finally, the proposed likelihood, which

conditions on the probands’ survival time and allows for residual dependency via a frailty, is

robust against ascertainment biases that are often major issues in studies of gene penetrance.

Frailty models are useful especially when the goal is to make inference about individual

families, e.g., in the situation of genetic counseling. As genetic data are increasingly available,

public interests in genetic counseling are more intense than ever. It is thus critical to

provide an accurate estimate of carrier probability and individualized disease probability

for a counselee. Frailty model-based approaches that incorporate both the measured risk

factors and those that are unknown or unmeasured by a shared frailty are appealing in this

situation. One caveat, however, is that the estimate of individual risk depends on the frailty

distribution and a misspecification could bias the estimate even though the estimate for the

population-averaged hazard function is fairly robust (Hsu et al., 2007).
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While nonparametric modeling puts no constraint in baseline hazard function, fitting

may become unstable especially when the gene is rare and disease incidence low. Weakly

parametric modeling, e.g., a three-parameter Weibull model proposed by Gail et al. (1999)

may be useful in regularizing the potentially high-dimensional baseline hazard function. In

principle the proposed approach should apply with much reduced computation. It would be

useful to provide this as an alternative to the nonparametric modeling.

Supplementary Materials

Web Appendices referenced in Sections 2.2 and 2.3 are available under the Paper Information

link at the Biometrics website http://www.tibs.org/biometrics.
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Figure 1. Estimated population averaged probabilities of developing breast cancer for
BRCA1 mutation carriers and noncarriers with 95% bootstrap confidence interval.
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Figure 2. Estimated population averaged probabilities of developing breast cancer by age
for BRCA1 mutation carriers and noncarriers, allowing for frailty or residual dependence
and assuming independence of ages at onset among family members.
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Table 1
Biases and empirical standard errors (SEs) for the ECM approach for regression coefficients, dependence parameter
and cumulative baseline hazard function at selected ages for a rare (q = 0.05) but high risk (β = log 5) gene. The

data consist of (stratified) cases and controls and their mothers and sisters. The genotypes are missing by design in
the relatives.

Moderate dependence Strong dependence
Par. True Bias SE Par. True Bias SE

a) no stratified sampling
θ 0.5 0.004 0.247 θ 1.5 0.006 0.479
β 1.609 -0.021 0.234 β 1.609 -0.026 0.284
γ 0.405 -0.002 0.099 γ 0.405 0.005 0.100
q 0.05 0.0011 0.0074 q 0.05 0.0011 0.0079

Λ(40) 0.0148 0.0002 0.0038 Λ(40) 0.0148 0.0000 0.0036
Λ(50) 0.0412 0.0003 0.0076 Λ(50) 0.0412 0.0006 0.0081
Λ(60) 0.0954 0.0007 0.0146 Λ(60) 0.0954 0.0011 0.0163
Λ(70) 0.1938 0.0009 0.0265 Λ(70) 0.1938 0.0031 0.0309

b) stratified sampling cases
θ 0.5 0.030 0.284 θ 1.5 0.049 0.536
β 1.609 -0.007 0.275 β 1.609 0.007 0.320
γ 0.405 0.006 0.099 γ 0.405 0.005 0.110
q 0.05 0.0009 0.0101 q 0.05 0.0011 0.0112

Λ(40) 0.0148 0.0000 0.0033 Λ(40) 0.0148 0.0002 0.0036
Λ(50) 0.0412 0.0003 0.0080 Λ(50) 0.0412 0.0004 0.0083
Λ(60) 0.0954 0.0008 0.0154 Λ(60) 0.0954 0.0010 0.0160
Λ(70) 0.1938 0.0012 0.0294 Λ(70) 0.1938 0.0023 0.0315

c) stratified sampling controls
θ 0.5 -0.041 0.259 θ 1.5 -0.093 0.427
β 1.609 0.004 0.268 β 1.609 0.002 0.360
γ 0.405 0.000 0.096 γ 0.405 0.002 0.098
q 0.05 -0.0002 0.0083 q 0.05 0.0001 0.0103

Λ(40) 0.0148 0.0001 0.0031 Λ(40) 0.0148 0.0002 0.0030
Λ(50) 0.0412 0.0002 0.0064 Λ(50) 0.0412 0.0007 0.0067
Λ(60) 0.0954 0.0009 0.0119 Λ(60) 0.0954 0.0008 0.0130
Λ(70) 0.1938 0.0012 0.0223 Λ(70) 0.1938 -0.0001 0.0248

d) stratified sampling both case & control
θ 0.5 -0.027 0.214 θ 1.5 0.024 0.374
β 1.609 -0.012 0.248 β 1.609 -0.014 0.291
γ 0.405 0.006 0.089 γ 0.405 0.010 0.097
q 0.05 0.0005 0.0089 q 0.05 0.0010 0.0101

Λ(40) 0.0148 0.0002 0.0029 Λ(40) 0.0148 0.0000 0.0028
Λ(50) 0.0412 0.0005 0.0060 Λ(50) 0.0412 0.0002 0.0063
Λ(60) 0.0954 0.0012 0.0114 Λ(60) 0.0954 0.0002 0.0121
Λ(70) 0.1938 0.0023 0.0228 Λ(70) 0.1938 0.0002 0.0224
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Table 2
Biases and empirical standard errors (SEs) for the ECM approach for regression coefficients, dependence parameter
and cumulative baseline hazard function at selected ages for a common (q = 0.2) and low risk (β = log 2) gene. The
data consist of (stratified) cases and controls and their mothers and sisters. The genotypes are missing by design in

the relatives.

Moderate dependence Strong dependence
Par True Bias SE Par. True Bias SE

a) no stratified sampling
θ 0.5 -0.003 0.257 θ 1.5 0.030 0.454
β 0.693 -0.008 0.194 β 0.693 -0.012 0.216
γ 0.405 -0.001 0.100 γ 0.405 -0.004 0.096
q 0.20 0.0017 0.0167 q 0.20 0.0020 0.0175

Λ(40) 0.0148 0.0001 0.0039 Λ(40) 0.0148 0.0002 0.0041
Λ(50) 0.0412 0.0007 0.0081 Λ(50) 0.0412 0.0004 0.0091
Λ(60) 0.0954 0.0013 0.0161 Λ(60) 0.0954 0.0015 0.0187
Λ(70) 0.1938 0.0009 0.0314 Λ(70) 0.1938 0.0027 0.0363

b) stratified sampling cases
θ 0.5 0.006 0.251 θ 1.5 0.028 0.496
β 0.693 0.017 0.195 β 0.693 -0.015 0.216
γ 0.405 0.008 0.099 γ 0.405 0.013 0.105
q 0.20 0.0001 0.0229 q 0.20 0.0019 0.0240

Λ(40) 0.0148 0.0000 0.0038 Λ(40) 0.0148 0.0001 0.0035
Λ(50) 0.0412 -0.0003 0.0080 Λ(50) 0.0412 0.0003 0.0083
Λ(60) 0.0954 0.0000 0.0159 Λ(60) 0.0954 0.0015 0.0177
Λ(70) 0.1938 0.0019 0.0298 Λ(70) 0.1938 0.0043 0.0355

c) stratified sampling controls
θ 0.5 -0.051 0.244 θ 1.5 -0.095 0.397
β 0.693 -0.002 0.217 β 0.693 -0.022 0.265
γ 0.405 0.000 0.095 γ 0.405 -0.004 0.093
q 0.20 0.0001 0.0202 q 0.20 0.0007 0.0222

Λ(40) 0.0148 0.0002 0.0032 Λ(40) 0.0148 0.0003 0.0035
Λ(50) 0.0412 0.0005 0.0072 Λ(50) 0.0412 0.0012 0.0080
Λ(60) 0.0954 0.0007 0.0144 Λ(60) 0.0954 0.0026 0.0165
Λ(70) 0.1938 0.0014 0.0274 Λ(70) 0.1938 0.0049 0.0331

d) stratified sampling both case & control
θ 0.5 -0.005 0.211 θ 1.5 0.022 0.359
β 0.693 -0.002 0.212 β 0.693 0.004 0.255
γ 0.405 0.006 0.083 γ 0.405 0.000 0.095
q 0.20 0.0005 0.0210 q 0.20 -0.0001 0.0228

Λ(40) 0.0148 0.0001 0.0029 Λ(40) 0.0148 0.0001 0.0033
Λ(50) 0.0412 0.0005 0.0067 Λ(50) 0.0412 0.0003 0.0075
Λ(60) 0.0954 0.0006 0.0132 Λ(60) 0.0954 0.0009 0.0159
Λ(70) 0.1938 0.0028 0.0254 Λ(70) 0.1938 0.0031 0.0312
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Table 3
Summary statistics of empirical standard errors (SE), bootstrap SEs (Bt SE), coverage probabilities of 95% bootstrap

confidence intervals (95% CP) when both cases and controls are sampled according to the family history.

Moderate dependence Strong dependence
Par. True SE Bt SE 95% CP Par True SE Bt SE 95% CP

allele frequency=0.05
θ 0.500 0.210 0.252 0.96 θ 1.500 0.361 0.457 0.98
β 1.609 0.245 0.252 0.95 β 1.609 0.305 0.319 0.94
γ 0.405 0.095 0.089 0.91 γ 0.405 0.098 0.099 0.91
q 0.0500 0.009 0.009 0.92 q 0.050 0.010 0.010 0.92

Λ(40) 0.015 0.003 0.003 0.94 Λ(40) 0.015 0.003 0.003 0.94
Λ(50) 0.041 0.006 0.006 0.96 Λ(50) 0.041 0.006 0.007 0.96
Λ(60) 0.095 0.010 0.013 0.98 Λ(60) 0.095 0.011 0.014 1.00
Λ(70) 0.194 0.021 0.025 0.96 Λ(70) 0.194 0.024 0.030 0.955

allele frequency=0.2
θ 0.500 0.185 0.244 0.99 θ 1.500 0.362 0.452 0.97
β 0.693 0.206 0.213 0.94 β 0.693 0.232 0.246 0.94
γ 0.405 0.085 0.087 0.93 γ 0.405 0.101 0.095 0.90
q 0.200 0.019 0.021 0.94 q 0.200 0.022 0.023 0.95

Λ(40) 0.015 0.003 0.003 0.95 Λ(40) 0.015 0.003 0.003 0.93
Λ(50) 0.041 0.006 0.007 0.97 Λ(50) 0.041 0.007 0.008 0.97
Λ(60) 0.095 0.012 0.015 0.97 Λ(60) 0.095 0.014 0.017 0.98
Λ(70) 0.194 0.026 0.029 0.97 Λ(70) 0.194 0.029 0.034 0.97
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Table 4
Cumulative probabilities of developing breast cancer by age (bootstrap 95% CI) for carriers and noncarriers of

BRCA1 mutations.

Probability of Developing Breast Cancer
Noncarrier Carrier

Age 50 0.021(0.017, 0.027) 0.188(0.082, 0.423)
Age 60 0.041(0.034, 0.050) 0.313(0.143, 0.612)
Age 70 0.072(0.060, 0.090) 0.454(0.227, 0.743)
Age 80 0.102(0.084, 0.125) 0.549(0.304, 0.814)


