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Summary: Recent results for case-control sampling suggest when the covariate distribution is con-

strained by gene-environment independence, semiparametric estimation exploiting such independence

yields a great deal of efficiency gain. We consider the efficient estimation of the treatment-biomarker

interaction in two-phase sampling nested within randomized clinical trials, incorporating the inde-

pendence between a randomized treatment and the baseline markers. We develop a Newton–Raphson

algorithm based on the profile likelihood to compute the semiparametric maximum likelihood estimate

(SPMLE). Our algorithm accommodates both continuous phase-one outcomes and continuous phase-

two biomarkers. The profile information matrix is computed explicitly via numerical differentiation. In

certain situations where computing the SPMLE is slow, we propose a maximum estimated likelihood

estimator (MELE), which is also capable of incorporating the covariate independence. This estimated

likelihood approach uses a one-step empirical covariate distribution, thus is straightforward to max-

imize. It offers a closed-form variance estimate with limited increase in variance relative to the fully

efficient SPMLE. Our results suggest exploiting the covariate independence in two-phase sampling

increases the efficiency substantially, particularly for estimating treatment-biomarker interactions.
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1. Introduction

In clinical and epidemiological studies, the effect of an intervention is often influenced by

variables reflecting individual susceptibility. In pharmacogenetic studies, there is a growing

body of evidence supporting interactions between genetic polymorphisms and antihypertensive

treatments (Arnett et al., 2005). Identifying the effect-modifying genotypes, or other types

of biomarkers helps to disclose the etiology of diseases, and to understand the mechanism of

the intervention effect. Since bioassays are often expensive and there may be many candidate

markers, it is common to measure biomarkers only in a case-control sample from the study

cohort (Breslow and Day, 1980), or in a stratified case-control sample if additional covariates

are involved in forming the strata (White, 1982; Scott and Wild, 1991). This often constitutes

a two-phase outcome-dependent sampling design, in that the first-phase data contain the

response ascertained for every subject, and perhaps a collection of “cheap” covariates (for

example, treatment assignment, demographic factors); the second-phase data contain the

biomarker data for a case-control subsample. If the phase-one cohort is a randomized clinical

trial, the treatment assignment is independent of the phase-two biomarkers measured from

baseline-stored blood. This paper pertains to the potential efficiency gain when exploiting this

independence in two-phase randomized trials.

Statistical methods for two-phase sampling have been studied by many authors. When the

covariate partially observed in the second phase is discrete, Ibrahim (1990) uses a weighted

EM algorithm to estimate the parameters in a generalized linear model. Difficulty arises when

the missing covariates are continuous: numerical integration or Monte Carlo methods are

needed when a parametric covariate distribution is assumed (Ibrahim, Chen and Lipsitz, 1999).

To avoid model misspecification and ease the computation, a number of pseudo-likelihood

methods have been proposed, including the inverse probability weighted estimator (Flanders

and Greenland, 1991; Lipsitz, Ibrahim and Zhao, 1999), conditional likelihood (Breslow and
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Cain, 1988), estimated likelihood (Pepe and Fleming, 1991; Carroll and Wand, 1991), mean

score estimators (Reilly and Pepe, 1995), and pseudoscore estimators (Chatterjee, Chen and

Breslow, 2003). These approaches yield a consistent estimator of the regression parameters,

yet they are not efficient in general. Robins, Rotnitzky and Zhao (1994) introduced a class

of semiparametric estimators based on inverse probability weighted estimating equations, and

obtained an efficient estimator that attains the semiparametric variance bound. However,

the implementation is difficult. When the first-phase data can be reduced to discrete stratum

labels, a profile likelihood approach has been proposed to obtain the semiparametric maximum

likelihood estimates, with the covariate distributions left completely nonparametric (Scott and

Wild, 1997; Lawless, Kalbfleisch and Wild, 1999).

Recent work in case-control studies suggests that exploiting the gene-environment indepen-

dence improves the estimation efficiency of regression parameters substantially (Chatterjee and

Carroll, 2005; Chatterjee and Chen, 2007). Moreover, for rare diseases, the gene-environment

interaction in a logistic regression can be estimated by the odds ratio between the gene and

the environmental variable in cases only (Piegorsch, Weinberg and Taylor, 1994; Umbach

and Weinberg, 1997). Despite the efficiency advantage, these analyses are generally sensitive

to departures from the gene-environment independence assumption (Albert et al., 2001).

In two-phase sampling nested within randomized trials, however, there exists indisputable

independence between the treatment and baseline covariates by design, including markers

ascertained in the phase-two sample. Ignoring such design-based independence is a waste of

information. We present two examples that motivate our research:

Example 1: The randomized clinical trial of estrogen plus progestin in the Women’s Health

Initiative (WHI) was terminated early in 2002 because of an increased risk of stroke, breast

cancer, and cardiovascular diseases in the treatment arm (Rossouw et al., 2002). To determine

whether the adverse effect of conjugated equine estrogen and medroxyprogesterone acetate on
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stroke was modified by selected baseline blood biomarkers and genotypes, WHI analyzed

baseline blood samples from cases and controls. Twenty-nine biomarkers were measured,

encompassing inflammatory markers, lipid levels, thrombosis factors, blood cell counts and

several Single Nucleotide Polymorphisms (SNPs). All markers except the SNPs yield continu-

ous measurements. More recently in a similar attempt, the WHI is undertaking a genome-wide

association study in which hundreds of thousands of SNPs are sequenced in a sample.

Example 2: The Genetics of Hypertension-Associated Treatment (GenHAT) Study is a

large-scale, double-blind, randomized trial attempting to test the interaction between the

insertion/deletion polymorphism in antiotension-converting enzyme and four antihypertensive

treatments (Arnett et al., 2005). No significant association was found. In a hypothetical

secondary study, a number of SNPs on several genes in renin-angiotensin-aldosterone system

are further investigated. The outcome is the blood pressure (BP) change after 6 months

treatment. While the outcome and the treatment are collected for every participant, genetic

variants are only measured in 3 outcome-dependent subsamples: one from the stratum with

BP change lower than 10% percentile, one from the stratum with BP change higher than 90%

percentile, and one from the stratum with the rest of participants.

Both studies employ two-phase sampling to identify the effect-modifying biomarkers. The

independence between the treatment and the biomarkers is dictated by randomization. The

outcome of interest can be categorical (stroke in Example 1), or continuous (BP change in

Example 2). In fact many clinical outcomes are continuous, such as cholesterol levels, HIV

viral load, and child’s IQ. It is important to account for continuous outcomes in analysis.

In addition, biomarkers can be categorical (genotype) or continuous (blood assay); and as

many as hundreds of thousands may be measured (Example 1). To our knowledge, the

efficient estimation exploiting covariate independence in two-phase randomized trials has not

been addressed. Chatterjee and Chen (2007) extended the profile technique to allow gene-
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environment independence in studies with two-phase sampling. However, their method only

considers binary outcomes. For continuous outcomes, the profile approach often entails a

substantial loss of efficiency, since it has to reduce the outcome to discrete stratum labels

(Chatterjee, Chen and Breslow, 2003). Moreover, computing the variance matrix when ex-

ploiting covariate independence using the profile technique can be algebraically cumbersome.

In this article, we propose two semiparametric methods that exploit covariate independence

in two-phase sampling. They are semiparametric since the distribution of the missing covari-

ates is treated nonparametrically, while the association between the outcome and covariates

remains parametric. Both methods use full information from continuous outcomes and provide

a straightforward computation of variance estimates. We first develop a profile likelihood based

Newton–Raphson algorithm that can be used to compute the semiparametric maximum likeli-

hood estimate (SPMLE). The independence between covariates is incorporated transparently.

The novelty is that, instead of replacing the high dimensional nuisance parameters by a few low

dimensional parameters as in Scott and Wild (1997), we profile out the nuisance parameters

completely, and explicitly compute the information matrix through numerical differentiation,

thus generating the variance as a by-product. When very many biomarkers are investigated,

computing the SPMLE for every marker may be time-consuming and unnecessary. This is

particularly the case if the disease is relatively rare and there are many covariates to be

adjusted. We develop a maximal estimated likelihood estimator (MELE) that is much faster

to compute and accounts for the covariate independence, yet it does not lose much efficiency. In

essence it plugs a consistent empirical estimator of the covariate distribution in the likelihood.

The amount of variance reduction by imposing the independence can be derived explicitly.

In Section 2, we define the sampling scheme and likelihood. In Section 3, we describe the

profile Newton–Raphson algorithm that computes the SPMLE and the estimated variances.

In Section 4, we derive the estimated likelihood and asymptotic distribution of the MELE. In
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Section 5, we assess the finite sample properties of the proposed estimators in simulations. In

Section 6, we show an application to a biomarker dataset from WHI. We end with a discussion.

Technical details are available as on-line supplementary materials.

2. Sampling scheme and likelihood

Let Y be an outcome of interest, X be the treatment that is randomized, and Z be a collection

of covariates which includes the expensive biomarker, and potentially other important predic-

tors. Throughout this work, Y and Z can be continuous or categorical, but X is assumed to be

categorical. Suppose without missing data, N subjects with i.i.d. random variables (Yi, Xi, Zi),

are generated from the joint probability density fβ(Y |X, Z)g(X, Z), where fβ(Y |X, Z) is the

parametric regression model with parameters β, which often takes the form of a generalized

linear model; g(X, Z) is the joint density function for (X, Z). We assume sampling takes place

so that only a subset of subjects have Z measured. Let Ri denote the indicator of whether a

subject has complete data. The observed data, therefore, contain (Yi, Xi, ZiRi, Ri), i = 1, ...N .

We assume that Pr(Ri = 1|Yi, Xi, Zi) = Pr(Ri = 1|Yi, Xi), that is, Z is missing at random

(MAR) in the sense of Rubin (1976). Let Y and X be the sample spaces of the random

variable Y and X. Let {Sk}, k = 1, ..., K, be K mutually exclusive partitions of Y × X

so that Y × X = ∪K
k=1Sk. For a binary outcome, Sk may be solely defined by case-control

status. For a continuous outcome such as birth weight, categorization of outcome by quantiles

may be involved. Subjects are inspected sequentially as they arise from the joint density and

the (Y, X) are observed. When (yi, xi) ∈ Sk, the ith subject is selected for observing Z with

prespecified positive probabilities pk, hence, Pr(Ri = 1|Yi, Xi) =
∑K

k=1 pk1[(yi,xi)∈Sk ]. This is

i.i.d. Bernoulli sampling (Lawless, Kalbfleisch and Wild, 1999).

Let V = {i : Ri = 1} and V̄ = {j : Rj = 0} be the sets containing subjects with complete

and incomplete data, respectively. The likelihood for those with missing Z involves integration

of fβ(y|x, Z) by dG(Z|x), where G(Z|x) is the conditional cumulative distribution function of
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Z given X. Parametric modeling of G is subject to model misspecification. A semiparametric

approach is to treat G nonparametrically, that is, maximizing G over distributions whose

support consists of the observed z. For well behaved univariate g(Z), smoothing methods

with appropriately selected bandwidths can estimate g(Z) more efficiently than estimating

g(Z) completely nonparametrically; yet nonparametric estimation provides flexibility and

robustness given that g(Z) is often not of interest in inference. Let Z be the set of z in

the observed sample space, and let Zx be the restricted set of observed z with X = x. This

leads to an empirical likelihood which contains the point mass gz|x = Pr(Z = z|X = x) for

z ∈ Zx, with the constraint
∑

z∈Zx
gz|x = 1. Note that Z can be a collection of covariates,

so that g(z) is a point mass on a combination of several covariate values. If X ⊥ Z, the

conditional part in the point mass vanishes so that gz|x = gz = Pr(Z = z) for z ∈ Z. The

semiparametric likelihoods without and with using the independence X ⊥ Z are

L(β, G) =
∏

i∈V

fβ(yi|xi, zi)gzi|xi

∏

j∈V̄




∑

zl∈Zxj

gzk|xj
fβ(yj|xj, zl)


 , (1)

L⊥(β, G) =
∏

i∈V

fβ(yi|xi, zi)gzi

∏

j∈V̄


 ∑

zl∈Z

gzl
fβ(yj|xj , zl)


 , (2)

respectively. Throughout this article, we use the superscript ⊥ to indicate expressions that

employ the independence between X and Z. Intuitively, imposing independence shrinks the

dimension of the nuisance parameter G, since we only need to estimate the marginal distri-

bution of Z, thereby improving the estimation of β. Note that the dimension of gz|x and gz

increases with the number of the phase-two subjects for continuous Z. Maximization of g

and β simultaneously using an EM algorithm was considered in Lawless (1997), though the

convergence is extremely slow if the dimension of g is large and the proportion of missing data

is large. Also, when Y is continuous, the existing profile likelihood method has to categorize

Y into strata, and therefore loses information (Lawless, Kalbfleisch and Wild, 1999).
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3. A profile likelihood based Newton–Raphson algorithm to compute SPMLE

To maximize likelihoods with a Euclidian parameter θ, a Newton–Raphson algorithm itera-

tively updates θ̂ by θ(m+1) = θ(m) + I(θ(m))S(θ(m)) until convergence, where S(θ(m)) is the

score function and I(θ(m)) is the observed information evaluated at the current θ(m). Near the

solution the convergence of Newton–Raphson algorithm is always fast (exponential), and it

automatically leads to variance estimates. When maximizing the semiparametric likelihoods

(1) and (2), the interest is in inference on β, not in the infinite dimensional nuisance parameter

g. A profile likelihood can be derived in which g is maximized first for a fixed β, then maximized

with respect to β using a Newton–Raphson algorithm.

Specifically, let ℓp(β, ĝβ) denote the profile log likelihood for β, where ĝβ is the maximizer

of g given β. Let Sp(β, ĝβ) = ∂ℓp(β, ĝβ)/∂β and Ip(β, ĝβ) = ∂Sp(β, ĝβ)/∂β. The Newton–

Raphson algorithm iterates the following steps: (1) Given β(m), compute ĝβ(m) . (2) Compute

Sp(β
(m), ĝβ(m)). (3) Compute Ip(β

(m), ĝβ(m)) via numerical differentiation. (4) Update β by

β(m+1) = β(m) + Ip(β
(m), ĝβ(m))Sp(θ

(m), ĝβ(m)). Go to step (1).

This algorithm relies on a fast computation of ĝβ(m) for any fixed β(m). By introducing a

Lagrange multiplier that respects the fact that g sum to 1, we can show that ĝβ(z|x) satisfies

∑

i∈V

1[xi=x,zi=z] +
∑

j∈V̄

∑
zk∈Zx

fβ(yj |xj, zk)g(zk|xj)1[xj=x,zk=z]∑
zk∈Zx

g(zk|x)fβ(yj|xj, zk)1[xj=x]

= Nxg(z|x), (3)

where Nx =
∑N

l=1 1[xl=x], the total number of subjects with the covariate value x. Note that X

is discrete and observed for everyone. The second term of (3) on the left hand side is essentially

g(z|yj, xj = x), hence the left hand side and the right hand side are both the expected number

of subjects with covariate value (x, z) in the phase-one data. Solving (3) for ĝ(z|x) is not

immediate, because the denominator of the second term in (3) involves all g(zk|x). However,

note that
∑

zk∈Zx
g(zk|x)fβ(yj|x, zk) = f(yj|x), a quantity that can be approximated using the

phase-one data. Let f̂ 0(yj|xj) be the estimated probability of yj given xj in the phase-one
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data. In the on-line supplemental material we describe a fast computation of ĝβ(z|x) based on

the approximation by f̂ 0(yj|xj).

After ĝβ(z|x) is computed, Sp(β, ĝβ) is readily obtainable. Observe that

Sp(β, ĝβ) =

{
N∑

i=1

∂

∂ĝβ

ℓ(β, ĝβ|xi, yi, rizi)

}
∂ĝβ

∂β
+

N∑

i=1

∂

∂β
ℓ(β, ĝβ|xi, yi, rizi, ĝβ). (4)

Since ĝβ is the maximizer for every fixed β,
∑N

i=1
∂

∂ĝβ
ℓ(β, ĝβ|xi, yi, rizi) = 0. Hence the first

term of (4) equals to 0. Therefore

Sp(β, ĝβ) =
∑

i∈V

S(yi|xi, zi) +
∑

j∈V̄

∑

zk∈Zxj

ĝβ(zk|xj)fβ(yj|xj , zk)∑
zk∈Zxj

ĝβ(zk|xj)fβ(yj|xj , zk)
S(yj|xj , zk). (5)

Once the profile score is computed, we use numerical differentiation to approximate the profile

information matrix:

Ip(β, ĝβ(m)) =
∂Sp(β

(m), ĝβ(m))

∂β(m)
=

Sp(β
(m) + ǫ, ĝβ(m)+ǫ) − Sp(β

(m) − ǫ, ĝβ(m)−ǫ)

2ǫ
.

This involves perturbing each element of β(m) in both directions, computing two new ĝβ, and

evaluating their profile scores. A highly accurate Ip can be achieved with ǫ in the order of 1/n.

When X ⊥ Z, we only need to maximize g on the pooled sample space Z, rather than on

the restricted sample space Zx. We can now compute ĝ⊥
β (z|x) using

ĝ⊥
β (z|x) = ĝβ(z) ≈

∑
i∈V 1[zi=z]

N −
(∑

j∈V̄

∑
zk∈Z

fβ(yj |xj ,zk)1[zk=z]∑
zk∈Z

ĝβ(zk)fβ(yj |xj ,zk)

) ,

and (5) becomes

S⊥
p (β, ĝβ) =

∑

i∈V

Sβ(yi|xi, zi) +
∑

j∈V̄

∑

zk∈Z

ĝβ(zk)fβ(yj|xj, zk)∑
zk∈Z ĝβ(zk)fβ(yj|xj , zk)

Sβ(yj|xj , zk). (6)

A slight modification of the Newton–Raphson algorithm suffices.

Starting from a naive estimator of β, for example the inverse probability weighted estimator

(Flanders and Greenland, 1991; Lipsitz, Ibrahim and Zhao, 1999), the profile Newton–Raphson

algorithm usually takes 3-4 iteration to achieve 1e-5 accuracy. At convergence, we obtain

the variance estimates of β̂ by inverting the information matrix of the profile likelihood

Ip(β̂, ĝβ̂) as a by-product of the algorithm. When Z is discrete, the parameter space (β, g)
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is of fixed dimension. The usual large sample theory for maximum likelihood estimates applies

with standard regularity conditions (Cox and Hinkley, 1974, Chapter 9). When Z contains

continuous covariates, the parameter space (β, g) is of infinite dimension, so that modern

semiparametric inference theory is required to prove the consistency and asymptotic normality.

The proofs of asymptotic theories follow Murphy and van der Vaart (2000); Breslow, Robins

and Wellner (2003) and they are not presented here.

4. Estimated likelihood

The main computational burden of obtaining the SPMLE lies in updating ĝβ̂ and the numerical

differentiation to get Ip(β̂, ĝβ̂). When the disease is rare, updating ĝβ̂ can be time-consuming;

when there are many covariates to be adjusted, numerical differentiation can slow down the

algorithm. Much computation may not be needed in a genome-wide study where most markers

do not exhibit signal. An estimated likelihood approach may be a good alternative to exploit

the independence in these situations. Pepe and Fleming (1991) propose an estimated likelihood

approach which first plugs an empirical estimator Ĝ(Z|x) into the likelihood for the incomplete

data, i.e., f̂β(y|x) =
∫

fβ(y|x, Z)dĜ(Z|x), and then maximizes the estimated likelihood solely

with respect to β. Robins, Rotnitzky and Zhao (1994) and Lawless, Kalbfleisch and Wild

(1999) compared a variety of methods used in two-phase studies. The estimated likelihood

approach was found to perform closely to the SPMLE in efficiency. Pepe and Fleming (1991)

assumes the validation sample is a random sample from the cohort, i.e., missing completely at

random (MCAR). Weaver and Zhou (2005) extends the methodology to outcome-dependent

sampling schemes, though they consider a slightly different scenario of a simple random sample

(SRS) in addition to the outcome-dependent sample. Here we derive the estimated likelihood

based estimator under the two-phase sampling scheme as specified in Section 2.

When the phase-two sampling is outcome-dependent, a consistent estimator of G(z|x) can
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be formulated as a weighted average of the empirical distribution of Z|x in each stratum Sk

(Hu and Lawless, 1996; Lawless, Kalbfleisch and Wild, 1999). Observe that

G(z|x) =
K∑

k=1

Pr(Z < z|Sk, x)Pr(Sk|x).

Because the probability of observing Z is assumed constant in each stratum, we observe that

Pr(Z < z|Sk, x) = Pr(Z < z|Sk, x, R = 1).

Therefore, we obtain an empirical estimate of G(z|x) using Z in the validation data,

Ĝ(z|x) =
K∑

k=1

Nkx

Nx

∑

i∈Sk

1[zi<z,xi=x,ri=1]∑
i∈Sk

1[xi=x,ri=1]

,

where Nkx =
∑N

i=1 1[i∈Sk,xi=x], Nx =
∑N

i=1 1[xi=x]. The estimated likelihood for incomplete data

becomes

f̂β(y|x) =
K∑

k=1

Nkx

Nx

∑

i∈Sk

fβ(y|x, zi)1[xi=x,ri=1]∑
i∈Sk

1[xi=x,ri=1]

.

Let L̂N (β) denote the estimated likelihood. We want to maximize

L̂N (β) =
∏

i∈V

fβ(yi|xi, zi)
∏

j∈V̄

f̂β(yj|xj). (7)

Using X ⊥ Z we can improve the estimation of the likelihood. Following the same derivation

for Ĝ(z|x) with X ⊥ Z, the estimated empirical distribution is simplified to

Ĝ⊥(z|x) = Ĝ(z) =
K∑

k=1

Nk

N

∑

i∈Sk

1[zi<z,ri=1]∑
i∈Sk

1[ri=1]

,

where Nk =
∑N

i=1 1[i∈Sk]. Essentially we are able to use all observed Z to estimate the empirical

distribution, not constrained by a particular x. Hence the estimated likelihood becomes

f̂⊥
β (y|x) =

K∑

k=1

Nk

N

∑

i∈Sk

fβ(y|x, zi)1[ri=1]∑
i∈Sk

1[ri=1]

.

It is immediate that applying the independence assumption reduces the variability of the

estimated likelihood, Var[f̂⊥
β (yj|xj)] < Var[f̂β(yj|xj)], because the former involves an average

of more terms. The estimated likelihood using the independence assumption is

L̂⊥(β) =
∏

i∈V

fβ(yi|xi, zi)
∏

j∈V̄

f̂⊥
β (yj|xj). (8)

Let β̃ denote the estimator maximizing (7), and β̃⊥ the estimator maximizing (8). We describe
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the asymptotic properties of β̃⊥ in the following two theorems. The derivation of the large

sample properties is somewhat similar to Weaver and Zhou (2005). The emphasis here is on

the efficiency gain when using β̃⊥ instead of β̃. Let ρV be the probability of a subject falling in

the validation sample, and let ρk be the probability of a subject falling in the stratum k. We

assume ρV and ρk are strictly positive, so that
∑N

i=1 1[ri=1]/N → ρV > 0 and Nk/N → ρk > 0

for every k. Let {x} be the set of unique values attainable by X. With the main assumptions of

missing at random and the covariate independence (X ⊥ Z), we derive the following theorems:

Theorem 1. (consistency) β̃ and β̃⊥ are both consistent w.r.t. true parameter β.

Theorem 2. (Asymptotic Normality)

√
N(β̃ − β) →d N

(
0, I(β)−1 + I(β)−1ΣI(β)−1

)
.

√
N(β̃⊥ − β) →d N

(
0, I(β)−1 + I(β)−1Σ⊥I(β)−1

)
,

where

I(β) = ρV E[−∂2logfβ(Y |X, Z)

∂β2
] + (1 − ρV )E[−∂2logfβ(Y |X)

∂β2
],

Σ =
K∑

k=1

∑

{x}

Pr(Sk, X = x) [Pr(R = 0|X = x)]2

pk

VarZ

[
EY [W |x, z, R = 0]|x, z ∈ Sk

]
,

Σ⊥ =
K∑

k=1

ρk(1 − ρV )2

pk

VarZ

[
EY ,X [W |z, R = 0]|z ∈ Sk

]
,

W =
∂fβ(Y |X, Z)/∂β

fβ(Y |X)
− ∂fβ(Y |X)/∂β

f 2
β(Y |X)

fβ(Y |X, Z).

We assume the usual regularity conditions for maximum likelihood holds for fβ(Y |X, Z)

and fβ(Y |X) (Cox and Hinkely, 1974, Chapter 9) and that the sampling probability in each

stratum is strictly positive. The proof of existence, uniqueness and consistency of an estimated

likelihood estimator follows the results of Foutz (1977). The key step is that the second

derivative of the estimated likelihood converges to a positive definite information matrix I(β),

i.e., − 1
N

∂2 log L̂(β)
∂β2 →p I(β). Consistent estimators for I(β), Σ and Σ⊥ can be formulated using

empirical terms. See on-line supplementary material. Unlike the SPMLE in Section 3, Î(β̂) can
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be computed explicitly. Therefore β̃ and β̃⊥ can be obtained much faster than the SPMLE.

Clearly Σ⊥ < Σ. The asymptotic variance reduction when exploiting the independence is

I(β)−1(Σ − Σ⊥)I(β)−1.

5. Simulation

We conducted a series of simulations to evaluate the proposed estimators, and to investigate

the efficiency gain when exploiting covariate independence. We consider a two-phase sam-

pling scheme with the following features: the outcome Y may be binary or continuous; a

binary covariate X indexing the treatment assignment, which takes the distribution form of

Bernoulli(0.5); both Y and X are observed for everyone, thus form the phase-one data; in

the second phase, a case-control sample is identified from the cohort by Bernoulli sampling,

independent of X. A continuous biomarker is measured for subjects in the case-control sample;

In all simulations, X is independent of Z.

5.1 Binary outcome

We generated data for 10,000 subjects using the logistic model

logit(Pr(y = 1|x, z)) = exp(β0 + β1x + β2z + β3xz)

Set β0 = −3, β1 = 0.2, β2 = 0.1, and vary β3 to achieve different amounts of interaction

between X and Z. We generated the biomarker data (Z) from a log normal distribution

with a ceiling of 10 for Z, that is, Z ∼ min(eN(0,1), 10). The Bernoulli sampling probabilities

for cases and controls are such that on average 800 cases and 800 controls were selected;

5,000 datasets are simulated. Table 1 summarizes the biases and the sample variances of the

various estimators. The complete-case estimator (CC) only uses the subjects with complete

data in a logistic regression, ignoring the sampling. This estimator is consistent for the slope

parameters (Prentice and Pyke, 1979). The weighted estimator (WE) uses the estimated

sampling probabilities from the 4 strata defined by Y and X to weight the estimation equa-
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tions. SPMLE and SPMLE exploiting independence (SPMLE⊥) are computed as in Section

3. MELE and MELE⊥ are computed as in Section 4. All estimators are unbiased for the three

slope parameters. The efficiency is relative to the SPMLE ignoring independence. Among the

methods ignoring independence, the SPMLE achieves the lowest variance. The complete-case

estimator yields the same efficiency as SPMLE in estimating β2 and β3, but it has a much lower

efficiency in estimating β1 since it does not utilize the phase-one data. The WE is the worst in

terms of estimating the interaction, while the MELE is very close to the SPMLE in efficiency,

especially when β3 is small. The trend observed here is consistent with Lawless, Kalbfleisch

and Wild (1999). Interestingly, when using the independence (MELE⊥ and SPMLE⊥), the

sampling variances drop markedly. The efficiency gain in estimating β3 ranges from over 100%

(β3 = 0) to 20% (β3 = 1). The efficiency gain in the main effects are 10%-50% depending

on the effect size. In the parameter values we considered, the estimated likelihood approach

performs closely to the semiparametric likelihood approach. We expect the relative efficiency

of the MELE to decrease when parameter values get larger (Lawless, Kalbfleisch and Wild,

1999).

[Table 1 about here.]

Table 2 evaluates the validity of the estimated variances for the SPMLE, MELE, SPMLE⊥

and MELE⊥ based on 5000 simulations. The mean of the estimated variances agree very well

to the corresponding sample variances. The empirical 95% coverage probabilities are close to

the nominal 95%. We also studied many different parameter choices, as well as the situation

where Z is categorical. The results are similar to those in Table 1 and 2 (results not shown).

[Table 2 about here.]
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5.2 Continuous outcome

We simulated a continuous outcome variable Y ∼ N(µ, σ2), with µ = −1+0.2x+0.1z +β3xz,

σ2 = 1, X and Z as in Section 5.1. In the first phase, 2000 subjects are generated with X and

Y observed. To create the phase-one strata, Y is divided at its 90th quantile. Individuals in

the upper stratum are “cases”, and those in the lower stratum are “controls”. All cases and

a random sample of about 200 controls enter the second phase and their Zs are measured. In

Table 3 we compare the efficiencies of WE (using the estimated sampling probability), MELE,

MELE⊥, SPMLE, and SPMLE⊥. We also include the SPMLE with reduced phase-one data

by Lawless, Kalbfleisch and Wild (1999) (referred to as “LKW”) to see how much information

is lost in categorizing the phase-one continuous outcome. Note both the WE and the LKW

reduce the phase-one data: the WE estimates the sampling probabilities using observed counts

in each strata and uses it as if it is fixed in the weighted log-likelihood; the LKW treats the

phase one data as stratum labels, but maximizes the likelihood with respect to β and g

simultaneously, therefore the weight is updated in the iterations.

The biases of all estimators are negligible and therefore omitted in Table 3. As expected, the

WE and the LKW have much bigger variances than the SPMLEs and the MELEs because the

latter use more information from the first phase. Exploiting the independence between X and

Z yields an additional efficiency gain, ranging from 10% to 50%. Consistent with the results

in Table 1, the efficiency gain decreases with β3. The estimated likelihood approach yields a

second-best performance with respect to efficiency, next to the likelihood based methods. Note

when β3 = 1 the performance of WE is better than that of LKW. This may be caused by the

relatively small sample size (2000 phase-one subjects, 400 phase-two subjects). To improve

the performance of the LKW method, one can create more strata for the phase-one data

(poststratification) hence gain more precision (Lawless, Kalbfleisch and Wild, 1999). However

it will still be inferior to methods using continuous outcomes from the first place.
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[Table 3 about here.]

6. Data application

We took the WHI biomarker study as in Example 1 to illustrate our methods. The aforemen-

tioned 29 biomarkers were picked by WHI investigators as markers that are possibly associated

with either stroke, venous thrombotic disease, or myocardial infarction (MI). A comprehensive

analysis of these samples is published (Kooperberg et al., 2007). In our terminology, this

biomarker study is a two-phase study. The first-phase data consist of the randomized treatment

assignment and stroke outcome for 16,608 study participants. The second phase consists of 124

cases and 504 controls from whom blood was analyzed. All blood biomarkers are continuous

and were logarithm (base 10) transformed. To eliminate potential confounding factors, we

included a number of important clinical characteristics in the second phase data, such as

age, physical activity levels, diabetes, hypertension, systolic and diastolic blood pressure, and

waist:hip ratio. We are interested in the interaction between the hormone treatment and each of

biomarkers in a logistic regression adjusting for both main effects and aforementioned clinical

characteristics. We compared four different methods to analyze two-phase data: the standard

method ignoring the missing data (complete-case only) and the independence between the

treatment and biomarkers, namely complete-case analysis, the proposed estimated likelihood

estimator with or without exploiting independence, and the proposed SPMLE with or without

exploiting covariate independence.

Table 4 shows the estimates of the interaction between the treatment and the thrombosis

biomarkers using the aforementioned five methods. The model used in this table is

logit(P (stroke| . . .)) = β0 + β1HT + β2 log(B) + β3HT × log(B) +
∑

i

βi+3Xi,

where stroke is the event of a WHI participant having a stroke, HT an indicator whether

this participant was assigned to Hormone Therapy, B the (continuous) biomarker, and the Xi
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are other confounding factors. For ease of exposition, we only show the results of one class

of biomarkers. Without exploiting the independence, there is essentially no improvement in

efficiency over the complete-case analysis using either the MELE or the SPMLE. On the other

hand, the standard errors of the two proposed methods exploiting independence is markedly

smaller than the standard complete-case analysis and two other semiparametric methods. We

found three thrombosis markers show a markedly increased significance. In particular, the

p-values for PAP (plasmin-antiplasmin complex) are significant after adjusting for 29 tests by

Bonferroni correction. A similar pattern of variance reduction, though in a smaller magnitude,

is observed for the main effects - the treatment effect and the biomarker effect. The results

of the MELE and the SPMLE exploiting independence are mostly indistinguishable. This is

probably because the stroke is rather rare event (124 cases out of 16608 participants in this

study) in the study cohort, the one-step estimated covariate distribution in the MELE is close

to the iteratively estimated one in the SPMLE. These results demonstrate the advantage of our

methods: exploiting the independence between the randomized treatment and the biomarker

improves the power of detecting the interaction between them.

[Table 4 about here.]

7. Discussion

With the rapid advance of biotechnologies such as gene chips and proteomics, it is increasingly

popular to employ some form of two-phase sampling to measure the expensive biomarker data

for a sample of the study cohort, while collecting the cheap covariates and outcomes for

everyone. When the phase-one cohort is a randomized clinical trial, there is independence

between the treatment and baseline covariates. In this article, we show that exploiting this

independence substantially improves the estimation efficiency, particularly for treatment-

biomarker interactions. This is especially relevant to many pharmacogenetic studies where
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drug-genotype interactions are under investigation. In an observational two-phase study, how-

ever, unless we have strong a priori evidence about the gene-environment independence, we

should exert extra caution when exploiting it in estimation as deviation from the independence

can draw a substantial bias (Albert et al., 2001).

Beyond exploiting the independence caused by randomization, our methods have general

merits in semiparametric estimation. Existing methods to compute the SPMLE, such as the

EM algorithm and the profile likelihood, all have limitations. We propose a profile likelihood

based Newton–Raphson algorithm that computes the SPMLE for a wide range of data forms

including continuous outcomes, as long as the phase-one covariate is discrete and the phase-

two data is missing at random. An innovation in our algorithm is the usage of numerical

differentiation to compute the profile information matrix, thus avoiding the complicated

algebraic derivation of Lawless, Kalbfleisch and Wild (1999). In situations where computing

the SPMLE is time-consuming, the proposed estimated likelihood approach may help. A

contribution of this article is to derive the asymptotics for the estimated likelihood in two-

phase sampling and work out the efficiency gain when using the covariate independence. In

our simulations and data application, the MELE performs almost as good as the SPMLE.

Simulations in Lawless, Kalbfleisch and Wild (1999) suggest that the relative efficiency of

MELE may decline when the effect size increases. In genetic association studies with many

markers, the majority of markers have no effect and some may have weak effect, the estimated

likelihood will be time-efficient in screening for a subset of interesting markers. The SPMLE

can be used subsequently to get a more precise estimate for the biggest hits.

Semiparametric efficient estimators can be alternatively derived in the framework of aug-

mented inverse probability weighted estimators (Robins, Rotnitzky and Zhao, 1994). When

parametric models involved are correctly specified, the estimates are asymptotically equiv-

alent to the SPMLE derived under the likelihood framework, but are harder to implement
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(Carpenter, Kenward and Vansteelandt, 2006). The augmented inverse probability weighted

approach has its appeal in that it remains consistent if either the selection probability or

the conditional distribution of missing data given observed data is correctly modeled. In

randomized clinical trials, when baseline covariates (Z) to be adjusted are continuous and

high-dimensional, it is almost impossible to correctly specify the parametric distribution

of Y |X, Z. Then the SPMLE assuming the wrong model of Y |X, Z will not be consistent.

However, since the sampling probabilities are precisely controlled by the investigators, it is

possible to construct a doubly-robust estimator that exploits the independence introduced

by randomization, yet still yields consistent estimators of treatment-biomarker interactions.

Indeed, Robins and Ritov (1997) shows that in this setting any estimator that fails to use

the knowledge of sampling probabilities can perform poorly in moderate samples. It remains

interesting for future methodological studies to exploit the independence in the framework of

doubly-robust estimators.

Supplementary Materials

Web Appendices referenced in Section 3 and 4 are available under the Paper Information link

at the Biometrics website http://www.biometrics.tibs.org.
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Table 1

Binary Y: a comparison of weighted estimation equation estimator (WE), semiparametric maximum likelihood

estimator (SPMLE), the maximal estimated likelihood estimator (MELE), with ( ⊥) and without exploiting
independence assumption in 5000 simulations.

β̂1 β̂2 β̂3

Method Bias SD REa Bias SD REa Bias SD REa

β3 = 0
CC −0.0009 0.135 65 0.0022 0.039 100 0.0001 0.054 100
WE 0.0009 0.110 97 0.0027 0.040 96 0.0001 0.055 96
MELE 0.0009 0.110 98 0.0025 0.040 97 0.0001 0.055 97
SPMLE 0.0008 0.109 100 0.0021 0.039 100 0.0001 0.054 100
MELE⊥ 0.0006 0.091 144 0.0010 0.034 135 0.0003 0.037 215
SPMLE⊥ 0.0006 0.091 144 0.0009 0.033 137 0.0003 0.037 214

β3 = 0.5
CC −0.0025 0.161 67 −0.0004 0.045 100 0.0048 0.071 100
WE −0.0021 0.141 87 0.0001 0.046 97 0.0074 0.076 87
MELE −0.0047 0.133 98 − 0.0001 0.045 98 0.0047 0.072 98
SPMLE −0.0050 0.132 100 −0.0004 0.045 100 0.0048 0.071 100
MELE⊥ −0.0041 0.121 118 − 0.0002 0.039 128 0.0046 0.058 148
SPMLE⊥ −0.0063 0.120 120 −0.0027 0.038 137 0.0055 0.057 154

β3 = 1
CC −0.0067 0.189 68 −0.0010 0.049 100 0.0093 0.101 100
WE −0.0122 0.164 89 −0.0008 0.050 99 0.0117 0.107 88
MELE −0.0079 0.156 99 − 0.0010 0.050 99 0.0090 0.102 98
SPMLE −0.0083 0.155 100 −0.0010 0.049 100 0.0093 0.101 100
MELE⊥ −0.0052 0.149 108 −0.0023 0.046 118 0.0067 0.091 122
SPMLE⊥ −0.0083 0.147 110 −0.0027 0.045 124 0.0086 0.089 127

Note: a - Relative efficiency comparing to the SPMLE ignoring the independence. The phase-one cohort size is 10,000,
800 cases and 800 controls are selected in the phase-two. The data is generated by logit[P (Y = 1|X, Z)] = β0 + β1X +

β2Z + β3XZ, where β0 = −3, β1=0.2, β2=0.1. X ∼ Ber(0.5), Z ∼ min(10, eN(0,1)).
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Table 2

Binary Y : the performance of variance estimators based on the profile information: 5000 simulations

SPMLE SPMLE ⊥

Parameter V ar(β̂) V̂ ar(β̂) 95% C.I. V ar(β̂) V̂ ar(β̂) 95% C.I.

β3 = 0

β̂1 0.0118 0.0119 95.1% 0.0082 0.0082 94.9%

β̂2 0.0015 0.0015 94.7% 0.0011 0.0011 95.4%

β̂3 0.0029 0.0029 94.6% 0.0014 0.0013 94.9%
β3 = 0.5

β̂1 0.0173 0.0171 94.6% 0.0144 0.0142 95.2%

β̂2 0.0020 0.0020 95.0% 0.0015 0.0014 95.1%

β̂3 0.0051 0.0050 94.8% 0.0033 0.0033 94.9%
β3 = 1

β̂1 0.0241 0.0244 95.3% 0.0217 0.0224 95.4%

β̂2 0.0025 0.0024 95.4% 0.0020 0.0020 95.6%

β̂3 0.0101 0.0101 95.5% 0.0079 0.0081 95.0%

MELE MELE⊥

Parameter V ar(β̃) V̂ ar(β̃) 95% C.I. V ar(β̃) V̂ ar(β̃) 95% C.I.

β3 = 0

β̃1 0.0121 0.0121 95.2% 0.0082 0.0082 94.8%

β̃2 0.0016 0.0015 94.7% 0.0011 0.0011 95.3%

β̃3 0.0030 0.0029 94.7% 0.0014 0.0013 95.0%
β3 = 0.5

β̃1 0.0176 0.0176 94.7% 0.0147 0.0146 95.1%

β̃2 0.0020 0.0020 95.1% 0.0016 0.0015 94.8%

β̃3 0.0052 0.0053 94.9% 0.0034 0.0034 95.4%
β3 = 1

β̃1 0.0244 0.0248 95.5% 0.0222 0.0229 95.3%

β̃2 0.0025 0.0024 95.5% 0.0021 0.0021 95.5%

β̃3 0.0103 0.0108 95.4% 0.0083 0.0085 96.0%

Note: The phase-one cohort size is 104, 800 cases and 800 controls are selected in the phase-two. The data is generated by
logit[P (Y = 1|X, Z)] = β0 +β1X +β2Z +β3XZ, where β0 = −3, β1=0.2, β2=0.1. X ∼ Ber(0.5), Z ∼ min(10, eN(0,1)).

V ar(β̂) is the sample variance of β̂ in 5000 simulations. V̂ ar(β̂) is the sample mean of the estimated variance of β̂ in
5000 simulations.
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Table 3

Continuous Y : a comparison of the weighted estimator (WE), the reduced semiparametric maximum likelihood
estimator as in the (Lawless, Kalbfleisch and Wild, 1999) (LKW), the semiparametric maximum likelihood estimator

(SPMLE), the maximal estimated likelihood estimator (MELE), with ( ⊥) and without exploiting independence
assumption in 1000 simulations.

β̂1 β̂2 β̂3 σ̂

SD REa SD REa SD REa SD REa

β3 = 0
WE 0.152 25 0.045 57 0.064 54 0.036 22
LKW 0.149 26 0.038 81 0.054 73 0.036 22
MELE 0.078 94 0.037 86 0.050 88 0.017 99
SPMLE 0.076 100 0.034 100 0.047 100 0.017 100
MELE⊥ 0.070 117 0.032 110 0.038 154 0.017 99
SPMLE⊥ 0.070 117 0.031 121 0.038 153 0.017 100

β3 = 0.5
WE 0.160 25 0.051 53 0.060 49 0.039 21
LKW 0.158 26 0.041 79 0.052 67 0.041 19
MELE 0.084 92 0.038 93 0.044 95 0.018 99
SPMLE 0.080 100 0.037 100 0.042 100 0.018 100
MELE⊥ 0.077 109 0.034 117 0.039 116 0.018 101
SPMLE⊥ 0.075 113 0.033 122 0.039 120 0.018 101

β3 = 1
WE 0.175 35 0.056 73 0.064 66 0.044 19
LKW 0.188 30 0.060 65 0.069 57 0.046 18
MELE 0.109 89 0.048 101 0.052 99 0.019 99
SPMLE 0.103 100 0.048 100 0.052 100 0.019 100
MELE⊥ 0.098 111 0.046 113 0.049 112 0.019 100
SPMLE⊥ 0.096 117 0.045 116 0.049 114 0.019 100

Note: a - Relative efficiency comparing to SPMLE ignoring independence. The phase-one cohort size is 2000, 200 cases
and 200 controls are selected in the phase-two. The data is generated by a normal distribution with the mean E[Y =

1|X, Z] = β0 +β1X +β2Z +β3XZ and variance σ2 = 1, β0 = −1, β1=0.2, β2=0.1. X ∼ Ber(0.5), Z ∼ min(10, eN(0,1)).
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Table 4

WHI E+P trial: an investigation of the interactions between the hormone treatment and biomarkers.

complete-case MELE SPMLE MELE⊥ SPMLE⊥

Biomarker HT*BM p-val HT*BM p-val HT*BM p-val HT*BM p-val HT*BM p-val

Thrombosis
D-dimer −1.418(0.671) 0.034 −1.318(0.663) 0.047 −1.418(0.669) 0.034 −1.499(0.579) 0.009 −1.578(0.588) 0.007
Factor VIII −1.367(1.025) 0.182 −1.442(1.068) 0.177 −1.366(1.020) 0.180 −1.846(0.932) 0.047 −1.791(0.901) 0.047
Fibrinogen −0.479(1.761) 0.785 −0.625(1.772) 0.724 −0.479(1.743) 0.783 −0.092(1.537) 0.952 −0.092(1.557) 0.953
PAI-1 0.481(0.572) 0.401 0.472(0.565) 0.403 0.480(0.570) 0.399 0.308(0.501) 0.539 0.320(0.507) 0.528
PAP −3.815(1.327) 0.004 −3.755(1.331) 0.005 −3.815(1.313) 0.004 −3.796(1.156) 0.001 −3.871(1.135) 6e-04
TAFI −0.630(1.253) 0.615 −0.751(1.254) 0.549 −0.630(1.243) 0.612 −0.473(1.116) 0.672 −0.491(1.132) 0.665
Vwf −1.289(1.097) 0.239 −1.251(1.096) 0.254 −1.290(1.088) 0.236 −1.151(0.980) 0.240 −1.160(0.984) 0.238

Note: HT*BM: the interaction between the hormone treatment and biomarker; D-dimer: fibrin D-dimer; PAI-1: plasminogen activator inhibitor-1 antigen; PAP:
plasmin-antiplasmin complex; TAFI: tissue factor pathway inhibitor ; Vwf: von Willebrand factor.


