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Summary 

Faced with sudden environmental changes, animals must either adapt to novel environments, or 

go extinct. Thus, studying the mechanisms underlying rapid adaptation is not only crucial for 

understanding natural evolutionary processes, but also for understanding human-induced 

evolutionary change, an increasingly important problem [1-8]. In the present study, we 

demonstrate that the frequency of completely-plated threespine stickleback fish (Gasterosteus 

aculeatus) has increased in an urban freshwater lake (Lake Washington, Seattle, Washington) 

within the last 40 years. This is a dramatic example of “reverse evolution” [9] because the 

general evolutionary trajectory is towards armor plate reduction in freshwater sticklebacks [10]. 

Based on our genetic studies and simulations, we propose that the most likely cause of reverse 

evolution is increased selection for the completely-plated morph, which we suggest may result 

from higher levels of trout predation after a sudden increase in water transparency during the 

early 1970s. Rapid evolution was facilitated by the existence of standing allelic variation in 

Ectodysplasin (Eda), the gene that underlies the major plate morph locus [11]. The Lake 

Washington stickleback thus provides a novel example of reverse evolution, likely caused by a 

change in allele frequency at the major plate locus in response to a changing predation regime. 
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Results and Discussion 

Reverse Evolution of Armor Plates in Lake Washington 

The threespine stickleback (Gasterosteus aculeatus) is a good model system for elucidating the 

ecological and genetic mechanisms underlying phenotypic evolution [12-13]. One dramatic and 

prevalent phenotypic change in these fish is the reduction of armor plates covering the lateral 

body surface that occurred repeatedly after freshwater colonization 12,000 years ago [10]. While 

ancestral marine sticklebacks typically have a continuous row of lateral plates (completely-plated 

morph), freshwater sticklebacks usually have a reduction in lateral plates, resulting in a gap in 

the middle part of the plate row (partially-plated morph) or loss of both the middle and posterior 

plates (low-plated morph). The major gene responsible for reduction of the stickleback lateral 

plates across the world is Ectodysplasin (Eda) [11]. There are two major alleles of Eda found in 

stickleback populations, here referred to as the complete allele and the low allele. Most marine 

sticklebacks are homozygous for the complete allele, although marine sticklebacks that are 

heterozygous carriers of the low allele are found at a low frequency [11]. It is proposed that 

when marine sticklebacks colonize freshwater environments, strong selection results in an 

increase in the frequency of the low Eda allele, leading to the prevalence of low-plated fish in 

freshwater. 
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In contrast to the prevalence of the low-plated morph in many freshwater environments 

[10, 11], we found a high frequency of completely-plated stickleback in Lake Washington, an 

urban freshwater lake in Seattle [14-16]. In 2005, we found all three lateral plate morphs were 

present, with 49% complete morphs, 35% partial morphs, and 16% low morphs (Figures 1A and 

2C). Although a previous study had also shown that all three morphs were present in Lake 

Washington in 1968/1969, only 6% were classified as complete morphs (Figure 1A; [17]). 

Instead, the low morph, with a mode of seven plates, was the most common morph until the late 

1960s (Figures 1B and C). In 1976, bimodal peaks appeared, one corresponding to fish with 

seven plates and another corresponding to fish with 32 plates (Figure 1C; [18]). The frequency of 

fish with 33 plates was even higher in the 2005 sample (Figure 1C). The increase in completely 

plated fish in the 2005 sample did not reflect bias in the sampling methods (n = 322, χ2 = 6.6949, 

df = 4, p = 0.1529) or the seasonal (Figure S1) or geographical (Figure 2C) distribution of 

differently plated sticklebacks. These data demonstrate that the frequency of plate morph 

phenotypes has changed dramatically in Lake Washington within the past 40 years, which is 

equivalent to 40 generations in this stickleback population [18]. 

Genotyping of the 2005 samples at the Eda locus revealed a strong association 

between plate phenotype and Eda genotype in Lake Washington (n = 196, χ2 = 227.0, d.f. = 4, p 



 5 

< 10-47; Figure S2; Table S1). By ANOVA, the Eda genotype explains 75.2% of the variance in 

plate number in the Lake Washington stickleback. This is close to the percent of phenotypic 

variance in plate number explained by the Eda locus in laboratory crosses (76.9 %; [19]). Thus, 

the increase in the completely plated phenotype in Lake Washington is likely due to an increase 

in the frequency of the Eda complete allele, given the previously established link between plate 

phenotype and Eda genotype in stickleback populations across the world [11]. 

 

Gene Flow is Not the Primary Cause of Armor Plate Evolution in Lake Washington 

Most marine sticklebacks in Puget Sound are completely plated (Figure 2C), with high 

frequencies of the complete Eda allele (Figure 2D). Because marine sticklebacks can now 

migrate into the lake through the Lake Washington Ship Canal (Figures 2B and S3), which was 

built in 1917 [14], an increase in migration may have contributed to the increase of lateral plates 

in the Lake Washington stickleback. In order to test this hypothesis, we collected sticklebacks in 

neighboring marine environments (Puget Sound), multiple points in Lake Washington, and in 

neighboring streams (Figure 2) and genotyped them with 15 microsatellite markers (Table S2). 

Genetic data were then analyzed with the Bayesian clustering software STRUCTURE [20]. 

Within the marine, lake, and stream fish that were genotyped, the most probable number of 
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genetic clusters (K) was three (Figure S4). Estimation of ancestry for each individual revealed 

that the stickleback in Lake Washington have two main genetic sources (Figure 2E). Stickleback 

sampled from near the ship canal were genetically similar to marine stickleback (indicated by 

green in Figure 2E), while those sampled close to the streams were more similar to neighboring 

stream stickleback (indicated by blue in Figure 2E). However, there was no significant 

correlation between the probability of marine ancestry and plate number (Pearson correlation r = 

0.005, p = 0.967; Figure S5). Multidimensional scaling of the genetic distance matrix also 

confirmed the lack of association between genotypes at neutral loci and plate number (Figure S6). 

Thus, the increase in armor plates in Lake Washington does not result simply from the presence 

of marine sticklebacks in the lake. 

 It may be still possible that an increase in long-term migration from Puget Sound has 

contributed to the overall increase in the complete morph in the lake. To test this possibility, we 

first estimated migration rates (m; fraction of migrants per generation) from the genetic data and 

then examined whether the empirically estimated m can explain the observed plate evolution. We 

used both Isolation with Migration (IM) and LAMARC software [21-23] to estimate the m 

between a Lake Washington population and a Puget Sound marine population (Table S3). The m 

from Puget Sound into Lake Washington was estimated as 3.03 x 10-4 (IM) or 1.77 x 10-3 



 7 

(LAMARC), while the m from Lake Washington into Puget Sound was estimated as 6.43 x 10-4 

(IM) or 1.20 x 10-3 (LAMARC). Then, we developed deterministic numerical simulations to 

calculate the m required for the observed change of plate phenotype under different selection 

regimes (Figure S7). In the absence of selection (s = 0), migration would need to be 0.148 to 

explain the observed change from 1969 to 1976 and 0.035 to explain the change from 1969 to 

2005. These values are inconsistent with our low (m < 10-3) migration rate estimates, suggesting 

that there was a period of selection that favored the complete morph in Lake Washington. 

 

Changes in Selection Regime in Lake Washington 

By using the empirically estimated values of m, we found that a selection coefficient s (strength 

of selection for the complete morph) of 0.58-0.72 (Table 1) can explain the evolutionary shift 

from 1969 to 1976 (from 6% complete morphs to 40.2% complete morphs; Figure 1A). This 

suggests that the complete morph had 58-72 % higher fitness than the low morph during this 

period. To explain the transition between 1976 and 2005 (from 40.2% complete morphs to 49% 

complete morphs), s of 0.01-0.03 is required (Table 1). We thus conclude that there was a period 

of very intense selection for the complete morph between 1970 and 1976, followed by a 

persistent low level fitness advantage (1-3 %) of the complete morph over the low morph. 
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One of the dramatic ecological changes that occurred in Lake Washington during the 

early 1970s is increased water transparency due to the mitigation of eutrophication in the late 

1960s. Water transparency in the lake was 1-2 m Secchi depth (the maximum depth at which a 

white Secchi disk is visible from the water surface) during 1955-1971, and increased to 3.4 m in 

1973 and then to 6-7 m from 1976 to the present [14, 15]. Previous behavioral experiments have 

demonstrated that an increase in water transparency significantly increases the reaction distance 

of visual predators to their prey, thus leading to increased predation pressure on prey fish [24]. 

Cutthroat trout (Oncorhynchus clarki) are visual predators, extremely sensitive to subtle changes 

in water transparency [24], and the primary predator of threespine stickleback in both the littoral 

and pelagic zones of Lake Washington [16, 25, 26]. Therefore, we used a visual foraging model, 

which calculates the search volume by cutthroat trout as a function of light intensity and turbidity 

[27, 28], to investigate a possible change in stickleback predation regime. This analysis 

demonstrated that the increase in lake transparency created an 8-fold increase in the visual search 

volume by cutthroat trout and also expanded the depth range over which effective visual foraging 

could occur (Figure 3). Most of the expanded search volume was achieved during 1972-1975, 

when the mean Secchi disk transparency increased to 3.4 m. Although the cutthroat trout 

population in Lake Washington did not increase between 1971 and 2006 (Figure S8), our model 
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suggests that an increase in lake transparency could have changed the predation regime by 

increasing encounter rates between stickleback and cutthroat trout. 

Predation by toothed predators, such as cutthroat trout, is thought to favor 

completely-plated stickleback because the posterior lateral plates can protect the stickleback 

from being injured and swallowed [29, 30]. Reimchen predicted that the complete morph would 

occur in open water habitats of high clarity where capture rather than pursuit defenses 

predominate [29]. Consistent with this hypothesis, we have shown that the increase in the 

frequency of complete morphs occurred during the time when the water clarity increased 

dramatically in Lake Washington, a relatively deep and large lake (a surface area of 8.76 x 107 

m2 and a maximum depth of 65.2 m). Further supporting the hypothesis that an increase in 

predation by cutthroat trout has contributed to the rapid evolution of Lake Washington 

stickleback, recent stickleback samples are larger than historical stickleback samples (Figure 1B; 

Table S4). Larger body size can protect against predation by gape-limited predators, such as 

cutthroat trout [31, 32]. Although salinity and water temperature have also been proposed as 

factors contributing to lateral plate evolution [33, 34], we can exclude a role for these abiotic 

factors in the evolution of Lake Washington sticklebacks (Supplemental Discussion). 
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Conclusions 

We have reported a dramatic example of “reverse evolution” [9], in which there has been an 

increase in completely-plated sticklebacks in a freshwater lake. Our data demonstrate that 

selection for the complete morph was particularly strong during the early 1970s, suggesting that 

the main increase in the frequency of completely plated fish may have occurred in less than a 

decade. Armor reduction has also been shown to occur within only a few decades after the 

introduction of marine sticklebacks into freshwater [35-37]. Thus, sticklebacks can respond to 

environmental changes by either an increase or a decrease in lateral plates within a few decades. 

Rapid phenotypic evolution in stickleback provides us a great opportunity to further investigate 

the mechanisms by which animals can respond to rapidly changing environments [38]. 

The rapid evolution of armor plates in Lake Washington sticklebacks may have been 

enabled by the presence of standing genetic variation at the major plate locus [11]. Without 

standing variation, a sudden increase in predation may have led to population extinction before a 

new mutation appeared [6, 39]. Although an increase in gene flow was not the primary cause of 

armor evolution, gene flow from the marine population may have enabled rapid armor evolution 

by contributing to standing genetic variation within the lake [7, 40]. This work provides an 

example of a rapid phenotypic change that does not result from phenotypic plasticity, which has 
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been proposed as a major mechanism of contemporary evolution [4, 8]. Thus, investigating the 

genetic mechanisms that underlie adaptive phenotypes is essential for a better understanding of 

rapid evolutionary change [2, 4, 8, 41]. 

Although we suggest that reverse evolution in the Lake Washington stickleback is 

likely attributable to the change in water clarity, we still lack direct evidence for this hypothesis 

and additional factors may have also contributed. As in many other cases of rapid evolution [5], 

it is often difficult to tease apart all the potential factors that contribute to phenotypic evolution. 

We demonstrated, however, that changes in water clarity are able to influence predator-prey 

interactions; further attention should be given to the influence of water clarity on predator-prey 

interactions and animal evolution. In addition, this work highlights the importance of 

investigating the relationships between environmental changes, species interactions, and the 

genetic basis of phenotypic evolution, both to better understand the mechanisms of animal 

evolution and inform conservation efforts. 

 

Supplemental Data 

Detailed experimental procedures, a supplemental discussion, eight figures and five tables are 

provided in the Supplemental Data. 
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Figure Legends 

Figure 1. Lateral Plate Evolution in Lake Washington Stickleback 

(A) Temporal change in the frequency of the completely (black bar), partially (gray bar), and low 

(white bar) plated morphs in Lake Washington stickleback. Sample sizes are shown above the 

graph. Right panels show representative images of the three morphs in stickleback. Skeletal 

structures are visualized by alizarin red staining. Scale bars = 10 mm. 

(B) Representative images of stickleback collected in March 1957 and March 2006 in the 

northern pelagic zone of Lake Washington by midwater trawling. 

(C) Histograms of lateral plate number for stickleback collected in 1957, 1968/1969, 1976, and 

2005. Sample sizes are the same as in Figure 1A. The most common plate number is also shown 

in each panel as a mode. Among stickleback collected in 1968/1969, 22% had more than 12 

plates, but the individual plate counts for each fish are not available [17]. Plate number was 

counted from the left side of the fish except in the 1976 sample, for which only right plate 

number data were available [18]. For the 1957 data, museum specimens in the University of 

Washington Fish Collection were analyzed. The frequency of morph was significantly different 

between successive sampling time points (χ2- test; p < 0.05) except between 1957 and 1968/1969 

samples (χ2 = 2.375, p = 0.305) 
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Figure 2. Genetic and Morphological Variation around Lake Washington 

(A) Map of Washington State. Blue dots indicate the collection sites of marine stickleback from 

Puget Sound. Lake Washington is highlighted by a square and magnified in Figure 2B. 

(B) Map of Lake Washington and neighboring streams. Numbers indicate the sampling sites in 

Lake Washington: Point 1, Union Bay; Point 2, northern pelagic zone (Area 1 in [17]); Point 3, 

Matthews Beach; Point 4, Tracy Owen Park; Point 5, Juanita Beach; Point 6, Yarrow Bay; Point 

7, Mercer Slough; Point 8, east channel; Point 9, northern pelagic zone (Area 2 in [17]). 

(C) Variation in plate morph frequencies among populations. Each column indicates the 

frequency of the complete (black bar), partial (gray bar), and low (white bar) morph stickleback 

for each population. Numbers in parentheses indicate sample size. The frequency of different 

morphs was not significantly different among different points within Lake Washington (n = 322, 

χ2 = 17.0, d.f. = 14, p = 0.255). 

(D) Variation in the allele frequency of Eda among populations. The black bar indicates the 

frequency of the complete Eda allele and the white bar indicates the frequency of the low Eda 

allele at Stn382. Numbers in parentheses indicate sample size. 

(E) Genetic structure of sticklebacks collected in Lake Washington, Puget Sound and 

neighboring streams. The three different genetic clusters are shown in different colors. Each 
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individual is represented by a thin column that is partitioned into colored segments indicating the 

estimated proportion of ancestry from each cluster. Numbers in parentheses indicate sample size. 

 

Figure 3. Changes in Cutthroat Trout Foraging Volume in Lake Washington.  

(A-C) Depth-specific search volumes of cutthroat trout are shown during peak eutrophication in 

1955-1971 (A), initial recovery during 1972-1975 (B), and the current transparency regime 

1976-2006 (C). Different diel periods are indicated with white bars for day, hatched bars for 

dusk, and black bars for night.  

(D) Changes in the search volume by trout are shown as the percentage of the current search 

volume. Black and white circles indicate the search volumes at the depths of 0-60 m and 10-20 m, 

respectively. 
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Table 1. Estimation of Strength of Selection (s) for the Complete Plate Morph. 

Dominance of plate morph fitness Time period 

h = 0 h = 0.5 h = 1 

1969-1976 s = 0.708/0.720 s = 0.597/0.606 s = 0.582/0.591 

1976-2005 s = 0.013/0.015 s = 0.017/0.020 s = 0.026/0.031 

Values of s during different time periods were calculated for different values of the dominance of 

plate morph fitness (h). Migration rates estimated by LAMARC (left side in each cell) and IM 

(right side in each cell) were used. Frequencies of 6%, 40.2%, and 49.0% complete plate morphs 

were used for 1969, 1976, and 2005. 
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Supplemental Data 

 

Experimental Procedures 

Morphological Analysis 

All 2005-2007 samples were collected between March and June by minnow trap and mid-water 

trawling, except for samples from Points 8 and 9 (Figure 2B), which were collected by purse 

seining in October 2005 and mid-water trawling in September 2006, respectively. The 1957 

sample was collected by Dr. William Aron in the northern pelagic zone of the lake in March by 

mid-water trawling (University of Washington fish collection No. UW 012691). Plate numbers 

for the 1968/1969 and 1976 samples were taken from [S1] and [S2], respectively. The 1968/1969 

sample was collected at Points 4-6 (Figure 2B) between April and June by beach seining [S1]. 

The 1976 sample was collected from the southern end of the lake throughout the year by beach 

seining and dip nets [S2]. For the 1957 museum samples and the 2005-2007 samples, plate 

number was counted under a dissecting microscope from the left side of the fish stained with 

alizarin red as previously described [S3]. All fish analyzed were larger than 32mm standard 

length, at which point plate development is complete [S4]. Fish were assigned to one of three 

plate morph categories (complete, partial, low) as described previously [S1]. 
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Genetic Analysis 

DNA isolation and microsatellite analyses were conducted as previously described [S3], except 

that the reactions were analyzed on an ABI 3100 (Applied Biosystems, Foster City CA) and 

visualized with ABI GeneMapper 3.7 (Applied Biosystems, Foster City CA). For genotyping the 

Eda locus, fish were genotyped with the Stn382 microsatellite marker located in the first intron 

of the Eda gene [S5]: the complete and low alleles gave rise to 218 bp and 158 bp bands, 

respectively. For population genetic studies, fish were genotyped with 15 microsatellite markers 

chosen using a random number table. These markers are on 14 different linkage groups (LG) and 

have allele size distributions consistent with the stepwise mutation model (Table S2). These data 

were first analyzed with STRUCTURE [S6], which uses Markov chain Monte Carlo simulations 

to find groupings that minimize Hardy-Weinberg and linkage disequilibrium within cluster 

groups. Since Stn46 and Stn238 are both on LG4, linkage information was included in the input 

file for STRUCTURE analysis, although no significant linkages were indicated between any 

markers within each sampling site (exact test [S7], p > 0.05, after Bonferroni correction). We 

estimated the number of clusters in the data by running three simulations for each K value from 

K = 1 through K = 10 to calculate the mean log probability of data (L(K)), and using the ad hoc 

statistic ΔK, which is based on the rate of change in L(K) between successive K values [S8, S9]. 
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Parameters were estimated after 200,000 iterations, following a burn-in of 25,000 iterations.  

For estimation of migration rates, we analyzed the genetic data from the Duwamish 

marine (n = 21) and Lake Washington (Point 1; n = 27) sticklebacks with both IM and 

LAMARC software [S10-S12]. Using all Lake Washington stickleback populations for the 

LAMARC estimation gave rise to similar results (not shown). For calculation of m and Ne, we 

used a mutation rate of 10-4, as previously described [S13]. We ran LAMARC with 10 short 

chains of 1,000 samples and 2 long chains of 20,000 samples. IM results were based on 

recording of 30,000,000 steps after 100,000 of burn-in. In both IM and LAMARC, multiple runs 

gave rise to similar results. 

The pairwise genetic distance (Dps) between individuals from Lake Washington, Puget 

Sound, and nearby streams was calculated from the proportion of shared alleles using MSA 

software [S14]. Then, the genetic distance matrix was subject to principal coordinate (PCo) 

analysis using the R statistical package. The correlations between the first and second PCo and 

plate number were tested by a Pearson correlation test. 

 

Estimating the Strength of Selection 

We first used the simplifying assumption that plate morph was strictly determined by the Eda 
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locus, such that complete morphs had genotype 218 bp/218 bp; partial morphs were 218 bp/158 

bp, and low morphs were 158 bp/158 bp. Given the initial frequency of low morphs in 

1968/1969, f(L) = 0.7, we estimated the initial frequency of allele 158 to be q = 0.837. This was 

used to calculate the frequency of complete and partial morphs assuming Hardy-Weinberg 

equilibrium. Given initial frequencies of the three morphs, f(C), f(P), and f(L), we next calculated 

the frequencies of these morphs following selection: 
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where s is the strength of selection for or against complete plate morphs, h determines the 

dominance of plate morph fitness, and )()(1 PhsfCsfw ++= . Assuming selection acts on 

stickleback armor phenotypes throughout development, followed by immigration of adults prior 

to breeding, we then calculated the effects of migration following selection: 
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where m is the fraction of individuals in Lake Washington who immigrated from marine 

populations following a round of selection, and f(Cmar) is the frequency of complete plate morphs 

in the marine population. We assumed that the marine population is large relative to the Lake 
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Washington population, so reverse migration does not appreciably affect marine population 

frequencies and we can adopt a continent-island model. Following a round of selection and 

migration, we calculated new allele frequencies, and determined the morph frequencies assuming 

random mating and Hardy-Weinberg equilibrium. Numerical iterations led to estimates of the 

final morph frequencies after a specified period of time, for a given starting morph frequency. 

We then iteratively used a large number of parameter combinations (s, h, and m) to determine the 

s necessary for a given observed change assuming a particular heritability and migration rate, or 

the m required for the same change assuming no selection. 

 

Visual Foraging Model 

We used a visual foraging model [S15-S17] for predatory cutthroat trout feeding in the pelagic 

regions of the lake during thermally-stratified periods when most predation on fish was measured 

[S18]. The model estimated search volumes SV (m3) at any depth during any diel period, based 

on changes in reaction distance RD (m) of predators to forage fishes as functions of light 

intensity I (Lux) and turbidity T (NTU), swimming speed SS (m/hr), and the duration D (hr) of 

each diel period (Table S5): 

SV = RD2・π・SS・D 
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Where for T ≤ 1 NTU 

RD = 0.337・I0.118 (I < 17 Lux) 

or  

RD = 0.5316 (I ≥ 17 Lux). 

For T > 1 NTU 

RD = 0.337・I0.118・T-0.624 (I < 17 Lux) 

or 

RD = 0.5316・T-0.624 (I ≥ 17 Lux). 

Depth-specific search volumes were computed for each diel period at 5-m depth intervals using 

incident light levels I0 and light extinction coefficients k and turbidity levels from each of the 

lake transparency regimes (1955-1971: Secchi depth transparency = 1-2 m; 1972-1975: Secchi 

depths = 3.4 m; 1976-2006: Secchi depths = 6-7 m; Table S5). Depth-specific light levels Iz were 

computed for each depth z (m): 

Iz = I0・ekz. 

Turbidity values were only available during 2002-2003 [S17], so values for earlier transparency 

regimes were estimated from a regression of Secchi depths (m) versus turbidity (r2 = 0.73; p = 

0.03; n = 6): 
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T = 4.58 – 0.475・Secchi. 

Because light extinction increases with declining transparency, we also attempted to compute an 

average light extinction coefficient for the 1955-1971 period using a regression of Secchi depth 

versus k (r2 = 0.49; p = 0.122; n = 6): 

k = -0.708 + 0.051・Secchi; 

however, the nonsignificant regression created some uncertainty regarding the accuracy of k = 

-0.63 estimated for the peak eutrophication period. To examine the sensitivity of our analysis to k, 

we compared the search volume estimates using the regression estimate of k = -0.63 versus k = 

-0.35, the current high-transparency value. When using the high transparency value for k, the 

adjusted search volume during the 1955-1971 period only increased from 12% to 20% of the 

current search volume. This result implies that in the unlikely event that no change in light 

extinction accompanied the improved water transparency, current predation pressure might have 

only increased 5-fold instead of 8-fold following peak eutrophication. Thus any error in our light 

extinction estimate would result in a modest change in the magnitude the predation increase, but 

would not change the overall conclusion that predation pressure increased markedly between the 

1960s and current conditions. 
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Sr Isotope Analysis 

Sr stable isotope analysis of calcified fish tissues can tell us their migratory history, because 

different water bodies usually have different 87Sr/86Sr ratios [S19]. In order to investigate the 

presence of direct migrants from Puget Sound, threespine sticklebacks were collected in the ship 

canal above the Chittenden Locks in May 2007 with minnow traps and preserved in ethanol after 

euthanasia. Sr analysis was conducted as described previously with several modifications [S20]. 

Seven to 50 mg of fish vertebrae was surgically taken and dissolved in a 15mL Teflon vessel by 

adding 2mL of 68% ultrapure-grade HNO3. Upon complete dissolution, the resulting solution 

was dried and suspended with a few drops of 1N HCl. Ten to 20 mL of water sample were 

filtered through a cellulose acetate filter (pore size 0.2 µm), transferred to a 30 mL Teflon vessel, 

and dried on a hot plate. Sr was separated and isolated using classical cation exchange 

chromatography using AG50WX-12 resin (Muromachi Technos, Tokyo, Japan) with distilled 2N 

and 6N HCl as elution solution. The concentrations of Sr isotopes were determined using a 

thermal ionization mass spectrometer (Triton, Thermo Fisher Sci., Yokohama, Japan) at the 

Research Institute for Humanity and Nature. The 87Sr/86Sr ratio of nine standard samples of 

NBS987 during this study was 0.710259 (2σ mean: ± 0.000005), and all measurements were 
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normalized to the recommended 87Sr/86Sr ratio of 0.710250. 

 

Supplemental Discussion 

Because the current salinity (0-0.1 ppt) of Lake Washington has not changed significantly over 

the last 50 years [S1, S21], the rapid increase in armor plates in Lake Washington stickleback 

cannot be attributed to changes in salinity [S22, S23]. Although the water temperature of the lake 

has risen, possibly due to global warming [S24], higher water temperatures are usually 

associated with the presence of the low plate morph [S22, S23], suggesting that a change in 

water temperature is not the likely cause of rapid armor evolution. 
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Figure S1. Seasonal Variation in Lateral Plate Phenotype 

We analyzed stickleback collected in April-June 2005 from littoral zones (Points 1, 3-7; n = 186), 

October 2005 from the east channel (Point 8; n = 40), March 2006 from Area 1 of the northern 

pelagic zone (Point 2; n = 40), April-June 2006 from littoral zones (Points 1 and 5; n = 46), 

September 2006 from Area 2 of the northern pelagic zone (Point 9; n = 61), and May 2007 from 

littoral zones (Point 1; n = 45). The frequency of differently plated stickleback was not 

significantly different among time points (χ2-test; n = 418, χ2 = 15.9, d.f. = 10, p = 0.102).
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Figure S2. Association between Eda Genotype and Lateral Plate Number 

Histograms of plate number are shown for the Lake Washington stickleback that are 

homozygous for the complete allele (218bp allele) (upper panel; n = 79), homozygous for the 

low allele (158bp allele) (lower panel; n = 32), and heterozygous for the complete allele and low 

allele (middle panel; n = 85), at the Stn382 locus. Means (and 95% confidence intervals) of plate 

number for the 218/218, 218/158, and 158/158 genotypes are 32.58 (31.60-33.56), 26.00 

(25.02-26.9), and 10.00 (8.46-11.54). Stickleback collected from Point 1 (n = 67), Point 2 (n = 

27), Point 4 (n = 15), Point 5 (n = 21), Point 6 (n = 21), and Point 7 (n = 45) were analyzed. 
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Figure S3. Identification of Migrants by Sr Isotope Analysis 

Water was collected from different places and subjected to Sr isotope analysis (left panel), which 

revealed that the 87Sr/86Sr ratio is higher in seawater (blue circles) than lake water (black circles). 

Sr isotope analysis of the vertebrae of stickleback collected in the ship canal above the 

Chittenden Locks (right panel) revealed that one fish (blue circle) had a high 87Sr/86Sr and is 

likely to be a migrant from Puget Sound. 
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Figure S4. Estimation of Genetic Cluster Number with STRUCTURE 

(A) Mean ± S.D. of the log probability of data L(K) for three simulations is shown for K = 1 

through K =10. L(K) begins to plateau at K = 3 or 4. 

(B) The ad hoc statistic ΔK has a unimodal peak at K = 3, suggesting that three is the most 

probable number of genetic clusters (K). 
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Figure S5. Lack of Correlation between Plate Number and the Probability of Marine Ancestry  

The least squares linear regression line is shown. 
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Figure S6. Multidimensional Scaling of Genetic Distance Matrix 

(A) Scatterplot between the first (PCo1) and the second principal coordinate scores (PCo2) of the 

genetic distance matrix based on neutral microsatellite loci for Lake Washington, Puget Sound, 

and neighboring stream sticklebacks. 

(B) Scatterplot between PCo1 and plate number (left panel) and between PCo2 and plate number 

(right panel) in Lake Washington sticklebacks. The least squares linear regression line is shown. 



 

 20 

There is no significant association between plate number and genotypes at neutral microsatellite 

loci (Pearson correlation test): r = 0.148, p = 0.193 for PCo1; r = 0.007, p = 0.950 for PCo2. 
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Figure S7. Contribution of Selection and Migration to Plate Evolution. 

The expected frequency of completely plated morphs in Lake Washington in 2005 is plotted as a 

function of selection for or against the completely plated morph, and the rate of immigration 

from a marine population. The thick dark line represents the combination of migration rates and 

selection strengths that can yield the observed increase in complete morph frequency between 

1970 and 2005 (h = 0.5). The shape of the curve changes only slightly for different heritabilities 
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(h = 0, 0.5, or 1), primarily in elevation of the curve surface (not shown). To illustrate the process 

of estimating selection strength, we show a solid arrow representing an empirical estimate of the 

migration rate (the LAMARC estimate of m = 1.77 x 10-3). One then finds the corresponding 

selection strength that yields the empirically observed evolutionary change (vertical dashed 

arrow).
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Figure S8. Cutthroat Trout Catch Rates in Lake Washington. 

The mean (± 2SE) catch for all sizes of cutthroat trout per 24-hour set in benthic littoral gill nets, 

and the mean (± 2SE) catch of large (FL ≥ 300 mm) cutthroat trout per purse seine set has not 

changed in Lake Washington between 1971 and 2006. 
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