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Abstract 

Cigarette smoking is an established co-factor to human papillomavirus (HPV) in the development of 

cervical and vulvar squamous cell carcinoma (SCC), and may influence risk through an 

immunosuppressive pathway. Genetic variation in interleukin 2 (IL2), associated in some studies with 

inhibition of HPV-targeted immunity, may modify the effect of smoking on the risk of HPV-related 

anogenital cancers. We conducted a population-based case-only study to measure the departure from a 

multiplicative joint effect of cigarette smoking and IL2 variation on cervical and vulvar SCC. 

Genotyping of four IL2 tagSNPs (rs2069762, rs2069763, rs2069777, and rs2069778) was performed in 

399 cervical and 486 vulvar SCC cases who had been interviewed regarding their smoking history. 

Compared to cases carrying the rs2069762 TT genotype, we observed significant departures from 

multiplicativity for smoking and carriership of the TG or GG genotypes in vulvar SCC risk (interaction 

odds ratio (IOR)=1.67, 95% confidence interval (CI): 1.16, 2.41). Carriership of one of three 

diplotypes together with cigarette smoking was associated with either a supra-multiplicative 

(TGCT/GGCC, IOR=2.09, 95% CI: 0.98, 4.46) or sub-multiplicative (TTCC/TGTC, IOR=0.37, 95% 

CI: 0.16, 0.85 or TGCT/TGCC, IOR=0.37, 95% CI: 0.15, 0.87) joint effect in vulvar cancer risk. For 

cervical SCC, departure from multiplicativity was observed for smokers homozygous for the 

rs2069763 variant allele (TT versus GG or GT genotypes) (IOR=1.87, 95% CI: 1.00, 3.48), and for 

carriership of the TTCC/TTCC diplotype, (IOR=2.08, 95% CI: 1.01, 4.30). These results suggest that 

cervical and vulvar SCC risk among cigarette smokers is modified by genetic variation in IL2.  
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Introduction 

 Persistent oncogenic human papillomavirus (HPV) infection is etiologically linked to all 

cervical cancers and a large subset of vulvar cancers (1). The HPV-dependent vulvar cancers are 

associated with nonkeratinizing basaloid or warty vulvar intraepithelial neoplasia and primarily affect 

younger women. They bear remarkable resemblance to cervical squamous intraepithelial neoplasia and 

cancer, and are associated with similar HPV types and co-factors (2, 3). 

Cigarette smoking is among the most well-established HPV-co-factors in the etiology of these 

malignancies (4). Current smokers are at approximately two- to three-fold increased cervical squamous 

cell carcinoma (SCC) risk (5), and greater than three-fold vulvar SCC risk (2, 3), whereas former 

cigarette smokers tend to be at little or no increased risk (5, 6). Studies have also observed an 

association of cervical SCC risk with increasing duration of smoking (5, 7), although this trend appears 

to be driven by the high proportion of long-term smokers who are also current smokers (7). 

Experimental evidence linking smoking cessation and a decrease in cervical lesion size (8) also 

highlights the important role of current cigarette smoking in cervical SCC risk.  

 The biological mechanism whereby cigarette smoking increases cervical and vulvar SCC risk 

remains largely undetermined (9). One possibility is that smoking enhances immunosuppression (8). 

The importance of the adaptive immune response in HPV-associated cancer risk is emphasized by 

studies showing that HIV-infected women have a substantially increased risk of developing cervical 

and vulvar cancer (10, 11), and women with drug-induced immunosuppression are nine times more 

likely than the general population to develop an HPV infection, and 16 times more likely to develop 

cervical cancer (12). In immunocompetent patients capable of preventing persistent HPV infection and 

related neoplastic changes, Th1 cytokines such as interleukin 2 (IL-2) propagate a T lymphocyte-

mediated immune response to HPV and tumor antigens (13-16). IL-2 is a T lymphocyte derived 
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cytokine that is secreted minutes after activation of a T lymphocyte receptor by an antigen bound to a 

major histocompatibility complex receptor on an antigen presenting cell. IL-2 acts in an autocrine 

manner by binding the IL-2 receptor on activated T lymphocytes and inducing transcription of other 

Th1 cytokines, which together propagate the T lymphocyte response (17). IL-2 is considered to be a 

key component of the adaptive immune response to HPV infection and the development and growth of 

tumors driven by the viral oncogenes (18, 19).  

Experimental studies demonstrate an influence of both cigarette smoking (20-24) and genetic 

variation (25) on IL-2 expression, suggesting the possibility that cigarette smoking and inherited 

genetic variation in IL2 interact to increase cervical and vulvar SCC risk. We conducted the present 

study to test that hypothesis.  

 

Methods 

Study design 

 Assessing the joint effect of cigarette smoking and IL2 nucleotide variation on HPV-dependent 

cancers would ideally involve assessing the interaction effect among women who have persistent 

oncogenic HPV infection (26). Practically, however, oncogenic HPV infection in the general 

population of adult women identified with current detection methods is uncommon (between 2 and 

12%), and persistent infection is rare (27). A case-only design avoids the difficult task of selecting a 

control group with persistent HPV infection. Under the assumption of independence between cigarette 

smoking and variation in IL2, the interaction odds ratio (IOR) from a case-only design provides an 

estimate of effect modification equivalent to that derived from a case-control study under a 

multiplicative model (28). In addition, the case-only design offers higher precision to estimate the IOR 

compared to a standard case-control design (29).  
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Study population  

 This study was ancillary to a large population-based case-control study focused on host and 

environmental factors that contribute to HPV-related anogenital cancer risk (2, 30). Briefly, the case-

control study attempted to recruit all 18 to 74 year-old residents of King, Pierce, and Snohomish 

counties, Washington, diagnosed with  incident invasive cervical and invasive or in situ vulvar cancer 

between January 1986 and June 1998 or between January 2000 and December 2004. Cases were 

ascertained through the Cancer Surveillance System, a population-based registry that is a part of the 

National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program (31). To 

help ensure comparability between the cases and controls, who were identified and recruited using a 

one-step modification of the Waksberg-Mitofsky method of random-digit telephone dialing (32, 33) 

and frequency matched to cases by five-year age groups, only cases with residential telephones were 

eligible for the study. Cases with tumors that were not SCC (e.g., adenocarcinoma) were excluded 

from this ancillary study as those histologies are not related to cigarette smoking. Non-Caucasian 

women were excluded from this study because they comprised less than 10% of the original study 

population, precluding meaningful sub-group analyses stratified by race while increasing the 

possibility of bias due to population stratification. A sample of Caucasian controls from the parent 

study was included in this “case-only” study to test the assumption of independence between 

genotypes of IL2 variants and cigarette smoking. The cervical cancer control group was restricted to 

women without prior hysterectomy, thus reflecting the population from which the cases arose. No such 

restrictions were placed on the vulvar cancer controls  

 

Data and specimen collection  
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 In the case-control study, in-person interviews were conducted to elicit information on 

demographic and other characteristics with a known or suspected relationship to anogenital cancer, 

including cigarette smoking. A woman was considered a smoker if she reported smoking 100 or more 

cigarettes in her lifetime. Venous blood samples were drawn at the time of the interview to provide 

serum samples for HPV 16 and 18 antibody testing as described previously (34). Beginning in 1991, 

five years after the start of the study, we expanded the blood collection to include samples from which 

DNA could be isolated. We also recontacted cervical, but not vulvar, cancer cases interviewed in the 

earliest years of the study and asked them to provide these additional blood samples. A small 

proportion of study participants (3%) preferred to donate a buccal cell sample, which was collected 

using a standardized oral rinse procedure, in place of blood. We attempted to retrieve archival tissue 

blocks from biopsy or surgery to determine the presence and type of HPV DNA in the tumors of the 

cervical and vulvar cancer cases. HPV DNA typing on tumor tissue was performed using polymerase 

chain reaction (PCR) methods, as described in detail previously (35). 

 

Response Rates 

 Among the 1,189 eligible cervical SCC patients identified for the parent case-control study, 

744 (62.6%) were interviewed and among those interviewed 674 (90.6%) provided a specimen from 

which DNA could be obtained. A similar proportion, 67.6%, (807 of the 1194 eligible vulvar SCC 

cases) were interviewed, however, specimens from which DNA could be obtained were only collected 

from 73.4% of participating vulvar cancer cases. This percentage is largely affected by the fact that, as 

described above, the early version of the parent study protocol did not include collection of blood 

specimens from which DNA could be isolated, and that and the vulvar cancer cases, unlike the cervical 

cancer cases, were not reapproached for these specimens once the protocol was changed. Reasons for 
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non-participation were largely similar for the two cancers and included doctor refusal to allow us to 

contact the patient (5% and 6%, for cervical and vulvar cases respectively), refusal of the patient to 

participate or our inability to locate the patient (22% and 24%), or patient death (10% and 3%). Drawn 

from the Caucasian participants who had a sufficient DNA sample at the time of this study, our 

analyses included 399 cervical and 490 (434 in situ) vulvar SCC cases. Four vulvar SCC cases (3 in 

situ) were not included in any of the tables because a genotyping result could not be obtained from 

their samples for any of the polymorphisms included in this study, resulting in a total of 486 vulvar 

SCC cases. Sixty-three % (n=251) of cervical cancer cases and 71% (n=347) of vulvar cancer cases 

included in this study had tumor tissue available that had been tested for HPV DNA. Sixty-seven % of 

eligible control women agreed to participate, and 83.9% (N=1,372) of those interviewed donated a 

blood sample from which DNA could be obtained. 

The parent population-based study had no measure of HPV DNA in the cervix or vulva for 

control subjects. Yet, the assessment of independence of cigarette smoking and IL2 genotypes is best 

in a control sample that comes from the same pool of HPV infected women that give rise to the cases 

in this study. Thus, among the 1,094 eligible controls with genomic DNA available, we included in the 

present study only those that were positive for HPV16 or HPV18 L1 serum antibodies, a measure of 

past exposure to the virus, by a virus-like particle assay (n=236) (34).   

 

TagSNP selection  

 Information on IL2 nucleotide variation was obtained from the SeattleSNPs Variation 

Discovery Resource (36), http://pga.gs.washington.edu/data/il2/. Briefly, SeattleSNPs has resequenced 

exons, introns, and 1000 bp or more on the 5’ and 3’ ends of each target gene in DNA from 23 Centre 

d'Etude du Polymorphisme Humain (CEPH) parents of European descent and 24 African-Americans, 
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obtained from the Coriell Repository (Camden, NJ). Using the European descent data, all SNPs with a 

variant allele frequency of at least 5% were identified; seven out of the ten SNPs met this criterion. 

Next, a pairwise r2 cutpoint of 0.80 was used to delineate groups of highly correlated SNPs (37) and 

one polymorphism (i.e. tagSNPs) per group was selected to be genotyped. When more than one 

possible tagSNP for a particular group of correlated SNPs was identified, information regarding 

putative function reported in the literature and location of the SNP informed tagSNP selection. The 

National Center for Bioinformatics (NCBI) dbSNP build 127 reference sequence number for the four 

selected IL2 tagSNPs are rs2069762, rs2069763, rs2069777, and rs2069778.  

 

Genotyping of IL2 tagSNPs 

 Genomic DNA was extracted from buffy coat aliquots from blood samples, or cell pellets from 

buccal samples, using a phenol chloroform method (38). Genotyping was performed using Pre-

Designed or Custom TaqMan® genotyping assays from Applied Biosystems following manufacturer’s 

protocol (Applied Biosystems, Foster City, CA). Briefly, the assays were conducted in a 5 μl volume 

containing 5 to 50 ng genomic DNA, 2.5 μl of the 2x Universal Master Mix with uracil-DNA 

glucosylase 200 nM of each assay-specific primer and 900 nM of each assay-specific FAM and VIC 

fluorescently labeled probe. Reactions were amplified using a 9700 PCR machine or a 7500 Real-Time 

PCR system (Applied Biosystems, Foster City, CA) for 50ºC for 2 min, 95ºC 10 min followed by 40 to 

50 cycles of 92ºC for 15 to 30 s and 58 to 60ºC for 1 to 1.5 min. The fluorescence release was 

measured by the 7500 Real-Time PCR system using the allelic discrimination setting of the Sequence 

Detection Software version 1.2.3 (Applied Biosystems). Probe and primer sequences are listed in 

Supplementary Table 1. Two to three positive controls (samples known to be heterozygous or 
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homozygous for each allele based on sequencing) and negative controls (wells containing no DNA) 

were included in each reaction plate. Specimens were organized so that the replicate QC DNA 

aliquots, which comprised approximately 10% of the specimens, were distributed throughout the 

reaction plates. Analysis of these replicates revealed a low discordance proportion of 1%. Laboratory 

personnel were blinded to all research information about the samples, including the identities of the 

QC replicate aliquots.  

  

Data analysis 

 TagSNP genotypes were tested for consistency with Hardy-Weinberg equilibrium (HWE) 

within the HPV seropositive control sample using a Pearson’s χ² p value cutpoint of 0.05. The control 

sample was also used to test for independence of smoking status and IL2 tagSNP genotypes. One 

approach to test for independence is to use logistic regression to model smoking as a dependent 

variable and genotype as an independent variable among the controls. Alternatively, Umbach and 

Weinberg (1997) proposed a method which offers higher precision that uses a likelihood ratio test 

(LRT) to compare two nested log-linear models for each tagSNP (39). In the full model, the logarithm 

of the expected cell count was the dependent variable that fully parameterizes the joint effect of 

cigarette smoking and tagSNP genotypes separately for cases and controls. The reduced model fixed 

the joint effect parameter for the controls at zero. Thus the LRT comparing these two models is a test 

of the association between tagSNP genotypes and cigarette smoking among controls. An LRT p value 

of 0.05 or less, or an exponentiated joint effect parameter for cigarette smoking and tagSNP genotype 

among controls (The OR from the full model) departing substantially from the null, was taken as 

evidence of a statistically significant lack of independence between cigarette smoking status and IL2 
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genotypes. For the cervical cancer analyses, these models were fit after excluding 56 controls without 

intact uteri, resulting in 180 controls.   

 For tagSNPs that met the independence criteria, IORs and 95% confidence intervals (CIs) were 

calculated using logistic regression. Separately for the cervical and vulvar cancer case groups, current 

cigarette smokers were compared to former or never smokers as the outcome variable, and tagSNP 

genotypes comprised the predictor variables. The IORs represent the departure of the joint effect of IL2 

tagSNP genotypes and current cigarette smoking from that expected under a multiplicative model, on 

cervical and vulvar cancer risk. Genotype IORs were calculated without restricting to a particular 

genetic model, and additional IORs were calculated assuming dominant and recessive penetrance. 

Genotype IORs were also calculated on the sub-group of vulvar cancer cases testing positive for 

oncogenic HPV DNA in their tumors or positive for HPV16 or HPV18 L1 serum antibodies (n=325). 

Age at diagnosis, tumor stage, education, number of lifetime sexual partners, parity, oral contraceptive 

use, and family history of anogenital cancer were considered as potential confounding factors of the 

IORs, but did not have substantial influences and were not included in the final models.  

PHASE version 2.1 software (40) was used to statistically infer haplotypes in IL2. A log-

additive genetic model was assumed to obtain haplotype IORs and 95% CIs using logistic regression. 

We accounted for some of the uncertainty inherent in statistical determination of haplotypes by 

including all PHASE-inferred haplotypes into our logistic regression models as separate observations, 

weighted in proportion to their PHASE-inferred probabilities of being the true haplotype (41). We also 

calculated IORs and 95% CIs for pairs of haplotypes (diplotypes) using similar weighted logistic 

regression models. In the sections that follow, SNP alleles in each haplotype are listed from 5' to 3’ 

(rs2069762, rs2069763, rs2069777, rs2069778), and the variant allele at each locus is underlined. 
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The main effect of each tagSNP on cervical and vulvar cancer risk was assessed. Cervical 

cancer cases and vulvar cancer cases were compared to HPV16 or HPV18 L1 seropositive controls, 

and sub-analyses were conducted in which oncogenic HPV DNA positive or HPV16 or HPV18 L1 

seropositive vulvar cancer cases were compared to HPV16 or HPV18 L1 seropositive controls. 

Cervical cancer analyses were conducted after excluding controls without intact uteri. Separate logistic 

regression models were used to estimate genotype-specific ORs and 95% CI for each tagSNP and 

cancer site.  

  

Results 

 Selected characteristics of the cervical and vulvar cancer cases included in this study are 

presented in Table 1. Eighty-nine % of the vulvar cancer cases in this study were diagnosed with in 

situ tumors, and 83% of the cervical cancer cases were diagnosed with an invasive tumor staged 

(FIGO) 2b or less. On average, the vulvar and cervical cancer case groups were similar with respect to 

HPV positivity, education level and oral contraceptive usage. However, the vulvar cancer cases were 

older, more likely to be current smokers, had more sexual partners, had fewer live births, and were 

more likely to have had a family history of anogenital cancer compared to cervical cancer cases.  

TagSNP variant allele frequencies ranged from 0.07 to 0.38 (Table 2). We did not find 

statistical evidence of lack of fit to HWE for any of the tagSNPs. We observed independence of 

tagSNP genotypes and cigarette smoking among both cervical and vulvar HPV seropositive control 

groups, as indicated by ORs close to the null value and LRT p values ≥0.05 (Table 2).  

 Compared to homozygous carriers of the common allele of tagSNP rs2069762 (TT genotype), 

positive departures from multiplicativity were observed for vulvar cancer cases carrying one 

(IOR=1.69, 95% CI: 1.15, 2.47), or two (IOR=1.59, 95% CI: 0.76, 3.32) copies of the variant G allele. 
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The dominant genetic model showed a similar departure for smokers carrying either the TG or GG 

genotypes, versus carriers of the TT genotype (IOR=1.67, 95% CI: 1.16, 2.41). A similar departure 

from multiplicativity was observed when the analysis was restricted to the oncogenic HPV DNA 

positive or HPV16 or HPV18 L1 seropositive vulvar cancer cases, TG or GG genotypes versus TT, 

IOR=1.92, 95% CI: 1.21, 3.04. However, a slightly increased IOR was observed for all women who 

were tested for either tumor HPV DNA or HPV serology (N=363, IOR=1.83, 95% CI: 1.20, 2.79) 

compared to women who did not have tumor tissue available for testing (N=123, IOR=1.25, 95% CI: 

0.59, 2.67).  

In the recessive genetic model, homozygosity for the variant allele of rs2069763 (TT genotype) 

and cigarette smoking was associated with a significant positive departure from multiplicativity in 

cervical cancer risk (IOR=1.87, 95% CI: 1.00, 3.48), which was not observed for vulvar cancer 

(IOR=0.99, 95% CI: 0.50, 1.94). Genotypes of rs2069777 and rs2069778 did not show elevated or 

reduced IORs with cigarette smoking in either cervical or vulvar cancer risk.  

We observed five haplotypes in IL2, each uniquely tagged by the presence of a single variant 

allele, TTCC, GGCC, TGCT, and TGTC, or no variant alleles, TGCC (as indicated by the underlined 

allele), Table 4. Compared to carriers of the most common haplotype, T

262 

TCC, cigarette smoking and 

carriership of any other haplotype did not result in significant departures from multiplicativity in either 

cervical or vulvar cancer risk. The 

263 

264 

GGCC haplotype, defined by the variant allele of rs2069762, was 

associated with a positive, but not statistically significant, departure from multiplicativity in vulvar 

cancer risk (IOR=1.34, 95% CI: 0.94, 1.92). Compared to carriers of the most common diplotype 

(T

265 

266 

267 

TCC/GGCC), carriership of the TTCC/TTCC diplotype, defined by two copies of the variant allele 

of rs2069763, and cigarette smoking together resulted in a positive departure from multiplicative joint 

effects on cervical (IOR=2.08, 95% CI: 1.01, 4.30), but not vulvar (IOR=0.85, 95% CI: 0.41, 1.78), 

268 

269 

270 
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271 cancer risk (Table 5). The second most common diplotype among smokers with cervical cancer, 

TTCC/TTCC, defined by two copies of the variant allele of rs2069763, together with cigarette 

smoking was associated with a significant positive two-fold departure from multiplicatively in cervical 

cancer risk (IOR=2.08, 95% CI: 1.01, 4.30), compared to the reference diplotype, T

272 

273 

TCC/GGCC. 

Similarly, TGC

274 

T/GGCC, a common diplotype among vulvar cancer cases, was associated with a 

marginally significant positive two-fold departure from multiplicatively in vulvar cancer risk 

(IOR=2.09, 95% CI: 0.98, 4.46). Two rare diplotypes were associated with sub-multiplicative joint 

effects in vulvar cancer risk, T

275 

276 

277 

TCC/TGTC, IOR=0.37, 95% CI: 0.16, 0.85, and TGCT/TGCC, 

IOR=0.37, 95% CI: 0.15, 0.87.  
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The ORs for the main effect of each tagSNP on cervical and vulvar cancer risk are presented in 

Table 6. Compared to the rs2069762 TT genotype, the TG genotype was associated with a marginally 

significant increased risk of vulvar cancer (OR=1.28, 95% CI: 0.92-1.78), which was slightly more 

pronounced when the analysis was restricted to HPV positive vulvar cancer cases (OR=1.42, 95% CI: 

1.00-2.03). Compared to the rs2069763 GG genotype, the TT genotype was associated with a 

statistically significant decreased risk of vulvar cancer (OR=0.45, 95% CI: 0.27-0.76) that was 

essentially the same when the analysis was restricted to HPV positive cases, and a marginally 

significant decreased risk of cervical cancer (OR=0.60, 95% CI: 0.35-1.04). The ORs for cervical or 

vulvar cancer did not deviate significantly from the null for any of the other tagSNPs, nor were there 

substantial differences in ORs when the analyses were restricted to HPV positive vulvar cancer cases.  

 

Discussion  

Cigarette smoking is clearly an important risk factor for cervical and vulvar SCCs, but the 

mechanism underlying the association is unknown. To our knowledge, this is the first investigation 
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into effect modification of cigarette smoking by genetic variation in a T lymphocyte regulatory 

cytokine as a pathway to explain part of the increased risk.  

Prior studies have observed the presence of nicotine, cotinine, and other constituents of 

cigarette smoke and their metabolites in the cervical mucus of smokers (42, 43). These components 

have been shown to depress populations of cervical Langerhans cells and T lymphocytes (43, 44); cells 

that both produce and bind IL-2. IL-2 plays a critical role in propagating a Th1 mediated immune 

response, which is key in combating genital HPV infection and associated neoplasms (13-16). 

Furthermore, smokers have a near two-fold decrease in IL-2 concentration in cervical secretions, 

compared to non-smokers (45). Studies of non cervical-derived T lymphocytes have found that 

components of cigarette smoke, such as nicotine and hydroquinone, inhibit IL-2 production (20-24). 

Genetic variation in IL2 may have subtle effects on IL-2 transcription or protein structure that could 

influence concentrations or receptor binding (25), and potentially these phenotypes could be 

exacerbated when IL2 production is impaired by smoking. The joint effect of genetic variation and 

cigarette smoking could conceivably influence the ability of IL-2 to function normally, thereby 

increasing cancer risk.  

In our study, the joint effect of the G allele of tagSNP rs2069762 and cigarette smoking on 

vulvar cancer risk was nearly two-fold greater than expected under the multiplicative model. While 

there was a suggestion of an increased vulvar cancer risk associated with heterozygosity for 

rs2069762, the possibility that this was a spurious finding is supported by observation of a reduced risk 

of similar magnitude associated with homozygosity for the G allele. The haplotype containing the 

variant allele of rs2069762, GGCC, was also associated with a supra-multiplicative joint effect with 

smoking. The IOR for the diplotype carrying two copies of the variant allele of rs2069762, 

314 

315 

GGCC/GGCC, compared to the reference diplotype which had one copy of the variant allele, 316 
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TTCC/GGCC, was nearly null. This result is consistent with the single locus model which suggested a 

dominant genetic effect (i.e. similar IORs for heterozygotes and homozygotes for the variant allele). 

The rs2069762 polymorphism is located in a 5’ flanking, evolutionarily conserved, region of IL2 (46, 

47), and the variant allele has been associated with increased IL-2 transcription in cultured peripheral 

blood lymphocytes (25). Based on these limited experimental data, one might expect carriers of the 

variant allele (putative high IL-2 producers) to have a stronger T lymphocyte mediated immune 

response, and thus decreased risk of HPV-related cancer, and in combination with smoking, either no 

multiplicative effect on risk of HPV-related cancers, or potentially even a sub-multiplicative effect. 

Alternatively, the putative high IL-2-producing variant allele of rs2069762 may contribute to a positive 

interaction with cigarette smoking in vulvar cancer risk through an inflammatory pathway. A positive 

association between inflammation and vulvar cancer risk has been shown previously (48), and the 

high-producer IL-2 genotype could conceivably lead to an unregulated and unfavorable inflammatory 

response to HPV infection in vulvar tissue when coupled with cigarette smoking (49). The putative 

dampening effect of cigarette smoke on IL-2 levels may be outweighed by the tumor promoting 

potential of cigarette smoking which has been linked to the induction of the pro-inflammatory 

transcription factor NF-ΚΒ (50) and inhibition of apoptosis (51). Thus, while no consistent main effect 

of the rs2069762 was observed, it is conceivable the joint effect of rs2069762 and cigarette smoking 

would be important in vulvar cancer risk.  
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Our observation that the joint effect of rs2069762 and cigarette smoking was associated with a 

positive departure from multiplicativity in vulvar, but not cervical, cancer risk has no obvious 

explanation. However, as previously mentioned, functional effects of cigarette smoking and genetic 

variation on IL-2 concentrations have mostly been identified in healthy cervical tissue or peripheral 

blood, and thus may not reflect the immune environment in vulvar tissue. Unfortunately, there are 
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limited comparable data on cervical and vulvar HPV or cancer immunity. A few studies suggest that 

women with cervical and vulvar high grade lesions elicit a similar T lymphocyte responses to HPV 

(52, 53). In contrast, a study of HPV-16 positive high grade vulvar lesions and cervical cancer reported 

site-specific associations with polymorphisms of class I and II human leukocyte antigens (HLA) (54), 

loci that play an important role in regulating T lymphocyte responses to viral proteins. Among the 

cases and HPV seropositive controls included in this current study, the age-, sex partner-, parity-, and 

education-adjusted OR for current smoking in cervical cancer risk was 1.48 (95% CI: 0.99-2.22); in 

vulvar cancer the OR was 3.97 (95% CI: 2.73-5.79). These data, together with prior observations that 

cervical and vulvar cancer differ in strength of association with cigarette smoking (2-5), suggest that 

the mechanism of smoking related carcinogenesis may differ between sites. Furthermore, the 

proportion of current smokers who were heavy smokers (≥1 pack per day) was similar for cervical 

cancer (64%) and vulvar cancer (60%) cases, and restricting the analyses for rs2069762 to heavy 

smokers did not substantially influence the IORs.  These data add further support to the notion that 

there may be biological, possibly immunological, differences between the two sites that influence 

smoking-related carcinogenesis, not simply differences in smoking habits. Lastly, the observed 

statistically significant joint effect of rs2069762 and cigarette smoking in vulvar cancer risk may be a 

false positive finding.  

Rs2069762 was not in linkage disequilibrium with any other IL2 SNPs among Caucasians in 

the SeattleSNPs project, which reduces but does not eliminate the possibility that the interaction we 

observed was due to linkage with other loci. In the greater 40 kilo-bp region encompassing IL2, the 

International HapMap Project (55) shows linkage between the IL2 rs2069762 polymorphism and three 

3’ flanking polymorphisms in the testis nuclear RNA-binding protein gene (TENR, rs716501, 

rs17454584, and rs4833826), approximately 20 kilo-bp 3’ of IL2. Little is known regarding tissue-
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specific expression of TENR in humans, however in mice TENR is exclusively expressed in the testis 

thus an influence of these polymorphisms on vulvar cancer risk is highly unlikely (56).  

 Carriership of two copies of the variant allele of rs2069763, a synonymous SNP, was 

associated with at least a 1.66-fold excess joint effect with cigarette smoking in cervical cancer risk in 

the single locus and diplotype models. Additionally, homozygosity for the variant allele of rs2069763 

was associated with reduced risk of cervical and vulvar cancer. Although nothing is currently known 

regarding phenotypic consequences of this tagSNP, located in a highly conserved region of IL2, there 

is growing evidence that “silent” polymorphisms may elicit effects through subtle alterations in 

transcription or mRNA transport (57, 58). Furthermore, in the SeattleSNPs project, this tagSNP was in 

linkage disequilibrium with an intronic SNP (rs2069772) proximal (~100 bp) to the intron three-exon 

four junction and could feasibly alter splice factor binding. The observed reduced risk of cervical 

cancer associated with rs2069763 is seemingly at odds with the observation of a greater than 

multiplicative joint effect of rs2069763 and cigarette smoking in cervical cancer risk. These 

observations may be reconciled by the delicate immune balance between immunoregulation and 

inflammation in response to HPV infection and associated neoplastic changes. It is conceivable that the 

variant allele of rs2069772 is associated with reduced cervical and vulvar cancer risk via increased IL-

2 activity and thus an effective regulatory T-lymphocyte response against HPV and emerging cancer 

cells. However, in the context of a tumor-promoting environment associated with cigarette smoking as 

described above, a highly effective regulatory T-lymphocyte response may be shifted towards an 

unregulated inflammatory response, providing a mechanism for carcinogenesis (59). The lack of a joint 

effect between rs2069763 and cigarette smoking in vulvar cancer risk may reflect differences between 

the immune responses in these tissues. 
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It is apparent by the IL2 haplotypes inferred from our genotyping data that our study population 

exhibited a similar pattern of linkage disequilibrium to that of the SeattleSNPs population, from which 

our tagSNP selection was based. As each of our haplotypes was uniquely marked by a tagSNP variant 

allele, our haplotype models are essentially the same as log-additive single locus models. In contrast, 

the results from our diplotype analysis have the potential to identify joint influences of haplotypes. 

Carriership of one of three diplotypes together with cigarette smoking was associated with either a 

supra-multiplicative (TGCT/GGCC) or sub-multiplicative (TTCC/TGTC or TGCT/TGCC) joint effect 

in vulvar cancer risk. Due to the rarity of these diplotypes, it is possible that the observed interaction is 

an artifact of small numbers. Alternatively, the interaction of alleles on separate haplotypes may 

influence IL-2 production or function in some unknown way. The paucity of data regarding of 

functional consequences of these alleles makes it difficult to speculate on the biological effect of a 

potential interaction of alleles.   
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Our decision to use HPV seropositive controls for our analysis of independence and assessment 

of main effects ultimately influences the interpretation of the results. Immune system factors may 

influence HPV-associated cancer risk during (at least) three stages of disease progression: 1) upon 

initial HPV exposure, 2) during the establishment of a persistent HPV infection, and 3) during 

neoplastic progression. Seropositive controls are women who have mounted an immune response to 

HPV, however a proportion of these women may have developed a persistent infection while others 

may have encountered and cleared an infection. Furthermore, there is the possibility that women may 

have been exposed to an HPV infection, but did not mount an immune response and thus are not 

included in our control group. Our choice to include seropositive controls allows us to examine the role 

of IL2 variants in the stages of disease progression beyond the initial mounting of an immune response 

to an HPV infection. Since the motivation for this study was to investigate a potential mechanism for 
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current cigarette smoking, these controls allow us to focus on the later stages of disease progression 

where current cigarette smoking is most likely relevant. Unfortunately, we do not have cancer-free 

individuals with persistent gential HPV-infection defined by HPV DNA status in our study, therefore 

we cannot separate our inferences regarding the joint effect of IL2 variants and cigarette smoking, or 

IL2 variants alone, on HPV persistence and tumor progression.   

 We chose a case-only design because it offers several advantages, including high statistical 

power, for exploring the role of IL2 variation as a pathway to explain the increased risk of cervical and 

vulvar cancer associated with cigarette smoking. Although case-only studies are generally more 

powerful than case-control studies for detecting departures from multiplicative joint effects, they are 

still susceptible to sources of systematic error, which could lead to spurious results (60, 61). For 

example, selection bias could occur if a case’s inclusion in this study was related jointly to her 

smoking status and IL2 genotype, although this seems unlikely given that decisions to participate or 

provide a blood sample are made in the absence of knowledge of one’s genetic makeup. Similarly, 

recall of information on smoking by cases is not likely to be dependent on genotype. Therefore, 

misclassification of smoking status will most likely be non-differential, and if present would bias the 

IOR towards the null. Another limitation is of the case-only study is that it can only assess effect 

modification on a multiplicative, as opposed to additive, scale.  

Strengths of this study include the population-based recruitment of cases (and controls), 

attempted coverage of all common genetic variation in IL2, and the use of single- and multi-locus 

analytic methods. Furthermore, the assumption of conditional independence between the genotypes of 

each tagSNP and cigarette smoking in the HPV-exposed population from which the cervical and vulvar 

cases arise is an important foundation for this study, and we found this assumption to hold in a large 

sample of HPV seropositive controls.  
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 IL-2 is central to T lymphocyte immune response, but by no means is it the only influential 

cytokine or immune factor to potentially modulate the effect of cigarette smoking in cervical or vulvar 

cancer risk. For example, cervical cancer risk is reduced among carriers of the HLA Class II 

DRB1*13/DBQ1*0603 alleles (62), and possibly certain polymorphisms in genes coding for interferon 

gamma (63) and interleukin 10 (64). The possibility that these polymorphisms, or polymorphisms of 

other cytokines, receptors, or immune factors, modify the association between cigarette smoking and 

cancer risk has yet to be explored.  

 Substantial progress in recent years towards development and uptake of prophylactic HPV 

vaccines provides hope for reducing the burden of HPV infection and associated neoplasms in the 

future (65). Nonetheless, there remain a large number of women that will not benefit from the vaccine 

as they have already acquired HPV infection, are beyond the target age of vaccination, or live in low-

resource regions of the world that are challenged by the high cost and distribution of a vaccine (66, 

67). Identification of gene-environment interactions that contribute to cervical and vulvar cancer risk 

may help shed light on the biological mechanisms leading to cancer, and potentially identify women 

who are at increased risks of developing these malignancies. 
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671  
Table 1. Selected characteristics of cervical and vulvar squamous cell carcinoma cases  
 Cervical cancer cases 

(N=399) 
 Vulvar cancer cases 

(N=486)   
Mean age at diagnosis (years) 43.1  47.4 
Tumor stage at diagnosis by FIGO staging (%)    

Vulvar    
0     88.6 
1+    11.4 

Cervix    
<2b 82.9   
≥2b 17.1   

HPV DNA Testing (%)    
Not tested 36.6  28.6 
Tested 63.4   71.4  

Positive Result (high risk types)* 83.4  82.3 
Negative Result (high risk types)* 12.5  10.0 
Undetermined* 4.1  7.7 

Education (%)    
High school or less 37.9  37.9 
Less than 4 years of college  
or technical school  41.3  42.1 

4 years of college or more 20.8  20.0 
Cigarette Smoking (%)    

Never 38.4  20.2 
Former 26.9  22.6 
Current 34.7  57.2 

Number of lifetime sexual partners (%)    
1 9.6  7.6 
2 to 4  30.5  21.5 
5 to 14 44.1  43.8 
≥15 15.9  27.1 

Number of births (%)    
0 18.1  29.6 
1 16.3  19.3 
2 30.2  25.5 
≥3 35.4  25.5 

Duration of oral contraceptive use (%)    
Never or less than 6 months 31.4  29.6 
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6 to 59 months 31.4  32.3 
≥5 years  37.2  38.1 

First degree relative with anogenital cancer (%)    
Yes 3.7  8.0 
No 96.3   92.0 

* Represents the percentage of tested individuals 
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Table 2. IL2 tagSNP characteristics, smoking prevalence, and results from tests of independence of IL2 tagSNPs and cigarette smoking in controls  

TagSNP* Location† Gene 
feature‡ 

Alleles 
(common/variant)

Variant allele 
frequency 

Smoking 
prevalence§ 

Cervix controls Vulvar control

OR (95% CI)|| p value** OR (95% CI)  p
rs2069762 495 5’flanking T/G 0.23 23% 1.19 (0.69-2.06) 0.68 1.30 (0.82-2.04) 
rs2069763 993 Exon 1 G/T 0.38 23% 1.11 (0.66-1.85) 0.48 1.08 (0.69-1.67) 
rs2069777 2038 Intron 1 C/T 0.07 21% 1.23 (0.45-3.37) 0.69 0.90 (0.34-2.33) 
rs2069778 2340 Intron 1 C/T 0.18 18% 0.72 (0.35-1.46) 0.54 0.60 (0.31-1.11) 

*rs number refers to the National Center for Bioinformatics (NCBI) dbSNP build 127 reference sequence number.   
†Locations are with respect to the first nucleotide position in the NCBI GenBank entry: accession number AF359939.  
‡Location of tagSNP within gene: 5’ flanking is upstream of the first exon of the gene, exon is in the coding region of the gene, intron is between coding
of the gene. 
§Prevalence of current cigarette smoking among all controls (n=236) who carried at least one copy of the variant allele for each tagSNP 
||OR, odds ratio; CI, confidence interval. The ORs are the exponentiated joint effect parameters for cigarette smoking and tagSNP genotype among cont
from the full model (39) assuming a log-additive genetic model. These can be interpreted as the association between IL2 tagSNP genotypes and cigarett
smoking among controls. 
**Likelihood ratio test p value (39) 
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Table 3. Interaction odds ratios between IL2 genotypes and cigarette smoking on cervical and vulvar cancer risk 

TagSNP* Genotype 
Cervical cancer cases  Vulvar cancer cases 

Genotype frequency 
IOR (95% CI)† 

 Genotype frequency 
IOR (95% CI) 

Smokers Non-smokers   Smokers Non-smokers 
rs2069762 TT 0.54 0.51 1.00  0.42 0.56 1.00 

 TG 0.37 0.42 0.85 (0.55-1.32)  0.50 0.38 1.69 (1.15-2.47) 
 GG 0.09 0.07 1.29 (0.60-2.80)  0.08 0.06 1.59 (0.76-3.32) 
 TG or GG vs. TT‡   0.91 (0.60-1.38)    1.67 (1.16-2.41) 
 GG vs. TT or TG§   1.39 (0.66-2.93)    1.24 (0.61-2.54) 

rs2069763 GG 0.44 0.42 1.00  0.44 0.43 1.00 
 GT 0.39 0.48 0.79 (0.50-1.25)  0.48 0.49 0.98 (0.67-1.44) 
 TT 0.17 0.10 1.66 (0.86-3.22)  0.08 0.08 0.98 (0.48-1.97) 
 GT or TT vs. GG‡   0.94 (0.61-1.43)    0.98 (0.68-1.42) 
 TT vs. GG or GT§   1.87 (1.00-3.48)    0.99 (0.50-1.94) 

rs2069777 CC 0.86 0.85 1.00  0.86 0.80 1.00 
 CT 0.14 0.15 0.96 (0.53-1.74)  0.14 0.19 0.65 (0.39-1.06) 
 TT     0.01 0.01 0.72 (0.04-11.6) 
 CT or TT vs. CC‡       0.65 (0.40-1.06) 
 TT vs. CC or CT§       0.77 (0.05-12.40) 

rs2069778 CC 0.74 0.68 1.00  0.66 0.69 1.00 
 CT 0.22 0.28 0.70 (0.43-1.16)  0.31 0.29 1.17 (0.78-1.75) 
 TT 0.04 0.04 1.15 (0.40-3.33)  0.03 0.02 1.42 (0.41-4.95) 

 CT or TT vs. CC‡   0.75 (0.47-1.20)    1.18 (0.80-1.80) 
  TT vs. CC or CT§     1.26 (0.44-3.62)       1.35 (0.39-4.69) 

* rs number refers to the National Center for Bioinformatics (NCBI) dbSNP build 127 reference sequence number.   
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†IOR, interaction odds ratio; CI, confidence interval. 
‡Dominant genetic model. 
§Recessive genetic model. 
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Table 4. Interaction odds ratios between IL2 haplotypes and cigarette smoking on cervical and vulvar cancer risk 
based on a log-additive model 

Haplotype* 

Cervical cancer cases  Vulvar cancer cases 
Haplotype frequency 

IOR (95% CI)† 
 Haplotype frequency 

IOR (95% CI) 
Smokers Non-smokers  Smokers Non-

smokers 

TTCC 0.37 0.33 1.00  0.32 0.32 1.00 
GGCC 0.28 0.28 0.93 (0.63-1.36)  0.32 0.25 1.34 (0.94-1.92) 
TGCT 0.15 0.18 0.81 (0.52-1.26)  0.18 0.16 1.16 (0.79-1.71) 
TGCC 0.13 0.14 0.89 (0.57-1.41)  0.11 0.16 0.71 (0.47-1.07) 
TGTC 0.07 0.07 0.90 (0.49-1.65)  0.07 0.10 0.65 (0.39-1.07) 

*Alleles in each haplotype are listed from 5' to 3' (rs2069762, rs2069763, rs2069777, and rs2069778). Variant alleles 
are underlined. 

†IOR, interaction odds ratio; CI, confidence interval. Calculated assuming a log-additive genetic model. 
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Table 5. Interaction odds ratios between IL2 diplotypes and cigarette smoking on cervical and vulvar cancer risk 

Diplotype* 
Cervical cancer cases  Vulvar cancer cases 

Diplotype frequency 
IOR (95% CI)† 

 Diplotype frequency 
IOR (95% CI) 

Smokers Non-smokers  Smokers Non-smokers 
TTCC / GGCC 0.18 0.22 1.00  0.25 0.20 1.00 
TTCC / TTCC 0.17 0.10 2.08 (1.01-4.30)  0.08 0.08 0.85 (0.41-1.78) 
TTCC / TGCT 0.08 0.12 0.83 (0.37-1.87)  0.11 0.11 0.82 (0.43-1.56) 
TTCC / TGCC 0.11 0.08 1.69 (0.76-3.79)  0.07 0.08 0.74 (0.36-1.51) 
TGCT / GGCC 0.08 0.09 1.09 (0.47-2.53)  0.13 0.05 2.09 (0.98-4.46) 
GGCC / GGCC 0.09 0.07 1.68 (0.72-3.95)  0.07 0.06 0.97 (0.44-2.13) 
TGCC / GGCC 0.05 0.06 1.05 (0.41-2.72)  0.05 0.08 0.55 (0.26-1.17) 
TTCC / TGTC 0.03 0.05 0.72 (0.22-2.34)  0.04 0.09 0.37 (0.16-0.85) 
TGTC / GGCC 0.06 0.04 1.70 (0.63-4.58)  0.05 0.03 1.25 (0.47-3.33) 
TGCT / TGCC 0.03 0.06 0.65 (0.20-2.08)  0.03 0.08 0.37 (0.15-0.87) 
TGCT / TGCT 0.04 0.03 1.66 (0.54-5.11)  0.02 0.02 0.95 (0.26-3.47) 
TGCT / TGTC 0.03 0.02 2.28 (0.55-9.37)  0.03 0.04 0.53 (0.19-1.45) 
TGCC / TGCC 0.02 0.02 1.65 (0.38-7.19)  0.02 0.02 0.72 (0.20-2.55) 
TGCC / TGTC 0.02 0.04 0.77 (0.20-3.04)  0.01 0.03 0.35 (0.10-1.22) 

*The two haplotypes carried on each chromosome are separated by the “/”. Alleles in each haplotype are listed from 5' to 3' 
(rs2069762, rs2069763, rs2069777, and rs2069778). Variant alleles are underlined. 
†IOR, interaction odds ratio; CI, confidence interval. 
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Table 6. Main effect of each tagSNP on cervical and vulvar cancer risk  

TagSNP* Genotype 
OR (95% CI)† 

Cervical cancer Vulvar cancer 
rs2069762 TT 1.00 1.00 

 TG 1.14 (0.79-1.66) 1.28 (0.92-1.78) 
 GG 1.15 (0.57-2.29) 0.84 (0.47-1.50) 

rs2069763 GG 1.00 1.00 
 GT 0.78 (0.53-1.15) 0.97 (0.69-1.37) 
 TT 0.60 (0.35-1.04) 0.45 (0.27-0.76) 

rs2069777 CC 1.00 1.00 
 CT 1.12 (0.66-1.89) 1.33 (0.84-2.11) 

rs2069778 CC 1.00 1.00 
 CT 0.87 (0.58-1.30) 1.03 (0.73-1.47) 
 TT 1.31 (0.47-3.69) 0.67 (0.27-1.71) 

*rs number refers to the National Center for Bioinformatics (NCBI) 
dbSNP build 127 reference sequence number.   
†OR, odds ratio; CI, confidence interval. All controls were seropositive 
for HPV16 or HPV18 L1 antibodies.  
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Supplementary Table 1. Assay primer and probe sequences for IL2 tagSNPs*   

TagSNP† rs2069763 rs2069777 rs2069778 

Forward primer sequence 5'-TGCACCTACTTCAAGTTCTACAAAGAA-3'  5'-CATCCAAGCTCCTAGGCTACATTAG-3'  5'-GCTGTTTTCTGAAGAAAATTTCTCCACAT-3' 

Reverse primer sequence 5'-AAAGGAAATATACTTACATTAATTCCATTCAAAATCATCTG-3'  5'-TGGCACCAGATTTTGTTCATTCTCT-3'  5'-GCGCTTTCAATTCACCACTACAA-3' 

Probe sequence 1‡ 5'-ATCCAGCAGTAAATG-3'   5'-ACTGGCACAGCTACTA-3'   5'-TTCTACAAATTCGGGTTTAA-3'  

Probe sequence 2§ 5'-TAAATCCAGAAGTAAATG-3'   5'-ACTGGCACAACTACTA-3'   5'-ATTCTACAAATTCAGGTTTAA-3'  

Orientation Forward Forward Forward 
*The  rs2069762 was genotyped using Applied Biosystems Pre-Designed Taqman® genotyping assay for which the probes and primer sequences are 
proprietary information. 
†Rs number refers to the National Center for Bioinformatics (NCBI) dbSNP build 127 reference sequence number.   
‡Probe sequences were labeled with a 5' reporter VIC dye and 3' minor groove binding non-fluorescent quencher. 
§Probe sequences were labeled with a 5' reporter FAM dye and  3' minor groove binding non-fluorescent quencher. 

  
 
 
 
 
 
 
 


