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FINITE ELEMENT MODEL FOR THE STATIC ANALYSIS OF LAMINATED 
COMPOSITE AND SANDWICH PLATES 

M. Cetkovic1

1 Faculty of Civil Engineering, 
The University of Belgrade, Bul. kralja Aleksandra 73, 11000 Belgrade, Serbia 
e-mail: marina@grf.bg.ac.yu

ABSTRACT: Finite element model for the static analysis of laminated composite and sandwich plates, 
based on Generalized Laminate Plate Theory (GLPT) is presented in this paper. Within each layer, the 
theory assumes piece-wise variation of in-plane displacement components, constant transverse 
displacement component and parabolic distribution of shear stresses, thus accurately modeling the warping 
of cross section and including the effects of transverse shear deformation. Transverse shear stresses satisfy 
Hook’s low, 3D equilibrium equations and traction free boundary conditions. Using the assumed 
displacement field, linear strain-displacement relations and 3D constitutive equations of lamina, 
equilibrium equations are derived according to the principle of virtual displacements. In the finite element 
formulation, in-plane displacement components are through the thickness approximated using two-node 
linear 1D Lagrangian finite element, while the four and nine node 2D Lagrangian elements are used for 
approximation of displacements in plane. Numerical results for bending stresses, transverse shearing 
stresses and displacements are presented, showing the parametric effect of plate aspect ratio, side-to-
thickness ratio, lamination angle schemes and degree of orthotropy. The accuracy of the results is verified 
with the 3D elasticity theory, Higher-order Shear Deformation Theory (HSDT), First-order Shear
Deformation Theory (FSDT) and Classical Laminated Plate Theory (CLPT) available in the literature. It 
has been shown that GLPT finite element gives excellent agreement with 3D elasticity theory and may be 
used in the future linear and nonlinear analysis of laminated composites.  

Key words: composite plates, shear deformation, finite element model 

1. Introduction  

 The extensive use of fibrous composite materials in different industrial fields, such as in 
aircraft and aerospace industry, automobile industry, sporting goods, offshore structures, and civil 
engineering applications, has stimulated interest in accurate prediction of their structural 
behavior. Despite of excellent mechanical properties like high strength-to-weight and high 
stiffness-to-weight ratio, the low ratio of transverse shear modulus to in-plane tensile modulus 
make anisotropic plates more susceptible to transverse shear deformation, than isotropic plates. 
Furthermore, transverse discontinuous mechanical properties cause displacement field 321 uuu ,,
in the thickness direction which cam exhibit a rapid change of their slopes in correspondence to 
each layer interface. This is known as zigzag effects. Also transverse stresses zzyzxz ,, , for 

equilibrium reasons, must fulfill interlaminar continuity at each layer interface.  
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Figure 1 shows, from the qualitative point of view, displacement and transverse stress 
distributions in a multilayer structure. Both displacements and transverse stresses are 

0C continuous functions in thickness  z  direction, while displacements and transverse stresses 

field have, in the general, discontinuous first derivatives with correspondence to each interface 
where mechanical properties change. The fulfillment of 0

z
C -requirements is a crucial point of two 

dimensional modeling of multilayered structures.  
 Many refined theories originally developed for homogeneous isotropic thin, moderately thick 
and very thick plates are extended to laminated anisotropic plates and also new refined shear 
deformation theories are developed for accurate analysis of anisotropic laminated composites. All 
these theories are divided 
into two categories: 1) 
Equivalent single layer 
theories (ESL) such as: 
Classical Laminate Plate 
Theory (CLPT), First-order 
Shear Deformation Theory 
(FSDT) and Higher order 
Shear Deformation Theories 
(HSDT) and 2) Discrete 
layer theories or layerwise 
theories (LWT).
 The theories based on the 
equivalent single layer 
approach, are developed by 
expanding the displacement 
field in a power series expansion through the thickness coordinate. The Classical Laminate Plate 
Theory (CLPT), based on the Kirchhoff hypothesis neglects the transverse shear deformation, 
and is therefore limited to only thin plates. The theory is based on a linear displacement across the 
entire laminate. In First-order Shear Deformation Theory (FSDT) shear correction factor is 
required to account for strain energy of shear deformation. These factors depend upon the ply 
properties, ply lay-up, fiber orientation, boundary conditions, and the particular application. It is 
also known that these factors for multilayered composite plates are different from those of 
homogeneous plates. The limitations of classical and first order laminated plate theories forced 
the development of single layer models based on Higher order Shear Deformation Theories 
(HSDT). These models involve higher order expansions of displacement field in powers of the 
thickness coordinate, giving the quadratic variation of out-of plane strains and therefore not 
requiring the use of artificial shear correction factors. In all equivalent single layer (ESL)
theories, transverse shear stresses obtained by using the constitutive relations are discontinuous at 
the interfaces between the layers which are contradictory against the equilibrium conditions. Thus 
many authors suggested the use of three-dimensional equilibrium equations to obtain the 
transverse stresses through the thickness of the laminate.  
 To overcome the drawbacks of equivalent single layer theories, layerwise theories have been 
proposed. These theories are divided into two categories depending on the number on unknowns 
in the kinematical model that is 1) Layer dependent theories and 2) Layer independent theories. 
Layer independent theories are discrete layer theories in which the number of unknowns in the 
model does not depend on the number of layers in the laminate. In all these theories a piecewise 
(linear, cubic, etc.) displacement function is superimposed over the linear displacement field. In 
layer dependent theories number of unknowns in the model is dependent on the number of layers. 
They could account for any degree of approximation of in-plane and transverse displacement 
distribution through a proper selection of variables and functions.  
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Fig. 1. The 0

zC requirements. Comparison of displacement and transverse 

stress field between one-layer and four layer structures. 
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 In this paper Layer dependent theory, called Generalized Layerwise Plate Theory of Reddy is 
presented. The theory assumes transverse variation of the in-plane displacement components in 
terms of one-dimensional Lagrangian finite elements. The resulting strain field is kinematically 
correct in that the in-plane strains are continuous through the thickness allowing for the 
possibility of continuous transverse stresses. Transverse shear stresses satisfy Hook’s low, 3D 
equilibrium equations and traction free boundary conditions and have quadratic variation within 
each layer of the laminate. Following the displacement based finite element formulation, the main 
variables are displacements wvu ,,  in the middle surface nodes and II VU ,  displacements of 
the I-th plane nodes across the plate thickness (I=1, N). The aim of this paper is to evaluate the 
accuracy of the present formulation for bending stresses, transverse shearing stresses and 
displacements by comparing them with 3D elasticity theory, HSDT, FSDT and CLPT results 
available in the literature. 

2. Theoretical formulation 

2.1 Displacement field 

Fig. 2. Multilayer laminated plate 

Consider a laminated plate (Fig. 2) composed of n  orthotropic lamina. The integer k  denotes 
the layer number that starts from the plate bottom. Plate middle surface coordinates are zyx ,, ,

while layer coordinates are kkk zyx ,, . Plate and layer thickness are denoted as h  and kh ,
respectively. We assume that 1) the layers are perfectly bonded together, 2) the material of each 
layer is linearly elastic and has three planes of materials symmetry  (i.e., orthotropic), 3) strains 
are small, 4) each layer is of uniform thickness, 5) the inextensibility of normal is imposed. 

 The displacements components 321 uuu ,,  at a point zyx ,, can be written as: 

),(),,(

,),(),,(

,),(),,(

yxwzyxu

zyxVyxvzyxu

zyxUyxuzyxu

3

N

1I

II

2

N

1I

II

1

,    (1)  

where wvu ,, are the displacements of a point 0yx ,, on the reference plane of the laminate, 
IU and IV  are undetermined coefficients, and zI  are layerwise continuous functions of the 

thickness coordinate. In the view of finite element approximation, the functions zI are the 
one-dimensional (linear, quadratic or cubic) Lagrange interpolation functions of the thickness 
coordinates and II VU ,  are the values of 21 uu ,  at the I-th plane. If we assume linear Lagrange 
interpolation of in-plane displacement components through the thickness, it could be recognized 
that each layer is in fact a 1D finite element and that the in-plane displacements are piece-wise 
continuous through the laminate thickness. 
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2.2 Strain displacement relations 

 The strains associated with the displacement field are as follows: 
T
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2.3 Constitutive equations 

 The stress-strain relations in the laminate coordinates can be written as: 
k
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where
Tk

yzxzxyyyxx

k  and 
Tk

yzxzxyyyxx

k are stress and strain 

components, respectively, of k-th lamina in global coordinates.  

2.4 Virtual work statement 

The virtual work statement can be written using Hamilton’s principle: 

dAwq0
TT II00 NN  (4) 

where stress resultants are: 
II00 BAN
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Constitutive matrixes for the laminate are: 
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3. Finite Element Model

 The GLPT finite element consists of middle surface plane and I=1,N planes through the 
thickness of the plate (Fig. 3). The element requires only the 0C  continuity of major unknowns, 
thus in each node only a displacement components are adopted, that is wvu ,,  in the middle 

 surface element nodes and II VU ,  in the I-th plane element nodes. 
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Fig. 3. Plate finite element with N layers and m nodes 

3.1 Displacement field 

The generalized displacement over element e  can be expressed as: 
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where
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3.2 Strain field 

For the assumed linear strain-displacement relations, we have: 
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where
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3.3 Equilibrium equations 

 From the equation (4) we can obtain the finite element model: 
eee fK    (11) 

 Stiffness matrix for the element e  is: 
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 Force and displacement vectors for the element e  are: 
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3.4 Stress field 

 The piece-wise linear interpolation of displacement field through the thickness provide accurate 
prediction of in-plane stresses xyyyxx ,, . They can be computed from the constitutive 

relations: 
m
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 Interlaminar stresses 
yzxz ,  are assumed to have quadratic distribution within each layer. 

They are calculated by satisfying Hook’s low, 3D equilibrium equations and traction free 
boundary conditions. 

4. Numerical results and discussion

Fig. 4. Three layer orthotropic and sandwich laminated plate finite element  

Numerical results are presented for four and three layer orthotropic cross ply 0/90/90/0 , 0/90/0 
and angle ply 45/-45/45/-45, -45/45/-45 laminated plates and three layer sandwich plate subjected 
to sinusoidal and uniform transverse load (Fig. 4). The plate is made of one of the following 
materials: 
Mat  I   25020EG50EG50EG25EE 23131222321321221 .,./,./,./,/ ,

Mat  II   25050EG60EGEGopenEE 23131222321321221 .,./,.//,/ ,

Mat III  23044017810EG29720EG29280EG52520EE
231211312311212

.,.,.,.,.,.        
 The laminated plates have individual layers of equal thickness, while sandwich plate has core 
of thickness h80hc .  and flange of thickness h10h f .  and 10ha . The transverse 

deflections are given in non-dimensional form, when using material I II, or II respectively. 
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 For the interpolation of displacements in plane, linear and quadratic 2D Lagrangian 
interpolation functions are used, while transverse variation of in-plane displacement components 
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are given in terms of 1D Larangian finite elements. The stresses were computed at the Gauss 
points, closest to position where they have maximum values.  The aim of the analysis is to asses 
the quality of the finite element model and its abilities to model laminated composite plates.  

4.1 Simply supported square plate (0/90/90/0) under sinusoidal load )sin()sin(),(
b

y

a

x
qyxq

Fig. 5. Material I: a)The effect of material anisotropy (a/h=10) and b) The side to thickness ratio 
 on non-dimensional center deflection of cross-ply (0/90/90/0) square plate under sinusoidal load 

Figure 5 shows non-dimensional center deflection w  as a function of material anisotropy of the 
plate and side to thickness ratio. By increasing the degree of orthotropy, deflection becomes 
smaller, while the effects of shear deformation become greater, giving the advantage to shear 
deformation theories, rather than classical plate theory (Fig. 5a). It can be seen from Fig. 5b that 
center deflection decreases as we approach to thin plate limit. This is because thin plate 
assumption increases the stiffness of the plate, thus yielding to lower deflections. In both cases 
GLPT model is in close agreement with 3D or HSDT solutions.

4.2 Simply supported square plate under uniform (UDL) and sinusoidal (SSL) distributed load  

Fig. 6. Material I: a) The effect of aspect ratio on non-dimensional center deflection 
 of simply supported square plate (a/h=100) 

The effects of bending-stretching coupling on transverse deflection are shown on Figure 6. The 
GLPT results closely agree with CLPT results for thin plates (a/h=100). The Figure 6 also shows 
that the magnitude of deflections of symmetric laminates (0/90/90/0) are about two to three times 

         GLPT 

         CLPT 
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that of anti-symmetric (0/90/0/90) laminates for a/b>1. For uniformly distributed load there exists 
a ratio, around a/b=2.25 for (0/90/0/90) and a/b=3.5 for (0/90/90/0), for which the deflection is 
maximum of all ratios.  

4.3 Simply supported square plate (-45/45/-45)and (45/-45/45/-45)  under uniformly distributed        

transverse load 

Fig. 7. a) Mat II: The effect of anisotropy of 45/-45/45/-45 and b) Mat I: The effect of side to thickness 
ratio of -45/45/-45 of simply supported square plate on the non-dimensional center deflection 

 Figure 7 contains plots of a) four layer 45/-45/45/-45 anti-symmetric laminates for different 
values of E1/E2 ratio and b) three layer -45/45/-45 symmetric laminates versus side to thickness 
ratio. It can be seen from the Figure 7a that the increase in anisotropy ratio decreases the 
deflections of the plate. Also differences between closed form solution of FSDT and finite 
element solution of GLPT on Figure 7b can be attributed to the different representation of the 
shear deformation (Closed Form Solution, Finite Element Model of FSDT). 

4.4 Simply supported square sandwich plate under uniformly distributed transverse load  

 Table 1 displays the effects of modular ratio between outer and middle plies 2

1

1

1
EE on

non-dimensional center deflections, in-plane stresses and shear stresses of square sandwich plate 
(Mat III). We can see that as the module ratio between stiff faces and weak core increases,  

Table 1. Material III: Transverse deflection and stresses of sandwich plate for different E1
(1)/E1

(2) 

classical plate theory (CLPT) becomes inadequate and refined mathematical models may be 
used. Again the GLPT (FEM_9) model has excellent agreement with 3D elasticity model. 

CLPT 3D HSDT FEM_9 CLPT 3D HSDT FEM_9

0w  216.94 258.97 256.81 258.68 81.768 121.72 114.42 121.70 

1 -61.141 -60.353 -60.330 -60.275 -69.135 -66.787 -66.834 -66.713 
o2 -48.913 -46.623 -46.981 -46.490 -55.308 -48.299 -50.269 -48.238 

u2 -9.7826 -9.3402 -9.3962 -9.298 -3.6872 -3.2379 -3.3513 -3.216 

o4 9.7826 9.2845 9.3962 9.298 3.6872 3.2009 3.3513 3.216 

u4 48.913 46.426 46.981 46.490 55.308 48.028 50.269 48.238 

px

5 61.141 60.155 60.330 60.275 69.135 66.513 66.834 66.713 

5

q
xz

3 4.5899 4.3641 4.7130 4.3817 

15

4.2825 3.9638 3.9084 4.0090 
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4.5 Simply supported square plate (0/90/0) under uniformly distributed transverse load 

 The accuracy of results for stresses and displacements of simply supported square 0/90/0 
laminated plate (Mat I) is verified by comparison of finite element results with closed form 
solution of the GLPT[4] .   

Fig. 8. Material I: Stress and deformation surfaces of 0/90/0 square laminated plate ( /h=2)
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Table 2. Material I: Stress and deformation surfaces of 0/90/0 square laminated plate ( /h=2)

 Table 2 shows that the finite element stress and displacement field convergence to the 
analytical solutions of GLPT[4].

5.Conclusion

 In this paper a displacement finite-element formulation of generalized laminated theory of 
Reddy is presented. It has been shown that proposed element gives excellent results for both thick 
and thin arbitrary laminated anisotropic plates. The result for interlaminar stress and displacement 
filed are closest to 3D elasticity solutions, with less computational costs, and can be used in the 
future failure analysis of composite laminates. 
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solution 
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1G -4.9427 -4.9054 

2D 3.4210 3.3964 

2G 0.09894 0.09825 

3D -0.09894 -0.09825 

3G -3.4210 -3.3964 

4D 4.9427 4.9054 

yy
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4 x 4 

Analytical 

solution 
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4 x 4 

Analytical 

solution 

1 0 0 0 0 

2 0.184954 0.187025 0.763926 0.748799 

3 0.333565 0.326583 1.12738 1.09753 

4 0.445833 0.418675 1.09037 1.04618 

1

5 0.521759 0.463301 0.652897 0.59477 

1 0.521759 0.463301 0.652897 0.59477 

2 1.02153 0.986492 0.590201 0.58255 

3 1.18811 1.16089 0.569302 0.578477 

4 1.02153 0.986492 0.590201 0.58255 

2

5 0.521759 0.463301 0.652897 0.59477 

1 0.521759 0.463301 0.652897 0.59477 

2 0.445833 0.418675 1.09037 1.04618 

3 0.333565 0.326583 1.12738 1.09753 

4 0.184954 0.187025 0.763926 0.748799 

3

5 0 0 0 0 

N   
_9 

4 x 4 

Analytical 

solution 

_9

4 x 4 

Analytical 

solution 
u v

1 0.1655 0.1655 0.5697 0.5697 

2 -0.1210 -0.1210 0.1361 0.1361 

3 0.1210 0.1210 -0.1361 -0.1361 

4 -0.1655 -0.1655 -0.56971 -0.5697 
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