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MODIFICATION OF INPUT IMAGES FOR IMPROVING THE ACCURACY

OF RICE FIELD CLASSIFICATION USING MODIS DATA

I Wayan Nuarsa'?, Fumihiko Nishio', And Chiharu Hongo1

Abstract. The stondord imoge clossification method typically uses multispectral imogery
on ong acquisition date os on input for classification. Rice fields exhibit high voariobility in
lond cover states, which influences their reflectonce. Using the existing stondord method for
rice field clossification may increose errors of commission ond omission, thereby reducing
clossification accuracy. This study utilised temporal vorionce in o vegetotion index os o
modified input image for rice field classification. The results showed thot clossification of
rice fields using modified input imoges provided o better result. Using the modified
clossification input improved the correspondence between rice field area obtained from the
clossification result ond reference dato (R2 increosed from 0.2557 to 0.9656 for regency-
level comparisons ond from 0.5045 to 0.8698 for district-level comparisons). The
clossification occuracy ond the estimated Koppo volue olso increosed when using the
modified classification input compored to the stondord method, from 66.33 to 83.73 ond
from 0.49 to 0.77, respectively. The commission error, omission error, ond Koppa vorionce
decreased from 68.11 to 42.36, 28.48 to 27.97, and 0.00159 to 0.00039, respectively, when
using modified input imoges compored to the stondord method. The Kappo onalysis
concluded thot there ore significont differences between the procedure developed in this
study ond the stondord method for rice field clossification. Consequently, the modified
clossification method developed here is significont improvement over the stondord
procedure.
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1. Introduction

Rice is the primary food source for
more thon three billion people ond is ong
of the world’s major stople foods. Paddy
rice fields account for approximately 15%
of the world’s aroble lond (Khush, 2005;
IRRI, 1993). A unique physical feature of
paddy fields is thot the rice is grown on
flooded soils. This feature is significont in
terms of both trace gos emissions ond
woter resource monogement. Seasonally
flooded rice poddies ore o significont
source of methone emissions (Denier,
2000), contributing over 10% of the total
methone flux to the atmosphere (Prother et
al., 2001), which may have substontiol
impocts on otmospheric chemistry ond

climate. Agricultural woter use (in the
form of irrigation withdrowals) accounted
for ~70% of global freshwater withdrawols
(Somad et al, 1992). Mopping the
distribution of rice figlds is importont not
only for food security but olso for the
monogement of water resources ond the
estimation of trace gos emissions (Xico et
al., 2005; Motthews et al., 2000).
Therefore, more accurate doto reloted to
the totol rice field oreo, its distribution, ond
its chonges over time ore gssential.

Sotellite remote sensing hos been
widely opplied ond is recognised os a
powerful ond effective tool for mopping
lond use ond lond cover (Horris ond
Venturo, 1995; Yeh ond Li, 1999). The
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Moderate Resolution Imoging
Spectroradiometer  (MODIS)  instrument
offers consideroble potential for ropid ond
repetitive  lorge-areo. crop classification
given its neor-doily global coverage of
science-quality observations ond products
(Justice ond Townshend, 2002), which are
avoiloble ot moderate spotiol resolutions
(250, 500 ond 1000 m). Several studies
have used multi-temporal MODIS data to
classify specific crop types (Lobell ond
Asner, 2004; Doraiswomy et al., 2005;
Chang et al., 2007; Potgister et al., 2007,
Wardlow ond Egbert, 2008), cropping
rotations (Morton et al., 2006; Sokamoto et
al., 2006; Brown et al., 2007; Wardlow et
al., 2006), ond crop-related lond use
proctices (e.g., irrigation ond follow)
(Wardlow ond Egbert, 2008) as well os to
monitor crop phenology (Sokamoto et al.,
2005; Niel and McVicar, 2001).

Image classification is one of the most
populor remote sensing opplications. This
process primorily uses the spectrol
information provided in remotely sensed
doto to discriminate between perceived
groupings of vegetative cover on the
ground (Niel ond McVicar, 2001). The
spatial ond temporal information included
in single dote ond time series data usuolly
plays o secondory role but con aid in the
classification procedure. The
discriminotion of crops is usuadlly
performed with ‘supervised’ or
‘unsupervised’  classifiers. The baosic
difference  between these types of
clossification is the process by which the
spectral charocteristics of the different
groupings ore defined (Atkinson ond
Lewis, 2000). Common clossification
algorithms include moximum likelihood,
minimum  distonce to meon, ond
porallelepiped (Jensen, 1986). Research on
clossification olgorithms to identify rice
fields is widespread (Bachelet, 1995;
Okomoto ond Kowoshima, 1999; Fang,
1998; Fang et al., 1998; Niel et al., 2003).

Modification of Input Images

Agriculturol rice fields have a lorge
variety of lond cover stotes that con ronge
from water bodies just before rice
tronsplonting to mixed water, vegetation,
or bore soil just ofter harvesting. The use
of o single procedure for rice field
clossification is difficult becouse of the
high variobility of rice field lond cover
stotes. The lorge voriety of lond cover
states could couse increoses in commission
ond omission errors, thereby decreasing
overall accurocy. This is coused by non-
rice field pixels being clossified os rice
field pixels while, ot the some time, not oll
rice field pixels ore correctly classified as
rice fields (Lillesond ond Kiefer, 2000). A
stondord imoge clossification procedure is
to only use o multispectral imoge from one
acquisition dote. In supervised
classification, o training oreo is selected
from this imoge ond ong of several imoge
clossification methods is then applied. In
this study, we modified the input to the
imoge clossification process. We used the
varionce of three vegetation indices over
time as on input to the rice clossification
procedure. The objective of this study was
to compare the accurocy of rice figld imoge
clossification between the stondord method
ond the modified input method using
reference doto.

2. Data, and Method
2.1. Background and study area

The study areo is located in the Bali
Province of Indonesio ond is centred at
latitude 8°40°00” S ond longitude
115°19°00” E (Figure 1). In oddition to
being o populor internotional tourism
destination, Bali Islond, olthough relatively
smoll, is olso historicolly ong of the prime
rice-producing orgos in  Indonesio.
Approximotely 0.5 million tons (1.6% of
Indonesia’s rice production) is contributed
by the Boli Province. Agricultural rice
fields in Bali consist of irrigated ficlds ond
non-irrigated fields. The water source for
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the irrigoted rice fields is rivers, whergos
the woter for non-irrigoted rice figlds
comes from rainfall. At different times of
the year, both irrigated ond non-irrigated
rice field londs are not only used for rice
paddies but also for seasonal crops such os
corn, soybeons, ond nuts. However, the
type of seosonal ploant grown from yeor to
year is usuolly similar from ong ploce to
onother. In humid tropic regions, such as
the study area, rice plonts con be planted ot
ony time. However, plonting is influenced
by water ovailobility. Therefore, on
irrigated land, rice plonting olternotes

Buleleng

between regions, whereos on non-irrigoted
lond, rice plonting occurs in the roiny
season. Formers usuolly plont rice two or
three times per yeor ond use the remaining
time for other seasonal crops (Food Crops
Agriculture Department, 2006). Rice plonts
are typically horvested after three months,
with o production of around five tons per
hectore per crop rotation. The total

agricultural rice area in Boli is 107,437.50
ho.

%A

Earangasem

Figure 1. Mop of the study area. Boli province consists of ning regencies
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2.2. MODIS images

Among the suite of standard MODIS
data products available, we used the 16-
day composite MODIS Vegetation Indices
Product (MODI13Q1). Each 16-day
composite image includes blue, red, and
near-infrared reflectonces, centred of 469-
nonometers, 645-nonometers, ond 858-
nanometers, respectively, Normalised
Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) ot a
spatial resolution of 250 m os o gridded
level-3 product in the Sinusoidal
projection. In the production of
MOD 13Q1, otmospheric corrections for
goses, thin cirrus clouds and cerosols ore
implemented (Vermote ond Vermeulen,
1999). In addition, The MODIS NDVI ond
EVI products are computed from
atmosphericolly corrected bi-directional
surfoce reflectances that have been masked
for water, clouds, heavy oerosols, and
cloud shadows. The products ore Validoted
Stoge 2, meaning thot accurocy has been
ossessed over o widely distributed set of
locations and time periods vio sgveral
ground-truth ond validation efforts.
Although there may be later, improved
versions, these dota are ready for use in
scientific publicoations
(https://lpdaac.usgs.gov/Ipdaoc/products
/modis_products _table/). In this study, we
downlooaded MOD13Q1 dota for 2008
(twenty-three 16-day composites) from the
USGS EROS Data Center
(http://edc.usgs.gov/).

2.3. Calculation of vegetation index (VI)

The vegetation indices used in this
study were NDVI, EVI, Normalised
Difference Water Index (NDWI), Ratio
Vegetation Index (RVI), ond Soil Adjusted
Vegetation Index (SAVI). NDVI ond EVI
were directly obtoined from the USGS
EROS Dato Center, whereos NDWI, RVI,
ond SAVI were calculated from the red,
near-infrared, ond middle-infrared bands of

Modification of Input Images

the MODIS product. The equations for
these vegetation indices ore os follows:

NDVI = Prir = Pred (1)
Prir + Praa
T 2
EVI=252x i @
pnir + (6 x prsd) - (75 pri:;s) +1
Prir — Pawir
NDWI= ——
pm’r + Pswir (3)
RVI = Prir
Pred (4)

SAVI = (1 Li L] (p:"zir' - prsd)
Pair + Pred +L (5)

where swir, nir, , and b ore the middle-
infrared, neor-infrored, red, ond blue bond
of the MODIS imoges, respectively, ond L
is a constont (reloted to the slope of the
soil-ling in a feature-space plot) that is
usually set to 0.5.

While NDVI correlates with the leaf
orea index (LAI) of rice fields (Xioo et al.,
2002), it hos several limitations, including
saturation under closed conopies and soil
background (Huete et al., 2002; Xioo et
al., 2003). The blue band is sensitive to
atmospheric conditions and is used for
atmospheric correction. EVI directly
adjusts the reflectance in the red boand os o
function of the reflectonce in the blue
band, and it accounts for residual
otmospheric contaminotion (€.g., aerosols)
ond voriable soil ond conopy bockground
reflectonce (Huste et al., 2002). The SAVI
index con minimise soil brightness
influences from spectrol vegetotion indices
involving red ond neor-infrored (NIR)
wavelengths (Huete, 1988), while RVI is a
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good indicator of crop growth for the
entire growth cycle (Gupto, 1993).

The odvontage of using o vegetation
index compored to single bonds is the
aobility to reduce the spectrol doto to o
single number that is related to physicol
chorocteristics of the vegetation (e.g., leaf
areo, biomass, productivity, photosynthetic
activity, or percent cover) (Boret ond
Guyot, 1991; Husete, 1988). At the same
time, it is possible to minimise the effects
of internal (g.g., conopy geometry, ond leaf
ond soil properties) ond external foctors
(e.g., sun-torget-sensor  ongles  ond
atmospheric conditions at the time of
imoge ocquisition) on the spectral data
(Baret ond Guyot, 1991; Huete ond
Worrick, 1990; Huste ond Escodofol,
1991).

2.4. Image classification

Image clossification wos performed
using two different procedures. The first
used o stondord imoge for input ond the
second used o modified image for input.
For the stondord clossification procedure, o
multispectral imoge from one ocquisition
date wos used. We used o multispectrol
imoge from 6 to 21 April 2008 (16-day
composite) due to the foct that this imoge
was freg from clouds. From the four bonds
avoiloble in this MODIS product, we used
bonds 1, 2 ond 3 in the blug, red, ond neor-
infrared regions, respectively, os inputs for
multispectral imoge classification.

For the second clossification procedure,
we used vorionce mops of three selected
vegetation indices os inputs for imoge
classification. The voarionce maps of the
VIs were derived from o layer-stocking
process that produced o multi-bond imoge
consisting of 23 imoges (all composite
imoges in 2008). From the multibond
imoge, we colculated the vorionce of each
pixel across time periods, producing o
varionce mop. To select the three best VIs
from the five VIs evoluated in this study,

we used the difference in the vorionce
volue between rice fields ond other lond
uses. Higher varionce differences between
rice fields ond other land uses indicoted on
improved obility to discriminate these
closses. Hence, the threg VIs thot had the
highest varionce difference values between
rice fields ond other lond uses were
selected os inputs in the multispectrol
imoge clossification.

The algorithm developed in this study
was only designed to discriminate rice
fields from other lond uses becouse the
stondord procedure hod limitotions dug to
the high voriation in lond cover stotes of
rice fields. Therefore, the selection of
training oreos for the clossification wos
only performed in rice fields. However, for
improved results, we divided rice fields
into two sub-closses: irrigoted ond non-
irrigated. For consistency, we used the
some troining orea for imoge clossification
in the modified procedure developed in
this study ond the stondord procedure.
Imoge clossificotion was performed using
the Moximum Likelihood algorithm for
both procedures.

2.5 Quantitative evaluation of
classification results

The quontitative gvoluation wos performed
by comporing the clossification result with
the existing lond use mops released by the
Nationol Lond Agency. The results of the
modified clossification procedure
developed in this study were compared to
the results of the stondord clossification
procedure. To determing which
clossification procedure more occurotely
clossified rice figlds, we wused two
evaluotion methods. First, we used o
regression method under the general
assumption thaot the method with the higher
coefficient of dstermination (R”) ond lower
root meon squore error (RMSE) with
respect to the reference data wos more
accurate. These comparison methods were
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performed at the regency and district levels
using 9 and 52 samples based on the
number of regencies and districts in the
study area. R and RMSE were calculated
as follows:

p2 = 207 =3)’
Ly —%)?
(®)
where R’, y, ¥, j_/ , and ¥ are the coefficient

of determination, a measured value, an
estimated value, and the mean of the
estimated values, respectively, and

%2@—?32

where RMSE, %, y,, and n are the root

RMSE =

©)

mean square error, an estimated value of
the ith sample, a measured value of the ith
sample, and the number of samples,
respectively.

The second evaluation method was the
Kappa analysis (Congalton and Green,
1999). The Kappa analysis was used to
determine whether the modified procedure
developed in the study was significantly
different from the standard methods. The
first step of the Kappa analysis was to
create  an error matrix for Dboth
classification procedures. In this study,
only two classes were used, rice field and
non-rice field. From the error matrix, we
can calculate the commission error,
omission error, and overall accuracy as
follows:

Commission error =
Total pixel of non ricefield iz classified as ricefield

100
Total pixel of rice field elazsification resule x

(10)
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Omission error =

Total pixel of rice field iz not clazsified as rice field

Total pixel of actually ricefield x100
(11
Overall accuracy =
Total plxe;:::]n::::::z classified €100
(12)

The next step of the Kappa analysis is
to calculate the estimated Kappa statistic,
Kappa variance, and z-score as follows:

k k
R n;”ﬁ _Zlnr'.n.i
I [ =
K= —
-y n.n,
i<l (13)
where K is the estimated Kappa, n is
number of sample tests, n; is the sample
row i, n; is the sample column j, and k is
‘row x column.” The formula for Kappa
variance is

16(1-6) 2(1-4)(246-6)

(1-8)'(6-4))

var(K) =~ +
()mmw ETRa™Y,
o (14)
where Var(K| = Kappa variance,
1 k
8 —Er_z_l:”ﬁ
(&) L |
2= ’Z_I:"f.n.f
1k
6 =—2> M (M. +n,;)
m i3
LA ’
6 =—5 2 2 (m.+n,;)
L
A
Jvér(ﬁl)+vér(:}%3) 13)

where Z is the z-score for two methods, K;

and Kz are the estimated Kappa values for
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Method 1 and Method 2, and var[Kl] and

Var[K:} are the Kappa variances for
Method 1 and Method 2.

The z-score resulting from the above
calculation was then compared with the
standard normal critical value. For a
confidence level of (.95, or o = 0.05 in the
two-tailed Z-test, the standard deviation
from the mean of the Z-distribution is 1.96.
This means that if the z-score is greater
than 1.96, we reject a null hypothesis (H0),
and Method 1 and 2 are significantly
different. Otherwise, we accept the HO,
and there is no difference between
Methods 1 and 2. The research procedure
is shown schematically in Figure 2.

MODIS Vegelation Indices 16-Day
L3 Global 250m (MOD1301) 2008

2 v
EVI, NDVI, NDWI, Blue, Red, Infrared
RVI. SAVI band
v

Land use map
(relerence

Layer stacking (build a
multiband from 23

¥
Creating a variance
man from multiband
¥ y
Temporal variance Rice
analvsis field

v

Select three best VI
(NDVI, RVIL, SAVI)

v y

Selecling (raining area [
for rice field
¥
Supervised images
classification

¥ ¥

Rice map [rom
the modified

Rice map [rom
standard

2 2

Accuracy assessment <
Reeression and Kappa

Figure 2. Data analysis procedure used in
this study

3. Results and Discussion
3.1. Temporal variability of the
vegetation index of land uses.

The entire vegetation index of land uses
varied in the study area during 2008. The
highest variability occurred in the irrigated
rice fields, followed by the non-irrigated
rice fields. The other land uses, such as
settlement, mixed forest, mixed garden,
shrub, and dry land, had low variability in
the vegetation index for the year. The
NDVTI of irrigated rice fields was high at
certain times and overlapped with mixed
forest, mixed garden, and dry land.
However, the value was low at other times
and was similar to the values for settlement
(Figure 3 and Figure 4). Non-irrigated rice
fields also had a similar tendency, although
NDVI values were not as high as irrigated
rice fields. The large fluctuations in the
vegetation index of irrigated and non-
irrigated rice fields were due to the high
degree of variation in their land covers.
When the areas were being planted with
rice plants or other seasonal crops, the
vegetation index was similar to that of
mixed forest or mixed garden. However, if’
no crops were planted, the land cover
resembled settlement.

To select the three best vegetation
indices for rice field classification, we had
to determine the average variance of land
uses and the difference in the variance of
irrigated and non-irrigated rice fields
versus other land uses. Table 1 shows the
average temporal variance of the Vs for
the main land uses in the study area. The
average variance of EVI for irrigated and
non-irrigated rice fields compared with
shrubs was similar. This means that it will
be difficult to separate rice field and shrub
classes. A similar situation occurred with
NDWI, where irrigated rice fields had a
similar average variance as shrub and
mixed garden classes.
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Figure 3. Temporal variobility of NDVI for irrigated rice figlds, non-irrigoted rice
fields, settlement, mixed forest, ond dry lond.
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Figure 4. Temporoal variobility of NDVI for irrigoted rice figlds, non-irrigated rice fields,
mixed gorden, ond shrub
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On the other hand, the average varionce of
SAVI, RVI, and NDVI for irrigoted ond
non-irrigoted rice fields was significontly
different from the average vorionce for the
other lond uses (Table 1). The difference in
averoge vorionce between irrigated rice
fields compared to other lond uses for
SAVI wos between 2.1465 to 53.9397 (not
including non-irrigated rice fields becomse
irrigoted ond non-irrigated ore classified os
a single closs). For RVI ond NDVI, these
differences were Dbetween 2.9309 to

672.5265 ond between 2.1973 to 12.2630,
respectively. However, for EVI ond
NDWI, the differences usually approoched
one (Toble 2). Therefore, SAVI, RVI ond
NDVI were selected os the best vegetation
indices for distinguishing irrigated ond
non-irrigoted rice fields from the other lond
uses. These VIs were then used for
multispectral rice figld classification.

Table 1. Average temporol varionce of several VIs for the moin lond uses.

Maoain Lond Uses EVI NDWI SAVI RVI  NDVI
Irrigated rice field 0.0311 0.0218 0.0250 117.4982  0.0362
Non-irrigated rice field 0.0313 0.0111 0.0205 61.1684 0.0330
Settlement 0.0019 0.0031 0.0005 0.1747  0.0030
Mixed forest 0.0209 0.0155 0.0053  40.0893  0.0084
Mixed gorden 0.0129 0.0232 0.0080  35.3451 0.0058
Shrub 0.0311 0.0204 0.0084  23.5978 0.0156
Dry Lond 0.0195 0.0324 0.0117  12.6876  0.0165

Toble 2. Difference in vorionce values between rice fields and other lond uses.

Maoain Lond Uses EVI NDWI SAVI RVI NDVI
Non-irrigated rice field 0.9920 1.9700 1.2203 1.9209 1.0956
Settlement 16.0864 6.9503 53.9397 672.5265  12.2630
Forest 1.4837 1.4051 4.7582 2.9309 4.2933
Mixed gorden 2.4092 0.9402 3.1470 3.3243 6.2029
Shrub 0.9998 1.0715 2.9927 4.9792 2.3223
Dry Lond 1.5938 0.6737 2.1465 9.2609 2.1973

3.2. Comparison of image classification
results

Before the supervised
clossification wos performed, o training
oreo from the some location was selected
for both input imoges. The troining oreo
included both irrigoted ond non-irrigated
rice figlds. For the stondard clossification
procedure, irrigoted oand non-irrigated rice
fields were clossified into different
classes and then merged into ong closs

44

(rice field) ofter the clossification
process. In controst, the modified
clossification procedure combined the
irrigated ond non-irrigoted fields in the
troining orea before the clossificotion
wos performed becouse the vorionce
values of these objects were similar.
The results of the clossification ore
shown in Figure 5.
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Figure 5. The result of the rice field clossification using: (o) the stondord
procedure; (b) the modified procedure; ond (c)
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Visually, the stondord clossification
procedure yielded o higher density of
predicted rice field oreos when compored
with the reference dota (Figure 50 and Sc¢).
However, the modified procedure resulted
in a distribution and density of rice fields
that wos more similar to the reference doto
(Figure 5b and 5c¢). Bosed on Toble 3, both
procedures predicted o larger coveroge of
rice fields in oll regencies compared with
the reference doto. However, the modified
procedure had o smoller difference from

the reference dotor thon the stondord
procedure  (16.73%  versus  96.81%,
respectively). The high variobility of the
rice field coverage coused high varionce of
the troining oreo. This produced non-rice
field pixels thot were clossified os rice
fields in the stondord clossification
procedure. Using the temporol varionce of
VIs as an input for the rice classification
could reduce clossification errors by
approximately 80.08%.

Table 3. Comparison of predicted rice field area obtoined from the modified procedure
ond the standard procedure compared with reference data.

Reference data Modified procedure Existing Procedure
Regency Areo (ha) %  Arca(ho) %  Area(ha) %
Bodung 12,887.50 12.00 13,687.50 1091 2321250 10.98
Bongli 3,537.50 3.29 4,156.25 331 17,700.00  8.37
Buleleng 13,606.25 12.66 15,868.75 12.65  32,531.25 1539
Denpasor 4,181.25 3.89 7,831.25 6.24 7,843.75 3.71
Gionyor 16,800.00 15.64 16,812.50 13.41  23,181.25 10.96
Jembrona 9,462.50 8.81 13,275.00 10.59  14,456.25  6.84
Korongosem 11,418.75 10.63 14,325.00 1142 42,712.50 20.20
Klungkung 6,462.50 6.02 10,118.75 8.07 19,718.75  9.33
Toabonon 29,081.25 27.07 29,337.50 23.39  30,087.50 14.23
Total 107,437.50  100.00  125,412.50 100.00 211,443.75 100.00
3.3. Accuracy assessment of
classification results
Accuracy  ossessments  of  the district-level comparisons, respectively.

clossification results were performed with
two methods: regression onalysis ond the
Koppa stotistic. Based on the regression
onolysis, the coefficient of determination
(R?) of the relationship between rice field
oreo resulting from the stondord procedure
ond the reference dota wos low (0.2557 and
0.5045 for regency- ond district-level
comporisons, respectively). However, the
modified procedure that wos developed in
this study produced high R* volues of
0.9656 ond 0.8698 for regency- ond

46

The Root Meon Square Error (RMSE)
for estimotions from the stondord
clossification procedure waos higher
thon for the modified procedure. The
RMSE of the stondord procedure wos
9612.78 haond 1285.08 ha for regency-
ond district-level comporisons,
respectively, whereos for the modified
procedure, it was 1397.78 ha ond
551.27 ho, respectively (Figure6)
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Figure 6. Relationship between rice field areos resulting from the imoge clossification
versus the reference dato. (o) ond (b) were produced using the current
procedure, whereas (¢) and (d) were derived from the modified procedure. (o)
ond (c) are for regency-level comparisons, while (b) ond (d) are for district-
level comporisons.
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The first step for the Koppa onolysis
wos to create on error motrix for both
clossification procedures evoluoted in
this study (Table 4). As much oas 896
points (one percent of the total pixels in
the study area) were used os ground truth
somples from the reference doto by
meons of stratified rondom sampling of
rice field ond non-rice field closses.

Bosed on Toble 4, the commission
error, omission error, ond overall
accurocy of the stondord clossification
procedure were 68.11%, 28.48%, ond
66.63%, respectively, while for the
modified procedure, these values were
42.36%, 27.07%, and 83.71%,
respectively. The modified procedure
showed lower errors and higher
accurocy compored with the stondord
procedure. Commission grror represents
cases where non-rice field pixels were
classified os rice fields, while omission

error represents cases where rice field
pixels were clossified as non-rice fields
(Lillesand ond Kigfer, 2000).

Both commission errors were higher
thon omission errors. This indicated thot
the spectral reflectonce of rice fields had
o wide ronge due to high voriotion of
lond cover states. High variobility of rice
fields coused o high stondord deviation
of training oreas; thus, the possibility of
classifying anon-rice field pixel os arice
field pixel wos higher. Using temporol
varionce of VIs as input images in rice
field classification coan reduce
commission ond omission errors ond
improve overall occurocy (Toble 5).

Toble 4. The error motrix of the rice field classification results.

(a) Stondord Procedure

g Reference data

% = Rice Field Non-rice field  Total

= % Rice field 118 252 370

;é) ~ Non-rice field 47 479 526

O Total 165 731 896

(b) Modified procedure
Reference data

% o Rice Field Non-rice field Total
= 5 Rice field 131 97 228
% ﬂé Non-rice field 49 618 667
O Totol 180 715 895
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Toble 5. Errors and occurocy of rice figld clossification results for both the
stondord ond modified procedures.

Errors & Accuracy Existing procedure Modified procedure
Commission error (%) 68.11 42.36
Omission error (%) 28.48 27.07
Overall accuracy (%) 66.63 83.71

Additional porometers used to ossess
the accuracy of the rice figld classification
were the Koppa statistic ond Koppa
varionce. A higher estimoted Kappa value
ond lower Koppa vorionce volue showed
better ogreement between the oanolysis
result ond reference doto (Congalton €t al.,
1983). The modified procedure improved
the koppa estimate from 0.49 to 0.77 ond
reduced koppa varionce from 0.00159 to
0.00039 compoared with the stondord
method (Toble 6).

Although the regression onolysis, error
motrices, ond estimated koppo statistics
illustrated that the modified classification
procedure developed in this study
provided better results for rice field
clossification thon the stondord procedure,

further onalysis wos needed to know
whether the improvement waos significont.
Comparison between z-scores using o Z-
toble wos used to exoming whether the two
methods were significontly different
(Congoalton ond Green, 1999). The z-score
wos derived from equation 15, ond o Z-
toble was consulted for a confidence level
0of 0.95, or a = 0.05 in the two-tailed was
1.96. Bosed on the Koppa onolysis, o z-
score was 6.43 (Toble 7). This meons that
the z-score volue wos greater thon the Z-
toble value, ond the HO was rejected. The
modified procedure provided «
significontly higher level of accuracy thon
the stondord procedure for rice field
classificotion.

Toble 6. The estimated koppa stotistic and koppa analysis of both stondord ond modified

procedures for rice field classification

. . Estimated Koppa
Clossification Method .

Koppa Vorionce

Stondard procedure 0.49 0.00159

Modified procedure 0.77 0.00039

Toble 7. z-score and Z-table values for the comparison between the stondord procedure
ond the modified procedure for rice clossification.

Z-SCore Z Table (o= 5%) Decision

6.43 1.96 Reject HO
4. Conclusions using temporal varionce in VIs as on input
Rice field reflectonce had higher for rice field classification improved the R

temporal voariobility thon other lond uses.
The greatest differences were observed in
NDVI, RVI, ond SAVI. Both visuadl
comporisons ond  statistical  onolyses
demonstroted that the modified procedure
for rice field classification produced better
results thon the stondord procedure.
Regression onolysis demonstroted thot

from 0.2557 to 0.9656 for regency-level
comparisons ond from 0.5045 to 0.8698 for
district-level comparisons. The RMSE of
the modified procedure produced lower
volues of 1397.78 ho ond 551.27 ha when
compored with the RMSE of the stondord
procedure of 9612.78 ho ond 1285.08 ha
for regency- ond district-level comparisons,
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respectively. Clossification accurocy ond
estimated Koppa stotistics from the
modified classification procedure olso
showed more occurate results thon the
stondard method. Commission error,
omission error, ond koppa vorionce were
smaller for the modified procedure thon
the stondord procedure. The Kappa
analysis concluded that there ore
significont differences between the
modified procedure developed in this
study ond the stondord procedure for rice
field clossification. Thus, using modified
input for rice field clossification with
MODIS imoges provides a significontly
more occurote result compored with the
stondord classification procedure.
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