
36 International Journal of Remote Sensing and Earth Sciences Vol. 7, 2010

International Journal of Remote Sensing and Earth Sciences Vol. 7: 36-52 (2010) © IReSES

MODIFICATION OF INPUT IMAGES FOR IMPROVING THE ACCURACY

OF RICE FIELD CLASSIFICATION USING MODIS DATA

I Wayan Nuarsa12, Fumihiko Nishio1, And Chiharu Hongo1

Abstract. The standard image classification method typically uses multispectral imagery
on one acquisition date as an input for classification. Rice fields exhibit high variability in
land cover states, which influences their reflectance. Using the existing standard method for
rice field classification may increase errors of commission and omission, thereby reducing
classification accuracy. This study utilised temporal variance in a vegetation index as a
modified input image for rice field classification. The results showed that classification of
rice fields using modified input images provided a better result. Using the modified
classification input improved the correspondence between rice field area obtained from the
classification result and reference data (R2 increased from 0.2557 to 0.9656 for regency-
level comparisons and from 0.5045 to 0.8698 for district-level comparisons). The
classification accuracy and the estimated Kappa value also increased when using the
modified classification input compared to the standard method, from 66.33 to 83.73 and
from 0.49 to 0.77, respectively. The commission error, omission error, and Kappa variance
decreased from 68.11 to 42.36, 28.48 to 27.97, and 0.00159 to 0.00039, respectively, when
using modified input images compared to the standard method. The Kappa analysis
concluded that there are significant differences between the procedure developed in this
study and the standard method for rice field classification. Consequently, the modified
classification method developed here is significant improvement over the standard
procedure.
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1. Introduction
Rice is the primary food source for

more than three billion people and is one
of the world’s major staple foods. Paddy
rice fields account for approximately 15%
of the world’s arable land (Khush, 2005;
IRRI, 1993). A unique physical feature of
paddy fields is that the rice is grown on
flooded soils. This feature is significant in
terms of both trace gas emissions and
water resource management. Seasonally
flooded rice paddies are a significant
source of methane emissions (Denier,
2000), contributing over 10% of the total
methane flux to the atmosphere (Prather et
al., 2001), which may have substantial
impacts on atmospheric chemistry and

climate. Agricultural water use (in the
form of irrigation withdrawals) accounted
for ~70% of global freshwater withdrawals
(Samad et al, 1992). Mapping the
distribution of rice fields is important not
only for food security but also for the
management of water resources and the
estimation of trace gas emissions (Xiao et
al., 2005; Matthews et al., 2000).
Therefore, more accurate data related to
the total rice field area, its distribution, and
its changes over time are essential.

Satellite remote sensing has been
widely applied and is recognised as a
powerful and effective tool for mapping
land use and land cover (Harris and
Ventura, 1995; Yeh and Li, 1999) . The
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Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument
offers considerable potential for rapid and
repetitive large-area crop classification
given its near-daily global coverage of
science-quality observations and products
(Justice and Townshend, 2002), which are
available at moderate spatial resolutions
(250, 500 and 1000 m). Several studies
have used multi-temporal MODIS data to
classify specific crop types (Lobell and
Asner, 2004; Doraiswamy et al., 2005;
Chang et al., 2007; Potgieter et al., 2007;
Wardlow and Egbert, 2008), cropping
rotations (Morton et al., 2006; Sakamoto et
al., 2006; Brown et al., 2007; Wardlow et
al., 2006), and crop-related land use
practices (e.g., irrigation and fallow)
(Wardlow and Egbert, 2008) as well as to
monitor crop phenology (Sakamoto et al.,
2005; Niel and McVicar, 2001) .

Image classification is one of the most
popular remote sensing applications. This
process primarily uses the spectral
information provided in remotely sensed
data to discriminate between perceived
groupings of vegetative cover on the
ground (Niel and McVicar, 2001). The
spatial and temporal information included
in single date and time series data usually
plays a secondary role but can aid in the
classification procedure. The
discrimination of crops is usually
performed with ‘supervised’ or
‘unsupervised’ classifiers. The basic
difference between these types of
classification is the process by which the
spectral characteristics of the different
groupings are defined (Atkinson and
Lewis, 2000). Common classification
algorithms include maximum likelihood,
minimum distance to mean, and
parallelepiped (Jensen, 1986). Research on
classification algorithms to identify rice
fields is widespread (Bachelet, 1995;
Okamoto and Kawashima, 1999; Fang,
1998; Fang et al., 1998; Niel et al., 2003).

Agricultural rice fields have a large
variety of land cover states that can range
from water bodies just before rice
transplanting to mixed water, vegetation,
or bare soil just after harvesting. The use
of a single procedure for rice field
classification is difficult because of the
high variability of rice field land cover
states. The large variety of land cover
states could cause increases in commission
and omission errors, thereby decreasing
overall accuracy. This is caused by non-
rice field pixels being classified as rice
field pixels while, at the same time, not all
rice field pixels are correctly classified as
rice fields (Lillesand and Kiefer, 2000). A
standard image classification procedure is
to only use a multispectral image from one
acquisition date. In supervised
classification, a training area is selected
from this image and one of several image
classification methods is then applied. In
this study, we modified the input to the
image classification process. We used the
variance of three vegetation indices over
time as an input to the rice classification
procedure. The objective of this study was
to compare the accuracy of rice field image
classification between the standard method
and the modified input method using
reference data.

2. Data, and Method
2.1. Background and study area

The study area is located in the Bali
Province of Indonesia and is centred at
latitude 8°40’00” S and longitude
115°19’00” E (Figure 1). In addition to
being a popular international tourism
destination, Bali Island, although relatively
small, is also historically one of the prime
rice-producing areas in Indonesia.
Approximately 0.5 million tons (1.6% of
Indonesia’s rice production) is contributed
by the Bali Province. Agricultural rice
fields in Bali consist of irrigated fields and
non-irrigated fields. The water source for
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the irrigated rice fields is rivers, whereas
the water for non-irrigated rice fields
comes from rainfall. At different times of
the year, both irrigated and non-irrigated
rice field lands are not only used for rice
paddies but also for seasonal crops such as
corn, soybeans, and nuts. However, the
type of seasonal plant grown from year to
year is usually similar from one place to
another. In humid tropic regions, such as
the study area, rice plants can be planted at
any time. However, planting is influenced
by water availability. Therefore, on
irrigated land, rice planting alternates

between regions, whereas on non-irrigated
land, rice planting occurs in the rainy
season. Farmers usually plant rice two or
three times per year and use the remaining
time for other seasonal crops (Food Crops
Agriculture Department, 2006). Rice plants
are typically harvested after three months,
with a production of around five tons per
hectare per crop rotation. The total
agricultural rice area in Bali is 107,437.50
ha.

Figure 1. Map of the study area. Bali province consists of nine regencies

N
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2.2. MODIS images
Among the suite of standard MODIS

data products available, we used the 16 -
day composite MODIS Vegetation Indices
Product (MOD13Q1). Each 16 -day
composite image includes blue, red, and
near-infrared reflectances, centred at 469-
nanometers, 645-nanometers, and 858-
nanometers, respectively, Normalised
Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) at a
spatial resolution of 250 m as a gridded
leve l - 3 p r odu ct in th e S in us o ida l
p r o j e c t i o n . I n t h e p r o du c t i o n o f
MOD 13Q1, atmospheric corrections for
gases, thin cirrus clouds and aerosols are
implemented (Vermote and Vermeulen,
1999). In addition, The MODIS NDVI and
E VI p r o duc t s a r e c o mp u t ed f r o m
atmospherically corrected bi-directional
surface reflectances that have been masked
for water, clouds, heavy aerosols, and
cloud shadows. The products are Validated
Stage 2, meaning that accuracy has been
assessed over a widely distributed set of
locations and time periods via several
ground-truth and validation efforts.
Although there may be later, improved
versions, these data are ready for use in
s c i e n t i f i c p u b l i c a t i o n s
(https://lpdaac.usgs.gov/lpdaac/products
/modis_products _table/). In this study, we
downloaded MOD13Q1 data for 2008
(twenty-three 16-day composites) from the
U S G S E R O S D a t a C e n t e r
(http://edc.usgs.gov/).

the MODIS product. The equations for
these vegetation indices are as follows:

where swir, nir, r, and b are the middle-
infrared, near-infrared, red, and blue band
of the MODIS images, respectively, and L
is a constant (related to the slope of the
soil-line in a feature-space plot) that is
usually set to 0.5.

While NDVI correlates with the leaf
area index (LAI) of rice fields (Xiao et al.,
2002), it has several limitations, including
saturation under closed canopies and soil
background (Huete et al., 2002; Xiao et
al., 2003). The blue band is sensitive to
atmospheric conditions and is used for
atmospheric correction. EVI directly
adjusts the reflectance in the red band as a
function of the reflectance in the blue
ba nd, a nd it a ccount s for r es idua l
atmospheric contamination (e.g., aerosols)
and variable soil and canopy background
reflectance (Huete et al., 2002). The SAVI
index can minimise soil brightness
influences from spectral vegetation indices
involving red and near -infrared (NIR)
wavelengths (Huete, 1988), while RVI is a

(2)

(3)

(4)

(5)

(1)

2.3. Calculation of vegetation index (VI)
The vegetation indices used in this

study were NDVI, EVI, Normalised
Difference Water Index (NDWI), Ratio
Vegetation Index (RVI), and Soil Adjusted
Vegetation Index (SAVI). NDVI and EVI
were directly obtained from the USGS
EROS Data Center, whereas NDWI, RVI,
and SAVI were calculated from the red,
near-infrared, and middle-infrared bands of
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good indicator of crop growth for the
entire growth cycle (Gupta, 1993).

The advantage of using a vegetation
index compared to single bands is the
ability to reduce the spectral data to a
single number that is related to physical
characteristics of the vegetation (e.g., leaf
area, biomass, productivity, photosynthetic
activity, or percent cover) (Baret and
Guyot, 1991; Huete, 1988). At the same
time, it is possible to minimise the effects
of internal (e.g., canopy geometry, and leaf
and soil properties) and external factors
(e.g., sun-target-sensor angles and
atmospheric conditions at the time of
image acquisition) on the spectral data
(Baret and Guyot, 1991; Huete and
Warrick, 1990; Huete and Escadafal,
1991).

2.4. Image classification
Image classification was performed

using two different procedures. The first
used a standard image for input and the
second used a modified image for input.
For the standard classification procedure, a
multispectral image from one acquisition
date was used. We used a multispectral
image from 6 to 21 April 2008 (16-day
composite) due to the fact that this image
was free from clouds. From the four bands
available in this MODIS product, we used
bands 1, 2 and 3 in the blue, red, and near-
infrared regions, respectively, as inputs for
multispectral image classification.

For the second classification procedure,
we used variance maps of three selected
vegetation indices as inputs for image
classification. The variance maps of the
VIs were derived from a layer-stacking
process that produced a multi-band image
consisting of 23 images (all composite
images in 2008). From the multiband
image, we calculated the variance of each
pixel across time periods, producing a
variance map. To select the three best VIs
from the five VIs evaluated in this study,

we used the difference in the variance
value between rice fields and other land
uses. Higher variance differences between
rice fields and other land uses indicated an
improved ability to discriminate these
classes. Hence, the three VIs that had the
highest variance difference values between
rice fields and other land uses were
selected as inputs in the multispectral
image classification.

The algorithm developed in this study
was only designed to discriminate rice
fields from other land uses because the
standard procedure had limitations due to
the high variation in land cover states of
rice fields. Therefore, the selection of
training areas for the classification was
only performed in rice fields. However, for
improved results, we divided rice fields
into two sub-classes: irrigated and non-
irrigated. For consistency, we used the
same training area for image classification
in the modified procedure developed in
this study and the standard procedure.
Image classification was performed using
the Maximum Likelihood algorithm for
both procedures.

2.5 Quantitative evaluation of
classification results
The quantitative evaluation was performed
by comparing the classification result with
the existing land use maps released by the
National Land Agency. The results of the
modified classification procedure
developed in this study were compared to
the results of the standard classification
procedure. To determine which
classification procedure more accurately
classified rice fields, we used two
evaluation methods. First, we used a
regression method under the general
assumption that the method with the higher
coefficient of determination (R2) and lower
root mean square error (RMSE) with
respect to the reference data was more
accurate. These comparison methods were
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Figure 3. Temporal variability of NDVI for irrigated rice fields, non-irrigated rice
fields, settlement, mixed forest, and dry land.

Figure 4.Temporal variability of NDVI for irrigated rice fields, non-irrigated rice fields,
mixed garden, and shrub
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On the other hand, the average variance of
SAVI, RVI, and NDVI for irrigated and
non-irrigated rice fields was significantly
different from the average variance for the
other land uses (Table 1). The difference in
average variance between irrigated rice
fields compared to other land uses for
SAVI was between 2.1465 to 53.9397 (not
including non-irrigated rice fields because
irrigated and non-irrigated are classified as
a single class). For RVI and NDVI, these
differences were between 2.9309 to

672.5265 and between 2.1973 to 12.2630,
respectively. However, for EVI and
NDWI, the differences usually approached
one (Table 2). Therefore, SAVI, RVI and
NDVI were selected as the best vegetation
indices for distinguishing irrigated and
non-irrigated rice fields from the other land
uses. These VIs were then used for
multispectral rice field classification.

Table 1. Average temporal variance of several VIs for the main land uses.

Main Land Uses EVI NDWI SAVI RVI NDVI

Irrigated rice field 0.0311 0.0218 0.0250 117.4982 0.0362

Non-irrigated rice field 0.0313 0.0111 0.0205 61.1684 0.0330

Settlement 0.0019 0.0031 0.0005 0.1747 0.0030

Mixed forest 0.0209 0.0155 0.0053 40.0893 0.0084

Mixed garden 0.0129 0.0232 0.0080 35.3451 0.0058

Shrub 0.0311 0.0204 0.0084 23.5978 0.0156

Dry Land 0.0195 0.0324 0.0117 12.6876 0.0165

Table 2. Difference in variance values between rice fields and other land uses.

Main Land Uses EVI NDWI SAVI RVI NDVI

Non-irrigated rice field 0.9920 1.9700 1.2203 1.9209 1.0956

Settlement 16.0864 6.9503 53.9397 672.5265 12.2630

Forest 1.4837 1.4051 4.7582 2.9309 4.2933

Mixed garden 2.4092 0.9402 3.1470 3.3243 6.2029

Shrub 0.9998 1.0715 2.9927 4.9792 2.3223

Dry Land 1.5938 0.6737 2.1465 9.2609 2.1973

3.2. Comparison of image classification
results

Before the supervised
classification was performed, a training
area from the same location was selected
for both input images. The training area
included both irrigated and non-irrigated
rice fields. For the standard classification
procedure, irrigated and non-irrigated rice
fields were classified into different
classes and then merged into one class

(rice field) after the classification
process. In contrast, the modified
classification procedure combined the
irrigated and non-irrigated fields in the
training area before the classification
was performed because the variance
values of these objects were similar.
The results of the classification are
shown in Figure 5.
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Figure 5. The result of the rice field classification using: (a) the standard
procedure; (b) the modified procedure; and (c)

(a)

(b)

c( )b
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Visually, the standard classification
procedure yielded a higher density of
predicted rice field areas when compared
with the reference data (Figure 5a and 5c).
However, the modified procedure resulted
in a distribution and density of rice fields
that was more similar to the reference data
(Figure 5b and 5c). Based on Table 3, both
procedures predicted a larger coverage of
rice fields in all regencies compared with
the reference data. However, the modified
procedure had a smaller difference from

the reference data than the standard
procedure (16.73% versus 96.81%,
respectively). The high variability of the
rice field coverage caused high variance of
the training area. This produced non-rice
field pixels that were classified as rice
fields in the standard classification
procedure. Using the temporal variance of
VIs as an input for the rice classification
could reduce classification errors by
approximately 80.08%.

Table 3. Comparison of predicted rice field area obtained from the modified procedure
and the standard procedure compared with reference data.

Reference data Modified procedure Existing Procedure

Area (ha) % Area (ha) % Area (ha) %

12,887.50 12.00 13,687.50 10.91 23,212.50 10.98

3,537.50 3.29 4,156.25 3.31 17,700.00 8.37

13,606.25 12.66 15,868.75 12.65 32,531.25 15.39

4,181.25 3.89 7,831.25 6.24 7,843.75 3.71

16,800.00 15.64 16,812.50 13.41 23,181.25 10.96

9,462.50 8.81 13,275.00 10.59 14,456.25 6.84

11,418.75 10.63 14,325.00 11.42 42,712.50 20.20

6,462.50 6.02 10,118.75 8.07 19,718.75 9.33

29,081.25 27.07 29,337.50 23.39 30,087.50 14.23

107,437.50 100.00 125,412.50 100.00 211,443.75 100.00

3.3. Accuracy assessment of
classification results

Accuracy assessments of the
classification results were performed with
two methods: regression analysis and the
Kappa statistic. Based on the regression
analysis, the coefficient of determination
(R2) of the relationship between rice field
area resulting from the standard procedure
and the reference data was low (0.2557 and
0.5045 for regency- and district-level
comparisons, respectively). However, the
modified procedure that was developed in
this study produced high R2 values of
0.9656 and 0.8698 for regency- and

district-level comparisons, respectively.
The Root Mean Square Error (RMSE)
for estimations from the standard
classification procedure was higher
than for the modified procedure. The
RMSE of the standard procedure was
9612.78 ha and 1285.08 ha for regency-
and district-level comparisons,
respectively, whereas for the modified
procedure, it was 1397.78 ha and
551.27 ha, respectively (Figure6)
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Figure 6. Relationship between rice field areas resulting from the image classification
versus the reference data. (a) and (b) were produced using the current
procedure, whereas (c) and (d) were derived from the modified procedure. (a)
and (c) are for regency-level comparisons, while (b) and (d) are for district-
level comparisons.

(a)

(b)

(c)

(d)
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Table 4. The error matrix of the rice field classification results.

(a) Standard Procedure

C
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R
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lt

Reference data

Rice Field Non-rice field Total

Rice field 118 252 370

Non-rice field 47 479 526
Total 165 731 896

(b) Modified procedure

Reference data

C
la

ss
if

ic
at

io
n

R
es

u
lt

Rice Field Non-rice field Total

Rice field 131 97 228

Non-rice field 49 618 667

Total 180 715 895

The first step for the Kappa analysis 
was to create an error matrix for both 
classification procedures evaluated in 
this study (Table 4). As much as 896 
points (one percent of the total pixels in 
the study area) were used as ground truth 
samples from the reference data by 
means of stratified random sampling of 
rice field and non-rice field classes.

Based on Table 4, the commission 
error, omission error, and overall 
accuracy of the standard classification 
procedure were 68.11%, 28.48%, and 
66.63%, respectively, while for the 
modified procedure, these values were 
42.36%, 27.07%, and 83.71%, 
respectively. The modified procedure 
showed lower errors and higher 
accuracy compared with the standard 
procedure. Commission error represents 
cases where non-rice field pixels were 
classified as rice fields, while omission 

error represents cases where rice field 
pixels were classified as non-rice fields 
(Lillesand and Kiefer, 2000).

Both commission errors were higher 
than omission errors. This indicated that 
the spectral reflectance of rice fields had 
a wide range due to high variation of 
land cover states. High variability of rice 
fields caused a high standard deviation 
of training areas; thus, the possibility of 
classifying a non-rice field pixel as a rice 
field pixel was higher. Using temporal 
variance of VIs as input images in rice 
field classification can reduce 
commission and omission errors and 
improve overall accuracy (Table 5).
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Table 5. Errors and accuracy of rice field classification results for both the
standard and modified procedures.

Errors & Accuracy Existing procedure Modified procedure

Commission error (%) 68.11 42.36

Omission error (%) 28.48 27.07

Overall accuracy (%) 66.63 83.71

4. Conclusions
Rice field reflectance had higher

temporal variability than other land uses.
The greatest differences were observed in
NDVI, RVI, and SAVI. Both visual
comparisons and statistical analyses
demonstrated that the modified procedure
for rice field classification produced better
results than the standard procedure.
Regression analysis demonstrated that

using temporal variance in VIs as an input
for rice field classification improved the R2

from 0.2557 to 0.9656 for regency-level
comparisons and from 0.5045 to 0.8698 for
district-level comparisons. The RMSE of
the modified procedure produced lower
values of 1397.78 ha and 551.27 ha when
compared with the RMSE of the standard
procedure of 9612.78 ha and 1285.08 ha
for regency- and district-level comparisons,

Table 6. The estimated kappa statistic and kappa analysis of both standard and modified
procedures for rice field classification

Classification Method
Estimated Kappa

Kappa Variance

Standard procedure 0.49 0.00159

Modified procedure 0.77 0.00039

Table 7. z-score and Z-table values for the comparison between the standard procedure
and the modified procedure for rice classification.

z-score Z Table (á = 5%) Decision

6.43 1.96 Reject H0

Additional parameters used to assess 
the accuracy of the rice field classification 
were the Kappa statistic and Kappa 
variance. A higher estimated Kappa value 
and lower Kappa variance value showed 
better agreement between the analysis 
result and reference data (Congalton et al., 
1983). The modified procedure improved 
the kappa estimate from 0.49 to 0.77 and 
reduced kappa variance from 0.00159 to 
0.00039 compared with the standard 
method (Table 6).

Although the regression analysis, error 
matrices, and estimated kappa statistics 
illustrated that the modified classification 
procedure developed in this study 
provided better results for rice field 
classification than the standard procedure, 

further analysis was needed to know 
whether the improvement was significant. 
Comparison between z-scores using a Z-
table was used to examine whether the two 
methods were significantly different 
(Congalton and Green, 1999). The z-score 
was derived from equation 15, and a Z-
table was consulted for a confidence level 
of 0.95, or á = 0.05 in the two-tailed was 
1.96. Based on the Kappa analysis, a z-
score was 6.43 (Table 7). This means that 
the z-score value was greater than the Z-
table value, and the H0 was rejected. The 
modif ied  procedure  provided a  
significantly higher level of accuracy than 
the standard procedure for rice field 
classification. 
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respectively. Classification accuracy and 
estimated Kappa statistics from the 
modified classification procedure also 
showed more accurate results than the 
standard method. Commission error, 
omission error, and kappa variance were 
smaller for the modified procedure than 
the standard procedure. The Kappa 
analysis concluded that there are 
significant differences between the 
modified procedure developed in this 
study and the standard procedure for rice 
field classification. Thus, using modified 
input for rice field classification with 
MODIS images provides a significantly 
more accurate result compared with the 
standard classification procedure.

Acknowledgments
I would like to express my profound 
gratitude to my advisor for his invaluable 
support, encouragement, supervision, and 
useful suggestions throughout this 
research. I am also very thankful to JSPS 
Ronpaku for their funding support for this 
PhD research program.

References
Atkinson, P.M. and Lewis, P., 2000, 

Geostatistical classification for remote 
sensing: an introduction. Computers 
and Geosciences 26:361–371. 

Bachelet, D., 1995, Rice paddy inventory 
in a few provinces of China using 
AVHRR data. Geocarto International 
10:23–38. 

Baret, F. and Guyot, G., 1991, Potentials 
and limits of vegetation indices for LAI 
and APAR assessment. Remote 
Sensing of Environment, 35:161–173.

Brown, J.C., Jepson, W.E., Kastens, J.H., 
Wardlow, B.D., Lomas, J. and Price, 
K.P., 2007, Multi-temporal, moderate 
spatial resolution remote sensing of 
modern agricultural production and 
land modification in the Brazilian 
Amazon. GIScience and Remote 
Sensing 44:117–148. 

Chang, J., Hansen, M.C., Pittman, K., 
Carroll, M. and Dimiceli, C., 2007, 

Corn and soybean mapping in the 
United States using MODIS time-
series data sets. Agronomy Journal 
99:1654–1664. 

Congalton, R.G. and Green, K., 1999, 
Assessing the Accuracy of Remotely 
Sensed Data:  Principles  and 
Practices, Lewis Publishers, Florida.

Congalton, R.G., Oderwald, R.G. and 
Mead, R.A., 1983., Assessing Landsat 
Classification Accuracy Using 
Discrete Multivariate Analysis 
S ta t i s t i ca l  Techniques ,  PERS  
49:1671–1678.

Denier Van Der Gon, H., 2000., Changes 
in CH4 emission from rice fields from 
1960s to 1990s: 1. Impacts of modern 
r i c e  t e c h n o l o g y .  G l o b a l  
Biogeochemical Cycles, :1:61– 72. 

Doraiswamy, P.C., Sinclair, T.R., 
Hollinger, S., Akhmedov, B., Stern, A. 
and Prueger, J., 2005, Application of 
MODIS-derived parameters for 
regional crop yield assessment. 
Remote Sensing of Environment 
87:192–202. 

Fang, H., 1998., Rice crop area estimation 
of an administrative division in China 
u s i n g  r e m o t e  s e n s i n g  d a t a .  
International Journal of Remote 
Sensing 17:3411–3419.

Fang, H., Wu, B., Liu, H. and Xuan, H., 
1998, Using NOAA AVHRR and 
Landsat TM to estimate rice area year-
by-year. International Journal of 
Remote Sensing 3:521–525. 

Food Crops Agriculture Department, 
2006, Annual report of food crops, 
Agriculture Department of Local 
Governent, Bali. 

Gupta, R.K., 1993, Comparative study of 
AVHRR ratio vegetation index and 
normalized difference vegetation 
index in district level agriculture 
monitoring. International Journal of 
Remote Sensing 14:53–73.



  
International Journal of Remote Sensing and Earth Sciences  Vol. 7,  2010 51

Harris, P. M. and Ventura, S. J., 1995, The
integration of geographic data with
remotely sensed imagery to improve
classification in an urban area.
Photogrammetric Engineering and
Remote Sensing, Vol. 61, pp. 993–998.

Huete, A.R., 1988, A soil-adjusted
vegetation index (SAVI). Remote
Sensing of Environment 25:295–309

Huete, A. R. and Escadafal, R. 1991
Assessment of biophysical soil
properties through spectral
decomposition techniques. Remote
Sensing of Environment 35:149–159.

Huete, A. R. and Warrick, A. W., 1990,
Assessment of vegetation and soil water
regimes in partial canopies with optical
remotely sensed data. Remote Sensing of
Environment 32:115–167.

Huete, A., Didan, K., Miura, T., Rodriguez,
E. P., Gao, X. and Ferreira, L. G., 2002,
Overview of the radiometric and
biophysical performance of the MODIS
vegetation indices. Remote Sensing of
Environment 83:195–213.

IRRI, 1993, 1993–1995 IRRI Rice
Almanac, International Rice Research
Institute, Manila.

Jensen, J. R., 1986, Introductory digital
image processing: A remote sensing
perspective. Prentice-Hall, New Jersey.

Justice, C.O. and Townshend, J.R.G., 2002,
Special issue on the moderate resolution
imaging spectroradiometer (MODIS): a
new generation of land surface
monitoring. Remote Sensing of
Environment 83:1–2.

Khush, G.S., 2005, What it will take to
feed 5 billion rice consumers in 2030.
Plant Molecular Biology 59:1-6.

Lillesand, T. M. and Kiefer, R. W, 2000.
Remote sensing and image
interpretation. Wiley & Son, New York.

Lobell, D.B. and Asner, G.P., 2004,
Cropland distributions from temporal

unmixing of MODIS data. Remote
Sensing of Environment 93:412–422.

Matthews, R. B., Wassmann, R., Knox, J.
W. and Buendia, L. V., 2000, Using a
crop/soil simulation model and GIS
techniques to assess methane emissions
from rice fields in Asia: Upscaling to
national levels. Nutrient Cycling in
Agroecosystems 58:201– 217.

Morton, D.C., Defries, R.S., Shimabukuro,
Y.E., Anderson, L.O., Arai, E., Del Bon
Espirito-Santo, F., Freitas, R. And
Morisette, J., 2006, Cropland expansion
changes deforestation dynamics in the
southern Brazilian Amazon.
Proceedings of the National Academy of
Sciences USA 103:14637–14641.

Niel, T.G.V. and McVicar, T.R. Remote
Sensing of Rice-Based Irrigated
Agriculture: A Review. Rice CRC
Technical Report , 2001, Available from
www.ricecrc.org (Accessed 5 October
2009).

Niel, T.G.V., McVicar, T.R., Fan g, H. and
Liang, S., 2003, Calculating
environmental moisture for per-field
discrimination of rice crops.
International Journal of Remote Sensing
24:885–890.

Okamoto, K. and Kawashima, H., 1999,
Estimating of rice-planted area in the
tropical zone using a combination of
optical and microwave satellite sensor
data. International Journal of Remote
Sensing 5:1045–1048.

Potgieter, A.B., Apan, A., Dunn, P. and
Hammer, G., 2007, Estimating crop area
using seasonal time series of enhanced
vegetation index from MODIS satellite
imagery. Australian Journal of
Agricultural Research 58:316–325.

Prather, M., D. Ehhalt, F. Dentener, R. G.
Derwent, E. Dlugokencky, E. Holland,
I. S. A. Isaksen, J. Katima, V.
Kirchhoff, P. Matson, P. M. Midgley,
and M. Wang., 2001, Chapter 4.
Atmospheric Chemistry and

Modification of Input Images



I Wayan Nuarsa, Fumihiko Nishio, And Chiharu Hongo

  
52 International Journal of Remote Sensing and Earth Sciences  Vol. 7,  2010

Greenhouse Gases. In Climate Change
2001. Edited by J.T. Houghton,
Cambridge U. Press 239-287.

Sakamoto, T., Nguyen, N.V., Ohno, H.,
Ishitsuka, N. and Yokozawa, M., 2006,
Spatiotemporal distribution of rice
phenology and cropping systems in the
Mekong Delta with special reference to
the seasonal water flow of the Mekong
and Bassac rivers. Remote Sensing of
Environment 100:1–16.

Sakamoto, T., Yokozaawa, M., Toritani,
H., Shibayama, M., Ishitsuka, N. and
Ohno, H., 2005, A crop phenology
detection method using time-series
MODIS data. Remote Sensing of
Environment 96:366–374.

Samad, M., Merrey, D., Vermillion, D.,
Fuchscarsch, M., Mohtadullah, K., &
Lenton, R., 1992, Irrigation
management strategies for improving
the performance of irrigated agriculture.
Outlook on Agriculture 21:279– 286.

Vermote, E. F. and Vermeulen, A., 1999,
Atmospheric correction algorithm:
Spectral reflectance (MOD09), MODIS
algorithm technical background
document, version 4.0. Department of
Geography, University of Maryland.

Wardlow, B.D. and Egbert, S.L., 2008,
Large-area crop mapping using time-
series MODIS 250 m NDVI data: an
assessment for the U.S. Central Great

Plains. Remote Sensing of Environment
112:1096–1116.

Wardlow, B.D., Kastens, J.H. and Egbert ,
S.L., 2006, Using USDA crop progress
data for the evaluation of greenup onset
date calculated from MODIS 250-meter
data. Photogrammetric Engineering and
Remote Sensing 72:1225–1234.

Xiao, X., He, L., Salas, W., Li, C., Moore,
B. and Zhao, R., 2002, Quantitative
relationships between field-measured
leaf area index and vegetation index
derived from VEGETATION images
for paddy rice fields. International
Journal of Remote Sensing 23:3595–
3604.

Xiao, X., Braswell, B., Zhang, Q., Boles,
S., Frolking, S. and Moore, B., 2003,
Sensitivity of vegetation indices to
atmospheric aerosols: Continental-scale
observations in Northern Asia. Remote
Sensing of Environment 84:385–392.

Xiao, X., Boles, S., Liu, J., Zhuang, D.,
Frolking, S., Li, C., Salas, W. and
Moore, B., 2005, Mapping paddy rice
agriculture in southern China using
multi-temporal MODIS images. Remote
Sensing of Environment 95:480–492.

Yeh, A.G.O. and Li, X., 1999, Economic
development and agricultural land loss
in the Pearl River Delta, China. Habitat
International 23:373–390.


