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Abstract. Identification of the rice plant growth phase is an important step in estimating the harvest 

season and predicting rice production. It is undertaken to support the provision of information on 

national food availability. Indonesia’s high cloud coverage throughout the year means it is not possible 

to make optimal use of optical remote sensing satellite systems. However, the Synthetic Aperture Radar 

(SAR) remote sensing satellite system is a promising alternative technology for identifying the rice plant 

growth phase since it is not influenced by cloud cover and the weather. This study uses multi-temporal 

C-Band SAR satellite data for the period May–September 2016. VH and VV polarisation were observed 

to identify the rice plant growth phase of the Ciherang variety, which is commonly planted by farmers 

in West Java. Development of the rice plant growth phase model was optimized by obtaining samples 

spatially from a rice paddy block in PT Sang Hyang Seri, Subang, in order to acquire representative 

radar backscatter values from the SAR data on the age of certain rice plants. The Normalised Difference 

Polarisation Index (NDPI) and texture features, namely entropy, homogeneity and the Grey-Level Co-

occurrence Matrix (GLCM) mean, were included as the samples. The results show that the radar 

backscatter value (σ0) of VH polarisation without the texture feature, with the entropy texture feature 

and GLCM mean texture feature respectively exhibit similar trends and demonstrate potential for use 

in identifying and monitoring the rice plant growth phase. The rice plant growth phase model without 

texture feature on VH polarisation is revealed as the most suitable model since it has the smallest 

average error. 
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1    INTRODUCTION 

Rice is a staple food consumed by 

the Indonesian population in both urban 

and rural areas. In 2008, the per capita 

rice consumption was 100.52 kg/year 

(Mauludyani et al., 2008), with an average 

consumption during the period 2010–

2014 of 9.5 kg/capita/year (Badan 

Pengkajian & Pengembangan 

Perdagangan, 2016). Indonesia’s 

population is projected to rise from 238.5 

million in 2010 to 305.6 million in 2035 

(BPS, 2013), with a particular 

demographic boost during the period 

2020–2030 (Noor, 2015). Therefore, a 

government strategy is required to help 

ensure national food security. 

 The formation of policy in areas 

such as rice importation typically 

requires rice production estimation data 

to be available quickly and to cover a large 

area. As such, remote sensing is one of 

the technologies that can be used to 

support national food security. The use of 

remote sensing can enable the rapid 

retrieval of geo-biophysics parameters 

that cover a large area. The rice plant 

growth phase determined using remote 

sensing data can be used to forecast the 

harvest season (Ferencz et al., 2004) in 

order to acquire estimation data on rice 

production. 

 The rice plant growth phase has 

been identified and monitored using the 
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vegetation index derived using an optical 

sensor such as Landsat (Nuarsa & Nishio, 

2007; Parsa & Domiri, 2013; Domiri, 

2017) and MODIS (Huang et al., 2010; 

Kham, 2012; Wijesingha et al., 2015; 

Parsa et al., 2017). However, rice plants 

are commonly planted during the wet 

season, and Stubenrauch et al. (2006) 

pointed out that tropical areas of 

Indonesia have year-round high-, mid- or 

low-level cloud cover (Stubenrauch et al., 

2006). Hence, it is not possible to attain 

optimal use of an optical remote sensing 

satellite system that is affected by 

weather and cloud cover. However, it is 

possible to use a multispectral camera 

aboard a surveillance aircraft for rice 

plant monitoring (Broto et al., 2017). Yet 

this approach is not without its own 

challenges, including the difficulty 

associated with radiometric correction 

and the greater amount of time needed for 

extensive land monitoring (Kushardono et 

al., 2015). Satellite remote sensing 

technology with a SAR sensor shows 

promise for monitoring the earth surface 

since it is not affected by the weather. 

 The potential to use C-band SAR 

in identifying the rice plant growth phase 

has been demonstrated utilising radar 

backscatter value (σ0) on several 

polarisations, such as VV polarisation 

(Ribbes & Le Toan, 1996), HH, VV and 

HH/VV polarisations (Lam-Dao et al., 

2007), VV and VH polarisations (Raviz et 

al., 2016; Nguyen et al., 2016), and VH 

polarisation (Nguyen & Wagner, 2017; 

Son et al., 2017). In these studies, the 

radar backscatter values on the 

polarisations of VV, VH and HH were 

subject to multi-temporal variation owing 

to several factors. These included the 

scattering mechanism and object 

geometry, which means it can be used for 

rice plant growth phase identification and 

monitoring. 

 Rice plant growth commonly lasts for 

3–4 months, from the vegetative through 

to the ripening phase, depending on the 

environment and variety (Yoshida, 1981). 

The rice plant growth phase can be 

classified as follows (Yoshida, 1981; 

Fageria, 2007):  

 

1. Vegetative phase; characterised by 

increased tillering and plant height, 

as well as increasing leaf area. This 

stage lasts for approximately 60 days, 

depending on the variety. 

2. Reproductive phase; identified by the 

formation of panicle, culm elongation 

and flowering. This stage is 

susceptible to temperature changes 

and has a duration of 30 days. 

3. Ripening phase; characterised by 

spikelet filling and leaf senescence. 

The length of ripening ranges from 

about 30 days to longer in low-

temperature areas. 

 

 The aim of this study is to identify 

the rice plant growth phase of the 

Ciherang variety by obtaining radar 

backscatter values (σ0) for VV polarisation 

and VH polarisation. This study will find 

the best model for the rice plant growth 

phase determination. The Ciherang 

variety was selected since it is commonly 

planted by farmers in Indonesia (Badan 

Litbang Pertanian, 2012). Optimisation 

was performed in the development of the 

rice plant growth phase model where 

samples were taken spatially from a 

certain rice paddy block. The Normalised 

Difference Polarisation Index (NDPI) and 

several texture features, namely entropy, 

homogeneity and the mean of the Grey-

Level Co-occurrence Matrix (GLCM), were 

included as samples for their ability to 

increase accuracy (Kushardono, 2012; 

Chulafak et al., 2017). 
 

2  MATERIALS AND METHODOLOGY 

2.1 Location and Data 

The study area is located in 

Sukamandi District, Subang Regency, 
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which is one of Indonesia’s granary areas 

(see Figure 2-1). The rice paddy at the 

site, which is owned by PT Sang Hyang 

Seri, is divided into several blocks. Each 

block has its own variety and planting 

schedule. In this study, seven blocks 

(Table 2-1) containing similar varieties 

were used in order to construct the rice 

plant growth phase model. 
 

 
Figure 2-1: Study area in Sukamandi District. 

 

Both VH and VV polarisations of 

Sentinel 1 C-Band SAR data were used in 

this study with a spatial resolution of 10 

x 10 metres. The SAR data were acquired 

on 6 June 2016, 24 July 2016, 17 August 

2016, 29 August 2016, 10 September 

2016, 4 October 2016, 16 October 2016, 

and 28 October 2016. The SAR data were 

selected based on the date of planting, 

which was obtained from the field. In 

addition, the date of rice planting was 

used to calculate the age of the rice plants 

after planting. 
 

Table 2-1: Rice planting realisation. 

 

Rice paddy 
block code 

Date of Planting 

SBG-01 (B 19) 27 May 2016 

SBG-02 (B 31) 10 July 2016 
SBG-03 (L 10) 22 June 2016 
SBG-04 (L 42) 3 June 2016 
SBG-05 (LK 1) 30 May 2016 
SBG-06 (S 21) 28 June 2016 
SBG-07 (S 40) 20 July 2016 
  

 

2.2 Methods 

The research method is outlined in 

the flowchart shown in Figure 2-2. This 

study used Level 1 Ground Range 

Detected (GRD) SAR data with 

Interferometric Swath mode. Level 1 GRD 

data denote that the data have been 

projected using an ellipsoid earth 

modeling approach (ESA, 2013). 
 

 
Figure 2-2: Research flowchart. 

 

In the pre-processing stage, image 

calibration and geometric correction were 

performed on the Level 1 GRD SAR data. 

Image calibration was intended to remove 

the influence of incidence angle and 

signal power variation from the SAR data. 

Meanwhile, geometric correction was 

performed in order to reposition each 

pixel through geometrical operation (Choo 

et al., 2014). 

Level 1 GRD SAR data consist of 

intensity and amplitude expressed in 

digital numbers. Conversion from the 

digital numbering to radar backscatter 

value (σ0) was thus performed through 

image calibration according to the 

following equations (Grady et al., 2013; 

Miranda & Meadows, 2015). 

 

 𝜎𝑑𝐵
0 = 10. log10 𝜎0                             (2-1) 

 𝜎0 =  
𝐷𝑁2

𝐴𝑑𝑛
2 𝐾

sin(𝛼)                              (2-2) 
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in which σ0 is the radar backscatter value 

in decibels (dB), DN represents the digital 

number, α is the incidence angle, K is the 

calibration constant and A is the 

amplitude. 

Samples were taken spatially from 

the rice paddy block in the pixel range of 

80–100 in order to obtain representative 

samples for each phase of rice plant 

growth. This study employed three 

different criteria for samples. The first 

model was developed based on the single 

polarisation sample, namely VH and VV 

polarisation respectively (without the 

texture feature). The second model 

utilized the NDPI sample (without the 

texture feature). NDPI is expressed in the 

following equation (Kushardono, 2012). 

 

NDPI = 
𝑉𝐻−𝑉𝑉

𝑉𝑉+𝑉𝐻
                                  (2-3) 

 

The last model was derived using 

the GLCM texture feature sample on VV 

and VH polarisation, such as entropy, 

homogeneity and GLCM mean (see Figure 

2-2).   

The sampling undertaken in each 

rice paddy block is shown in Figure 2-3. 

The radar backscatter values from the 

samples were extracted in order to obtain 

the rice plant growth phase models. The 

models were then tested using error 

assessment to acquire the best rice plant 

growth phase model. 
 

 
Figure 2-3: Sampling of rice paddy blocks. 

 

Texture analysis based on spatial 

information of the radar backscatter 

values was performed using second-order 

GLCM statistics. Texture analysis is 

necessary inasmuch as high-resolution 

satellite images commonly contain 

important structure information and 

structure features capable of increasing 

accuracy (Kushardono et al., 1994; Zhang 

et al., 2017). 

GLCM shows the probability (p) of 

the occurrence within an image of 

reference pixel with value i and 

neighboring pixel with value j, so that 

each element (i,j) is the number of 

occurrences between the reference pixel 

and neighboring pixel with value i and j 

(Pathak & Barooah, 2013). This study 

used the following texture analysis 

parameters: 

 

1. Window size; window size can affect 

the amount of time taken for the 

data processing. The larger the 

window size, the more information 

is involved. This will lead to a 

reduction in the sharpness of the 

texture feature. However, a small 

window size will result in a rough 

texture feature. Accordingly, an 

optimal window size is needed. This 

study used a window size of 5x5 as 

this was able to give the most 

accurate result (Chulafak et al., 

2017). 

2. Quantisation; the grey-level 

quantisation used is 32. 

Quantisation affects the accuracy of 

texture analysis. However, the 

highest grey-level quantisation does 

not always lead to an increase in 

accuracy (Karthikeyan & 

Rengarajan, 2013). 

3. Displacement; the displacement 

value used is 1 since a high 

displacement value can decrease 

accuracy and the optimal 

displacement values are 1 and 2 

(Soh & Tsatsoulis, 1999). 
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4. Directional angle; all directional 

angles are used, giving a total of 8 

directions. 

Several texture features can be 

extracted from the texture analysis, 

namely contrast, homogeneity, entropy, 

dissimilarity, correlation, GLCM mean 

and variance (Haralick et al., 1973). Three 

of these, entropy, homogeneity and GLCM 

mean, were utilized as samples due to the 

high accuracy results (Chulafak et al., 

2017). 
 

3      RESULTS AND DISCUSSION 

3.1   Without Texture Feature 

Using the date of rice planting, the 

radar backscatter value of VH 

polarisation and VV polarisation were 

acquired at the rice plant ages after 

planting of 7 days, 10 days, 14 days, 26 

days, 32 days, 40 days, 56 days, 68 days, 

75 days, 87 days, 99 days, 104 days, 116 

days and 128 days. The radar backscatter 

value on VH polarisation ranges from -24 

to -15 dB, whereas the VV polarisation 

ranges from -14 to -8 dB. This occurs due 

to the depolarisation on the scattering 

mechanism of VH polarisation (Smith et 

al., 2012). 

The variations in the VH 

polarisation and VV polarisation radar 

backscatter values with rice plant growth 

are depicted in Figures 3-1 a and b. The 

correlation between the two indicates a 

high correlation for VH polarisation where 

the square of the Pearson correlation 

coefficient, R2, is 0.93 with a regression 

equation y = 9.8 ln (0.042ln(x)). 

Meanwhile, the correlation between the 

radar backscatter value of VV polarisation 

and rice plant growth is expressed in the 

regression equation of y = -0.00000072x4 

+ 0.00021x3 -0.02x2 + 0.727x -17.74 with 

an R2 of 0.55 and where x is the rice plant 

age after planting and y is the radar 

backscatter value. 

The radar backscatter value is very 

low at the rice plant age of 7–14 days in 

Figure 3-1a. It indicates standing water 

that appears in the seedling stage. At this 

stage, the seeds are planted in flooded soil 

with a height of 3–5 cm. Under this 

condition, the radar signal applies in 

specular reflection such that the 

backscattered energy on VH polarisation 

is of a low intensity. This implies that the 

radar backscatter value is affected by 

surface roughness. 

At the rice plant age of 26 days to 68 

days, the radar backscatter value of VH 

polarisation steadily increases along with 

the increase of rice plant height and 

tillering number. A significant increase 

occurs at 68 days, which indicates the 

end of the vegetative phase and the 

beginning of the reproductive phase for 

the Ciherang variety. Therefore, the 

harvest season can be predicted by 

identifying the beginning of the 

reproductive phase. The rice plant growth 

phase model of VH polarisation in this 

study displays a similar trend to the 

results obtained by Raviz et al. (2016) and 

Nguyen et al. (2016). 

The correlation coefficient value (R2) 

of VV polarisation is relatively lower than 

for VH polarisation, which is probably due 

to the differences in the dominant 

scattering mechanism. It creates a strong 

soil moisture and leaf area index effect on 

VV polarisation, where the leaf area index 

can lead to attenuation of a return signal 

from the ground (Bousbih et al., 2017), 

meaning that the radar backscatter may 

fluctuate. 

Figure 3-1b shows that the trend 

does not follow rice plant growth where 

there is a significant depression in the 

rice plant age between 40 and 87 days. 

This may occur as VV polarisation is 

strongly affected by the double-bounce 

scattering mechanism, soil moisture and 

the leaf area index (Nguyen et al., 2016; 

Bousbih et al., 2017). Soil moisture is 

influenced by water content, which has a 

high dielectric constant and results from 
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a rising radar backscatter value in the 

vegetative stage. Meanwhile, VH 

polarisation is comparatively not 

influenced by soil moisture inasmuch as 

its dominant scattering mechanism is 

volume scattering. The correlation 

between NDPI and rice plant growth is 

shown in Figure 3-2. It satisfies the 

regression equation of y = -1.26E-11x6 + 

5.21E-9x5-0.00000086x4 + 0.000074x3-

0.00332x2 + 0.067x-0.08, where x is the 

rice plant age after planting and y is NDPI 

with an R2 of 0.67. The rice plant growth 

phase model from NDPI has a similar 

trend to the model generated from VV 

polarisation without texture feature, 

which shows there is a significant 

decrease in the radar backscatter value 

between the mid- vegetative phase and 

reproductive phase, although at a greater 

intensity compared  

to VV polarisation. This depression in 

both models is similar to the trend in 

wheat identified by Fung and Ulaby 

(1983) and in rice as demonstrated by 

Nguyen et al. (2016).  

Compared to the result in Nguyen et 

al., the rice variety observed from 10 m 

SAR data does not have a significant 

influence on radar backscatter value and 

the rice plant growth phase trend. It is 

seen by the radar backscatter value in 

this study, which is equivalent to that in 

Nguyen et al. (ranges from -23 to -15 dB  

for VH polarisation and from -16 to -7 dB 

for VV polarisation) [19]. 

 

3.2   With Entropy, Homogeneity and 

GLCM Mean Texture Feature 

Figures 3-3a and b are variations of 

the radar backscatter value obtained by 

involving the entropy texture feature in 

both VH and VV polarisation. The 

correlation between the radar backscatter 

value of VH polarisation and rice plant 

growth is expressed by the logarithmic 

regression of y = 7.65 ln (0.32ln (x)), where 

x is rice plant age after planting and y is 

the radar backscatter value with high 

correlation (R2 =0.92). Furthermore, the 

correlation between the radar backscatter 

value of VV polarisation and rice plant 

growth satisfies the polynomial regression 

of y = -0.00000047x4 + 0.000137x3 -

0.013x2 + 0.446x +3.30 with an R2 of 

0.70. Involving the entropy texture 

feature, the rice plant growth phase 

model shows a resembling trend without 

texture feature’s model. It implies that 

this model has the potential to be used in 

the identification and monitoring of the 

rice plant growth phase. Variations in the 

radar backscatter value involving the 

homogeneity texture feature on VH 

Figure 3-1: Relationship between rice plant growth and the radar backscatter value of (a) VH 

polarisation, (b) VV polarisation. 
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polarisation and VV polarisation are 

shown in Figures 3-3c and d. The 

correlation between the radar backscatter 

value on VH polarisation and rice plant 

growth is mathematically expressed by 

the regression equation of y = -1.56ln 

(0.074ln (x)) with an R2 of 0.87. 

Meanwhile, the correlation between the 

radar backscatter value of VV polarisation 

and rice plant growth follows the 

polynomial regression of y = 

0.00000073x4 -0.0002x3 + 0.019x2 -0.62x 

+4.16, with an R2 of 0.69. In those 

regressions, x represents the rice plant 

age after planting and y represents the 

radar backscatter value. The rice plant 

growth phase model involving the 

homogeneity texture feature trend shows 

an opposite trend to that of the rice plant 

growth phase model generated without 

the texture feature, entropy texture 

feature and GLCM mean texture feature 

on VH and VV polarisation. This model 

indicates that the homogeneity texture 

feature has a reciprocal relationship with 

the entropy texture feature, as seen on a 

graph in Gadkari (2004) 

Figures 3-3 e and f depict variations 

of the radar backscatter value by 

involving the GLCM mean texture feature 

in VH and VV polarisation. The 

correlation between the radar backscatter 

value on VH polarisation and rice plant 

growth is represented by the regression 

equation y = 4.66 ln (0.89ln (x)) with an 

R2 of 0.82. Then, the correlation between 

the radar backscatter value on VV 

polarisation and rice plant growth is 

obtained through the polynomial 

regression of y = -0.000000101x4 + 

0.000288x3 -0.026x2 + 0.905x +3.51 with 

an R2 of 0.63. The rice plant growth phase 

model with the GLCM mean texture 

feature exhibits a similar trend to that of 

the entropy texture features and without 

the texture feature on VH and VV 

polarisation, thus demonstrating its 

potential for use in the identification and 

monitoring of the rice plant growth phase.  

 

3.3 Model Testing 

The rice plant growth phase models 

obtained without texture feature, NDPI, 

and with texture features were evaluated 

using relative error assessment. Testing 

was performed using two samples from 

different rice paddy blocks. The samples 

were SBG-25/S 5 (Sample 1) and SBG-

28/ S 8 (Sample 2) at the size of 80–100 

pixels. 

Figure 3-4 is the model testing 

result for VH polarisation and VV 

polarisation without texture feature. 

Based on the average error calculation, 

the smallest error for VH polarisation 

without texture feature is 4.98% (Sample 

 
Figure 3-2: Relationship between NDPI and rice plant growth. 
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2). Moreover, the smallest error for VV 

polarisation without texture feature is 

5.20% (Sample 1). In general, both 

samples are reasonably fit with the model 

despite some inconsistency in the rice 

plant growth at 84 days on VH 

polarisation for Sample 1 and at 96 days 

on VV polarisation for Sample 2 due to 

depolarisation on the scattering 

mechanism. Figure 3-5 shows the model 

testing result of the NDPI rice plant 

growth phase model. The samples give 

average errors of 24.44% and 21.49% for 

Samples 1 and 2 respectively. Figures 3-

6 and 3-7 show the model testing results 

of the rice plant growth phase model 

involving texture features, namely 

entropy, homogeneity and GLCM mean 

Figure 3-3: Relationship between radar backscatter value and rice plant growth for (a) entropy 
texture feature on VH polarisation, (b) entropy texture feature on VV polarisation, (c) homogeneity 
texture feature on VH polarisation, (d) homogeneity texture feature on VH polarisation, (e) GLCM 

mean texture feature on VH polarisation, (f) GLCM mean texture feature on VV polarisation. 

 

Figure 3-4: Testing result of rice plant growth phase model without texture feature. 
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on VH polarisation and VV polarisation 

respectively. The smallest average error 

for Sample 1 on VH polarisation is 

12.09% in the rice plant growth phase 

model with the GLCM mean texture 

feature and 9.47% for Sample 2 in the rice 

plant growth phase model with the 

homogeneity texture feature. 

Furthermore, the smallest average 

error for Sample 1 on VV polarisation is 

5.83% and for Sample 2 is 5.73% in the 

rice plant growth phase model with the 

entropy texture feature. The highest 

average error for VH polarisation is found 

in the rice plant growth phase models 

with the entropy texture feature, at 

52.47% and 40.88% for Samples 1 and 2 

respectively. Then, the highest average 

error for VV polarisation is in the rice 

plant growth phase models with the 

homogeneity texture feature, which are 

75.17% and 71.41% for Samples 1 and 2 

respectively. This finding is likely to have 

been influenced by the selection of the 

directional angle (all directions were used) 

when performing the texture analysis in 

this study, which can result in a loss of 

information on the diagonal matrix 

(Kushardono, 1996). 

 

 

 

 

 

 

Figure 3-5: Testing result of rice plant growth phase model obtained from NDPI. 

Figure 3-6: Testing result of rice plant growth phase model with texture feature on VH polarisation. 
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 Average Error (%) 

Sample 

Name 

VH 

without 

Texture 

Feature 

VV 

without 

Texture 

Feature 

NDPI 

VH 

with 

Entro

py 

VV 

with 

Entro

py 

VH with 

Homoge

neity 

VV with 

Homogen

eity 

VH with 

GLCM 

Mean 

VV 

with 

GLCM 

Mean 

Sample 1 6.94 5.20 24.44 52.47 5.83 16.49 75.17 12.09 6.35 

Sample 2 4.98 8.38 21.49 40.88 5.73 9.47 71.41 10.14 9.91 

4      CONCLUSION 

It can be concluded from this study 

that the radar backscatter value on VH 

polarisation can be used to identify the 

rice plant growth phase. The radar 

backscatter value of VH polarisation is 

relatively more sensitive to the rice plant 

growth phase than VV polarisation. The 

rice plant growth phase model from NDPI 

exhibits a similar trend to that of the rice 

plant growth phase model without 

texture feature on VV polarisation. The 

rice plant growth phase models on VH 

polarisation without texture feature, with 

entropy as well as the GLCM mean 

texture feature show a similar trend that 

may represent the rice plant growth 

phase up to the beginning of the 

reproductive phase. The rice plant 

growth phase models on VH polarisation 

without texture feature, with entropy and 

the GLCM mean texture feature show the 

potential to be developed for use in rice 

plant growth identification and 

monitoring. The rice plant growth phase 

model without texture feature on VH 

polarisation is shown to be the most 

suitable model since it produces the 

smallest average error. 
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