ISSN 0216-6739 No. 371/AU1/P2MBI/07/2011

Vol. 10 N0. 2 December 2013

Published by National Institute of Aeronautics and Space of Indonesia (LAPAN)

Published by National Institute of Aeronautics and Space of Indonesia (LAPAN)

Editorial Committee Preface

Dear Readers,

Welcome to the International Journal of Remote Sensing and Earth Sciences Vol. 10 No 2, December 2013. This journal is expected to enrich the serial publications on earth sciences, in general, and remote sensing in particular, not only in Indonesia and Asian countries, but also worldwide.

The contents of this journal are particular interest to remote sensing as the main data for geosciences, oceanography, marine biology, fisheries, meteorology, etc. Inside this tenth edition, there are varieties of topics discussed, including study of flood inundation, SPOT-6 data fusion, Vulnerability level mapping, relationship between total suspended solid (TSS) and coral reef growth, environment quality changes, downwelling diffuse attenuation coefficients, forest classification, and identification of inundated area.

This journal is intended, among others, to complement information on Remote Sensing and Earth Sciences, and also encourage young scientists in Indonesia and Asian countries to contribute their research results. Therefore, we would like to invite scientists to manifest their ideas through scientific research papers. We are looking forward to receiving your manuscripts for the next edition of this journal.

Editor-in-Chief,

Dr. Bidawi Hasyim

Editorial Committee Members INTERNATIONAL JOURNAL OF REMOTE SENSING AND EARTH SCIENCES Vol. 10 No. 2 December 2013 ISSN 0216-6739

Editor-in-Chief Co Editor-in-Chief Editors	•	Dr. Bidawi Hasyim Mrs. Ratih Dewanti Dr. Bisman Nababan Dr. Katmoko Ari Sambodo
Peer Reveiwers		Dr. Jonson Lumban-Gaol Dr. Domu Simbolon Dr. Dony Kushardono Dr. Baba Barus Dr. Bambang Trisakti Dr. Vincentius Siregar
Secretariat	:	Mr. Agus Hidayat Mr. Jasyanto Mr. Adhi Pratomo Ms. Yenni Vetrita Ms. Junita Monika Pasaribu Mr. Yudho Dewanto Mr. M. Luthfi

Contribution Paper to:

IJReSES Secretariat

National Institute of Aeronautics and Space of Indonesia (LAPAN) Jl. Pemuda Persil No. 1, Rawamangun, Jakarta 13220, INDONESIA Phone. (+62-21) 4892802 Fax. (+62 21) 47882726 ijreses@lapan.go.id

Published by: National Institute of Aeronautics and Space of Indonesia (LAPAN)

INTERNATIONAL JOURNAL OF REMOTE SENSING AND EARTH SCIENCES Vol. 10 No. 2 December 2013 ISSN 0216-6739 No. 371/AU1/P2MBI/07/2011

Contents

Editorial Committee Preface	ii
Editorial Committee Members	iii
Study on Flood Inundation in Pekalongan, Central Java Syams Nashrrullah, Aprijanto, Junita Monika Pasaribu, Manzul K. Hazarika, and Lal Samarakoon	76
Analysis of Spot-6 Data Fusion using Gram-Schmidt Spectral Sharpening on Rural Areas	
Danang Surya Candra	84
Vulnerability Level Map of Tsunami Disaster in Pangandaran Beach, West Java Iqoh Faiqoh, Jonson Lumban Gaol and Marisa Mei Ling	90
The Relationship Between Total Suspended Solid (TSS) and Coral Reef Growth (Case Study of Derawan Island, Delta Berau Waters)	
and I Wayan Nurjaya	104
Identification of Inundated Area using Normalized Difference Water Index (NDWI) on Lowland Region of Java Island Suwarsono, Jalu Teio Nugrobo, and Wiweka	114
	117
Downwelling Diffuse Attenuation Coefficients from <i>In Situ</i> Measurements of Different Water Types	
Bisman Nababan, Veronica S.A. Louhenapessy, and Risti E. Arhatin	122
Random Forest Classification of Jambi and South Sumatera using Alos Palsar Data Mulia Inda Rahayu [*] and Katmoko Ari Sambodo	134
Environmental Quality Changes of Singkarak Water Catchment Area Using Remote	
Ita Carolita, Bambang Trisakti, and Heru Noviar	142
Instruction for Authors	143
Index	144

Published by: National Institute of Aeronautics and Space of Indonesia (LAPAN)

ISSNI 0216 - 6739	Vol 10 No.1 June 2013
No 371/AU1/P2MBI/07/2011	voi. 10 100.1, june 2015
The abstract may be copied without permission or cl	harge
ABSTE	RACT
DERIVING INHERENT OPTICAL PROPERTIES	LAND COVER CLASSIFICATION OF ALOS
FROM MERIS IMAGERY AND IN SILU MEASUREMENT USING QUASLANALYTICAL	PALSAK DATA USING SUPPORT VECTOR
ALGORITHM/Wiwin Ambarwulan: Widiatmaka:	IIReses 10 (1) : 8-18
Svarif Budhiman	1910505, 10 (1) : 0 10
IIReses, 10 (1) : 1-8	Land cover classification is one of the extensive
	used applications in the field of remote sensing.
The paper describes inherent optical properties	Recently, Synthetic Aperture Radar (SAR) data has
(IOP) of the Berau coastal waters derived from in situ	become an increasing popular data source because its
measurements and Medium Resolution Imaging	capability to penetrate through clouds, haze, and
Spectrometer (MERIS) satellite data. Field measurements	smoke. This study showed on an alternative method
of optical water, total suspended matter (TSM), and	for land cover classification of ALOS-PALSAR data
chlorophyll-a (Chl-a) concentrations were carried out	diagriginates two classes by fitting on entired
four MERIS data were coincided with in situ	constraining by perplane to the training data in a
measurements on 31 August 2007 The MERIS top-of-	multidimensional feature space by using only the
atmosphere radiances were atmospherically corrected	closest training samples. In order to minimize the
using the MODTRAN radiative transfer model. The <i>in</i>	presence of outliers in the training samples and to
situ optical measurement have been processed into	increase inter-class separabilities, prior to classification,
apparent optical properties (AOP) and sub surface	a training sample selection and evaluation technique
irradiance. The remote sensing reflectance of in situ	by identifying its position in a horizontal vertical-
measurement as well as MERIS data were inverted into	vertical horizontal polarization (HV-HH) feature space
the IOP using quasi-analytical algorithm (QAA). The	was applied. The effectiveness of our method was
result indicated that coefficient of determination (R^2) of	demonstrated using ALOS PALSAR data (25 m
backscattering coefficients of suspended particles (b_{bp})	mosaic, dual polarization) acquired in Jambi and South
increased with increasing wavelength, nowever the R^2 of absorption spectra of phytoplankton (a_1) degreesed with	discriminated, forest rubber plantation manageous
increasing wavelength	shrubs with trees oilpalm & coconut shrubs
increasing wavelength.	cropland, bare soil, settlement, and water. Overall
	accuracy of 87.79% was obtained, with producer's
Keywords: QAA, MODTRAN, MERIS, Remote sensing	accuracies for forest, rubber plantation, mangrove &
reflectance, Berau estuary water	shrubs with trees, cropland, and water class were
	greater than 92%.
	Keywords Land cover ALOS-PAISAR sunnort vector
	machine (SVM), classification, Iambi. South
	Sumatra.

ISSN 0216 - 6739	Vol. 10 No.1, June 2013
No.371/AU1/P2MBI/07/2011	
The abstract may be copied without permission or c	harge
ABSTI	RACT
MULTITEMPORAL LANDSAT DATA TO QUICK	FISHPOND AQUACULTURE INVENTORY IN
MAPPING OF PADDY FIELD BASED ON	MAROS REGENCY OF SOUTH SULAWESI
STATISTICAL PARAMETERS OF VEGETATION	PROVINCE/Yennie Marini; Emiyati; Teguh Prayogo;
INDEX (CASE STUDY: TANGGAMUS, LAMPUNG) /	Kossi namzan; Bidawi Hasyim
I Made I alsa, Dede Dirganayu IIReses 10 (1) • 19-24	IJReses, 10 (1) . 25-55
ljkeses, 10 (1) : 19 21	Currently, fishpond aquaculture becomes an
Paddy field has unique characteristics that	interesting business for investors because of its profit.
distinguish it from other plants. Before it planting,	and a source of livelihood for coastal communities.
paddy field is always flooded so that the appearance is	Inventory and monitoring of fishpond aquaculture
dominated by water (aqueous phase). Within the	provide important baseline data to determine the
growth of rice, field conditions will be increasingly	policy of expansion and revitalization of the fishpond.
dominated by greenish rice plants. While at the end, the	The aim of this research was to conduct an inventory
rice plants will turn yellow indicating for harvesting.	and monitoring of fishpond area in Maros regency of
During flooding stage, the normalized difference	South Sulawesi province using Satellite Pour
vegetation index (NDVI) of pady field is negative. The	l'Observation de la Terre (SPOT-4) and Advanced
negative value of NDVI of paddy field will ultimately	Land Observing Satellite (ALOS) Phased Array type L-
increase to the maximum value at the maximum	band Synthetic Apeture Radar (PALSAR). SPOT image
degreese from generative phase until harvest and after	classification process was performed using maximum
harvest. The objective of this study was to perform the	density clice method for ALOS PALSAR Fishpond
vegetation index analyses for multitemporal Landsat	area from SPOT data was 9693.58 bectares (ba) this
imagery of paddy field. The results showed that the	results have been through the process of validation
difference of vegetation index values (maximum -	and verification by the ground truth data. The
minimum) of paddy field were greater than the	fishponds area from PALSAR was 7080.5 Ha, less than
difference of vegetation index values of other land uses.	the result from SPOT data. This was due to the
Such differences values can be used as indicator to map	classification result of PALSAR data showing some
land for rice. The evaluation results with reference data	objects around fishponds (dike, mangrove, and scrub)
showed that the mapping accuracy (overall accuracy)	separately and were not combined in fishponds area
was of 87.4 percent.	calculation. Meanwhile, the result of SPOT-4 image
Keywords: NDVI Landsat naddu field maximum and	classification combined object around fishponds area.
minimum vegetation index. Lampung	
	Keywords : Fishpond aquaculture, Optic remote sensing.
	Satellite imaging radar, SPOT-4, PALSAR

ISSN 0216 - 6739	Vol. 10 No.1, June 2013
No.371/AU1/P2MBI/07/2011	
The abstract may be copied without permission or c	harge
ABSTI	RACT
GROWTH RATE AND PRODUCTIVITY	DEVELOPMENT OF LAND MOISTURE
DYNAMICS OF ENHALUS ACOROIDES LEAVES	ESTIMATION MODEL USING MODIS
AT THE SEAGRASS ECOSYSTEM IN PARI	INFRARED, THERMAL, AND EVI TO DETECT
ISLANDS BASED ON IN SITU AND ALOS	DROUGHT AT PADDY FIELD / Dede Dirgahayu
SATELLITE DATA / Agustin Rustam; Dietriech	Domírí
Geoffrey Bengen; Zainal Arifin; Jonson Lumban	IJReses, 10 (1) : 47-54
Gaol; Kisti Endriani Arnatin	The during the interview of the second in
IJReses, 10 (1): 37-46	The arought phenomena often occurs in
Enhalue according in the largest population of	drought shanemana sausas dagraasa in risa
Enhands accordings is the largest population of	arought phenomena causes decrease in rice
productivity analyses of Enhalus according and the use of	model of land maintaine (LM) actimation at a grigultural
satellite data to estimate its the productivity are still	field comparely for modely field based on Mederate
rare. The goal of the research was to analyze the growth	Resolution Imaging Spectroradiometer (MODIS)
rate, productivity rate seasonal productivity of <i>Enhalus</i>	satellite data which has seven reflectance and two
acaroidas in Pari island and its surroundings. The study	thermal hands. The method used in this study
was divided into two phases i.e. in situ masurments	included data correction advance processing of
and satellite image processing. The field study was	MODIS data (land indices transformation) extraction
conducted to obtain the coverage percentage density	of land indices value at location of field survey and
growth rate and productivity rate while the satellite	regression analysis to make the best model of land
image processing was used to estimate the extent of	moisture estimation. The result showed that
seagrass The study was conducted in August 2011 to	reflectance of 2 nd channel (NIR) and rasio of Enhanced
July 2012 to accommodate all four seasons Results	Vegetation Index (EVI) with Land Surface
showed that the highest growth rate and productivity	Temperature (IST) had high correlation with surface
occurred during the transitional season from west	soil moisture (% weight) at $0 - 20$ cm denth with
Monsoon to the east Monsoon of 5.6 cm/day and 15.75	formula: $LM = 15.9$ *EVI/LST - 0.934*R2 - 16.8
mgC/day, respectively. While, the lowest growth rate	$(SE=9.6\%; R^2=76.2\%)$ Based on the model land
and productivity occurred during the transition from	moisture was derived spatially at the agricultural field.
east Monsoon to the west Monsoon of 3.93 cm/day and	especially at paddy field to detect and monitor
11.4 mgC/day, respectively. Enhalus acoroides	drought events. Information of land moisture can be
productivity reached its maximum during the west	used as an indicator to detect drought condition and
Monsoon at 1081.71 mgC/day/m ² and minimum	early growing season of paddy crop.
during east Monsoon with 774.85 mgC/day/m ² . Based	
on ALOS data in 2008 and 2009, total production of	Neywords: IVIODIS, Kejlectances, EV1, LS1, land moisture,
Enhalus acoroides in the proximity of Pari islands	ршиу
reached its maximum occur during the west Monsoon	
(48.73 – 49.59 Ton C) and minimum during transitional	

absorption by *Enhalus acoroides* in Pari island was estimated at the number 60.14 – 181.82 Ton C. **Keywords:** *Enhalus acoroides, growth rate, productivity*

season (16.4-16.69 Ton C). Potential atmospheric CO2

Keywords: <u>Enhalus acoroides</u>, growth rate, productivity rate, productivity, ALOS, Pari island

ISSN 0216 - 6739			Vol. 10 No.1, June 2013
No.371/AU1/P2MB	I/07/201	11	
The abstract may be	copied v	vithout permission or c	harge
ABSTRACT			
DETERMINATION	OF	STRATIFICATION	UTILIZATION OF MULTI TEMPORAL SAR DATA

BOUNDARY FOR FOREST AND NON FOREST MULTITEMPORAL CLASSIFICATION TO SUPPORT REDD+ IN SUMATERA ISLAND /Tatik Kartika; Inggit Lolita Sari; Bambang Trisakti IJReses, 10 (1) : 55-64

Multi-temporal classification is a method to determine forest and non-forest by considering a missing data, such as cloud cover using correlations value from the other data. This circumstances is frequently occured in a tropical area such as in Indonesia. To gain an optimum result of forest and non-forest classification, it is needed a stratification zone that describes the difference of vegetation condition due to different of vegetation type, soil type, climate, and land use/cover associations. This stratification zone will be useful to indicate the different biomass volume relating to carbon content for supporting the REDD+ project. The objective of this study was to determine stratification boundary by performing multi temporal classification in Sumatera Island using Landsat imagery in 25 meter resolution and Quick Bird imagery in 0.6 meter. Rough stratification was made by considering land use/cover, DEM and landform, using visual interpretation of moderate spatial resolution of satellite data. High spatial resolution data was also provided in some areas to increase the accuracy level of stratification zone. The stratification boundary was evaluated using forest classification indices, and it was redetermined to obtain the final stratification zone. The indices was generated by Canonical Variate Analysis (CVA) method, which was depend on training samples of forest and nonforest in each previous stratification zone. The amount of indices used in each zone were two or three indices depending on the separability of the forest and nonforest classification. The suitable indices used in each zone described forest as 100, non-forest as 0, and uncertain forest between 50-99. The result showed 20 stratification zones in Sumatera spreading out in coastal, mountain, flat area, and group of small islands. The stratification zone will improve the accuracy of forest and non-forest classification result and their change based on multi temporal classification.

Keywords: Muti temporal Classificatioon, Stratification zone, Forest, CVA, Landsat, Quick Bird

UTILIZATION OF MULTI TEMPORAL SAR DATA FOR FOREST MAPPING MODEL DEVELOPMENT / Bambang Trisakti; Rossi Hamzah IJReses, 10 (1) : 65-74

Utilization of optical satellite data in tropical region was limited to free cloud cover. Therefore, Synthetic Aperture Radar (SAR) becomes an alternative solution for forest mapping in Indonesia due to its capability to penetrate cloud. The objective of this research was to develop a forest mapping model based on multi temporal SAR data. Multi temporal ALOS PALSAR data for 2007 and 2008 were used for forest mapping, and one year mosaic LANDSAT data in 2008 was used as references data to obtain training sample and to verify the final forest classification. PALSAR processing was done using gamma naught conversion and Lee filtering. Samples were made in forest and water area, and the statistical values of the each object were calculated. Some thresholds were determined based on the average and standard deviation, and the best threshold was selected to classify forest and water in 2008. It was assumed that forest could not change in 1-2 years period. The classification of forest, water, and the change were combined to produce final forest in 2008, and then it was visually verified with mosaic LANDSAT in 2008. The result showed that forest, water, and the change could be well classified using threshold method. The forest derived from PALSAR was visually consistent with forest appearance in LANDSAT and forest produced from INCAS. It has better performance than forest derived from INCAS for separating oil palm plantation from the forest.

Keywords: Forest mapping, Multi temporal, ALOS PALSAR, Threshold, LANDSAT

ISSN 0216 - 6739	Vol. 10 No.2, December 2013
No.371/AU1/P2MBI/07/2011	,
The abstract may be copied without permission or c	harge
ABSTI	RACT
VULNERABILITY LEVEL MAP OF TSUNAMI	THE RELATIONSHIP BETWEEN TOTAL
DISASTER IN PANGANDARAN BEACH, WEST	SUSPENDED SOLID (TSS) AND CORAL REEF
JAVA/Iqoh Faiqoh; Jonson Lumban Gaol; Marisa Mei	GROWTH (CASE STUDY OF DERAWAN ISLAND,
Ling $UP = 10(2) + 00(102)$	DELIA BERAU WAIERS) /Ety Parwati; Mahdi Kantagagagitan Kadagunan Casawag di Tai dang
IJKeses, 10 (2) : 90-103	Kartasasiinta; Kauarwan Soewarui, Iriuoyo
Indonesia is located in a seismic active region	IIReses. 10 (2) : 104-113
where tsunami often occur. One of tsunami prone areas	
in Indonesia is southern coast of Java, such as the	Total suspended solid (TSS) is one of the water
coastal areas of Pangandaran, West Java. One of the	quality parameters and limiting factor affecting coral
instruments in the tsunami disaster mitigation is the	reef growth. In this study, we used the algorithm of
vulnerability map of coastal region on tsunami.	TSS= 3.3238*e ^(34.099* Green band) (where green band is
Analyses of tsunami vulnerability assessment was	reflectance band 2) to extract TSS from Landsat
performed by using merger or overlay methods in	satellite data. The algorithm was validated with field
Geographic Information Systems (GIS). The parameters	data. Water column correction method developed by
used to analyze tsunami vulnerability level were	Lyzenga was used to map coral reer. The result
elevation, topography, landuse, coastal border, and	degreesed significantly (about 12,805 be or around 26
classes i.e. yory high high modium low and yory	%) from the year of 1979 to 2002. The most coral reef
low Results showed that Pananiung Babakan	reduced area was detected around Derawan Island
Pangandaran (Pangandaran District): and Sukaresik	(about 5.685 ha). Further, some areas changed into
and Cikembulan (Sidamulih District) sub-districts were	sand dune. TSS concentration around Delta Berau and
identified as areas of very high level of tsunami	Derawan Island increased aproximately twice from 15-
vulnerability with total area of 737.703 hectares. Areas	35 mg/l in 1979 to 20-65 mg/l in 2002. The increase of
with low level of vulnerability were Pagergunung,	TSS concentration was followed by the decrease of
Putrapinggan, and Kersaratu sub-districts with total	coral reef area.
area of 4,816.204 hectares.	Keywords : Landsat total suspended solid (TSS) coral
	reef. Berau waters
Keywords: Coastal vulnerability, Tsunami, GIS, Pangandaran	

ISSN 0216 - 6739	Vol. 10 No.2, December 2013
No.371/AU1/P2MBI/07/2011	
The abstract may be copied without permission or c	harge
ABSTI	RACT
IDENTIFICATION OF INUNDATED AREA USING	DOWNWELLING DIFFUSE ATTENUATION
NORMALIZED DIFFERENCE WATER INDEX	COEFFICIENTS FROM IN SITU MEASUREMENTS
(NDWI) ON LOWLAND REGION OF JAVA	OF DIFFERENT WATER TYPES / Bisman Nababan;
ISLAND/ Suwarsono; Jalu Tejo Nugrono; Wiweka	Veronica S.A. Lounenapessy; Risti E. Arnatin
IJKeses, 10 (2) . 114-121	IJKeses, 10 (2) . 122-135
 Flood disaster is a major issues due to its frequently events on several areas in Indonesia. Delineation of inundated area caused by flood is needed to support disaster emergency response. The objective of this research was to identify inundated areas using NDWI methos from Landsat TM/ETM⁺ data on lowland regions of Java island. A pair of the data (before and during the flood) were in each observation areas. Observation areas were selected in several location of lowland regions of Java island where great event of flood occurred during the last decades. The thresholds values of NDWI change were used to separate the flood and non flood areas. The results showed that the extent of inundated area caused by flood on lowland regions can be identifyed and separated based on NDWI variables extracted from Landsat TM/ETM⁺. Keywords: Inundated area, NDWI, Landsat, Lowland region, Java Island 	Process of light reduction or loss (attenuation) by scattering and absorption is affected by solar zenith, time, depth, and seawater constituents. Downwelling diffuse attenuation coefficient (K_d) is important to understand for light penetration and biological processes in ocean ecosystem. It is, therefore, important to know the K_d value and its variability in ocean ecosystem. The objective of this study was to determine downwelling diffuse attenuation coefficients and its variability form in situ measurements of different water types. In situ downwelling irradiances (E_d) were measured using a submersible marine environmental radiometer instrument (MER) during a clear sky, calm water condition, and at the time range of 10:30 a.m. up to 14:00 p.m. local time in the northeastern Gulf of Mexico in April 2000. In general, E_d values decreases exponentially with depth. E_d at 380 nm exhibited the lowest attenuation (the most light loss at the top of water column). Overall, the K_d patterns tended to decrease from 380 nm to 490 nm to 683 nm (green-red wavelength). K_d values in offshore region were relatively lower than in coastal region. K_d can be used to determine the depth of euphotic zone in offshore or teh case-1 water type and the depth of one optical depth (the water column depth where the ocean color satellite can possibly sense).
	NEGOM.

NI 071 (ALII (DO) (DI (07 (0011	· · · · · · · · · · · · · · · · · · ·
No.371/AU1/P2MBI/07/2011	
The abstract may be copied without permission or o	charge
ABST	RACT
ABST RANDOM FOREST CLASSIFICATION OF JAMBI AND SOUTH SUMATERA USING ALOS PALSAR DATA/Mulia Inda Rahayu; Katmoko Ari Sambodo IJReses, 10 (2) : 134-141 Recently, Synthetic Aperture Radar (SAR) satellite imaging has become an increasing popular data source especially for land cover mapping because its sensor can penetrate clouds, haze, and smoke which a serious problem for optical satellite sensor observations in the tropical areas. The objective of this study was to determine an alternative method for land cover classification of ALOS-PALSAR data using Random Forest (RF) classifier. RF is a combination (ensemble) of tree predictors that each tree predictor depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. In this paper, the performance of the RF classifier for land cover classification of a complex area was explored using ALOS PALSAR data (25m mosaic, dual polarization) in the area of Jambi and South Sumatra, Indonesia. Overall accuracy of this method was 88.93%, with producer's accuracies for forest, rubber, mangrove & shrubs with trees, cropland, and water classes were greater than 92%. Keywords: Land cover, ALOS-PALSAR, random forest (RF), classification, remote sensing	RACT ENVIRONMENTAL QUALITY CHANGES OF SINGKARAK WATER CATCHMENT AREA USING REMOTE SENSING DATA / Ita Carolita; Bambang Trisakti; Heru Noviar IJReses, 10 (2) : 142-148 Lake Singkarak in west Sumatera is currently in very poor condition and become one of the priorities in the government lake rescue program. High sedimentation rate from soil erosion has caused siltation, decreasing of quality and quantity of lake water. Monitoring of the environment quality changes of the lake and its surrounding are required. This study used Landsat and SPOT satellite data in periods of 2000-2011 to evaluate environmental quality parameters of the lake such as land cover, lake water quality (total suspended solid), water run-off, and water discharge in Singkarak lake catchment area. Maximum likelihood classifier was used to obtain land cover. Total suspended solid was extracted using Doxaran algorithm. The look up table and rational method were used to estimate run-off and water discharge. The results showed that the decreasing of forest area and the increasing of settlement were consistent with the increasing of average run-off and water discharge in Paninggahan and Sumpur sub- catchment area. The results were also consistent with the increasing of TSS in Singkarak lake, where TSS increased from around 2-3 mg/l up to 5-6 mg/l in the periods of 2000-2011. Keywords: Singkarak lake, total suspended solid, run off, water discharge. Landsat. SPOT