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Abstract. The scope of this research is the application of the random forest method to SPOT 7 data to 

produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect 

of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. 

SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was 

used in this research. The estimation of bathymetry was carried out using two in-situ depth-data 

modifications, in the form of a random forest algorithm used both without and with benthic habitats 

(coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the 

first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 

1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of 

determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly 

better results than the second modification; thus, the benthic habitat did not significantly influence 

bathymetry estimation from SPOT 7 imagery. 
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1      INTRODUCTION 

Bathymetry is essential information 

about the depth of water and underwater 

topography. As an archipelagic country, 

Indonesia requires information on the 

depth of its waters to aid its position as a 

maritime axis in developing its economy 

and for reasons of national sovereignty. 

In achieving this there are constraints on 

updating the depth information for 

Indonesian waters needed to update 

water-depth maps (Manessa et al., 

2016). This situation challenges 

Indonesian researchers to develop 

methods and technologies that are 

effective and efficient. 

The Indonesian government, 

through the National Aeronautics and 

Space Agency, has been able to utilize 

remote sensing technology to obtain 

depth information from shallow waters. 

Remote sensing technology can obtain 

information spatially and temporally at a 

relatively lower price than the 

conventional direct-measurement 

method used to obtain such information. 

The conventional method also has the 

disadvantage of not being able to reach 
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very shallow waters (Jawak, Vadlamani, 

& Luis, 2015) and areas with reef bases 

(Kanno, Kiobuchi & Isobe, 2011). 

Research by Manessa et al., (2016) 

identified the potential for effective and 

efficient remote sensing technology to be 

used to compile and revise natural 

resource information. In addition, these 

technologies are useful for supporting 

resource planning and management. 

Other areas of research that can be 

supported by remote sensing technology 

are spatial planning, marine 

environment and aquaculture (Hell et 

al.2012). Remote sensing technology, 

especially optical imagery, works on the 

spectrum of electromagnetic waves by 

utilizing sunlight. The amount of 

sunlight penetrating a water object 

depends on the ability of the water to 

absorb sunlight. The greater the 

absorption capacity of the waters, the 

less likely it is that the water can be 

penetrated by sunlight. According to 

Lillesand and Kiefer (1994), the lowest 

absorption capacity of water lies in 

wavelengths of 400–600 nm. According 

to Jagalingam, Akshaya, and Hegde 

(2015), in clear water conditions, remote 

sensing technology can detect up to a 

depth of 30 m. 

In utilizing remote sensing 

technology to obtain information on 

depth, one of the challenges faced is in 

identifying the appropriate accuracy of 

the information collected. To address 

this, the utilization of image data with 

various resolutions and different 

extraction methods has been carried out 

by, among others, Pacheco, Horta, 

Loureiro, and Ferreira (2015); 

Jagalingam et al., (2015); Vinayaraj, 

Raghavan, and Masumoto, (2016) and 

Pushparaj and Hegde (2017) using 

Landsat 8 OLI data. Arya, Winarso, and 

Santoso (2016); Kanno et al. (2011) and 

Manessa et al., (2016) utilized images 

from SPOTs 6 and 7 in estimating 

bathymetry. The method of estimating 

bathymetry using Worldview data is used 

by Kanno, Tanaka, Kurosawa, & Sekine 

(2013); Yuzugullu and Aksoy (2014); 

Eugenio, Marcello, and Martin (2015); 

Manessa et al. (2016); Guzinski et al. 

(2016) and Hernandez and Armstrong 

(2016), all of which research makes use 

of images with better spatial resolution, 

namely, that provided by Worldview.  

Manessa, Haidar, Hartuti, and 

Kresnawati (2017) conducted bathymetry 

mapping in shallow sea waters 

containing coral, seagrass, macroalgae 

and substrate cover. This approach is 

supported by research conducted by 

Budhiman, Winarso and Asriningrum 

(2013) which suggests that the taking of 

training samples from bottom water 

substrate has very different radians. In 

the present study, using random forest 

analysis the researchers examine and 

analyze the influence of each of the basal 

habitat objects in shallow waters on the 

extraction of bathymetric information. 

The four objects used in the modelling 

process are corals, seagrass, macroalgae 

and substrates. The purpose of this 

study is to investigate the effect of 

benthic habitat on bathymetry extraction 

using SPOT 7 satellite imagery and 

random forest methods for the Gili Matra 

Islands, Lombok, West Nusa Tenggara, 

and to determine the accuracy delivered 

by the model.  

This research was conducted at 

this location because it contains both 

clear waters and the four basic habitat 

objects found in shallow marine waters: 

coral, seagrass, macroalgae and 

substrates. These conditions relate to the 

requirements that must be met when 

using remote sensing technology and to 

the model used. In addition, the location 

is a national marine conservation area, 

so the research can be used to support 

conservation management efforts as 
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these relate to the produced bathymetry 

maps.  

  

2    MATERIALS AND METHODOLOGY  

2.1   Location and data 

The research location was the 

shallow marine waters of Gili Matra, 

including the waters of Gili Trawangan, 

Gili Meno and Gili Air NTB (Figure 2-1). 

The data used in this study are SPOT 7 

satellite image data with multispectral 6 

m spatial resolution. Image recording 

time was 28 June 2018 at 10:12:49 

Central Indonesian Time. The 

hydrographic survey data was collected 

during a field survey conducted from 

June 22 to 28, 2018, using a single 

beam echosounder and a differential 

global positioning system.  

 

2.2   Method  

This research was carried out in 

several stages; namely, measurement of 

depth data in situ with an echosounder, 

analysis of tidal data, and image 

processing. In-situ depth data is 

corrected with tidal data to obtain 

corrected depth data. 

 

 

Figure 2-1: Research location image. 

 

Image processing of satellite 

imagery includes radiometric and 

atmospheric correction. Bathymetry 

extraction is the process of determining 

sea depth information from remote 

sensing imagery. The bathymetry 

extraction in this study uses SPOT 7 

satellite imagery processed using the 

random forest method. The bathymetry 

calculation is processed with 

modifications to field data usage.  

The formula for bathymetry 

extraction using random forest methods 

is shown in Equation 2-1 (Manessa et 

al., 2017): 

 

ℎ̂ =
1

𝑚
∑ 𝑊𝑗(𝑋𝑏𝑙𝑢𝑒, 𝑋𝑏𝑙𝑢𝑒

′)𝑚
𝑗=1 +

1

𝑚
∑ 𝑊𝑗(𝑋𝑔𝑟𝑒𝑒𝑛, 𝑋𝑔𝑟𝑒𝑒𝑛

′)𝑚
𝑗=1 +

1

𝑚
∑ 𝑊𝑗(𝑋𝑟𝑒𝑑 , 𝑋𝑟𝑒𝑑

′)𝑚
𝑗=1  +  𝜀                      (2-1) 

where 𝑊𝑗 (𝑋𝑖, 𝑋𝑖′) is a non-

negative weight from training point i 

relative to new point x' in the same 

stage, and m is the number of stages.  

To analyze the effect of benthic 

habitats on bathymetry accuracy, the 

field data used was modified. The first 

modification was to use all in-situ depth 

data without regard to benthic habitat. 

The second modification was the use of 

internal depth data separated into 

benthic habitats consisting of coral reef, 

seagrass, macroalgae and substrates. 

The modifications were compared to find 

the best accuracy value from the 

methods used. 

 

2.3     Accuracy test 

The accuracy of the model is 

calculated using the coefficient of 

determination R2 and RMSE (root mean 

square error). The calculation process is 

carried out by random cross-validation 

experiments using 70% in-situ data with 

100 repetitions. All calculation processes 

are carried out with R32 software. 

Equations 2-2 and 2-3 are used to 

calculate the coefficient of determination 

R2 and RMSE: 

 

R2 = 1 − ∑ (ℎ𝑖 − ℎ̂𝑖)
2

𝑖 ∑ (ℎ𝑖 − ℎ̅)
2

𝑖⁄       (2-2) 

RMSE = (∑ (ℎ𝑖 − ℎ̂𝑖)
2𝑛

𝑖=1 𝑛⁄ )
0.5

           (2-3) 

where  
h = in-situ depth 

ℎ̂ = extraction depth from SPOT 7 

ℎ̅ = mean of in-situ depth 

n = number of data 
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The next validation process is 

determining the fulfilment of accuracy 

standards based on IHO S44 (IHO, 

2008). Bathymetric data from multiple 

linear models were analyzed using field 

data and calculated order of accuracy 

based on IHO-S44 standards consisting 

of special order, orders 1A and 1B, and 

second order. The criteria used were the 

values of total vertical uncertainty (TVU). 
 

Table 2-1: Maximum value of TVU with 95% 
trust rate (Source: IHO, 2008). 

Order A B 

Special order 0.250 0.0075 

Order 1A 0.500 0.0130 

Order 1B 0.500 0.0130 

Second order 1.000 0.0230 

 

TVU = ± √𝑎2 + (𝑏 𝑥 𝑑)2                        (2-4) 

 
where:  

a = uncertainty coefficient that 

does not depend on depth 

b = uncertainty coefficient that 

depends on depth 

d = depth 

 

There are two kinds of errors that 

can affect depth uncertainty; namely, 

errors that depend on depth and those 

which do not depend on depth. Equation 

2-4 is used to calculate the maximum 

TVU. The parameters A and B for each 

order are shown in Table 2-1. 

 

3      RESULTS AND DISCUSSION 

Bathymetry determination at first 

modification uses 3254 items of in-situ 

measurement data. The result has a 

coefficient of determination R2 of 0.902 

and an RMSE value of 1.15 m. The 

bathymetry results from the first 

modification are displayed in the 

scatterplot of the in-situ data and the 

model results are shown in Figure 3-1.  
 

 
Figure 3-1: Scatterplot of first modification. 

The result accuracy determination from 

the depth model was calculated at seven 

depth intervals. Calculation of efficiency 

is based on the IHO S44 standards 

shown in Table 3-1. 
 
Table 3-1: Results of first modification accuracy 

(TVU, IHO S44). 

Depth 
data (m) 

Data 
no. 

Order (%) 
Ex. 
(%) 

Error 
(m) Sp. 

1A/
1B 

2 

< 1 395 35 28 20 17 0.90 
1–2 565 35 23 25 17 0.95 
2.1–5 909 29 26 22 23 1.21 
5.1–10 600 11 13 20 55 2.33 

10.1–15 402 9 10 19 62 2.53 
15.1–20 244 9 8 16 67 2.79 
> 20 139 3 1 1 95 6.68 

Sp. = special; Ex. = excluded 
 

Table 3-1 shows that for 3254 

items of field data divided into seven 

depth intervals, the accuracy values 

vary. At a depth of less than 1 m, 395 

data items are accurate to 0.9 m. 

Accuracy results are grouped into four 

orders: 35% special order accuracy, 28% 

orders of accuracy 1A and IB, 20%  

second order accuracy, and 17% 

excluded. At depths of 1 to 2 m, 

accuracy is 0.95 m for 565 items of data: 

35% special order, 23% orders of 

accuracy 1A and 1B, 25%  second order 

accuracy, and 17% excluded. At depths 

of 2.1 to 5 m there is accuracy to 1.21 m 

for 909 data items, consisting of 29% at 

special order accuracy, 26% in orders of 

accuracy 1A and 1B, 22% at second 

order accuracy, and 23% excluded. At 

depths of 5.1 to 10 m there is accuracy 

to 2.33 m for 600 data items, consisting 

of 11% at  
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special order accuracy, 13% in orders of 

accuracy 1A and 1B, 20% at second 

order accuracy, and 55% excluded. At 

depths of 10.1 to 15 m there is precision 

to 2.5 m for 402 items of detailed depth 

data consisting of 9% at special order 

accuracy,10% at orders of accuracy 1A 

and 1B, 19% at second order accuracy, 

and 62% excluded. At depths of 15.1 to 

20 m there is accuracy to 2.79 m for 244 

data items, consisting of 9% at special 

order accuracy, 8% in orders of accuracy 

1A and 1B, 16% at second order 

accuracy, and 67% excluded. At a depth 

of more than 20 m there is accuracy to 

6.68 m for 139 data items, consisting of 

3% at special order accuracy, 1% at 

orders of accuracy 1A and 1B, 1% at 

second order accuracy, and 95% 

excluded. 

The results of TVU shown in Table 

2-1   can be seen in the form of 

histogram distribution in Figure 3-2. 

From Figure 3-2  it can be seen that, 

using the first random forest 

modification method at a depth of less 

than 5 m, less than 25% of results of 

TVU are in the excluded order, with more 

than 75% being spread across special 

order, orders 1A and1B and second 

order accuracy. 

 

 
Figure 3-2: Distribution of TVU accuracy, first 
modification.  
 

The calculation of the 

determination of the second modified 

bathymetry uses in-situ depth data 

separated according to benthic habitat; 

namely, coral, seagrass, macroalgae and 

substrates. The results of processing the 

bathymetry estimation with the second 

modification uses 3254 items of in-situ 

depth data separated by benthic habitat 

and produces coefficient of 

determination R2 of 0.853 and RMSE 

value of 1.62 m.  

The bathymetry results from the 

second modification are displayed in the 

scatterplot for the in-situ data, shown in 

Figure 3-3. From Table 3-2, the results 

of accuracy based on the IHO S44 

standard show that for the 3254 data 

divided into seven depth intervals, the 

values of accuracy vary. At a depth of 

less than 1 m, accuracy of 0.89 m for 

395 data items is obtained, consisting of 

31% special order accuracy, 29% orders 

of accuracy 1A and 1B, 22% second 

order accuracy, and 18% excluded. 

 

 
Figure 3-3: Scatterplot of second modification. 

 
 

Table 3-2: Results of second modification 
accuracy (TVU, IHO S44) 

 

Depth 

data (m) 

Data 

no. 

Order (%) 
Ex. 

(%) 

Error 

(m) Sp. 
1A/ 
1B 

2 

< 1 395 31 29 22 18 0.89 

1–2 565 36 24 24 16 1.17 
2.1–5 909 27 22 25 26 1.47 
5.1–10 600 12 12 22 55 2.33 
10.1–15 402 11 10 22 57 2.34 

15.1–20 244 7 10 14 68 2.92 
> 20 139 0 0 2 98 6.64 

Sp. = special; Ex. = excluded 

 

At depths of 1 to 2 m, there is 

precision to 1.17 m for 565 data items, 

consisting of 36% special order accuracy, 

24% orders of accuracy 1A and 1B, 24% 

second order accuracy, and 16% 

excluded. At depths of 2.1 to 5 m there is 

precision to 1.47 m for 909 data items, 

consisting of 27% special order accuracy, 

22% order of accuracy 1A and 1B, 25% 
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second order accuracy, and 26% 

excluded. At depths of 5.1 to 10 m there 

is accuracy to 2.33 m for 600 data items, 

consisting of 12% at special order 

accuracy, 12% orders of accuracy 1A 

and 1B, 22% second order accuracy, and 

55% excluded. At depths of 10.1 to 15 m 

there is accuracy to 2.34 meters for 402 

data items, consisting of 11% special 

order accuracy, 10% orders of accuracy 

1A and 1B, 22% second order accuracy, 

and 57% excluded. At depths of 15.1 to 

20 m there is accuracy to 2.92 m for 244 

data items, consisting of 7% special 

order accuracy, 10% orders of accuracy 

1A and 1B, 14% second order accuracy, 

and 68% excluded. At a depth of more 

than 20 m, accuracy to 6.64 m for 139 

data items consists of 0% special order 

accuracy, 0% orders of accuracy 1A and 

1B, 2% second order accuracy, and 98% 

excluded. The accuracy results based on 

depth intervals show that the largest 

special order value was achieved for the 

interval between 1 and 2 m, with an 

error of 1.17 meters. 

The results of TVU from Table 3-2 

above can be seen in the form of 

histogram distribution in Figure 3-4. It 

can be seen that, using the second 

random forest modification method at 

depths of less than 5 m resulted in 26% 

and 74% TVU entering the exclude order 

scattered in the order special, order 

1A/1B and order 2. Therefore, it can be 

seen that the random forest method in 

the second modification results in 

decreased TVU accuracy values 

compared to the first modification. 

The results of the two modifications 

used for field data indicate that the 

separation of field data by observing 

primary objects produced an R2 value of 

determination which decreased from 

90.21% to 85.3% and RMSE value which 

increased from 1.15 m to 1.62 m. In 

addition, the TVU accuracy results at 

intervals of less than 1 m decreased, for 

special order accuracy from 36% to 31%, 

and excluded values increased from 17% 

to 18%. For accuracy in each interval, 

there is a decrease in the level of 

efficiency in each of the areas between 

the first modification and the second 

modification. 

 

 
Figure 3-4: Distribution of TVU accuracy, 

second modification. 

 

Depth-data distribution from the 

two modification methods is shown in 

Figure 3-5. It shows that the extraction 

depth of the first modification is always 

better than the second modification, with 

both following the same pattern. Both 

modifications are relatively good at 

depths of less than 5 m, as evidenced by 

the difference between the extraction 

results of the depth being quite small. 

 

 
Figure 3-5: Depth distribution. 

 

It is evident that the random forest 

method used with the second 

modification in shallow marine waters 

has no effect in increasing the accuracy 

of the produced bathymetry. When 

compared with previous research by 

Setiawan et al. (2018) using analysis of 

multi linear regression, the second 

modification provides an increase in the 
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coefficient of determination R2 value 

from 0.721 to 0.786 and decreases the 

RMSE amount from 3.3 m to 2.9 m. 

Manessa et al.’s (2017) random forest 

methods, also carried out in Gili 

Trawangan waters of Gili Meno and Gili 

Air, produce coefficient of determination 

R2 of 0.45. The study used SPOT 6 image 

data gathered in 2013. 

The decrease in the coefficient R2 

and the resulting RMSE value indicate 

that other factors influence the results of 

the bathymetry estimation.  
 

 
Figure 3-6: Error results. 

 

The bathymetry extraction using 

the random forest method for SPOT 7 

data was carried out by modifying the 

data usage field. The first modification is 

to use all in-situ depth data without 

regard to benthic habitat objects, 

producing better depth information, 

which can be seen in Figure 3-7. 
 

 
Figure 3-7: Bathymetry information from first 

modification. 

 
The value of R2 produced in this 

study using the first modified random 
forest method is 0.902 and RMSE is 1.57 
m. while the R2 using the second 
modified random forest method is 0.853 
and RMSE is 2.48 m. 
 
 
 

4      CONCLUSION 

SPOT-7 satellite imagery can 

extract bathymetry using the random 

forest method in the shallow sea waters 

of Gili Trawangan, Gili Meno, and Gili Air 

in West Nusa Tenggara Province. The 

extraction process uses the random 

forest method by making two 

modifications, resulting in a decrease in 

the coefficient of determination R2 from 

0.902 to 0.853 and an increase in the 

RMSE value from 1.57 m to 2.48 m. The 

second modification, separating the 

depth field data based on the cover of the 

benthic habitat into the coral, seagrass, 

macroalgae, and substrates, does not 

improve the accuracy of the results of 

the bathymetry determination based on 

SPOT 7 satellite data. 
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