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ABSTRACT

The Human Visual System’s (HVS’s) Modulation Transfer Function (MTF) has been utilized well in many image
processing activities. However, its utilization is limited specifically in the Fourier Transform domain due to the nature of its
parameters. On the other hand, many class of images are best represented in other Transform domains, such as the
Cosine’s, the Sine’s, the Haar’s, the Slant-Haar’s. Here, we show how the MTFs in those other transform domains were

constructed and how they look like in the 1-D version.

INTRODUCTION

The HVS’s MTF or simply the MTF represents
the spatial frequency response of the average person’s
perception in viewing black-and-white. images (Jain,
1989). It is expressed as

H(p)=[0,05+0,3ple" """ (1)
where
p=+& +&

€ and &, are the horizontal and vertical spatial
frequencies, respectively. The peak value has been
normalized to unity and the peak frequency is 8
cycles/degree. Therefore, at lower as well as higher
spatial frequencies the HVS’s sensitivity to contrast is
less. This property has been utilized in some image
coding and data compression schemes (Susanto,
1986). The compression gain obtained in these
schemes was from 8 to about 0.79 bits/pixel.

In any image data compression scheme, the
possibility of bit reduction in the representation of
images without lowering their visual qualities is based
on the elimination of pixel’s gray level redundancies
and irrelevancies. Image transforms are the means to
annul these redundancies and coarse quantizations are
the manner to abolish the irrelevancies. The resulting
compression gains are determined by the choice of the
transform types and the quantization schemes [Pratt,
1991].

The choice of transforms, on the other hands, is
led by the class of images at hand, while the
quantization schemes are directed to spread the
resulting overall distortion such that it is perceived
least by the observers. In this respect, the application
of MTF had shown positive results in association with
the Fourier Transform. For some classes of images,
which contains sharp and regularly structured objects,

the Haar and Slant-Haar Transforms are best in
reducing the inherent redundancies. Therefore, MTF
for these transforms domains should be found
accordingly.

PROCEDURE TO OBTAIN THE MTFs IN OTHER
TRANSFORM DOMAINS

The basic idea for obtaining the MTFs in
domains other than Fourier Transform's is illustrated
in Figure 1. In this figure, H(p) is the original MTF
and Hr(t) is the resulting MTF associated with any
transform, T, other than the Fourier, F. Analytically,

the overall procedure is described as follows [Susanto,
1986]. :

H(p)
n(x) N(p) Nw(e) [
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Figure 1. The block diagram which shows the idea for
obtaining HT(t) from H(p), where T is the
sequency in the T transform domain.

To excite all possible frequency components, a

white noise in spatial domain, n(x), is used. In the
Fourier Transform domain this white noise becomes

N(p) = F{n(x)) )

*} Adhi Susanto, Dosen Jurusan Teknik Elektro Fakultas Teknik UGM

50 MEDIA TEKNIK No.1 Tahun XX Edisi Februari 1998 No.ISSN 0216-3012



which, theoretically, is

jn(x)e'ﬂ"pxdx - (3)
The white noise spectrum, N(p), is then weightéd wi‘th
the (original) MTF, and the result is :

N, (p)=H(p)N(p) C))

This MTF-weighted white noise spectrum is
Inverse-Fourier transformed to

n,(x)=T"{N,(p)} (5)
which, again theoretically, is
[N, (pre*™dp ©)

If T represents any transform other than the
Fourier, the MTF-weighted white noise in this
transform domain is

Ny (@) =Tn(x)} ™

and the transformed original white noise in T domain
is .

N, (1) = T{n(x)} (8)

Now, supposed we had Hy(?), i.e. the MTF in the
T-transform domain, then

H (T)X N (1) = Ny, (1) (9_)
therefore
. N, (1)
H — twr 10
(T) X (10)

as indicated in Figure 1; and this basically the
procedure to find the MTF in any other transform
domain than the Fourier one. However, in practice,
since we use a white noise to excite the system, the
random nature of the involved functions of x as well
as the functions of p and T introduced some problems
with regard to the associated computation process and
to the accuracy of the results. These problems will be
addressed in the following section.

SOME PREDICTION ON THE EXPERIMENTAL
ERRORS

It is simpler to express any error, €, in terms of its
variance, say 0':. If we have a white noise input of
variance 0',2,, then the result of a transform T has the

same variance, i.e.

oy =0’ (11)

——

following the Parseval’s Theorem. The error in the
reconstruction of the MTF in the transform domain is
derived from equation (1), so that it is determined by
the error Ayy of Nur (T) and Ay of Ny(1) which are
assumed independent of the sequency 1. Using the

first degree approximation, the error [Russ, 1995,
Neuhoff and Pappas, 1994] is

Y )
T ONg(r) Nio) T
1 N, (T)
= A _._NZ_..A
NT(T)[ "Ny (T) ’]

Ay —H (DA, ] (12)

N (D)
Since A,y and A, can also be assumed independent

of each other, the respective variances in equation
(12) are related according to the equation :

2

2 1 2 2 2
or {NT(T):} oy + H (T)o 7] (13)
Equation (13) shows clearly the variance of the error
of H/{(7) is, first of all, inversely proportional to the
square of the noise spectrum in the transform domain.
Secondly, it is proportional to the square of H/{(1).
Therefore, we expect some large errors wherever the
values of Ny(T) are extremely small due to the nature
of the dynamics random noise n(x) used. The results
of our experiments show a few of these cases, see
Figure 3(a). In this figure, the MTF is retained to its
original scale, deliberately to show the possibility that
some of the errors swing out of scale.

RESULTS OF THE EXPERIMENTS

To excite all frequency components of the MTF,
a White Gaussian Noise (WGN) was created by
running a routine to generate random numbers which
are uniformly distributed between 0 and 1. To obtain
the WGN, we subtracted 0,5 off these numbers to
eliminate the dc component and summed every 12 of
them, or

12
WGN = n(i) = 3 [RANDOM](1)- 0510 < i <51t (14)

j=1
Then, n(i) was Discrete Fourier Transformed to get
N(k). After weighted by the original MTF, the result
was inversely Fourier Transformed to n,(i). For
Fourier Transform the symmetric weighting MTF is
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shown in Figure 2. In this figure; the maximum
frequency is located at the center of the abscissa, i.e.
on the 255" sequency, while the peaks occur on the
60" and 452™ which correspond to the frequency 8
cycles/degree.
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Figure 2. The MTF in the Fourier Transform domain.

The WGN was also Discrete Cosine Transformed
to obtain N(k). The MTF in DCT domain was
obtained by carrying out division :

N, (k)

H, (k) = N0

(15)

where N, (k) is the DCT domain MTF weighted

WGN n,(i). The results is shown in Figure 3(a), where
it exhibits clearly the experimental errors, especially
some extreme or spiking errors. After assemble
averaging 512 outputs of similar experiments with
different WGNs, the result is shown in Figure 3(b).

For Discrete Sine Transform (DST), the
ensemble averaged result is shown in Figure 4(a),
while Figure 4(b) shows “low-pass filtered” MTF of
(a). For Haar and Slant-Haar Transforms, the results
are shown in Figure 5 and Figure 6, respectively,
which exhibit significantly higher values at higher
sequencies, due to the nature of their basis functions.
As we are already aware, each of the nonsinusoidal
basis functions in fact consists of a band of spatial
frequencies; therefore the nonsinusoidal transforms, in
general, can also be called subband transforms.
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Figure 3. (a) One result of obtained MTF in DCT
domain
(b) Assemble averaged MTF of 512
results in (a).
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Figure 4(a) Assemble averaged MTF For DST domain

(b) Low-pass Filtered of (a).
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Figure 5. (a) The ensemble averaged MTF in Haar
transform domain
(b) The low-pass filtered MTF of (a).
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Figure 6. (a) The ensemble averaged MTF in Slant-
Haar transform domain
(b) The low-pass filtered MTF of (a).

CONCLUSION®

It has been shown that using this technique, the
MTF, ie. the human visual system’s frequency
response can be acquired for any transform other than
the Fourier. For Cosine and Sine Transforms the
resulted MTFs are apparently similar to the original.
For Haar and Slant-Haar Transforms, the obtained
MTFs exhibit piecewise-constant properties.

These generated MTFs open possibilities for
image processings which exploit human visual system
characteristics, e.g. for image data compression, in
any transform domain other than the Fourier one.
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