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Preface

Cooperation between edge and cloud computing is expected as a novel network ar-
chitecture for supporting people’s daily lives and work. It provides delay-tolerant
services, including e-mail and file sharing, provided by cloud servers as well as
delay-sensitive services, including augmented reality and autonomous driving,
provided by edge servers. When computing resources of edge servers are insuf-
ficient, these servers must cooperate with cloud servers to provide such services
due to limited resources. This cooperation between edge and cloud computing
enables users to enjoy various services.

In edge and cloud computing, users expect to receive a wide variety of services
with different requirements in terms of transmission rates on various locations,
so there are important issues regarding efficient service provision to meet user
requirements independently of locations: (1) fair service provision in cloud com-
puting, (2) service provision according to user requirements in edge computing,
and (3) efficient transmission in edge and cloud computing.

To address these issues, approaches to provide fair and efficient sharing of
network resources among flows have been reported; however, these issues have not
yet been solved. One representative approach is using active queue management
algorithms applied to intermediate routers. This approach can provide fair and
efficient sharing of network resources among flows by preferentially discarding
packets of a high rate flow, but it is difficult to apply it to edge and cloud
computing where bottleneck links shared by all flows do not exist.

The main objective of this dissertation is proposing efficient schemes to allocate
and use network resources among flows to solve issues (1)–(3) in edge and cloud
computing and show the effectiveness of the proposed schemes through simulation
evaluations.

In Chapter 1, I give the background, objective, and organization of this disser-
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tation.
In Chapter 2, I give an overview of TCP to provide a better understanding of

this dissertation and introduce related work.
In Chapters 3 and 4, I discuss an efficient method to fairly allocate bandwidth

among users in cloud computing regarding issue (1). In Chapter 3, I propose a
bandwidth allocation scheme based on collectable information to improve fair-
ness in data center (DC) networks. I evaluated the characteristics of this scheme
through simulation by focusing on the effect of allocation factor α used to ad-
just the transmission rate of each flow. The simulation results indicate that the
proposed scheme achieves higher fairness and throughput performance than that
using conventional TCP by setting α to slightly larger than 1. In Chapter 4, I
discuss extending the proposed scheme to reallocate unutilized bandwidth caused
by congestion outside DC networks to other competing flows to improve link uti-
lization in these networks and evaluated the performance of the proposed scheme
through simulation by focusing on how to set parameter values (e.g., notification
interval time for flow information) in more detail. Simulation results indicate that
the proposed scheme can improve fairness and link utilization in DC networks by
setting appropriate parameter values.

In Chapters 5 and 6, I discuss an efficient method to allocate bandwidth accord-
ing to user requirements in edge computing regarding issue (2). In Chapter 5, I
propose a bandwidth allocation scheme based on collectable information to meet
requirements of each flow in edge computing. The simulation results indicate that
this proposed scheme can allocate transmission rates among flows according to
their requirements independently of each flow’s round-trip time as well as achieve
high link utilization. However, this scheme may degrade link utilization in access
networks if it reallocates an unutilized bandwidth to flows through paths with
insufficient bandwidth. In Chapter 6, I therefore discuss extending the proposed
scheme to allocate bandwidth based on residual bandwidth information to im-
prove link utilization in edge computing. The simulation results indicate that
this proposed scheme achieves higher fairness than conventional schemes as well
as high link utilization in edge computing.

In Chapter 7, I discuss a method to provide efficient transmission in edge and
cloud computing regarding issue (3). When users receive services from cloud
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servers in edge and cloud computing, they cannot use bandwidth effectively due
to the long distance between users and cloud servers. This is because TCP, which
is commonly used for reliable communication, controls transmission rates on an
end-to-end basis. It significantly degrades the service quality for such users. I
therefore propose flow splitting and aggregation schemes to improve the through-
put of each flow in edge and cloud computing. From the simulation evaluations,
I indicate that these proposed schemes can improve throughput performance by
flow aggregation and flow control functions.

In Chapter 8, I conclude this study and address future work. The integration
of the proposed schemes can help provide high-quality services to users according
to the requirements of each user independently of user location. I hope that this
dissertation will be helpful for further study in this field.

iii



Acknowledgements

I would like to acknowledge the support and encouragement received from a
number of peoples for several years.

First of all, I wish to express my sincere appreciation to Associate Professor
Hiroyuki Koga of the University of Kitakyushu. His constant encouragement,
guidance through this research, invaluable discussions and advice have greatly
helped in accomplishing the research. I also thank him for his careful reading of
all papers on the research.

I would also like to express my gratitude to Associate Professor Katsuyoshi Iida
of Hokkaido University for his valuable comments, time and help in completing
the research.

I wish to thank Professor Takeshi Ikenaga of the Kyushu Institute of Technology
for valuable comments, time and help in completing the research. His steady
support has greatly helped my study.

I am very grateful to Professor Masayuki Sato, Professor Takashi Sato, Profes-
sor Seung-Woo Lee, and Associate Professor Yasushi Yamazaki of the University
of Kitakyushu for their advice and comments.

I extend thanks to Ms. Yurino Sato, Ms. Mei Yoshino, Mr. Takahiro Kawano,
and all other members of the Network Engineering Research Group at the Uni-
versity of Kitakyushu for their kindly supports and valuable discussions.

Finally, my greatest appreciation goes to my family. They perpetually helped
me whenever I faced various problems. Their long standing has enable me to
complete my degree.

iv



Contents

Preface i

Acknowledgements iv

1 Introduction 1
1.1 Edge and cloud computing . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Issues with edge and cloud computing . . . . . . . . . . . . . . . . 2
1.3 Overview of this dissertation . . . . . . . . . . . . . . . . . . . . . 5

2 Related Works 7
2.1 Transmission control protocol (TCP) . . . . . . . . . . . . . . . . 7
2.2 Congestion control algorithm in DC networks . . . . . . . . . . . 8
2.3 Active queue management (AQM) algorithm . . . . . . . . . . . . 9
2.4 Router-assisted congestion control algorithm . . . . . . . . . . . . 9
2.5 Resource management in edge and cloud computing . . . . . . . . 10

2.5.1 Task offloading schemes . . . . . . . . . . . . . . . . . . . 11
2.5.2 Resource allocation schemes . . . . . . . . . . . . . . . . . 11
2.5.3 Migration schemes . . . . . . . . . . . . . . . . . . . . . . 11
2.5.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 A Bandwidth Allocation Scheme to Improve Fairness in Cloud
Computing 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



4 A Bandwidth Allocation Scheme to Improve Fairness and Link
Utilization in Cloud Computing 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Evaluation indices . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Comparison schemes . . . . . . . . . . . . . . . . . . . . . 29

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 Effect of the number of TCP clients . . . . . . . . . . . . . 30
4.4.2 Effect of notification interval time for flow information . . 34
4.4.3 Effect of weighting factor α . . . . . . . . . . . . . . . . . 36
4.4.4 Effect of threshold factor β . . . . . . . . . . . . . . . . . . 36

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 A Bandwidth Allocation Scheme to Meet Flow Requirements
in Edge Computing 42
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Overview of the proposed scheme . . . . . . . . . . . . . . 46
5.2.3 Operation of the proposed scheme . . . . . . . . . . . . . . 47

5.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Evaluation indices . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Comparison schemes . . . . . . . . . . . . . . . . . . . . . 51

5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Throughput performance . . . . . . . . . . . . . . . . . . . 51
5.4.2 Effect of notification interval time . . . . . . . . . . . . . . 52
5.4.3 Effect of threshold factor α . . . . . . . . . . . . . . . . . . 53

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



6 A Bandwidth Allocation Scheme Based on Residual Band-
width Information in Edge Computing 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Flow Splitting and Aggregation Schemes to Improve Through-
put Performance in Edge and Cloud Computing 65
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4.1 Effect of the number of users . . . . . . . . . . . . . . . . . 71
7.4.2 Effect of buffer size . . . . . . . . . . . . . . . . . . . . . . 73
7.4.3 Effect of data size . . . . . . . . . . . . . . . . . . . . . . . 73

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Conclusion 75

vii



List of Figures

1.1 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Edge computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Variation of window size . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 RTT unfairness problem . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Active queue management (AQM) . . . . . . . . . . . . . . . . . . 10

3.1 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Simulation topology . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Join scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Leave scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Overview of bandwidth allocation scheme . . . . . . . . . . . . . . 23
4.2 Unified central congestion control architecture . . . . . . . . . . . 24
4.3 Operation of bandwidth allocation scheme . . . . . . . . . . . . . 25
4.4 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Effect of the number of TCP clients: Fairness index . . . . . . . . 31
4.7 Effect of the number of TCP clients: Total throughput . . . . . . 32
4.8 Effect of the number of TCP clients: Queue length . . . . . . . . 33
4.9 Effect of the number of TCP clients: Fairness index of each group 34
4.10 Effect of the number of TCP clients: Total throughput of each group 35
4.11 Effect of the number of TCP clients: All groups . . . . . . . . . . 38
4.12 Effect of notification interval time . . . . . . . . . . . . . . . . . . 39
4.13 Effect of weighting factor α . . . . . . . . . . . . . . . . . . . . . 40
4.14 Effect of threshold factor β . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Unfairness problem in edge computing . . . . . . . . . . . . . . . 43

viii



5.2 Unified central congestion control architecture . . . . . . . . . . . 44
5.3 Overview of proposed scheme . . . . . . . . . . . . . . . . . . . . 45
5.4 Operation of proposed scheme . . . . . . . . . . . . . . . . . . . . 46
5.5 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Throughput of each flow . . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Total throughput of all flows . . . . . . . . . . . . . . . . . . . . . 53
5.8 Effect of notification interval time . . . . . . . . . . . . . . . . . . 55
5.9 Effect of threshold factor α . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Degradation of link utilization in access networks . . . . . . . . . 58
6.2 Overview of proposed scheme . . . . . . . . . . . . . . . . . . . . 59
6.3 Bandwidth allocation based on residual bandwidth information . . 60
6.4 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 Flow splitting and aggregation schemes . . . . . . . . . . . . . . . 67
7.2 Simulation topology . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Effect of the number of users . . . . . . . . . . . . . . . . . . . . . 69
7.4 Effect of buffer size . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5 Effect of data size . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



List of Tables

4.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Fairness index and total throughput . . . . . . . . . . . . . . . . . 63

7.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 68

x



1 Introduction

Cloud computing [1–3] has permeated people’s daily lives and work as a social
infrastructure. In cloud computing, users can enjoy various services, such as e-
mail and file sharing, provided by cloud servers anytime and anywhere (Fig. 1.1).
Traditionally, cloud servers are located in data centers (DCs) and far from users.
The long distance between users and cloud servers may significantly degrade
service quality.

Edge computing [4–6] has been proposed to solve this problem (Fig. 1.2). The
key idea of edge computing is to deploy small cloud-like entities called “edge
servers” at the edge of networks, which is similar to cloudlet [7], fog comput-
ing [8], follow me cloud [9], and small cell cloud [10]. Edge servers are located
close to user locations, so they can provide lower latency and faster communica-
tion services compared to cloud servers. This enables new services to be provided
such as augmented reality and autonomous driving. Such services are typically re-
source hungry and demand intensive computation and high energy consumption.
However, computing resources and battery lives of mobile devices are limited, so
users offload tasks to edge servers. Edge servers execute task offloaded and return
to the users. Task offloading allows users to enjoy such services in addition to
traditional cloud services, including e-mail and file sharing, without depending
on the limitations of mobile devices.

1.1 Edge and cloud computing
Although edge computing can provide lower latency and faster services compared
to cloud computing, it cannot accommodate all user demands due to the resource
limitations of edge servers. Edge computing and cloud computing are hence used
jointly for accommodating all user demands, and their roles differ. The main role
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Figure 1.1: Cloud computing

of edge computing is to provide delay-sensitive services, including augmented
reality and autonomous driving, provided by edge servers. When the computing
resources of edge servers are insufficient, edge servers need to be supported by
cloud servers. In this situation, edge servers cooperate with cloud servers to
provide such services. On the other hand, the main role of cloud computing is
to provide delay-tolerant services, including e-mail and file sharing, provided by
cloud servers.

1.2 Issues with edge and cloud computing
Edge and cloud computing are accessed from users with different locations and
requirements in terms of transmission rates through networks, so it is important
to provide efficient sharing of network resources among users according to the
requirements of each user independently of user location to meet their require-
ments. For example, network resources should be fairly shared among users with
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Figure 1.2: Edge computing

the same requirements and different locations. In this context, the following are
important issues.

(1) Fair service provision in cloud computing
In cloud computing, cloud servers provide delay-tolerant services to users
who are located at different distances from them, so communication flows
with different round-trip times (RTTs) coexist. In this situation, network
resources cannot be fairly shared among these flows.

(2) Service provision according to user requirements in edge computing
In edge computing, edge servers cooperate with cloud servers to provide
delay-sensitive services to users when computing resources of servers are
insufficient. Namely, communication flows with different RTTs coexist.
In this situation, network resources cannot be fairly shared among these
flows. Although these flows have different requirements in terms of trans-
mission rates, sharing of network resources among them according to their
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requirements is not ensured since the Internet is composed of “best-effort”
networks.

(3) Efficient transmission in edge and cloud computing
When users communicate with cloud servers to access services in edge and
cloud computing, they cannot use network resources effectively due to the
long distance between users and cloud servers.

These issues are caused by TCP’s congestion control when users communicate
with corresponding servers using TCP as a data transmission protocol. Since
TCP’s congestion control is applied according to the RTT, the transmission rate
for a flow with a short RTT is effectively increased compared with that of a flow
with a long RTT. Moreover, the transmission rate of a flow with a long RTT
cannot be effectively increased.

To solve these problems, two approaches to provide fair and efficient sharing
of network resources among flows have been proposed. The first approach in-
volves using active queue management (AQM) algorithms applied to intermediate
routers. This approach preferentially discards packets belonging to a high rate
flow. The second one involves router-assisted congestion control algorithms. In
this approach, routers notify senders of available bandwidth information, and the
senders adjust its transmission rate based on the received available bandwidth
information from the routers. These approaches can provide fair and efficient
sharing of network resources among flows if the flows share a bottleneck link, but
it is difficult to apply them if bottleneck links shared by all flows do not exist.

Approaches to manage computing and network resources in edge and cloud
computing have been proposed. These approaches allocate computing and net-
work resources among users for task offloading and migration based on the re-
quirements of each user and available computing and network resources. They
can effectively manage computing and network resources if bottleneck links exist
in wireless networks, but they do not work well if bottleneck links exist in wired
networks. Namely, issues (1)–(3) in edge and cloud computing have not yet been
solved.
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1.3 Overview of this dissertation
In this dissertation, I propose efficient schemes to allocate and use network re-
sources to solve issues (1)–(3) in edge and cloud computing. Through simulation
evaluations, I show the effectiveness of the proposed schemes in edge and cloud
computing.

In Chapter 2, I give an overview of TCP to provide a better understanding of
this dissertation and introduce related work.

In Chapters 3 and 4, I discuss an efficient method to fairly allocate bandwidth
among users in cloud computing regarding issue (1). In Chapter 3, I propose a
bandwidth allocation scheme based on collectable information to improve fairness
in DC networks and discuss the evaluation of the proposed scheme’s fundamental
characteristics by focusing on the effect of allocation factor α used to adjust the
transmission rate of each flow. In Chapter 4, I discuss extending the proposed
scheme to reallocate unutilized bandwidth caused by congestion outside DC net-
works to other competing flows to improve link utilization in these networks and
discuss the evaluation of the proposed scheme’s performance by focusing on how
to set parameter values (e.g., notification interval time for flow information) in
more detail.

In Chapters 5 and 6, I discuss an efficient method to allocate bandwidth ac-
cording to user requirements in edge computing regarding issue (2). In Chapter
5, I propose a bandwidth allocation scheme based on collectable information to
meet the requirements of each flow in edge computing and discuss the evaluation
of the proposed scheme’s performance in detail. In Chapter 6, I discuss extending
this scheme to allocate bandwidth based on residual bandwidth information to
improve link utilization in edge computing.

In Chapter 7, I discuss a method to provide efficient transmission in edge and
cloud computing regarding issue (3). When users receive services from cloud
servers in edge and cloud computing, they cannot use bandwidth effectively due
to the long distance between them and cloud servers. This is because TCP,
which is commonly used for reliable communication, controls transmission rates
on an end-to-end basis. This significantly degrades the service quality for such
users. Therefore, I propose flow splitting and aggregation schemes to improve the
throughput of each flow in edge and cloud computing.
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In Chapter 8, I conclude this study and address future work.
The results discussed in Chapter 3 are mainly taken from [14], Chapter 4

from [16], Chapter 5 from [17], Chapter 6 from [18], and Chapter 7 from [19].
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2 Related Works

In this chapter, I describe an overview of TCP to give a better understanding of
this dissertation and introduce related works.

2.1 Transmission control protocol (TCP)
In edge and cloud computing, users can enjoy various services provided by edge
and cloud servers at anytime and anywhere. TCP is commonly used for enjoying
such services as a reliable data transmission protocol. TCP estimates network
conditions based on packet losses and then adjusts the window size of each flow
according to the estimated network conditions. The window size is set to the
minimum of cwnd and awnd, where cwnd is a TCP state variable that limits the
amount of data that the TCP sender can send into the network before receiving
an acknowledgement (ACK) message and awnd is a variable that advertises the
amount of data that the TCP receiver can receive. cwnd is increased by one
segment for every RTT as shown in Fig. 2.1. Note that the growing speed of
window size depends on RTT. If a packet is lost due to network congestion, the
lost packet is retransmitted and cwnd is decreased. Through these procedures,
TCP enables efficient and reliable communication.

However, TCP cannot provide fair and efficient sharing of network resources
among flows with different RTTs. This problem is caused by TCP’s conges-
tion control mechanisms. Since TCP’s congestion control is applied according to
RTTs, the transmission rate for a flow with a short RTT is effectively increased
compared with that of a flow with a long RTT. It may cause RTT unfairness
problem [11, 12] as shown in Fig. 2.2. Moreover, the transmission rate of a flow
with a long RTT cannot be effectively increased.
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Sender Receiver

Window size ACK

Figure 2.1: Variation of window size

Figure 2.2: RTT unfairness problem

2.2 Congestion control algorithm in DC
networks

One of the important issues in DC networks is to improve fairness among flows
[20]. Several studies report fairness issues in DC networks such as TCP Outcast
problem [21]. For example, data center TCP (DCTCP) [22] and SAB [23] have
been proposed to solve this problem. DCTCP employs a threshold on switches
and informs the TCP sender about congestion condition by using a marking
algorithm when the switches’ buffer size exceeds the threshold. SAB notifies
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the TCP sender of information about available bandwidth at switches in DC
networks. Since these studies focus only on fairness among competing flows at one
output port of switches in DC networks, they cannot solve problems mentioned
in Sec. 1.2.

2.3 Active queue management (AQM)
algorithm

In the past, many kinds of AQM algorithms (Fig. 2.3) have been proposed for use
on routers to improve fairness among flows. A typical AQM algorithm is random
early detection (RED) [24]. This approach sets maximum and minimum queue
lengths and drops packets when the current queue length is larger than the set
maximum queue length. This enables fair communication among competing flows
by preferentially discarding packets which belong to a high rate flow. However,
it is difficult to determine an appropriate maximum and minimum queue length
because the appropriate values depend on network conditions such as the number
of flows and delay time. Unlike RED, the CHOKe AQM algorithm does not
require parameter settings [25]. This approach randomly selects one packet from
the output queue on routers when the router receives a packet. If the source
addresses of the received and selected packets are the same, both packets should
be dropped. CHOKeW [26] and CHOKeR [27], which are improved versions of
the CHOKe algorithm, adjust the packet dropping rate of each flow based on
service classes and network conditions. These AQM algorithms on routers can
improve fairness among competing flows if the flows share a bottleneck link, but
it is difficult to apply them if bottleneck links shared by all flows do not exist.

2.4 Router-assisted congestion control
algorithm

A typical router-assisted congestion control algorithm is the eXplicit Control
Protocol (XCP) [28]. In XCP, routers provide TCP senders with information
about available bandwidth. When a TCP sender receives this information, it
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Figure 2.3: Active queue management (AQM)

adjusts a congestion window size based on the received information. Another
router-assisted congestion control algorithm is proposed by L. Kalampoukas et
al. [29]. This approach modifies a TCP receiver’s advertised window size in
packets forwarding to TCP senders on intermediate routers. These approaches
can improve fairness among competing flows. However, the fairness among flows
will be extremely degraded if the flows do not share the same bottleneck router
providing the TCP sender with the information about available bandwidth.

2.5 Resource management in edge and cloud
computing

Several approaches to manage computing and network resources in edge and cloud
computing have been reported. In this section, I introduce some of these studies:
task offloading, resource allocation, and migration.
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2.5.1 Task offloading schemes

Task offloading schemes have been proposed by many researchers. For example,
a task offloading scheme has been proposed to meet delay requirements of delay-
sensitive applications [30]. This scheme preferentially offloads tasks for delay-
sensitive applications to edge servers near users, while other tasks for delay-
tolerant applications are offloaded to distant cloud servers. A SDN-based task
offloading scheme has been proposed to minimize computation delays and save
energy consumption of mobile devices [31]. By deploying a controller in access
networks, this scheme can obtain global information about mobile devices, edge
servers, and tasks; therefore, it enables optimal task offloading of mobile devices.
A new concept of task caching has been introduced to further improve the quality
of mobile applications in edge computing [32]. Since each edge server can cache
offloaded tasks from users, users do not have to offload tasks to edge servers if
they are already cached on them.

2.5.2 Resource allocation schemes

The authors in [33] addressed a problem of joint allocation of radio and computing
resources. The authors in [34] considered a problem of joint task offloading and
resource allocation in a multi-user environment. These works focus only an edge
computing environment where a single edge server exists. On the other hand,
the authors in [35] considered a problem of joint task offloading and resource
allocation in a multi-cell and multi-server edge computing environment. They
formulated the problem as a mixed integer non-linear program (MINLP) and
decompose the problem into two problems: (i) a resource allocation (RA) problem
and (ii) a task Offloading (TO) problem. They addressed the RA problem by
using convex and quasi-convex optimization techniques and proposed a novel
heuristic algorithm to address the TO problem.

2.5.3 Migration schemes

Migration schemes in edge computing can be classified into two schemes. The first
one is Markov decision process (MDP) based service migration schemes, including
one-dimensional MDP and two-dimensional MDP [36,37]. The key idea of them
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is to formulate the mobility-driven service migration problem as a MDP. Such a
formulation is suitable where the user mobility follows or can be approximated
by a mobility model that can be described by a Markov chain. The second one
is time window based migration schemes [38] which deals with the migration
problem from another point of view. These schemes search the optimal service
placement sequence that minimizes the average cost over a given time window.
In these schemes, a look-ahead window is defined as a time period in the future
that can be predicted.

2.5.4 Problem

These approaches can efficiently manage computing and network resources if bot-
tleneck links exist in wireless networks, but they do not work well if bottleneck
links exist in wired networks. In this dissertation, I focus on how to allocate
and utilize wired network resources among flows rather than wireless network
resources (i.e., radio resources) among them.
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3 A Bandwidth Allocation
Scheme to Improve Fairness in
Cloud Computing

3.1 Introduction
Users can now connect to the Internet through a wide variety of access networks
and communication terminals such as smart phones or PCs. This has created a
great demand for cloud computing which allows users to enjoy various Internet
services provided by data centers (DCs) [39] anytime, anywhere. Major services
available through cloud computing include file sharing or transaction services
which commonly use TCP as a reliable data transmission protocol.

In cloud computing, the problem arises that a user’s quality of service is unfair
among users who are different distances from DCs. This problem is caused by
how TCP controls congestion. TCP cannot exactly identify the conditions of
other flows, so it estimates an available bandwidth based on packet losses. Since
congestion control is applied according to round-trip time (RTT), the transmis-
sion rate for a user with a short RTT is effectively increased compared with that
of a user having a long RTT. Fairness in terms of throughput among flows with
different RTTs needs to be improved.

To improve fairness among flows, many kinds of the active queue management
(AQM) technologies applied on routers have been proposed. These technolo-
gies realize fair communication among flows, but the processing cost on routers
increases enormously as the number of flows increases.

In this study, I propose a bandwidth allocation scheme based on collectable
information in DC networks to provide fair communication service to each user.
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Figure 3.1: Proposed Scheme

This scheme collects flow information including the bandwidth of each link, the
number of competing flows, and the RTT of each flow from routers and servers
in DC networks, and then fairly allocates transmission rates among flows based
on the collected information. I show the effectiveness of this approach through
simulation evaluations.

3.2 Proposed scheme
The proposed scheme fairly allocates transmission rates among flows based on
collectable information in DC networks as shown in Fig. 3.1. Flow information
such as the bandwidth of each link, the number of competing flows, and the RTT
of each flow is collected by UCCA [40], which uniformly manages the congestion
information in the networks. The RTT of each flow can be measured using TCP’s
timestamp option. If the server does not send any data to the client, it periodically
sends probe packets to measure RTT. Routers in DC networks periodically inform
servers of the number of existing flows, which can be measured by extending the
OpenFlow architecture [41]. The servers identify bottleneck links based on the
information about the number of existing flows received from the routers and the
bandwidth of each link, and then calculate the transmission rate which should
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be allocated to each flow by dividing the bandwidth of the bottleneck link by the
number of competing flows. Note that I focus on a case where bottleneck links
exist in DC networks to allocate resources in DC networks to each flow fairly
and effectively, so I will attack a case where bottleneck links exist outside DC
networks in future work.

To allocate transmission rates to TCP flows with window-based congestion
control, the bandwidth delay product of each flow as the allocated window size
should be calculated based on the bandwidth which should be allocated and the
RTT of each flow. This scheme employs an allocation factor α and the allocated
window size is multiplied by α. For downwards communication from a server to a
client, the server can simply allocate the calculated window size to each flow. On
the other hand, for upwards communication from a client to a server, the server
needs to inform the client of the allocated window size. This scheme uses TCP’s
advertised window size to notify the client of the window size. This bandwidth
allocation enables fair communication among flows which have different RTTs.

3.3 Simulation model
To investigate the efficiency of the proposed scheme, I evaluated it through sim-
ulation using Network Simulator ns-3 [43] after its implementation. Figure 3.2
shows the simulation topology. In this simulation, there are two client groups A
and B, and these groups have access links with different delay times. The clients
of each group communicate with the server using TCP NewReno. The propaga-
tion delay time of access links is set to a uniform random number which ranges
from 2 to 6 ms for GroupA or from 10 to 16 ms for GroupB. The propagation
delay time of other links is set to 1 ms. The bandwidth of all links is set to 200
Mb/s. The allocation factor α varies from 1.0 to 1.8. The interval time to notify
the flow information is set to 0.05 ms.

I focus on two evaluation scenarios: join and leave scenarios. 25 clients of each
group communicate with the server after the simulation starts. At 12 s after
the simulation starts, one client of each group starts communication in the join
scenario, while stops communication in the leave scenario.

I evaluate Jain’s fairness index [44] and total throughput for the proposed
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Figure 3.2: Simulation topology

scheme and conventional TCP. The fairness index is defined as Eq. (3.1), where
x is the throughput of each flow and n is the number of existing flows.

f(x1, x2, x3, . . . , xn) =

(
n∑

i=1
xi

)2

n
n∑

i=1
x2

i

(3.1)

Namely, fairness is higher as the index gets closer to 1. I evaluate the fairness in-
dex and total throughput averaged over 10 trials, which are calculated at intervals
of 0.1 s.
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3.4 Simulation results
I now show simulation results and discuss the effectiveness of the proposed scheme
as compared with the conventional scheme. Figures 3.3(a) and 3.3(b) show the
fairness index and total throughput, respectively, of the proposed and conven-
tional schemes in the join scenario. The proposed scheme achieves a higher fair-
ness index than that of the conventional scheme. This is because the proposed
scheme allocates an adequate window size to each flow according to its RTT. In
particular, the proposed scheme with a small α achieves good fairness, but it
degrades the total throughput. Otherwise, the proposed scheme with a large α

achieves poor fairness and high throughput. Namely, the proposed scheme has
a trade-off relationship between the fairness and total throughput for α. In this
simulation, the proposed scheme with α of 1.2 enables good fairness and high
total throughput.

In the leave scenario, the fairness index and total throughput of the proposed
and conventional schemes are shown in Figs. 3.4(a) and 3.4(b), respectively. Sim-
ilarly in the join scenario, the proposed scheme achieves a higher fairness index
as compared with the conventional scheme. On the other hand, the proposed
scheme with a small α drastically degrades the total throughput. This is because
the proposed scheme only utilizes the allocated bandwidth, so the impact on the
total throughput in the leave scenario is larger than that in the join scenario.
However, the proposed scheme with α of 1.2 achieves good fairness and high to-
tal throughput like the join scenario. Consequently, the proposed scheme enables
fair communication among flows which have different RTTs as well as high to-
tal throughput by setting the adequate value of α (slightly larger than 1 in this
simulation).

3.5 Conclusion
This proposed bandwidth allocation scheme uses collectable information in DC
networks to provide fair communication service to each user. Simulation evalua-
tions have indicated that this scheme with the adequate allocation factor enables
higher fairness and throughput performance than can be achieved with conven-
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tional TCP. In future work, I will consider the most effective way to dynamically
adjust the allocation factor as well as to fairly allocate link bandwidth in DC
networks to each user even when access networks are bottlenecks.
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4 A Bandwidth Allocation
Scheme to Improve Fairness
and Link Utilization in Cloud
Computing

4.1 Introduction
Users can now connect to the Internet through a wide variety of access networks
and communication terminals such as smart phones or PCs. This has brought a
great demand for cloud computing, which allows users to enjoy various Internet
services provided by data centers (DCs) [39] anytime, anywhere. In the Inter-
net of Things (IoT), cloud computing has been more attractive and important
since users can enjoy IoT services using various sensor information collected by
DCs. Major services available through cloud computing include file sharing or
transaction services which commonly use TCP as a reliable data transmission
protocol.

In cloud computing, a problem arises that a user’s quality of service in terms
of transmission rate unfairly depends on the user’s distance from DCs. This
problem is caused by how TCP controls congestion. TCP cannot exactly identify
the conditions of other flows, so it estimates an available bandwidth based on
packet losses. Since congestion control is applied according to round-trip time
(RTT), the transmission rate for a user with a short RTT is effectively increased
compared with that of a user having a long RTT. Fairness in terms of throughput
among flows with different RTTs as well as link utilization in DC networks needs
to be improved.
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There are two approaches to improving fairness among flows. The first ap-
proach is to apply active queue management (AQM) technologies on routers.
This approach realizes fair communication among flows by preferentially discard-
ing packets which belong to a high-rate flow. The second approach is to use
router-assisted congestion control algorithms. In this approach, routers provide
the TCP sender with information about available bandwidth and the TCP sender
adjusts the congestion window based on the information received from routers.
These approaches enable more fairness than the original TCP. However, the fair-
ness among competing flows will be extremely degraded if the flows do not share
the same bottleneck router that uses the AQM technologies or provides the TCP
sender with the information about available bandwidth.

In this study, I propose a bandwidth allocation scheme based on collectable
information to improve fairness and link utilization in DC networks. This scheme
collects flow information including the bandwidth of each link, the number of
competing flows, the RTT of each flow, and the actual throughput of each flow
from routers and servers in DC networks, and then fairly allocates transmission
rates among flows based on the collected information. In addition, this scheme
reallocates unutilized bandwidth to other competing flows in DC networks when
bottleneck links exist outside of the DC networks. I show the effectiveness of this
approach through simulation evaluations.

The rest of this chapter is organized as follows. In Section 4.2, I propose a
bandwidth allocation scheme based on collectable information to improve link
utilization in DC networks as well as fairness among flows. I describe simulation
environment and results in Section 4.3 and 4.4, respectively. I conclude in Section
4.5.

4.2 Proposed scheme
As mentioned in Section 4.1, fairness among flows with different RTTs will be
extremely degraded because TCP does not all the available bandwidth to be ac-
curately estimated. To solve this problem, I propose a scheme that fairly allocates
transmission rates among flows based on collectable information in DC networks.
This scheme identifies bottleneck links based on flow information collected from
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Figure 4.1: Overview of bandwidth allocation scheme

routers and servers in DC networks, and then calculates the transmission rate
that should be allocated to each flow by dividing the bandwidth of a bottleneck
link by the number of competing flows. In addition, this scheme reallocates any
unutilized bandwidth caused by congestion outside DC networks to other com-
peting flows to improve link utilization in DC networks when bottleneck links
exist outside DC networks, as shown in Fig. 4.1. Namely, I propose two band-
width allocation schemes to improve fairness and link utilization in DC networks.
They are the proposed (no reallocation) and (reallocation) schemes, which only
allocates a fair transmission rate to each flow and additionally allocates unutilized
bandwidth to competing flows, respectively. Flow information such as the band-
width of each link, the number of competing flows, the RTT of each flow, and
the actual throughput of each flow is collected by a Unified Central Congestion
Control Architecture (UC3) [40], which uniformly manages the congestion infor-
mation in the networks, as shown in Fig. 4.2. Namely, this scheme can adapt to
network environment where is managed by an organization such as DC networks
because it is easy to collect flow information from their routers, although it is
hard to collect flow information from any routers in the Internet.

I describe here the operation of the bandwidth allocation scheme shown in
Fig. 4.3. The server measures the RTT and actual throughput Rth of each flow
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Figure 4.2: Unified central congestion control architecture

and then calculates the exponential moving average Eth of each flow’s Rth by
αRth + (1 − α)Eth, where α is a weighting factor. The RTT of each flow can be
measured through normal TCP operation. If the server does not send any data to
the client, it periodically sends probe packets to measure RTT. I then move onto
operations of routers. This scheme requires that routers in DC networks must
have a special function that periodically informs the number of existing flows.
There are many ways to enable this. For example, OpenFlow-enabled routers
can receive a “read state” message that requests to send statistic information like
the number of existing flows [41]. Another example is IP Flow Information Export
(IPFIX), which enables to send statistic information like the number of flows [42].
The server identifies bottleneck links based on information about the number of
existing flows received from the routers and the bandwidth of each link, and
then it calculates the transmission rate which should be allocated to each flow
by dividing the bandwidth of the bottleneck link by the number of competing
flows. If Eth of each flow multiplied by a threshold factor β is smaller than
the allocated transmission rate, the server calculates the transmission rate which
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Figure 4.3: Operation of bandwidth allocation scheme

should be reallocated to other competing flows. The reallocated transmission rate
is calculated by dividing the total unutilized bandwidth of flows through the same
edge router (ingress routers in DC networks) by the number of other competing
flows which fully utilize the allocated transmission rate. Namely, the allocated
transmission rate for each flow which cannot fully utilize the allocation is the
available bandwidth fairly divided by the number of flows. On the other hand, the
allocated transmission rate for each flow which fully utilizes the allocation is added
to the reallocated transmission rate. These bandwidth allocation procedures
are periodically performed every time the flow information about the number
of competing flows and the actual throughput of each flow is updated. Namely,
the allocated transmission rates converge to adequate values even when network
conditions change.

To allocate transmission rates to TCP flows with window-based congestion
control, the bandwidth delay product (BDP) of each flow that is used as the
allocated window size should be calculated based on the bandwidth which should
be allocated and the RTT of each flow. When the BDP of each flow cannot
be divided by the maximum segment size (MSS), the allocated transmission rate
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Figure 4.4: Simulation model

becomes a little bit lower due to the remainder. This may degrade link utilization
in DC networks. To prevent this, I consider three ways to control the allocated
window size: round-up, round, and round-down methods. In each method, the
BDP allocated to each flow is respectively rounded up, rounded, and rounded
down by the MSS units. If the BDP allocated to each flow is rounded up by
the MSS units, the total allocated transmission rate will exceed the bandwidth
of bottleneck links, although this effect can be sufficiently absorbed by routers’
buffer. It will also result in the convergence to the appropriate amount of allocated
bandwidth.

For downwards communication from a server to a client, the server can simply
allocate the calculated window size to each flow. On the other hand, for upwards
communication from a client to a server, the server needs to inform the client of
the allocated window size. This scheme uses TCP’s advertised window size to
notify the client of the window size. This bandwidth allocation enables fair com-
munication among flows which have different RTTs as well as high link utilization
in DC networks.
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Table 4.1: Simulation parameters
TCP algorithm TCP NewReno

Measurement interval time
0.1 [s]

for actual throughput of each flow
Notification interval time

0.005 ∼ 0.5 [s]
for flow information
Weighting factor α 0.1 ∼ 1.0
Threshold factor β 0.1 ∼ 1.0

Buffer size on routers 200 [packet]
Number of TCP clients 4 ∼ 64
Number of UDP clients 2

Transmission rate of UDP client 85 [Mb/s]
Number of trials 10

4.3 Simulation model
To investigate the effectiveness of the proposed schemes, I evaluated them through
simulation using Network Simulator ns-3 [43] after their implementation. I imple-
mented functions to measure the number of competing flows and actual through-
put of each flow, to identify the bottleneck links, to calculate the transmission
rates allocated to each flow, and to report the flow information in this simulator.

The proposed scheme allocates an adequate bandwidth to each flow based
on the information including RTT obtained by end-to-end measurement and the
number of flows obtained from routers. I evaluate the performance of this scheme
focusing on the effect of such information in this simulation. Figure 4.4 shows
the simulation topology. In this simulation, there are two client groups A and
B, and these groups have access links with different delay times. In addition,
Group A consists of two groups A’ and A”. The clients of each group continuously
send data to the server using TCP NewReno. Note that proposed scheme works
independently of TCP congestion control algorithms, so I employ TCP NewReno
as a simple typical TCP. I assume that Nodes R2 and R3 are edge routers in
DC networks. To realize an environment where bottleneck links exist outside DC
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Figure 4.5: Simulation scenario

networks, two UDP clients are also located in Group A so that TCP and UDP
flows coexist on the link between Nodes R2 and R5. The propagation delay time
of access links is set to a uniform random number which ranges from 2 to 6 ms
for Group A or from 10 to 16 ms for Group B. The propagation delay time of
other links is set to 1 ms. The bandwidth of all links is set to 100 Mb/s. Other
simulation parameters are summarized in Table 4.1.

28



4.3.1 Simulation scenario

I perform two simulation scenarios; the fixed and variable scenarios about the
number of TCP clients. These scenarios are illustrated in Fig. 4.5. In the fixed
scenario, the fixed number (4–64) of TCP clients communicate with the server
after the simulation starts. In the variable scenario, 32 TCP clients communicate
with the server after the simulation starts. 4 TCP clients of each group stop to
communicate with the server at intervals of 2 s during the period from 7 to 11 s,
and 4 TCP clients of each group start to communicate with the server at intervals
of 2 s during the period from 14 to 18 s. In both scenarios, at 10 seconds after
the simulation starts, one UDP client of Group A” begins to send data to one
UDP client of Group A’ and then stops sending at 15 seconds. I ignore the first
5 seconds.

4.3.2 Evaluation indices

I evaluated Jain’s fairness index [44] and total throughput for the proposed scheme
and conventional TCP. The fairness index is defined as Eq. (4.1), where x is the
throughput of each flow and n is the number of existing flows. Fairness is higher
as the index gets closer to 1.

f(x1, x2, x3, . . . , xn) =

(
n∑

i=1
xi

)2

n
n∑

i=1
x2

i

(4.1)

The fairness index and total throughput are calculated at intervals of 0.1 s.

4.3.3 Comparison schemes

I evaluate the performance of the proposed schemes (Proposed (no reallocation)
and Proposed (reallocation)) compared with that of conventional TCP (Conven-
tional) with the averaged fairness index and total throughput. The Proposed
(no reallocation) scheme allocates a fair transmission rate to each flow, while
the Proposed (reallocation) scheme additionally allocates unutilized bandwidth
to competing flows which fully utilizes the allocated bandwidth.
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4.4 Simulation results
In this section, I now show simulation results and discuss the effectiveness of
the proposed schemes as compared with the conventional scheme. In the fixed
scenario about the number of TCP clients, I investigate the effect of the number
of TCP clients and the notification interval time for flow information in Sections
4.4.1 and 4.4.2, respectively. In the variable scenario about the number of TCP
clients, I also evaluate the effect of the weighting factor α and threshold factor β

in Sections 4.4.3 and 4.4.4, respectively.

4.4.1 Effect of the number of TCP clients

Figures 4.6 and 4.7 show the fairness index and total throughput of the proposed
and conventional schemes, respectively, when the number of TCP clients varies
from 4 to 64. Under the proposed (reallocation) scheme with “Round-down”
method, queue length on Router 1 is also shown as functions of time when the
number of flows varies from 4 to 64 in Fig. 4.8. Here, the notification interval
time for flow information is set to 0.05 s, α is set to 0.4, and β is set to 0.8. In
these figures, “Round-up”, “Round”, and “Round-down” represent the methods
to control the allocated window size.

In Fig. 4.6, the proposed schemes achieve higher fairness than the conventional
scheme. This is because the proposed schemes allocate an adequate window
size to each flow according to its RTT. In Fig. 4.7, the proposed (reallocation)
scheme achieves higher total throughput than the proposed (no reallocation)
scheme. This is because the proposed (reallocation) scheme effectively reallo-
cates the unutilized bandwidth from flows which cannot fully utilize their allo-
cated bandwidth to other competing flows which can fully utilize the allocated
bandwidth. Moreover, the proposed schemes with the “Round” and “Round-
down” methods obtain lower total throughput than the conventional scheme,
while the proposed (reallocation) scheme with the “Round-up” method compre-
hensively achieves total throughput that is higher or almost the same as for the
conventional scheme regardless of the number of TCP clients. This is because
the “Round” and “Round-down” methods might not allocate transmission rates
satisfactorily when the BDP of each flow cannot be divided by the MSS. When
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Figure 4.6: Effect of the number of TCP clients: Fairness index

the number of flows is small (4 to 32), the total throughput of the proposed
schemes with “Round” and “Round-down” methods decreases as the number of
flows increases. This is because these methods allocate smaller window size to
each flow than BDP and the total unallocated bandwidth of all flows increases
as the number of flows increases. On the other hand, when the number of flows
is large (32 to 64), the total throughput of the proposed schemes with “Round”
and “Round-down” methods increases as the number of flows increases. A large
number of flows will cause simultaneous receiving of packets on routers, so that
it will increase the queue length on routers as shown in Fig. 4.8. It causes longer
RTT as well as larger allocated window size of each flow. As a result, the total
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Figure 4.7: Effect of the number of TCP clients: Total throughput

allocated bandwidth of all flows increases as the number of flows increases.
To analyze this phenomenon more deeply, I investigate the fairness index

and total throughput performance of each group. The fairness index and total
throughput for each group as functions of time are respectively shown in Figs. 4.9
and 4.10 for the proposed and conventional schemes, and those for all groups are
shown in Fig. 4.11. Here, the proposed schemes employ the “Round-up” method,
the number of TCP clients is set to 32, the notification interval time for flow
information is set to 0.05 s, α is set to 0.4, and β is set to 0.8. In Group A”, both
schemes degrade the fairness index during the period from 10 to 15 s due to a
heavy UDP flow as shown in Fig. 4.9(b), although the proposed schemes achieve
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Figure 4.8: Effect of the number of TCP clients: Queue length

a good fairness index for other groups as shown in Fig. 4.9(a) and 4.9(c). The
proposed schemes thus improve fairness in all groups as shown in Fig. 4.11(a).
On the other hand, the proposed (no reallocation) scheme degrades the total
throughput during the period from 10 to 15 s due to a heavy UDP flow, while
the proposed (reallocation) scheme improves the total throughput (to almost the
same as that of the conventional scheme) as shown in Fig. 4.11(b). Clearly, the
proposed (reallocation) scheme can effectively reallocate the unutilized bandwidth
in GroupA” flows to other group flows as shown in Fig. 4.10. Consequently, the
proposed (reallocation) scheme achieves fair communication among flows which
have different RTTs as well as high link utilization in DC networks.
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Figure 4.9: Effect of the number of TCP clients: Fairness index of each group

4.4.2 Effect of notification interval time for flow
information

Figures 4.12(a) and 4.12(b) respectively show the fairness index and total through-
put of the proposed and conventional schemes when the notification interval time
for flow information varies from 0.005 to 0.5 s. Here, the number of TCP clients
is set to 32, α is set to 0.4, and β is set to 0.8.

In Fig. 4.12(a), the proposed schemes achieve a higher fairness index than
the conventional scheme regardless of the notification interval time for flow in-
formation. On the other hand, the total throughput of the proposed (realloca-
tion) scheme with the “Round-up” method is lower than that of the conventional
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Figure 4.10: Effect of the number of TCP clients: Total throughput of each group

scheme in particular when the notification interval time for flow information is
from 0.005 to 0.01 s, as shown in Fig. 4.12(b). When the notification interval
time for flow information is too short, whether the allocated bandwidth is fully
utilized cannot be correctly determined since such a short notification interval
time is less than the measurement interval time for the actual throughput of each
flow. This causes unnecessary retransmissions as well as throughput degrada-
tion. When the notification interval time for flow information is from 0.05 to
0.5 s, the proposed (reallocation) scheme with the “Round-up” method achieves
total throughput equal to that of the conventional scheme. Consequently, when
the notification interval time for flow information is set to longer than 1 RTT,
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the proposed (reallocation) scheme with the “Round-up” method achieves good
fairness and total throughput.

4.4.3 Effect of weighting factor α

Figures 4.13(a) and 4.13(b) respectively show the fairness index and total through-
put for the proposed and conventional schemes when the weighting factor α varies
from 0.1 to 1.0. Here, the notification interval time for flow information is set to
0.05 s and β is set to 0.8.

In Fig. 4.13(a), as α approaches 0, the fairness index of the proposed (realloca-
tion) scheme slightly decreases, while the total throughput does not change. This
is because the proposed (reallocation) scheme allocates transmission rates to each
flow using out-of-date flow information about the actual throughput of each flow.
When the flow information is too old, the proposed (reallocation) scheme will re-
allocate unutilized bandwidth to other flows even if the flow can fully utilize the
allocated transmission rate. This degrades fairness among flows. On the other
hand, as α approaches 1, the fairness index and total throughput of the proposed
(reallocation) scheme decreases. This is because the allocated transmission rate
of each flow is not stable. Overall, the appropriate value of α is from 0.4 to 0.6
in this simulation.

4.4.4 Effect of threshold factor β

Figures 4.14(a) and 4.14(b) respectively show the fairness index and total through-
put of the proposed and conventional schemes when the threshold factor β varies
from 0.1 to 1.0. Here, the notification interval time for flow information is set to
0.05 s and α is set to 0.4.

As β increases, the total throughput of the proposed (reallocation) scheme
significantly increases, while the fairness index decreases. In particular, the fair-
ness index of the proposed (reallocation) scheme is extremely degraded when β

is larger than 0.8. This is because the allocated transmission rate for each flow is
not stable when β is set to 1.0. Consequently, the proposed (reallocation) scheme
achieves a high fairness index as well as total throughput almost the same as that
of the conventional scheme when β is set from 0.6 to 0.8 in this environment.
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4.5 Conclusion
In this study, I have proposed a bandwidth allocation scheme based on collectable
information to improve fairness and link utilization in DC networks. This scheme
collects flow information including the bandwidth of each link, the number of
competing flows, the RTT of each flow, and the actual throughput of each flow
from routers and servers in DC networks, and then it fairly allocates transmission
rates among flows based on the collected information. In addition, this scheme
reallocates unutilized bandwidth to other competing flows in DC networks when
bottleneck links exist outside of the DC networks. Simulations indicated that the
proposed scheme enables fair communication among flows which have different
RTTs as well as high link utilization in DC networks by setting appropriate
parameter values.
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Figure 4.11: Effect of the number of TCP clients: All groups
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Figure 4.13: Effect of weighting factor α
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5 A Bandwidth Allocation
Scheme to Meet Flow
Requirements in Edge
Computing

5.1 Introduction
Users can now connect to the Internet through a wide variety of access networks
and communication terminals such as smart phones or PCs. This has created a
great demand for cloud computing, which allows users to enjoy various Internet
services provided by data centers (DCs) [39] at anytime and anywhere. A major
issue regarding cloud computing, however, is communication latency because DCs
will often be far from users. A long distance between users and DCs degrades
the quality of latency-sensitive services. To solve this cloud-computing distance
problem, edge computing, which locates edge servers on access networks, has
been proposed [45]. The edge servers have computation and storage capabilities
in addition to their packet forwarding capability, and these capabilities allow them
to provide lower latency and higher-speed communication services compared to
what is possible solely through DCs.

Edge computing will enable future low latency services, such as augmented
reality and automatic driving, while DCs will continue to provide conventional
services, such as file sharing and streaming delivery. In other words, various
services with different round-trip times (RTTs) will coexist in edge computing as
illustrated in Fig. 5.1. In this situation, an RTT-unfairness problem arises because
such services commonly use TCP as a reliable data transmission protocol. Since
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Figure 5.1: Unfairness problem in edge computing

TCP’s congestion control is applied according to RTT, the transmission rate for
a flow with a short RTT is effectively increased compared with that of a flow with
a long RTT. Moreover, the wide variety of services in edge computing will have
different requirements, including their required transmission rates. Therefore, the
throughput of each flow will need to be controlled according to its requirements
and independently of RTT.

In this context, I previously proposed a bandwidth allocation scheme based
on collectable information in DC networks to improve fairness and link utiliza-
tion [13–16]. This previous study tackles the RTT-unfairness problem in cloud
computing. In the study reported here, I propose an extended bandwidth allo-
cation scheme based on collectable information to meet the requirements of each
flow in edge computing. This scheme collects flow information — including the
bandwidth of each link, the number of competing flows, the RTT of each flow,
and the actual throughput of each flow — and then allocates transmission rates
for each flow based on the collected information. In addition, this scheme real-
locates unutilized bandwidth to other competing flows in access networks when
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Figure 5.2: Unified central congestion control architecture

bottleneck links exist in core networks. I show the effectiveness of this approach
through simulation evaluations.

5.2 Proposed scheme
I propose a bandwidth allocation scheme based on collectable information to meet
the requirements of each flow in edge computing. Since the proposed scheme is
an extension of this previous work, I will first explain the key points of the pre-
vious work, and then give an overview and explain the operation of the proposed
scheme.

5.2.1 Previous work

I previously proposed a bandwidth allocation scheme based on collectable infor-
mation in DC networks to improve fairness and link utilization. This scheme
fairly allocates transmission rates among flows based on collectable information
in DC networks. In addition, this scheme reallocates any unutilized bandwidth
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Figure 5.3: Overview of proposed scheme

caused by congestion outside DC networks to other competing flows to improve
link utilization in DC networks when bottleneck links exist outside the DC net-
works. Flow information such as the bandwidth of each link, the number of
competing flows, the RTT of each flow, and the actual throughput of each flow
is collected by a Unified Central Congestion Control Architecture (UC3) [40],
which uniformly manages the congestion information in the networks, as shown
in Fig. 5.2. This scheme identifies the bottleneck link based on the flow informa-
tion collected from routers and servers in DC networks and then calculates the
transmission rate which should be allocated to each flow by dividing the band-
width of the bottleneck link by the number of competing flows. Namely, this
scheme enables fair communication among flows which have different RTTs as
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Figure 5.4: Operation of proposed scheme

well as high link utilization in cloud computing.

5.2.2 Overview of the proposed scheme

In edge computing, users can receive latency-sensitive services from edge servers
in addition to conventional services from cloud servers. That is, various flows with
different RTTs, including edge flows with a short RTT and cloud flows with a long
RTT, will coexist. In addition, each flow commonly has different requirements in
terms of transmission rates. Therefore, I need to control the transmission rate of
both edge and cloud flows in consideration of service classes. To do this, I propose
a bandwidth allocation scheme based on collectable information in edge and cloud
servers to meet the requirements of each flow by extending this previous scheme.
This scheme collects flow information — such as the bandwidth of each link, the
number of competing flows, the RTT of each flow, and the actual throughput
of each flow — and then allocates transmission rates among flows according to
their requirements based on the collected information (Fig. 5.3). In addition,
this scheme reallocates unutilized bandwidth to other competing flows in access
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networks when bottleneck links exist in core networks.

5.2.3 Operation of the proposed scheme

I describe here the operation of the proposed scheme shown in Fig. 5.4. The edge
server measures the RTT of each edge flow and actual throughput of each flow,
while the cloud server measures the RTT of each cloud flow. This measurement
is done through normal TCP operation. If the edge or cloud server does not send
any data to a client, it periodically sends probe packets to measure RTT. The edge
server also measures the RTT of each non-cloud flow which communicate with
servers not in DC networks. This can be done based on the conventional RTT
estimation technique [46]. Routers in access networks periodically inform edge
servers of the number of existing flows, which can be measured by extending the
OpenFlow architecture [41]. The edge server identifies the bottleneck link based
on the information about the number of existing flows received from the routers
and the bandwidth of each link, and then calculates the transmission rate which
should be allocated to each flow by multiplying the bandwidth of the bottleneck
link by wi / wtotal which means the number of competing flows with respect to
service classes, where wi is a weight value for flow i and wtotal is a total weight
value of competing flows. Note that wi will be decided in advance. If actual
throughput of each flow multiplied by a threshold factor α is smaller than the
allocated transmission rate, the edge server calculates the transmission rate which
should be reallocated to other competing flows. The reallocated transmission
rate is calculated by dividing the total unutilized bandwidth of flows by the
number of other competing flows which fully utilize the allocated transmission
rate. Namely, the allocated transmission rate for each flow which cannot fully
utilize the allocation is the bandwidth of the bottleneck link multiplied by wi /
wtotal. On the other hand, the allocated transmission rate for each flow which
fully utilizes the allocation is added to the reallocated transmission rate. The
edge server adds flow information about the calculated transmission rates to the
received packets from the client to the cloud server in order to inform the cloud
server of this information.

To allocate transmission rates to TCP flows with window-based congestion
control, the bandwidth delay product (BDP) of each flow should be calculated
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as the allocated window size based on the bandwidth which should be allocated
and the RTT of each flow. When the BDP of each flow cannot be divided by the
maximum segment size (MSS), the allocated transmission rate becomes a little
bit low, so the BDP allocated to each flow is rounded up by the MSS units. For
downwards communication from an edge or cloud server to a client, the server
can simply allocate the calculated window size to each flow. On the other hand,
for upwards communication from a client to an edge or cloud server, the server
needs to inform the client of the allocated window size. This scheme uses TCP’s
advertised window size to notify the client of the window size. For non-cloud
flows, the edge server rewrites the window size field of the received ACK packets
from the client by the allocated window size and then forwards them to the non-
cloud server based on a snooping technique [47]. Through these procedures in
edge computing, this scheme can allocate an adequate transmission rate to each
flow according to its requirements independently of RTT.

5.3 Simulation model
To investigate the efficiency of the proposed scheme in edge computing, I eval-
uated it after its implementation through simulation using Network Simulator
ns-3 [43]. I implemented functions to measure the number of competing flows
and actual throughput of each flow, to identify the bottleneck links, to calculate
the transmission rates allocated to each flow, and to report the flow information
in this simulator.

Figure 5.5 shows the simulation topology. In this simulation, each client con-
tinuously sends data to the corresponding servers using TCP NewReno after the
simulation starts. Note that proposed scheme works independently of TCP con-
gestion control algorithms, so I employ TCP NewReno as a simple typical TCP.
The propagation delay time of access links is set to a uniform random number
which ranges from 0.5 to 1 ms for the links between clients and routers or 2 ms
for the link between a router and an edge server, while the bandwidth of access
links is set to 50 Mb/s. The core links have a propagation delay time of 5 ms
and a bandwidth of 100 Mb/s. Other simulation parameters are summarized in
Table 5.1.
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Figure 5.5: Simulation model

5.3.1 Simulation scenario

I explain here the simulation scenario. In this simulation, 5 TCP clients com-
municate with the server after the simulation starts. At 5 seconds after the
simulation starts, one background flow joins through routers in core networks
and then leaves at 10 seconds. Namely, the core link becomes a bottleneck dur-
ing this period from 5 to 10 s, while the access link becomes a bottleneck in the
other periods.

5.3.2 Evaluation indices

I evaluated throughput performance for the proposed scheme and conventional
TCP as well as accuracy of proposed bandwidth allocation. For throughput
performance, I investigate throughput of each flow and total throughput of all
flows. These throughputs are calculated at intervals of 1.0 s. On the other hand,
for the accuracy of proposed bandwidth allocation, I investigate an average error
rate for target or allocated transmission rates. The target transmission rate is
the transmission rate that should be originally allocated according to a weight
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Table 5.1: Simulation parameters

TCP algorithm NewReno

Measurement interval time
0.1 [s]

for actual throughput of each flow

Notification interval time for flow information 0.005 ∼ 0.5 [s]

Threshold factor α 0.5 ∼ 1.0

Weight value of the best-effort flow 1

Weight value of the priority flow 2

Transmission rate of background flow 85 [Mb/s]

Simulation time 15 [s]

Number of trials 10

value of each flow, while the allocated transmission rate includes the reallocated
one in addition to the target one. The error rate ERi of each flow i is defined
as Eq. (5.1), where xi and x̂i are the target or allocated transmission rates and
the actual throughput of flow i, respectively. The ERi is calculated at intervals
of 1.0 s and averaged during the simulation time.

ERi =
∣∣∣∣∣xi − x̂i

xi

∣∣∣∣∣ (5.1)

The average error rate AER is calculated as Eq. (5.2), where n is the number of
competing flows on the same link.

AER =

n∑
i=1

ERi

n
(5.2)

The accuracy of proposed bandwidth allocation is higher as the AER gets closer
to 0.
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5.3.3 Comparison schemes

I evaluate the performance of the proposed schemes (Proposed (no reallocation)
and Proposed (reallocation)) compared with that of conventional TCP (Conven-
tional) with the throughput performance. The Proposed (no reallocation) scheme
allocates a transmission rate to each flow according to its weight value, while the
Proposed (reallocation) scheme additionally allocates unutilized bandwidth to
competing flows which fully utilize the allocated bandwidth.

5.4 Simulation results
In this section, I now show simulation results and discuss the effectiveness of the
proposed schemes as compared with the conventional scheme. I first investigate
the throughput performance of the proposed and conventional schemes and then
discuss the effect of the parameters of proposed schemes, such as the notification
interval time for flow information and threshold factor α.

5.4.1 Throughput performance

Figures 5.6 and 5.7 respectively show the throughput performance as a function
of the time when the proposed and conventional schemes are applied. Here, the
notification interval time for flow information is set to 0.05 s and α is set to 0.95.
In Fig. 5.6, the edge flows with a short RTT achieves higher throughput than
the cloud and non-cloud flows with a long RTT under the conventional scheme.
This is because TCP’s congestion control depends on RTT. On the other hand,
under the proposed scheme, each flow obtains the suitable throughput according
to its weight value independently of RTT. This result indicates that the proposed
scheme can allocate transmission rates among flows according to their require-
ments independently of each flow’s RTT. In Fig. 5.7, the proposed (reallocation)
scheme has significantly improved the total throughput as compared with the
proposed (no reallocation) scheme during the period when bottleneck links ex-
ist in core networks. The proposed (reallocation) scheme precisely allocates the
calculated BDP to each flow as the allocated transmission rates based on the
bandwidth which should be allocated and the measured RTT of each flow. It
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Figure 5.6: Throughput of each flow

causes a remaining bandwidth which cannot be fully utilized. This problem can
be solved by allocating a little bit large BDP to each flow and will be discussed
in future work.

5.4.2 Effect of notification interval time

Figures 5.8(a) and 5.8(b) respectively show the average error rate for allocated
transmission rate of proposed (reallocation) scheme and the total throughput of
proposed and conventional schemes when the notification interval time for flow
information varies from 0.005 to 1.0 s. Here, α is set to 0.95. When the no-
tification interval time for flow information is smaller than 0.1 s, the proposed
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(reallocation) scheme achieves low average error rate as well as total throughput
almost the same as that of conventional scheme, as shown in Fig. 5.8. On the
other hand, when the notification interval time for flow information is larger than
0.1 s, the average error rate of the proposed (reallocation) scheme is extremely
high although high total throughput is achieved. Consequently, the proposed (re-
allocation) scheme enables accurate bandwidth allocation among flows as well as
efficient transmission by setting the notification interval time for flow information
to appropriate small value.

5.4.3 Effect of threshold factor α

Figures 5.9(a) and 5.9(b) respectively show the average error rate for target trans-
mission rate of proposed (reallocation) scheme and the total throughput of pro-
posed and conventional schemes when the threshold factor α varies from 0.5 to
1.0. Here, the notification interval time for flow information is set to 0.05 s. In
Fig. 5.9, the proposed (reallocation) scheme achieves better average error rate
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and lower total throughput as α is smaller, while it achieves worse average error
rate and higher total throughput as α is larger. Namely, the proposed (realloca-
tion) scheme has a trade-off relationship between the average error rate and total
throughput for α. In this simulation, α should be set to approximately 0.85 if
I consider the allocated transmission rate gets closer to the target one, while it
should be set to approximately 0.95 if the total throughput is emphasized. Con-
sequently, the proposed (reallocation) scheme achieves low average error rate and
high total throughput by setting α to slightly smaller than 1.

5.5 Conclusion
In this study, I have proposed a bandwidth allocation scheme based on collectable
information to meet the requirements of each flow in edge computing. This
scheme collects flow information including the bandwidth of each link, the num-
ber of competing flows, the RTT of each flow, and the actual throughput of each
flow from routers in access networks, and then it allocates transmission rates
for each flow based on the collected information. In addition, this scheme real-
locates unutilized bandwidth to other competing flows in access networks when
bottleneck links exist in core networks. Simulation evaluations have indicated
that the proposed scheme can allocate transmission rates among flows according
to their requirements independently of each flow’s RTT as well as achieve high
link utilization. In future work, I will consider an effective algorithm to allocate
unutilized bandwidth to other competing flows in a more realistic environment.
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6 A Bandwidth Allocation
Scheme Based on Residual
Bandwidth Information in
Edge Computing

6.1 Introduction
Cloud computing, which enables users to enjoy various Internet services provided
by data centers (DCs) at anytime and anywhere, has attracted much attention.
A major issue regarding cloud computing, however, is communication latency be-
cause DCs will often be far from users. A long distance between users and DCs
degrades the quality of latency-sensitive services. To solve this cloud-computing
distance problem, edge computing, which locates edge servers on access networks,
has been proposed [45]. The edge servers have computation and storage capa-
bilities in addition to their packet forwarding capability, and these capabilities
allow them to provide lower latency and higher-speed communication services
compared to what is possible solely through DCs.

Edge computing will enable future low latency services, such as augmented
reality and automatic driving, while DCs will continue to provide conventional
services, such as file sharing and streaming delivery. In other words, various
services with different round-trip times (RTTs), including edge flows with a short
RTT and cloud flows with a long RTT, will coexist in edge computing. In this
situation, an RTT-unfairness problem arises because such services commonly use
TCP as a reliable data transmission protocol. Since TCP’s congestion control is
applied according to RTT, the transmission rate for a flow with a short RTT is
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Figure 6.1: Degradation of link utilization in access networks

effectively increased compared with that of a flow with a long RTT. Moreover,
the wide variety of services in edge computing will have different requirements,
including their required transmission rates. Therefore, the throughput of each
flow will need to be controlled according to its requirements and independently
of RTT.

Several studies on edge computing technology have been reported [30,48], but
these studies have mainly focused on schemes to effectively use edge servers in
edge computing. On the other hand, to generally improve fairness among flows
with different RTTs, active queue management (AQM) algorithms to be applied
on intermediate routers have been proposed [24–26, 49]. These AQM algorithms
on routers can improve fairness among competing flows if the flows share a bottle-
neck link, but it is difficult to apply them in edge computing where such bottleneck
links shared by all flows do not exist.

To meet the requirements of each flow in edge computing, I previously proposed
a bandwidth allocation scheme based on collectable information and showed the
effectiveness of this approach in edge computing [16, 17]. However, this scheme
may degrade link utilization in access networks if it reallocates an unutilized
bandwidth to flows through paths without a sufficient bandwidth as shown in
Fig. 6.1. In this study, I propose a bandwidth allocation scheme based on residual
bandwidth information to improve link utilization in edge computing. I show the
effectiveness of this approach through simulation evaluations.
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Figure 6.2: Overview of proposed scheme

6.2 Proposed scheme
This scheme collects flow information — such as the bandwidth of each link, the
number of competing flows, the RTT of each flow, the actual throughput of each
flow, and the residual bandwidth of each link — and then allocates transmis-
sion rates among flows according to their requirements based on the collected
information as shown in Fig. 6.2. In addition, this scheme reallocates unutilized
bandwidth to other competing flows with residual bandwidth in access networks
when bottleneck links exist in core networks (Fig. 6.3).

I describe here the operation of the bandwidth allocation scheme. The edge
server measures the RTT and actual throughput of each flow. This measurement
is done through normal TCP operation. For cloud and non-cloud flows, RTT
can be measured based on the conventional RTT estimation technique [46]. Edge
routers in access networks periodically send a packet with information about the
number of existing flows and the residual bandwidth of each link to edge servers.
When an edge router in access networks receives the packet from lower routers,
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Figure 6.3: Bandwidth allocation based on residual bandwidth information

it rewrites the residual bandwidth information in the received packet to the mea-
sured one if the measured residual bandwidth is smaller than the received one,
and then forwards the packet to upper routers. The edge server identifies the bot-
tleneck link based on the information about the number of existing flows received
from the routers and the bandwidth of each link, and then calculates the trans-
mission rate which should be allocated to each flow by multiplying the bandwidth
of the bottleneck link by wi / wtotal which means the number of competing flows
with respect to service classes, where wi is a weight value for flow i and wtotal is
a total weight value of competing flows. Note that wi will be decided in advance.
If actual throughput of each flow multiplied by a threshold factor α is smaller
than the allocated transmission rate, the edge server calculates the transmission
rate which should be reallocated to other competing flows. First, the edge server
calculates the total reallocated transmission rate among competing flows through
the same edge router in access networks. The total reallocated transmission rate
for each edge router is calculated by multiplying the total unutilized bandwidth
by w′

edge / w′
total, where w′

total is a total weight value of competing flows which
fully utilize the allocated transmission rate and w′

edge is a total weight value of
competing flows through each edge router among them. It is limited to the resid-
ual bandwidth if it exceeds it. Second, the reallocated transmission rate for each
flow is calculated by multiplying the total reallocated transmission rate by w′

i
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/ w′
edge, where w′

i is a weight value for flow i which fully utilizes the allocated
transmission rate. These procedures will be repeated until the total unutilized
bandwidth or residual bandwidth is exhausted. Namely, the allocated transmis-
sion rate for each flow which cannot fully utilize the allocation is the bandwidth
of the bottleneck link multiplied by wi / wtotal. On the other hand, the allocated
transmission rate for each flow which fully utilizes the allocation is added to the
reallocated transmission rate.

To allocate transmission rates to TCP flows with window-based congestion
control, the bandwidth delay product (BDP) of each flow should be calculated
as the allocated window size based on the bandwidth which should be allocated
and the RTT of each flow. When the BDP of each flow cannot be divided by the
maximum segment size (MSS), the allocated transmission rate becomes a little
bit low, so the BDP allocated to each flow is rounded up by the MSS units. This
scheme employs an allocation factor β and the allocated window size is multiplied
by β. For downwards communication from an edge server to a client, the edge
server can simply allocate the calculated window size to each flow. On the other
hand, for upwards communication from a client to an edge server, the edge server
needs to inform the client of the allocated window size. This scheme uses TCP’s
advertised window size to notify the client of the window size. For cloud or non-
cloud flows, the edge server rewrites the window size field of the received ACK
packets from the cloud or non-cloud server by the allocated window size and then
forwards them to the client based on a snooping technique [47]. Through these
procedures in edge computing, this scheme can allocate an adequate transmission
rate to each flow according to its requirements independently of RTT as well as
high link utilization in access networks.

6.3 Simulation model
To investigate the efficiency of the proposed scheme in edge computing, I eval-
uated it after its implementation through simulation using Network Simulator
ns-3 [43]. In this study, I focus on the fundamental performance in simple edge
computing environment where various flows with different RTTs coexist and have
the same requirements in terms of transmission rates. Figure 6.4 shows the sim-
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Figure 6.4: Simulation model

ulation topology and Table 6.1 summarizes simulation parameters. In this sim-
ulation, there are two groups of clients (Group A and B) to consider a situation
where multiple edge routers which should be reallocated an unutilized bandwidth
exist. Each client continuously sends data to the corresponding servers using TCP
NewReno after the simulation starts. At 5 seconds after the simulation starts,
one background flow joins through routers in core networks and then leaves at 10
seconds. Namely, the core link becomes a bottleneck during this period from 5 to
10 s, while the access link becomes a bottleneck in the other periods. I evaluated
Jain’s fairness index [44] and total throughput of each group for the proposed and
conventional schemes. The fairness index and total throughput are calculated at
intervals of 1.0 s.

6.4 Simulation results
Table 6.2 summarizes the fairness index and the total throughput of each group
when the proposed and conventional schemes are applied. Here, the notification

62



Table 6.1: Simulation parameters

TCP algorithm NewReno

Transmission rate of background flow 60 [Mb/s]

Notification interval time for flow information 0.05 [s]

Threshold factor α 0.8

Allocation factor β 1.3

Weight value of all flows 1

Simulation time 15 [s]

Number of trials 10

Table 6.2: Fairness index and total throughput

Conventional
Conventional Proposed

(reallocation) [17] (reallocation+residual)

Group A
Fairness index 0.71 0.86 0.83

Total throughput [Mb/s] 93.44 90.93 93.97

Group B
Fairness index 0.71 0.90 0.87

Total throughput [Mb/s] 93.63 92.85 94.47

interval time for flow information is set to 0.05 s, the threshold factor α is set to
0.8, the allocation factor β is set to 1.3, and the weight value of all flows is set to
1. From Table 6.2, the proposed (reallocation+residual) scheme achieves higher
total throughput than the other schemes as well as fairness index almost the
same as that of the conventional (reallocation) scheme in both groups. In Group
A, the proposed (reallocation+residual) scheme effectively reallocates unutilized
bandwidth caused by congestion on cloud and non-cloud flows (Group A′) to
competing edge flows through the same edge router with sufficient residual band-
width (Group A′′′). In Group B, the proposed (reallocation+residual) scheme
reallocates unutilized bandwidth to competing edge flows through the same edge
router (Group B′′ and B′′′). The reallocated bandwidth of Group B′′ flows is
limited to the residual bandwidth, so that the remaining unutilized bandwidth is
reallocated to Group B′′′ flows which have sufficient residual bandwidth.
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6.5 Conclusion
In this study, I have proposed a bandwidth allocation scheme based on resid-
ual bandwidth information to improve link utilization in edge computing. This
scheme collects residual bandwidth information from routers in access networks
and then reallocates unutilized bandwidth to other competing flows with an suffi-
cient residual bandwidth in access networks based on collected information when
bottleneck links exist in core networks. Simulation evaluations have indicated
that the proposed scheme achieves higher fairness than the conventional schemes
as well as high link utilization in edge computing. In future work, I will inves-
tigate the effect of parameters such as the number of TCP clients, delay time,
and the transmission rate of background flow on the performance of the proposed
scheme.
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7 Flow Splitting and Aggregation
Schemes to Improve
Throughput Performance in
Edge and Cloud Computing

7.1 Introduction
With the development of mobile devices and wireless networks, a demand for
low-latency mobile applications has been growing exponentially. For such mobile
applications, edge computing [4, 5] is expected, which locates edge servers with
limited computing and storage resources at the edge of networks. In edge comput-
ing, users offload a task (e.g., program execution) to edge servers, since computing
resources and batteries of mobile devices are limited. The edge servers execute
the offloaded tasks and return the results of them to users. Through these proce-
dures, users can enjoy various applications without depending on the limitations
of mobile devices.

To achieve high quality mobile applications, several studies on task offloading in
edge computing have been reported. A task offloading scheme proposed in these
studies selects an appropriate edge server from available ones according to related
information (e.g., computing resources of edge servers, communication delays
between users and edge servers, and energy consumption of mobile devices), and
then offloads tasks from users to it; therefore, this scheme can minimize delays
and save energy consumption for task offloading. However, when an edge server’s
load is too heavy, a large number of tasks will be offloaded to distant cloud
servers. In that case, a long distance between users and cloud servers significantly
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degrades the quality of mobile applications. This is because users often use TCP
for reliable communication, which has congestion control mechanisms according
to round-trip times (RTTs). To achieve high quality mobile applications in edge
computing, the communication delay time needed to offload tasks to cloud servers
should also be improved.

In this study, I propose flow splitting and aggregation schemes to improve
offload delay to cloud servers as well as provide high quality mobile applications
in edge computing. This scheme splits TCP connections between users and cloud
servers at an intermediate edge server, and then aggregates TCP connections
between the edge server and cloud servers. I show the effectiveness of this scheme
through simulation evaluations.

7.2 Proposed scheme
This scheme splits TCP connections between users and cloud servers at an in-
termediate edge server and then aggregates TCP connections between the edge
server and cloud servers as shown in Fig. 7.1(a). To avoid a buffer overflow on
the edge server due to bursty data transmission from users, this scheme employs
flow control mechanism for individual TCP connections between the edge server
and users. This scheme controls the individual and aggregated TCP connections
based on flow splitting and aggregation methods [50–52] which are well-known
approaches to improve TCP performance.

Here, I describe the operation of this scheme as shown in Fig. 7.1(b). Users
offloading tasks to cloud servers first establish TCP connection with an inter-
mediate edge server and send data to the edge server. The edge server receiving
data from users returns ACK messages to users and stores the received data in its
buffer. If TCP connection between the edge server and cloud servers has not been
established yet, the edge server establishes TCP connection with the cloud server
and forwards the stored data to it; otherwise, the stored data are forwarded to the
cloud server through already established TCP connection. Note that users can
increase transmission rates effectively because this scheme has shorter response
time of ACK messages than conventional TCP by flow splitting. To avoid a buffer
overflow due to bursty data transmission from users, the edge server allocates an
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Figure 7.1: Flow splitting and aggregation schemes

individual buffer and notifies an available buffer size to each user. The “allocated”
buffer size for each user is calculated by dividing the total buffer size on the edge
server by the number of individual TCP connections, which is updated when the
edge server receives SYN or FIN messages from users. The “available” buffer size
for each user is determined based on current buffer utilization and notified to
each user with TCP’s advertised window size. Through these flow splitting and
aggregation, this scheme can improve the communication delay needed to offload
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Figure 7.2: Simulation topology

Table 7.1: Simulation parameters

TCP algorithm TCP NewReno

Number of users 1–10

Buffer size on edge server 100–1000 [KB]

Data size 1–10 [MB]

Segment size 1000 [Byte]

Number of trials 10

tasks from users to cloud servers in edge computing.

7.3 Simulation model
To investigate the efficiency of the proposed scheme in edge computing, I eval-
uated it after its implementation through simulation using Network Simulator
ns-3 [43]. I implemented functions to split TCP connections between users and
cloud servers at an intermediate edge server, to aggregate TCP connections be-
tween the edge server and cloud servers, and to perform flow control based on
allocated buffer sizes for each TCP connection in this simulator.

Figure 7.2 shows the simulation topology. To investigate fundamental charac-
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Figure 7.3: Effect of the number of users

teristics of the flow splitting and aggregation schemes in edge computing, I use
a simple binary tree topology. Under the conventional scheme (original TCP),
the edge server has only forwarding and routing functions, i.e., works as original
router, while it has the functions including flow splitting, aggregation, and flow
control in addition to the original functions under the proposed scheme. Each
user sends data to the cloud server by using TCP NewReno. The start time of
data transmission for each user is randomly set in a range from 0 to 0.1 s which
follows uniform distribution. The bandwidth and propagation delay time of all
links are set to 100 Mb/s and 5 ms, respectively. Other simulation parameters
are summarized in Table 7.1.
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Figure 7.4: Effect of buffer size

I compare the performance of proposed schemes (proposed (split), proposed
(aggregate), and proposed (flow control)) to that of conventional scheme (original
TCP) by focusing on offload time for all users, throughput of each user, and the
number of retransmissions. The proposed (split) scheme splits TCP connections
between users and cloud servers at the edge server. The proposed (aggregate)
scheme aggregates TCP connections between the edge server and cloud servers
in addition to flow splitting. The proposed (flow control) scheme performs flow
control to avoid a buffer overflow on the edge server in addition to flow splitting
and aggregation. Note that I ignore the time needed to execute offloaded tasks
and return the results of them to users so that I focus on the performance of task
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offloading from users to the cloud servers in terms of communication delay.

7.4 Simulation results
In this section, I now show simulation results and discuss the effectiveness of the
proposed schemes as compared with the conventional scheme. I investigate the
effect of the number of users, buffer size on the edge server, and offloaded data
size.

7.4.1 Effect of the number of users

Figure 7.3 shows the offload time for all users, throughput of each user, and the
number of retransmissions of the proposed and conventional schemes, respectively,
when the number of users varies from 1 to 10. Here, the data size is set to 5 MB
and the buffer size on edge server is set to 300 KB.

From Fig. 7.3, the proposed schemes achieve shorter offload time and higher
throughput than the conventional scheme regardless of the number of users. This
is because the proposed schemes can effectively increase transmission rates for
each user by splitting TCP connections between the users and the cloud server.
However, the offload time of proposed (split) and (aggregate) schemes are longer
than that of the proposed (flow control) scheme. I describe the reasons for this
phenomenon in the following.

First, I consider the difference between the proposed (split) and (flow control)
schemes. When the number of users is larger than 1, the proposed (flow control)
scheme establishes one TCP connection between the edge server and the cloud
server (i.e., TCP connections between the edge server and the cloud server are
aggregated). On the other hand, the proposed (split) scheme needs to establish
one or more TCP connections between the edge server and the cloud server in
such case. Namely, the proposed (split) scheme takes a longer time to establish
multiple TCP connections than the proposed (flow control) scheme. Moreover,
the proposed (split) scheme causes a larger number of retransmissions than the
proposed (flow control) scheme because multiple flows compete in core networks
under the proposed (split) scheme. From these reasons, the offload time of the
proposed (split) scheme is longer than that of the proposed (flow control) scheme.
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Figure 7.5: Effect of data size

Next, the difference between the proposed (aggregate) and (flow control) schemes
is considered. When the number of users is smaller than 6, the offload time of pro-
posed (aggregate) and (flow control) schemes is almost the same. However, the
proposed (aggregate) scheme takes a longer offload time than the proposed (flow
control) scheme when the number of users is larger than 5. This is because the
proposed (aggregate) scheme exponentially increases the number of retransmis-
sions due to buffer overflows on the edge server as the number of users increases
as shown in Fig. 7.3(c).
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7.4.2 Effect of buffer size

Figure 7.4 shows the offload time for all users, throughput of each user, and the
number of retransmissions of the proposed and conventional schemes, respectively,
when the buffer size varies from 100 to 1000 KB. Here, the number of users is set
to 6 and the data size is set to 3 MB.

From Fig. 7.4, when the buffer size is too small (< 200 KB), the proposed (flow
control) scheme attains the poor performance in terms of the offload time and
throughput because it cannot utilize the effect of flow splitting and aggregation
due to too small allocated buffer size on the edge server. Similarly, when the
buffer size is too large (> 500 KB), the proposed (flow control) scheme degrades
the performance in terms of the offload time and throughput. This is because the
number of retransmissions increases slightly as the buffer size increases. Conse-
quently, the proposed (flow control) scheme achieves the best performance when
the adequate buffer size on the edge server (200–500 KB in this simulation) is
employed.

7.4.3 Effect of data size

Figure 7.5 shows the offload time for all users, throughput of each user, and the
number of retransmissions of the proposed and conventional schemes, respectively,
when the data size varies from 1 to 10 MB. Here, the number of users is set to 6
and the buffer size on edge server is set to 300 KB.

From Fig. 7.5, although the offload time of all schemes proportionately increases
as the data size increases, the proposed (flow control) scheme achieves shorter
offload time and higher throughput than other schemes due to a small number of
retransmissions regardless of the data size.

From the above results, I show that the proposed schemes can improve the
offload time and throughput performance by flow splitting, aggregation, and flow
control as compared with the conventional scheme. In particular, the proposed
(flow control) scheme with the adequate buffer size on edge server achieves the
shortest offload time as well as highest throughput.

73



7.5 Conclusion
In edge computing, users wish to tasks to edge servers due to limited computing
resources and batteries of mobile devices. Edge servers execute offloaded tasks
and return the results of them to users. Users can thus enjoy various mobile
applications without depending on the limitations of mobile devices. However,
when the edge server’s load is too heavy, a large number of tasks will be offloaded
to distant cloud servers. In that case, a long distance between users and cloud
servers significantly degrades the quality of mobile applications. To prevent this
problem, I proposed flow splitting and aggregation schemes to improve offload
delay to cloud server in edge computing. This scheme splits TCP connections
between users and cloud servers at the edge server, and then aggregates TCP
connections between the edge server and cloud servers. To avoid a buffer over-
flow on the edge server due to bursty data transmission from users, this scheme
also employs flow control mechanism. Through simulation evaluations, I have
indicated that the proposed schemes can improve offload time as well as through-
put performance by the effect of flow aggregation and flow control functions. In
future work, I will evaluate the characteristics of proposed scheme in detail in
more practical environment.
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8 Conclusion

In this dissertation, I proposed efficient schemes to allocate and use network re-
sources among flows to solve issues (1)–(3) in edge and cloud computing, as men-
tioned in Chapter 1. Through simulation evaluations, I showed the effectiveness
of the proposed schemes in edge and cloud computing.

In Chapter 1, I introduced the background, objective, and organization of this
dissertation.

In Chapter 2, I gave an overview of TCP to provide a better understanding of
this dissertation and introduced related work.

In Chapters 3 and 4, I discussed an efficient method to fairly allocate bandwidth
among users in cloud computing regarding issue (1). In Chapter 3, I proposed a
bandwidth allocation scheme based on collectable information to improve fairness
in DC networks. This scheme collects flow information including the bandwidth
of each link, number of competing flows, and RTT of each flow from routers
and servers in DC networks then fairly allocates transmission rates among flows
based on the collected information. I evaluated the fundamental characteristics
of the proposed scheme by focusing on the effect of allocation factor α used to
adjust the transmission rate of each flow. The simulation results indicate that
the proposed scheme enables higher fairness and throughput performance than
that using conventional TCP by setting α to slightly larger than 1. In Chapter
4, I discussed extending the proposed scheme to reallocate unutilized bandwidth
caused by congestion outside DC networks to other competing flows to improve
link utilization in DC networks. This scheme collects flow information including
the bandwidth of each link, number of competing flows, RTT of each flow, and
actual throughput of each flow from routers and servers in DC networks then
fairly allocates transmission rates among flows based on the collected informa-
tion. This scheme also reallocates unutilized bandwidth to other competing flows
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in DC networks when bottleneck links exist outside these networks. I evaluated
the performance of the proposed scheme through simulation by focusing on how
to set parameter values (e.g., notification interval time for flow information) in
more detail. The simulation results indicate that this scheme enables fair com-
munication among flows with different RTTs as well as high link utilization in
DC networks by setting appropriate parameter values.

In Chapters 5 and 6, I discussed an efficient method to allocate bandwidth ac-
cording to user requirements in edge computing regarding issue (2). In Chapter
5, I proposed a bandwidth allocation scheme based on collectable information to
meet the requirements of each flow in edge computing. This scheme collects flow
information including the bandwidth of each link, number of competing flows,
RTT of each flow, and actual throughput of each flow from routers in access net-
works. It then allocates transmission rates for each flow based on the collected
information. This scheme also reallocates unutilized bandwidth to other compet-
ing flows in access networks when bottleneck links exist in core networks. The
simulation results indicate that the proposed scheme can allocate transmission
rates among flows according to their requirements independently of each flow’s
RTT as well as achieve high link utilization. In Chapter 6, I discussed extending
the proposed scheme to allocate bandwidth based on residual bandwidth informa-
tion to improve link utilization in edge computing. This scheme collects residual
bandwidth information from routers in access networks then reallocates unuti-
lized bandwidth to other competing flows with a sufficient residual bandwidth
in access networks based on collected information when bottleneck links exist in
core networks. The simulation results indicate that the proposed scheme achieves
higher fairness than conventional schemes as well as high link utilization in edge
computing.

In Chapter 7, I discussed a method to provide efficient transmission in edge and
cloud computing and proposed flow splitting and aggregation schemes to improve
the throughput of each flow in edge and cloud computing regarding issue (3). The
splitting scheme splits the TCP connections between users and cloud servers at
the edge server, and the aggregation scheme aggregates the TCP connections
between the edge server and cloud servers. To avoid a buffer overflow on the
edge server due to bursty data transmission from users, these schemes also use
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a flow control mechanism. Through simulation evaluations, I indicated that the
proposed schemes can improve throughput performance by flow aggregation and
flow control functions.

In this dissertation, I solved some issues in edge and cloud computing. The
integration of the proposed schemes can help provide high-quality services to
users according to the requirements of each user independently of his/her loca-
tion. However, the following issues remain for future work. In edge and cloud
computing, computation tasks will be offloaded to distant cloud servers when
an edge server’s load is too heavy. This task offloading can reduce execution
time. However, a long transmission time is required due to the long distance, so
the offload delay may become a bottleneck. To improve offload delay, each edge
server should cooperate with other edge servers. For future work, I will consider
an efficient method to cooperate among edge servers to improve offload delay in
edge and cloud computing.
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