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Chapter One - Introduction 

Hydroxyl radical (•OH) is one of the important reactive species in the advanced 

oxidation process. It has an unpaired electron on an open shell configuration, and has a 

covalent bond. Two electrons are respectively from oxygen atom and hydrogen atom as 

it shows in the figure 1-1. The hydroxyl radical is highly reactive and short-lived. It 

forms an important part of radical chemistry. Most notably hydroxyl radical is 

produced from the decomposition of hydro-peroxides (ROOH) or, the reaction of excited 

atomic oxygen with water vapor in atmospheric chemistry. One of the most famous is 

Fenton reaction. H.J.H Fenton discovered in 1894 that several metals have a special 

oxygen transfer properties which improve the use of hydrogen peroxide. Actually, some 

metals have a strong catalytic power to generate highly reactive hydroxyl radical 

(•OH). Fenton's reagent is a solution of hydrogen peroxide and an iron catalyst.  Iron 

(II) sulfate is a typical iron compound in Fenton's reagent. Since this discovery, the 

iron catalyzed hydrogen peroxide has been called Fenton's reaction. Hydrogen peroxide 

reacts with ferrous iron (II) to form ferric iron (II) complex that subsequently reacts to 

form hydroxyl radicals. It generates some hydroxyl radical as it shows in the following 

equations: 

Fe2+ + H2O2 → Fe3+ + •OH + OH- 

H

O

 
Figure 1-1 Molecular orbital of the hydroxyl radical with unpaired electro 

In the atmosphere, the hydroxyl radical is often referred to as the "detergent", and it 

plays a central role in the oxidation and removal of many atmospheric compounds, 

because it reacts with many pollutants, often acting as the first step to their removal. 

Its major source in the troposphere is the reaction of electronically excited atomic 

oxygen with water vapor, and excited atomic oxygen is produced from UV-photolysis of 

ozone. Now, the most powerful advanced oxidation systems are based on the 
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generation of hydroxyl radical, and the oxidation rate is strongly dependent on 

hydroxyl radical concentration. Most of the hydroxyl radical is produced from ozone in 

chain reaction where alkali or hydrogen peroxide acts as initiator. Table 1-1 lists some 

typical hydroxyl radical generation systems. 

Table 1-1 List of typical hydroxyl radical generation systems 

Non-photochemical Photochemical 

O3 at elevated pH (›8.5) O3/UV 

O3/US O3/H2O2/UV 

O3/AC (activated carbon) H2O2/UV 

O3/H2O2/US H2O2/Fe2+/UV (photo-Fenton) 

H2O/US H2O/UV/TiO2 

H2O2/US H2O2/UV/TiO2 

Fe2+/H2O2 (Fenton system) O3/UV/TiO2 

Electro-Fenton H2O/UV/US 

Pulsed plasma Vacuum UV 

Microwave  

Wet air oxidation  

Supercritical water oxidation  

*Annex: Ultraviolet (UV); Ultrasonic (US). 

In general, the effectiveness of an Advanced Oxidation Processes is proportional to its 

ability to generate hydroxyl radicals. Methods such ozonation, hydrogen peroxide 

and/or UV light may have mechanisms for destroying organic contaminants which 

involve formation of hydroxyl radicals. When O3 and H2O2 are simultaneously added to 

water, they participate in a complex chain of reactions that result in the formation of 

radicals such as the hydroxyl radical (•OH) and the superoxide radical (•O2). H2O2 

enhances the transformation of O3 to •OH in solution and as a result this treatment is 

more effective than either ozonation or hydrogen peroxide alone. Meanwhile, the 

generation of radical can be enhanced by using ultraviolet (UV) radiation, which 

induces formation of free radicals. Ultraviolet irradiation can be used together with 

ozone (O3/UV) or hydrogen peroxide (UV/H2O2). And if we add the ultrasonic, the 

effectiveness of an Advanced Oxidation Processes will intensify. Now, the generation of 

radical using a combination of ultraviolet irradiation catalyzed with TiO2 is based on 

the illumination of the titanium dioxide (which is a semiconductor) with ultraviolet 

light. This results the excitation of its valence band electrons to the conduction band 

and the formation of holes. Adsorbed water molecules and ozone take part in the 



6 
 

reaction of producing hydroxyl radicals, while superoxide anion radical (•O2) is also 

generated.  

The hydroxyl radical has a very short live in vivo half-life of approx. 10−9s and a high 

reactivity. It is an extremely powerful and non-selective oxidation agent, second only to 

Fluorine in power. This makes it be a very dangerous compound to the organism. 

Unlike superoxide, which can be detoxified by superoxide dismutase, the hydroxyl 

radical cannot be eliminated by an enzymatic reaction. It can damage virtually all 

types of macromolecules: carbohydrates, nucleic acids (mutations), lipids (lipid 

peroxidation) and amino acids (e.g. conversion of Phe to m-Tyrosine and o-Tyrosine) 

through this chain reaction. The reaction will continue until it is ultimately quenched. 

The only means to protect important cellular structures is the use of antioxidants such 

as glutathione and of effective repair systems. Antioxidants are widely used in dietary 

supplements and have been investigated for the prevention of diseases such as cancer, 

coronary heart disease and even altitude sickness. In addition hydroxyl radical 

oxidation potential is very strong, so it is stronger oxidizing agents than ozone and 

hypochlorous acid, and can oxidize the organic material is faster than using ozone and 

hypochlorous acid. It is known that ozone and hypochlorous acid are applied in 

waste-water treatment. Although fluorine gas has a higher electronegative oxidation 

potential, it is not used in water treatment. Following is a listing of common chemical 

oxidants, placed in the order of their oxidizing strength: 

Table 1-2 Relative power of chemical oxidants 

Species Formula
Oxidation Potential, 

(electron-volt) 

Fluorine F 3.06 

Hydroxyl Radical •OH 2.85 

Sulfate Radical •SO4- 2.60 

Excited Atomic Oxygen O1 2.42 

Ozone O3 2.07 

Hydrogen Peroxide H2O2 1.77 

Perhydroxyl Radical HO2 1.70 

Hypochlorous Acid HClO 1.49 

Chlorine Cl2 1.36 

Hypobromou Acid HBrO 1.33 

Oxygen O2 1.23 

Chlorine Dioxide ClO2 0.95 
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This comparison shows that oxidation can be achieved by using compounds which have 

higher oxidation potentials (Eo) than that of oxygen (1.23V) in general. The difference 

of the oxidation potential over the potential of oxygen is a measure of the oxidative 

capability of oxidizing agents, and with the higher the oxidation potential, oxidative 

capability is stronger. This comparison also shows that hydroxyl radical has 

unmatched capability of oxidative treatment. The only oxidant with even higher 

potential is fluorine, with its oxidation potential of Eo = 2.85 V, while ozone and 

hypochlorous acid have the oxidation potential of only 2.07V and 1.49V. 

Hydroxyl radical is an ultimate oxidation tool — able to attack any molecule in their 

vicinity in order to balance their unpaired electron configuration. It can cut the organic 

C-C bond, and break double bonds (such as C=C, C=O, N=N and so on), degrade 

hydrocarbons, cause epoxidation and aromatic ring opening, radical polymerization, 

formation of secondary radicals and many other types of reactions. It is shown such as 

figure 1-2. So, utilizing the strong oxidizing strength of hydroxyl radical, oxidation 

reaction is the most effective way of degrading and eliminating all kinds of pollutants 

and waste chemicals both in air and water. It is also one of the basic tools in a variety 

of chemical reactions and processes.  

 
Figure 1-1 Cause of degrading and eliminating all kinds of organic matter using 

hydroxyl radical 

Advanced oxidation process (AOP) is based on techniques of generation of highly 

reactive species (especially the hydroxyl radical) that are able to react with a range of 
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compound, even with chemicals that are otherwise very difficult to degrade. The 

degradation reaction is initiated by the radical proceeds until thermodynamically 

stable oxidation products are formed. Meanwhile the end products of complete 

oxidation of organic compounds are carbon dioxide (CO2) and water (H2O). It is shown 

such as figure 1-3. 

 
Figure 1-3 End products of complete oxidation of organic compounds reacting with 

hydroxyl radical 

Advanced Oxidation process is an environmentally friendly approach to target 

pollutants and contaminants, such as in air and waste water, to remove toxic or 

non-degradable materials. AOP deals with the removal of aromatics, pesticides, 

petroleum constituents, volatile organic compounds (VOC), petroleum hydrocarbons 

and chlorinated hydrocarbons, dyes and organic matter. 

In recent years demand has been increasing for effectively disinfect, deodorize, air 

purification, water treatment, wafer rinse containing metal impurities such as Ag, Ni 

or Al, and recalcitrant organic matter such as dioxins or agricultural chemicals, which 

has not been able to be treated by traditional treatment techniques using chlorine or 

ozone. The hydroxyl radical is conventionally generated by the reaction of dissolved 

ozone. Hydrogen peroxide or ultraviolet light is used for decomposition of the dissolved 

ozone. However, the hydroxyl radical production efficiency of the conventional method 

is not high, as one hydroxyl radical is produced from three molecules of ozone. And as it 

is short live, it is difficult to capture and determination. Detection methods require 

high sensitivity and high selectivity. Although most techniques are suitable for certain 

experimental objectives, they all have limitations, and need high cost and complicated 

operation. For these reasons, a high-efficiency hydroxyl radical generation technique 

and a highly efficient and convenient semi-quantitative and qualitative system of 
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hydroxyl radical are desired. In our laboratory, we established the system which was 

an ozone/ultrasonic/ultraviolet rays/photocatalyst unit, and every event was used by 

alone or in combination to try decomposition and detoxification of various 

environmental pollutants. 

In this paper, chapter two analyzes photodecomposition behaviors of pesticides in the 

source for water supply using an alumina carrier-titanium dioxide photocatalyst. 

Chapter three will introduce novel hydroxyl radical generation technology. In order to 

largely promote hydroxyl radical generating efficiency, the technology is developed 

which comprehensively uses ozone, ultraviolet illuminating, low-megahertz ultrasonic 

and titania nanotube photocatalyst, meanwhile adopts the method of high velocity 

impact of forging thermal spraying. Chapter four analyzes photo-decomposition of 

volatile organic compound using nano-reaction field separation TiO2 photocatalyst. 

Chapter five discusses production of active intermediates and decomposition 

behaviours and effects of organic compounds using hydroxyl radical in the ultraviolet 

ray/supersonic wave multiple reactions with TiO2 photocatalyst. Most of those organic 

compounds are difficult to be decomposed by ozone and chlorine. Chapter six discusses 

the generation of hydroxyl radical in the process of ozone/ultraviolet ray/supersonic 

wave multiple reactions with TiO2 photocatalyst, and quantitative and qualitative 

analysis of generated hydroxyl radical with chemiluminescence and other methods. 

Chapter seven discusses contaminants cleaning and decomposition effects using 

hydroxyl radical water. For all of the electronic elements, cleaning technology is 

exactly requisite in the process of producing. Recent years, chemical cleaning drugs 

were gradually prohibited, and hydroxyl radical is attracting more and more attention, 

which is expected to function in dealing with those stable metal impurities that are 

difficult to be decomposed by ozone and chlorine. Chapter eight summarizes the paper, 

points out the innovation, future application and the deficiency of the study in the end.  

In addition, when the shortage of surface water resources is becoming growing, 

groundwater usage has increased year by year. Over the past 30 years, many countries 

have found that groundwater and soil were polluted by pesticide and heavy metals, 

and these kinds of pollution are difficult to eliminate. Especially in China, excessive 

use of pesticide and chemical fertilizer as well as pesticide product’s structure is 

irrational, result in about 70% of the pesticide scattering into the environment. Then 

because residual pesticide which is in the soil permeates into the groundwater, 

groundwater and soil are polluted by pesticide. In addition, residual pesticide and 

trace heavy metals are detected with relatively high frequency in fresh fruits, fresh 

vegetables, and frozen food. In China in recent years, as people focus on food safety and 
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health, the awareness of groundwater and soil pollution prevention has been greatly 

improved. Hydroxyl radical is strong oxidizing agent. Now it is increasingly expected 

to treat decompose organic pollutant (including pesticide) which is difficult to be 

treated by ozone and chlorine. According to the advanced oxidation process, pesticide 

pollution of groundwater and soil can be eliminated by hydroxyl radical. Using ozone, 

ultrasonic, ultraviolet rays and photocatalyst with together, it can generate high 

concentration of hydroxyl radical, and it is earth-friendly. Meanwhile, we can calcium 

polysulfide (CaSx) as insolubilization treatment material to remove heavy metals ions 

in wastewater and sediment/soil treatment. Others, it will be considered that hydroxyl 

radical be also applied in some fields such as food sterilization, medical relationship 

and clothing relationship. 
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Chapter Two - Photodecomposition behaviors of 

pesticides in the source for water supply using an 

alumina carrier-titanium dioxide photocatalyst 

2.1 Introduction 

The countermeasures against toxic substances or musty odor cause substances in the 

source for water supply have become a serious subject with the pollution of 

environmental waters. For the purpose of the utilization of the photodecomposition 

method for the water purification at a water purification plant or a water purifier, we 

have investigated on the photodecomposition behaviors of organic pollutants, total 

organic compounds, formaldehyde, total organic halides, trihalomethanes, geosmin 

and 2-methyl-iso-borneol using a titanium dioxide photocatalyst. Relatively high 

photodecomposition efficiencies were obtained for these substances.  

Pesticide is one of the toxic chemical substances polluting the source for water supply, 

vegetables, fruits, etc. Then, the residual pesticides in many kinds of food have already 

been regulated and the aiming standard values of 101 types of pesticide for tap water 

quality control were set up in 2003. However, only 21 in 117 types of pesticide showed 

over 80% of removal ratio in the coagulation and sedimentation usually performed at a 

water purification plant. Then, we investigated on the photodecomposition behaviors 

of the 5 types of pesticide which were largely used in Kitakyushu district.  

We have ever used silica gel having high decomposition efficiency as a carrier of TiO2 

photocatalyst. However, a silica gel carrier was fragile. In addition, sufficient 

endurance of the carrier is demanded when the decomposition of chemicals in water 

and food or that disinfection using supersonic wave together is performed. Then, we 

also investigated on the photodecomposition ability with an alumina carrier, which 

could stand against ultra violet (UV) light and water, instead of silica gel carrier. 
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2.2 Material and methods 

2.2.1 Instruments  

Gas chromatograph/mass spectrometer (GC/MS) was a Hewlett Packard HP-5890 

series and a JEOL auto mass system. Total nitrogen (T-N) analysis was performed 

using a Tokyo Kasei Ind. Co. TCI-NOX 1000, GASTORR GT-102, VISIBLE 

DETECTOR S-3250 and AUTO SAMPLER SS-3600, while other determinations were 

from Hitachi Co. U-2000A a spectrophotometer was used. 

2.2.2 Objective pesticides and other reagents 

Five pesticides that was shown as table 2-1 were selected for an objective pesticide. 

These pesticides were used in the Onga River Basin and their aiming standard values 

in tap water quality were established. Their structural formulas were shown in figure 

1-1. Dinitrophenol (DNP) was used as a chemical substance for the capability 

evaluation of alumina carrier. These chemical substances were obtained from Hayashi 

Pure Chemical Industries, Wako Pure Chemical Industries and Tokyo Kasei Kogyo Co. 

Each standard solution was prepared by the dilution with acetone. An alumina carrier 

was obtained from Sumitomo Chemical Co. The properties of the alumina and silica gel 

carriers, comparative carriers, were shown in table 2-2. Two types of alumina are 

NK124 and NKHO24. 

Table 2-1 Shipped amounts and the aiming water qualities of the objective pesticides 

in the Onga River Basin 

Pesticide Use 
Shipped amount a 

(kg) 

Aiming standard 

Value 

(mg/L) 

Chlorthalonil Disinfectant 185 0.05 

Pencycuron Disinfectant 686 0.04 

Cafenstrole Herbicide 1,946 0.008 

Thiobencarb Herbicide 155 0.02 

Trifluralin Herbicide 5,238 0.06 

a The values in 2003
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Figure 2-1 Structural formulas of the objective pesticides 

 

Table 2-2 Properties of alumina and silica gel carriers 

Item 
Carrier 

NK124 NKHO24 Silica gel 

Particle size (mm) 2-4 2-4 1.7-4 

Al2O3 contents (%) 99.9 99.7 － 

Micropore volume 

(cm3/g) 
0.77 0.58 － 

Relative surface 

area (m2/g) 
130 160 － 

Compacting 

strength (kg) 
2 6 － 

Supporting ratio 

(%) 
20 17 25 

 

Two types of alumina are NK124 and NKHO24 are shown as figure 2-2. They and silica 

gel carrier-TiO2 photocatalysts were produced by the Sol-Gel Method. All solvents were 

the grade reagents for pesticide residue analysis, which were obtained from Kanto 

Chemical Co. and Wako Pure Chemical Industries. Other reagents were special grade 

reagents, which were obtained from Wako Pure Chemical Industries. Anhydrous 

Na2SO4 and NaCl were heated at 800 °C for 3 h after acetone-washing. The water was 

purified using a Millipore Milli-Q Ultra-pure Water System. 
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Figure 2-2 Prepared alumina carrier-TiO2 photocatalysts 

 

2.2.3 Apparatus for the photodecomposition of the pesticides 

The apparatus for the photodecomposition experiments of the pesticides and DNP was 

shown in figure 2-3. The photo-reactor which was shown as figure 2-4 was made of 

stainless steel and equipped with a 6 W low pressure mercury lamp (a Matsushita 

Electric Ind. Co. GL6/Q) and a stabilizer (Nihon Fluorescence Electric Co.). Eighty five 

milliliters of each photocatalyst was packed in a thickness of about 5 mm. The UV 

illumination intensity on the surface of catalyst was 10 mW/cm2. Sample water was 

circulated with a roller pump (Furue Science Co.). 
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Figure 2-3 Apparatus for the photodecomposition of the pesticides 

 

Figure 2-4 Structure of photoreactor 
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2.2.4 Analyses of pesticides, DNP and other items 

The quantification of the pesticides and DNP in UV irradiated solution was performed 

in the next procedure. About 2 g of NaCl was added in 40 ml of UV irradiated solution 

and each pesticide or DNP was extracted with 4 ml of dichloromethane. The 

dichloromethane layer was separated from aqueous layer, dehydrated with anhydrous 

Na2SO4 and analysed by the GC/MS method. The GC/MS conditions were shown in 

table 2-3. Each calibration curve showed good linearity in the quantification range. 

Their recoveries by the method were over 85%. 

PH, suspended solid matter (SS), BOD, KMnO4 consumption, total nitrogen (T-N), 

total phosphorus (T-P) and electric conductivity (EC) were measured by the method of 

Japanese Industrial Standard K0102. 

Table 2-3 GC/MS conditions 

Column 
DB-5MS (5%Diphenyl 95%dimethyl polysiloxane) 

0.25 mm × 30 m × 0.25 μm 

Column temperature 
60 °C (1 min)－30 °C min-1－130 °C－5 °C/min 

－240 °C－10 °C/min－300 °C (10 min) 

Injector temperature 250 °C 

Carrier gas He1.5 mL/min 

Transfer line temperature 260 °C 

Mode EI 

 

2.2.5 The photodecomposition capability experiments of alumina 

carrier-TiO2 photocatalysts and photodecomposition experiments of 

pesticides 

Each alumina or silica gel carrier-TiO2 photocatalyst was packed in the photoreactor. 

The water samples for DNP and pesticides experiments were prepared by adding 3 ml 

of each 1,000 mg l-1 DNP or pesticide acetone solution in 3 l of purified water (for the 

photo-decomposition capability experiment of photocatalyst) or the river water (for the 

photodecomposition experiment of pesticide). Quality of the water was shown as table 

2-4. The water sample was vigorously shaken for 30 min using a separatory funnel and 

placed in 5 l glass bottle. The water sample was firstly circulated for 30 min at l min-1 
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of flow rate by stirring and the system was allowed to reach equilibrium. Then the 

mercury lamp was switched on. The UV irradiated solution was periodically 

withdrawn during irradiation and DNP or each pesticide was quantified by the GC/MS 

method. The photodecomposition experiments of pesticides without a photocatalyst 

were also performed. 

Table 2-4 Quality of the river water used for this experiment 

Item Concentration 

pH 7.6 

SS (mg/L) 6 

BOD (mg/L) 3.5 

KMnO4 consumption (mg/L) 5.8 

T-N (mg/L) 1.52 

T-P (mg/L) 0.08 

EC (μS/cm) 264 

2.3 Results and discussion 

2.3.1 Comparison of the photodecomposition capability of alumina 

carrier-TiO2 photocatalysts 

Figure 2-5 shows the photodecomposition rates of DNP using the alumina and silica 

gel carrier-TiO2 photocatalysts. DNP was decreased exponentially with reaction time 

(t) and the rate of DNP disappearance was nearly represented by a first-order process. 

The values of pseudo-first-order rate constant (k: C=Coe-kt) of NK124, NKHO24 and 

silica gel carrier-TiO2 photocatalysts determined from the plot of data points (C/C0 vs. 

t) were 0.027, 0.016 and 0.030 min-1, respectively. The rate constant of NK124 

carrier-TiO2 photocatalyst was near that of silica gel-TiO2 photocatalyst. The 

micropore volume of NK124 is larger than that of NKHO24 but its relative surface 

area is smaller than that of NKHO24. The supporting ratio of NK124 was higher than 

that of NKHO24. It was supposed that the deference of DNP photodecomposition rate 

was caused by the deference of supporting ratio. Then, the photodecomposition 

experiments of the pesticides were performed using a NK124 carrier-TiO2 

photocatalyst. 
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Figure 2-5 Photodecomposition rates of DNP 

 

2.3.2 Photodecomposition behaviors of pesticides 

From figure 2-6 to figure 2-10, they show the photodecomposition ratios of the 

pesticides. These pesticides were decomposed faster than DNP and the removal 

efficiencies after 3 min UV irradiation were 94% (Cafenstrole), 92% (Chlorthalonil), 

75% (Thiobencarb), 67% (Pencycuron), 58% (Trifluralin) and 8% (DNP). After 30 min 

UV irradiation, the removal efficiencies of cafenstrole and chlorthalonil, and 

thiobencarb, pencycuron and trifluralin, were 98 and 94%, respectively. The UV 

illumination intensity in the experiments was so strong that the same removal 

efficiencies as with the photocatalyst were obtained without the photocatalyst. 
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Figure 2-6 Photodecomposition of chlorthalonil 

 

 

Figure 2-7 Photodecomposition of pencycuron 
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Figure 2-8 Photodecomposition of cafenstrole 

 

 

Figure 2-9 Photodecomposition of thiobencarb 

 



22 
 

 

Figure 2-10 Photodecomposition of trifluralin 

 

 
Figure 2-11 Relationship between ln(C/Co) and the photocatalyst 
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Figure 2-11 shows the relationship between ln(C/Co) and t. As these pesticides were 

decomposed immediately, the linear relationship between ln(C/Co) and t could not be 

obtained. 

Every pesticide has a biologically or chemically changeable structure in molecule. For 

example, a N-CO-N bond (Pencycuron and Cafenstrole) and a N-CO-S bond 

(Thiobencarb) are easily hydrolyzed. Cyano group (Chlorthalonil) is easily oxidized. 

Carbon-Cl bond, benzene ring and alkyl group are biologically hydroxylized. On the 

other hand, the scissions of a C-Cl bond, a C-F bond, a C-NO2 bond, a C-NR2 bond and 

an N-N bond, especially a C-Cl bond and a N-N bond, are easily occurred 

photochemically. Moreover, the photochemical scission of a C-Cl bond is faster than the 

photohydrolyses of organic phosphate esters. The differences of the 

photodecomposition rates in these parts would have caused the differences of the 

photodecomposition rate or the removal efficiency after 30 min UV irradiation of each 

pesticide. As the photodecomposition products could not be detected by the GC/MS 

analysis, it was considered that these pesticides converted into the high polar 

compounds. 
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Chapter Three - Novel Technology of Hydroxyl Radical 

Generation Comprehensively Using Ozone, Ultraviolet 

Illuminating, Ultrasonic and Titania Nanotube 

Photocatalyst 

3.1 Introduction 

Ozone is a strong oxidant and disinfectant that is commercially used for water 

treatment and sterilization. However, the direct reaction of ozone is quite selective in 

actual practice, because ozone has a very low reactivity toward aromatics substituted 

with electron-withdrawing groups (-COOH, -NO2) and compounds with single bond. 

And residence time of ozone is long, so often causing poisoning. Now, the hydroxyl 

radical is intensely concerned. The hydroxyl radical is often referred to as the 

“detergent” of the troposphere and it plays a central role in the oxidation and removal 

of many atmospheric compounds, because it reacts with many pollutants, often acting 

as the first step to their removal. The most powerful advanced oxidation systems are 

based on the generation of hydroxyl radicals. The hydroxyl radical is an extremely 

powerful oxidation agent, second only to fluorine in power. The hydroxyl radical is 

conventionally produced by the reaction of dissolved ozone. Hydrogen peroxide or 

ultraviolet light is used for decomposition of the dissolved ozone. However, the radical 

production efficiency of the conventional method is not high, as one hydroxyl radical is 

produced from three molecules of ozone. For this reason, a high-efficiency hydroxyl 

radical production technique for wastewater and soil treatment is desired. In order to 

largely promote hydroxyl radical generating efficiency, the technology is developed 

which comprehensively uses ozone, ultraviolet illuminating, ultrasonic and titania 

nanotube photocatalyst, meanwhile adopts the method of high velocity impact of 

forging thermal spraying. In this chapter, we can find how to improve the efficiency of 

hydroxyl radical generation using ozone, ultraviolet illuminating, ultrasonic and 

titania nanotube photocatalyst. We will explain the hydroxyl radical generation 

environment, and then, make optimization at last.    
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3.2 The formation of hydroxyl radical by ultraviolet irradiation 

Ozone is a naturally occurring triatomic form of oxygen (O3) and exists in the gas form 

in nature. Familiar sources of ozone are lightning in the atmosphere, the sun’s UV in 

the upper stratosphere creating the infamous “ozone layer”, and copy machines or laser 

printers. Ozone forms when oxygen comes in contact with ultraviolet energy 

wavelength of 185 nm (Eq. 1). The UV energy splits the oxygen molecule which then 

reattaches to another oxygen molecule: 

3O2 + UV185nm → O + O + 2O2→ 2O3       (1) 

The resulting unstable ozone gas molecule wants to revert back to the stable diatomic 

oxygen molecule (O2). In order to do this, it must react with another compound or 

transfer energy through another source. This makes ozone an oxidizer. In fact, it is one 

of the strongest oxidizers known to man. Dissolving this gas into water makes for a 

very potent antimicrobial solution, which can then be used as a sanitizing agent. Ozone 

is different than most sanitizers because it is a gas and remains a gas during the 

sanitization process. It does not return into an ionic form like chlorine and therefore is 

much harder to stabilize in water. 

The O3/UV process makes use of UV photons to activate ozone molecules, thereby 

facilitating the formation of hydroxyl radicals. Because the maximum absorption of 

ozone molecules is at 253.7 nm (Eq. 2) (Eq. 3), the light source commonly used is a 

low-pressure mercury lamp wrapped in a quartz sleeve. The Low-pressure mercury 

lamp is shown as figure 2-7. It can generate the UV light at a wavelength of 200~280 

nm. The reaction mechanism starts with activating the ozone molecule by UV to form 

oxygen radicals, which then combine with water to form hydroxyl radical (Eq. 4): 

O3 + UV254nm → O2 + O(1D)       (2) 

O(1D) + H2O → 2•OH       (3) 

Meanwhile, Later, Peyton and Glaze (1988) observed that the UV photolysis of ozone 

would also yield H2O2: 

O(1D) + H2O → H2O2       (4) 

In addition to that formed by 

•OH + •OH → H2O2       (5) 

The formed H2O2 could be further photolyzed to form two hydroxyl radicals (Eq. 5). 

Alternatively, it could be first dissociated into HO2− and then participate in a series of 

chain reactions along with ozone to produce hydroxyl radical as occurs in the O3/H2O2 

process. As the photolysis of H2O2 molecules is very slow, the second pathway is most 

likely to be predominant at neutral pH range for ozone decomposition. Thus, the O3/UV 
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process resembles the O3/H2O2 process in terms of reaction mechanisms, and the 

increased rate of organic destruction can be explained by H2O2 catalyzed decomposition 

of ozone. 

Weissler investigated the effect of volatile scavengers, acrylamide, formic acid, and 

allylthiourea on the sonochemical yield of hydrogen peroxide in oxygen and argon 

saturated aqueous solutions. From these experiments it was inferred that H202 is 

formed by the recombination of hydroxyl radicals. 

 
Figure 3-1 Low-pressure mercury lamps 

Under UV irradiation, H2O2 will be photolyzed to form two hydroxyl radicals (Eq. 6). 

Then the formed hydroxyl radical reacts with organic contaminants or undergoes an 

H2O2 decomposition–formation cycle:  

H2O2 + UVλ<400nm → 2•OH       (6) 

H2O2 + •OH → H2O + HO2       (7) 

HO2 + HO2 → H2O2 + O2       (8) 

This decomposition–formation cycle of H2O2 was used to explain a nearly constant 

concentration of H2O2 during treatment as observed by Benitez et al. (1996). It is 

interesting to note that the H2O2 will also act as a scavenger for hydroxyl radical as 

shown earlier, in which case an excessive H2O2 dose might hinder the radical 
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degradation. On the other hand, sufficient H2O2 is necessary so that it can absorb UV 

to accelerate the generation of hydroxyl radicals. A trade-off between them will result 

in an optimum H2O2 dose, which still needs to be verified experimentally. Unlike ozone, 

H2O2 has an exceptionally low molar absorptivity within the wavelength range of 

200~300 nm. Thus, it is particularly susceptible to the competing absorption of UV by 

organic compounds and suspended solids in water. If organic compounds after 

activation could more rapidly react with H2O2, such direct photo oxidation would be 

expected to have a major contribution to the overall degradation in the H2O2/UV 

system. 

In addition, if ozone is not completely decomposed to from oxygen radicals in an excited 

state O(1D), it means ozone has a residue. We can generate the oxygen radicals in its 

electronically ground state O(3P) using 365nm ultraviolet irradiation (Eq. 9):  

O3 + UV365nm → O(3P) + O2       (9) 

Although it O(3P) has oxidation ability, it is very weak. So it has no risk. And when 

there is no reaction target, they react with each other to easily form safe oxygen. 

 

Figure 3-2 Transmission spectrum of the FTO glass, S1112 slide glass and synthetic 

quartz glass 

From figure 3-2, we could find that synthetic quartz glass was the best result than 

FTO glass and slide glass in the transmission of ultraviolet rays of 385 nm or less. So, 
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we choose the synthetic quartz glass to make the hydroxyl radical device. 

 

3.3 Hydroxyl radical generation is assisted by TiO2 photocatalyst 

3.3.1 The formation of hydroxyl radical by TiO2 photocatalyst 

It has been believed that the TiO2 photocatalyst generated hydroxyl radical is major 

active species which cause photocatalytic oxidation of water. With UV irradiation, in 

the dry environment, the superoxide radical anion •O2- is formed by adsorbed oxygen 

reacting with electrons on the surface of TiO2 photocatalyst. The introduction of water 

vapor provides a large amount of water and hydroxyl groups on the TiO2 photocatalyst 

surface. Oxidation of water and hydroxyl groups by TiO2 photocatalyst produces very 

active hydroxyl radical, which take part in the redox reactions and improve 

significantly the mineralization rate of organic compounds on the TiO2 due to its high 

redox potential. Photocatalytical degradation is attractive for treatment of waste 

streams which are too dilute for incineration and too concentrated for biological 

treatment or contain highly toxic organic compounds. Although a number of possible 

degradation pathways can be envisioned, the formation and subsequent reactions of 

hydroxyl radicals, being a very strong oxidizing agent, are generally accepted as 

predominant degradation pathways of organic substrates in oxygenated aqueous 

solutions. TiO2 has been known as a semiconductor exhibiting substantial 

photocatalytic activity. It is non-toxic and stable in aqueous solutions and relatively 

inexpensive. When radiation of energy equal to or greater than the bandwidth of the 

semiconductor is absorbed, it is showed in figure 3-3, a photon excites an electron from 

the valence band to the conduction band and leaves an electronic vacancy (a hole) in 

the valence band (h+). The photo-generated holes at the surface of the irradiated 

semiconductor can oxidize a variety of hazardous species directly to water or produce 

hydroxyl radical. 
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Figure 3-3 Mechanism of hydroxyl radical generation by TiO2 photocatalyst 

3.3.2 Titania nanotube loaded site-selectively with metal nanoparticles  

TiO2 is a very important material that possesses selfcleaning, anti-fogging and 

air-cleaning functions, etc. Heterogeneous photocatalysis, using TiO2 as the 

photocatalyst, is a useful technique for the degradation of many contaminants in air, in 

water or on solid surfaces. Photocatalytic reactions take place when the semiconductor 

particle absorbs a photon of light which is more energetic than its bandgap. Thus an 

electron is excited from the valence band to the conduction band, leaving a hole at the 

valence band. In aqueous solutions the hole may be trapped by H2O or OH- adsorbed at 

the surface, thus forming the highly reactive hydroxyl radical, which can promote the 

oxidation of organic compounds. In order to generate hydroxyl radical and hydrogen 

radical as much as possible, we adopt titania nanotube loaded site-selectively with Pt 

nanoparticles in the device, which is characterized by the detachment of oxidization 

field and reduction field. Previously, TiO2 photo-catalyst, as an active application 

product, has an obvious drawback when developing, that for spherical TiO2 

nanoparticles, oxidization status and reduction status can coexist on the same particle 

surface. This will result in a large decrease in the photoreaction function of 

photocatalyst because coexistence of oxidization and reduction will easily evoke back 
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reaction. By illustrating the reactivity point on the TiO2 particles surface, which is not 

studied before, and developing the particle surface control method and crystallization 

composition control method, we conquered the questions mentioned above. What we 

now are trying to develop and apply, titania nanotube loaded site-selectively, can 

detach the oxidization status and reduction status at nano level with the help of the 

inner side and external side of the cylinder structure. Moreover, it discriminately 

deposits Pt nanoparticles in the inner wall of the nanotube, constructing a place where 

reduction reaction has the priority to react independently. Then the external wall can 

act as an oxidization field. At nano level, due to the detachment of the reaction fields, 

the occurrence of back reaction can be basically restrained, forming high photo-catalyst 

reactivity. The structure is showed in figure 3-4. The titanium dioxide photocatalyst 

with such a structure is far more sensitive to ultraviolet rays than common 

photocatalyst in the market. 

 
Figure 3-4 Model and TEM images of a titania nanotube (TNT) loaded site-selectively 

with Pt nanoparticles (from Dr. Teruhisa Ohno). 
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3.3.3 Development of an S-doped titania polyhedron site-selectively loaded 

with iron (III) oxide. 

The discovery of photoelectrochemical splitting of water on titanium dioxide electrodes 

has leaded to many investigations of semiconductor-based photo catalysis. Titanium 

dioxide is one of the most promising photocatalyst, and is now used in various practical 

applications, but converts only a small UV band of solar light, about 2-3%, because of 

its large band qap of 3.2 eV. Therefore, the development of a more efficient titanium 

dioxide photocatalyst with a higher photocatalyst with a higher photoelectric 

conversion of visible light is needed. Our cooperative partner who was Professor 

Teruhisa Ohno from department of applied chemistry faculty of engineering, kyushu 

institute of technology investigated an S-doped titania nanotube (TNT) loaded with 

Fe2O3 nanoparticles in order to improve photocatalytic activity of S-doped TNT under 

visible light irradiation. S-doped TNT was successfully prepared using the solid-phase 

method at 350 °C under aerated conditions. Loading of Fe2O3 on S-doped TNT 

remarkably improved the photocatalytic activity of S-doped TNT. And it is possible 

that the efficiency of charge separation between photoexcited electrons and holes was 

improved because the electrons were trapped by Fe2O3. Enhancement of photocatalytic 

activity was strongly dependent on the site of Fe2O3 nanoparticles loaded on TNT, and 

the photoexcited electrons transferred to Fe2O3 from S-doped TNT under UV light 

irradiation or to S-doped TNT from Fe2O3 under visible light irradiation. They had 

been proven by Professor Teruhisa Ohno using PA spectra measurement, which was 

performed in order to elucidate the mechanism of activity improvement.  

But, S-doped TNT which was loaded by Fe2O3 nanoparticles does not achieve the 

desired effect for hydroxyl radical generation. Its photocatalytic activities under UV 

light and visible light irradiation were not sufficient for practical applications. So, 

Professor Teruhisa Ohno developed relatively higher level of activity in practice in a 

real application, when irradiated by ultraviolet rays of less than 385 nm and visible 

light. The new photocatalyst structure is the crystal structure of Fe compounds on the 

doped TiO2 photocatalyst. It was important in the improvement of photocatalytic 

activity. It was shown as figure 3-5.  



32 
 

 

Figure 3-5 S-doped titania crystal (TC) site-selectively loaded with iron (III) oxide 

(from Dr. Teruhisa Ohno). 

In the subsequent test, we will prove its efficiency for hydroxyl radical generation. 

3.3.4 High velocity impact forging process for TiO2 thin-film coating 

TiO2 transparent thin-film coating is an important part of the experiment device of 

hydroxyl radical generation. And it has a great influence on the generation of hydroxyl 

radical. With High Velocity Impact Forging (HVIF) thermal spraying technology, 

produce a layer of TiO2 transparent thin-film coating of high density and reactivity on 

the surface of fused quartz. For thin-film coating, compared with traditional technology, 

high transparency will not influence the transmission of ultraviolet, which means 

ultraviolet can adequately illuminate ozone water, making it converted to hydroxyl 

radical; High density coating can preclude ultrasonic stripping the thin-film coating; 

Besides, disusing the photocatalyst organic coating dissolvent can completely expose 

photocatalyst to the environment, preventing most of the photocatalyst from being 

shaded by the dissolvent, so as to sufficiently express light reaction activity of the 

photocatalyst, increasing generating rate of hydroxyl radical. High Velocity Impact 
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Forging is a new spraying technology improved on the basis of High Velocity Oxygen 

Fuel (HVOF) and High Velocity Air Fuel (HVAF). When decreasing spraying 

temperature, it still can make the coating of spraying methods more compact, at the 

same time guarantee the high reactivity of photocatalyst with the low temperature. In 

addition, compared with the traditional film coating technology, we do not need organic 

solvent, when we produce a layer of TiO2 using HVIF. It is shown as figure 3-6. 

 
Figure 3-6 Comparison of between traditional technology and new technology on TiO2 

film coating (from Fujico Co., Ltd). 

The traditional technology is to make the photocatalyst mix into the liquid that is 

referred to as the organic solvent. So photocatalyst is buried in organic solvent, it leads 

that the power and amount of photocatalyst reaction is reduced. But new technology 

has completely overcomes the shortcomings of the traditional technology. The 

photocatalytic reaction was improved significantly after the TiO2 photocatalyst is 

directly and high compactly coated on the surface of the base materials by HVIF.  

Of the various forms of titania (anatase, rutile and brookite) anatase is found to be the 

best photocatalyst. Without any chemical additives, the anatase to rutile 

transformation in pure synthetic titania usually occurs at a temperature range of 

600-700 °C. And almost of anatase will transform into rutile at a temperature more 

than 800 °C. Although rutile phase has less photocatalytic activity than anatase, the 

mixed phase of anatase and rutile is known to exhibit enhanced photoactivity. 

Anatase-to-rutile phase transformation is governed by the annealing temperature, 

compactness of the anatase nanocrystallites. The HVIF process is a high velocity, low 

temperature coating process used for the production of hard facing coatings. A major 
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advantage of HVIF processes is that we can control the temperature below 800 °C. 

Meanwhile, we can get a highly active and compact facing coating.  

The photodecomposition and photocatalytic activities of photocatalysts were evaluated 

by TCD (Thermal Conductivity Detector) gas chromatograph (Shimadzu GC-8A). 

Figure 3-7 showed us photodecomposition effect of different photocatalyst films of 

Sol-gel + P25 TiO2, HVIF + TC TiO2, HVIF + P25 TiO2 and blank with time change. In 

experiment, we measured the amount of produced carbon dioxide via oxidation of 

acetic acid at every 20 minutes (Eq. 10 and 11), after acetic acid was irradiated by 

ultraviolet. From the results, we had found HVIF + TC TiO2 has the highest level of 

photocatalytic activity and efficiency of the evolution of CO2. And we could know that 

TC showed photocatalytic activity under visible light irradiation longer than 254 nm, 

because we did different experiments that were respectively irradiated by 254nm UV 

and visible light irradiation. Sol-gel + P25 TiO2 did not work efficiently and acetic acid 

was hardly oxidized by the Sol-gel + P25 TiO2. But the photocatalytic activity level of 

HVIF + P25 TiO2 is higher than Sol-gel + P25 TiO2, and it was not similar to that of 

Sol-gel + P25 TiO2, because we used high velocity impact forging process. 

2CH3CHO + 2•OH + O2 → 2CH3• + 2CO2 + 2H2O       (10) 

CH3COOH + h+ → CO2 + CH3• + H+       (11) 

 
Figure 3-7 Photodecomposition effect of different photocatalyst films with time change 

(TC TiO2: S-doped titania crystal site-selectively loaded with Fe2O3 nanoparticles) 
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3.4 The formation of hydroxyl radical by ultrasonic irradiation 

The ultrasonic set at the bottom of the device can increase the volume of hydroxyl 

radical generated. The mechanism and the phenomenon of radical generation are 

presented in figure 3-8. Ultrasonic can produce alternating low-pressure and 

high-pressure waves when transmitting in solution. When the low-pressure force 

overpasses the intermolecular forces between solvent molecules, cavitation 

phenomenon occurs. The cavitation in fact is the burst after bubbles’ repeated inflation 

and constriction. At the moment of bubbles’ burst, inside the cavitation forms a limited 

status of high temperature, high pressure and high-speed flow. Under the conditions of 

high temperature and high pressure, inside the cavitation, the water molecules will be 

converted to hydroxyl radical and hydrogen radical through thermal decomposition. 

With the oxidative degradation ability of hydroxyl radical and the physical functions of 

ultrasonic, the polluted substances attached on the semiconductor surface can be 

removed. In the experiment, ultrasonic of different frequency will produce oxidant and 

hydroxyl radical of different concentration. By measuring the concentration of 

dihydroxybenzoic acid (DHBA), the product of the reaction of hydroxyl radical and 

salicylic acid, observe respectively the influence ultrasonic of different frequency has 

on the generation of oxidant. But notice that in order to decrease the damage 

ultrasonic impact has on semiconductor precision products, we often adopt 1~1.6 MHz 

ultrasonic. 
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Figure 3-8 Schematic diagram is about the mechanism of hydroxyl radical generation 

using the ultrasonic 

In addition, MHz ultrasonic could generated microbubbles and nanobubbles of having 

a diameter <50 μm, and have important technical applications due to their tendency to 

decrease in size and subsequently to collapse under water for increasing the life of 

hydroxyl radical. It took ~5 min for hydroxyl radical to return to its original state of 

water. Figure 3-9 schematically illustrates the key differences in behavior between 

normal macrobubbles and microbubbles. The former rapidly rise and burst at the water 

surface, whereas the latter are stable for longer periods of time underwater. 

Microbubbles gradually decrease in size due to the dissolution of interior gases by the 

surrounding water, and they eventually disappear. We have demonstrated that 

microbubbles can be useful in the formation of hydroxyl radical due to their ability to 

alter the nucleation condition and their efficient gaseous solubility. The relationship 

between the interior gas pressure and the bubble diameter is expressed by the Young–

Laplace (Eq. 12): 

P = Pl + 2 σ / r       (12) 
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Here, P is the gas pressure, Pl is the liquid pressure, σ is the surface tension, and r is 

the radius of the bubble. According to Henry’s law, the amount of dissolved gas 

surrounding a shrinking bubble increases with rising gas pressure. The area 

surrounding a microbubble has been shown to change its state in a pressure–

temperature (P–T) diagram to favor hydrate nucleation. This is a typical characteristic 

of microbubbles. In addition, we have found that free radicals are generated from 

collapsing microbubbles and it is useful in several technical applications, including the 

decomposition of organic chemicals and waste-water treatment. The purpose of the 

current study was to clarify the phenomenon of radical generation from microbubbles 

in the absence of dynamic stimuli, such as ultrasound or shock waves, with the aim of 

advancing the technical applications of this phenomenon. And we must keep that the 

MHz >0.8. Because if the MHz >0.8, the amount of microbubbles and nanobubbles of 

having a diameter <50 μm generation will drcrease.   

 
Figure 3-9 Microbubble behavior. The ordinary macrobubbles rose rapidly and burst at 

the surface of the water. By contrast, the microbubbles decreased in size and 

disappeared under the water. 
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3.5 Hydroxyl radical generation is assisted by Ozone 

 

The ozone molecule consists of three oxygen atoms that are bound together (triatomic 

oxygen, or O3). Unlike the form of oxygen that is a major constituent of air (diatomic 

oxygen, or O2), ozone is a powerful oxidizing agent. Ozone reacts with some gases, such 

as nitric oxide or NO, and with some surfaces, such as dust particles, leaves, and 

biological membranes. These reactions can damage living cells, such as those present 

in the linings of the human lungs. Exposure has been associated with several adverse 

health effects, such as aggravation of asthma and decreased lung function. On the 

positive side, because of its high reactivity and its ability to harm microscopic 

organisms, ozone has the reputation of being an air and water purifier, only some of 

which it deserves. A few commercial companies market air cleaners or air "fresheners" 

that are said to work by generating ozone. According to the National Institutes of 

Health, this is a potentially harmful idea. (National Institutes of Health, 2000) In 

order to generate enough ozone to be effective, such equipment has to produce 

dangerous amounts of ozone.  

In the atmosphere’s wonderful self-cleansing function, ozone plays a beneficial and 

important role. Ozone is the primary precursor of the hydroxyl radical. The hydroxyl 

radical is so called because it has an unpaired electron in its outermost electronic orbit. 

Unpaired electrons are "lonely" and readily pair up with others, forming chemical 

bonds. The hydroxyl radical serves as the main scavenger in the atmosphere, reacting 

with a variety of compounds such as hydrocarbons, hydrogen sulfide, and carbon 

monoxide that would otherwise accumulate and poison us. And the ozone progressively 

decomposes and large quantities of hydroxyl radicals are generated. In the water, 

when ozone is added to water, a complex chain of reactions results in the formation of 

radicals, such as hydroxyl radical (Eq. 13 and 14).  

H2O → HO- + H+       (13) 

O3 + HO- → HO2- + O2       (14) 

Reaction between ozone and a hydroxyl ion leads to the formation of hydrogen peroxide 

(Eq. 15).  

O3 + HO2- → •HO2 + •O3-       (15) 

A second O3 molecule reacts with the HO2- to produce the ozonide radical (Eq. 16). 

•O3- + H+ → •HO3 → •OH + O2       (16) 

Reaction between ozonide radical and a hydrogen ion leads to the formation of 

hydroxyl radical. 
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In addition, it is well known that the hydroxyl radical has a very short live and a high 

reactivity. So hydroxyl radical will return into water on the moment after it is 

generated. However, we are looking forward to prevent hydroxyl radical returning into 

water with something. After we analyzed the formation of hydroxyl radical, we added 

ozone. When water was irradiated by ultrasonic, the water will convert into the equal 

volumes of hydrogen radical and hydroxyl radical, the almost of hydrogen radical and 

hydroxyl radical cause the immediate reaction to return the water. But we think that 

ozone will react with generated hydrogen radical from water, and then hydroxyl 

radical will be left. Mechanism is shown as figure 3-10. Left hydroxyl radical could 

react with pollutants. 

 
Figure 3-10 Formation of hydroxyl radical and role model 

To prove the correctness of the speculation, we did an experiment. Make all kinds of 

gas dissolved in water, and close to saturation. They included ozone, helium, nitrogen, 

oxygen, argon and degas water. Then we rinsed Al2O3 particles on the oxidized silicon 

wafer surface using the MHz ultrasonic in all kinds of water. The experimental results 

are shown as figure 3-11. 
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Figure 3-11 Effect of the dissolved gas to remove particles 

The results show that our speculation is correct. Actually only part of the hydrogen 

radical can react with ozone. Because the oxidation power of hydroxyl radical is 

stronger than ozone, most hydrogen radical is still react with hydroxyl radical. But 

from figure 3-11, we can find that the cleaning effect of ozone is better than other gas, 

when we rinsed using MHz ultrasonic. So I think that hydroxyl radical generation is 

assisted by Ozone because the removal rate of Al2O3 particles was increased. And it is 

better than other gas. In addition, from the results, we could know than ozone and 

oxygen gas is especially effective for the removal of Al2O3 particles. Helium and argon 

that were not activated gas had the removal effect next to ozone and oxygen. Nitrogen 

which is usually easy to dissolve in water had the removal effect, but it was not as good 

as other gases. Degas was the worst, almost no effect.   
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Figure 3-12 Compare oxygen water with hydrogenation oxygen water (OH radical 

generation verification) 

Figure 3-12 show us that oxygen water was effect to remove Al2O3 particles on the 

oxidized silicon wafer surface using the MHz ultrasonic, and the cleaning effective was 

very high. But, when the hydrogen gas was added into oxygen water, the metal 

alumina particulate removal rate reduced using the MHz ultrasonic. It was inferior to 

the case of oxygen water alone. Meanwhile, the date can be interpreted as a 

phenomenon to hydroxyl radical generated by oxygen or ozone water which was 

subjected to ultrasonic irradiation. And hydroxyl radical was highly reactive. So it 

could better to remove Al2O3 particles 

 

3.6 Conclusions 

The contaminants that are attached to the instrument such as oil, metals and organic 

are usually cleaned by chemical liquid reagents. However, they cause water secondary 
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pollution and need a lot of cost. Now objective of the study is that clean the 

contaminants by hydroxyl radical. But the hydroxyl radical is conventionally produced 

by the reaction of dissolved ozone. Hydrogen peroxide or ultraviolet light is used for 

decomposition of the dissolved ozone. However, the radical production efficiency of the 

conventional method is not high. For this reason, a high-efficiency hydroxyl radical 

production technique is desired. In response to this need, new technology of the 

hydroxyl radical. Radicals can be generated by ultrasound, ultraviolet irradiation, 

photocatalyst, ozone and so on. Meanwhile, MHz-ultrasound has effect on the life of 

the radicals. In this paper, we had been through a series of results to prove the validity 

and mechanism of them. It is shown as figure 3-13 and figure 3-14. 

 
Figure 3-13 Influence factors of cleaning mechanism by hydroxyl radical  
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Figure 3-14 Theory of hydroxyl radical generation (UV: ultraviolet, MS: MHz 

ultrasonic) 

Most notably hydroxyl radicals are produced from the decomposition of 

hydro-peroxides (ROOH) or, the reaction of excited atomic oxygen with water in 

atmospheric chemistry. Now our objective of this study is the development and 

technical analysis of washing device of hydroxyl radical water generated by 

'O3-water/ultraviolet/MHz ultrasonic/TiO2 (titanium dioxide photo-catalyst)' and we 

expect this method can be used for cleaning semiconductor device as 

environment-friendly as we can. 

 

 

 

 

 

 

 

 

 

 



44 
 

Chapter Four - Photo-decomposition of volatile organic 

compound using nano-reaction field separation TiO2 

photocatalyst 

4.1 Introduction 

Environmental pollution caused by chemical substances such as dioxins, 

polychlorinated biphenyls, pesticides, medicines, and plastic additives is a widespread 

issue. In addition, organic halogen compounds generated by chlorination for water 

purification have become a serious problem. Many chemical substances that may be 

found in drinking water are regulated.  

Activated carbon treatment often is used to remove chemical substances that cannot be 

removed by other treatments. However, activated carbon treatment is relatively 

expensive and the spent activated carbon requires safe disposal. Recently, 

photo-decomposition of organic compounds with a TiO2 photocatalyst has been 

reported. However, few TiO2 photocatalysts are effective for the decomposition of 

chemical substances in water. 

A nano-reaction field separation TiO2 photocatalyst, for which oxidation and reduction 

are separated, was investigated. The photocatalyst was coated on the surface of a 

carrier using a low-temperature spraying method. The photocatalyst possessed a 

strong ability to decompose compounds and could withstand strong physical forces. 

The photo-decomposition of volatile organic compounds (VOCs) generated by 

chlorination in water purification was investigated using this TiO2 photocatalyst. 

 

4.2 Materials and methods 

4.2.1 Reagents 

Solutions of VOCs which is shown as table 4-1 were prepared by the dilution of 1,000 

mg/L CH3OH solutions obtained from Wako Pure Chemical Industries. 
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p-Bromofluorobenzene (internal standard) and CH3OH for dioxin analysis were 

obtained from Wako Pure Chemical Industries and Kanto Kagaku, respectively. 

Ultra-pure water was prepared using a Japan Millipore Milli-Q SP unit. 

Table 4-1 VOCs and GC/MS quantity conditions 

No. VOCs 
Retention time 

(min) 

Quantity  

ion 

1 1,1-Dichloroethylene 7.00 61 

2 Dichloromethane 8.12 84 

3 tert-Butyl methyl ether 8.34 73 

4 trance-1,2-Dichloroethylene 8.53 61 

5 cis-1,2-Dichloroethylene 11.14 61 

6 Chloroform 11.34 83 

7 1,1,1-Trichloroethane 12.29 97 

8 Tetrachloromethane 13.02 117 

9 1,2-Dichloroethane 13.21 62 

10 Benzene 13.30 78 

11 Trichloroethylene 14.51 130 

12 1,2-Dichloropropane 15.06 63 

13 Bromodichloromethane 15.42 83 

14 cis-1,3-Dichloropropene 16.46 75 

15 Toluene 17.36 92 

16 trans-1,3-Dichloropropene 17.55 75 

17 1,1,2-Trichloroethane 18.22 97 

18 Tetrachloroethylene 19.06 166 

19 Dibromochloromethane 19.43 129 

20 m,p-Xylene 21.13 106 

21 o-Xylene 22.19 106 

22 Bromoform 23.26 173 

23 1,4-Dichlorobenzene 26.47 146 

 

4.2.2 TiO2 Photocatalyst 

The TiO2 photocatalyst was a nano-reaction field separation type with doped Fe and 

was coated on the surface of aluminium fiber (10 cm ×10 cm ×3-5 mm) using a 
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low-temperature spraying method. It possessed high durability like figure 4-1. The 

coating was done at low temperature, so the crystal structure was an anatase type, 

which is considered to possess strong decomposition ability against organic 

compounds. 

 

Figure 4-1 Nano-reaction field separation TiO2 photocatalyst coated on the surface of 

aluminium fibber (10 cm × 10 cm × 3-5 mm). 

 

4.2.3 Instruments 

Figure 4-2a shows the reactor and photo-decomposition apparatus. The black light 

contained two Panasonic 6 W black lights blue FL6BL-B (main wavelength: 365 nm); 

the sterilizeing lamp contained a Panasonic 6 W sterilizeing lamp GL6/Q (wavelength: 

254 nm) is shown as figure 4-3. The reactor was made of quartz glass (11 × 11 × 2.6 cm). 

The pump was a Surpass Industry Teflon bellows pump Model BP-300. Ultraviolet ray 

(UVR) intensity was measured on the surface of the reactor with a Topcon Technohouse 

UVR-2 (black light) or a Mother Tool UVC-254 (sterilizeing lamp) radiometer, 

respectively. 
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Figure 4-2 Experimental setup. (a) Reactor made of quartz glass (11 × 11 × 2.6 cm),  

(b) Photo-decomposition apparatus. Pump was a Teflon bellows pump. 
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Figure 4-3 Sterilizeing lamp 

The purge/trap-Gas chromatography–mass spectrometry (GC/MS) was a GL Sciences 

Tekmar Dohrmann aqua auto 70 liquid autosampler-4000J sample concentrator with 

an Agilent Technologies Agilent 6890/a Nihon Denshi JEOL Automass Sun 

instrument. 

4.2.4 Photo-irradiation 

The photocatalyst was sequentially washed with ultra-pure water, CH3OH, and 

ultra-pure water. The photo-irradiation conditions are shown in table 4-2. First, the 

experiment was performed without irradiation and then was performed with 

irradiation. Samples for analysis were collected with a pipette from the trap. UVR 

intensity without irradiation was < 0.0002 mW cm-1. 

Table 4-2 Photo-irradiation conditions 

Item Black light
Sterilizeing 

lamp 

Water temperature (°C) 25 25 

Flow rate (mL/min) 200-500 500 

UVR intensity (mW/cm) 2.0 3.4 

Concentration (mg/L) 1 1 

Volume of sample water (mL) 200-500 500 
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4.2.5 Analytical Methods 

Ten mL sample water was placed in a 44-mL glass bottle. Ultra-pure water was added 

to the bottle, which was covered with a Teflon-silicone-rubber cap so that no bubbles 

were retained. VOCs were measured by the purge/trap-GC/MS method. The GC/MS 

conditions and quantities are shown in tables 4-1 and 4-3, respectively. 

Table 4-3 Purge/trap-GC/MS conditions 

Column AQUATIC 0.25 mm × 60 m × 1.0 µm 

Column temperature 
40 °C (1 min) - 4 °C/min - 100 °C  

-10 °C/min - 200 °C (10 min) 

Column pressure 200 kPa 

Sample volume 2 µL (splitless) 

Carrier gas He 

Ion source temperature 200 °C 

Interface temperature 180 °C 

Mode EI (SIM) 

Purge time 4.5 min 

Dry purge time 3.5 min 

Elution temperature 180 °C 

Elution time 6 min 

4.3 Results and discussion 

4.3.1 Black Light 

At a UVR intensity of 2.0 mW cm 1 at 365 nm (0.016 mW/cm at 254 nm) and a flow rate 

of 200 mL/min, no difference from the blank was observed; however, at 500 mL/min, a 

slight difference from the blank was observed for all of the compounds except tert-butyl 

methyl ether, benzene, cis-1,3-dichloropropene, and tetrachloroethylene. Thus, the 

photocatalyst did not cause any decomposition in this wavelength range.  

In general, VOCs concentrations decrease logarithmically upon adsorption and 

photo-decomposition. Then, the compounds decreasing linearly are considered that 

their volatile is contained. All tubes used were Teflon-lined to prevent the influence of 

the silicon tube on adsorption of compounds, which was significant. 
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4.3.2 Sterilizeing Lamp 

A UVR intensity of 3.4 mW/cm is at 254 nm and a flow rate of 500 mL/min, a difference 

from the blank was observed for almost all of the compounds. More than 40% 

decomposition of 1,1-dichloroethylene, benzene, trichloroethylene, 

bromodichloromethane, toluene, tetrachloroethylene, dibromochloromethane, 

o,m,p-xylene, and bromoform was found after 4-h irradiation like figure 4-4b. A similar 

amount of decomposition of the compounds was found without the photocatalyst 

because of the high UVR intensity.  
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Figure 4-4 Remaining ratio of VOCs with the sterilizeing lamp. UVR intensity was 3.4 

mW/cm at 254 nm and flow rate was 500 mL/min. (a) VOCs No. 1-8, (b) VOCs No. 9-15, 

(c) VOCs No. 16-23. 

Figure 4-5a shows the relation between boiling point and amount of the compound 

remaining after 4-h irradiation. No obvious correlation was found for compounds with 

a boiling point within the range of 40-110 °C. However, a boiling point > 0 °C was 

considered to exert an influence. Figure 4-5b shows the relation between chemical 

structure and the amount of each compound remaining after 4-h irradiation. 

Compounds containing Cl, Br, and a double bond were easy to decompose. Compounds 

containing a benzene ring also were easy to decompose, unless the benzene compound 

contained an alkyl group or Cl. The relation between water solubility and the amount 

of compound remaining after 4-h irradiation was similar to correlation with dielectric 

constant but neither correlation was large. The results are shown as figure 4-5c and 

figure 4-5d. 
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Figure 4-5 Relation between compound parameter and amount of the compound 

remaining after 4-h irradiation. (a) boiling point (°C), (b) chemical structure, (c) water 

solubility (g/100 g), (d) dielectric constant (F/m). 

 

4.3.3 Decomposition Mechanism 

Three mechanisms were considered for decomposition. One was direct scission of each 

bond by photo-irradiation. The black light (main wavelength: 365 nm) emits 328 

kJ/mol energy that causes scission only of a C-Br bond like table 4-4 or a π bond. The 

sterilizeing lamp (wavelength: 254 nm) emits 471 kJ/mol of energy that causes scission 
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of a C-Br bond, C-Cl bond, C-C bond, C-O bond, C-H (aliphatic and methane) bond, 

=C-H bond and π bond.  

 

Table 4-4 Bonding energy at 25 °C (kJ/mol) 

C-Br 285 

λ = 365 nm 328 

C-Cl 335 

C-C 347 

C-O 356 

C-H (aliphatic) 412 

C-H (methane) 416 

=C-H 425 

λ = 254 nm 471 

C=C 610 

The second possible mechanism is reaction of active substances generated from water 

upon photo-irradiation. Hydrogen and hydroxyl radicals are produced from water upon 

UVR irradiation at 185 nm (Eq. 1). However, these radicals are not produced at 254 

nm. 

H2O → •H ＋•OH       (1) 

The third possible mechanism is reaction of active substances generated by the TiO2 

photocatalyst and photo-irradiation. The TiO2 photocatalyst is a nano-reaction field 

separation type, with a separate oxidation portion and reduction portion. Two-electron 

oxidation occurs in the hole of the photocatalyst (Eq. 2), producing H2O2 from water. 

2H2O + 2h+ → H2O2 + 2H＋       (2) 

If dissolved O2 exists in the water, the O2 receives an electron and •O2- is produced per 

reaction 3. In addition, H2O2 is produced from reaction 4 and is converted to an OH 

radical via reaction. 

O2 + e- → •O2-       (3) 

•O2- + 2H+ + e- → H2O2       (4) 

H2O2 + e- →•OH       (5) 

 

4.4 Conclusions 

The photo-decomposition of VOCs generated by chlorination during water purification 
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was investigated using a TiO2 photocatalyst. The photo-decomposition of chemical 

substances that resist degradation in water is affected by contact with the surface of 

the photocatalyst. A thin reactor was used and the flow rate was high in this study, 

some compounds remained resistant to photo-decomposition. 

Photocatalysts that are effective in sunlight are desirable. The photocatalyst used in 

this investigation was not effective upon exposure to black light. However, this 

photocatalyst has high durability, which allows the use of super-sonic wave irradiation. 

Thus, this photocatalyst can be used to produce integrated circuit wafer washing 

water. 
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Chapter Five - Production of active intermediates and 

decomposition behaviours of organic compounds in the 

ultraviolet ray/supersonic wave multiple reactions with 

TiO2 photocatalyst 

5.1 Introduction 

The removal of the contamination with particle, organic and inorganic substances on 

the surface of IC wafer has become a serious problem attendant on the ultra-minute 

and high integrated semiconductor. At present, the washing with a reagent as acid, 

alkali or O3 is mainly performed because the physical method as super-sonic wave 

(SSW) irradiation damages a semiconductor chip. But the washing method, which has 

a strong washing effect, takes a low cost and does not have the problem of wastewater 

treatment, is demanded.     

The decomposition of chemical substance by the ultra-violet ray (UVR)/TiO2 

photocatalyst method was investigated. We could get the photocatalyst which was 

coated on the surface of carrier by the low temperature spraying method and was 

strong against physical force. Then, we produced the washing water, which was 

considered to contain radical and has a strong washing effect, by the UVR/SSW 

multiple reaction with a low temperature sprayed TiO2 photocatalyst and investigated 

on the behavior of active intermediate. The photodecomposition-washing force of the 

active intermediate against CH3OH and DMSO was also investigated. 

 

5.2 Materials and methods 

5.2.1 Reagents 

1/40N KMnO4 solution was prepared by the dilution of 1/5N KMnO4 solution for 

volumetric analysis obtained from Wako Pure Chemical Industries. KI for oxidant 
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analysis, citric acid for food additive and soluble starch (the highest quality reagent) 

were obtained from Hayashi Pure Chemical Industries, Wako Pure Chemical 

Industries and Katayama Chemical Industries, respectively. 1/100N Na2S2O4 solution 

was prepared by the dilution of 1/10N Na2S2O4 solution for volumetric analysis 

obtained from Wako Pure Chemical Industries. The other reagents were the highest 

quality reagent. 

CH3OH for pesticide residue/PCB test and HCOOH were obtained from Kanto Kagaku 

and Kishida Chemical, respectively. DMSO (99.7% <), 1-methanesulfinate (MSFIA) 

(85%) and 2-methanesulfonic acid (MSFOA) were obtained from Merck, Aldrich and 

Kanto Kagaku, respectively. The ultra-pure water was purified using a Japan 

Millipore Milli-Q Element A10 (18.8 MΩ cm). 

 

5.2.2 TiO2 Photocatalyst 

The TiO2 photocatalyst, which was a nano-reaction field separation type by doping Fe, 

was used. The photocatalyst was coated on the surface of aluminum fiber (10 cm × 10 

cm × 3-5 mm) by the low temperature spraying method and has high durability. As the 

coating was done at low temperature, the crystal structure was an anatase type which 

is generally said to have better decomposition ability against organic compound. 

 

Figure 5-1 Photocatalyst was coated on the surface of aluminum fiber 
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5.2.3 Instruments 

UVR (photocatalyst) /SSW irradiation apparatus was shown in figure 5-2. UVR 

sterilize lamp was a Zensui UV clean-13 (13 W, 254 nm, irradiation surface was about 

320 cm2). UVR sterilize lamp has a tight lid of aluminum board (31 cm × 25 cm) like 

figure 5-3. The reactor (24.6 cm × 18.6 cm × 24.2 cm) was made of stainless steel and a 

Honda Electronics W-357HP-S SSW dispatchor (1 MHz) is placed the bottom of reactor 

like figure 5-4. Pump was a Surpass Industry Teflon bellows pump Model BP-300 and a 

NRK chemipump. UVR intensity was measured on the surface of UVR sterilize lamp 

with a Topcon Technohouse UVR-2.  

 
Figure 5-2 Apparatus for multiple photoreactions 

 

Figure 5-3 UV lamp with photocatalyst cover 
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Figure 5-4 Reactor tank 

Total organic carbon (TOC) analyzer was a Shimadzu autosampler ASI-V/TOC-VCSH.  

Ion chromatograph was a Nippon Dionex autosampler AS/ion chromatograph 

ICS-1500/autosupressor SRS/multipurpose chromatography interface 

UCI-50/UV-visible absorption spectrophotometry detector UVD-510. PH meter and 

electric conductivity (EC) meter were a Horiba D-13 and a Toa Electronics CM-14P, 

respectively. 

 

5.2.4 Thermal elution from photocatalyst 

The thermal eluates from the photocatalyst were investigated because the water 

temperature became at max 70 °C after the reaction of 4 h. The photocatalyst was 

placed in 500 ml of ultra-pure water and heated at 80 °C for 30 min. Further, the 

photocatalyst was heated at 100 °C for 30 min and cooled. PH, EC, iodine consumed 

and KMnO4 consumed of the water were measured. 

 

5.2.5 UVR/SSW irradiation 

The sample water was circulated with a pump. The reacted water sample was 

periodically placed in 500 ml of PFA bottle and immediately measured. The each 

condition was as follows. Initial water temperature: 15-20 °C; flow rate: 500 ml/min; 

UVR intensity: 4.5 mW/cm2; SSW intensity: 500 W (ultra-pure water and DMSO), 350 
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W (CH3OH); sample volume: 10 L; initial concentration: 0.1 ml/L (CH3OH), 100 mg/L 

(DMSO). 

 

4.2.6 Analytical Methods 

Each item was analyzed by the Testing Methods for Water Supply. PH and EC were 

measured using a pH meter and an EC meter, respectively. Oxidizing substances were 

measured by the titration method with 0.01 N Na2S2O4 solution for free I2. H2O2 was 

measured by the KMnO4 method. TOC was measured by the combustion-oxidation 

method. HCOOH, DMSO, MSFIA and MSFOA were measured by the ion 

chromatography. 

 

5.3 Results and discussion 

5.3.1 Thermal elution from photocatalyst 

By heating at 80 °C for 30 min, pH and EC changed 5.02 to 5.73 and 2.84 to 3.63 µS/cm, 

respectively. Further, pH and EC changed 5.11 to 6.21 and 2.87 to 3.11 µS/cm, 

respectively by heating at 100 °C for 30 min. Iodine consumed and KMnO4 consumed 

were not detected. 

The influence of thermal elution can be negligible because pH and EC did not change 

by heating of same photocatalyst at 80 °C for 30 min again. 

 

5.3.2 Reaction of ultra-pure water 

The results of temperature and pH are shown as figure 5-5. The water temperatures 

4-h after in UVR and SSW irradiation were 21-23 °C and 67-68 °C, respectively. PH 

decreased by SSW irradiation (mainly H+ was produced) and became a little higher by 

UVR irradiation. With the photocatalyst, pH became higher by both UVR and SSW 

irradiation (mainly OH- was produced). As the influence of SSW was stronger, pH was 

decreased by UVR/SSW irradiation. With the photocatalyst, pH increased till 2-h 
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(increase of OH-) and decreased after 2-h by the influence of SSW (increase of H+).  

 

 
Figure 5-5 Changes of temperature and pH. Flow rate: 500 ml/min;  

UVR intensity: 4.5 mW/cm2; SSW intensity: 1 MHz, 500 W. 

Figure 5-6 shows the results of EC and iodine consumed. EC did not increase by only 

UVR irradiation but increased by SSW irradiation (increase of H+). EC slightly 

increased by UVR/SSW irradiation than the sum of EC by each irradiation and 

increased without the photocatalyst. It was considered that more hydroxyl radical was 

produced with photocatalyst and existed during EC measurement by SSW function 

(every pH with photocatalyst was higher and more OH- existed). 

Iodine consumed shows the oxidizing substances such as O3, H2O2 and radical. They 

are shown in Eq. 1, 2, 3. Iodine consumed was detected in SSW irradiation and was not 

detected in only UVR irradiation. Iodine consumed without the photocatalyst was 

larger than with it in case of only SSW irradiation. The effect of the photocatalyst was 

observed in UVR/SSW irradiation but the iodine consumed became smaller than in 
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only SSW irradiation after 4-h. 

2・OH + 2I- → I2 + 2OH-       (1) 

O3 + 2I- + H2O → I2 + 2OH- + O2       (2) 

H2O2 + 2I- + 2H+ → I2 + 2H2O       (3) 

 

 

Figure 5-6 Changes of EC and iodine consumed. Flow rate: 500 ml/min;  

UVR intensity: 4.5 mW/cm2; SSW intensity: 1 MHz, 500 W. 

KMnO4 consumed was measured to examine H2O2 production. KMnO4 reaction with 

H2O2 is shown in Eq. 4. However, the same periodical changes as iodine consumed were 

observed. The result was like figure 5-7 

5H2O2 + 2KMnO4 + 3H2SO4 → K2SO4 + 2MnSO4 + 5O2 + 8H2O       (4) 
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Figure 5-7 Changes of potassium permanganate. Flow rate: 500 ml/min;  

UVR intensity: 4.5 mW/cm2; SSW intensity: 1 MHz, 500 W. 

 

5.3.3 Consideration of oxidizing substances produced 

Hydrogen and hydroxyl radical are produced from water at 185 nm of UVR irradiation 

as the photochemical reaction 5. Though those radicals are not produced at 254 nm, 

hydroxyl radica is produced as the reaction 6 if H2O2 was produced. 

H2O → ・H + ・OH       (5) 

2H2O2 → OH- + ・OH + HO2- + H+       (6) 

This TiO2 photocatalyst is that of nano-reaction field separation type and an oxidation 

part and a reduction part are separated. Two electrons oxidation occurs in the hole of 

the photocatalyst as the reaction 7 and H2O2 is produced from water. 

2H2O + 2h+ → H2O2 + 2H＋       (7) 

If dissolve O2 exists in water, O2 receives an electron and ・O2
－ is produced as the 

reaction 8. Further, H2O2 is produced as the reaction 9 and is converted to ・OH as the 

reaction 10. 

O2 + e- → ・O2-        (8) 

・O2- + 2H+ + e- → H2O2       (9) 

H2O2 + e- → ・OH       (10) 

By SSW irradiation, hydrogen and hydroxyl radical are also produced by the thermal 
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decomposition of H2O as the reaction 5. If dissolve O2 exists in water, O・ is also 

produced as the reaction 11. 

O2 → 2O・       (11) 

The active intermediates produced by UVR (photocatalyst)/SSW irradiation are 

considered as H2O2, H+, OH-, HO2-, ・H, ・OH and O・ from these reactions. H2O2 

produced is converted to ・OH as the reactions 6 and 10. If H2O2 existed, it should be 

detected because its self-decomposition rate was later. Both of iodine consumed and 

KMnO4 consumed were not detected in case of only UVR irradiation (the reactions 7 

and 9). Further, both periodical changes were exactly alike. Therefore, KMnO4 

consumed did not show H2O2 but showed the oxidizing substances which were stronger 

than KMnO4 such as radical.  

Water temperature, pH, EC, iodine consumed and KMnO4 consumed were measured 

within several minutes out of the reaction system. Usually radical can not be measured 

because it disappears at µs. However, radical exists for several minutes by the effect of 

micro- or nano-bubble of SSW irradiation. In fact, iodine consumed and KMnO4 

consumed were not detected in case of only UVR irradiation. Therefore, it was 

considered that some radicals were contained in the oxidizing substances in the UVR 

(photocatalyst)/SSW irradiation system and the photocatalyst promoted the radical 

production. 

 

5.3.4 Reaction of CH3OH 

The water temperature 4-h after in UVR and SSW irradiation was 19 °C and 49-55 °C, 

respectively. PH more decreased by SSW irradiation than by UVR irradiation and 

further decreased by UVR/SSW irradiation. With the photocatalyst, pH became higher. 

EC did not increase by only UVR irradiation but increased by SSW irradiation. EC 

slightly increased by UVR/SSW irradiation than the sum of EC by each irradiation and 

increased without the photocatalyst.  

Iodine consumed was detected in SSW irradiation and was not detected in only UVR 

irradiation as in case of ultra-pure water. Iodine consumed without the photocatalyst 

was larger than with it in cases of both only SSW and UVR/SSW irradiation.  

Figure 5-8 shows the changes of TOC and HCOOH. TOC decrease was large 

UVR/SSW>SSW>UVR irradiation in turn and the effect of photocatalyst was observed 

in all cases. Eight % of CH3OH was converted to CO2 4-h after. HCOOH, an oxidation 
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product of CH3OH, was not detected in only UVR irradiation but detected in SSW 

irradiation. The synergism with UVR irradiation was observed and HCOOH 

production decreased with the photocatalyst. Table 5-1 shows the amounts of other 

products 1-4 4-h after. These products were not detected in only UVR irradiation but 

detected in SSW irradiation. Generally, their amounts tend to increase without the 

photocatalyst. 

 

Figure 5-8 Changes of TOC and HCOOH. Initial concentration of CH3OH: 0.1 ml/L; 

flow rate: 500 ml/min; UVR intensity: 4.5 mW/cm2; SSW intensity: 1 MHz, 350 W. 
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Table 5-1 Amounts of products 1-4 after 4-h reaction 

 

Product 1    Product 2

(µS min) 

Product 3    Product 4 

(mAU min) 

SSW 0.019           0.021  0.39             0.43 

SSW + Catalyst 0.015           0.002 0.30             0.27 

UVR -                   - -                   - 

UVR + Catalyst -                   - -                   - 

UVR + SSW 0.012           0.014 0.32            0.78 

UVR + Catalyst + SSW 0.014           0.008 0.33            0.39 

5.3.5 Reaction of DMSO 

The water temperatures 4-h after in UVR and SSW irradiation were 17-24 °C and 

66-69 °C, respectively. PH more decreased by SSW irradiation than by UVR irradiation 

and further decreased by UVR/SSW irradiation. With the photocatalyst, pH became 

higher. EC increased by SSW irradiation. EC slightly increased by UVR/SSW 

irradiation than the sum of EC by each irradiation and increased without the 

photocatalyst. Iodine consumed was detected in SSW irradiation and also detected 

slightly in only UVR irradiation.  

Change of DMSO is shown as figure 5-9. DMSO decrease was a little in every case and 

the effect of the photocatalyst was not observed clearly. MSFIA, an oxidation product of 

DMSO, was detected in SSW irradiation but slightly detected in only UVR irradiation. 

Amount of MSFIA decreased by UVR/SSW irradiation or with the photocatalyst. In 

case of MSFOA, an oxidation product of DMSO, the synergism by UVR/SSW 

irradiation was observed but its amount decreased with the photocatalyst. Table 5-2 

shows the ratios of the products of DMSO after 4-h. The effect of the photocatalyst, 

which was also effective in near-visible area, could not be shown sufficiently because 

the wave length of the UVR sterilize lamp was only 254 nm. 
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Figure 5-9 Changes of DMSO. Initial concentration of DMSO: 0.1 ml/L; flow rate: 500 

ml/min; UVR intensity: 4.5 mW/cm2; SSW intensity: 1 MHz, 350 W. 

 

Table 5-2 Ratios (%) of reaction products of DMSO after 4-h reaction 

 DMSO MSFIA MSFOA Others 

SSW 90.5 0.1 8.5 0.9 

SSW + Catalyst 93.2 0.2 6.6 0 

UVR 95.4 0.7 0.8 3.1 

UVR + Catalyst 97.2 0.2 2.6 0 

UVR + SSW 81.3 0.6 18.1 0 

UVR + Catalyst + SSW 90.3 0 9.2 0.5 

 

5.4 Conclusions 

The The oxidizing substances, which oxidizing powers were stronger, were produced by 

the decomposition of water using the UVR/SSW multiple reaction with TiO2 

photocatalyst. Amount of the products increased by UVR/SSW irradiation and the 

effect of the photocatalyst was also observed. As the photocatalyst has high durability, 

SSW irradiation can be used. We consider that the oxidizing substances contain some 

radical and the radical can exist in nano- or micro-bubble generated by SSW 

irradiation if they part from the reactor. As radical has stronger oxidizing power and it 

does not have the problem of wastewater, the water can be used as IC wafer washing 
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water. Further, the utilization of the water would expand to other fields by clearing up 

the kind of radical. 

The decomposition behaviors of CH3OH and DMSO were investigated using the 

reaction. Max. 8.0% of CH3OH was converted to CO2 4-h after and 5 kinds of 

intermediates containing HCOOH were produced. Max. 18.7% of DMSO was 

decomposed 4-h after and MSFIA and MSFOA were produced. The effects of the 

UVR/SSW multiple reactions and the photocatalyst were also observed in these 

decomposition behaviors. 

Hereafter, the washing effect of the produced water against the contamination on the 

surface of IC wafer must be investigated. 
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Chapter Six - Discusses the generation of hydroxyl 

radical in the process of ozone/ultraviolet ray/supersonic 

wave multiple reactions with TiO2 photocatalyst, and 

quantitative and qualitative analysis of generated 

hydroxyl radical with chemiluminescence and other 

methods. 

6.1 Introduction 

The hydroxyl radical is often referred to as the "detergent" of the troposphere because 

it reacts with many pollutants, often acting as the first step to their removal. And 

demand has been increasing in recent for treatment of wastewater containing 

recalcitrant organic matter such as dioxins or agricultural chemicals or for cleaning of 

some heavy metals or oil and so on, which are not able to be treated by traditional 

treatment technology (such as chlorine or ozone). Recently, semiconductor industry 

researchers have investigated the use of hydroxyl radical for wafer-cleaning, because 

hydroxyl radical has high oxidation potential, it is 10～10000 times higher than ozone. 

Now our objective of this study is the development of cleaning semiconductor device 

using hydroxyl radical water generated by "O3-water/UV/MS/TiO2" to lower chemical 

consumption and disposal costs as well as to improve cleaning efficiency and reduce 

the damage from physical process. We expect this method can be used for cleaning 

semiconductor device as environment-friendly as we can.  

To improve cleaning efficiency, it is necessary that hydroxyl radical was confirmed to 

be formed from the wafer cleaning solutions. Meanwhile for theory of wafer cleaning 

using hydroxyl radical, it also needs to be clarified extensively. So, we need to confirm 

the generation, quantitative and qualitative analysis of hydroxyl radical in the process 

of ozone/ultraviolet ray/supersonic wave multiple reactions with TiO2 photocatalyst.  

But, because hydroxyl radical has an extremely short lifetime, it is difficult to 

determine it directly. In recent studies, several methods have been developed to detect 
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hydroxyl radical, including electron spin resonance (ESR), High Performance Liquid 

Chromatography (HPLC), laser-induced fluorescence (LIF), colorimetric 

spectrophotometry, a radiocarbon method, and quantitative analysis of hydroxyl 

radical by oxidating CO to CO2. However, these reported methods have lots of 

limitations for actives species determination. In this paper, we describe a new method 

for detecting hydroxyl radical scavenging capacity based on chemiluminescence and 

flow injection analysis. Hydroxyl radical was generated by the fenton reaction and the 

device of "O3-water/UV/MS/TiO2". The proposed method is a rapid, selective, and 

accurate procedure for the study of hydroxyl radical scavenging capacity by 

chemiluminescence. 

 

6.2 Hydroxyl radical generation system 

Our experiment expects to generate large quantity of hydroxyl radical water by the 

technology comprehensively using ozone, ultraviolet, ultrasonic and high light 

sensitive titania nanotube photocatalyst. And then achieve conspicuous clean effects 

on various metal contaminants. First, generate 6~8 ppm ozone water from ozone water 

generating equipment, and let the ozone water generated flow into the hydroxyl 

radical generation device which is for the experiment. The device is shown as figure 6-1. 

The inner sides of the experiment device consists of TiO2 photocatalyst thin-film 

coating fused on the quartz glass surface, illuminated by eight low-pressure mercury 

lamp (wavelength is 185 nm, 254 nm, 305 nm and 365 nm), and then the bottom of the 

device sets low-megahertz ultrasonic. This device can produce high-concentration 

hydroxyl radical that is strongly able to oxidize and decompose. Hydroxyl radical can 

make metal impurities completely ionized and dissolved by water, reaching the 

purpose of cleaning and removing the metal impurities. 
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Figure 6-1a Mobile hydroxyl radical generation device diagram 

 

Figure 6-1b Mobile hydroxyl radical rinse water (O3-water/UV/MS/ TiO2) equipment 

OH radical water production systems operation: 

1. Check power cord, piping, cock, etc.  

2. Each device is turned off. Check that oxygen regulator of ozone water generation 

device is closed. 

3. Apparatus of ultraviolet irradiation for water treatment. Open its cover of stainless 

steel so that we can see the water level in the synthetic quartz glass. — — touch lamp, 
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glass case and rubber with cotton gloves (if touched with bare hands, we should wipe 

with acetone, etc.) 

4. Oxygen gas (purity more than 99.9%) open the main valve (turn left), turn the 

regulator valve to 0.1MPa, then open the valve of ozone water generation apparatus 

(turn left). — — ahead of the ultra-pure water, make the oxygen gas inflow (when to 

stop, ultrapure is the first) 

5. Slowly open the oxygen gas flow control valve which is on the ozone water 

generation equipment. And fit that oxygen gas pressure is 0.1MPa, flow is 2.0L/min. 

6. Turn right the three-way cock of ultra-pure water to 90°,while watching the level of 

raw materials water flow meter and glass case of ozone water generation equipment 

(overflow or leakage), regulate a valve to set water flow 1.0L/min or less. 

7. Turn on the main switch of ozone water generation equipment, make sure that the 

monitor of ozone-water concentration get countdown and back from 300 to 0. (Warm up 

5 minutes.) 

8. Adjust the output mode selector switch to control, set the ozone generator output 

controller to 00. 

9. Set the main switch to ozone, and set the controller of output ozone generator (up to 

0-99%, when we want to set 100% driver, we can adjust the output mode selector 

switch to FULL). 

When using ultrasound: 

• When power switch of ultrasonic oscillator is OFF, set the upper limit (green) of the 

current meter is 1.4A; low limit (red) is 0.5A. 

• Avoid boiling, check the valve noise of the apparatus of ultraviolet irradiation for 

water treatment and ozone water generation equipment, and set the power switch to 

ON state. 

• Make sure that OPER lamp light is on, make the current value maximum with 

tuning knob (but it causes damage, as soon as it is more than 1A, so power volume 

must be from 0.7 to 1A). 

• If an alarm is sounded or when to stop (liquid supply is shortage, current is lack or 

over-current) the power switch will be OFF state. 

When using UV 

• Take care the mounted lamps and stainless steel cover, UV-blocking, ventilation of 

ozone generation on the apparatus of ultraviolet irradiation for water treatment, set 

the power switch to ON state (light stable is about 2 or 3 minutes). 

• Ambient temperature is 15-35 °C, be careful that there is no condensation. 

• When you stop the power switch to OFF state. (ON, OFF is not often) 
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10. When stop the ozone water generating device, turn the main switch to on, make 

sure that the monitor of concentration of ozone water is back to zero (take about 5 

minutes). 

11. Set output controller of ozone generator to 00. 

12. Set the main switch to off, and stop the electromagnetic valve, discharge ozone 

water from inside of the unit. 

13. Fully close oxygen gas flow control valve (clockwise) to terminate the operation. 

Above-mentioned contents are hydroxyl radical water production systems operation: 

Under different conditions, respectively take a certain amount rinse water samples 

from the mobile hydroxyl radical rinse water (O3-water/UV/MS/TiO2) equipment, 

immediately measure the ozone concentration of all samples with portable ozone 

monitor. Then respectively get 100 ml samples with graduated cylinder again, taken 

the amount and concentration of oxidants by KI method. At last according to the 

experiment's dates, calculate the concentration of new generated oxidants, and then 

draw the graph of rate of oxidants concentration such as figure 6-2. 

 
Figure 6-2 Generated oxidant quantities’ percentage 

Put the reactive oxygen species rinse water into a container such as beaker, after 

putting the KI into the same beaker. Then the iodine got free from potassium iodide, 

and the color turned into yellow. Got this colored solution into a graduated cylinder 

100cc to take measure, and transferred the colored solution into the new container, 
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then added 10% citric acid (citric acid monohydrate 20g dissolved in 180ml pure water) 

5cc with syringe. Had the purple colored reaction between starch and iodine, as soon as 

put 1ml starch solution into a beaker with colored solution (put 1g soluble starch into 

200ml pure water, then the solution is heated to dissolve). Took 0.01 N sodium 

thiosulfate with burette, then dripped sodium thiosulfate into purple colored solution 

then stirred frequently to cause reaction between sodium thiosulfate and iodine. The 

reaction could make the color disappear. A certain amount of sodium thiosulfate was 

dropped before the color disappeared completely, we could calculate the concentration 

of reactive oxygen species. Iodine consumed shows the oxidizing substances such as O3, 

H2O2 and radical. They are shown in Eq. 1, 2, 3. 

[Ozone water concentration (ppm)] = [dripping sodium thiosulfate (cc) - blank] × 0.24 

(mg) / 0.1 

O3 + 2I- + H2O → I2 + 2OH- + O2       (1) 

H2O2 + 2I- + 2H+ → I2 + 2H2O       (2) 

2・OH + 2I- → I2 + 2OH-       (3) 

When there is only the UV radiation, the ozone disappeared entirely. In addition, new 

reactive oxygen species can be generated by our methods. Meanwhile, photocatalyst 

had a great effect on the decomposition of ozone and the generation of new reactive 

oxygen species. At the last, compared with the UV effect alone, UV worked best when 

used in conjunction with ultrasound. The following test needed to prove the generation 

of hydroxyl radical. 

 

6.3 Material and methods 

6.3.1 Instruments 

PH meter, electric conductivity meter (EC meter) and oxidation-reduction 

potentiometer (ORP meter) were a Horiba D-13, a Toa Electronics CM-14P and a Toa 

Electronics YK-23RP, respectively. O3 analyzer and chemiluminessensor were an 

Applics OM-101P-30 and an Atto AB-2200 PSN, respectively. Atomic absorption 

spectrometer (AAS) was a Varian AA240 FS. Gas chromatograph/mass spectrometer 

(GC/MS) was an Agilent Technologies 7683B series injector/7890A GC system/5975C 

inert XL EI/CI MSD with triple-axis detector. 
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6.3.2 Reagents 

Potassium iodide for oxidant analysis, citric acid, luminol, chlorogenic acid, 

DL-tartaric acid (98% <), soluble starch, 1N KMnO4 solution for volumetric analysis, 

silver sulfate for CODMn analysis, benzene (benzene 5,000), ethylbenzene, o-xylene, 

o-cresol, benzophenone, bromobenzene and pyridine were obtained from Wako Pure 

Chemical Industries. Zn powder (99.999%, 100-200 mesh), Fe powder (99.5%, 6.5 µm), 

Ni powder (99.9%, 3-7 µm), Cu powder (99.9%, -300 mesh) and Ag powder (99%, -325 

mesh) were obtained from Mitsuwa Chemical Reagent. 1 N Na2S2O4 solution and 1/40 

N sodium oxalate solution were obtained from Kanto Chemical. Other reagents were 

special grade reagents. The ultra-pure water was purified using a Japan Millipore 

Milli-Q Element A10 (18.8 MΩcm). 

 

6.4 Identification of hydroxyl radical 

6.4.1 Reaction with metals 

Each 0.05 g of Zn, Fe, Ni, Cu and Ag powder was mixed with 200 ml of the reacted 

water sample in 300 ml of separatory funnel. Each ionized metal was filtrated using 1 

µm of GFP after 2 days and measured. 

 

6.4.2 Chemiluminescence 

The reacted water sample was reacted with luminol and chlorogenic acid and 

measured. 

 

6.4.3 Reaction with organic compounds 

The reacted water sample was reacted with DL-tartaric acid and soluble starch and 

each CODMn was measured. 

Each 1 g of benzene, ethylbenzene, o-xylene, o-cresol, benzophenone, bromobenzene 
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and pyridine was mixed with 200 ml of the reacted water sample in 300 ml of 

separatory funnel and sufficiently reacted. The reacted solution was extracted with 

each 50 ml of dichloromethane twice. The extracted solution was dehydrated with 

anhydrous Na2SO4, concentrated to 2 ml and the OH compounds produced were 

identified. 

 

6.5 Analytical methods 

6.5.1 Luminescence-based techniques for the quantitative and qualitative 

analysis of hydroxyl radical 

Hydroxyl radical plays a crucial role in a wide variety of chemical and biological 

systems. During the past several years, it is generally believed that human diseases 

caused by hydroxyl radical, as it is having high reactivity and not selective due to the 

presence of unpaired electron. Hydroxyl radical, who is regarded as non-selective 

radical species, is able to attack any molecule in their vicinity in order to balance their 

unpaired electron configuration. Recently due to increase use of various chemicals and 

persistent chemicals, and some of them react together to form new refractory organic 

compounds in the environment, therefore, hydroxyl radical is expected to contribute to 

the development of environmental treatment, because it is possible to degrade almost 

organic compound to carbon dioxide, water and no risk of secondary pollution by 

by-product, even chemicals that are otherwise very difficult to degrade. Hydroxyl 

radical is also referred to as the detergent in the atmosphere through reactions with 

many pollutants, such as CO, CH4, O3, NO2, SO2 and larger hydrocarbons. Now it is a 

widely used technique in environmental remediation or treatment of pollutants. Even 

though measurements of Hydroxyl radical have proven to be very difficult, because 

hydroxyl radical has a very short in vivo half-life of approximately 10−9 seconds and a 

high reactivity, but the detection of hydroxyl radical is not a trivial process. Although 

there are various techniques reported for the detection of hydroxyl radicals, they all 

have limitations.  

Gas chromatography with stable isotope dilution mass spectrometry (GC/MS) or 

high-performance liquid chromatography (HPLC) is indirectly used to identify and 

quantify hydroxyl radical by the interaction of hydroxyl radical with targeting organic 
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reagents. However, most of them involve more complex analytical procedure using 

expensive solvents or chemicals. Now, one of the most commonly used techniques is the 

electron spin resonance (ESR) spectrometry measurement. It is based upon the 

measurement of 2, 3- and 2, 5-dihydroxybenzoic acid isomers formed when reactive 

oxygen species react with salicylic acid. However, the ESR measurement is also having 

certain difficulties including tediousness, cost and stability. In addition, hydroxyl 

radical and superoxide anion cannot be separately detected by ESR in a sample under 

some conditions.   

Thus, in this paper, our objective was to evaluate a hydroxyl radical detection 

technique that could overcome some of the challenges described in the preceding 

paragraph. At the same time looking forward to quickly identify hydroxyl radical from 

the active oxygen species，and can quickly measure the hydroxyl radical relative 

density。Figure 6-3 shows schematic diagram of the hydroxyl radical instrument 

developed and chemiluminescent measurement of hydroxyl radical identifying and 

concentrations in this study. Here, chemiluminescent measurement was chosen, and 

single-tube type luminometer with multi-color assay detection system could be used as 

a semi-quantitative and qualitative tool.  

Luminescence method used the luminous agents of luminol, MCLA and MPEC and so 

on. Then we captured the light from the reaction of luminescent reagents and active 

oxygen species. The figure 6-4 showed us that the light phenomenon of the reaction 

between luminol and hydroxyl radical. Chemiluminescence method is simply said, it 

was that chemical reaction made the material became excited state at first. Then the 

light was produced when the excited state reverted to the basal state. Mentioned 

reactions were based on chemical oxidation reactions in here. When some active 

oxygen species which had the characteristics of emitting light were detected, we 

needed to choose the target luminous agent, which could highly reacted with detected 

active oxygen species. In addition, we also needed to add corresponding antioxidant 

into the target active oxygen species to capture the target reactive oxygen species. At 

last, according to the degree of light resistance of antioxidant, we could measure 

oxidation inhibitor values. Antioxidants were also chosen according to different kinds 

of target active oxygen species. In this experiment, through changing the amount of 

light, and the selection of corresponding luminescent reagent and antioxidant, we 

could distinguish hydroxyl radical from the target sample of active oxygen species. 
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Figure 6-3 Schematic diagram of the hydroxyl radical instrument developed and 

chemiluminescent measurement of hydroxyl radical identifying and concentrations 

 

 

Figure 6-4 Light emission from the reaction between luminol and hydroxyl radical 

In addition，in order to largely promote hydroxyl radical generating efficiency in this 

study, the technology is developed which comprehensively uses ozone, ultraviolet 
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illuminating, 300 kilohertz ultrasonic and titania nanotube photocatalyst loaded 

site-selectively with metal oxide nanoparticles, meanwhile adopts the method of high 

velocity impact of forging thermal spraying, thereby forming on the surface of fused 

quartz titanium dioxide photocatalyst thin-film coating of high activeness and 

compactness. Experiments show that this technology can produce hydroxyl radical 

water efficiently, and that have a conspicuous effectiveness on environmental 

remediation and treatment of pollutants.  

6.5.1.1 AB-2270 Luminescencer Octa 

Chemiluminescence measurement has become extremely popular in recent years. It is 

often used to determine the amount of a specific unknown or targeted material in the 

sample of interest, and chemiluminescence is the light emitted by a chemical reaction. 

Measurement of chemiluminescence from a chemical reaction is essential and highly 

useful because the concentration of an unknown material can be inferred from the rate 

at which luminescence is emitted. The rate of luminescence output is directly related 

to the amount of luminescence emitted, and proportional to the concentration of the 

known luminescent material.  

AB-2270 Luminescencer Octa is a personal single-tube type luminometer with built-in 

a multicolor assay detection system. The analytical technique of AB-2270 

Luminescencer Octa used to measure chemiluminescent reactions, has several 

advantages over other analytical techniques for hydroxyl radical detection. 

Extraordinary high-sensitivity; a wide dynamic range; inexpensive instrumentation; 

easy operation with user-friendly menu driven software; and applicable to various 

reactive oxygen species separation of analysis with multiple chemiluminscence 

reagents and various types of antioxidants, including flush and glow reaction, or single 

and dual assay application. Meanwhile, AB-2270 Luminescencer Octa is capable of 

separating and multiple luminescence signals simultaneously using its original colour 

separation mechanism. Colour separation requires optic filters, and is carried out 

using one filter than the number of luminescence signals. 

6.5.1.2 Antioxidant 

An antioxidant is a molecule that inhibits the oxidation of other molecules. Oxidation 

is a chemical reaction that transfers electrons or hydrogen from a substance to an 



79 
 

oxidizing agent. Oxidation reactions can produce free radicals. In turn, these radicals 

can start chain reactions. When the chain reaction occurs in a cell, it can cause damage 

or death to the cell. Antioxidants terminate these chain reactions by removing free 

radical intermediates, and inhibit other oxidation reactions. They do this by being 

oxidized themselves, so antioxidants are often reducing agents such as thiols, ascorbic 

acid, or polyphenols. Substituted phenols and derivatives of phenylenediamine are 

common antioxidants used to inhibit gum formation in gasoline. Although oxidation 

reactions are crucial for life, they can also be damaging; plants and animals maintain 

complex systems of multiple types of antioxidants, such as glutathione, vitamin C, 

vitamin A, and vitamin E as well as enzymes such as catalase, superoxide dismutase 

and various peroxidases. Insufficient levels of antioxidants, or inhibition of the 

antioxidant enzymes, cause oxidative stress and may damage or kill cells. Oxidative 

stress is damage to cell structure and cell function by overly reactive 

oxygen-containing molecules and chronic excessive inflammation. Oxidative stress 

seems to play a significant role in many human diseases, including cancers. The use of 

antioxidants in pharmacology is intensively studied, particularly as treatments for 

stroke and neurodegenerative diseases. For these reasons, oxidative stress can be 

considered to be both the cause and the consequence of some diseases. Antioxidants are 

widely used in dietary supplements and have been investigated for the prevention of 

diseases such as cancer, coronary heart disease and even altitude sickness. Although 

initial studies suggested that antioxidant supplements might promote health, later 

large clinical trials with a limited number of antioxidants detected no benefit and even 

suggested that excess supplementation with certain putative antioxidants may be 

harmful. Antioxidants also have many industrial uses, such as preservatives in food 

and cosmetics and to prevent the degradation of rubber and gasoline. 

6.5.1.3 Chemiluminescence analysis 

Chemiluminescence was measured using a chemiluminessensor. One hundred micro 

liter of the reacted water sample was placed in a measurement tube, 100 µl of luminol 

solution was added and the chemiluminescence was measured for 10 s. On the other 

hand, the reacted water sample was reacted with 50 µl of chlorogenic acid solution (35 

mg ml-1) before the addition of the luminol solution. Then, the luminol solution was 

added and the chemiluminescence was measured for 10 s. Figure 6-5 showed us the 

chemiluminescence analysis principle and steps for superoxide. 
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Figure 6-5 Chemiluminescence analysis principle and steps for superoxide 

 

6.5.2 Others 

PH, EC, O3 concentration and ORP were measured using a pH meter (Japanese 

Society of Water Supply, 2001), an EC meter (Japanese Society of Water Supply, 2001), 

an O3 analyzer and an ORP meter, respectively. Oxidizing substances were measured 

by the titration method with 0.01 N Na2S2O4 solution (Japanese Society of Water 

Supply, 2001) for free I2. CODMn was measured by the KMnO4 method (Japanese 

Society of Water Supply, 2001). Metals were measured by the AAS method (Japanese 

Society of Water Supply, 2001). The radical compounds produced were measured by the 

GC/MS method (Japanese Society of Water Supply, 2001).  
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6.6 Results and discussion 

6.6.1 Production of active intermediates 

Though pH decreased slightly compare to that of the primary O3 water, it increased 

slightly with the photocatalyst. Though EC deceased SSW > UVR > SSW + UVR in 

turn, it increased to the value of the primary O3 water with the photocatalyst. Those 

results show that the photocatalyst produces large amount of EC and small amount of 

acid substances. Though oxidizing substances decreased SSW + UVR > UVR in turn, 

they increased with the photocatalyst.    

The composition of the oxidizing substances was also investigated. Though O3 deceased 

by SSW irradiation, over half of the oxidizing substances was those except for O3 with 

the photocatalyst. By UVR irradiation, O3 was not detected and small amount of the 

other oxidizing substances were detected. By SSW and UVR irradiation, O3 was not 

detected and the other oxidizing substances increased. With the photocatalyst, they 

further increased.  

Hydrogen and OH radical are produced from water at 185 nm of UVR irradiation as 

the photochemical reaction 4. Though those radicals are not produced at 254 nm, OH 

radical is produced as the reaction 5 if H2O2 was produced. 

H2O → ・H ＋ ・OH       (4) 

2H2O2 → OH- ＋ ・OH ＋ HO2- ＋ H+       (5) 

This TiO2 photocatalyst is that of nano-reaction field separation type and an oxidation 

part and a reduction part are separated. Two electron oxidation occurs in the hole of 

the photocatalyst as the reaction 6 and H2O2 is produced from water. 

2H2O + 2h+ → H2O2 + 2H＋       (6) 

If dissolve O2 exists in water, O2 receives an electron and ・O2
－ is produced as the 

reaction 7. Further, H2O2 is produced as the reaction 8 and is converted to OH radical 

as the reaction 9. 

O2 + e- → ・O2-       (7) 

・O2- + 2H+ + e- → H2O2       (8) 

H2O2 + e- →・OH       (9) 

By SSW irradiation, H and OH radical are also produced by the thermal decomposition 

of H2O as the reaction 10. If dissolve O2 exists in water, O radical is also produced as 

the reaction 10. 

O2 → 2O・       (10) 
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Ozone is converted to H2O2 at 254 nm of UVR irradiation as the reaction 11 and OH 

radical is produced as the reaction 12. 

O3 + H2O → O2 + H2O2       (11) 

H2O2 → 2・OH       (12) 

The active intermediates produced by the SSW and UVR (photocatalyst) irradiation of 

O3 water are considered from these reactions. It was considered that some radicals 

were contained in the other oxidizing substances. 

 

6.6.2 Behaviors of active intermediates 

Figure 6-6 shows the changes of ORP. The water containing O3 showed high ORP after 

1 h. On the other hand, the water containing oxidizing substances except for O3 

showed low ORP because of small amount and short lifetime. However, the oxidizing 

substances exist for 5 min in case of SSW + UVR irradiation. The oxidizing substances 

except for O3 are very easy to decompose (like a radical) because those ORP were very 

low in spite that about 1/3 of the oxidizing substances to the primary O3 water existed. 

If the produced radicals part from the reactor, they can exist in the nano or micro 

bubble generated by SSW irradiation. 

 
Figure 6-6 OPR change of generated oxidizing substances with time 
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6.6.3 Identification of hydroxyl radical 

6.6.3.1 Reaction with metals 

Change the experiment conditions, and then observe the influences ultraviolet, 

ultrasonic, and titania nanotube photocatalyst have on hydroxyl radical generation, 

ascertaining the optimal generating environment for hydroxyl radical. Finally, confirm 

the metals ionization effect. Contemporarily, in Japan, ozone water is most frequently 

adopted as a cleaner in the process of semiconductor precision products cleaning. And 

several research studies have been published on cleaning processes that combine ozone 

with HF. So, ozone water has been found useful in removing the metal impurities, such 

as copper and iron, on wafer surface, although not to the same extent as other 

chemistries such as HF. However, for metal impurities such as zinc, nickel, silver and 

other metals, which deposit on the wafer surface as metal hydroxides or metal oxides, 

it is not effective when used alone. Therefore, we expect that hydroxyl radical can have 

the ability of metal removal and particle removal, because hydroxyl radical reaction is 

fast and non-selective. But before comparing metal impurities cleaning effects between 

ozone and hydroxyl radical, we must fully grasp the dynamic state of the metal 

ionization, because the metal impurities or the oxide may be dissolved into high-purity 

water using hydroxyl radical, enabling metal removal. 

We selected several common and typical metal impurities (powders of Zn, Al, Fe, Ni, 

Cu and Ag). Put the 0.3 g metal impurities into 20ml Teflon bottles respectively, after 

all Teflon bottles were precleaned with the solution (H2SO4:H2O2=4:1, 10 min, RT) to 

remove the organic contaminants. In many cases, hydroxyl radical must act directly on 

a surface, since hydroxyl radical that are generated too far away from the surface 

become deactivated and lost. In this paper, we make 20ml hydroxyl radical water that 

is generated by hydroxyl radical generation system using 6.5 ppm ozone water 

instantly flow into the bottle, and keep water transmission distance almost zero. And 

then, keep reacting hydroxyl radical water and 6.5 ppm ozone water respectively with 

0.3 g metal impurities for 2 days to make the part of metal impurities dissolve into 

water. After 2 days, filter out the metal powders, and then measure the concentration 

of the metal ion in the residual liquid with atomic absorption spectrophotometer. After 

analyzing the measured results we can verify hydroxyl radical’s metal ionization 

degree. In the experiment above, hydroxyl radical water is produced by illuminating 

ozone water of 6.5 ppm with ultraviolet and 1 MHz ultrasonic in the hydroxyl radical 
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generating equipment. 

Figure 6-7 shows the concentrations of metal ions after 2 days reaction with the 

reacted water sample. These ionization tendencies are Zn > Fe > Ni > Cu > Ag in turn. 

The concentration of Fe ion, which is easy to ionize, in the primary O3 water was the 

highest. However, the concentrations of Ni, Cu or Ag ion, which are difficult to ionize, 

in the solution of oxidizing substances except for O3 are higher than in the primary O3 

water. This shows that the oxidizing powers of these oxidizing substances (like a 

radical) are stronger than O3. Further, Zn ion, which is very easy to ionize, was hardly 

detected in the primary O3 water but a high concentration of Zn ion was detected in 

case of SSW + UVR irradiation. This shows that the surface of Zn powder was 

converted to ZnO, which is hardly soluble in water, with O3. In case of SSW + UVR 

irradiation, it was considered that OH reacted with Zn and water soluble Zn-OH 

compound was produced. Zn and Al impurities are the examples. Like zinc, it is 

difficult to dissolve in water, when zinc reacts with ozone water. From figure 6-8, we 

can find that ozone can make Zn ionization when the reaction time is short (10s). But 

when we greatly increase reaction time between ozone and Zn (2 days), the 

concentration of zinc ion is zero in solution. We speculate that the Zn ion is further 

oxidized into the oxide and hydroxide by ozone. And they are difficult to dissolve in 

water. However, hydroxyl radical water can make zinc oxide and zinc hydroxide on the 

surface further oxidized, forming metal complex that can easily dissolve in water, so as 

to reach the purpose of removing metal impurities and improving clean efficiency. For 

the metal ionization effect and mechanism of hydroxyl radical, it was revealed by many 

research papers. Other metals such Fe, Ag and Ni, hydroxyl radical water can make 

them better dissolve into water, because hydroxyl radical oxidation ability is far 

stronger than ozone. In the future, it is expected that hydroxyl radical can remove and 

decompose the organic contaminant that are difficult to be removed by ozone and 

chlorine. 
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Figure 6-7 Concentration of metal ions after 2 days reaction with the reacted water 

sample 

 

Figure 6-8 Change of the concentration of generated zinc ion by ozone water when the 

reaction time changing. 
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6.6.3.2 Qualitative analysis of hydroxyl radicals by chemiluminescence measurement 

The chemiluminescene method with luminol and chlorogenic acid was performed for 

the oxidizing substances except for O3. The chemiluminescene, which shows a radical, 

was observed when the solution was reacted with luminal. The chemiluminescene was 

not observed when the solution was added with chlorogenic acid before the addition of 

luminal. As chlorogenic acid reacts with hydroxyl radical and interferes the 

chemiluminescene between hydroxyl radical and luminal, it was considered that most 

of the oxidizing substances consisted of hydroxyl radical. 

Analyze the species of the oxidant generated with Luminescencer Octa AB-2270. When 

measuring, for the possible reactive oxygen species generated, select out the highly 

functional drugs that can conduct chemiluminescence reaction with those objective 

oxidant, and test out the reactive oxygen species with the help of chemiluminescence. 

In this paper, for capturing hydroxyl radical, lumino is selected as chemiluminescence 

reagent. Then select out the antioxidant in accordance with hydroxyl radical, here we 

use chlorogenic acid as the antioxidant. At last, evaluate the luminescence on the basis 

of chemiluminescence reagent and antioxidant. Chemiluminescent results are showed 

in figure 6-9. The increase of Luminescent counts is attributed to the production of 

hydroxyl radical generated by Fenton’s system, because chemiluminescence is the light 

emitted by a chemical reaction between hydroxyl radical and lumino. And when adding 

chlorogenic acid, with the increase of addition amount, the rate of luminescence 

inhibition of hydroxyl radical also increases. But in the experiment, for hydrogen 

peroxide, the chemiluminescence reaction by lumino alone can't be happened, it also 

need to add horse radish peroxidase into lumino to be Luminol-HRP. Luminol-HRP can 

react with hydrogen peroxide to produce chemiluminescence. In addition, other 

reactive oxygen species such as superoxide and singlet oxygen, lumino can react with 

them to produce chemiluminescence. But, when adding chlorogenic acid, 

chemiluminescence inhibition is not happened, actually luminescent counts increase. 

For superoxide, if we want to inhibit chemiluminescence, we need to add superoxide 

dismutase (SOD) as the antioxidant. It is shown as figure 6-10. In other words, 

hydroxyl radical can be accurately and quickly detected by luminescencer octa 

AB-2270 using specifical chemiluminescence agent and antioxidant from the sample of 

interest. The chemiluminescence method is highly selective and sensitive to detect 

reactive oxygen species. We can conclude that the radical generated by our experiment 

device is hydroxyl radical by capturing chemiluminescence reaction and the change of 
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relative volume of luminescence, and we can indirectly measure hydroxyl radical 

concentration by the previous method in the section of experimental setup. 

 
Figure 6-9 Detection of hydroxyl radical using chemiluminescence and the 

radical-scavenging activity using chlorogenic acid. 
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Figure 6-10 Detection of superoxide using chemiluminescence and the 

radical-scavenging activity using SOD. 

For the oxygen free radical agent, MPEC luminescent reagent can cause oxygen 

radical luminescence, when add chlorogenic acid as elimination reagent, the amount of 

luminescence is not reduced, it is increased; for the hydroxyl radical, luminol 

luminescent reagent can lead to hydroxyl radical luminescence, when add chlorogenic 

acid, the amount of luminescence is drastically reduced, and even lead to luminescence 

elimination. For generated rinse reactive free radical water, the component of reactive 

free radical may be oxygen radical, may also be hydroxyl radical. When add luminol as 

luminescent reagent, the free radical can be caused luminescence by luminescence octa 

monitor, when add chlorogenic acid as elimination reagent, the amount of 

luminescence would be drastically reduced, even lead to luminescence elimination, so 

we can inferred that reactive free radical is hydroxyl radical. The amount of 

luminescence is shown as table 6-1. From figure 6-11, we can found that the main 

ingredients of generated rinse water were hydroxyl radical from our device. Because 

the amount of luminescence got zero after we added the chlorogenic acid into samples. 

But for the ozone-ultrasonic sample, light is still. 

Table 6-1 Luminescent count of free radical reagents under different conditions 
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Figure 6-11 Luminescent count change of generated free radicals under different 

conditions by the mobile free radical rinse water equipment 
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Figure 6-12 Chromogenic reaction between hydroxyl radical and benzoic acid in the 

ferric iron environment 

At first, we generated hydroxyl radical by Fenton's reaction, we can find chromogenic 

reaction between hydroxyl radical and benzoic acid in the ferric iron environment. But 

ozone con not react with benzoic acid. So the generated rinse water reacts with benzoic 

acid to generate chromogenic reaction when we add the rinse water into the ferric iron 

solution. It is shown as figure 6-12. The result says that chemiluminescence analysis is 

right. 

 

6.6.3.3 Reaction with organic compounds 

Though the reacted water sample was reacted with benzene, ethylbenzene, o-xylene, 

o-cresol, bromobenzene and pyridine, the reaction products of these compounds with 

OH radical were not detected. In case of benzophenone, the reaction product with H 

radical (H2O →・H ＋・OH) was detected. Method A: Step 1: Generate hydroxyl radicals 

by (O3-water/UV/MS/ TiO2) method, and then keep still. Step 2: Take a certain sample 

from the step 1 and make reaction between OH radical and benzene compound 

generate phenol compound, then take phenol compound to measure concentration by 

GC/MS (figure 6-13). The concentration of generated hydroxyl radicals decrease 

quickly with time. And hydroxyl radicals are highly reactive and short-lived. It will be 

one hot point research that how to increase the residual time of radical. 
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Figure 6-13 Method of measuring the change of generated hydroxyl radical' 

concentration with time 

 

6.6 Conclusions 

The IC wafer washing water was produced by the O3/UVR/SSW multiple reaction 

using a low temperature sprayed TiO2 photocatalyst. The washing water contained 

mainly OH radical whose oxidizing power is stronger than that of O3. The produced 

radicals can exist in nano or micro bubble generated by SSW irradiation if they part 

from the reactor. The water can wash metals and low molecular weight of organic 

compounds and can be used as IC wafer washing water. Further, the utilization of the 

water would expand to the fields of hydrophilic reaction, the prevention of static 

electricity and the disinfection of foods. In the present study, the detection of hydroxyl 

radical from different systems (classical and non-classical systems) has been executed 

by AB-2270 Luminescencer Octa, followed by chemiluminescent measurements with 

luminol and chlorogenic acid. And chemiluminescent measurement has several 

advantages over other analytical techniques for hydroxyl radical detection. For 

example, extraordinary high-sensitivity, inexpensive instrumentation, cost-effective, 
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easy operation with user-friendly menu driven software, speedy and stability. The 

developed method was not only useful for the detection of hydroxyl radicals in low level 

concentration, but also helpful to identify the optimal conditions for producing 

hydroxyl radicals and determination of generated hydroxyl radical count. 

But detection of the ambient hydroxyl radical by the chemiluminescent measurement 

technique can be affected by the ozone interference. In this paper, we report the 

development of a hydroxyl radical instrument based on the technology 

comprehensively using ozone, ultraviolet, ultrasonic and high light sensitive titania 

nanotube photocatalyst. In this technology, the ultraviolet (wavelength is 185 nm, 254 

nm, 305 nm and 365 nm) can completely photolyze ozone molecules, meanwhile largely 

promote hydroxyl radical generating efficiency with the help of ultrasonic and 

photocatalyst. The ozone interference is negligibly hydroxyl radical in our hydroxyl 

radical instrument. Moreover, we can combine chemiluminescent measurement with 

UV spectrophotometry technique to clear up the ozone interference. Overall, the 

developed method could be used for the detection of hydroxyl radical produced by any 

system. 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

Chapter Seven - Contaminants cleaning and 

decomposition Effects by hydroxyl radical 

7.1 Introduction 

With the high integration of devices in recent years, cleanliness management has 

become increasingly important in the field of semiconductor manufacturing. Wafer 

surface are easily polluted by metal, oily and organic contaminants. In particular, the 

device characteristics are degraded by metal impurities remaining on the wafer 

surface, so it has a significant impact on the manufacturing yield of the device. 

Thereby the processes of protecting semiconductor surface from contaminant and 

removing the contaminants are indispensable part of semiconductor manufacturing. If 

the pollutants concentration is low in the chemical cleaning drugs side, the metal 

impurities on the surface can be removed by gradually dissolving and diffusion as the 

metal ions. Traditional cleaning technology needs lots of time, energy, chemical 

cleaning drugs and ultrapure water, and drugs such as hydrogen fluoride and 

hydrogen peroxide can do harm to human health and cause secondary contaminant. 

Nowadays, in many developed countries, it is shifting to the cleaning technology that 

takes into account the environment more from the existing technology that has 

consumed a large amount of chemical drugs. Ozone water is usually used to clean 

semiconductor precision products, but for some contaminants that are difficult to be 

decomposed, the decomposition will not work well. Accordingly, more and more 

scholars pay attention to hydroxyl radical. Hydroxyl radical have strong abilities to 

capture electrons, namely oxidizability, and its oxidation potential is 2.8v, and thus is 

among the best oxidants only after fluorine in nature. Because oxidizing power of 

hydroxyl radical is far stronger than ozone water, we expect hydroxyl radical is able to 

improve the cleaning effect of the metal impurities. Besides, it can produce 

instantaneous chain reaction with most of the organic pollutants, quickly and 

indiscriminately oxidizing the deleterious pollutants as CO2, H2O and mineral salt, 

without any secondary contaminant. In the field of semiconductor precision products 

cleaning, hydroxyl radical water is so suitable that it can replace drug cleaners and 

ozone water, because it has many advantages. For example, it could be used in room 

temperature. Further, compared with the traditional method, we have confirmed that 
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the cleaning time and the amount of ultrapure water for cleaning were less, when we 

obtained an equal cleaning effect. The hydroxyl radical can also reduce the cost of 

water treatment. In other words, when the factory imports the technology of hydroxyl 

radical, it can be expected to save energy, save resource, efficiently clean and reduce 

environment burden, etc.  

In this paper, in order to improve the cleaning efficiency, meanwhile improve the 

concentration of hydroxyl radical as high as possible, it is necessary to optimize flow 

mode for the generation of hydroxyl radical. Through long-range research and constant 

improvement on methodology, we find that the technology combining ozone, ultraviolet, 

ultrasonic and photocatalyst is able to produce high-concentration hydroxyl radical. 

And in a short time the technology uses minimum energy to effectively remove the oily, 

metal and organic contaminants attached on semiconductor surfaces that are hard to 

be decomposed. Meanwhile, in this technology, high light sensitive titania nanotube 

photocatalyst is made into thin-film coating of high activeness and compactness with 

the method of high velocity impact of forging thermal spraying. In addition, in the 

process of cleaning, replacing kilohertz ultrasound by low-megahertz (MHz) ultrasonic 

is able to decrease the damage ultrasonic does to semiconductor precision products 

when cleaning. The main purpose of the paper shows metal ionization degree and 

organic contaminants’ decomposition of analysis results after hydroxyl radical reacts 

with metals or organic contaminants. And make it compared with ozone’ results. The 

analysis results laid a foundation for the future wafer cleaning experiment with 

hydroxyl radical water instead of ozone water. 

 

7.2 Experiment of metals contaminants cleaning and 

decomposition effects by hydroxyl radical 

7.2.1 Materials and methods 

The photocatalyst was kindly supplied by Catalysts & Chemicals Ind. Co., Ltd. The 

photocatalyst was used after calcination at 350 °C for 3 hours in order to improve the 

crystallinity of the photocatalyst. TiO2 thin-film coating was generated by using High 

Velocity Impact Forging thermal spraying technology from FUJIKO Co., Ltd. Ozone 

water was made from pure oxygen and millipore laboratory water with a laboratory 
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ozonizer (ED-OW-7, EcoDesign, Inc.). Multiple chemiluminescence reagents have been 

procured from ATTO Corporation for Luminescence-based techniques of reactive 

oxygen species. Multiple types of antioxidants are made by Wako Pure Chemical 

Industries, Ltd. Portable ozone monitor was procured from APPLICS Co., Ltd. 

AB-2270 luminescencer octa was procured from ATTO Corporation for hydroxyl radical 

detection. The results of metals’ ionization were measured by fast sequential atomic 

absorption spectrometer (VARTAN: AA240FS, Agilent).  

 

7.2.2 Experimental process about verification of the metal ionization 

Change the experiment conditions, and then observe the influences ultraviolet, 

ultrasonic, and titania nanotube photocatalyst have on hydroxyl radical generation, 

ascertaining the optimal generating environment for hydroxyl radical. Finally, confirm 

the metals ionization effect. Contemporarily, in Japan, ozone water is most frequently 

adopted as a cleaner in the process of semiconductor precision products cleaning. And 

several research studies have been published on cleaning processes that combine ozone 

with HF. So, ozone water has been found useful in removing the metal impurities, such 

as copper and iron, on wafer surface, although not to the same extent as other 

chemistries such as HF. However, for metal impurities such as zinc, nickel, silver and 

other metals, which deposit on the wafer surface as metal hydroxides or metal oxides, 

it is not effective when used alone. Therefore, we expect that hydroxyl radical can have 

the ability of metal removal and particle removal, because hydroxyl radical reaction is 

fast and non-selective. But before comparing metal impurities cleaning effects between 

ozone and hydroxyl radical, we must fully grasp the dynamic state of the metal 

ionization, because the metal impurities or the oxide may be dissolved into high-purity 

water using hydroxyl radical, enabling metal removal. 

We selected several common and typical metal impurities (powders of Zn, Al, Fe, Ni, 

Cu and Ag). Put the 0.3 g metal impurities into 20ml Teflon bottles respectively, after 

all Teflon bottles were precleaned with the solution (H2SO4:H2O2=4:1, 10 min, RT) to 

remove the organic contaminants. In many cases, hydroxyl radical must act directly on 

a surface, since hydroxyl radical that are generated too far away from the surface 

become deactivated and lost. In this paper, we make 20ml hydroxyl radical water that 

is generated by hydroxyl radical generation system using 6.5 ppm ozone water 

instantly flow into the bottle, and keep water transmission distance almost zero. And 
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then, keep reacting hydroxyl radical water and 6.5 ppm ozone water respectively with 

0.3 g metal impurities for 10 seconds to make the part of metal impurities dissolve into 

water. After 10 seconds, filter out the metal powders, and then measure the 

concentration of the metal ion in the residual liquid with atomic absorption 

spectrophotometer. After analyzing the measured results we can verify hydroxyl 

radical’s metal ionization degree. In the experiment above, hydroxyl radical water is 

produced by illuminating ozone water of 6.5 ppm with ultraviolet and 1 MHz 

ultrasonic in the hydroxyl radical generating equipment. 

 

7.2.3 Verify hydroxyl radical’s metal ionization degree 

After ascertaining the optimal generating environment for hydroxyl radical, we 

conduct metal ionization degree experiment. The experiment condition is a simulation 

of wash process with water flow system, and each set of clean liquid will react with the 

metal impurities for 10 seconds. Results are showed in figure 7-1. It is shown that 

hydroxyl radical water has far more conspicuous metal ionization effects than ozone 

water. Compare with ozone water independently, with the new methodology, Zn’s 

ionization rate increased by 5 times, Al’s by 2.9 times, Fe’s by 3.5 times, Ni’s by 2 times, 

Cu’s by 1.3 times and Ag’s by 8 times. In the experiment, the concentration of hydroxyl 

radical is only one-third of ozone’s concentration. So, if we use the same concentration 

between hydroxyl radical and ozone, for the metal ionization effect of hydroxyl radical 

may be 3 times than now. Although ozone water is not omnipotent for dealing with all 

of metal impurities, from the experiment results, we can see that ozone water is 

effective to a certain extent when facing heavy metal like Cu. For Cu, using ozone 

water to react, which is highly capable of capturing electrons (namely strong 

oxidization ability), will capture the electrons of Cu, changing them to cation so as to 

be dissolved by water and easily removed. But strictly speaking, the metal ionization 

degree of ozone water will be heavily reduced when some oxide and hydroxide that are 

difficult to react with ozone water form on the metal impurities surface due to natural 

oxidization. Zn and Al impurities are the examples. Like zinc, it is difficult to dissolve 

in water, when zinc reacts with ozone water. From figure 7-2, we can find that ozone 

can make Zn ionization when the reaction time is short (10s). But when we greatly 

increase reaction time between ozone and Zn (2 days), the concentration of zinc ion is 

zero in solution. We speculate that the Zn ion is further oxidized into the oxide and 
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hydroxide by ozone. And they are difficult to dissolve in water. However, hydroxyl 

radical water can make zinc oxide and zinc hydroxide on the surface further oxidized, 

forming metal complex that can easily dissolve in water, so as to reach the purpose of 

removing metal impurities and improving clean efficiency. For the metal ionization 

effect and mechanism of hydroxyl radical, it was revealed by many research papers. 

Other metals such Fe, Ag and Ni, hydroxyl radical water can make them better 

dissolve into water, because hydroxyl radical oxidation ability is far stronger than 

ozone. In the future, it is expected that hydroxyl radical can remove and decompose the 

organic contaminant that are difficult to be removed by ozone and chlorine.  

 

 

 
Figure 7-1 Compare metal ionization degree between ozone water and hydroxyl radical 

water 
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Figure 7-2 Change of the concentration of generated zinc ion by ozone water when the 

reaction time changing 

From figure 7-3, it can be seen that for general metal impurities like Cu, Zn and 

activity stability of metal impurities like Ag, the metal ionization effects of hydroxyl 

radical water on them will increase with the concentration of hydroxyl radical water. 

This is particularly true for Ag. In the hydroxyl radical’s cleaning process, when the 

concentration of hydroxyl radical is low, part of the metal impurities will be ionized, 

dissolved by water and removed, but due to oxidization, most of them will form as 

metal oxide and metal hydroxide that are difficult to be dissolved by water. When the 

concentration of hydroxyl radical is higher, instead of metal oxidation film, the 

remaining hydroxyl radical can further react with those metal oxide and metal 

hydroxide, forming metal complex, which is easily dissolved by water, so as to remove 

the metal impurities. In addition, the metal complex produced by the reaction of metal 

and targeted liquid is an indirect verification of the generation of hydroxyl radical. The 

peculiar features of hydroxyl radical showed in dealing with contaminant present its 

optimistic application prospect. 
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Figure 7-3 Metal ionization degree on Zn, Cu and Ag will increase with the increase of 

the concentration of hydroxyl radical 
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7.3 Experiment of organic contaminants cleaning and 

decomposition effects by hydroxyl radical 

7.3.1 Materials and methods 

In this research, the reaction between organic contaminants (Dimethyl sulfoxide was 

purchased from Wako Pure Chemical Industries, Ltd. DL-Tartaric acid was purchased 

from Nacalai Tesque. Soluble starch was purchased from Wako Pure Chemical 

Industries, Ltd. Dioctyl phthalate was purchased from Tokyo Chemical Industry Co., 

Ltd. Dibutyl phthalate was purchased from Tokyo Chemical Industry Co.) and OH 

radical water are researched. Then the identification results of products of 

decomposition were measured using gas chromatography-mass spectral (GC-MS). All 

other chemicals used for mineral salts media and extractions were of analytical grade. 

The solutions were prepared using deionized water from MiliQ system.  

The volume of 1 µL standard and sample solution was injected in GC injection port. 

The temperature of injection port was maintained at 230 °C, split ratio 1:15, with 

nitrogen as a carrier gas. The pressure of 14 kpa with flow of 3.2 mL/min was 

maintained. The temperature of the detector was set at 250 °C. Temperature was 

maintained at 40 °C for five min and then increased at a rate of 10 °C/min to 55 °C/min 

and maintained for 5min, finally increased at the rate of 10 °C/min to reach the final 

temperature of 200 ° C and maintained for 5 min. 

In the experiment, hydroxyl radical water is produced by illuminating ozone water of 

6.5 ppm with ultraviolet and 1 MHz ultrasonic in the hydroxyl radical generating 

equipment. 

7.3.2 Verify the organic contaminants decomposition effect 

Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH3)2SO. 

This colorless liquid is an important polar aprotic solvent that dissolves both polar and 

nonpolar compounds and is miscible in a wide range of organic solvents as well as 

water. Figure 7-4 is on the residual ratio of DMSO after the reaction of ozone and 

hydroxyl radical with DMSO. We can find that dissolved ozone and hydroxyl radical 

can react with DMSO, but the decomposition effect is not well, because the 

concentration of ozone. Meanwhile, compare with ozone water, hydroxyl radical can 
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substantially enhance the decomposition of DMSO.    

 
Figure 7-4 Residual ratio of DMSO after the reaction of ozone and hydroxyl radical 

with DMSO 

 
Figure 7-5 Residual ratio of DL-Tartaric acid after the reaction of ozone and hydroxyl 

radical with DL-Tartaric acid 

Tartaric acid is a white crystalline diprotic aldaric acid. It occurs naturally in many 

plants, particularly grapes, bananas, and tamarinds, is commonly combined with 
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baking soda to function as a leavening agent in recipes, and is one of the main acids 

found in wine. It is added to other foods to give a sour taste, and is used as an 

antioxidant. Salts of tartaric acid are known as tartrates. It is a dihydroxyl derivative 

of succinic acid. For the low molecular weight organic contaminants such as 

DL-Tartaric acid, we researched its decomposition behaviours, the results are shown 

as figure 7-5. Hydroxyl radical has high oxidation decomposition ability, so it can 

decompose DL-Tartaric acid more than 50%. But DL-Tartaric acid is difficult to be 

decomposed by ozone.  

 

Figure 7-6 Residual ratio of soluble starch after the reaction of ozone and hydroxyl 

radical with soluble starch 

Starch or amylum is a carbohydrate consisting of a large number of glucose units 

joined by glycosidic bonds. This polysaccharide is produced by most green plants as an 

energy store. It is the most common carbohydrate in human diets and is contained in 

large amounts in such staple foods as potatoes, wheat, maize, rice, and cassava. In this 

part, we can find that ozone can not react with soluble starch. Although it is possible 

that hydroxyl radical can reacts with soluble starch, it is difficulty. And Residual ratio 

of organic matter rises. It is shown as figure 7-6. 

Like figure figure 7-7. Dioctyl phthalate and dibutyl phthalate belong to the class of 

phthalate esters and is used as an additive in many products including plastics, paints 

and inks or as a solvent in industrial formulations. The degradation of them in 
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aqueous solution using ozone and hydroxyl radical was carried out in this study. 

Hydroxyl radical has a good removal effect, although it is almost the same to ozone 

removal effect.  

 

 

Figure 7-7 Residual ratio of phthalate after the reaction of ozone and hydroxyl radical 

with phthalate 

7.3.3 Verify the oil contaminants decomposition effect 

The precise instruments such as IC (integrated circuit) and semiconductor are easily 

contaminated by oil. But sometimes oil contamination is difficult to be treated by 

traditional treatment techniques using chlorine or ozone in the short time. Now we 

used hydroxyl radical water rinsing the oil, then observed the reaction interface, 

measured the solution turbidity after reaction between rinse water and oil to verify 

that hydroxyl radical water could achieve better effect than ozone-water for the mobile 

rinse in the short time. When we put the household lubricants into rinse water, the 

state is shown such as figure 7-8. The state of reaction for 20 min is shown such as 

figure 7-10 after reaction. Ultra-pure water still stayed transparent, and oil kept 

original state on reaction interface. Ozone water turned into milkiness, and generated 
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white foam. hydroxyl radical water turned into milkiness, and generated white foam. 

 
Figure 7-8 State of reaction, when we put the household lubricant into rinse water 

 

Figure 7-9 State of reaction between household lubricant and rinse water 
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The change of turbidity with time is shown such as figure 7-10 after reaction. The 

turbidity of ultra-pure water gradually decreased with time. The turbidity of ozone 

water kept no change with time. The turbidity of hydroxyl radical water had a little 

decrease with time. Generally, hydroxyl radical had a better effect than ozone water for 

oil rinse, and for hydroxyl radical water, the decrease speed of turbidity was more 

slowly than ozone. But in our experiment, ozone concentration is about 3~4 times more 

than hydroxyl radical concentration that was generated by the mobile hydroxyl radical 

rinse water equipment, so ozone water is better. In next step, we will do this 

experiment, under the same concentration of hydroxyl radical and ozone.   

 
Figure 7-10 Change of household lubricant-rinse water reaction solution turbidity with 

time 

 

7.4 Conclusions 

In this study, the ionization effect of the metal impurities which is commonly found on 

the semiconductor surface in wafer and IC manufacturing processes, were investigated 

by using ozone, ultraviolet illuminating, low-megahertz ultrasonic and titania 

nanotube photocatalyst technique. Our results show that metal impurities, like Fe, Cu, 

Zn, Ag and so on, can be effectively and simultaneously reacted to form cation status 

by this new technique, if it is performed under optimal process conditions. Because 

these metal cations are easy to dissolve into water, we think this new technique can 

effectively achieve metal impurities removal’s aim. And hydroxyl radical can deal with 
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the metal impurities at the same time. The result of the paper has provided an 

important basis for the next stage of experiment research about metal impurities 

removal on the wafer surface using hydroxyl radical. In addition, the detection of 

hydroxyl radicals is not a trivial process. For this study, luminescence measurement 

was chosen, and luminescencer octa AB-2270 and UV absorption ozone monitor were 

combined together as a semi-quantitative and qualitative tool for the determination of 

hydroxyl radical from different systems. Here, it has been proven to be the most useful 

method about detecting hydroxyl radicals, due to its high sensitivity and high 

selectivity.  

For the organic contaminants, the changes of CODMn of DL-tartaric acid (molecular 

weight: 150) and soluble starch after 2 days reaction with the reacted water sample 

were investigated. In case of DL-tartaric acid which is a relatively low molecular 

weight of organic compound, 10 and 18% of CODMn decreased for the primary O3 

water and the oxidizing substances except for O3, respectively. In case of soluble starch 

which is a high molecular weight of organic compound, CODMn did not change for the 

primary O3 water and 17% of CODMn increased for the oxidizing substances except for 

O3. This shows that a part of soluble starch was converted to the oxidisable compound 

and the high molecular weight of organic compounds as carbohydrate, protein and lipid 

are not decomposed largely by the oxidizing substances except for O3. 

Although we have made great breakthrough in terms of hydroxyl radical generating 

technologies, some problems still remain unprocessed, such as the residual time of 

hydroxyl radical, application technology of hydroxyl radical and so on. We expect that 

hydroxyl radical will be better applied in the fields of environment, food safety and 

medicine. 
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Chapter Eight - Summary 

Hydroxyl radical reaction is defined as the oxidation processes which generate very 

powerful, non-selective radical that are utilized in environmental treatment. Hydroxyl 

radical is comparatively new and intensively developing technique. Ozone-base 

hydroxyl radical is the process where ozonation is applied simultaneously with UV 

radiation, catalysts and ultrasound, which rely primarily on oxidation with hydroxyl 

radical. Such approach aims to improve and enhance the oxidation of contaminants 

such as metal, oil and organic matters. For environment and human, to lower the 

ozone consumption and energy cost; to improve the degradability of intractable organic 

matters, etc. Hydroxyl radical has high potential to degrade organic contaminants that 

are not attacked by ozone and chlorine. Ozone-based hydroxyl radical has developed 

from the laboratory to full-scale applications and is successfully used for 

environmental treatment like wastewater (has been applied successfully for the 

removal or degradation of toxic pollutants or used as pretreatment to convert 

recalcitrant pollutants into biodegradable compounds.) and wafer-cleaning techniques 

(it can provide practical benefits in the removal of photoresist, organics, metals, and 

particles on the wafer surface.). We generated high-density Hydroxyl Radical by the 

technology comprehensively using ozone, ultraviolet, ultrasonic and high light 

sensitive titania nanotube photocatalyst. 

In order to better to apply hydroxyl radical, the formation of active intermediates from 

hydroxyl radical reaction with organic matter in aqueous solution has been 

investigated. We can treat environmental issues well after understanding these 

mechanisms. 

In this study, the ionization effect of the metal impurities which is commonly found on 

the semiconductor surface in wafer and IC manufacturing processes, were investigated 

by using ozone, ultraviolet illuminating, low-megahertz ultrasonic and titania 

nanotube photocatalyst technique. Our results show that metal impurities, like Fe, Cu, 

Zn, Ag and so on, can be effectively and simultaneously reacted to form cation status 

by this new technique, if it is performed under optimal process conditions. Because 

these metal cations are easy to dissolve into water, we think this new technique can 

effectively achieve metal impurities removal’s aim. In my paper, for organic matters, 

hydroxyl radical is also an ultimate oxidation tool — able to attack any molecule in 

their vicinity in order to balance their unpaired electron configuration. It can cut the 

organic C-C bond, and break double bonds (such as C=C, C=O, N=N and so on), 
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degrade hydrocarbons, cause epoxidation and aromatic ring opening, radical 

polymerization, formation of secondary radicals and many other types of reactions. So, 

utilizing the strong oxidizing strength of hydroxyl radical, oxidation reaction is the 

most effective way of degrading and eliminating all kinds of pollutants and waste 

chemicals both in air and water. These have been proved by our experiments. In study, 

the most important point is that we can increase the life of hydroxyl radical. It took ~5 

min for hydroxyl radical to return to its original state of water. This point will better 

help us to apply it for environmental treatment. 

Hydroxyl radical plays a crucial role in different chemical and biochemical reactions. 

Hydroxyl radical causes several human diseases as it is having high reactivity with 

second order rate constants of 107 – 1010 L mol-1 s-1. Hence, the detection of hydroxyl 

radical is essential. There are various methods reported for the detection of hydroxyl 

radicals. HPLC or GC is also used as a tool to quantify the products generated by 

hydroxyl radical targeting organic reagents. However, most of them involve highly 

technical analytical procedure using expensive solvents or chemicals. One of the most 

commonly used methods is ESR. However, the ESR measurement is having certain 

difficulties including tediousness, cost and stability. Firstly, the hydroxyl radical spin 

adduct formed is unstable, and may react with other species present in the system. 

Consequently the detection of Hydroxyl radical will be difficult. Secondly, ESR 

technique involves high cost instrumentation, which makes it unsuitable for routine 

analysis. Besides ESR measurement, other methods involve the use of different 

chemical probes like dimethyl methylphosphonate, 4-hydroxy benzoate, dimethyl 

sulfoxide, salicylate using HPLC analysis. These methods are also having 

disadvantages and diffuculties due to the formation of multiple hydroxylated products. 

The use of benzoic acid as a chemical probe for the detection of hydroxyl radical also 

has some difficulties, which include the formation of many hydroxylated products such 

as o-hydroxy, m-hydroxy, p-hydroxy benzoic acid, etc. such as o-hydroxy, m-hydroxy, 

p-hydroxy benzoic acid, etc. However, the formation of salicylic acid can be determined 

quantitatively by a simple colorimetric method. Salicylic acid forms a purple colored 

complex in the aqueous medium in the presence of Fe3+ ions. In the present study, the 

semi-quantitative determination of hydroxyl radical is responsible for the formation of 

chemiluminescence which is the generation of electromagnetic radiation as light by the 

release of energy from a chemical reaction. And chemiluminescent measurement has 

several advantages over other analytical techniques for hydroxyl radical detection. For 

example, extraordinary high-sensitivity, inexpensive instrumentation, cost-effective, 

easy operation with user-friendly menu driven software, speedy and stability. The 
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developed method was not only useful for the detection of hydroxyl radicals in low level 

concentration, but also helpful to identify the optimal conditions for producing 

hydroxyl radicals and determination of generated hydroxyl radical count. Overall, the 

developed method could be used for the detection of hydroxyl radical produced by any 

system in general and this method had advantages due to its simplicity in 

instrumentation using less reagents/solvents, and it is cost-effective. Meanwhile 

accuracy had been proved by other methods.  

So hydroxyl radical is very powerful oxidizing agent. They are involved in 

hydroxylation reactions, in biological and atmospheric phenomena. A recent 

application of these radicals is their use in chemicals removal that come from dioxins 

and dioxin-like compounds, PCB, pesticides, polymer additives and organohalogen 

compounds following chlorine element processing are causing serious environmental 

pollution, affects human health. We fully had discussed the feasibility of effect from 

hydroxyl radicals in water purification treatment and semiconductor wafer rinse. 

Furthermore, we are trying to use hydroxyl radicals in food sterilization and food safe 

handling in China, because it has very strong sterilization ability. In the field of 

process of water purification and food safety, we will try to explore the decomposition 

behavior of pesticide through using hydroxyl radical water to dispose the 20 

compositions of pesticides. In addition, the hydroxyl radicals can be expected to handle 

these compositions of pesticides decomposition that is hardly to remove by ozone or 

chlorine element and the decomposition product will not cause secondary pollution in 

the process of water purification. In the field of food safety, hydroxyl radicals not only 

have the effect of decomposition to remove residues of pesticides, but also can achieve 

the purpose of sterilization. The hydroxyl radicals have damaging effects on bacteria, 

and it has small molecular weight, so it is without any damage to the food itself. So the 

hydroxyl radicals can also be looking forward to use in food safety field. In Japan, the 

safety of crops including contamination with agricultural pesticides is a major concern 

to both the producer and consumer, and the development of a method to remove the 

pesticides before marketing has been eagerly awaited. In Japan, about 600 

agricultural pesticides are included in the Positive List established in 2010. Since 

agricultural crops cannot be marketed when they contain pesticides exceeding the 

residual limit, the development of a measure for eliminating residual pesticides in 

crops is now an important issue. Other applications include preventing electrostatic by 

hydroxyl radical; hydroxyl radical has a positive influence on plant growth and 

survival. Not only regulate plant growth and development but also increase plant 

resistance to various virus; in-situ soil and groundwater treatment technologies using 
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hydroxyl radical. About hydroxyl radical, although we have a lot of research date, it is 

not enough. So, there are many deficiencies still need us to improve. 
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