
Adaptive Constraint Solving for Information Flow Analysis

by

Santanu Kumar Dash

submitted to the University of Hertfordshire
in partial fulfilment of the requirements of the degree of

Doctor of Philosophy (PhD)

Submitted: November, 2014
Copyright c© 2015 by Santanu Kumar Dash

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/29853750?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In program analysis, unknown properties for terms are typically represented symbolically

as variables. Bound constraints on these variables can then specify multiple optimisation

goals for computer programs and find application in areas such as type theory, secu-

rity, alias analysis and resource reasoning. Resolution of bound constraints is a prob-

lem steeped in graph theory; interdependencies between the variables is represented as

a constraint graph. Additionally, constants are introduced into the system as concrete

bounds over these variables and constants themselves are ordered over a lattice which

is, once again, represented as a graph. Despite graph algorithms being central to bound

constraint solving, most approaches to program optimisation that use bound constraint

solving have treated their graph theoretic foundations as a black box. Little has been done

to investigate the computational costs or design efficient graph algorithms for constraint

resolution. Emerging examples of these lattices and bound constraint graphs, particularly

from the domain of language-based security, are showing that these graphs and lattices

are structurally diverse and could be arbitrarily large. Therefore, there is a pressing need

to investigate the graph theoretic foundations of bound constraint solving.

In this thesis, we investigate the computational costs of bound constraint solving from

a graph theoretic perspective for Information Flow Analysis (IFA); IFA is a sub-field of

language-based security which verifies whether confidentiality and integrity of classified

information is preserved as it is manipulated by a program. We present a novel framework

based on graph decomposition for solving the (atomic) bound constraint problem for IFA.

Our approach enables us to abstract away from connections between individual vertices to

those between sets of vertices in both the constraint graph and an accompanying security

lattice which defines ordering over constants. Thereby, we are able to achieve significant

speedups compared to state-of-the-art graph algorithms applied to bound constraint solv-

ing. More importantly, our algorithms are highly adaptive in nature and seamlessly adapt

to the structure of the constraint graph and the lattice. The computational costs of our

approach is a function of the latent scope of decomposition in the constraint graph and the

lattice; therefore, we enjoy the fastest runtime for every point in the structure-spectrum

of these graphs and lattices. While the techniques in this dissertation are developed with

IFA in mind, they can be extended to other application of the bound constraints prob-

lem, such as type inference and program analysis frameworks which use annotated type

systems, where constants are ordered over a lattice.

3

Acknowledgements

I would like to express my deep gratitude to my supervisor Professor Bruce Christianson

for his unwavering support and excellent guidance during the course of this PhD. Bruce’s

wealth of research experience and technical knowledge helped crystallise my thoughts on

how to conduct and present high quality research. Despite his busy schedule, he always

made it a point to read every word in any document I wrote up and always gave me detailed

feedback. On a personal note, I was deeply touched by the compassion, consideration and

generousity he showed towards me during phases in my PhD when I felt lost. I feel really

fortunate to have worked with him and have learnt a lot of things from him.

I would like to thank Professor Sven-Bodo Scholz who initiated me into Compiler

Technology and Computer Architecture (CTCA) group. He was always very generous

with his time whenever I approached him and patiently discussed research directions with

me. I am deeply indebted to Professor Alex Shafarenko who hosted me in the CTCA

group and always supported me in my research goals.

I had an excellent time in Science and Technology Research Institute (STRI) where

I spent five years and made many great friends. I am grateful to my friends at STRI

- Nilesh, Htoo (Phothar), Chaminda - for the scintillating lunch conversations we had.

Thank you all for the good times we shared together. Thank you Lorraine, Michaella and

Avis for cheerfully dealing with every piece of my paperwork.

My biggest source of strength throughout this endeavour has been my wife, Meethu.

She has been my motivator-in-chief and the only reason I could embark on a PhD was

because she ensured everything else outside my PhD was taken care of. She has been my

rainbow on rainy days and my sunshine on sunny days. Thank you Meethu, I don’t think

I could have ever completed a PhD if you had not been there in my life.

I would like to thank my wife, my brother Ronny and my mother Rina for providing

me with superhuman support as I was shuttling between continents to finish my studies

and attend to my ailing father. This dissertation would not have seen light of day without

their support. A special vote of thanks also goes to my parents-in-law who helped me out

during the thesis-writing phase and always believed in my potential as a researcher.

My father went through great hardships to raise us and taught us the values of edu-

cation and knowledge. Sadly, we lost him just during the course of my PhD. Seeing a Dr.

title prepended to my name would give him immense joy. The values of simplicity, hard

work, humility and honesty that he instilled in me will stay with me forever. I miss you

Baba, always will. I promise to make this world a better place for others like you did for

us. You are and forever will be my role-model.

5

To Baba, thank you for everything.

Contents

1 Introduction 12

1.1 Lattice-directed information flow . 12

1.2 Verification of secure flow of information . 13

1.3 Contributions . 14

1.4 Overview . 16

1.5 Publications . 17

2 Literature Review 18

2.1 Introduction . 18

2.2 Polymorphic subtyping . 20

2.2.1 Polymorphism and decidability of type inference 20

2.2.2 Type inference with subtyping . 21

2.2.3 Type inference as constraint solving 22

2.2.4 Computational costs of subtyping . 22

2.3 Type-based Flow Analysis . 23

2.4 Applications of Type-based Flow Analysis 25

2.4.1 Secure Information Flow Analysis 25

2.4.2 Alias Analysis . 28

2.5 Graph algorithms for solving subtyping constraints 30

2.5.1 LCA computation in trees . 31

2.5.2 LCA computation in DAGs . 32

2.6 Summary . 33

3 Information Flow Analysis 34

3.1 Introduction . 34

3.2 IFA using annotated types . 36

3.2.1 Capturing implicit and explicit flow through types 36

7

8 Contents

3.2.2 Subtyping and Information Flow . 39

3.3 Constraint-based IFA . 40

3.3.1 The language of constraints . 40

3.3.2 Type Schemes . 42

3.3.3 Constraint-based typing . 43

3.4 Constraint rewriting and solving . 45

3.4.1 Constraint expansion and decomposition 45

3.4.2 Constraint solving . 46

3.5 Simplification of type schemes . 48

3.6 Computational costs . 49

3.6.1 Constraint Generation and Solving 50

3.6.2 Scheme simplification . 51

3.7 Algorithmic bottlenecks . 51

3.7.1 Bottlenecks in IFA . 51

3.7.2 Reduction of TC to BMP . 52

3.7.3 BMP as a basis function . 53

3.8 Summary . 54

4 Adaptive pre-processing of security lattices 56

4.1 Introduction . 56

4.2 Lowest Common Ancestor . 57

4.3 Identifying potential LCAs for a vertex pair 58

4.3.1 Overview of our approach to computing representative LCAs 59

4.3.2 Decomposing a DAG into clusters 61

4.4 Identifying the TC-PLCA . 62

4.4.1 Picking appropriate proximals for a vertex 62

4.4.2 Variations in proximals . 63

4.4.3 Building and indexing the TC-matrix 65

4.5 Identifying the CC-PLCA . 68

4.5.1 A simplified approach to computing τ 69

4.5.2 CC-PLCA computation for all pairs of clusterheads 69

4.5.3 Algorithmic details . 73

4.6 Summary . 75

Contents 9

5 Evaluation of adaptive pre-processing for security lattices 77

5.1 Introduction . 77

5.2 Structure-spectrum of security lattices . 78

5.2.1 Class-level non-interference . 79

5.2.2 Mashup security . 80

5.3 Algorithmic options for pre-processing lattices 83

5.3.1 Tree algorithms for pre-processing lattices 83

5.3.2 DAGs algorithms for pre-processing lattices 84

5.4 An adaptive framework for pre-processing lattices 85

5.5 Experiments . 87

5.5.1 Setup . 87

5.5.2 Benchmarks . 88

5.5.3 Results . 89

5.6 Summary . 94

6 Adaptive simplification of polymorphic flow constraints 96

6.1 Introduction . 96

6.2 Compaction of label-polymorphic expressions 98

6.2.1 From expressions to DAGs . 98

6.2.2 A baseline algorithm . 99

6.3 Simplification through decomposition . 100

6.3.1 A cluster based approach . 101

6.3.2 Algorithm and computational costs 103

6.4 Stress testing the cluster-based approach . 104

6.4.1 Nature of constraints in information flow analysis 105

6.4.2 Quantitative aspects of label-constraint graphs in type-based IFA . . 107

6.4.3 Performance in face of intractable graphs 108

6.5 Summary . 109

7 Conclusion and Future Work 111

7.1 Future Work . 113

7.1.1 Enrichment of the existing framework 113

7.1.2 Additional areas of application . 114

7.1.3 Limitations . 115

List of Figures

3.1 Set of types . 37

3.2 A type and effect system for information flow analysis 38

3.3 Subtyping rule and variance on base types, references and function types . . 39

3.4 Grammar for terms and constraints . 40

3.5 Interpretation of constraints . 41

3.6 Polymorphism in the Damas-Milner type system 42

3.7 Polymorphism in a constraint-based type system 43

3.8 Meta-variables representing types and levels 43

3.9 Constraint based typing for IFA . 44

3.10 Rewriting constraints on type terms . 46

3.11 Atomic constraints . 47

3.12 A label-polymorphic expression and its constraints graph 49

3.13 Transitive Closure of DAGs . 53

4.1 A directed acyclic graph with all vertices annotated with the corresponding

clusterhead . 61

4.2 Identifying proximals for all vertices for all clusterheads. Vertices are an-

notated with their pre-order numbers. 64

4.3 DAG vertices annotated with TC-matrix indices 68

5.1 An implementation that leaks sensitive information 80

5.2 Powerset lattices for mashup security . 82

5.3 Overview of cluster-based preprocessing for DAGs 85

5.4 Plots showing the correlation between theoretical complexity and practical

computational costs . 91

5.5 Experimental results for random DAGs . 93

10

List of Figures 11

6.1 A label-polymorphic expression and it’s label constraints graph 99

6.2 A comparison of the baseline algorithm vs cluster based approach 102

6.3 Computational costs as a function of the ratio of output variables to polar

clusters . 105

6.4 A label-polymorphic expression and its label constraints graph 106

6.5 Ratio of payload collection times as a function of polar clusterhead to output

variables ratio . 110

Chapter 1

Introduction

Flow analysis of computer programs is an essential step in driving many qualitative op-

timisations. It determines how values may propagate from one point in the program to

another and whether such a flow is desirable or not from the perspective of the optimisa-

tion. There are two approaches to understanding the nature of flow in programs: static and

dynamic. Static analysis inspects flow properties at compile time and reports properties

for program flow without running the application. On the other hand, dynamic analysis

involves observing the runtime trace of the application in order to identify properties for

program flow. Consequently, the dynamic analysis is limited in scope and depends on the

paths taken during the execution of the program. In contrast to this, existing techniques

for static analysis consider all possible execution paths for an application while trying to

understand the nature of flow through them. Therefore, in critical applications which

demand an in-depth analysis, static analysis is often the preferred option.

1.1 Lattice-directed information flow

One such application is application security. Consider an AndroidTM app that is freely

available on the Google play store. A malicious developer can repackage well-known

applications and distribute them through the store. Typically this application exploits

permissions granted by the user to the application for using the platform to transmit

sensitive information. For example, the permission granted by the user to the app for using

the Internet could be misused. If the app is malicious, it may access and transmit personal

information such as photos or videos of the user and transmit it over the Internet to a third

party. The goal of application security is to prevent flow of sensitive information to public

sinks and flow analysis is central to achieving this. Therefore, it is necessary to consider all

12

Verification of secure flow of information 13

possible flows in an application between the points at which sensitive permission is granted

to the points at which it is transmitted in order to enforce application-level security.

Sometimes, it may be useful to specify a partial order on what can flow where. Lattice-

based security models for computer programs are an instance of such an ordering. In

such models, an ordering over discrete security labels describes permitted declassification

pathways. Preserving confidentiality of privileged information mandates that no value in

the program that is annotated with a high element from the policy lattice should flow to

another value that is annotated with a low element. It is then the role of directional flow

analysis to ensure that all points in the program that read values from a secure source do

not write their results back to a public sink.

1.2 Verification of secure flow of information

Information Flow Analysis (IFA) is the preferred method for checking confidentiality (or

its dual, integrity) of secret information as it flows through a program [112, 78, 87]. In

its simplest form, IFA is an atomic bound constraint problem. The aggregate amount of

information at a certain point i in a program is typically represented as an atomic label

variable αi - a variable with no deeper propositional structure. By inspecting the control

flow of the program leading up to i, one identifies a lower bound lbi on αi. Additionally,

by inspecting the control flow again, one identifies where the outputs produced at i are

used and an upper bound for αi is estimated. These bounds could be either other atomic

variables or constants (elements from the security lattice). The pre-condition for preserving

confidentiality is expressed as lbi ≤ αi ≤ ubi and confidentiality is achieved if this condition

is satisfied for all points in the program.

IFA is very similar to type inference in the presence of subtyping. In fact, much of

the logical and algorithmic techniques for IFA are derived from the subtyping frameworks.

Much like IFA, in a language that supports subtyping, flows between terms are validated

against a pre-defined type lattice which describes the hierarchy amongst the types for

these terms. However, every term in the program is seldom annotated with a type and

types need to be derived for unannotated terms - a process that is commonly known as

type inference. Types for unannotated terms are typically represented as variables and

constraints on values that these variables can take is derived from data dependencies in the

program. Given a constraint set C of inequalities between type variables, the constraint

solver for subtyping frameworks checks if there an assignment of types to variables which

satisfies all constraints in C as well as the pre-defined ordering amongst the types in the

14 Introduction

type lattice. This formulation of type inference and solutions for the same lend themselves

well to the resolution of atomic bound constraints encountered in IFA.

Bound constraints on label variables are typically solved using graph theoretic tech-

niques. Bound relationships that involve only variables are represented as a label-constraints

graph. Upper bounds and lower bounds for a variable are identified through topological

walks of the label-constraint graph by taking into account constant bounds on other vari-

ables. During this process, the policy lattice is queried frequently to answer meet, join and

ordering queries involving constants that bound the variables. Solving these constraints

involves identifying suitable substitutions for the variables that avoids violating the or-

dering of the policy lattice. Therefore, the efficiency of the resolution process is heavily

dependent on the efficiency of its graph theoretic foundations.

Existing graph algorithms for solving these bound constraint problems use a one-size-

fits-all approach and do not exploit the wide structural variety in either the lattices or

the label-constraint graphs. Emerging instances of IFA require dealing with large and

structurally diverse lattices as well as complicated programs with large constraint graphs.

In the face of such intractable graphs, it is imperative to investigate the costs for graph

algorithms that are used in the analysis, and design new ones that are better suited to the

analysis.

1.3 Contributions

In this dissertation, we use graph decomposition to speed-up information flow analysis for

programs where flow is governed by a security lattice. We consider two cases: the first

case where expression are devoid of any security annotations (polymorphic expressions)

and the second case where expressions are sparsely annotated with concrete security labels

(annotated expressions).

For polymorphic expressions, we show that compaction of flow constraints graphs gen-

erated from polymorphic expressions is directly related to the transitive closure operation

for DAGs. We propose a technique based on graph decomposition for speeding up the com-

paction process and show it to be highly effective even in face of intractable graphs. By

means of the decomposition, we are able to abstract away from interconnections between

vertices to those between sets of vertices (which we call clusters), which greatly reduces

the computational costs. More importantly, provides seamless adaptivity over the entire

structural spectrum lattices and constraint graphs. Thus we enjoy the fastest runtime for

every point in the structure-spectrum of these label-constraint graphs as opposed to using

Contributions 15

a one-size-fits-all approach.

For annotated expressions, we investigate the computational costs for resolution of

bound constraints on label variables for annotated expressions. We show that pre-processing

lattices to answer lattice lookups for flow verification is the most compute-intense step.

We then build upon the concept of clusters to design fast and adaptive algorithms that

can preprocess a lattice to answer lattice lookups for pairwise meet, join and ordering

relations in constant time. Similar to the simplification process, the computational costs

of our lattice pre-processing algorithm are also a direct function of the latent scope for

decomposition in the governing lattice.

The main contributions of this thesis are as follows:

1. Existing approaches to Information Flow Analysis have overlooked the pre-processing

necessary for security lattices by assuming them to be trivially small. We derive a

tighter complexity bound on atomic constraint solving for type-based IFA of pro-

grams by taking into account the costs for both pre-processing the security lattice

and processing the constraints graph.

2. We introduce a novel notion of abstraction in lattice pre-processing by using de-

composition of DAGs as an enabler. DAG decomposition lifts lattice pre-processing

from the level of individual elements in the lattice to sets of elements. The resultant

abstraction significantly cuts down the computational costs for pre-processing the

lattice. An additional benefit of our approach is that the computational cost of the

proposed pre-processing algorithm is a direct function of latent scope for decom-

position in the lattice. Thereby, we achieve seamless adaptability throughout the

structure-spectrum of lattices. We derive the asymptotic costs for the algorithm for

pre-processing the lattice as well as the look-up costs.

3. We experimentally demonstrate the suitability of the proposed algorithms by test-

ing them out with emerging examples of real-world security lattices and partial or-

ders such as class hierarchies and powerset lattices which represent two ends of the

structure-spectrum from trees to dense DAGs. Additionally, we also test our algo-

rithm against randomly generated DAGs. For all these test cases, we show how our

proposed algorithm based on graph decomposition make the pre-processing faster,

as well as highly adaptive to the structure of the ordering under consideration.

4. We extend graph decomposition techniques to simplify constraint sets for expres-

sions that are label-polymorphic. These are expressions that are devoid of program-

16 Introduction

mer specified annotations, and a suitable substitution for label variables in these

expressions cannot be obtained until they are put in a context with explicit anno-

tations. Similar to the algorithms proposed for lattices, we develop algorithms for

constraint simplifications that abstract away from individual vertices in the label-

constraint graph to sets of vertices. We stress test the proposed algorithm with

label-constraint graphs of expressions that have little scope for decomposition such

as those derived from the standard library of FlowCaml 1. We show that even in

the face of such intractable graphs, the performance of the decomposition-based

algorithm is favourable when compared to a standard algorithm.

1.4 Overview

The rest of the dissertation is organised as follows:

• We discuss a selection of related literature in chapter 2 including type-based pro-

gram analysis, its applications (such as IFA), and its theoretical foundations such as

decidability and complexity.

• We discuss lattice-directed type-based information flow analysis in chapter 3 and

derive a tighter complexity bound for atomic constraint simplification and solving.

• In chapter 4, we extend graph decomposition based techniques to effectively pre-

process a lattice for answering queries, like ≤, t and u for a pair of elements, in

constant time. We present a novel pre-processing algorithm that enables constant

time queries while seamlessly adapting its computation costs to the structure of the

lattice.

• An experimental investigation of the benefits of our proposed algorithm for emerging

applications for lattice-based security can be found in chapter 5

• We present analogous graph-decomposition based algorithms and experimental re-

sults for constraint simplification for label-polymorphic expressions in chapter 6.

• We review the significance of the thesis in chapter 7 and also discuss directions for

future work.

1FlowCaml is the Caml language enhanced with security annotations. The author would like to thank
Vicent Simonet and Francois Potter at INRIA, France for sharing the source code for FlowCaml

Publications 17

1.5 Publications

The following publications have been produced during the course of this research:

1. Santanu Kumar Dash, Sven-Bodo Scholz, Stephan Herhut, Bruce Christianson, A

scalable approach to computing representative lowest common ancestor in directed

acyclic graphs, Theoretical Computer Science 513(2), pp. 25-37.

2. Santanu Kumar Dash, Sven-Bodo Scholz, Bruce Christianson, Modular design of

data-parallel graph algorithms, International Conference on High Performance Com-

puting and Simulation (HPCS), 2013, pp. 398-404.

3. Santanu Kumar Dash, Sven-Bodo Scholz, Bruce Christianson, Adaptive pre-processing

of security lattices for Information Flow Analysis, submitted to 21st International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), 2015.

4. Santanu Kumar Dash, Bruce Christianson, Boolean Matrix Product as a basis func-

tion in Information Flow Analysis, under review at Information Processing Letters

(IPL).

Chapter 2

Literature Review

2.1 Introduction

Computer programs find use in a wide variety of domains today, and have an equally wide

array of requirements. Consequently, writing correct and effective programs is becoming

increasingly hard. The drive to meet such demanding, and often conflicting, requirements

has pushed program analysis to the forefront of computer science research lately. Through

a combination of carefully crafted logical frameworks and efficient solving of constraints

derived through these frameworks, automated program analysis relieves the programmer

from the burden of meeting system requirements. Instead, due to the advances in pro-

gram analysis, the programmer today can largely focus on building functionally correct

programs and let program analysis verify, and potentially transform, programs to meet

system requirements.

Since type systems are naturally designed to arrest data flows that violate policies of

the type system, multiple forms of flow analysis can be achieved using type systems as an

enabler. In type-based flow analysis, existing type-rules for the language are augmented

with flow information and the type checking process is leveraged to identify undesired

patterns of flow. IFA, which we discussed in chapter 1, is an instance of such an anal-

ysis. Augmenting the existing type system to conduct program analysis offers multiple

advantages. Firstly, the soundness and correctness of the analysis are subsumed by that

of the type system. Secondly, the type rules provide a localised setting for the analysis

of language constructs which makes the analysis modular. And finally, since a program

is type-checked anyway, a type-based flow analysis is efficient because it does not need a

separate traversal of the syntax tree for the analysis. It is unsurprising, therefore, that

type-based flow analysis have found application in diverse areas such as information flow

18

Introduction 19

analysis, alias analysis and resource reasoning etc.

There is a direct correspondence between context and flow sensitive program analy-

sis, and the type discipline of polymorphic subtyping. Many instances of type-based flow

analysis, in particular IFA, are based on polymorphic subtyping. The amount of aggre-

gate information at a point in the program is a function of control flow in the program

(directional analysis achieved through inclusion/subtyping on labels) and the context in

which the flow is considered (polymorphism). Therefore we discuss the development of

polymorphic subtyping in programming languages in section 2.2. This is necessary in order

to understand the interplay of polymorphism and subtyping with other language features

and the computational costs of deploying an analysis based on polymorphic subtyping.

From classical polymorphic subtyping found in type systems for modern day languages,

we move onto applied polymorphic subtyping on annotated type systems in section 2.3.

There, we discuss how polymorphic subtyping on type annotations can be used towards

performing both flow-sensitive and context-sensitive program analysis. In particular, we

discuss the advantages, disadvantages, computational costs and the equivalences between

flow analysis and annotated types. Interestingly, both the classical polymorphic subtyping

systems discussed in section 2.2 and the applied polymorphic subtyping systems discussed

in section 2.3 can be reduced to a bound constraint problem which is the focus of this

dissertation. A constraint based treatment of such systems is discussed in 2.2.3. The ob-

jective of the discussion in sections 2.2 and 2.3 is to demonstrate the relevance of adaptive

bound constraint solving (which is the focus of this dissertation) to polymorphic subtyping

systems and annotated type systems with polymorphic subtyping on the annotations.

Having discussed the theory behind polymorphic subtyping, we discuss two of its appli-

cation areas in section 2.4. One of them is Type-based Information Flow Analysis (IFA)

which is the focus of this dissertation. Type-based IFA has been successfully used in

language-based security for checking and enforcing secure (protecting both confidentiality

and its dual, integrity) information flow through programs. We also discuss advances made

in alias analysis using polymorphic subtyping, where ownership properties of references

are inferred to aid in removal of aliasing problems that are prevalent in object-oriented

programs. Like IFA, alias analysis is an instance of an annotated type system that can

pontentially benefit from the adaptive constraint solving techniques presented in this dis-

sertation.

Having discussed the theory and applications of polymorphic subtyping, we discuss

graph algorithms for solving the bound constraints encountered in polymorphic subtyping

systems in section 2.5. This dissertation discusses adaptive approaches to simplifying and

20 Literature Review

solving atomic bound constraints. Therefore, we discuss the graph algorithms that are

used in the constraint solving, and recent advances that have been made in graph theory

to accelerate these algorithms. Finally, we summarise the chapter in section 2.6

2.2 Polymorphic subtyping

Type-based flow analysis through polymorphic subtyping on labels has a wide range of

applications. However, it is not always possible to infer the most general substitution for

label variables that represent aggregate properties at program points. This is because type

inference, and consequently type-based flow analysis is not decidable for every extension

of the λ-calculus. In this section, we discuss the decidability of type inference for various

extensions of the simply typed λ-calculus. Then for the decidable fragments which permit

type inference with polymorphic subtyping, we discuss the computational costs to achieve

type inference.

2.2.1 Polymorphism and decidability of type inference

System F [84] differs from the simply typed lambda calculus by introducing a notion of

universal quantification over types. However, type inference for Curry-style variant of

System F is undecidable without explicit type annotations [114]. This is a heavy price to

pay for programming language design, and typically a restricted form of polymorphism

called let-polymorphism [90] is used instead of the full-fledged polymorphism of System

F. In let-polymorphism, type variables are only allowed to range over quantifier-free

types (monotypes). This distinction between monotypes and polytypes (type schemes

with quantifiers in prenex positions) makes the type inference simple and decidable. The

Hindley-Milner type system [90] which forms the core of languages like ML is able to

deduce the most general type for any program without the need for type annotations.

Having identified polymorphism that lends itself well to type inference, we now discuss

integration of other language features such as references and recursion into a first order

polymorphic calculus. Monomorphic recursion can be easily achieved in the Hindley-

Milner type system by using a fixed point operator. Type inference for monomorphic

recursion without let-polymorphism has the same linear cost as typing the simply typed

λ-calculus. However, it is possible that the body of a recursive definition passes a poly-

morphic argument to itself. This situation is called polymorphic recursion (also know as

Milner-Mycroft typability) and was first studies in [77]. It is known to be undecidable

in the absence of explicit type annotations [54, 62]. Therefore, programming languages

Polymorphic subtyping 21

like ML normally support monomorphic recursion with a limited support for polymorphic

recursion through a combination of let-polymorphism and monomorphism, or through

explicit type annotations. Polymorphism and memory references do not mix well. It was

shown in [110] that type inference in the presence of polymorphic references is undecid-

able. Therefore, a watered down version of references, known as value restriction [116], is

used in mainstream programming languages that support first order polymorphism .

2.2.2 Type inference with subtyping

So far, we have discussed the type inference of the typed λ-calculus augmented with ref-

erences and recursion. A combination of polymorphism, recursion and references provides

a realistic platform for language development, and indeed it has been at the heart of

languages such as ML. However, in this thesis, we work towards an efficient constraint

solver for polymorphic subtyping on type annotations. In this context, it is important to

understand the efforts that have been made towards mixing polymorphism and subtyp-

ing by the type theory community, and the theoretical challenges that have been faced.

Hence, we now proceed to discuss the efforts that have been taken to include subtyping

in the context of the core calculus discussed so far. Multiple efforts have been made to-

wards bounded quantification - a combination of polymorphism and subtyping. Some of

the early works that discussed type inference in the presence of subtyping were [74] and

[45]. Both these works generated constraint sets from the syntax of the program which

were indicative of type inclusions. Subsequently, these papers presented algorithms for

solving these constraints and showed the inference to be sound and complete. While [74]

interleaved the generation and simplification of the constraints, the algorithm presented

in [45] dealt with structural subtyping and generated coercion sets for type conversions.

In subtyping-based systems, deciding whether a term can have a type is reduced to the

problem of checking whether a system of set inclusion constraints, derived syntactically

from the source code, has a solution. This was noted in [1] and a general framework for

solving type inclusion constraints was proposed there. The techniques described in [1]

were shown to be effective for a rich type system with >, ⊥, function types, constructor

types, recursive types as well as restricted forms of union and intersection types. While

[1] provided an elaborate framework for solving subtyping constraints, it stopped short

of discussing subsumption of constrained type schemes. Subtyping of constrained type

schemes was discussed in [111] and is necessary for two reasons: firstly, separate com-

pilation through modules and functors which require signature matching, and secondly

simplification of type schemes creates a need to check whether the simplified scheme sub-

22 Literature Review

sumes the original scheme.

2.2.3 Type inference as constraint solving

It was observed in [81] that the constraint system is orthogonal to the type-theoretic as-

pects. Therefore, they proposed a variant of the Hindley-Milner type system called HM(X)

which extended the original Hindley-Milner system with constraints, where X could be in-

stantiated to a specific constraint system. This enabled instantiating the inference engine

for a variety of constraints including unification and inclusion constraints. It was also dis-

cussed that, under certain restrictions on X, type inference would always compute the most

general type for each term. The expressiveness of such an approach was validated through

instances of HM(X) both equality and subsumption based inference in [90]. Indeed, it

was shown [90] that the type system of ML can be expressed as a natural extension of

HM(X) where X is instantiated to an equality constraint system. Further work on HM(X)

has produced a syntactic soundness proof [89] and an extension of HM(X) with bounded

existential and universal data-types [99]. The use of bounded existential and universal

types uses polymorphic subtyping at the level of the type system. Therefore, our work on

atomic bounded constraint solving over a lattice is applicable to such systems too.

2.2.4 Computational costs of subtyping

The decidability of HM(X) is dependant on the constraint system that X is initialised to.

Since the focus of this research is subtyping constraints, we now discuss the decidability

and complexity results for structural and non-structural subtyping. Checking satisfiability

of structural subtyping inequalities for finite types (types represented as a finite tree i.e.

not equi-recursive) over posets was shown to have a PSPACE lower bound in [107] and

to be PSPACE-complete in [44]. The results presented in [107] were extended to include

recursive types and atomic subtyping in [109] and complexity of checking statisfiability was

shown to be DEXPTIME. While, it was shown in [107] that checking satisfiability over a

lattice was achievable in PTIME, techniques presented in [107] only checked satisfiability

and did not find a solution. A polynomial time algorithm for solving atomic constraints

over a poset 〈C,≤〉 of atomic subtypings such that 〈C,≤〉 is a disjoint union of lattices

was given in [108]. The satisfiability of non-structural subtyping constraints for finite and

recursive types over posets was shown to be PSPACE-complete and DEXPTIME-complete

in [80].

While satisfiability involves checking whether a set of constraints has a solution, a

Type-based Flow Analysis 23

significant amount of work has also been done towards representing the constraints in as

compact a manner as possible. This aids in both readability and efficiency of verification

of subtyping relationships between type schemes. The subtype simplification problem for

atomic subtyping, which involves constraints between atomic variables and constants, was

discussed in [92]. The authors in [92] also established that the worst-case size of most

general typings has an exponential lower bound. In subsequent work, it was shown that

entailment of the subtyping relation (determining whether a set of constraints entails a

subtyping relation) for simple constructed types had a structural lower bound of coNP-

hard and an upper bound of coNP [53]. Recursive subtype entailment was studied in [55]

and it was shown that nonstructural subtype entailment is PSPACE-hard for finite trees

(simple types) as well as infinite trees (recursive types). It was also shown in [55] that

for the case of structural subtyping, subtype entailment over infinite trees is PSPACE-

complete when the ordering on the trees is generated by a lattice of type constants. A

series of practical algorithms for simplifying constrained type schemes (polymorphic types)

were suggested in [88, 85]. The simplifications discussed in these works were largely

aimed at non-structural subtyping systems. Further algorithms for simplifying structural

subtyping constraints were discussed in [101]. It was identified, through the advances in

structural and non-structural subtyping systems, that complicated notions of subtyping

involve quantifiers and a first order theory of subtyping constraints was developed in [104].

Subsequently, it was shown in [66] that the first order theory of structural subtyping of

non-recursive types is decidable. This discussion is relevant to the dissertation because

much of the logic used in this dissertation is based on first order theory of structural

subtyping.

2.3 Type-based Flow Analysis

Annotated types i.e types augmented with flow labels, are a useful vehicle for flow analysis.

In type-based flow analysis, the type derivation of a program forms the basis of static

analysis. Each type rule provides a localised setting for the analysis of language constructs,

and the ability to use existing types make type-based analysis an attractive proposition.

One of the first papers to explore the equivalences between type systems and control flow

analysis was [51] where a series of equivalences were established between type systems and

control flow analysis. Since these equivalences were established, type-based flow analysis

has been extensively used in the areas of language-based security [93, 50], alias analysis

[31], resource-usage analysis[61, 57], differential privacy [37], etc.

24 Literature Review

Type-based flow analysis annotates the type structure of terms with a flow label. It

then performs various forms of flow analysis, investigating the reachability between values

at multiple program points by deriving relationships between the labels at the these points.

The success of type-based flow analysis is due to the multiple advantages it offers over other

forms of flow analysis such as constraint satisfaction and abstract interpretation. Since

it can be built on top of the existing type system rules for a statically-typed language, it

offers multiple advantages such as the following:

• Simplicity: Types provide a localized setting to reason about language constructs.

Annotating types with static information and using type annotations as discrimina-

tors, one obtains a convenient basis for designing static analyses [82].

• Efficiency: Since statically typed programs need to be type-checked anyway, a

traversal of syntax trees for type checking can be augmented with techniques for

type-based flow analysis. This provides significant advantages over trying to perform

a similar kind of analysis on a dynamically-typed program [82]. Type-based flow

analysis has been successfully integrated with static-type checking to drive code

specialisation without additional passes of the syntax tree in array-programming

languages like Single-Assignment C [98].

• Correctness: Perhaps the biggest advantage of using types to perform flow-analysis

is that the correctness of the analysis is subsumed by the correctness of the annotated

type-system. The correctness of the type system with repect to semantics is known

as type soundness. The well known method for proving type soundness that is based

on progress and preservation carries over to type and effect systems as well [86].

A number of equivalences between flow analysis and annotated type systems were con-

sidered in [51] but these were largely context-insensitive comparison of the two techniques.

The first description of a flow and context sensitive type-based analysis was given in [75].

Two context-sensitive analyses for a simply typed programming language were presented

in [75]: one was inspired by let-polymorphism and another by polymorphic recursion. The

computational complexity for the context-sensitive flow analysis for let-polymorphism was

O(n7) and that for polymorphic recursion was O(n8) where n is the size of the explicitly

typed program. These complexity measures were improved in [91] where O(n3) algorithms

for the two cases were discussed. The reduction in complexity was achieved by avoiding

copying constraints in label-polymorphic expressions to instantiation sites. Instead, the

instantiations are remembered as a separate instantiation constraint at all sites where the

Applications of Type-based Flow Analysis 25

label-polymorphic expression is used. The algorithm discussed in [91] further reduces the

constraints to a context-free language (CFL) reachability problem over a flow graph for

which cubic-time algorithms exist. In this dissertation, we design a novel approach to

solving flow constraints derived from annotated type systems. Our approach leverages the

nature of interdependencies between flow variables to design an adaptive solver. There-

fore, the literature on type-based flow analysis discussed in this section can directly benefit

from the content of this dissertation.

2.4 Applications of Type-based Flow Analysis

As mentioned above, our work on adaptive constraint solving for annotated type systems is

directly relevant to multiple forms of flow analysis that are based on polymorphic subtyping

over labels that describe flow properties. In this section, we discuss some instances of type-

based flow analysis which are based on polymorphic subtyping. One of them, Information

Flow Analysis, which is described below, is used as a test case to obtain experimental

results in this dissertation.

2.4.1 Secure Information Flow Analysis

Type-based flow analysis has been successfully applied to language-based security for

checking and enforcing confidentiality and integrity of privileged information [112, 103]. In

this section, we discuss the advances in using type systems to ensure information flow con-

trol. We first discuss theoretical advances made in augmenting type systems to achieve in-

formation flow analysis. We then present work done towards incorporating these advances

in type systems of real-world programming languages. Finally, we discuss theoretical ad-

vances on the policy side of things and show the different approaches taken to classify a

flow as desirable or undesirable.

The invaraint that needs enforcement in information flow analysis (to achieve presen-

vation of confidentiality) is that no assignment to variables that can be publicly read be

allowed in expressions that take any private variables as inputs. The seminal work that

triggered research in static enforcement of secure information flow was [38]. In [38], a static

approach to information-flow analysis was presented and it was shown how static analysis

removes runtime overhead for security checks. This analysis prevents both explicit and

implicit flows (through the control flow) statically. The framework presented in [38] was

able to detect insecure information flow through both explicit (assignments) and implicit

(control flow) channels. However, a proof of soundness proof was not developed until the

26 Literature Review

analysis was formulated as a type-based flow analysis problem in [112].

Soundness was shown in [112] by proving non-interference. Informally, non-interference

[48] is satisfied if the values of the public outputs of a program do not depend on its

secret inputs in such a way that observing the values of the public outputs lets a malicious

attacker guess the value of the secret input. When expressed in terms of program execution

for a deterministic language, non-interference requires that if the program is run with

different secret inputs, while holding the public values fixed, the public output must not

change [50]. A type-based formulation of non-interference was given in [50], and since

then the predominant technique for enforcing secure information flow statically is type-

based information flow analysis. However, static enforcement is not a complete solution

for enforcing secure information flow. For dynamically-typed languages like Javascript,

it is impossible to check secure information flow through a static type-based approach.

Indeed, for dynamic and hybrid approaches to enforcing secure information flow, we refer

the reader to two excellent surveys in [50] and [93] that detail issues in and techniques for

information flow control. Much of the material on static information flow analysis in this

section is derived from [93]. This dissertation deals with static analysis of deterministic

programs. More details about dynamic analysis can be found in [93]; our work is not

directly applicable to dynamic analysis.

In secure type systems the types for variables and expressions are annotated with la-

bels, and an ordering on the labels specifies a security policy for the use of the typed data.

The static analysis proposed in [38], which is commonly known as Denning-style anal-

yses, prohibits both undesired implicit and explicit information flows. This is achieved

by keeping track of the aggregrate security level achieved through the control flow in

addition to the data flow. The aggregate level of security achieved through the control

flow is commonly known as the security level of the program counter (pc for short). The

object of secure information flow is thus to prevent any inadvertent declassification at

any point in the program to a level that is lower than the current pc. In other words,

public side effects are disallowed in secret contexts. This enforcement scheme is know as

flow-insensitive, since it does not allow the security classification of a program locations

to vary. In contrast, a flow sensitive analysis through a type system was proposed in [59]

for simple While programs where the type systems are parametrised over the choice of a

flow lattice - this enables different abstractions for flow correctness at different program

points. Additionally, it is also shown in [59] how any flow-sensitive program can be trans-

formed into an equivalent program typable in a flow-insensitive type system. The concept

of flow-sensitive information-flow security was originally discussed in [5]. However, the

Applications of Type-based Flow Analysis 27

enforcement in [5] was achieved through a Hoare logic rather than a type system.

As far as practical implementations of information-flow security are concerned, work

has been done to extend Denning-style analyses to many different programming languages.

Such an analysis forms the core for information flow analysis frameworks like JFlow for

Java [78, 79] and FlowCaml for Caml [87] and a similar framework for Haskell [67]. Cen-

tral to these frameworks is how exceptions are handled in a mainstream programming

language. Exceptions are different to other language constructs because they trigger un-

expected control flow jumps in the program and therefore require special treatment. A

novel treatment of secure exception handling is discussed in [9] where the programmer

has the choice of whether to handle or not handle secret exceptions. The security mecha-

nism ensures that in the former case, exceptions are never handled and in the latter case,

they are always handled using mainstream restrictions. The work in [9] further shows

that such an approach is sound with respect to termination-insensitive noninterference.

Amongst other work for secure information flow for ML-like languages, expressive dynamic

information-flow policies called flow-locks and the associated type system were presented

in [28]. Flow-locks were subsequently recast using a knowledge based definition in [29] and

extended to a role-based multi-principal settings in [30].

Having discussed efforts at enhancing type systems to achieve secure information flow

in a setting where security annotations are ordered over a lattice with two elements, we

now discuss some variations to lattice-based policy models that have been considered.

A local flow policy that allows computations in its scope to implement information flow

according to the local policy was discussed in [3]. A type and effect system that enforces

such a local flow policy was also discussed in [3]. A notion of syntactic escape hatches

that delimit the amount of information released, and a type system that achieves this,

were discussed in [95]. The notion of delimited release was extended with code locality

in [8] where a type system that forcibly disallows declassification in secret contexts was

discussed.

Relaxed models of non-interference were discussed in [68] where the notion of relaxed

noninterference generalises traditional pure noninterference. Relaxed non-interference give

rise to interesting lattice orderings relevant to this dissertation and form one of the test

cases for our experiments on answering lattice queries efficiently. A generalised framework

of downgrading policies was presented in [68] where policies could be specified in a language

and statically enforced through a type system. A notion of abstract non-interference was

discussed in [47] where a more relaxed form of non-interference where the observational

power of attackers are limited; it deals with attackers that observe only properties of data

28 Literature Review

rather than exact values.

In [117], a model of information flow was presented with the class representing a

collection of objects with the same structure as an abstract property. Thus, from the

point of view of lattice-directed information flow control, classes would represent elements

in the security lattice and the subclass relation would represent the ordering between the

elements. Class-level non-interference mandates that a class is secure if observing the

output of any of its public methods does not reveal any type information regarding its

inputs.

2.4.2 Alias Analysis

Aliasing is a prevalent problem in object-oriented programming. Bugs due to unintended

aliasing are hard to pin-point and can lead to unexpected results. Ownership types address

this issue by introducing a notion of ownership of objects which directs how references

can be passed and used. Proving that an invariant is preserved for a structure when a

program is executed becomes difficult if there is unmitigated proliferation of references to

the structure.

Ownership can be used to control accesses to objects and restrict passing of references.

The restriction enables easier reasoning about programs for modular verification [41, 16,

76, 14, 12, 15], concurrency [26, 83, 25, 96, 27, 65, 24], security [69, 32, 13, 102] and

memory management [118, 7, 119, 105].

There are two major approaches to enforcing topological restrictions (which object

owns what references) on the program heap and enforcing encapsulation. Encapsulation

of references in this fashion gives the programmer power to restrict where the references

can be used and hence reduces problems related to aliasing. In the owners-as-dominators

approach, a given object can only be accessed if one obtains permission to access the

owner of the object. Consequently, program heaps are tree-structured i.e. an object is

inside its owner. The owner-as-dominator discipline mandates that all references to an

object pass through its owner. In contrast, the owner-as-modifier approach relaxes the

owners-as-dominators approach. This means that an object can be modified by its owner

and by its peers i.e. objects that have the same owner. An excellent survey of techniques

for checking object ownership and limiting aliasing can be found in [31]. A large part of

the material on static techniques for inference of Ownership Types that is relevant to this

dissertation is abridged from [31] and these static techniques can potentially benefit from

the results described in this dissertation.

Programs that make use of Ownership Types systems normally require annotations

Applications of Type-based Flow Analysis 29

to express the types for objects and ownership properties. While this is trivial for small

programs, it can be cumbersome for large programs. It is not just the application code

that needs annotations but the library needs to be annotated as well to describe owner-

ship properties. In view of this, it is necessary to automatically infer ownership properties

wherever possible, to relieve the programmer of having to annotate every part of the ap-

plication code and the library. One of the earliest techniques for inference of Ownership

Types using constraints, called AliasJava was presented in [2]. In the AliasJava system

presented in [2], the inference was too fine grained, as multiple alias parameters were used

to describe ownership properties. Therefore, a class which represents a collection of values

and methods was shown to end up with potentially hundreds of inferred parameters. An-

other approach to Ownership Type inference based on the escape analysis technique [23]

was developed and presented in [23]. However, similar to [2], the ownership parametrisa-

tion was too expansive. Consequently, the proposed algorithm resulted in a large number

of parameters.

As a part of the build-up towards literature on ownership inference, we discuss some

advances that built on the results of the above-mentioned approaches and enabled precise

and efficient aliasing analysis through ownership types. A generalisation of a points-to

analysis was presented in [70] to infer uniqueness and ownership like properties for object-

oriented programs. The presented tool is called Uno, and it combined constraint-based

intraprocedural and interprocedural analyses to collect information about encapsulation

properties. In subsequent research, an Andersen-style points-to analysis [6] was employed

as part of a static algorithm to infer ownership properties for the owners-as-dominators and

owners-as-modifiers protocols. In contrast to [70] where exclusive ownership is captured

(if the contents of a field are passed temporarily to an object, the field is counted as

non-owned even if it remains within the dominance boundary of the enclosing object), the

approach in [72] captured the owner-as-dominator relationship and handled the exclusive

ownership more precisely.

A static analysis technique that infers dominance relationship between objects was

presented in [73]. It was shown how dominance inference is central to ownership type

inference, and the dominance inference framework was used as a building block towards

ownership type inference for the owners-as-dominators protocol with one parameter. The

algorithm computed approximations of the object graphs, and candidate ownership an-

notations were derived from a dominance tree built using a variation of must-point-to

information [39, 60]. Later in [58], this work was extended in two ways. Firstly, the

framework in [58] accepted manual annotations to direct the inference and secondly, un-

30 Literature Review

like [73], the inference in [58] provided manual optimality guarantees i.e. it types each

variable with the most general type.

Another inference system for ownership properties of objects which accepted program-

mer annotations was presented in [40]. Similar to [58], the approach first generates a set of

ownership constraints based on program semantics, and then encodes the constraints as a

boolean satisfiability problem. After the constraints have been solved, the second part lets

the programmers fine-tune the typing by specifying preferences for certain typings. These

preferences can be specified by supplying partial annotations to the program. However,

unlike [58], there is no ranking over typings and therefore, it is hard to scale the inference

to larger programs.

2.5 Graph algorithms for solving subtyping constraints

In this thesis, we propose adaptive means to solve constraints arising in program analysis.

In particular, we look at constraints that are produced when structural subtyping con-

straints are reduced to the level of atomic constraints, where both the l.h.s and r.h.s of the

inclusion constraint are either a non-constructed variable or a non-constructed constant.

The standard algorithm for solving such constraints is to represent the relation between

the atomic variables as a directed graph, fuse any cycles in the graph, and perform a topo-

logical walk of the graph to obtain lower and upper bounds for all the variables by taking

into account the constants that bound them [101]. For our work, we assume that the con-

stants are themselves arranged as a lattice. Therefore, the constraint solving algorithm

frequently needs to query the lattice for operations like join (t) and meet (u), and order-

ing (≤) relationships involving constants. While the topological walk is straightforward,

the lattice queries are non-trivial to answer, especially if the lattices under consideration

are large in size.

In this section, we give an overview of graph theoretic approaches that have been pro-

posed to answer lowest common ancestors (LCAs) for Directed Acyclic Graphs (DAGs)

in the literature. DAGs are a natural representation for pre-processing lattices in order

to answer lattice queries in constant time which is a requirement for an efficient atomic

constraint solver. When a lattice is represented as a DAG, obtaining the LCA for a pair

of vertices in the DAG is analogous to obtaining the t of two elements in the correspond-

ing lattice. Therefore, a discussion of LCA algorithms for trees and DAGs in general is

important and relevant. The u query is the dual of the t query and the ≤ query is a

special case of the t query where, in a query involving two elements, one of the elements

Graph algorithms for solving subtyping constraints 31

is the result of the t operation. In section 2.5.1, we discuss approaches presented in the

literature for pre-processing tree in order to answer LCA of two vertices in the tree in

constant time. We discuss how these techniques have been extended to answering LCA

queries for DAGs in general in section 2.5.2.

2.5.1 LCA computation in trees

While investigating multidimensional discrete range searching problems, the authors of

[46] observed the equivalence between unidimensional range minimum searching and the

LCA computation on Cartesian trees - a heap-ordered binary tree derived from a sequence

of numbers. The unidimensional range minimum query is defined as follows.

Definition 1. Given an n-element array A[1..n], the range minimum index query RMQidx(i, j)

returns the index k of the smallest element A[k] in the sub-array of A beginning at position

i and ending at j.

Since the Cartesian tree is a binary tree, efficient schemes needed to be developed

for the computation of LCA on nodes belonging to a generic tree i.e. a tree where the

vertices have fewer/more than two children. To achieve this a labeling scheme for nodes

was proposed in [49]. This scheme was able to answer LCA queries in constant time after

a linear time preprocessing. However, the preprocessing for the algorithm presented in

[49] remained complicated until some of the preprocessing steps were removed in [97]. A

parallel approach to computing the LCA of two nodes using the simplified algorithms was

also presented in [97].

A completely different approach to preprocessing trees for computing LCAs of two

nodes was presented in [21]. The approach relied on the Euler tour of the tree [35] to

generate a sequence of integers as an input to the preprocessing phase.

It was shown in [21] that the LCA of nodes u and v is always encountered between

first visits to u and v during the Euler Tour of the tree. Let E store nodes in Euler Tour

sequence and D store the depths of those nodes in the same sequence. For any two nodes

u and v, let uidx and vidx denoted the indices of the first occurrence of these nodes in

E. Then, RMQidx(uidx, vidx) on the array D returns the index of the LCA of the two

nodes and E[RMQidx(uidx, vidx)] returns the LCA itself. However, it was observed in [21]

that the RMQidx queries on the depth array actually form restricted domain problem

where consecutive entries differ by ±1. This restricted domain property was exploited to

develop efficient schemes for answering the ±1RMQidx and subsequently the LCA query

32 Literature Review

in constant time after linear time preprocessing [4] [19]. In this disseration, we build upon

these techniques to design graph algorithms for adaptive resolution of bound constraints.

2.5.2 LCA computation in DAGs

Interest in answering LCA queries vertex-pairs in DAG in constant time after pre-processing

the DAG is recent and was initially studied in full detail in [20]. The authors reduced the

all-pairs LCA problem to all pairs shortest distance query and proposed a solution that

had a preprocessing time of O(n2.688) (n being the number of vertices in the DAG) and

constant query time. The exponent is derived from a modified matrix multiplication oper-

ations. Techniques from rectangular matrix multiplication discussed in [33] and [34] were

used in [36] and [18] to further reduce the computational complexity of preprocessing to

O(n2.575). Similar to [20], the exponent in this case also results from a modified matrix

multiplication operation.

Apart from the general results pertaining to LCA computation in DAGs, there have

also been techniques developed to address special classes of DAGs. A path cover based

approach to computing LCAs in DAGs having low width was discussed in [64]. The

algorithm had a preprocessing time of 1 Õ(n2w(G)) where w(G) is the width of the DAG

and constant querying time. This approach was also validated for DAGs having small

depth, and for such test cases, the algorithm was shown to possess the same worst case

complexity as the costs reported in [36].

For sparse DAGs, techniques to compute all-pair representative LCAs with a time

complexity of O(nm) were discussed in [36] and [18], here m is the number of edges in the

graph and n is the number of vertices in the DAG. It was further shown in [42] that all-pair

representative LCAs can be computed in O(nmred) where mred is the number of edges in

the transitive reduction of the DAG. Based on the results regarding the number of strongly

independent vertices in random DAGs [17], the authors of [42] note that the complexity

works out to O(n2 log n). However, the worst case complexity for this algorithm stands

unchanged at O(nm) because computation of transitive reduction itself takes O(nm) time.

Similar to the techniques based on reachability matrices reported in [36] and [18],

we also use matrix multiplication as the basic ingredient in our approach. Therefore,

we demonstrate the advantages of our algorithm by comparing it with the best reported

algorithms based on matrix multiplication. As discussed earlier in this section, these

algorithms have time and space costs of O(n2.575) and O(n2) respectively [36, 18].

1Õ(f(n)) = O(f(n) polylog(n))

Summary 33

2.6 Summary

We began this chapter by discussing the interplay of polymorphism and subtyping with

other features of programming languages. This formed a basis for discussing the appli-

cations of polymorphic subtyping to program analysis. We discussed why a flow analysis

framework based on polymorphic subtyping on type annotations is a superior approach

to other forms of static flow analysis for a variety of optimisations. We also discussed

two specific instances of annotated type systems applied to program analysis. Having

discussed the computational costs of subtyping systems, we also showed why graphs al-

gorithms are central to solving constraints on labels. In the rest of this dissertation, we

develop novel graph algorithms for solving the atomic inclusion constraints encountered

in program analysis. Such constraints are the foundational building block in type-based

flow analysis where the discrete label constants are ordered over a lattice. In the next

chapter, we discuss type-based IFA in detail which helps us understand the connection

between annotated type systems and graph theory. Since the techniques we develop in this

dissertation are tested specifically for IFA, the next chapter is also useful for interpreting

our theoretical and experimental results.

Chapter 3

Information Flow Analysis

3.1 Introduction

Information Flow Analysis (IFA) verifies whether the flow of information through a pro-

gram obeys a pre-defined security policy. The information could either be the input data

to the program or a result computed from the input data using expressions described in

the programming language. The motivation behind IFA is to prevent information that is

deemed classified from getting inadvertently de-classified. Type checking for programming

languages is a natural approach to inspecting how information flows through a program.

Type checkers inspect every term in the grammar for type compatibility between expected

inputs to an expression and actual parameters passed to it. Thus, the type information

for an expression can be used to carry the amount of privilege associated with it as well,

and information flow analysis can build on the type-checking process.

However, conventional type-checking mandates explicit declaration of types for pro-

gram variables. It is often cumbersome to do so, and one of the prime reasons behind

popularity of languages like OCaml, Haskell, etc is that the type checker can derive the

most general type for an expression without a need for explicitly declaring types for vari-

ables. The type checker manages to derive the most general type for expressions through

a process known as type inference. The inference process represents types for terms as

variables, generates constraints on these variables depending upon where the terms are

used, and finally solves the constraints to identify a suitable substitution for the variables.

The type inference process lends itself well to IFA. Similar to declaring types for terms,

declaring privilege levels for all terms is cumbersome. Therefore, ideas from type inference

can be used to perform information flow analysis as well. Similar to the type inference

process, information flow analysis of programs consists of two steps. In the first step, flow

34

Introduction 35

constraints are generated from the program and rewritten to express them in a simplified

manner. In the second step, the simplified constraints are resolved by checking against a

predefined lattice of security labels which lays out the security policy. The type system is

typically relied upon for generating flow constraints. Simplification is typically achieved

by compacting flow constraint graphs derived from function abstractions such that, for a

given function, only the input variables are related to the output variables. Resolution,

on the other hand, involves querying a pre-defined lattice of security labels to assert

confidentiality of information.

In this chapter, we show how information flow analysis can be achieved using type

inference. We first discuss information flow analysis using type-checking where every ex-

pression is annotated with its type and the privilege level of the information it holds.

Then, we discuss a typing approach which is based on constraints and lends itself well to

both type inference and information flow analysis. We present all aspects of constraint

based typing and IFA, such as constraint generation, constraint simplification and resolu-

tion of constraints, and also discuss the computational costs for all the aspects. The main

technical contributions of this chapter are as follows:

• We estimate the computational costs of constraint simplification and resolution.

Unlike similar works [10, 87, 78, 11, 52], our approach does not assume that lattice

queries can be computed in constant time with little overhead. Instead, we precisely

quantify the cost of pre-processing the lattice to answer queries in constant time.

• We identify the computational bottlenecks in both simplification and resolution of

information flow constraints. We then formulate the computational costs of the

bottlenecks in terms of Boolean Matrix Product (BMP), and hence present a compact

representation of the complexity costs for the bottlenecks.

The rest of the chapter is organised as follows. We present information flow analysis

using types in section 3.2 and a corresponding constraint based approach in section 3.3. We

discuss constraint solving in section 3.4 and simplification of constraints on type schemes

in section 3.5. We discuss the computational costs of a constraint-based approach to

information flow analysis in section 3.6 and its bottlenecks in 3.7. Finally, we summarise

the contents of this chapter and motivate the material for chapters 4, 5 and 6 in section

3.8.

36 Information Flow Analysis

3.2 IFA using annotated types

Information flow in programs consists of two kinds: explicit flow and implicit flow [120, 78].

Explicit flow is normally due to assignments made to program variables, whereas implicit

flow is a consequence of program variables depending indirectly on the result of other

expressions. Consider the following expression:

λs.λx.λy.(if (s > 0) then x = y else x = 5)

In the example above, the information flow from variables y to x is explicit. On the

other hand, the value of x also depends indirectly on the value of s. During subsequent

execution, any knowledge of the value of x can be used to guess properties of s. In other

words, there is implicit flow of information from s to x.

There is a direct relation between implicit information flow and manipulation of mem-

ory references. In the function abstraction above, the value of x may not be observable

after the function is applied unless x is a memory reference. For languages that support

imperative features, information flow analysis needs to be aware of all references that could

be manipulated in bodies of function abstractions. These references could potentially be

read during execution of other abstractions and leak information implicitly. Due to this

observation, implicit flow is often approximated as information flow through side-effects

such as manipulation of memory references.

3.2.1 Capturing implicit and explicit flow through types

Type systems are a natural vehicle for enforcing information flow policies [86]. The primary

objective of a type system is to ensure program safety, and information flow control can be

achieved by leveraging on the type checking process. Explicit information flow is controlled

by annotating types of expressions with security levels - an indicator of how secure the

expression needs to be. In this dissertation, we typically use l as a variable representing

a security level. The type checking process only allows explicit flow of information from

an expression at a lower security level to one that is at a higher level. In order to control

implicit flows, a standard technique is to use a program counter (pc in short). The value

of pc is different at different points in the program and is indicative of the information

that can be learned through knowledge of the control flow path taken to reach a particular

point in the program. Type checking ensures that the side effect of an expression has a

security level that is at least as restrictive as the pc.

Having described briefly how types can aid in information flow control, we are now

ready to describe an annotated type system to achieve the same objective. We deal with

IFA using annotated types 37

three types of type constructors: unary type constructors for base types, binary type

constructors for references, and ternary type constructors for function types. One may

notice that the arity is one more than the standard arity for base types and references.

This is because we now annotate types with levels for these type constructors. In addition

to privilege levels, function types are also annotated with a pc variable for representing

the net effect of applying the function. Hence, function types are quaternary constructors.

The set of types used in our discussion is summarized in figure 3.1.

t ::= unit | bl | t refl | (t pc−→ t)l

Figure 3.1: Set of types

We now present a set of type rules to enforce information flow control for the lambda

calculus with references and let-polymorphism. While these type rules can be easily ex-

tended to incorporate polymorphism through universal quantification, we leave out poly-

morphism for time time being to keep the presentation simple. Polymorphism in the

traditional and the constraint-based setting is discussed in section 3.3.2.

The typing rules are laid out in figure 3.2. Here Γ is a partial mapping from program

variables to types and M is a partial mapping from memory locations to types. A typing

judgement is typically written as pc, Γ, M ` e : t and read as: under the assumptions of the

program counter pc, the type environment Γ and types for memory locations contained in

M, the expression e has type t.

The type rule V-Var is standard. A variable x has type Γ(x). The rule V-Abs

typechecks function abstractions. The type of the function carries with it a pc which is an

aggregation of the function’s latent side-effects. This piece of information is useful while

typechecking function applications. Rule E-App typechecks function applications. Neither

the result of the function nor its side effects should leak information about the function’s

identity. The former is achieved by ensuring that the function’s security annotation l

guards the type of the output expression (written as l / t) while the latter is achieved by

ensuring that the function body runs at pc t l.

The rule E-Ref checks memory allocation operations. When a memory location is

created, the security level for the created location needs to be at least at the level pc

to prevent implicit flows. Therefore, pc guards t in the premise of the rule E-Ref.

Rule E-Deref checks that the result of looking up the contents of a reference does not

leak information about the reference itself. This is achieved by ensuring that the reference

38 Information Flow Analysis

t ∈ Γ(x)

Γ, M ` x : t
(V-Var)

pc, Γ[x 7→ t′][f 7→ (t′
pc−→ t)l], M ` e : t

Γ, M ` fix f.λx.e : (t′
pc−→ t)l

(V-Abs)

Γ, M ` v1 : (t′
pctl−−→ t)l Γ, M ` v2 : t′ l / t

pc, Γ, M ` v1v2 : t
(E-App)

Γ, M ` v : t pc / t

pc, Γ, M ` ref v : t ref∗
(E-Ref)

Γ, M ` v : t refl l / t

pc, Γ, M ` !v : t
(E-Deref)

Γ, M ` v1 : t refl Γ, M ` v2 : t {pc t l} / t
pc, Γ, M ` v1 := v2 : unit

(E-Assign)

Γ, M ` e1 : s pc, Γ[x 7→ s], M ` e2 : t

pc, Γ, M ` let x = e1 in e2 : t
(E-Let)

Figure 3.2: A type and effect system for information flow analysis

annotation l guards the type of value at the dereferenced location. Rule E-Assign involves

writing to a memory location that has already been created. In order to successfully

typecheck the assignment, we need to ascertain two things. Firstly, we need to check

whether we have the privilege to write to the memory location. Similar to E-Ref, this

is achieved by checking whether pc guards the type of the value at the memory location

t. Secondly, we also need to ascertain that the assignment does not leak information

about the reference that is being written into. Similar to E-Deref, this is achieved by

ensuring that the security annotation l guards t as well. Finally, we have the rule E-Let

for ML-styled let-polymorphism. Note that e1 can now be assigned a polytype or a type

scheme (represented by s) which enables it to be used with different types within e2.

IFA using annotated types 39

3.2.2 Subtyping and Information Flow

There is a natural relationship between subtyping and information flow. In subtyping, if

a type t is expected in an expression, we can use another type t′ provided t′ is a subtype

of t. Similarly, in the case of information flow, we can always use a value with a security

level l if the enforced security level in the expression is higher than l. Indeed, subtyping

paints a directed view of the program’s information flow and has been extensively used in

existing approaches to analyse information flow [52, 87, 120].

Introduction of subtyping in the type system presented in figure 3.2, or for any full-

fledged type system, is fairly straightforward. For two base types t′ and t annotated

with security levels lt′ and lt respectively, we say t′ is subtype of t (written t′ ≤ t) if

lt′ ≤ lt. In other words, for base types the security annotation is covariant i.e. a base

type with a lower security level can be applied at all places that accept a base type with

a comparatively higher security level. For establishing subtyping between constructed

types, a common approach is to decompose the comparison down to arguments of the

type constructor. For this purpose, it is necessary that the types being compared are

structurally similar (commonly referred to as structural subtyping). The axioms in figure

3.3 show how the subtyping relation is decided for base types as well as constructed types,

along with the rule for subtyping denoted by E-Sub. These axioms take into account the

variance of the type argument(s), if any. Here, ⊕, � and 	 denote covariance, invariance

and contravariance, respectively. Thus, subtyping extends the partial order that normally

exists amongst security levels. Here, b represented a base type, ref represents a memory

reference type and the → represents a function type where the l.h.s of the → is the

function’s input and r.h.s. represents the function’s output. The subtyping on base types

is interpreted as follows. Since the base type is annotated with a covariant sign (⊕), any

base type b that carries an annotation l1 is a subtype of the same base type annotated

with l2 if l1 ≤ l2. The interpretation extends similarly to reference types and function

types too.

pc, Γ, M ` e : t′ t′ ≤ t

pc, Γ, M ` e : t
(E-Sub)

b⊕ � ref⊕ (⊕−→ ⊕)	

Figure 3.3: Subtyping rule and variance on base types, references and function types

40 Information Flow Analysis

3.3 Constraint-based IFA

Having presented typechecking rules that can perform IFA in section 3.2, we now present

a set of constraint-based typing rules for deriving privilege levels for unannotated expres-

sions. The motivation behind a constraint-based typing and information flow analysis

framework is that it lends itself well to inference of both types and security annotations.

Consequently, the programmer does not need to declare type and security annotations for

every expression.

We first introduce a first order logic for constraints and then show how an instance of

this logic can be applied to information flow analysis using types. The material presented

here is based on the constraint-based information flow analysis framework presented by

Simonet et. al. in [101] and [87]. Terms and formulae in the logic are interpreted in the

ground algebra detailed in section 3.2.

3.3.1 The language of constraints

Terms in the first-order logic for constraints are denoted in the grammar as τ as shown

in the equation Terms in figure 3.4. They are either variables or type terms composed

from a constructor. Term variables are interpreted by assignments ρ that map variables

to ground terms. In addition to variables and type terms, hand-sides (denoted as φ in

figure 3.4) are also a part of the terms. Hand-sides are either a term variable or an atomic

constant and are useful in introducing atomic constants as a constraint on type terms.

Such constraints are useful when the programmer wants to explicitly coerce the privilege

level of a value or expression through language-level security annotations.

τ ::= α | c(τ, · · · , τ) φ ::= α | a (Terms)

Γ ::= 〈τ = · · · = τ〉 ≈ · · · ≈ 〈τ = · · · = τ〉 |α ≤ α |φ < φ |
true | false | C ∧ C | ∃α.C (Constraints)

Figure 3.4: Grammar for terms and constraints

Constraints are predicates that take terms as inputs. They form the formulae in the

logic. Equation Constraints in figure 3.4 describes the grammar for constraints. Con-

straints on values and structure of terms have two facets: structural equality between

two terms (represented by the ≈ symbol) and equality of two terms (represented using

the = symbol). Restrictions on the range of substitutions for a term variable can also

Constraint-based IFA 41

be specified in two ways: a strong subtyping constraint (denoted as ≤) which is between

term variables and a weak subtyping constraint (denoted as <) between term variables

and hand-sides. Atomic constants can be introduced using weak subtyping constraints on

term variables. Conjunction of constraints is an obvious choice to make the constraints

language more expressive. Existential quantification is useful for introduction of variables

by either the type checker or the solver. Its use will become evident shortly as we discuss

constraint based typing rules.

ρ ` true
(I-True)

∀τ, τ ′ ∈ =
τ1 ∪ · · · ∪

=
τn ρ(τ) ≈ ρ(τ ′)

∀i ∈ [1, n]∀τ, τ ′ ∈=
τi ρ(τ) = ρ(τ ′)

ρ ` =
τ1≈ · · · ≈

=
τn

(I-Structure)

ρ(α1) ≤ ρ(α2)

ρ ` α1 ≤ α2
(I-Strongleq)

ρ(φ1) < ρ(φ2)

ρ ` φ1 ≤ φ2
(I-Weakleq)

ρ ` C1 ρ ` C2
ρ ` C1 ∧ C2

(I-Conjunction)
ρ′ ` C ρ′ = ρ[α→ ?]

ρ ` ∃α.C
(I-Existential)

Figure 3.5: Interpretation of constraints

Interpretation of constraints is described in figure 3.5. Constraints are interpreted in

the ground algebra using a two place predicate · ` ·. The first and second arguments to

the predicate are an assignment and a constraint respectively. The rule for interpreting

structural constraints is described in the rule I-Structure. In this rule we interpret a

multi-skeleton which is a collection of structurally similar multi-equations. Each multi-

equation is written as τi in short where i can range from 1 to n. Here, ρ is an assignment

mapping variables in a type to ground terms. Multi-equations are sets of term variables

that have the same interpretation and hence represent the same type. According to rule

I-Structure, two terms can belong to the same multi-equation only if they have the

same interpretation in the ground algebra. Two multi-equations belong to the same multi-

skeleton if their interpretations in the ground algebra have the same structure. Constraints

on the range of values a term variable can take are dictated by strong and weak subtyping

constraints. The interpretation of these constraints is described in rules I-Strongleq and

I-Weakleq. Both these rules ensure that given an assignment ρ, a term variable (or hand-

side) can be constrained by another term variable (or hand-side) if the interpretation of

42 Information Flow Analysis

the former under ρ is a strong subtype (or weak subtype) of the latter. The interpretation

rule for conjunction of constraints is straightforward and described in I-Conjunction.

The interpretation of an existential constraint is described in rule I-Existential.

3.3.2 Type Schemes

In the traditional Damas-Milner type system, a type scheme s is of the form ∀α.t where the

set of type variables α are considered bound within t. Damas-Milner styled polymorphism

is described in figure 3.6. If a type environment Γ asserts that a term e has a type t, then

all type variables that do not belong to the free variables of Γ are universally quantified in

the form of a type scheme. This generalisation in the Damas-Milner type system is shown

in the rule DM-Gen in figure 3.6. Whenever the scheme is initialised as shown in the rule

DM-Inst, the universally quantified variables are replaced with concrete types.

Γ ` e : t α# ftv(Γ)

Γ ` e : ∀α.t
(DM-Gen)

Γ ` e : ∀α.t
Γ ` e : [α 7→ t]t

(DM-Inst)

Figure 3.6: Polymorphism in the Damas-Milner type system

In constraint based typing (and consequently, information flow analysis), a typing

judgement is typically a four place predicate whose parameters are a constraint C, a type

environment Γ, a term e and a scheme σ. A judgement is written as C, Γ ` e : σ and is

read as: under the assumptions about the free type variables of the judgement which is

recorded in C and the types of the free program identifiers which is recorded in Γ, the term

e has a type σ.

In order to better appreciate the nature of polymorphism in constraint-based infor-

mation flow analysis, we describe the rules for generalisation and instantiation of types

in figure 3.7. CT-Gen describes the generalisation rule. For the constraint based typing

rules, we assume that a type t not containing any bound variables can also be viewed as

the type scheme ∀φ[True].t. In CT-Gen, C is the set of constraints that does not concern

the type variables that are being generalised, and D is the set of those constraints which

concern these type variables. It is to be noted that type variables which occur free in Γ

may also appear free in D in addition to α. The second premise of CT-Gen is similar to

Constraint-based IFA 43

C ∧ D, Γ ` e : t α# ftv(C, Γ)

C ∧ ∃α.D, Γ ` e : ∀α[D].t
(CT-Gen)

C, Γ ` e : ∀α[D].t

C ∧ D, Γ ` e : t
(CT-Inst)

Figure 3.7: Polymorphism in a constraint-based type system

DM-Gen. Conclusion of the rule generalises all the type variables α but the generalisation

is subject to the constraint D. This is reflected by augmenting C with the existential con-

straint ∃α.D in the conclusion of the rule. Instantiation is described in the rule CT-Inst.

It is important to note here that in the conclusion of the rule, C is not augmented with D

without regard for the fact that C may already contain ∃α.D. This is necessary because

we may now substitute the bound variables α with concrete types which may render D

unsatisfiable even though ∃α.D may be satisfiable. For example, consider the set of natural

numbers. While the existential term ∃x ∈ N.(x > 2) is true since there are many natural

numbers greater than 2, [1/x].(x > 2) is not, where [1/x] denotes substituting x with 1.

3.3.3 Constraint-based typing

We are now ready to described constraint-based typing rules that cater to information flow

analysis in addition to typing terms in the calculus. The grammar of types described in

figure 3.1 is now replaced with one that contains variables for type, privilege levels and the

program counter. The new grammar is described in figure 3.8. The program counter and

privilege levels are represented by the meta-variables π and λ respectively, while annotated

types are represented by the meta-variable τ . Level variables are represented as δ and type

variables are represented as β.

τ ::= β | unit | bλ | τ refλ | (τ π−→ τ)λ

π, λ ::= δ | l

Figure 3.8: Meta-variables representing types and levels

We now present a set of constraint based rules for conducting type-based information

44 Information Flow Analysis

flow analysis. The rules are described in figure 3.9 and are analogous to those described

in figure 3.2. In these rules, variables of arbitrary kind are represented with the variable

α; a set of such variables is represented by α. Every judgement begins with a constraint C

which contains assumptions about free type and level variables. The constraint must be

satisfiable for the judgement to be valid. For simpicity, we no longer have the map M of

references to their types in the typing rules; the set of constraints C on pure expressions

can be easily extended with the map to prove soundness in the presence of side-effects

through reference manipulation as shown in [90]. Another important difference lies in

the manner in which universal quantification is introduced in rule E-Let-C and how it

is eliminated in the rule V-Var-C. Unlike the traditional Damas-Milner type system, we

have constraints on universally quantified variables as described in section 3.3.2.

Γ(x) = ∀α[D].τ C ∃α.D
C ∧ D, Γ ` x : τ

(V-Var-C)

C, π, Γ[x 7→ τ ′][f 7→ (τ ′
π−→ τ)λ] ` e : τ

C, Γ ` fix f.λx.e : (τ ′
π−→ τ)λ

(V-Abs-C)

C, Γ ` v1 : (τ ′
πtλ−−→ τ)λ C, Γ ` v2 : τ ′ C λ / τ

C, π, Γ ` v1v2 : τ
(E-App-C)

C, Γ ` v : τ C π / τ

C, π, Γ ` ref v : τ ref∗
(E-Ref-C)

C, Γ ` v : τ refλ C λ / τ

C, π, Γ ` !v : τ
(E-Deref-C)

C, Γ ` v1 : τ refλ C, Γ ` v2 : τ C {π t λ} / τ
C, π, Γ ` v1 := v2 : unit

(E-Assign-C)

C ∧ D, Γ ` e1 : τ ′ α#ftv(C, Γ) C, π, Γ[x 7→ ∀α[D].τ ′] ` e2 : τ

C ∧ ∃α.D, π, Γ ` let x = e1 in e2 : τ
(E-Let-C)

Figure 3.9: Constraint based typing for IFA

Constraint rewriting and solving 45

3.4 Constraint rewriting and solving

Having described constraint based typing rules in section 3.3, we now describe the method-

ology for solving the constraints. The techniques for constraint solving described in this

section are a succinct version of those described in [101] and [90]. First, we describe how

constraints can be rewritten in a simplified form in section 3.4.1. Then, we describe the

procedure for solving the simplified constraints in section 3.4.2.

3.4.1 Constraint expansion and decomposition

In this research work we assume that the subtyping relationship is structural in nature

i.e. if a ground type (one that does not contain any free variables) or a variable repre-

senting a ground type is a subtype of another ground type or of a variable, then the two

types/variables must have the same type constructor and hence the same structure. As

mentioned in section 3.3.1, structural similarity is represented using the operator ≈ where

α ≈ β means that α and β have the same structure. For two types that are the same, we

use the equality symbol (=).

Definition 2. A constructed type is a type that is constructed from at least two other types

or type variables using type constructors. A type variable representing a constructed type

is called a constructed type variable.

Definition 3. A terminal is a type variable that does not represent a constructed type,

and hence cannot be expressed as a combination of structurally simpler types or variables.

A constraint is atomic if it involves only terminals.

We now present techniques to simplify the constraints carried by the type of an ex-

pression down to atomic constraints i.e. constraints between variables that have been

completely decomposed to remove any type constructor. There are two phases in this

exercise which have been highlighted in figure 3.10. The Expansion rule highlights the

first phase which shows how to expand constructed type variables.

The Expansion rule in figure 3.10 expands a constructed type variable to reflect the

structural knowledge that we have about this variable; structural constraints involving

multi-equations are expanded to conjunction of constraints between terminals. Here,
=
α is

a variable representing a multi-equation and vi(f) represents the variance of the ith argu-

ment in the type constructor f. Since this dissertation is about the structural subtyping

discipline, knowledge about the structure of the constructed type variable can be derived

from other structurally equivalent types that bound the variable. However, it must be

46 Information Flow Analysis

〈=α〉 ≈ 〈
=
β = f(~β)〉

7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃~α.[〈=α = f(~α)〉 ≈ 〈

=
β = f(~β)〉 ∧i αi ≈vi(f) βi]

Expansion

α = f(~α)
β = f(~β)

α ≤ β7−−−−−−−−−−−−→
∧iαi ≤vi(f) βi]

Decomposition

Figure 3.10: Rewriting constraints on type terms

noted that this does not mean that the arguments to the expanded type constructors are

themselves terminal. For example, if we have a product type γ × δ, it could very well be

the case that γ and δ are constructed types and there are further constraints on them

after the applying the Expansion rule. In such a case, the expansion process repeats itself

until we have constraints signifying structural equivalence of terminals.

Expansion gives us a set of constraints between constructed types that are themselves

expressed using terminals as building blocks. Decomposition is the second step towards

atomic constraints and operates on the results of expansion. In decomposition, we match

terminals from the lhs and rhs of constraints representing structural equivalence (denoted

by ≈). For example, if we have a constraint which says 〈ω1 = γ1 × δ1〉 ≈ 〈ω2 = γ2 × δ2〉
and we know through the typing rules that ω1 ≤ ω2, the Decomposition rule in figure 3.10

derives relationship between the terminals which are γ1 ≤ γ2 and δ1 ≤ δ2. It is to be noted

that the exact subtyping relation between the terminals is governed by their variance.

3.4.2 Constraint solving

We now describe the technique to check solvability of atomic constraints. Figure 3.11

describes an arbitrary flow constraint graph which is bounded at the inputs and outputs

with concrete privilege levels. For the sake of simplicity, we assume the absence of side-

effects in this example. Hence, there is no mention of the variable pc. However, this

simplification does not preclude integration of side-effects.

The privilege levels are represented as represented as variables α1 · · ·α7 in the flow

constraint graph shown in figure 3.11. α1 and α2 are input variables in the flow constraint

graph and α6 and α7 are output variables. The input variables α1 and α2 are at a privilege

level of l1 and l2 respectively. The output variables at α6 and α7 are written back at levels

l3 and l4 respectively.

The first step in solving atomic constraints is to determine bounds for level variables.

Constraint rewriting and solving 47

α1 α2

α3 α4

α5

α6 α7

l1 l2

l3 l4

l1≤α1≤(l3ul4) l2≤α2≤(l3ul4)

l1≤α3≤(l3ul4) l2≤α4≤(l3ul4)

(l1tl2)≤α5≤(l3ul4)

(l1tl2)≤α6≤l3 (l1tl2)≤α7≤l4

Figure 3.11: Atomic constraints

It is important to note that a level variable can have multiple lower and upper bounds

depending on the connections in the flow constraint graph. For example, the lower bound

for level variable α5 is a combination of both l1 and l2, since α5 is constrainted by both

α1 and α2. Therefore, α5 inherits the lower bounds of both α1 and α2. Since, l1 and l2

represent discrete elements in a security lattice, a stronger lower limit on α5 is the least

upper bound of l1 and l2 which is written as l1t l2. Similar to the lower bound for α5, the

lower bounds for other level variables can be obtained using a forward topological walk

of the flow constraint graph and dual to this, a reverse topological walk can derive the

upper bounds for the level variables. If a level variable inherits multiple privileges levels

as upper bounds, the levels can be unified using the greatest lower bound operator (u).

Solvability involves checking for constraints on level variables that are inconsistent

with the security lattice. After the bounds on all level variables have been obtained using

a forward and reverse topological walk, we check whether all lower bounds of each variable

are at a lower privilege level than the upper bounds on that variable. This is achieved by

verifying the relationship between the lower and upper bounds against the security lattice.

If the relationship holds true i.e. all lower bounds on a variable are lower than the upper

bounds on it, then the constraints are solvable. A valid substitution for the variables could

then be the least upper bound of all lower bounds for the variable or the greatest lower

48 Information Flow Analysis

bound of all upper bounds on the variable.

3.5 Simplification of type schemes

Efficiency of the solving process depends on the size of the constraint set at hand. Ex-

pansion as described in section 3.4.1 introduces a lot of new variables. For the constraint

solving to be efficient, it is imperative to remove variables that cannot contribute to the

correctness of information flow analysis. A number of optimisations have been proposed

to reduce the size of the constraint graph in the literature [85, 101]. Of these, we discuss

two important ones that contribute significantly to reducing the size of the constraints :

chain reduction and polarised garbage collection. Together, the two have been shown to

eliminate over 90% of all reducible constraints.

Chain reduction involves fusing a term variable into its unique bound. For example, if

we have a multi-skeleton of the form 〈=α〉 ≈ 〈=τ 〉 ≈ ≈τ (here,
≈
τ represents a multi-skeleton)

and this is the only multi-skeleton involving 〈=α〉, we can rewrite the multi-skeleton as

〈=α=
=
τ 〉 ≈ ≈τ because

=
α is just a placeholder for a multi-equation. Chain reduction reduces

the number of distinct multi-equations that are expanded into atomic constraints. Hence,

it achieves a reduction in the size of the graph representing the atomic constraints, and

consequently optimises the constraint solving process.

Polarised garbage collection is the other optimisation that is useful for reducing the

size of the atomic constraints graph. It applies to label-polymorphic expressions and in-

volves compacting the atomic constraint graph for these expressions. Computing the type

scheme for a label-polymorphic expression typically yields a lot of intermediate variables.

While they are essential during the generation of the scheme, they are not needed for

information flow analysis once the scheme has been generated. Hence, one can eliminate

these intermediate variables without affecting the correctness of constraint solving.

Consider the label-polymorphic expression ternary op in figure 3.12. This expression

takes in 3 inputs: x, y and z. Until the polymorphic expression is applied to values that

are annotated with privilege levels in (ll. 6-7), it is not possible to tell the constant lower

bounds on the input variables. Similarly, until the result is written back (ll. 8), it is not

possible to know an upper bound on the output of ternary op. Thus, at every instance

the label-polymorphic expression is applied, all constraints on all universally quantified

variables have to be copied as a part of the type scheme. In reality, however, all that needs

to be copied are the constraint relationships between input and output variables. This

is sufficient to verify whether a privilege violation at the inputs percolates down to the

Computational costs 49

1 let foo =

2 let ternary_op =

3 fun x y z ->

4 let r = op x y z in r

5 in

6 let p = ternary_op Aa Bb Cc

7 and q = ternary_op Dd Ee F f

8 in [p; q]h

h

r

ternary op

yx z

a t d b t e c t f

Figure 3.12: A label-polymorphic expression and its constraints graph

output. For example, we know from the accompanying constraints graph for ternary op

in figure 3.12 that input variable x influences the value of output variable r. Therefore, in

order to enforce secure information flow between x and r, it is sufficient to check whether

the relationship between the lower bound for x (i.e. at d) and upper bound for r (i.e. h)

obeys the security lattice.

Polarised garbage collection is a means to compact the atomic constraints graph in

such a manner that intermediate type variables and constraints on them are not copied

whenever a label-polymorphic scheme is initialised. In the first step, a transitive closure

operation on the atomic constraints graph is performed. In the second step, only those

relationships that involve an input variable and an output variable are preserved as part

of the scheme.

3.6 Computational costs

In this section, we discuss the computational costs of both constraint solving and simpli-

fication. We first discuss the cost of constraint generation, expansion, decomposition and

resolution as described in sections 3.3. Then we discuss the cost of the optimisations that

are discussed in section 3.5.

50 Information Flow Analysis

3.6.1 Constraint Generation and Solving

Since constraints are derived from terms in the grammar of the programming language,

the initial size of the set of constraints C is proportional to the size of the program under

consideration. Let this size be represented by nc. The first step in solving the generated

constraints is unification - both at the level of structural similarity (skeletons) and at the

level of equality (equations). The unification process is straightforward and similar to the

standard procedure for type unification. It is described in further detail in [101]. The cost

of unification is O(ncα(nc)) where α(· · ·) is the inverse Ackermann function. The inverse

Ackermann function is a very slow growing function and the computational complexity

can be considered linear for all practical purposes.

After unifying type terms based on their structure and value into multi-skeletons and

multi-equations, the next step is rewriting constraints in an atomic form as described in

section 3.4.1. If we assume that a represents the arity of type constructors and h to be

the maximum size of a multi-skeleton, then expansion and decomposition introduce ah

new variables for each of the variables in the input constraint. Thus, the two steps of

expansion and decomposition have a cost of O(ahnc).

Once atomic constraints have been obtained post expansion and decomposition, we

represent them in the form of a graph which we call the atomic constraints graph. Rep-

resentation of atomic constraints in the form of a graph aids in the resolution of those

constraints. Constraints are resolved by walking through the graph derived from the

atomic constraints. During this walk, we need to verify whether the upper and lower

bounds for each terminal violate the pre-specified security policy. As already mentioned,

this security policy is specified as an ordering amongst the atoms, which is described in the

form of a security lattice. Each terminal is represented as a vertex in the graph and the

subtyping relationship between terminals is represented as an edge in the graph. It is to

be mentioned here that a terminal may have multiple upper and lower bounds depending

on what its ancestors and descendants are in the atomic constraints graph, as described

in section 3.4.2. In such a case, we need to be able to compute the join and meet of

multiple elements in the lattice to verify whether bounds of each terminal respect the

security policy. Satisfiability of atomic constraints can be checked through a topological

walk of the atomic constraints graph. And, substituting each of the terminals with either

its lower or upper bound yields a suitable solution. Assuming that these lattice operations

can be computed in constant time, resolution of atomic constraints can be thus achieved

in O(ahnc +m) where m is the number of atomic constraints.

Algorithmic bottlenecks 51

3.6.2 Scheme simplification

Chain reduction can be achieved by inspecting individual term variables and, if there exists

a unique upper or lower bound for these variables, then equating the variables with the

bound and storing the result as a multi-equation. Its cost is therefore directly proportional

to the number of skeletons in the input constraint set which in turn proportional to the

size of the program. The cost of chain reduction is therefore O(nc).

Polarised garbage collection on the other hand involves deriving flow dependencies

between input and output variables. It only preserves flow relationships between input

and output variables, and does away with all intermediate variables in a label-polymorphic

expression. This involved performing a full transitive closure of the atomic constraints

graph to derive which input variables influence what output variables. Thus, a naive

implementation of polarised garbage collection has a complexity of O((ahnc)
3) because

transitive closure of a directed graph can be performed in cubic time.

3.7 Algorithmic bottlenecks

In the previous section, we outlined the computational costs for solving and simplifying

atomic constraints. In this section, we discuss the bottlenecks in the simplification and

resolution of information flow constraints and propose means to address them.

3.7.1 Bottlenecks in IFA

In section 3.6, it was mentioned that atomic constraints can be solved through a topological

walk of the graph, provided the lattice queries can be answered in constant time. How-

ever, the cost of pre-processing the lattice to achieve constant time queries was ignored.

In reality, answering lattice queries in constant time requires heavy pre-processing and its

computational costs cannot be ignored. Answering lattice queries in constant time neces-

sitates computing a full transitive closure of the lattice to establish ancestor-descendant

relationships as a first step. Then, for all pair of vertices, it is necessary to identify a

common ancestor (descendant) that has the highest (lowest) topological number for the

t (u) query.

Similarly, the costs for polarised garbage collection tend to be higher than other steps

in IFA. This is once again due to its dependence on the transitive closure operation; identi-

fying which input variables go on to influence what output variables requires computing a

transitive closure of the atomic constraints graph which is nothing but a DAG. Thus, sim-

52 Information Flow Analysis

plification of atomic constraints and answering lattice queries tend to be the bottlenecks

in IFA due to their dependence on transitive closure of DAGs as a starting point.

3.7.2 Reduction of TC to BMP

It is common knowledge that transitive closure of DAGs can be achieved through matrix

multiplication. In this section, we discuss how the transitive closure of DAGs can be

reduced to the problem of multiplying boolean matrices. This paves the way for presenting

the cost of simplifying and resolving IFA constraints in terms of the Boolean Matrix

Product (BMP).

Let G = (V,E) represent a DAG where V is the set of vertices in G and E is the set

of directed edges in G. Let G∗ = (V,E∗) represent the transitive closure of G. Here, E∗

represents paths between all pairs of vertices that are connected in G through a sequence

of one or more edges. Assuming the vertices of the DAG are topologically sorted, the

adjacency matrix (when the vertices are written out in topological order) is an upper

triangular matrix. Such an adjacency matrix is represented in figure 3.13a for a DAG G.

Here, A, B and C are submatrices of the adjacency matrix for G while 0 is a submatrix

whose elements are zeroes. A and B are themselves upper triangular matrices. A clearer

understanding of the significance of the submatrices A, B and C comes from figure 3.13c

where the vertices are written out left to right in topological order. If we have an edge

connecting vertices in the first half of the topological order, we capture the adjacency

information in the submatrix A. Any edge connecting vertices in the second half of the

order is captured in submatrix B. On top of this, edges going across the two halves are

captures in submatrix C.

The next objective is to compute the reachability matrix for graph G. The reachability

matrix is shown in figure 3.13b. Transitive closure for vertices in the first half of the

topological order can be computed independent to those in the second half if we ignore any

interconnections across the two sets. Therefore, submatrices A∗ and B∗ (which represent

transitive closures of A and B respectively) in figure 3.13b can be computed by performing

a transitive closure operation on submatrices A and B. Transitive closure across the two

halves in the topological ordering can be obtained by performing a boolean matrix product

of A∗, C and B∗. If we assume that the T (n) is the time necessary to compute G∗ from

G where n is the number of vertices in G, then computing A∗ and B∗ takes T (n/2)

time. Computing A∗CB∗ can be done in O((n/2)ω) where ω (ω ∼ 2.3) is the exponent

of the fastest matrix multiplication algorithm [33, 115, 34]. Thus, we have the relation

T (n) = T (n/2) +O((n/2)ω). Using the master theorem for complexity of algorithms, the

Algorithmic bottlenecks 53

A C

0 B

(a) G

A∗ A∗CB∗

0 B∗

(b) G∗

A B

C

(c) Vertices in topological order

Figure 3.13: Transitive Closure of DAGs

right hand side of the relation simplifies to O(nω). Thus, transitive closure of DAG with

n vertices can be reduced to the problem of computing boolean matrix product on two

n× n matrices.

3.7.3 BMP as a basis function

In section 3.6, we identified two bottlenecks in type-based IFA that uses TC for DAGs.

These were identified to be simplification of schemes for label-polymorphic expressions

using polarised garbage collection, and pre-processing lattices for answering lattice queries.

Having shown that computing TC for DAGs can be reduced to the problem of multiplying

boolean matrices, we now present the computational costs for type-based IFA using BMP

as a basis function.

Simplification of label-polymorphic expression using polarised garbage collection in-

volves compacting the atomic constraints graph to preserve only those subtyping rela-

tionships that exists between input and output variables in the expression. This involves

computing a transitive closure of the atomic constraints graph and can be achieved in a

time of O(nω).

Pre-processing lattices to answer lattice queries for IFA is a little more involved. A

subtyping query on the lattice can easily be answered in constant time after performing

a transitive closure of the lattice. If we assume that the lattice has k elements, this can

be done in O(kω). However, answering t and u queries required us to pick one element

from the common ancestors/descendants of the query arguments. Since t is the dual of u
we discuss the cost for t only. Once we have a reachability matrix through the transitive

54 Information Flow Analysis

closure of the lattice, we can tell all ancestors (and descendants) for all vertices in the

DAG representing the lattice.

For a pair of vertices, if we need to calculate t we need to identify the common

ancestors first and then pick one with the highest topological number. An elegant solution

for pre-computing t for all pair of vertices in a DAG has been discussed in [36]. It was

shown in [36] that picking t for all pairs of vertices in a DAG can be reduced to picking

maximal witnesses in the boolean matrix product of the reachability matrix of the DAG

with itself. The cost for doing this was shown to be O(k(2+θ)) where θ satisfies relation

ω1,θ,1 = 1+2θ. Here ω1,θ,1 is the exponent of k in the operation cost for the multiplication

of a k × kθ matrix with a kθ × k matrix. After obtaining a cost for ω1,θ,1 in terms of ω

(∼ 2.3) and θ and solving for θ, it was shown that picking maximal witnesses and hence,

identifying t for all pairs of vertices in a DAG has a cost of O(k2.575) [36].

3.8 Summary

In this chapter, we discussed a framework for type-based information flow analysis. We

showed how constraints can be used for both type inference and simultaneously information

flow analysis. We discussed techniques for solving information flow constraints carried by

types, and also discussed strategies for the simplification of schemes for label-polymorphic

expressions where the security annotation for the type is unknown. We derived the com-

putational costs for both simplification and resolution of constraints, and showed that for

both these cases transitive closure of DAGs is the primary bottleneck when it comes to

computational costs. We then discussed how transitive closure of DAGs can be reduced

to the problem of matrix multiplication, and showed how the computational costs for sim-

plification and resolution of information flow constraints can be expressed using boolean

matrix product as a basis function.

We use the discussion of the bottlenecks in IFA in section 3.7 to motivate the content

of chapters 4, 5 and 6 in this dissertation. In these chapters, we design and evaluate

structure-sensitive algorithms for answering lattice queries in constant time and simplifying

label-polymorphic constraint graphs. The structure-sensitive algorithms proposed in these

chapters adapt themselves to the structure of the DAG that is supplied to them, and

seamlessly interpolate the performance graph between the best reported algorithms for

trees and the best reported algorithms for dense DAGs, depending on the incidence of

non-tree edges in the DAG. Thus, they are able to achieve the best performance for every

point in the structure-spectrum of lattices and label-constraint graphs. This is especially

Summary 55

useful for IFA which often has to deal with lattices that are structurally very diverse.

Chapter 4

Adaptive pre-processing of

security lattices

4.1 Introduction

In chapter 3, we discussed the importance of lattice pre-processing in efficiently solving

atomic inclusion constraints arising in program analysis that is based on polymorphic

subtyping and label constants that are ordered as a lattice. In this chapter, we discuss a

novel graph theoretic approach for pre-processing a DAG for answering the LCA query in

constant time. Since the lattice is normally represented as a DAG, the results obtained

for LCA computation for vertex-pairs in DAGs can be directly applied to obtaining the t
of two elements in a lattice. Additionally, since u is the dual of the t query and ≤ query

on two elements in a lattice is just a special case of the t query where one of the query

elements is the t of the two query elements, the results obtained in this chapter extend

directly to u and ≤ queries as well.

Unlike existing techniques which pre-process the DAG at the level of individual vertices,

our graph decomposition lets us pre-process the DAG at the level of sets of vertices without

any loss of precision in answering the LCA query for a pair of vertices. We call such a set of

vertices a cluster which is a set of adjacent vertices with a single point of entry. In addition

to uncovering a layer of abstraction in the pre-processing, clusters make the proposed pre-

processing algorithm highly adaptive - the computational costs are a direct function of the

latent scope for decomposition of the DAG into clusters. Thus, the proposed algorithm is

highly suitable for applications which have to deal with lattices that have a wide structural

variety.

56

Lowest Common Ancestor 57

The rest of the chapter is organized as follows. We define the LCA query in detail in

section 4.2 and discuss why pre-processing a DAG to answer LCA queries in constant time

is an expensive operation. We give an overview of our approach in section 4.3 where we

discuss that any vertex u could reach another v either through the spanning tree covering

the DAG or through a combination of spanning tree edges and cross edges. In the former

case, we call u a tree ancestor (T) of v and in the latter case, we call u a cross ancestor

(C) of v. Thereby, we categorize potential LCAs into one of the four categories - TT-

PLCA, CT-PLCA, TC-PLCA and CC-PLCA - corresponding to the type of ancestral

relationship between the potential LCA and the query vertices. The vertex with the

highest topological number amongst these four PLCAs is the LCA of the query pair. In

section 4.3, we discuss that the TT-PLCA can be computed by using the RMQ query

on the spanning tree and show that the CT-PLCA need not be computed for a DAG. In

section 4.4, we discuss techniques to identify the TC-PLCA for a vertex pair. In section

4.5, we discuss techniques to identify the CC-PLCA and summarise the chapter in section

4.6.

4.2 Lowest Common Ancestor

In this section, we provide a formal definition of the LCA query for DAGs and also discuss

the reason why obtaining the LCA of two vertices in a DAG is much more involved that

obtaining the LCA for two nodes in a tree.

Definition 4. The set of Lowest Common Ancestors (LCA) of two vertices u and v in

a DAG is a set of vertices L = {l1, l2 · · · , ln} such that all vertices in L are common

ancestors of u and v and no other descendant of the vertices in L is an ancestor of u and

v [64].

A tree is a special case of a DAG; there is a unique LCA for all vertex-pairs in a

tree. But vertex pairs in arbitrary DAGs may have multiple LCAs. In such a setting,

a representative LCA is typically selected from the set of vertices satisfying the LCA

properties. The initial approach to picking a representative LCA in the literature was to

use the notion of depth of a vertex in the DAG [19, 20]. The depth was defined to be

the longest hop distance of a vertex from the source of the DAG. In such a setting, it was

possible for multiple vertices to have the same depth and ties were resolved arbitrarily

to ensure that no two vertices have the same depth. Thus, it was possible to obtain a

unique representative LCA for all vertex pairs. In later approaches [63, 36], a simpler

58 Adaptive pre-processing of security lattices

approach was used to assigning depth values to vertices through topological ordering. In

these works, the reachability matrix for the DAG was sorted according to the topological

numbers of vertices and the representative LCA was defined to be the maximal witness of

the boolean matrix product of the reachability matrix and its transpose. In other words,

the representative LCA for a vertex-pair was nothing but the vertex with the highest

topological number amongst the common ancestors of the vertex-pair. Similar to [63, 36],

we define the representative LCA to be the vertex that has the highest topological number

in the set of common ancestors of the vertex-pair in this chapter.

The regular structure of trees and the unique LCA of vertex-pairs in trees make com-

putation of LCA in trees relatively easier as compared to other kinds of graphs. LCA

computation in trees can be computed in linear time using the range minimum query

(RMQ) technique [46]. On the other hand, a rooted DAG contains an overlay of forward

and cross edges on top of the edges of a spanning tree that covers the DAG. This additional

layer of complexity inhibits the applicability of the simple and elegant RMQ technique to

the case of DAGs. As a result, all of the reported techniques in the literature have resorted

to computing the transitive closure of the entire DAG as a first step towards computing

the LCA. By computing the closure, it is possible to easily identify the ancestors of vertices

and consequently, the respresentative LCA for any given vertex-pair.

Computing the closure of a DAG is a computationally expensive operation. The fastest

known algorithm for computing the closure relies on matrix multiplication and can be

achieved in O(nω) where ω(∼ 2.3) is the exponent of the fastest matrix multiplication

algorithm reported in the literature [33, 34, 115]. The additional drawback of this ap-

proach is that for sparse DAGs, where the structure is very similar to a tree, one is still

forced to put up with computing the closure of the entire DAG. Ideally, one would hope

for a technique that exploits the decomposition of the DAG into a spanning tree and a

set of additional edges. LCA computation can then proceed by considering reachability

information over the spanning tree and over the rest of the DAG separately. This would

let us achieve a fast algorithm for computing pairwise LCAs in a sparse DAG.

4.3 Identifying potential LCAs for a vertex pair

In this section, we give an overview of our approach to computing the LCA of a vertex

pair in constant time after polynominal preprocessing. For the subsequent discussions,

we assume that the DAG under consideration is rooted and static. If there are multiple

parentless vertices in the DAG, we can always introduce a single parent for the parentless

Identifying potential LCAs for a vertex pair 59

vertices to make the DAG rooted.

We perform a depth first walk of the DAG and classify the edges as tree, forward and

cross edges [35]. This can be achieved by preordering and postordering the vertices in a

DAG and has the same computational costs as a depth first traversal of the rooted DAG.

For computing the LCA, the set of forward edges can be safely ignored. These edges

introduce a redundant order between two vertices that are already connected.

4.3.1 Overview of our approach to computing representative LCAs

With forward edges eliminated from the DAG, we are now left to deal with tree edges and

cross edges. Subsequently, whenever we refer to a DAG, we assume that the DAG only

contains tree and cross edges. For any vertex, we now have two kinds of ancestors. One

kind, which we call tree ancestors reach the vertex through the spanning tree. The other

kind, which we call cross ancestors, are all ancestors that are not tree ancestors.

We now give a brief overview of our approach to computing the respresentative LCA

for two vertices x and y. Equations 4.1 and 4.2 show how the set of ancestors Ax and Ay

for vertices x and y respectively are composed of tree ancestors (denoted by Atx and Aty)

and cross ancestors (denoted by Acx and Acy) for the vertices.

Ax = Atx ∪Acx (4.1)

Ay = Aty ∪Acy (4.2)

LCA(x, y) = maxtopo[Ax ∩Ay] (4.3)

= maxtopo[{maxtopo(A
t
x ∩Aty), maxtopo(A

t
x ∩Acy),

maxtopo(A
c
x ∩Aty), maxtopo(A

c
x ∩Acy) }]

= maxtopo{TT-PLCA, TC-PLCA, CT-PLCA, CC-PLCA} (4.4)

Similar to other reported techniques for LCA computation in DAGs , we assume the

LCA for vertices x and y to be the vertex with the maximum topological number amongst

the ancestors common to x and y [20] [36] [18]. This is used in equation 4.3. Equation

4.4 expands on equation 4.3 and shows how we can identify the representative LCA by

shortlisting 4 potential LCAs (TT-PLCA, TC-PLCA, CT-PLCA, CC-PLCA) and then

picking the one with the highest topological number.

We now show that if we rearrange the arguments of the LCA query such that the

postorder number of the first argument is always greater than the postorder number of

60 Adaptive pre-processing of security lattices

the second argument then we don’t need to calculate the TC-PLCA in order to compute

the LCA.

Definition 5. For a vertex v in a DAG, pre(v) and post(v) denote the pre-order and

post-order numbers for v in the spanning tree that covers the DAG.

Definition 6. A query of the form LCA(x,y) is considered argument-arranged if post(x)

> post(y).

Lemma 4.3.1. If pre(x) > pre(y) and post(x) > post(y) and x reaches y then x is

a cross ancestor of y.

Proof Straightforward. The proof follows directly from the manner in which preorder

and postorder numbers are allocated during a depth first walk.

Lemma 4.3.2. It is not necessary to compute the CT-PLCA for an LCA query if the

query is argument-arranged.

Proof For an argument-arranged query LCA(x, y), there can be two cases.

• pre(x) < pre(y): Since post(x)> post(y) by the virtue of argument-arrangement,

it immediately follows that there is a path in the spanning tree from x to y. In this

case, the LCA of x and y is x. Thus, the LCA of x and y can be easily computed

during the computation of TT-PLCA and we do not need to consider the CT-PLCA

for this case.

• pre(x) > pre(y): Let p be an arbitrary cross ancestor of x. Then, pre(p) > pre(x)

> pre(y) and post(p) > post(x) > post(y). From lemma 4.3.1, it follows that

if p reaches y then p is a cross-ancestor of y as well. It follows that (Acx ∩ Aty) = φ.

Hence, we do not need to compute the CT-PLCA in this case as well.

Therefore, a simple arrangement of the arguments to the LCA query eliminates the

need for computing the CT-PLCA. For the identifying TT-PLCA, the application of the

RMQ technique to the spanning tree suffices. However, computing the TC-PLCA and the

CC-PLCA is more involved and techniques to compute these are described in sections 4.4

and 4.5 respectively.

Identifying potential LCAs for a vertex pair 61

a

b

d

g

l

h

m

e

i

n

j

c

f

k

{a}

{a}

{a}

{a}

{b}

{b} {b}

{b}{b}

{b}

{g}

{g}

{h}

{h}

Figure 4.1: A directed acyclic graph with all vertices annotated with the corresponding
clusterhead

4.3.2 Decomposing a DAG into clusters

There are two kinds of vertices in the DAG; one kind has an incoming spanning tree edge

and the other kind has incoming cross-edges in addition to the tree edge. We denote the

set of vertices of the former kind as ↓ and the set of vertices of the latter kind as ↓+c. For

the vertices in ↓+c, if we ignore the incoming edges to these vertices, the DAG can be seen

as a composition of trees. The only way to reach a vertex in these trees from a vertex

external to it is by passing through its root - a vertex that belongs to ↓+c. We call these

component trees of the DAG as clusters and the root of the cluster as the clusterhead.

Definition 7. Clusters are component trees of a DAG obtained by discarding all incoming

edges to vertices that have both incoming spanning tree edges and cross edges.

Fig. 4.1 shows the vertices of an example DAG annotated with clusterheads for the

cluster to which they belong. After edge classification, cluster identification can be per-

formed by a simple traversal of the spanning tree in O(n) time where n is the number of

vertices in the DAG.

If we are testing reachability from vertex x to vertex y and they belong to the same

cluster, we only need to consider the edges of the spanning tree that covers the DAG.

Otherwise, we have to additionally check for reachability from x to the clusterhead for y

through a combination of tree and cross edges. In this context, the advantage that clusters

offer is that we do not need to compute the transitive closure at the level of vertices but

at the level of clusters; an approach that is significantly faster for sparse graphs [113].

Since the first step in computing the LCA is identifying common ancestors for the query

vertices, reachability analysis has a direct bearing on the computation of the LCA. Due to

the formulation of clusters, the computation of TC-PLCA and the CC-PLCA can be based

62 Adaptive pre-processing of security lattices

on a combination of vertex labelling and small matrix lookups using the annotated labels

in a manner similar to [113]. These small matrices are derived from a single matrix that

captures the transitive reachability from cross edge sources to clusterheads. In the rest of

this chapter, for an argument-arranged LCA query, the annotation at the first argument is

used to index the rows of these small matrices and the annotation at the second argument

is used to index the columns of the small matrices.

4.4 Identifying the TC-PLCA

To compute TC-PLCA(x, y) one does not need to consider all ancestors of x in the

spanning tree. Instead, it is sufficient to pick just 2 cross-edge sources (denoted as s< and

s>) which we call proximals.

Definition 8. For the query TC-PLCA(x, y), the proximals are defined as the cross-

edge sources that immediately precede and succeed x in the pre-order sequence of vertices

and reach the clusterhead for y (hence, reach y itself). Evaluation of reachability between

proximals and clusterheads considers both tree and cross edges in the DAG.

4.4.1 Picking appropriate proximals for a vertex

Let the TC-PLCA of two vertices x and y be denoted as l. l is y’s cross ancestor and

reaches y through a combination of tree and cross edges. Until we reach a cross-edge

source in the path from l to y, the path is composed of tree-edges entirely. Therefore, if

we compute the TT-PLCA of x with every cross-edge source that reaches y and pick the

vertex with the maximum depth in the spanning tree amongst the computed TT-PLCAs,

we obtain l. However, with the aid of lemma 4.4.1, we will show that it is not necessary to

consider all cross-edge sources that reach y. Instead, it is sufficient to pick the proximals

only.

Lemma 4.4.1. Let [0,r] be the range of preorder numbers of vertices in a DAG. For a

given vertex x, the depth of TT-PLCA(x,y) in the spanning tree monotonically increases

in the interval [0, pre(x)] and monotonically decreases thereafter.

Proof The TC-PLCA(x, y) in our case needs to be the lowest vertex in the spanning tree

that reaches both x and a cross-edge source that reaches y. The TC-PLCA reaches every

cross-edge source in the sub-tree rooted at the TC-PLCA. Therefore, it is easy to see that

for the TC-PLCA to reach a cross-edge source outside the sub-tree, it is imperative for

the TC-PLCA to be higher up in the tree.

Identifying the TC-PLCA 63

The proof follows directly from RMQ techniques to compute LCA in trees. Lets

consider the range [0, pre(x)] first. If the depth is non-increasing then it means that there

are two vertices i and j such that pre(i) < pre(j) < pre(x) and depth of the vertex

returned by RMQ(x,i) is greater than that returned by RMQ(x,j). The RMQ techniques

relies on Euler tour of the graph which includes all subranges in identifying a vertex with

the greatest depth. In the above case, in order to identify the LCA for x and i, all vertices

having preorder numbers in [pre(i), pre(x)] are also checked since the set of such vertices

is a subset of vertices having preorder numbers in [pre(j), pre(x)]. Therefore, the above

result is a contradiction. Similarly, we can prove the lemma for (pre(x),r].

Let S< be the set of cross-edge sources having a pre-order number less than x and

reaching the clusterhead for y. The first proximal, which we denote as s<, is the vertex

with the highest pre-order number in S<. Similarly, let S> be the set of cross-edge sources

having a pre-order number greater than x and reaching the clusterhead for y. The second

proximal, which we denote as s>, is the one with the lowest pre-order number in S>.

Identification of proximals simplifies the reachability information that needs to be

captured for the TC-PLCA computation. Instead of considering reachability from one

vertex to another, it is now sufficient to capture the transitive reachability information

between cross-edge sources and clusterheads for the computing the TC-PLCA. This re-

duces the size of the reachability matrix that we need from a naive O(n2) to O(c2) where

c = max(Ns, Nt), Ns and Nt being the number of cross-edge sources and cross-edge targets

(clusterheads) respectively.

4.4.2 Variations in proximals

Answering arbitrary TC-PLCA queries requires us to annotate each vertex with proximals

for each of the clusterheads. This is expensive and our next objective is to reduce the

annotation overhead.

For a given vertex y, let all possible values of x in TC-PLCA(x,y) be written out

in pre-order sequence. For all x’s in the pre-order sequence, the proximals change only

when a cross edge source is encountered in the sequence. This is due to the fact that the

proximals themselves are nothing but cross-edge sources.

This point is further illustrated in Fig. 4.2 which shows the variations in proximals for

all vertices for all clusterheads. The solid dots in Fig. 4.2 represent intermediate vertices

in the pre-order sequence. Subfig. 4.2a shows the reachability between cross-edge sources

and cross-edge targets for our example graph and aids the understanding of Subfig. 4.2b,

64 Adaptive pre-processing of security lattices

a1

b2

d3

g4

l5

h6

m7

e8

i9

n10

j11

c12

f13

k14

(a) Reachability between cross-edge sources and targets

a e i c k

s< = φ, s> = c s< = c, s> = φ

(b) Proximals for all vertices for clusterhead b

a e i c k

s< = φ, s> = e s< = e, s> = c s< = c, s> = φ

(c) Proximals for all vertices for clusterhead g

a e i c k

s< = φ, s> = i s< = i, s> = c s< = c, s> = φ

(d) Proximals for all vertices for clusterhead h

Figure 4.2: Identifying proximals for all vertices for all clusterheads. Vertices are annotated
with their pre-order numbers.

4.2c and 4.2d. In Subfig. 4.2b, 4.2c and 4.2d vertices are written out in pre-order sequence

and cross-edge sources reaching clusterheads are marked with concentric circles. For each

of the clusterheads, we also show how the values for proximals change as we run through

the vertices written out in pre-order sequence.

Let us consider the cross-edge sources reaching clusterhead h in Subfig. 4.2d. i and

c are the two cross-edge sources reaching the clusterhead h. For the pre-order range [0,

pre(i)], the first proximal s< is undefined (denoted in the subfigure as φ). However, the

second proximal s> is defined as i. In the next sub-range (pre(i), pre(c)] s< is i and

s> is c. Finally, in the range (pre(c), pre(k)] s< is c and s> is undefined.

The proximals for vertices in pre-order sequence vary only when a cross-edge source is

Identifying the TC-PLCA 65

encountered. This subtle observation enables us to deploy a labeling and indexing scheme

for identifying the proximals for any vertex. Therefore, we can annotate each vertex x

with an index that points to a cross-edge source which has the lowest pre-order number

amongst cross-edge sources having pre-order numbers higher than x. Let the identified

cross-edge source be denoted as u. Since there are no other cross-edge sources in the

interval (pre(x)+1, pre(u)), the proximals are same for both x and u. Subsequently, we

can get the proximals for x by looking up the proximals for u.

4.4.3 Building and indexing the TC-matrix

In order to be able to deploy a labeling and indexing scheme for identification of proximals,

we first build a matrix called the TC-matrix which holds the proximal information for

cross-edge sources. The rows of the TC-matrix are indexed by clusterheads and its columns

are indexed by cross-edge sources. The TC-matrix for our example graph is shown in

table 4.1. In this subsection, we first discuss techniques for constructing the TC-matrix.

Subsequently, we also discuss techniques to annotate vertices with labels to index the

TC-matrix.

The first step in computing the TC-matrix is to compute the transitive closure for

the rechability information between cross edge sources and clusterheads. We multiply an

adjacency matrix based on the cross-edges with a second matrix that captures reachability

from clusterheads to cross-edge sources (through the spanning tree) to obtain an interme-

diate matrix γ. The result of the closure over γ shows reachability from one cross-edge

source to another through a combination of cross and tree edges. We may need to further

amend γ because some cross-edge sources may be reachable from another solely through

the spanning tree. It is well known the transitive closure of an adjacency matrix has the

same computational complexity as a matrix multiplication. Hence, obtaining the transitive

closure of γ has the same computational complexity as a matrix multiplication. Creating a

reachability matrix between cross-edge sources and clusterheads from γ is straightforward

and can be obtained by observing the cross-edges. Let this reachability matrix be denoted

as M.

Definition 9. M is a sub-matrix of the transitive closure matrix for the DAG that captures

the reachability information between cross-edge sources and clusterheads.

The overall complexity of this reachability computation step can be limited to O(cω)

where ω is the exponent of the fastest matrix multiplication algorithm [34, 115].

66 Adaptive pre-processing of security lattices

Algorithm 4.1 TC-matrix computation

1: procedure ComputeTCPLCA(M)
2: prev s< ← φ
3: Stack ← φ
4: for each clusterhead t do
5: for each cross edge source s do
6: s.s< ← prev s<
7: Stack.push(s)
8: if s; t then
9: while Stack is not empty do

10: v ← Stack.pop()
11: v.s> ← s
12: end while
13: prev s< ← s
14: end if
15: end for
16: while Stack is not empty do
17: v ← Stack.pop()
18: v.s> ← φ
19: end while
20: end for
21: end procedure

e i c

b {φ,c} {φ,c} {φ,c}
g {φ,e} {e,c} {e,c}
h {φ,i} {φ,i} {i,c}

Table 4.1: TC-matrix

Upon obtaining M, we use algorithm 4.1 to obtain the TC-matrix. We scan through

the list of all cross-edge sources reaching each clusterhead (cf. 4-5) and push the cross-edge

source onto a stack after updating the value for s< for it (cf. 6-7). The value of s< for

a cross-edge source is set to be the same as the s< for the cross-edge source encountered

immediately before it (denoted by prev s<). Upon encountering a cross-edge source s

that reaches the clusterhead, we pop all cross-edge sources on the stack to update the s>

values for them (cf. 8-14). Additionally, we also update the value for prev s< to s. This

process continues until we reach the cross-edge source with the highest pre-order number.

At this stage, if there are any additional cross-edge sources on the stack, we set the s>

value for these sources to be φ (cf. 16-19). Table 4.1 shows the TC-matrix for the DAG

Identifying the TC-PLCA 67

in Fig. 4.1 using this algorithm.

Algorithm 4.2 Labeling all vertices for indexing TC-matrix

1: Stack ← φ
2: procedure LabelVerticesForTCPLCA(G)
3: LabelVertex(root(G), φ, φ)
4: while Stack is not empty do
5: v ← Stack.pop()
6: v.colIdx← φ
7: end while
8: end procedure
9: procedure LabelVertex(n, rowIdx, colIdx)

10: Stack.push(n)
11: if n is a cross-edge source then
12: if colIdx is φ then
13: colIdx← 0
14: else
15: colIdx← colIdx+ 1
16: end if
17: while Stack is not empty do
18: v ← Stack.pop()
19: v.colIdx← colIdx
20: end while
21: end if
22: if n is a clusterhead then
23: if rowIdx is φ then
24: rowIdx← 0
25: else
26: rowIdx← rowIdx+ 1
27: end if
28: end if
29: n.rowIdx← rowIdx
30: for each child of n in the spanning tree do
31: LabelVertex(child, rowIdx, colIdx)
32: end for
33: end procedure

In order to index the rows of the TC-matrix, we annotate vertices with a label for

their clusterhead. In order to index the columns, we annotate each vertex with a second

label that is based on proximal information for the vertex. The vertices can be labeled in

O(n + m) using algorithm 4.2 where m is the number of edges in the DAG. We trigger

this algorithm using the root of the spanning tree that covers the DAG (cf ll 3). The

68 Adaptive pre-processing of security lattices

function LabelVertex is responsible for annotating the row and column indices at every

vertex for accessing the TC-matrix. We annotate the row label (cf ll 10-21) and column

label (cf ll 22-29) with the aid of the variables rowIdx and colIdx. Similar to algorithm

4.1, while annotating column labels, we keep pushing vertices onto the stack until a cross-

edge source is encountered. Upon encountering a cross-edge source, we pop all vertices on

the stack and label the vertices with a column index that corresponds to the encountered

cross-edge source. Our example DAG with annotated with the column and row indices

(in that order) is shown in Fig. 4.3.

a

b

d

g

l

h

m

e

i

n

j

c

f

k

{0,φ}

{2,φ}

{φ,φ}

{φ,φ}

{0,0}

{0,0} {0,0}

{2,0}{1,0}

{2,0}

{0,1}

{0,1}

{0,2}

{0,2}

Figure 4.3: DAG vertices annotated with TC-matrix indices

4.5 Identifying the CC-PLCA

The CC-PLCA of a vertex pair has the highest topological number amongst the common

cross ancestors that reach the pair. Computation of the CC-PLCA is done in three steps

which are described below.

• Step 1 - We try to find out if any of cross-edge sources reach the both vertices in the

query pair. If this is true, then the cross-edge source itself could be the CC-PLCA.

For each query pair, we identify all cross-edge sources reaching both vertices and

then choose one that has the highest topological number. We denote this vertex as

τ . It may be the case that τ does not exist as there no cross-edge source that reaches

both vertices. Therefore, we also need to consider LCAs of the cross-edge sources

reaching the vertices as detailed in the step 2.

• Step 2 - For a vertex pair {x,y} let the distinct cross edge sources cx and cy reach x

and y respectively. The LCA of cx and cy could potentially be a CC-PLCA for the

Identifying the CC-PLCA 69

vertex pair. Let the candidate CC-PLCA identified in this manner be denoted as τ .

If Sx and Sy denote the set of all cross edge sources reaching x and y respectively, τ

can be identified in two stages. In the first stage, we create a shortlist of vertices by

taking one vertex each from Sx and Sy and computing their LCA. Let this shortlisted

set of vertices be denoted as Sτ . In the second stage, we choose the vertex with the

highest topological amongst the vertices in Sτ .

• Step 3 - We choose the vertex that has the higher topological number between τ and

τ which gives us the CC-PLCA for the query pair.

4.5.1 A simplified approach to computing τ

Instead of computing the pairwise LCAs as detailed in step 2 above, we can obtain τ by

computing the pairwise TT-PLCA.

Lemma 4.5.1. For an LCA query LCA(x,y), let Sx and Sy be the set of cross-edge

sources reaching the clusterheads of x and y. Let, Stτ denote the set of vertices obtained by

computing TT-PLCA of all pairs of vertices cx and cy such that cx∈ Sx and cy∈ Sy and

cx 6= cy. τ can be obtained by the picking the vertex with the highest topological number

in Stτ .

Proof Vertices in Sx and Sy form a partial order due to the fact that the set of vertices

in Sx and Sy is transitively closed. Let us consider two cross edge sources cx and cy from

the sets Sx and Sy respectively. During the LCA computation of cx and cy, we do not

need to consider any cross ancestors of cx and cy towards identification of τ ; they will be

considered anyway when we consider other vertices in Sx and Sy and obtain their LCA.

Therefore, it suffices to just compute the TT-PLCA of cx and cy. This discussion can

be inductively extended to all pair-wise combinations of a vertex each from Sx and Sy.

Therefore, if Stτ denote the set of vertices obtained by computing TT-PLCA of all pairs

of vertices cx and cy such that cx∈ Sx and cy∈ Sy and cx 6= cy. τ can be obtained by the

picking the vertex with the highest topological number in Stτ .

For the remainders of this discussion, we refer to vertices that are TT-PLCAs of cross

edge sources as extras.

4.5.2 CC-PLCA computation for all pairs of clusterheads

So far, we have discussed the CC-PLCA computation for a given vertex pair. It is im-

portant to reiterate two aspects of the CC-PLCA problem at this stage. Firstly, we are

70 Adaptive pre-processing of security lattices

interested in the CC-PLCA computation of all vertex-pairs instead of any given pair.

Secondly, since any cross ancestor reaches a vertex through its clusterhead, it would be

sufficient to compute the CC-PLCA of all pairs of clusterheads. In order to compute τ

for all pairs of clusterheads, we need reachability information from cross-edge sources to

clusterheads. Let us denote this matrix byM. In order to compute τ , we need reachability

information between extras and clusterheads. Let this information be encoded in another

reachability matrix which we denote as Mx.

Definition 10. Mx is a sub-matrix of the transitive closure matrix for the DAG that

captures the reachability information between extras and clusterheads.

The process of computing τ and τ for all pairs of clusterheads from M and Mx

respectively is straightforward. The details of computing the LCA from a reachability

matrix can be found in [36]. The process is known as identification of the maximal witness

in a boolean matrix product and has a best know runtime complexity of O(c2.575) [36].

We have already computed M in section 4.4. We now discuss how Mx can be com-

puted using M as an input. The initial step in the computation of Mx is to identify all

extras. Simultaneously, we also need to keep track of which clusterheads are reached by

which extras. One can naively enumerate the extras by obtaining pairwise TT-PLCA of all

clusterheads. Since there are c cross-edge sources, the naive approach would entail O(c2)

operations just to compute all TT-PLCAs. In addition for each of the TT-PLCA compu-

tation we have to keep track of clusterheads that the extras reach through reachability-set

union operation. This would increase the worst-case complexity to O(c3). However, we

will shortly show with the aid of a few lemmas that the algorithm can be simplified from

a worst case complexity of O(c3) to O(c2 log c). We first show through lemma 4.5.2 that

it is not necessary to obtain pairwise TT-PLCA of all clusterheads.

Lemma 4.5.2. Let T be a tree and the sequence S = v1 . . . vp be any p vertices from the

tree written in post-order. Let l be the LCA of the nodes v1 and v2 and vk be a vertex in

S with the highest post-order number less than or equal to post(l). Then, LCA(v1, vi) =

l if 2 ≤ i ≤ k and LCA(v1, vi) = LCA(l, vi) if k < i ≤ p.

Proof Recall from the theory of post-order numbering for vertices in a tree that a vertex

is numbered after numbering all its descendants. Therefore, if a vertex x is the ancestor of

another vertex y then x is the ancestor of all other vertices that have post-order numbers

in the range [post(y), post(x)].

Case 1. 2 ≤ i ≤ k : Let li = LCA(v1, vi). In a tree, there is only one path from the

root to every vertex which passes through all ancestors of vertex and there exists a total

Identifying the CC-PLCA 71

order amongst the ancestors of the vertex. We know that both li and l are ancestors of

v1. So, there exists an order between li and l. There are two cases possible, either li

is an ancestor of l or li is a descendant of l. We show by contradiction that neither is

possible.

Since post(v1) < post(vi) ≤ post(vk) ≤ post(l) and l is an ancestor of v1, l is

an ancestor of vi as well. If l is a descendant of li, then LCA(v1, vi) = l. This is a

contradiction since we know that LCA(v1, vi) = li. Also, since post(v1) < post(v2) <

post(vi) and li is the ancestor of v1, li is an ancestor of v2 as well. If li is a descendant

of l, then LCA(v1, v2) = li. A contradiction again since we know that LCA(v1, v2) = l.

Therefore, li=l.

Case 2. k < i ≤ p : Once again, let li = LCA(v1, vi). For this case, we have

post(li) > post(vi) > post(l) ≥ post(vk) > post(v1). Also, we know that both li

and l are ancestors of v1. There is a total order between li and l. Since post(li) >

post(l), li must be an ancestor of l in the tree and all paths from li to v1 pass through

l. Thus, LCA(v1, vi) can be rewritten as LCA(l, vi) for this case.

Lemma 4.5.2 shows that if we have a sequence of vertices S = v1 . . . vp in post-order

sequence, the list of unique TT-PLCAs for all vertex pairs can be obtained by a recursive

operator. This operator computes the TT-PLCA of the first two vertices in the sequence,

adds the TT-PLCA back into the sequence (according to its post-order number) and drops

the first vertex from the sequence. Assuming that the operator terminates, it continues

to run until it exhausts S. Based on this observation, we formulate a recursive operator

Λ to identify the set of extras and clusterheads reachable from these extras. We first give

a formal presentation of Λ and then discuss its correctness and termination properties.

Definition 11. Λ is an operation on the set of cross-edge sources S sorted in ascending

order of their post-order numbers such that:

1. It calculates the TT-PLCA l of first two vertices in S

2. It updates the clusterheads reachable from l with those reachable from the first two

vertices in S

3. It inserts l back into S while maintaining the vertex ordering in S

4. It drops the first vertex in S

5. If S has at least 2 elements, Λ calls itself with S as an argument otherwise Λ termi-

nates

72 Adaptive pre-processing of security lattices

Lemma 4.5.3. Λ correctly identifies all extras and all clusterheads reachable from these

extras.

Proof The TT-PLCA of v1 and vi where 2 < i ≤ k is l. If l is not in S yet, we insert

it in S. We update the clusterheads reached by l with the clusterheads reached by v1

and v2. As Λ operates on S, the pairwise TT-PLCA of l with vertices vk+1 . . . vp will

gives us the other extras that may arise due to v1. Therefore, we do not need v1 anymore

and it can be dropped. Thus, Λ preserves the information about extras. If we assume

termination of Λ (which will be proved later), at some stage l will become the first vertex

in the sequence. If we find that l is not a cross-egde source, we add it to the set of extras.

Apart from reaching clusterheads directly, extras can also reach clusterheads transi-

tively through other cross-edge sources reachable from them in the spanning tree. We need

to show that when extras are dropped from S, the identified set of clusterheads reachable

from it is complete. Let li TT-PLCA of two vertices vi and vi+1 such that post(v1)

< post(vi) < post(vi+1) < post(l). According to lemma 4.5.2, l also reaches vi and

vi+1. Therefore, li could be either l or one of its descendants in the spanning tree. If

li is l, reachable clusters from l are updated with those reachable from vi. Otherwise,

clusterheads reachable from li are updated and li is inserted in S in a position between

vi+1 and l. li continues to remain in the sequence until it comes to the beginning of the

sequence. Then, the information about clusterheads reachable from it is added to one its

ancestors (which could be l or one of its descendants) and so on.

The discussion reveals a powerful property of Λ - no vertex is dropped without handing

over clusterhead reachability information to a tree ancestor of the vertex that is already

in S. More importantly, it is not possible for l to come to the head of the sequence

until all the vertices that have post-order numbers in the range [post(v1), post(l)] have

been dealt with. As a result, we will ultimately reach a stage in Λ where all reachable

clusterheads from l have been correctly identified.

Lemma 4.5.4. Λ terminates in O(c) iterations.

Proof The proof follows straightforwardly from the observation that for a set of nodes in

a tree, the number of unique LCAs generated through pairwise LCA operations on nodes

in the set is no larger than the cardinality of the set.

Let the i1, i2 · · · in be the indices of the first occurrence of v1, v2 · · · vn in the Euler

tour of the DAG. From RMQ discussions in [20], [43] and section 4.1, it is known that the

index of the LCA for any vertex-pair vk and vk+1 must lie in the range [ik, ik+1). Now

Identifying the CC-PLCA 73

consider the tuple {vk−1,vk,vk+1}. We prove that the number of unique LCAs for this

small subset is no larger than two in order for the lemma to be true.

Given index(LCA(vk−1,vk)) ∈ [ik−1, ik) and index(LCA(vk,vk+1)) ∈ [ik, ik+1), let the

index of the result of the only other possible LCA query - LCA(vk−1,vk+1) - be i. If

i ∈ [ik−1, ik) and i 6= index(LCA(vk−1,vk)) then there is another vertex in [ik−1, ik) which

has a lower value than LCA(vk−1,vk). This is a contradiction. Similarly, we can prove that

i /∈ [ik, ik+1). Generalizing this argument, we can prove that the cardinality of the sequence

S decreases monotonically and the recursive refinement terminates in O(c) steps.

4.5.3 Algorithmic details

Having discussed the technical details of the process for computing the CC-PLCA, we are

now ready to discuss the algorithmic details. In this subsection we present the algorithm

that computes Mx from M. The rest of the process for computing the CC-PLCA relies

on computation of maximal witnesses in a boolean matrix product and can be found in the

literature [36]. The algorithm discussed in the sub-section closely follows the theoretical

discussions on CC-PLCA computation.

Algorithm 4.3 Finding clusters reachable through CC-PLCAs that are not cross edge
sources

1: for v ∈ Cs do . Cs is the set of cross-edge sources
2: S.Enqueue(v) . S is a priority queue
3: end for
4: Mx ← φ
5: while !S.empty() do
6: v1 ← Q.dequeue()
7: if !v1.isCrossSource() then
8: Mx ←Mx ∪ v1
9: end if

10: if !S.empty() then
11: v2 = S.head()
12: l = TT PLCA(v1, v2)
13: l.clusters← l.clusters ∪ getReachable(M, v1)
14: if v2! = l then
15: S.enqueue(l)
16: end if
17: end if
18: end while

Algorithm 4.3 uses the reachability matrix M and the set of cross-edge sources Cs as

input. It uses a priority queue as the basic data structure. The priority queue uses the

74 Adaptive pre-processing of security lattices

b g h

b b

g c g

h c e h

Table 4.2: CC-PLCAs

post-order number as the ranking criteria. In the algorithm, we first initialize the priority

queue with the set of cross-edge sources (cf ll 1-3). We dequeue a vertex v1 and check

whether it is one of extras. If it is, we add it to Mx (cf ll 6-9). Then we compute the

TT-PLCA of v1 and the head of the sequence S. The TT-PLCA is denoted as l. We

update the clusters reachable from the l as well (cf ll 12-13). Finally, we put back l in

the sequence S (cf ll 14-18).

We know from lemma 4.5.4 that the outer loop in algorithm 4.3 runs O(c) times. For

each of the iterations, we insert a vertex in the sequence which takes O(log c) time because

S is already sorted and we update the reachable clusterheads which takes another O(c)

time. So, the worst case time complexity for obtainingMx fromM is O(c2). At the same

time, it is clearly evident that we do not need more space than O(c2). After obtainingM
andMx, we just need to do 2 maximal witness of boolean matrix product operations and a

comparison of two c×c matrices. Given that the maximal witness operation has a time and

space complexity of O(c2.575) and O(c2) respectively, we can conclude that the CC-PLCA

computation has a time and space complexity of O(c2.575) and O(c2) respectively.

Table 4.2 shows the CC-PLCAs obtained for all pairs of clusterheads for our example

graph. Indexing this matrix requires no further labelling since we have already annotated

each vertex its corresponding clusterhead during the TC-PLCA computation. These clus-

terhead labels can be used to index table 4.2 as well.

The final step in computing the LCA of any two arbitary vertices is to return the vertex

that has the highest topological number amongst the TT-PLCA, TC-PLCA, CC-PLCA.

This operation can be achieved in constant time.

Theorem 4.5.5. The representative least common ancestor of a vertex-pair in a DAG can

be answered in constant time after O(n+ c2.575) preprocessing requiring O(n+ c2) space.

Discussion. In order to answer TC-PLCA and CC-PLCA queries, we use a combination

of vertex labeling and small-matrix look-ups. Labeling of vertices for indexing TC-matrix

and the CC-PLCAs matrix relies on a depth-first traversal of the DAG and can easily

be integrated with the initial traversal of the DAG for edge classification. Similar to the

Summary 75

depth-first traversal of a DAG, labeling has a time and space cost of O(n+m) and O(n)

respectively.

The pre-processing phase of our algorithm computes the TC-matrix and the CC-PLCA

matrix for answering TC-PLCA and CC-PLCA queries efficiently. The TC-matrix is

computed from M with a time and space cost of O(c2). Computing M from the cross-

edge information derived from the initial traversal of the DAG can be done using a sequence

of matrix multiplications. This has a time and space cost of O(cω) and O(c2) respectively.

Thus, the TC-matrix can be computed with an overall time and space cost of O(cω) and

O(c2) respectively.

For the computation of the CC-PLCA matrix we need to perform an element-wise

comparison of matrices that hold τ and τ for all combinations of clusterheads. This

operation can be done with a time and space cost of O(c2). The matrices that hold τ

and τ can be respectively obtained from M and Mx through the maximal witness of

the boolean matrix product operation. This has a time and space cost of O(c2.575) and

O(c2) respectively. It has been further shown that Mx itself can be obtained from M in

O(c2 log c) time and O(c2) space. Thus, the overall time and space cost of obtaining the

CC-PLCA matrix is O(c2.575) and O(c2) respectively.

Finally, answering TT-PLCA queries in constant time requires us to pre-process the

spanning tree that covers the DAG. This is achieved in O(n) time and space using existing

techniques for LCA computation in trees.

4.6 Summary

In this chapter, we have proposed a fast and scalable technique to identify representative

LCAs in a DAG. The computational requirement of our technqiues scales itself based on

the number of vertices in the DAG with incoming or outgoing cross edges. We achieved

this by taking the spanning tree of the DAG as the base structure for our analysis and

computing the transitive closure of the additional reachability information in the graph.

Then, we identified potential LCAs depending on all possible types of paths that may

exist between the potential LCA and the query vertex. The vertex with the maximum

topological number amongst the PLCAs was identified as the representative LCA. The

reported techniques provide best of both worlds in terms of computational requirements:

LCA computation using our algorithm proceeds on trees and dense DAGs in the most

efficient techniques reported currently for these structures in the literature. The computa-

tional requirements of our algorithm interpolate seamlessly for anything in-between these

76 Adaptive pre-processing of security lattices

two categories. Also, unlike exisiting algorithms that compute the transitive closure of the

entire DAG, we compute the closure for only cross-edge source and targets which renders

our algorithms more efficient that those reported in the literature.

Chapter 5

Evaluation of adaptive

pre-processing for security lattices

5.1 Introduction

In the previous chapter we discussed the theoretical foundations of an adaptive approach

to pre-processing DAGs for answering lowest common ancestor queries in constant time.

However, the dicussion was limited to theoretical costs of pre-processing the DAG. In this

chapter, we discuss the application of the algorithm to lattice queries normally encoun-

tered in information flow analysis of programs. We experimentally evaluate the algorithm

presented by testing it against a range of security lattices with widely varying structures

and show that given for the wide spectrum of security lattices encountered in practice, the

adaptive algorithm presented in chapter 4 provides a seamless means of pre-processing the

lattice in order to answer join (t), meet (u) and ordering (≤) queries in constant time.

Since join is the dual of the meet query and ordering queries are a special case of join

queries (a ≤a′ if a ta′ = a′), we limit our experiments to the join query only.

The main contributions of this chapter are as follows.

• We discuss the wide spectrum of the structure of security lattices encountered in

practice when it comes to lattices governing flow of information in programs. We

show that the policy lattices that govern information flow analysis in real-world pro-

grams could range from trees with a bottom (⊥) element all the way to dense DAGs.

This serves as the motivation behind using the adaptive pre-processing technique de-

scribed in chapter 4.

• We compare and contrast the adaptive approach with existing techniques for pre-

77

78 Evaluation of adaptive pre-processing for security lattices

processing lattices for answering lowest common ancestor queries. We discuss the

relative advantages and disadvantages of a cluster based approach as advocated

in the adaptive approach compared with techniques presented in the literature for

trees and DAGs. As well as the pre-processing times, we also discuss the cost

for querying after pre-processing the lattice. This is important because despite its

pre-processing advantages, the adaptive approach uses a potentially more involved

querying approach.

• We demonstrate experimentally the superiority of the adaptive cluster-based algo-

rithm. We show that not only does it lends a level of abstraction to pre-processing

lattices but its computational costs are a direct function of the lattice’s latent scope

for decomposition into clusters. This makes the adaptive approach a preferred op-

tion in applications like language-based security which have to deal with lattices

that are structurally diverse. With regards to the query times, our experiments

show lattices pre-processed by the adaptive approach take longer to query than ex-

isting techniques. However, this difference in answering time per query is miniscule

when compared to the gains in pre-processing times.

The rest of the chapter is organised as follows. In section 5.2, we present the extrem-

ities of the structural spectrum of security lattices encountered in practice. We discuss

the algorithmic options for pre-processing these lattices in section 5.3 and showcase the

advantages of a cluster-based approach to pre-processing these lattices in section 5.4. We

further discuss why, despite the advantages it offers in terms of pre-processing, the query

time for a cluster-based approach can be expected to be more expensive than exisiting

techniques. We demonstrate the advantages of structure-sensitive algorithms experimen-

tally in section 5.5. Finally, we summarise the main results of this chapter in section

5.6.

5.2 Structure-spectrum of security lattices

There are a wide variety of security lattices that govern how information should flow

through programs. On one hand, we have type-lattices which are similar in structure to a

tree with a few additional cross-edges. On the other hand we have powerset lattices which

are akin to dense DAGs with each vertex in the DAG having multiple incoming edges. In

this section, we demonstrate the structural contrast in such lattices. In section 5.2.1, we

discuss type-lattice directed language security where the type lattice is similar in structure

Structure-spectrum of security lattices 79

to a tree. In in section 5.2.2, we discuss powerset lattices used in mashup security the

structure of which is similar to a dense DAGs.

5.2.1 Class-level non-interference

For a secure computation, it is necessary that the low-security part of the output should

not depend on the high-security part of the input. This is commonly known as non-

interference. In chapter 3, we have described a model of information flow that was too

fine grained; each value and expression has its individual security level. In reality, however,

sometimes it is useful to relax such a strict criteria for non-interference. Abstract non-

interference [47] is a more relaxed form of non-interference where the observational power

of attackers are limited; it deals with attackers that observe only properties of data rather

than exact values.

In [117], a model of information flow was presented with the class representing a

collection of objects with the same structure as an abstract property. Thus, from the

point of view of lattice-directed information flow control, classes would represent elements

in the security lattice and the subclass relation would represent the ordering between the

elements.

Class-level non-interference mandates that a class is secure if observing the output

of any of its public methods does not reveal any type information regarding its inputs.

Consider a scenario where the evaluator in a test is biased against candidates based on

their gender. It is imperative that when the evaluator requests the data for evaluating a

candidate (which could be answers in a test), no information is released about the gen-

der of the candidate. However, the system may have been designed as shown in figure

5.1 due to historical reasons; this could be to monitor equal opportunities for applicants

regardless of their gender. In this case, we have a Candidate class which has two sub-

classes MaleCandidate and FemaleCandidate for male and female candidates respectively.

Such an implementation, however, is flawed from the perspective of protecting the gender

data from the examiner because observing the return type of getEvalData() using the

instanceof method (from Java) will reveal whether the evaluation data belongs to a male

candidate or a female one.

In class-level non-interference, each variable as well as each static or instance field of a

class is mapped to an abstract value. An abstract value is a set of classes each annotated

with a security flag. For example, in the figure 5.1, the object this could map to any of

the three classes: it could be either Candidate or any of its subclasses (MaleCandidate

or FemaleCandidate). In program analysis for class-level non-interference, the abstract

80 Evaluation of adaptive pre-processing for security lattices

Class Candidate {

private

Object releaseEvalData ()

{}

public

Object getEvalData ()

{

 return this.releaseEvalData();

}

}

Class MaleCandidate {

private

MaleData releaseEvalData ()

{

 ...

}

}

Class FemaleCandidate {

private

FemaleData releaseEvalData ()

{

 ...

}

}

Figure 5.1: An implementation that leaks sensitive information

value to which this would map would be CandidateH↓. Here, the ↓ represents that this

could map to either the Candidate class or any of its sub-classes. The annotation H, which

stands for high, denotes that since the object maps to multiple classes, it is vulnerable to

security attacks that expose class-level data. Hence, augmenting the class information for

this with a high flag enables the verifier to check whether class information for objects

that map to a secure abstract value (denoted by H) flow to those that map to an insecure

abstract value (annotated by a privilege level L which is less than H).

In class-level non-interference, ad-hoc security modifiers such as L and H are added at

the level of classes to denote whether a field should to be regarded as insecure or secure.

The security policy requires that there be no flows from H fields to those marked with L;

such a flow constitutes an illicit flow. However, this is contingent upon verifying whether

a flow is legal at the level of classes in the first instance. If the flow is legal at the level of

classes, only an additional trivial check is necessary to establish class-level non-interference.

This check verifies the absence of flows from fields marked as H to those marked as L. Thus,

the class hierarchy serves as the broad-based policy that determines what constitutes a

secure flow of class-level information. If we have a large class hierarchy then it is important

to answer queries (such as≤, t and u) of the class-level non-interference verifier in constant

time. In this chapter, we investigate the structure of class-hierarchies of some commonly

used open source software to determine suitable algorithms that would pre-process the

hierachy to answer queries of the verifier in constant time.

5.2.2 Mashup security

Web mashups are growing ever-popular because integration of services from multiple

providers into a single hosting page provides unprecedented functionalities. The host-

Structure-spectrum of security lattices 81

ing page for the mashup, called the integrator, is often a hotbed of interaction between

various components in it. The components are typically loaded from multiple origins which

have varying levels of trust and therefore, the issue of securing information flow between

components in the mashup is an important issue.

Recently, it was shown that a lattice based approach to mashup security is suitably

able to deal with multi-origin trust issues [71] and provides an effective basis for secure

information interchange between mashup components. Such a lattice for controlling infor-

mation flow in a mashup is constructed from the mashup itself. It is the powerset lattice

of the set of origins from where content is sourced for the mashup. The powerset lattice

constructed from the set of origins in the mashup forms the set of permissible pathways

in which information can flow in the mashup. Beyond the permissible pathways, if fur-

ther declassification [94] amongst lattice elements is desired, escape-hatches [95] can be

described on a per origin basis.

When the mashup is loaded, nodes in the DOM-tree are labelled with the origin of

the nodes. After this, validity of information flow between the nodes is decided based on

the subset relation between sets of labels on the nodes. Disregarding any escape-hatches,

information can flow a source node to a sink node if the privilege level of the sink is at least

as restrictive as that of the source. This is typically decided by checking whether the label

of the source is a subset of the level of the sink. In the lattice world of things, this translates

into checking whether the label representing the sink node is ordered higher than the label

representing the source node in the lattice. This is how the powerset lattice derived from

the set of all origins in the mashup forms a basis for governing flow of information within

the mashup.

Figure 5.2 shows powerset lattices for mashups with information sourced from multiple

origins. In figure 5.2a, we have the bottom (denoted by ⊥) element of the lattice; this

represents the lowest privilege level in the security lattice. Nodes in the DOM-tree sourced

from origin A are marked with the lattice level A. The arrow from A to ⊥ denotes that A is

at a higher privilege level compared to ⊥ and in the confidentiality world of things, flow of

information from A to ⊥ is not permitted. Similarly, content that is sourced from both A

and B is annotated with the lattice level A,B and as shown in the powerset lattice in figure

5.2a, anything annotated with A,B is at a higher privilege level that either A or B. So, flow

of information from A and B to A,B is secure but not the other way round. Finally, the

dotted line in figure 5.2a represents an escape-hatch which enables information to flow from

nodes whose content labeled B to nodes labeled with A. Even though there is pre-existing

privilege ordering between A and B, the escape-hatch renders A at a higher privilege level

82 Evaluation of adaptive pre-processing for security lattices

A,B

A B

|

(a) Powerset lattice of 2 ori-
gins with declassification

A,B,C

A,B A,C B,C

A B C

|

(b) Powerset lattice of 3 origins

Figure 5.2: Powerset lattices for mashup security

than B (escape-hatches are declared on a per-origin basis). Figure 5.2b represents the

powerset lattice for a mashup with 3 origins and without any declassification.

Without loss of generality, we ignore the presence of escape-hatches in this work. The

reasoning to support this decision stems from the fact that escape-hatches are defined on

an ad-hoc and per-origin basis and declassification through them is treated orthogonally

to the flow through the powerset lattice. To quote a definition of a valid flow from [71]:

Definition 12. For an expression e of level lsource, a legal flow for e to the target level

ltarget is allowed if lsource v ltargetuD where D is the set of origins to which the expression

can be explicitly declassified through definition of escape-hatches on a per-origin basis.

It can be observed from the definition, there are two parts to checking a valid flow:

through the powerset lattice (by checking lsource v ltarget) and through declassification

(by enumerating the elements of D). The two are orthogonal to each other. Since, we are

solely focused on lattices in this work, we turn our attention to speeding up the former

computation. However, it must be noted that if the escape-hatches are modelled as edges

in the DAG representation of the lattice and subsequently, enumerate further channels for

valid information flow, any lattice pre-processing algorithm can still deal with them. We

present experimental results related to random DAGs in section 5.5 that supports this

point.

Algorithmic options for pre-processing lattices 83

5.3 Algorithmic options for pre-processing lattices

In section 5.2, we discussed the two emerging examples of security lattices that occur in

practice. However, the two examples showed the wide structural variety in the lattices

that information flow analysis has to deal with. In this section, we discuss the algorithmic

options available to pre-processing lattices in order to answer queries like t, u and ≤
on two elements in the lattice in constant time. As discussed in chapter 3, such queries

are necessary for information flow analysis. The objective of this section is to identify

pre-processing algorithms that can deal with such a wide structural spectrum of lattices.

5.3.1 Tree algorithms for pre-processing lattices

Lattices and trees are structurally different entities; even though a tree can be considered

an upper semilattice, there is no vertex in a tree that represents the join of two vertices

in the tree. However, for the sake of studying algorithmic approaches for answering t u
and ≤ queries on class hierarchies, it is imperative to consider approaches to answer such

queries for trees. Multiple inheritance in class hierarchies is quite rare. In the absence

of multiple inheritance, the class hierarchy based policy lattice as described for class-level

non-interference in section 5.2 is nothing but a tree with a bottom (⊥) element. Hence,

pre-processing algorithms for trees to answer ≤ and t can often be straightforwardly ap-

plied to security lattices. In such cases, the t (≤) query for two elements in the lattice is

obtained by performing a lowest common ancestor (reachability) query for the correspond-

ing vertices in the tree that is obtained by ignoring the bottom element. On the other

hand, the u of two elements in a lattice derived from a class hierarchy is the ⊥ element

unless one is less than the other (assuming the absence of multiple inheritance).

If the ordering among the elements of the lattice is structurally similar to a tree, as is

the case with class hierarchies, then pre-processing the lattice to answer subtyping queries

is fairly straightforward. Interval-range labeling, where each node is annotated with a

range representing the subtree rooted at that node [46], enables answering ≤ queries on the

lattice in constant time after O(n) pre-processing for annotating the tree. Answering the

t and its dual the u queries requires additional pre-processing but at the same asymptotic

cost. Pre-processing the lattice in order to answer these queries consists of first performing

an Euler tour of the graph [35]. The t of two elements in the lattice lies within the first

occurrence of the elements in the Euler tour of the tree representing the lattice. The

identification of the exact element that is the t is achieved by matrix lookups which are

themselves pre-computed after the Euler tour has been completed. Both the Euler tour

84 Evaluation of adaptive pre-processing for security lattices

and pre-computation of the matrices can be completed in O(n) time and the t query can

be answered in constant time.

5.3.2 DAGs algorithms for pre-processing lattices

While the pre-processing algorithm for answering queries on tree-like lattices is fast and

elegant, it is too restrictive to be extended to lattices in general. A lattice in general is

typically represented as a DAG; DAGs allow arbitrary ordering amongst elements of the

lattice and are a super-type of lattices. Answering ≤ t and u queries for lattices has,

respectively, the same costs as answering reachability, lowest common ancestor (LCA) and

highest common descendant (HCD) queries on a DAG representing the lattice. Therefore,

in this section, we discuss the computational costs for answering these queries in DAGs.

In the subsequent part of this section, we say lattice for the DAG representation of the

lattice and ≤, t and u for the reachability, LCA, HCD queries on the DAG representation

of the lattice, respectively. Consequently, elements in a lattice now correspond to vertices

in the DAG representation of the lattice.

For a lattice, a ≤ query on the lattice can easily be answered in constant time after

performing a transitive closure of the lattice. If we assume that the lattice has k elements,

this can be done in O(kω) where ω is the exponent of the fastest matrix multiplication

algorithm [33, 115]. However, answering t and u queries required us to pick one element

from the common ancestors/descendants of the query arguments. Since, t is the dual of u
we discuss the cost for t only. Once we have a reachability matrix through the transitive

closure of the lattice, we can tell all ancestors (and descendants) for all elements in the

lattice.

For a pair of elements, if we need to calculate the t we need to identify the common

ancestors first and then pick one (which is unique in case of lattices) with the highest

topological number. An elegant solution for pre-computing t for all pair of vertices in a

DAG has been discussed in [36]. It was shown in [36] that picking t for all pairs of vertices

in a DAG can be reduced to picking maximal witnesses in the boolean matrix product

of the reachability matrix of the DAG with itself. The cost for doing this was shown to

be O(k(2+θ)) where θ satisfies relation ω1,θ,1 = 1 + 2θ. Here, ω1,θ,1 is the exponent of the

multiplication of a k × kθ matrix with a kθ × k matrix. After obtaining a cost for ω1,θ,1

in terms of ω and θ, it was shown that picking maximal witnesses and hence, identifying

t for all pairs of vertices in a DAG has a pre-processing cost of O(k2.575) [36]. Thus, for

a lattice with k elements, it is possible to answer t queries for all pairs in constant time

after O(k2.575) preprocessing.

An adaptive framework for pre-processing lattices 85

5.4 An adaptive framework for pre-processing lattices

While representing lattices as DAGs is general enough to be extended to any lattice, it is

not particularly efficient for sparse lattices which are similar in structure to a tree with a

few non-tree edges thrown in. Indeed for such lattices one would hope to be able to use tree

algorithms for most of the lattice queries with the non-tree edegs accounted for separately

while computing joins, meets and ordering queries. Such an adaptive approach to pre-

processing of rooted DAGs has been proposed in chapter 4. The novelty of the approach

lies in decomposing a DAG into clusters which are parts of the DAG connected using only

tree edges. The transitive closure for the adaptive approach is computed at the level of

clusters rather than at the level of individual vertices in the DAG. This significantly reduces

the computational costs for preprocessing the DAG in order to answer the representative

lowest common ancestor of a pair of vertices in the DAG in constant time. An overview of

the cluster-based approach to pre-processing the DAG is shown in figure 5.3. The figure

shows a DAG decomposed into clusters; the clusters have been demarcated using dotted

lines. Edges for the spanning tree covering the DAG have been shown using solid lines

while cross edges are denoted using dashed lines.

a

b c

d e f g

Figure 5.3: Overview of cluster-based preprocessing for DAGs

Since the representative lowest common ancestor (join or t in case of a lattice) of two

vertices in a DAG is a common ancestor of both such that none of its descendants is a

common ancestor of the two vertices, conventional techniques for pre-processing a DAG

rely on the reachability matrix of the DAG as a starting point for pre-processing the DAG.

Therefore, the manner in which the transitive closure of the DAG is encoded has a direct

bearing on the runtime of the pre-processing algorithm. Table 5.1a shows the reachability

matrix for the DAG shown in figure 5.3. The adaptive approach to pre-processing the DAG

86 Evaluation of adaptive pre-processing for security lattices

takes a departure from such an encoding of the transitive closure of the DAG. Instead,

it only stores the reachability information from one cluster to another via cross edges as

shown in table 5.1b.

a b c d e f g
a 1
b 1 1 1
c 1 1
d 1 1 1 1 1
e 1 1 1 1
f 1 1 1 1
g 1 1 1

(a) Full closure

c e g
b 1
d 1 1
f 1

(b) Cluster-based
closure

Table 5.1: A compact approach to encoding transitive closure of DAGs

If two vertices belong to the same cluster, then their lowest common ancestor (LCA)

is found using a pre-processing algorithm catered for trees. This is called the TT-PLCA

: a candidate/potential LCA (PLCA) which reaches the both the vertices purely through

edges of the spanning tree. If the vertices belong to two different clusters, then two other

PLCAs are identified: the TC-PLCA/CT-PLCA and the CC-PLCA. The TC-PLCA/CT-

PLCA is a candidate LCA such that the LCA reaches one of the vertices through tree

edges only and the other through a combination of tree and cross edges. CC-PLCA,

on the other hand, is a candidate LCA that reaches both the query vertices through a

combination of tree and cross edges. The vertex that has the lowest topological number

amongst the candidate LCAs is chosen as the result of the LCA query.

The algorithmic details for computing the LCAs of vertices is described in chapter 4.

The costs for pre-processing the DAG for obtaining the TT-PLCA are based on standard

approaches to computing the LCA of vertices in a tree. The TT-PLCA can be computed

in constant time after a O(n) preprocessing. On the other hand, the cross-edge based

reachability matrix that is necessary for computing the TC-PLCA and CC-PLCA is itself

constructed by computing the transitive closure of the cross-edge based adjacency matrix.

This takes O(cω) where ω is as decribed in section 5.3 and c = max{ns, nt} where ns

and nt are the number of vertices in the DAG with incoming or outgoing cross-edges

respectively. On top of computing the transitive closure of the cross-edge adjacency matrix,

it is necessary to pick CC-PLCAs, which requires performing a maximal witness of boolean

matrix product on the cross-edge based reachability matrix. This operation is analogous

to that described it section 5.3 and the cost for it is O(c2.575).

A clear advantage of the cluster-based approach to pre-processing the lattice is that the

Experiments 87

algorithm seamlessly adapts to the incidence of cross-edges in the DAG/lattice. However,

a subtlety lies in the query times for pre-processing based on a full closure as shown in table

5.1a and a cluster based approach as shown in 5.1b. The full-closure approach can answer

lowest common ancestors queries by performing a simple table lookup in memory. On the

other hand, the cluster-based approach needs to computer three PLCAs and identify the

one with the lowest topological number amongst them. Even identifying the PLCAs is not

a simple lookup operation. As shown in chapter 4, one needs to obtain indices for indexing

the TT-PLCA and CC-PLCA matrices first. Furthermore, the TT-PLCA is identified by

performing subsequent LCA operations on the spanning tree. These additional steps make

the query more expensive compared to a full-closure based approach. In section ??, we

take a closer look at the pre-processing and query times for both the full closure based pre-

processing algorithm and the cluster-based pre-processing algorithm, in order to establish

the relative merits of the cluster-based approach.

5.5 Experiments

We ran experiments for measuring the preprocessing times and query times for both class

hierarchies of large-scale commonly-used softwares and powerset lattices for both the full

closure approach to pre-processing lattices and the cluster based approach. Additionally

we also tested these algorithms against custom generated DAGs. These tests show the

seamless adaptability of the cluster-based approach. We describe the experimental setup

and the yardsticks we use to compare the cluster based algorithm to the full closure algo-

rithm in section 5.5.1. Then, we describe our choices of benchmarks for the experiment

in section 5.5.2. The results for class hierarchies as well as powerset lattices are discussed

in section 5.5.3. After showing the suitability of the cluster-based t pre-processing algo-

rithm for class hierarchies and powerset lattices, we also show how the algortihm adapts

seamlessly to the full spectrum of lattices (based on the incidence of non-tree edges) in

section 5.5.3.

5.5.1 Setup

All experiments were conducted on a 2.26 GHz Intel Core 2 Duo processor with a 3MB

shared cache and 8GB of memory. The system was running OS X Mavericks (10.9.3)

operating system. All reported timing measurements are average wall-clock times. For

each of the test cases, we measured the following:

88 Evaluation of adaptive pre-processing for security lattices

• The total number of vertices in the lattice. In table 5.3, this is denoted as total for

class hierarchies and 2n for powerset lattices.

• The fraction of vertices with incoming or outgoing cross edges which we denote as

c rat. Note that as described in section 5.4, we take the larger of ns (number of

vertices with outgoing cross edges) or nt (number of vertices with incoming cross

edges) to derive c rat. In particular, c rat = max{ns, nt} ÷ n where n is the total

number of elements in the lattice.

• The time (in milliseconds) for preprocessing the lattice in order to answer t queries

in constant time for a pair of elements. This is denoted as ppt cc for the cluster

based closure algorithm and ppt fc for the pre-processing algorithm based on full

closure of the lattice.

• The time (in microseconds) taken to query the lattice for obtaining t of two elements.

This is denoted as qt cc and qt fc in table for the cluster-based algorithm and the

algorithm which relies on a full closure of the lattice.

• Lastly, we also report two ratios which are indicative of the comparative performance

of the algorithms. These ratios called ppt rat and qt rat are, respectively, the

ratios of the pre-processing and query times of the cluster-based approach to the full

closure approach.

5.5.2 Benchmarks

For testing the suitability of the cluster-based algorithm, we extracted the class hierarchies

of six large, commonly-used programs. These programs are listed in table 5.2. They are

also a part of the commonly used DaCapo benchmark suite used for Java benchmarking

by the programming language community [22]. However, it must be clarified that we have

tried to use newer, full-fledged versions of the software as opposed to the abridged ones

that come with the DaCapo benchmark suite.

For testing out mashup security which is driven by powerset lattices, we generated

powerset lattices based on the number of origins in a mashup. The powerset lattice is

obtained by obtaining the powerset of all origins in the mashup and ordering the individual

sets by the inclusion relation. As shown in table 5.3b, we have varied the number of

components of the mashup (denoted by n) from 2 to 8. This gives us powersets with

cardinality (denoted by 2n) ranging from 4 to 256.

Experiments 89

Program Version Description

Tomcat 5.5 web server and servlet container
Batik 1.7 manipulation of images in SVG format

Eclipse Indigo Integrated Development Environment
Jython 2.5.1 Python interpreter in Java
Pmd 5.1.0 Java source code analyser
Xalan 2.7.1 XSLT processor for XML documents

Table 5.2: Benchmark descriptions for class hierarchy testing

Finally, we demonstrate seamless adaptability of the proposed cluster-based pre-processing

algorithm with randomly generated DAGs. In order to do so, we first generate binary trees

with a specified depth and then add additional cross-edges to the tree to obtain DAGs

with varying fraction of vertices that have an incoming or outgoing cross edge. As shown

in figure 5.5a, we generate binary trees that range in depth from 4 levels to 8 levels. From

each of these trees, we generate random DAGs where the fraction of vertices with incoming

or outgoing cross edges varies from 0.1 to 0.5.

5.5.3 Results

Pre-processing and query times for the class hierarchies is shown in table 5.3a. Here, total

refers to the number of classes in the hierarchy. It can be observed that the cluster based

approach to pre-processing the class hierarchy is significantly better than an approach

based on a full closure. This is because the full closure approach relies on maximal witness

of a boolean matrix product to precompute the t for all vertex pairs. This can be an

expensive operation if the adjacency matrix for the lattice is large. Also, it can be observed

from table 5.3a that the query times for both the cluster based approach and the full closure

approach are pretty much constant for all the test cases. However, the query time for the

cluster based approach is slightly more expensive. This is because the query for the full

closure based approach does a simple matrix lookup to obtain the t of two elements. In

case of the cluster-based approach, additional processing needs to be done in order to

obtain candidate ts. Then amongst the candidate ts, one with the highest topological

number needs to be selected as described in section 5.4. Even though the cluster based

approach is slower when it comes to query times, the gains during the pre-processing phase

far outweigh the increased query time. In other words, one can query the lattice for t
many more times in the time saved during pre-processing. The number of additonal queries

can be done from the gains in pre-processing time realised from choosing an adaptive pre-

90 Evaluation of adaptive pre-processing for security lattices

Software vertices c rat ppt cc(ms) ppt fc(ms) ppt rat qt cc(µs) qt fc(µs) qt rat

Tomcat 636 0.00 1.48 14480.35 1E-4 0.98 0.68 1.44
Batik 232 0.00 0.66 653.36 1E-3 0.96 0.66 1.44

Eclipse 2200 0.00 5.08 644337.95 8E-6 0.97 0.67 1.45
Jython 344 0.00 1.00 2235.09 4E-4 0.96 0.67 1.44
Pmd 1053 0.00 2.67 66656.00 4E-5 0.96 0.67 1.44
Xalan 821 0.00 2.07 31441.23 7E-5 0.97 0.66 1.46

(a) Class Hierarchies

n 2n c rat ppt cc(ms) ppt fc(ms) ppt rat qt cc(µs) qt fc(µs) qt rat

2 4 0.25 0.06 0.02 3.39 1.63 0.62 2.60
3 8 0.50 0.14 0.09 1.68 1.48 0.70 2.11
4 16 0.69 0.65 0.37 1.73 1.48 0.65 2.27
5 32 0.81 3.21 2.22 1.45 1.56 0.72 2.18
6 64 0.89 17.86 14.24 1.25 1.56 0.69 2.26
7 128 0.94 93.64 106.81 0.88 1.57 0.67 2.33
8 256 0.96 586.85 968.18 0.61 1.62 0.69 2.36

(b) Powerset lattices

Table 5.3: Preprocessing and query times for powerset lattices and class hierarchies

processing approach is entirely dependent on the size of the lattice under consideration

and the incidence of cross edges. For example, for a small powerset lattice (n≤4), one is

no better off by using the adaptive approach. On the other end of the spectrum, one can

fit in over 106 queries for large class hierarchies such as the one for Eclipse.

Pre-processing times and query times for the powerset lattices is presented in table

5.3b. Here, n is the number of components in the mashup and hence, 2n is the number of

vertices in the powerset lattice for controlling information flow in the mashup. The fraction

of vertices with incoming/outgoing cross edges increases steadily with the increase in the

number of components in the mashup. This is reflected in the c rat values. The choice of

the number of components for our experiments covers a large range of c rat values starting

from 0.25 for mashups with 2 components to 0.96 for mashups with 8 components. It can

be observed from table 5.3b that for smaller mashups, the cluster based preprocessing

algorithm is slower than the full closure based preprocessing algorithm. This can be

explained through the observation that the fixed costs of preprocessing the lattice (like

identifying clusters, computing their closure and labeling the lattice to index this closure)

outweigh the benefits of a cluster-based approach for small lattices. Indeed, since the full

closure based algorithm merely computes a few matrix multiplications to preprocess the

lattice, it runs faster than the cluster-based approach for small lattices. However, as the

size of the powerset lattice increases, matrix multiplications start getting expensive and

Experiments 91

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

no
rm

al
is
ed

	 c
c_
pp

t	

normalised	 n	

(a) Class hierarchy: partial closure

0	

200	

400	

600	

800	

1000	

1200	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

no
rm

al
is
ed

	 fc
_p

pt
	

normalised	 n^3	

(b) Class hierarchy: full closure

0.E+00	

2.E+03	

4.E+03	

6.E+03	

8.E+03	

1.E+04	

1.E+04	

0.E+00	 5.E+05	 1.E+06	 2.E+06	 2.E+06	 3.E+06	 3.E+06	

no
rm

al
is
ed

	 c
c_
pp

t	

normalised	 (n	 +	 c^3)	

(c) Powerset: partial closure

0.E+00	

1.E+04	

2.E+04	

3.E+04	

4.E+04	

5.E+04	

6.E+04	

0.E+00	 5.E+04	 1.E+05	 2.E+05	 2.E+05	 3.E+05	 3.E+05	

no
rm

al
is
ed

	 fc
_p

pt
	

normalised	 n^3	

(d) Powerset: full closure

Figure 5.4: Plots showing the correlation between theoretical complexity and practical
computational costs

the full closure based approach starts to trail behind the cluster-based approach. The

query times in the case of powerset lattices also follow a similar trend to class hierarchies

with the query time for cluster-based approach being more expensive than the query

time for full-closure approach. However, it is noteworthy that the query times for class

hierarchies is lesser than the query times for powersets in the cluster based approach.

This can be explained by observing that in class hierarchies, there are no cluster closures

to enumerate; all the class hierarchies are trees. This significantly reduced the overhead

to compute candidate ts arising from cluster closures and reduces the total query time

significantly.

There exists a strong correlation between the theoretical and practical costs for the

results presented in this section. In figure 5.4, we have plotted the growth in the actual

computational costs with the growth in the theoretical computational costs as the graphs

under consideration grow larger. It is to be noted here that we use a plain vanilla matrix-

92 Evaluation of adaptive pre-processing for security lattices

multiplication/transitive-closure based algorithm for our implementation which gives us a

cost of O(n3). It is to be noted that there is a faster algorithm which has a theoretical cost

of O(n2.575) for pre-computing all-pair lowest common ancestors using an n×n adjacency

matrix for a DAG of size n. However, we choose a simpler implementation for our purpose

which has a slightly higher asymptotic cost.

There exists a linear relationship between the normalised theoretical costs and the

normalised experimental costs for both the class hierarchies and powerset lattices. Figures

5.4a and 5.4b, denote this correlation for the partial closure (cluster-based approach) and

the full closure respectively. Since the class hierarchy does not contain any cross edges,

we normalise the experimental costs for O(n) instead of the actual theoretical cost of

(O(n + c3)) for the cluster-based approach. For the algorithm based on full closure we

show the growth in experimental costs compared to the growth in experimental costs for

an O(n3) algorithm. Similarly, for the powerset lattices, the costs for the cluster-based

algorithm and the full-closure based algorithm have a linear relationship with O(n + c3)

and O(n3) respectively as shown in figures 5.4c and 5.4d. These results demonstrate

that our theoretical assessments of computational costs go hand-in-hand with the actual

experimental measurements.

The potential benefits from the cluster-based approach shines through when the c rat

is well below 1.0. As c rat approaches 1.0, the runtimes for the cluster-based approach

will start to approach that of the full closure based algforithm. However, the true benefit

of the cluster-based algorithm lies in the fact that the pre-processing time of the algorithm

seamlessly adjusts itself based on the incidence of vertices with incoming/outgoing cross

edges; but, it is seldom worse off than the full-closure based algorithm. This is evidenced

on our experiments with random DAGs as shown in figure 5.5. In figure 5.5a, the axes

of tree depth and c rat together define the structure of the DAG under consideration.

For example, a DAG with a tree depth of 5 and a c rat of 0.3 means that the DAG is

actually a binary tree of depth 5 (63 vertices) superimposed with cross-edges such that

max{ns, nt} ÷ n = 0.3. More information about ns, nt and n for randomly generated

DAGs can be found in section 5.5.1. Some sample datapoints related to figure 5.5a that

reinforce the subsequent discussion of the results are given in table 5.5b.

Two major trends emerge from figure 5.5a. First, it can be seen that for a given tree

depth, the higher the c rat values, the lesser the gain in pre-processing time using the

cluster based approach. This can be explained by considering the asymptotic costs of

the cluster-based approach which is O(n + c2.575) and that of the full closure approach

which is O(n2.575) where n is the total number of vertices in the DAG and c is the total

Experiments 93

tree depth

4

5

6

7

8

c_
rat

0.1

0.2

0.3

0.4

0.5

ppt_rat

0.2

0.4

0.6

0.8

(a) Pre-processing speedups for full spectrum of lattices

vertices c rat ppt cc(ms) ppt fc(ms) ppt rat qt cc(µs) qt fc(µs) qt rat

15 0.07 0.06 0.32 0.20 1.49 0.66 2.26
15 0.48 0.37 0.35 1.07 1.49 0.69 2.23
63 0.11 0.43 12.81 0.05 1.60 0.69 2.39
63 0.52 4.92 14.89 0.34 1.52 0.68 2.30
255 0.11 4.13 909.55 0.01 1.60 0.69 2.40
255 0.52 112.03 1050.08 0.11 1.56 0.70 2.31

(b) Sample datapoints

Figure 5.5: Experimental results for random DAGs

94 Evaluation of adaptive pre-processing for security lattices

number of vertices with incoming or outgoing cross edges. As can be expected, as the

c rat increases, the number of vertices with incoming or outgoing cross edges increases

as well. Therefore, the costs of the cluster-based algorithm tends to approach that of the

full closure algorithm.

The second trend that is noteworthy in figure 5.5a is that for a given c rat value,

the smaller DAGs (i.e. the ones which have a lower depth) have a lesser reduction in the

pre-processing costs using the cluster-based approach. This is to be expected because the

full closure approach uses boolean matrix product for pre-processing the DAGs. So, for

smaller DAGs, the fixed costs for identifying clusters combined with the ease of doing small

matrix multiplications (as necessitated by the full closure approach) dampen the gains that

could arise from a cluster-based approach. Thus, the maximum gains from a cluster-based

approach can be realised when the size of the DAG is large and the proportion of vertices

with incoming or outgoing cross edges is small. These observations are corroborated by

the results reported in table 5.3. In table 5.3b, the preprocessing time for Eclipse is much

faster using a cluster based approach as opposed to a full closure based approach. This is

because the class hierarchy is both large and has no cross edges in it. On the other end of

the spectrum, for small powerset lattices with a high c rat ratio as shown in table 5.3b,

there is little to gain from a cluster based approach. However, it must be noted that the

cluster-based approach is seldom significantly worse than the full closure approach.

5.6 Summary

In this chapter we discussed a wide spectrum of security lattices that govern information

flow in programs. We showed that the structure of these lattices range from trees in the

case of class hierarchies all the way to dense DAGs in the case of powerset lattices. In view

of this, we discussed why an adaptive algorithm which is sensitive to the structure of the

lattice under considerations is a superior approach to pre-processing these lattices. We

demonstrated how clusters can be useful in adapting an algorithm to the structure of the

lattice under consideration. While it was initially thought that querying the pre-processed

lattice in the cluster-based approach was slower compared to a full-closure based approach,

we experimentally showed that the slowdown per query was much smaller when compared

to the gains in pre-processing times when a clusters-based approach was adopted. We ran

extensive experiments on a wide range of security lattices to demonstrate the viability of

a cluster-based approach to lattice pre-processing and showed how the algorithm scales

seamlessly across a large variety of lattices encountered in practice. While this work has

Summary 95

been developed with information flow in mind, it can be easily extended to other areas

of program analysis which use subtyping in conjunction with a partial order that dictates

the subtyping policy.

Chapter 6

Adaptive simplification of

polymorphic flow constraints

6.1 Introduction

Annotated type systems enforce a pre-defined partial order amongst the annotated labels,

and aid in a variety of program analysis paradigms like alias analysis [41, 16], security

[117, 87, 78] and resource reasoning [56]. This approach to program analysis is commonly

known in the literature [91] as polymorphic subtyping on labels . In such systems, the

programmer annotates only parts of the program with labels, and for all unannotated

terms the label is represented as a variable. Then, a most general value for the label

variables is inferred, while respecting the programmer-specified partial ordering amongst

labels which needs to be enforced as well as the flow in the program. This process is known

as label inference. Constraints on label variables in polymorphic subtyping systems are of

two kinds: they can be an ordering relation with another label variable derived from the

program flow, or they can be an ordering with a concrete programmer-annotated label.

The presence of programmer-annotated labels aids in deriving concrete bounds for label

variables and helps in determining their most general value.

There are scenarios, however, when the programmer annotation is completely missing

for a term. Such terms are called label-polymorphic. Values for label variables in label-

polymorphic terms are context-sensitive and can only be derived if a the term is put in

context with other programmer-annotated terms. In the face of label-polymorphism, it

is necessary that any constraint that is derived for label variables from the data and/or

control flow in an expression is represented in as compact a manner as possible. This

96

Introduction 97

avoids duplication of unnecessary constraints when the term is put in multiple contexts

and also makes long sets of constraints easier to read.

The first step in compaction is to represent the set of label-variables and the constraints

on them as a directed graph. It is noteworthy that in the absence of programmer anno-

tations, constraints on label variables are only due to the program flow, and a directed

graph is a natural means to representing inter-relationships between label variables. This

is analogous to data flow graphs in other forms of program analysis. In the second stage of

compaction, only direct or transitive relationships between input and output variables are

preserved as valid constraints. This is sufficient to check whether the label-polymorphic

term violates the pre-defined ordering on labels when it is put in context. The difficulty

in such an approach is that size of the label-constraints graph is dependent on the term

under consideration. For large expressions, the number of label variables (vertices) in the

term (label-constraint graph) and the number of constraints (edges) on these variables

could be non-trivial.

In this chapter, we revisit the issue of label-constraint simplification from a graph

theoretic perspective. Our approach is inspired by the recent advances in the theory

of transitive closure for directed graphs, and we discuss a novel algorithm for compaction

based on decomposition of the label-constraints graph. In a significant departure from pre-

existing work, the runtime of the proposed algorithm is directly related to the stucture of

the label-constraints graph, and the algorithm adapts to the structure of the graph. The

decomposition-based approach provides a level of abstraction, and the asymptotic costs

of our algorithm are a function of the latent scope for decomposition in the graph. If

the scope for decomposition is good, there is a potential for significant speedup. On the

flip side, we establish through experimental evaluation that even if there is little scope

for decomposition, the proposed algorithm is no worse off that a baseline algorithm for

compaction. The experiments are performed by applying the proposed algorithm to label-

constraint graphs encountered in language-based security which tend to have a poor scope

for decomposition.

The rest of the chapter is organised as follows. We give an example of a label-

polymorphic expression in section 6.2. We discuss how label relationships in a label-

polymorphic expression are suitably represented as a directed acyclic graph (DAG). We

also present a baseline algorithm for compacting the label-relationship graph in this sec-

tion. We present an overview of the approach in section 6.3 and present the algorithm for a

decomposition-based approach as well as an analysis of its computational costs. In section

6.4, we stress test the proposed algorithm by applying it to graphs encountered in lan-

98 Adaptive simplification of polymorphic flow constraints

guage based security, to demonstrate that even in the face of graphs that have little scope

for decomposition, the algorithm has comparable performance to a baseline algorithm.

Finally, we summarise the contributions of this chapter in section 6.5.

6.2 Compaction of label-polymorphic expressions

In this section, we discuss how to compact the constraints on labels in label-polymorphic

expressions. We discuss how label-constraint graphs arise from a label-polymorphic expres-

sion in section 6.2.1. We then discuss a closure based algorithm to compact label-constraint

graphs in section 6.2.2.

6.2.1 From expressions to DAGs

We first describe how constraints on labels in label-polymorphic expressions can be repre-

sented as a graph. Figure 6.1a shows an expression foo which takes a 3-tuple as an argu-

ment (denoted by (i1, i2, i3) in ll. 1) and produces a 4-tuple (denoted by (o1, o2, o3, o4)

in ll.15). (o1, o2, o3, o4) is produced from (i1, i2, i3) in three steps (ll. 13-14). In the first

step, f∼12 is applied to (i1, i2, i3). Then, f∼23 is applied to the results of the first step. In

the final step, fdup is applied to the results of step 2. f∼12 (ll. 7-8) and f∼23 (ll. 9-10) take

in a 3-tuple argument and apply the function ∼ (ll. 2-6) to the first and second elements

of the argument, and second and third elements of the argument, respectively. Here, πi

is a projection function for the ith element of the tuple and ∼ is a trivial function that

takes two arguments and produces a 2-tuple where the first element is the first argument

to ∼ and the second element is the larger of the two arguments. fdup takes a 3-tuple and

duplicates the third element of the tuple and produces a 4-tuple which is used to initialise

(o1, o2, o3, o4).

The corresponding label constraint graph for foo is shown in figure 6.1b. The vertices

in figure 6.1b denote label variables and the edges between the vertices denote constraints

on the label variables derived from the program flow. Each label variable has the same

name as the corresponding program variable except that it is written in italics. A con-

straint of the form p ≤ q is denoted in the graph with an arrow from q to p. We present

the label-constraints graph in a concise form here for the sake of simplicity. In particular,

we have ignored any intermediate constraints that might arise due to the projection, type

constructors or other function definitions like <. However, inclusion of these constraints

does not affect our discussion in any way. Inclusion of these constraints just introduces

additional vertices and edges in the flow constraints graph, and techniques proposed in

Compaction of label-polymorphic expressions 99

1 let foo (i1, i2, i3) =

2 let ∼ x y =

3 if x < y then

4 (x, x)

5 else

6 (x, y)

7 and f∼12 (x1, y1, z1) =

8 (π1(∼ x1 y1), π2(∼ x1 y1), z1)

9 and f∼23 (x2, y2, z2) =

10 (x2, π1(∼ y2 z2), π2(∼ y2 z2))

11 and fdup (x3, y3, z3) =

12 (x3, y3, z3, z3)

13 and (o1, o2, o3, o4) =

14 fdup f∼23 f∼12 (i1, i2, i3)

15 in (o1, o2, o3, o4)

(a) Label-polymorphic expression

i1 i2 i3

x3 y3 z3

o1 o2 o3 o4

x2 y2 z2

x1 y1 z1

(b) Label constraints graph

Figure 6.1: A label-polymorphic expression and it’s label constraints graph

this chapter will still be applicable notwithstanding. We just focus on constraints on labels

introduced during function applications for a precise presentation of our approach.

Another important observation in the mapping from label-polymorphic expressions to

label-constraint graphs is the absence of cycles in the graphs. Normally, in the simple case

of a loop or a recursion, one would expect backward flow in the label-constraint graph,

and an edge from a vertex to its ancestor would be sufficient to represent it. However,

such a loop in the label-constraint graph renders the constraint unsolvable because of

cyclical dependency between the label variables. In such a case, the common approach

in most solvers is to fuse the labels that are part of the loop into a single vertex. The

parents (children) of the fused vertex in the label-constraint graph are set as the union

of the parents (children) of each vertex in the cycle. Thus, the label-constraints graph is

ultimately represented as a directed acyclic graph (DAG).

6.2.2 A baseline algorithm

The traditional approach to compaction is shown in algorithm 6.1. The function COM-

PACT (ll. 11) takes a polymorphic expression e and its corresponding label-constraint

graph g as parameters, and derives transitive flow relationships between input and output

variables for the expression. The function first identifies all vertices in g corresponding to

100 Adaptive simplification of polymorphic flow constraints

Algorithm 6.1 Polarized garbage collection

1: function traverse(v)
2: if is output(v) then . Check if v is an output variable
3: v.o← v.o ∪ v
4: end if
5: c← v.children
6: for all c ∈ c do
7: if not traversed(c) then . Traverse down if c hasn’t been visited
8: traverse(c)
9: end if

10: v.o← v.o ∪ c.o
11: end for
12: end function
13: function compact(e, g)
14: i← vertices(e.inputs, g)
15: for all i ∈ i do
16: traverse(i)
17: end for
18: end function

the input variables for the expression (ll. 14) and for each of the input variables, it calls

the recursive function TRAVERSE which walks down the label-constraint graph starting

at the argument passed to TRAVERSE (which we call v as shown in ll.1) and collects

all the output variables reached by v. If the argument to TRAVERSE is itself an output

variable, it is added to the list of output variables reachable from v (ll. 2-4). Additionally,

for each of the children of v, the output variables reachable from the child are also added

to the list of output variables reachable from v (ll.10). A predicate (ll. 7-9) ensures that

TRAVERSE visits each vertex in the label-constraint graph only once; it checks whether

the child c of a vertex has been traversed already before initiating the traversal at c. The

overall complexity of this algorithm is O(vo(n + m)) where vo is the number of output

variables in the polymorphic expression, n is the number of vertices in the label-constraint

graph and m is the number of edges in the graph.

6.3 Simplification through decomposition

In this section, we discuss a cluster-based approach to performing the compaction of label

constraints graph for label-polymorphic expressions. The advantage of doing so lies in

the level of abstraction that we gain while reasoning about compaction. In section 6.3.1,

we discuss an overview of our approach, and we discuss the algorithm for cluster-based

Simplification through decomposition 101

formulation in section 6.3.2.

6.3.1 A cluster based approach

As noted previously in section 6.2.1, the label-constraint graph is a DAG, due to elimina-

tion of all loops (formally known as strongly connected components or SCCs in short) in

the initial label-constraint graph obtained directly from the program flow. Loop elimina-

tion (by fusing vertices in the SCCs) is done by classifying edges in the label-constraint

graph and identifying any edges from a vertex to its ancestor in the spanning tree cover-

ing the DAG [106]. This requires making the initial DAG rooted, by adding a root and

making it the parent of all parentless vertices, and constructing a spanning tree for the

resultant DAG. Therefore, a legacy of the loop elimination algorithm is a rooted DAG

with a spanning tree, and all edges (not just those belonging to the spanning tree) that

have already been classified. It is important to observe that loop elimination does not

alter the classification of edges outside the SCCs; loop elimination preserves characteris-

tics of all edges to (from) vertices external from (to) the SCC. The only difference is after

elimination the SCC is represented as an aggregate vertex which is obtained after fusing

all vertices in the SCC into a single vertex.

The proposed compaction algorithm builds on the existing edge classification per-

formed by the loop elimination operation. For the subsequent discussions, we will assume

that the DAG that is input to our algorithm is static and rooted, with edges that have

already been classified into one of the three categories: tree edges, forward edges and cross

edges [35]. Similar to chapter 4, we ignore the set of forward edges as they introduce a

redundant connection between vertices that are already connected through tree edges and

decompose the DAG into clusters and note the clusterheads for those clusters.

Due to the operations that are performed during the fusion of SCCs, we are able to

identify clusters and associated clusterheads for free. The two advantages that clusters

offer over a baseline algorithm are abstraction and constant-time union operation. These

two advantages become obvious when we compare the baseline-algorithm with a cluster-

based approach as shown in figure 6.2. The graph in figure 6.2a shows a traversal that

collects output variables reached by any given vertex in the label-constraints graph. The

output variables reached by a vertex are annotated alongside the vertex. On the other

hand, figure 6.2b shows the collection strategy using clusters. The label-constraint graph

contains two vertices that have an incoming cross-edge in addition to a tree edge; they are

y2 and z3. Thus, these two vertices form clusterheads and the corresponding clusters are

demarcated using a dashed line.

102 Adaptive simplification of polymorphic flow constraints

i1 i2 i3

x3 y3 z3

o1 o2 o3 o4

x2 y2 z2

x1 y1 z1

{o1} {o2} {o3,o4}

{o1} {o2,o3,o4} {o3,o4}

{o1,o2,o3,o4} {o2,o3,o4} {o3,o4}

{o1,o2,o3,o4} {o2,o3,o4} {o3,o4}

(a) Baseline collection

i1 i2 i3

x3 y3 z3

o1 o2 o3 o4

x2 y2 z2

x1 y1 z1

{o1} {o2} {o3,o4}

{o1} {o2,z3} {z3}

{o1,y2,z3} {o2,z3} {z3}

{o1,y2,z3} {o2,z3} {z3}

(b) Collection using clusters

Figure 6.2: A comparison of the baseline algorithm vs cluster based approach

The first advantage of clusters is abstraction from the level of individual vertices to the

level of disjoint sets of vertices (clusters). The only way to reach a vertex within a cluster

is to go through its clusterhead. Therefore, if we just record the clusterheads that contain

output variables (we call then polar clusters), we can always identify the list of reachable

output variables from the set of reachable polar clusters. In figure 6.2b, since the clusters

for clusterheads y2 and z3 both contain output variables, both of these clusters are polar

clusters. Hence, we annotate y2 and z3 in addition to o1 as the set of output variables and

polar clusters reachable from x1. As opposed to figure 6.2a, it can be observed from the

annotations at each vertex in the cluster-based approach that the payload of the collection

algorithm is reduced. This is due to the abstraction introduced through a cluster-based

formulation for compaction.

A cluster-based approach seems similar to a collection algorithm that is based just on

(overlapping) sets of vertices. However, the second advantage of clusters, namely constant

time union operation makes it an attractive proposition when compared to the simple sets

of vertices. Consider the case we could represent the entire set {y2, y3, o2, z3, o3, o4} just

with y2 as a representative since all of these vertices can only be reached through y2.

However, in such a case, the union of sets of vertices does not remain as elegant as that for

a cluster based formulation. Consider the hypothetical case where we have an additional

edge (not shown) in the label-constraint graph of figure 6.2 with z2 reaching y2. In the

Simplification through decomposition 103

(overlapping) set-based approach, we have z2 reaching the representative y2 (which stands

for {y2, y3, o2, z3, o3, o4}) and the representative z3 (which stands for {z3, o3, o4}). The set

of reachable vertices from z3 is now the union of sets reached by the two representatives.

This is not a constant time operation. On the other hand, if we use a cluster based

approach, we have z3 reaching two non-overlapping clusters headed by y2 and z3, the

union of which is a constant time operation because clusters are standalone trees and

disjoint with each other.

6.3.2 Algorithm and computational costs

Having described an overview of our approach, we now describe an algorithm for cluster-

based compaction of the label-constraint graph for label-polymorphic expressions. The

technique is described in algorithm 6.2. Like algorithm 6.1, the function COMPACT

takes in a label-polymorphic expression and its associated label-constraint graph as inputs,

and compacts the expression by deriving reachability information between the inputs and

outputs of the expression. Unlike algorithm 6.1, it only collects polar clusters as it traverses

down the label relationship graph.

Collection of output variables is done internally to the cluster; if the child c of a vertex

v in the label relationship graph is a clusterhead, then only the polar clusters c.clus which

are reachable from c are added to the list of clusters reachable from v (ll. 5-9). Otherwise,

both the reachable polar cluster and the reachable output variables that are reachable

from c are added to v.clus and v.o respectively (ll. 15-20). Only polar clusters are copied

over, to prevent unnecessary increase in the payload of the algorithm. A final difference

compared to algorithm 6.1 lies at the end of the function COMPACT (ll. 27-29) where we

collate all output variables for all polar clusters reachable from the input variable.

The computational cost of the algorithm is a function of the structure of the graph

that is passed to it. This is evident from a representation of the computational costs as a

function of the structure as shown in figure 6.3. If we assume that the number of output

variables per cluster is p and the number of clusters with at least one output variable in

it is Ωp then the algorithm has an asymptotic cost of O((Ωp + p) × (n + m)). Here, n is

the number of label variables in the label-constraint graph and m is the number of edges

in the label-constraint graph. If the number of cross edges is small i.e. the constraints

graph is structurally similar to a tree, then Ωp tends to approach zero and p tends to

approach the total number of output variables (represented by Ω). In such a case, the

computational cost of the cluster-based approach tends to match that of the baseline

algorithm which is O(Ω× (n+m)). On the other hand, if there are too many cross edges,

104 Adaptive simplification of polymorphic flow constraints

Algorithm 6.2 Polarized garbage collection using clusters

1: function traverse(v)
2: if is output(v) then . Check if v is an output variable
3: v.o← v.o ∪ v
4: end if
5: if is ctar(v) then . Check if v is a cross-edge target
6: if v.o 6= φ then . Check if v is a polar cluster
7: v.clus← v.clus ∪ v
8: end if
9: end if

10: c← v.children
11: for all c ∈ c do
12: if not traversed(c) then . Traverse down if c hasn’t been visited
13: traverse(c)
14: end if
15: if is ctar(c) then
16: v.clus← v.clus ∪ c.clus . Collect polar clusters only
17: else
18: v.clus← v.clus ∪ c.clus . Collect polar clusters
19: v.o← v.o ∪ c.o . Collect output vars of current cluster
20: end if
21: end for
22: end function
23: function compact(e, g)
24: i← vertices(e.inputs, g)
25: for all i ∈ i do
26: traverse(i)
27: for all clus ∈ i.clus do
28: i.o← i.o ∪ clus.o . Collect output vars from reachable polar clusters
29: end for
30: end for
31: end function

the level of abstraction uncovered by a cluster based approach is reduced and in this case,

p approaches Ω and once again the computational cost of the algorithm approaches that

of the baseline algorithm.

6.4 Stress testing the cluster-based approach

In this section, we test the cluster-based compaction algorithm on the standard library

of the FlowCaml programming language [100]. FlowCaml is an extension of the ML

Stress testing the cluster-based approach 105

Adaptive pre-processing of Lattices

11

number of clusters

Ti
m

e
C

om
pl

ex
ity

O(Ω(n+m))

Conventional Cluster-based

Trees Dense DAGs

Computational costs tied to the ratio of output
variables to polar clusters (Ω/p)

O((Ωp + p)*(n+m))

Ωp 〰 Ω p 〰 Ω

Figure 6.3: Computational costs as a function of the ratio of output variables to polar
clusters

programming language with a type system that analyses information flow through the

program. In FlowCaml, standard ML types can be annotated with security levels which

describe the amount of information that the expression associated with the type holds.

Through type inference, the type system of FlowCaml automatically infers security levels

for unannotated expressions and checks whether the program obeys the security policy

intended by the programmer. The security policy itself is typically described as a lattice

of privilege levels that governs the flow of information.

6.4.1 Nature of constraints in information flow analysis

In section 6.2.1, we discussed how constraints from label polymorphic expressions are

normally represented as DAGs. In type-based IFA, one needs to keep tabs on the flow of

information through the control flow in addition to the data flow. As we will demonstrate

shortly with an example, this introduces additional cross-edges in the label-constraint

graph. As a consequence, the label constraint graphs fall in the right half of structure

106 Adaptive simplification of polymorphic flow constraints

spectrum shown in figure 6.3. This is further corroborated in our experimental results

presented in this section. Since performance of a cluster based approach tends to degrade

in face of a large number of cross-edges, type-based IFA is a suitable benchmark to stress

test the cluster based approach.

1 let foo i1 =

2 let o1 =

3 if (cond) then i1 else ...

4 in o1

(a) Label-polymorphic expression

cond i1

o1

(b) Label constraints graph

Figure 6.4: A label-polymorphic expression and its label constraints graph

We now show why type-based IFA introduces additional cross edges in the label-

constraints graph of a label polymorphic expression. Figure 6.4 shows a simple expression

which needs to be analysed to check flow of information flow through it. Type-based

IFA is typically done to prohibit privileged data from being inadvertently declassified and

written to a less secure location where it can be read by an unintended user. This involves

getting insights into the flow of information through the control flow in addition to the

data flow. For example, it is possible to guess the value of predicate in a conditional by

observing the output of the conditional expression. Consider the expression in figure 6.4a.

From the result of the conditional expression in ll.3, if we get to know only that the true

branch is being taken or that the false branch is being taken, we can immediately guess

the value of cond even though it does not contribute directly towards the computation of

the result value. To account for such forms of information leakage, the usual practice is to

maintain an aggregate of the privilege levels for all points in the control flow leading up

to the current point in the program. This is in addition to the rudimentary constraints

derived from the data flow as described in figure 6.4. Therefore, not only do we have a

constraint on the label for o1 from the label for i1 as shown in figure 6.4b, we also have

a constraint on the label for o1 from the label for the predicate cond. Additionally, there

could be more constraints on the label for o2 due to the false branch of the if statement

which is shown by empty circles in figure 6.4b.

It should be noted how the introduction of an additional edge due to control flow has

forced o1 to have multiple parents. The result of this is a cross-edge to o1 in addition

to what would have been only a tree-edge to o1 had we considered only the data flow.

Therefore, the label-constraints graphs in type-based IFA tend to contain a large number

Stress testing the cluster-based approach 107

of clusters relative to the number of vertices in the label-constraint graph, and relatively

little abstraction that can be achieved through clusters. Consequently, they form a good

test-case for stress-testing the cluster-based formulation for compacting label-constraint

graphs.

6.4.2 Quantitative aspects of label-constraint graphs in type-based IFA

Table 6.1 details information about the structure of the label-constraint graphs for the

standard library of the FlowCaml programming language. We present statistics for six

files that contain library functions to create and manipulate arrays, hash tables, lists,

queues, sets and stacks. These files are named array.fml, hashtbl.fml, list.fml, queue.fml,

set.fml and stack.fml respectively. Each file constains multiple label-contraint graphs

because there are multiple label-polymorphic expressions per file. We present two sets of

characteristics per file to capture aggregate and individual statistics for label-constraint

graphs. One set shows the total number of output variables (ovtot), polar clusters (pctot),

clusters (ctot) and vertices (ntot), by adding up these values for all label-constraint graphs

in the file. We also present a second set of statistics to get an insight into the structure

of individual label-constraint graphs. The second set of statistics shows the following:

the average number of output variables (ovavg), polar clusters (pcavg), clusters (cavg) and

vertices (navg) for the label-constraint graphs for individual label-polymorphic expression

in a file.

Filename ovtot pctot ctot ntot ovavg pcavg cavg navg

array.fml 1046 977 2653 2978 7.6 7.1 19.4 21.7
hashtbl.fml 2490 2259 5071 5745 8.1 7.4 16.6 18.8

list.fml 1876 1782 4022 4411 7.6 7.2 16.3 17.9
queue.fml 370 349 724 788 5.4 5.1 10.6 11.6

set.fml 1639 1562 4133 4608 5.1 4.9 12.9 14.4
stack.fml 337 315 551 614 5.4 5.1 8.9 9.9

Table 6.1: Cumulative and average statistics for label-constraint graphs

Functions in the standard library of a programming language that manipulate data

structures are typically small and succinct. This is evidenced in the average statistics for

label-constraint graphs in table 6.1. The average size of constraints graphs is small but it

can be seen by comparing ntot and navg values that there are hundreds of such small label-

constraints graphs per file. Another interesting observation from table 6.1 which reinforces

the discussions in section 6.4.1 is the incidence of a large number cross edges in the label-

constraint graph; it can be seen that over 90% of the vertices are clusterheads. The level

108 Adaptive simplification of polymorphic flow constraints

of abstraction that can be reached using the proposed algorithm is highly limited because

the number of polar clusterheads is about the same as the number of output variables.

The lack of a means to abstract away from vertices to sets of vertices makes type-based

IFA an effective means to stress-test the proposed algorithm. Despite having to deal with

intractable graphs in type-based IFA, we will experimentally show in the next section

that the performance of the proposed algorithm is comparable to a baseline algorithm.

The results make a strong case for cluster-based compaction, because if there is scope

for decomposition one stands to gain from using a cluster-based approach, but even if

there is none one is seldom very much worse off by adopting a cluster-based approach to

compaction.

6.4.3 Performance in face of intractable graphs

Figure 6.5 shows scatterplots with best fit regression lines for the testcases described in

section 6.4.2 and compares a cluster-based approach to a baseline algorithm described in

section 6.3.2. For each file, each point in the scatterplot corresponds to a label-constraint

graph in that file. The range on x-axis is the ratio of polar clusters to output variables

in the label-constraints graph. The y-axis is the ratio of the time taken to collect output

variables using the clusters based approach described in section 6.2.2 to the baseline algo-

rithm. To ensure a realistic comparison of the algorithms, we only consider the ratios of

collection times i.e. we subtract the time taken to traverse the label constraint graph from

the total time taken by the algorithm. The traversal of the graph is the same operation in

both the algorithms and getting rid of it gives us a better picture of the relative advantages

of each algorithm. We have also chosen to ignore label-constraint graphs that have a large

proportion of unconnected stand-alone vertices. Such vertices push up the pc/ov ratio to

1 and skew the analysis.

There are two important trends to observe in figure 6.5. Firstly, as the ratio of polar

clusters to output variables increases, the baseline algorithm starts to perform better than

the cluster-based approach; this is evidenced from the best fit lines in figure 6.5. This is

because no latent abstraction can potentially be exploited using a cluster-based approach

if every output variable is located in a separate cluster. In such a case, the cluster-based

approach will introduce computational overheads. However, as evidenced from figure

6.5, this overhead is typically modest (mostly between 5% and 15%) for even the most

intractable of graphs which have high pc/ov values. Secondly, it worth noting that the

performance of the cluster-based approach is still comparable to the baseline algorithm

for most of cases. Even in face of such intractable graphs (with pc/ov > 0.7), the cluster-

Summary 109

based approach tends to perform better for a significant number of label-constraint graphs.

For lower values of the pc/ov ratio, the cluster-based approach performs better than the

baseline algorithm. For higher pc/ov values, the cluster-based approach is inhibited by

the additional processing costs. It is anticipated the for pc/ov values of below 0.7, we can

get a higher level of abstraction using clusters leading to significant gains in processing

times. However, this is a case for future work and we intend to investigate this further.

6.5 Summary

In this chapter we discussed an algorithm for compacting label-constraint graphs of label-

polymorphic expressions using graph decomposition. We first discussed a baseline algo-

rithm for compaction and showed how graph decomposition can benefit the baseline algo-

rithm. We presented our algorithm for compaction using graph decomposition and also

analysed its computational costs. We showed how decomposition of the label-constraints

graph into clusters of vertices lends a level of abstraction to the compaction operation,

and showed theoretically how this abstraction leads to a lower computational cost. Since

the level of abstraction that can be achieved is dependent on the structure of the label-

constraint graph, we stress-tested the proposed approach against intractable graphs that

do not lend themselves well to the decomposition proposed in this chapter. We showed

that deployment of the cluster-based algorithm does not majorly impede performance

even in the face of intractable graphs. This builds a strong case for the adoption of our

algorithm because one stands to gain if there is any latent potential for abstraction using

clusters; the upsides to our algorithm are promising with little downsides even in the face

of intractable graphs. Adoption of the proposed algorithm enables a structure sensitive

approach to compaction, where the runtime of the algorithm is a function of the latent

scope for abstraction using clusters.

110 Adaptive simplification of polymorphic flow constraints

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

0.75	 0.8	 0.85	 0.9	 0.95	

pa
yl
oa

d	
ra
)
o	

pc/ov	

(a) array.fml

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

0.7	 0.75	 0.8	 0.85	 0.9	 0.95	

pa
yl
oa

d	
ra
)
o	

pc/ov	

(b) hashtbl.fml

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

1.25	

0.8	 0.85	 0.9	 0.95	

pa
yl
oa

d	
ra
)
o	

pc/ov	

(c) list.fml

0.6	

0.7	

0.8	

0.9	

1	

1.1	

1.2	

1.3	

0.85	 0.87	 0.89	 0.91	 0.93	 0.95	

pa
yl
oa

d	
ra
)
o	

pc/ov	

(d) queue.fml

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

0.75	 0.8	 0.85	 0.9	 0.95	

pa
yl
oa

d	
ra
)
o	

pc/ov	

(e) set.fml

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

0.75	 0.8	 0.85	 0.9	 0.95	

pa
yl
oa

d	
ra
)
o	

pc/ov	

(f) stack.fml

Figure 6.5: Ratio of payload collection times as a function of polar clusterhead to output
variables ratio

Chapter 7

Conclusion and Future Work

In this thesis, we proposed techniques to efficiently simplify and solve constraints arising

from type-based flow analysis. We used information flow analysis (IFA) as an application of

our work. We derived a complexity bound on atomic constraint solving for type-based IFA

of programs. Our results contrast with previous complexity assessments, which took into

account only computations done for solving constraints on label variables while trivialising

lattice pre-processing costs. Our assessment, on the other hand, took into account the

costs for both constraint solving and the lattice pre-processing necessary for the solver.

We noted that both the label-constraint graph and the security lattices in type-based IFA

are typically represented as directed graphs by the constraint solver, and discussed how

the efficiency of type-based IFA can gain from graph decomposition. This set the scene for

proposing novel techniques for atomic constraint simplification and solving using graph

decomposition which is the key contribution of this thesis.

We showed how lattices can be partitioned into non-overlapping trees called clusters.

Then we showed how clusters can be exploited to pre-process the lattice to answer ≤, t
and u queries in constant time. Partitioning the DAG representing the lattice into clusters

introduced a level of abstraction in the pre-processing algorithm; it enabled us to reason at

the level of sets of vertices rather than individual vertices, which made the pre-processing

algorithm efficient. It also enabled the pre-processing algorithm to be described in such a

manner that its computational cost is dependant on the latent scope for decomposition in

the DAG. Thus, the proposed algorithm became highly adaptive in nature. It ran in the

same time as the best reported algorithms for trees if the structure of the lattice is similar

to a tree, and in the same time as the best reported algorithms for DAGs if the structure

is similar to a dense DAG.

111

112 Conclusion and Future Work

We demonstrated the suitability of the proposed lattice pre-processing algorithms by

testing them out with real-world and random security lattices. We showed experimentally

that using clusters as a building block makes the pre-processing algorithm compact and

sensitive to the structure of the lattice under consideration. We discussed a wide spectrum

of real-world security lattices that govern information flow in programs whose structure

ranged from trees in the case of class hierarchies, all the way to dense DAGs in the case of

powerset lattices. In view of this, we showed how an adaptive algorithm which is sensitive

to the structure of the lattice under consideration is a superior approach to pre-processing

these lattices.

Having made novel contributions to the solver using a decomposed approach to lattice

pre-processing, we applied the concept of clusters to the simplification constraints on labels

for label-polymorphic expressions. Such expressions lack any form of annotation, which

renders the constraints on label variables unsolvable. For such expressions we showed how a

cluster-based approach can help in representing the label constraints in a compact manner.

We tested our algorithm by applying it to the label-constraints encountered in the standard

library of FlowCaml - a full-fledged programming language that supports information flow

analysis. Due to the additional edges in the label-constraints graph introduced through

implicit flows in the code, these graphs had limited scope for decomposition. We showed

that even in the face of such intractable graphs, the cluster-based algorithm for constraint

graph compaction has comparable performance with a standard baseline algorithm for this

case.

Our results for pre-processing lattices and compacting constraint graphs for label-

polymorphic expressions underlines the key advantage of a cluster-based approach. If

there is latent scope for decomposition, the cluster-based approach is superior to existing

algorithms. Even if there is little scope for decomposition, one is never significantly worse

off by adopting a cluster-based approach. This makes the cluster-based algorithms a

desirable enabler for efficient bound constraint solvers like those studied in this thesis.

The techniques proposed in this thesis have been shown to be sensitive to the structure

of the label-constraint graphs, as well as to the policy lattice that governs the flow of

information through programs. Thereby, we have experimentally demonstrated a notion

of adaptability in computational costs based on the latent scope of decomposition in the

constraint graph and the lattice. Without loss of generality, the techniques proposed in

this research can be easily extended to other forms of type-based flow analysis, and can

be used to design efficient constraint solvers for other problems involving atomic bound

constraints.

Future Work 113

7.1 Future Work

In this thesis we proposed an adaptive approach to solving atomic bound constraints.

While the proposed techniques were shown to be applicable to a wide variety of issues in

bound constraint solving, there are still avenues for improving the proposed framework

and applying its core concepts to numerous other areas of application. In this section, we

highlight avenues for future work.

7.1.1 Enrichment of the existing framework

Choice of the spanning tree: In this thesis, we didn’t study an optimal method

for traversing a DAG in order to obtain its spanning tree. In reality, however, the

spanning tree of the DAG is not unique. The order of traversing vertices in the graph

has a bearing on edge classification. For example, consider a forward edge in the

DAG which directly connects two vertices v1 and v2. The presence of the forward

edge means that v1 and v2 are also transitively connected in the DAG through edges

of spanning tree T1 covering the DAG. Since the spanning tree is non-unique, it is

also possible to construct a different spanning tree T2 which traverses the forward

edge in T1 first followed by the transitive links between v1 and v2. In the case of

T2, the order of traversal will now create a cross edge coming into vertex v2 from

its set of parents sans v1. This discussion shows that a poor choice of the spanning

tree may inadvertently introduce additional cross-edges and inhibit the performance

of the adaptive techniques proposed in this thesis. Therefore, a further area of work

for improving the proposed framework is to identify schemes for constructing and

optimal or near-optimal spanning tree.

Dynamic Graphs: The cluster based decomposition of DAGs proposed in this

thesis assumed a static DAG. While this is a good starting point to explore efficient

means of pre-processing DAGs encountered in program analysis, it is by no means

exhaustive. In a significant number of program optimisations, the DAG is dynamic;

it keeps evolving as the program is compiled. Take for example, the case of program

specialisation. When a generic function is specialised to a specific instances, new

types are introduced the existing type lattice. This makes function dispatch a tricky

problem. One needs a suitable means of introducing new types into the existing

type lattice and yet be able to answer lattice queries efficiently to perform function

dispatch. However, applying the techniques proposed in this thesis to lattices that

evolve throughout the compilation process is a non-trivial problem. This is because

114 Conclusion and Future Work

once a new element is introduced in the existing lattice, the spanning tree needs to

be reconstructed. A new spanning tree gives rise to a new set of cross edges and

the entire process of computing closure over clusters has to be repeated. This can

be a very expensive operation. Therefore, further work needs to be done to extend

cluster-based closure techniques to lattices and DAGs that are dynamic.

7.1.2 Additional areas of application

In this dissertation, we discussed a novel way of computing transitive closure of graphs

where the closure operation is over sets of vertices rather than individual vertices. We

applied the proposed techniques to solve atomic constraints as well as answering queries

in lattices. Both atomic constraints and lattice operations have widespread usage in pro-

gramming languages and program analysis. A natural next step for this research would be

to extend the techniques proposed in this dissertation to related areas where an efficient

closure operation plays a central role. We highlight some of these areas below.

Type Inference: Much like IFA, where annotating each term with a label is cum-

bersome, it is undesirable to annotate types for every term in programs. Many mod-

ern programming languages, therefore, support some form of type inference where

types for terms are represented as variables. Similar to IFA, the type inference en-

gine tries to deduce the most general substitution for these variables by inspecting

the data flow. In section 2.2.3, we presented HM(X) which is a generalisation of such

inference engines that support Hindley-Milner polymorphism. Here, X was a param-

eter to the inference engine which defined the semantics of the relationship between

type variables. For example, X could be specified to mean a unification-based system

which equates two variables if one flows to another, or X could mean an inclusion-

based system where a flow from a variable P to Q implies that P has at least as

many attributes as Q, and hence we have have an inclusion constraint P ≤ Q. It

is important to note, however, that the ≤ relation has different meanings in differ-

ent typing disciplines. For example, in structural subtyping which was discussed in

this dissertation, the relation means P and Q have the same structure - hence the

decomposition of this relation into atomic constraints is straightforward. In other

subtyping disciplines, such as nominal subtyping or non-structural subtyping, we

have a programmer supplied lattice over classes or type constructors, respectively.

Therefore, it needs to be investigated how the techniques proposed in this disserta-

tion could be directly extended to such systems. A case in point would be to use

Future Work 115

our approach for inference of the most general type in Java generics. There, the

class hierarchy plays an important role in deciding the most general type for type

parameters. We have already demonstrated the suitability of our approach to pro-

cessing class hierarchies in chapter 5, in order to answer ordering queries in constant

time. Therefore, we envisage that the adaptive inference techniques discussed in this

dissertation can be extended to inference of generic types too. Reduction of different

subtyping disciplines to an atomic subtyping problem entails different computational

costs, and therefore such extensions of the core atomic constraint simplification and

resolution algorithm discussed in this dissertation to richer subtyping systems need

to be carefully evaluated.

Ownership Inference: As discussed in section 2.4, inferring ownership of objects

requires approximating the object graph at compile time and identifying dominance

boundaries of vertices in the graph. The inferred ownership properties are then fed

back to the type system, and it is verified whether the inferred properties obey the

properties of the Ownership Type system. To identify the dominance boundaries

of vertices in the object graph, one needs to perform closure of the object graph to

identify which vertices are dominated by any given vertex. In this regard, any form

of abstraction and adaptability that can be introduced by techniques proposed in

this thesis would aid the analysis in face of large object graphs. However, extension

of the current work to analysing object graphs is non-trivial. Object graphs contain

both forward edges and strongly connected components in addition to the restricted

cases of tree and cross edges considered in this thesis. While strongly connected com-

ponents can be considered as a single vertex for the sake of the analysis, the presence

of forward edges cannot be ignored. This is because forward edges directly influence

the dominator relationships in graphs. Therefore, it remains to be investigated how

the techniques proposed in this thesis can be extended to forward edges and strongly

connected components and subsequently, to ownership inference as well.

7.1.3 Limitations

The techniques described in this dissertation can be used to speed up all classes of problems

where flow is governed by a lattice. Information Flow Analysis is just an instance of such

a problem. Another such instance is that of type inference in the presence of polymorphic

subtyping. As far as the qualitative results are concerned, our techniques can speed-up

the identification of all forms of confidentiality and integrity breaches that occur through

116 Conclusion and Future Work

data and control flow in programs. However, the proposed approach does not take into

account leaks through side-channels such as those exploited in timing attacks on computer

programs.

We have assumed a determinable data and control flow graph in our approach. How-

ever, in reality many applications have non-deterministic control flow. For example, an

application running in a multi-tasking environment may be sporadically suspended or wo-

ken up from sleep. Other instances of such control flow are rampant in mainstream mobile

operating systems such as Android. An Android application does not have a single point

of entry. Instead, an Android app is composed of components which can be invoked in

arbitrary orders depending on user interactions and system events. In such a case, it is

difficult to reconstruct an exact control flow graph and the usual approach is to model the

control flow in light of the app lifecycle as described in the Android framework. However,

in this work, we have not considered modelling the control flow for applications running in

multi-tasking systems or applications that have a prescribed life-cycle transition diagram

as is the case with Android apps.

Finally, we have assumed a rather simplistic model for permissible pathways in which

information can be declassified. We have assumed a lattice-based security model. In re-

ality, however, security models can be arbitrarily complex. For example, it is not unusual

for a principal hierarchy to evolve over time. In such a case, the policy becomes dynamic

which requires our pre-processing algorithm to be reapplied in order to perform lattice

lookups in constant time. It is also possible for the declassification pathways to be predi-

cated. For example, declassification from one element in an order to another could depend

on some condition on the state of the elements. Our techniques are not sophisticated

enough to cover these cases. We would need to augment our algorithm with a notion of

logical implication to work out information leakage in such a scenario.

Bibliography

[1] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type

inference. In Proceedings of the Conference on Functional Programming Languages

and Computer Architecture, FPCA ’93, pages 31–41, 1993.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for

program understanding. In Proceedings of the 17th ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’02,

pages 311–330, 2002.

[3] Ana Almeida Matos and Gérard Boudol. On declassification and the non-disclosure

policy. Journal of Computer Security, 17(5):549–597, 2009.

[4] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common

ancestors: a survey and a new distributed algorithm. In SPAA ’02: Proceedings

of the fourteenth annual ACM symposium on Parallel algorithms and architectures,

pages 258–264, 2002.

[5] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for informa-

tion flow in object-oriented programs. In Proceedings of the 33rd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’06, pages 91–

102, New York, NY, USA, 2006. ACM.

[6] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, University of Copenhagen, 1994.

[7] Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian

Zhao. Scoped types and aspects for real-time java memory management. Real-Time

Systems, 37(1):1–44, 2007.

117

118 Bibliography

[8] Aslan Askarov and Andrei Sabelfeld. Localized delimited release: Combining the

what and where dimensions of information release. In Proceedings of the 2007 Work-

shop on Programming Languages and Analysis for Security, PLAS ’07, pages 53–60,

2007.

[9] Aslan Askarov and Andrei Sabelfeld. Catch me if you can: Permissive yet secure error

handling. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming

Languages and Analysis for Security, PLAS ’09, pages 45–57, 2009.

[10] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information flow

analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming

Languages and Analysis for Security, PLAS ’09, pages 113–124, 2009.

[11] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information

flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’12, pages 165–178, 2012.

[12] Anindya Banerjee and David A. Naumann. Representation independence, con-

finement and access control [extended abstract]. In Proceedings of the 29th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’02, pages 166–177, 2002.

[13] Anindya Banerjee and David A. Naumann. Secure information flow and pointer

confinement in a java-like language. In Proceedings of the 15th IEEE Workshop on

Computer Security Foundations, CSFW ’02, pages 253–267, 2002.

[14] Anindya Banerjee and David A. Naumann. Ownership confinement ensures represen-

tation independence for object-oriented programs. Journal of the ACM, 52(6):894–

960, 2005.

[15] Anindya Banerjee and David A. Naumann. State based ownership, reentrance, and

encapsulation. In Proceedings of the 19th European Conference on Object-Oriented

Programming, ECOOP’05, pages 387–411, 2005.

[16] Anindya Banerjee and David A. Naumann. Aliasing in object-oriented program-

ming. chapter State Based Encapsulation for Modular Reasoning About Behavior-

preserving Refactorings, pages 319–365. Springer-Verlag, 2013.

Bibliography 119

[17] Amnon B. Barak and Paul Erdös. On the maximal number of strongly independent

vertices in a random acyclic directed graph. SIAM Journal on Algebraic and Discrete

Methods, 5(4):508–514, 1984.

[18] Matthias Baumgart, Stefan Eckhardt, Jan Griebsch, Sven Kosub, and Johannes

Nowak. All-pairs ancestor problems in weighted DAGs. In Combinatorics, Algo-

rithms, Probabilistic and Experimental Methodologies, volume 4614 of Lecture Notes

in Computer Science, pages 282–293. 2007.

[19] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In

LATIN ’00: Proceedings of the 4th Latin American Symposium on Theoretical In-

formatics, pages 88–94, 2000.

[20] Michael A. Bender, Mart́ın Farach-Colton, Giridhar Pemmasani, Steven Skiena,

and Pavel Sumazin. Lowest common ancestors in trees and directed acyclic graphs.

Journal of Algorithms, 57(2):75–94, 2005.

[21] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM

Journal of Computing, 22(2):221–242, 1993.

[22] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,

Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von

Dincklage, and Ben Wiedermann. The dacapo benchmarks: Java benchmarking de-

velopment and analysis. In Proceedings of the 21st Annual ACM SIGPLAN Confer-

ence on Object-oriented Programming Systems, Languages, and Applications, OOP-

SLA ’06, pages 169–190, 2006.

[23] Bruno Blanchet. Escape analysis: Correctness proof, implementation and experi-

mental results. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’98, pages 25–37, 1998.

[24] Jr. Bocchino, RobertL. and VikramS. Adve. Types, regions, and effects for safe pro-

gramming with object-oriented parallel frameworks. In Mira Mezini, editor, ECOOP

2011 – Object-Oriented Programming, volume 6813 of Lecture Notes in Computer

Science, pages 306–332. Springer Berlin Heidelberg, 2011.

[25] Robert L. Bocchino. Aliasing in object-oriented programming. chapter Alias Control

for Deterministic Parallelism, pages 156–195. Springer-Verlag, 2013.

120 Bibliography

[26] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen

Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,

and Mohsen Vakilian. A type and effect system for deterministic parallel java. In

Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-

ming Systems Languages and Applications, OOPSLA ’09, pages 97–116, 2009.

[27] Robert L. Bocchino, Jr., Stephen Heumann, Nima Honarmand, Sarita V. Adve,

Vikram S. Adve, Adam Welc, and Tatiana Shpeisman. Safe nondeterminism in a

deterministic-by-default parallel language. In Proceedings of the 38th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’11, pages 535–548, New York, NY, USA, 2011. ACM.

[28] Niklas Broberg and David Sands. Flow locks: Towards a core calculus for dynamic

flow policies. In Proceedings of the 15th European Conference on Programming Lan-

guages and Systems, ESOP’06, pages 180–196, 2006.

[29] Niklas Broberg and David Sands. Flow-sensitive semantics for dynamic information

flow policies. In Proceedings of the ACM SIGPLAN Fourth Workshop on Program-

ming Languages and Analysis for Security, PLAS ’09, pages 101–112, 2009.

[30] Niklas Broberg and David Sands. Paralocks: Role-based information flow control

and beyond. SIGPLAN Not., 45(1):431–444, 2010.

[31] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership types:

A survey. In Dave Clarke, James Noble, and Tobias Wrigstad, editors, Aliasing

in Object-Oriented Programming. Types, Analysis and Verification, volume 7850 of

Lecture Notes in Computer Science, pages 15–58. Springer Berlin Heidelberg, 2013.

[32] Dave Clarke, Michael Richmond, and James Noble. Saving the world from bad

beans: Deployment-time confinement checking. In Proceedings of the 18th Annual

ACM SIGPLAN Conference on Object-oriented Programing, Systems, Languages,

and Applications, OOPSLA ’03, pages 374–387, 2003.

[33] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

In STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of

computing, pages 1–6, 1987.

[34] Don Coppersmith. Rectangular matrix multiplication revisited. Journal of Com-

plexity, 13(1):42 – 49, 1997.

Bibliography 121

[35] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 3rd edition, 2009.

[36] Artur Czumaj, Miroslaw Kowaluk, and Andrzej Lingas. Faster algorithms for finding

lowest common ancestors in directed acyclic graphs. Theoretical Computer Science,

380(1-2):37–46, 2007.

[37] Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen,

and Benjamin Pierce. Sensitivity analysis using type-based constraints. In Proceed-

ings of the 1st Annual Workshop on Functional Programming Concepts in Domain-

specific Languages, FPCDSL ’13, pages 43–50, 2013.

[38] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7):504–513, 1977.

[39] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.

In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language

Design and Implementation, PLDI ’94, pages 230–241, 1994.

[40] Werner Dietl, Michael D. Ernst, and Peter Müller. Tunable static inference for

generic universe types. In Proceedings of the 25th European Conference on Object-

oriented Programming, ECOOP’11, pages 333–357, 2011.

[41] Werner Dietl and Peter Müller. Aliasing in object-oriented programming. chapter

Object Ownership in Program Verification, pages 289–318. Springer-Verlag, 2013.

[42] Stefan Eckhardt, Andreas Mühling, and Johannes Nowak. Fast lowest common

ancestor computations in DAGs. In Algorithms ESA 2007, volume 4698 of Lecture

Notes in Computer Science, pages 705–716. 2007.

[43] Johannes Fischer and Volker Heun. Theoretical and practical improvements on the

rmq-problem, with applications to LCA and LCE. In 17th Symposium on Combi-

natorial Pattern Matching (CPM), volume 4009 of LNCS, pages 36–48. Springer,

2006.

[44] Alexandre Frey. Satisfying subtype inequalities in polynomial space. Theoretical

Computer Science, 277(1-2):105–117, 2002.

[45] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theoretical

Computer Science, 73(2):155–175, 1990.

122 Bibliography

[46] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related

techniques for geometry problems. In STOC ’84: Proceedings of the sixteenth annual

ACM symposium on Theory of computing, pages 135–143, 1984.

[47] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: Parameter-

izing non-interference by abstract interpretation. In Proceedings of the 31st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’04, pages 186–197, 2004.

[48] Joseph A. Goguen and José Meseguer. Security policies and security models. In

IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[49] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common

ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[50] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. In

Marktoberdorf Summer School. IOS Press, 2011.

[51] Nevin Heintze. Control-flow analysis and type systems. In Static Analysis Sympo-

sium, SAS’95, pages 189–206, 1995.

[52] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy

and integrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’98, pages 365–377, 1998.

[53] F. Henglein and J. Rehof. The complexity of subtype entailment for simple types.

In Logic in Computer Science, 1997. LICS ’97. Proceedings., 12th Annual IEEE

Symposium on, pages 352–361, 1997.

[54] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on

Programming Languages and Systems, 15(2):253–289, 1993.

[55] Fritz Henglein and Jakob Rehof. Constraint automata and the complexity of re-

cursive subtype entailment. In KimG. Larsen, Sven Skyum, and Glynn Winskel,

editors, Automata, Languages and Programming, volume 1443 of Lecture Notes in

Computer Science, pages 616–627. Springer Berlin Heidelberg, 1998.

[56] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource

analysis. ACM Transactions on Programming Languages and Systems, 34(3):14:1–

14:62, 2012.

Bibliography 123

[57] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource aware ml. In Proceed-

ings of the 24th International Conference on Computer Aided Verification, pages

781–786, 2012.

[58] Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and

checking of object ownership. In ECOOP 2012 - Object-Oriented Programming -

26th European Conference, Beijing, China, June 11-16, 2012. Proceedings, pages

181–206, 2012.

[59] Sebastian Hunt and David Sands. On flow-sensitive security types. In 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’06, pages 79–90, 2006.

[60] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Sin-

gle and loving it: Must-alias analysis for higher-order languages. In Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’98, pages 329–341, 1998.

[61] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static

determination of quantitative resource usage for higher-order programs. In Pro-

ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’10, pages 223–236, 2010.

[62] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of

polymorphic recursion. ACM Trans. Program. Lang. Syst., 15:290–311, 1993.

[63] Miroslaw Kowaluk and Andrzej Lingas. Unique lowest common ancestors in dags

are almost as easy as matrix multiplication. In Algorithms – ESA 2007, volume 4698

of Lecture Notes in Computer Science, pages 265–274. Springer Berlin Heidelberg,

2007.

[64] Miroslaw Kowaluk, Andrzej Lingas, and Johannes Nowak. A path cover technique

for LCAs in DAGs. In SWAT ’08: Proceedings of the 11th Scandinavian workshop

on Algorithm Theory, pages 222–233, 2008.

[65] Aditya Kulkarni, Yu David Liu, and Scott F. Smith. Task types for pervasive atom-

icity. In Proceedings of the ACM International Conference on Object Oriented Pro-

gramming Systems Languages and Applications, OOPSLA ’10, pages 671–690, 2010.

124 Bibliography

[66] V. Kuncak and M. Rinard. Structural subtyping of non-recursive types is decidable.

In Logic in Computer Science, 2003. Proceedings. 18th Annual IEEE Symposium on,

pages 96–107, 2003.

[67] Peng Li and S. Zdancewic. Encoding information flow in haskell. In Computer

Security Foundations Workshop, 2006. 19th IEEE, pages 12–16, 2006.

[68] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference.

SIGPLAN Not., 40(1):158–170, 2005.

[69] Yi Lu, John Potter, and Jingling Xue. Ownership downgrading for ownership types.

In Proceedings of the 7th Asian Symposium on Programming Languages and Systems,

APLAS ’09, pages 144–160, 2009.

[70] Kin-Keung Ma and Jeffrey S. Foster. Inferring aliasing and encapsulation properties

for java. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-

oriented Programming Systems and Applications, OOPSLA ’07, pages 423–440, 2007.

[71] Jonas Magazinius, Aslan Askarov, and Andrei Sabelfeld. A lattice-based approach

to mashup security. In Proceedings of the 5th ACM Symposium on Information,

Computer and Communications Security, ASIACCS ’10, pages 15–23, 2010.

[72] Ana Milanova and Yin Liu. Practical static ownership inference. RPI/DCS-09-04,

Rensselaer Polytechnic Institute, 2009.

[73] Ana Milanova and Jan Vitek. Static dominance inference. In Proceedings of the 49th

International Conference on Objects, Models, Components, Patterns, TOOLS’11,

pages 211–227, 2011.

[74] John C. Mitchell. Type inference with simple subtypes. Journal of Functional

Programming, 1:245–285, 1991.

[75] Christian Mossin. Flow analysis of typed higher-order programs. PhD thesis, DIKU,

University of Copenhagen, 1997.

[76] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for

layered object structures. Science of Computer Programming, 62(3):253–286, 2006.

[77] Alan Mycroft. Polymorphic type schemes and recursive definitions. In Proceedings

of the 6th Colloquium on International Symposium on Programming, pages 217–228,

1984.

Bibliography 125

[78] Andrew C. Myers. JFlow: practical mostly-static information flow control. In Pro-

ceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, POPL ’99, pages 228–241, 1999.

[79] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow

control. In Proceedings of the Sixteenth ACM Symposium on Operating Systems

Principles, SOSP ’97, pages 129–142, 1997.

[80] Joachim Niehren, Tim Priesnitz, and Zhendong Su. Complexity of subtype satisfia-

bility over posets. In Programming Languages and Systems, volume 3444 of Lecture

Notes in Computer Science, pages 357–373. Springer Berlin Heidelberg, 2005.

[81] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with con-

strained types. Theory and Practice of Object Systems, 5(1):35–55, 1999.

[82] Jens Palsberg. Type-based analysis and applications. In Proceedings of the 2001

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and

Engineering, PASTE’01, pages 20–27, 2001.

[83] Pratibha Permandla, Michael Roberson, and Chandrasekhar Boyapati. A type sys-

tem for preventing data races and deadlocks in the java virtual machine language.

In Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems, LCTES ’07, pages 1–10, 2007.

[84] Benjamin Pierce. Types and Programming Languages. The MIT Press, 1 edition,

2002.

[85] François Pottier. Simplifying subtyping constraints: a theory. Information and

Computation, 170:153–183, 2001.

[86] François Pottier and Sylvain Conchon. Information flow inference for free. In Pro-

ceedings of the fifth ACM SIGPLAN international conference on Functional pro-

gramming, ICFP ’00, pages 46–57, 2000.

[87] François Pottier and Vincent Simonet. Information flow inference for ML. ACM

Transactions on Programming Languages and Systems, 25(1):117–158, 2003.

[88] François Pottier. A framework for type inference with subtyping. In Proceedings

of the third ACM SIGPLAN International Conference on Functional Programming

(ICFP’98), pages 228–238, 1998.

126 Bibliography

[89] François Pottier. A semi-syntactic soundness proof for HM(X). Research Report

4150, INRIA, 2001.

[90] Francois Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C.

Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 10,

pages 389–489. MIT Press, 2005.

[91] J. Rehof and M. Fähndrich. Type-based flow analysis: From polymorphic subtyp-

ing to cfl-reachability. In 28th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’01, pages 54–56, 2001.

[92] Jakob Rehof. Minimal typings in atomic subtyping. In Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’97,

pages 278–291, 1997.

[93] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, 2006.

[94] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Com-

puter Security Foundations, 2005. CSFW-18 2005. 18th IEEE Workshop, pages 255–

269, 2005.

[95] Andrei Sabelfeld and AndrewC. Myers. A model for delimited information release. In

Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki, editors, Software Security

- Theories and Systems, volume 3233 of Lecture Notes in Computer Science, pages

174–191. Springer Berlin Heidelberg, 2004.

[96] Jan Schäfer and Arnd Poetzsch-Heffter. Jcobox: Generalizing active objects to

concurrent components. In Theo D’Hondt, editor, ECOOP 2010 – Object-Oriented

Programming, volume 6183 of Lecture Notes in Computer Science, pages 275–299.

Springer Berlin Heidelberg, 2010.

[97] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplifica-

tion and parallelization. SIAM Journal on Computing, 17(6):1253–1262, 1988.

[98] Sven-Bodo Scholz. Single assignment c: efficient support for high-level array opera-

tions in a functional setting. Journal of Functional Programming, 13(6):1005–1059,

2003.

Bibliography 127

[99] Vincent Simonet. An extension of HM(X) with bounded existential and universal

data-types. In Proceedings of the 8th ACM SIGPLAN International Conference on

Functional Programming (ICFP 2003), pages 39–50, 2003.

[100] Vincent Simonet. The Flow Caml System: Documentation and user’s manual. Tech-

nical Report RT-0282, INRIA, 2003.

[101] Vincent Simonet. Type inference with structural subtyping: A faithful formalization

of an efficient constraint solver. In APLAS, pages 283–302, 2003.

[102] Christian Skalka and Scott F. Smith. Static use-based object confinement. Interna-

tional Journal of Information Security, 4(1-2):87–104, 2005.

[103] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded im-

perative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’98, pages 355–364, 1998.

[104] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf Treinen.

The first-order theory of subtyping constraints. In Proceedings of the 29th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 203–

216, 2002.

[105] Daniel Tang, Ales Plsek, and Jan Vitek. Static checking of safety critical java

annotations. In Proceedings of the 8th International Workshop on Java Technologies

for Real-Time and Embedded Systems, JTRES ’10, pages 148–154, 2010.

[106] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

of Computing, 1(2):146–160, 1972.

[107] J. Tiuryn. Subtype inequalities. In Logic in Computer Science, Proceedings of the

Seventh Annual IEEE Symposium on, LICS ’92, pages 308–315, 1992.

[108] Jerzy Tiuryn. Subtyping over a lattice. Technical report, Warsaw University, 1997.

[109] Jerzy Tiuryn and Mitchell Wand. Type reconstruction with recursive types and

atomic subtyping. In Proceedings of the International Joint Conference CAAP/-

FASE on Theory and Practice of Software Development, TAPSOFT ’93, pages 686–

701, 1993.

[110] Mads Tofte. Type inference for polymorphic references. Information and Computa-

tion, 89(34):1 – 34, 1990.

128 Bibliography

[111] Valery Trifonov and Scott Smith. Subtyping constrained types. In Static Analysis,

volume 1145 of Lecture Notes in Computer Science, pages 349–365. Springer Berlin

Heidelberg, 1996.

[112] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure

flow analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

[113] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual labeling:

Answering graph reachability queries in constant time. In ICDE ’06: Proceedings of

the 22nd International Conference on Data Engineering, page 75, 2006.

[114] J. B. Wells. Typability and type checking in system f are equivalent and undecidable.

Annals of Pure and Applied Logic, 98:111–156, 1998.

[115] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-

winograd. In Proceedings of the 44th symposium on Theory of Computing, STOC

’12, pages 887–898, 2012.

[116] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computa-

tion, 8(4):343–355, 1995.

[117] Damiano Zanardini. Class-level Non-Interference. New Generation Computing, 30(2-

3):241–270, 2012.

[118] Tian Zhao, Jason Baker, James J. Hunt, James Noble, and Jan Vitek. Implicit

ownership types for memory management. Science of Computer Programming,

71(3):213–241, 2008.

[119] Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-time java. In Pro-

ceedings of the 25th IEEE International Real-Time Systems Symposium, RTSS ’04,

pages 241–251, 2004.

[120] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static information

flow control. International Journal of Information Security, 6(2-3):67–84, 2007.

	Introduction
	Lattice-directed information flow
	Verification of secure flow of information
	Contributions
	Overview
	Publications

	Literature Review
	Introduction
	Polymorphic subtyping
	Polymorphism and decidability of type inference
	Type inference with subtyping
	Type inference as constraint solving
	Computational costs of subtyping

	Type-based Flow Analysis
	Applications of Type-based Flow Analysis
	Secure Information Flow Analysis
	Alias Analysis

	Graph algorithms for solving subtyping constraints
	LCA computation in trees
	LCA computation in DAGs

	Summary

	Information Flow Analysis
	Introduction
	IFA using annotated types
	Capturing implicit and explicit flow through types
	Subtyping and Information Flow

	Constraint-based IFA
	The language of constraints
	Type Schemes
	Constraint-based typing

	Constraint rewriting and solving
	Constraint expansion and decomposition
	Constraint solving

	Simplification of type schemes
	Computational costs
	Constraint Generation and Solving
	Scheme simplification

	Algorithmic bottlenecks
	Bottlenecks in IFA
	Reduction of TC to BMP
	BMP as a basis function

	Summary

	Adaptive pre-processing of security lattices
	Introduction
	Lowest Common Ancestor
	Identifying potential LCAs for a vertex pair
	 Overview of our approach to computing representative LCAs
	Decomposing a DAG into clusters

	Identifying the TC-PLCA
	Picking appropriate proximals for a vertex
	Variations in proximals
	Building and indexing the TC-matrix

	Identifying the CC-PLCA
	A simplified approach to computing
	CC-PLCA computation for all pairs of clusterheads
	Algorithmic details

	Summary

	Evaluation of adaptive pre-processing for security lattices
	Introduction
	Structure-spectrum of security lattices
	Class-level non-interference
	Mashup security

	Algorithmic options for pre-processing lattices
	Tree algorithms for pre-processing lattices
	DAGs algorithms for pre-processing lattices

	An adaptive framework for pre-processing lattices
	Experiments
	Setup
	Benchmarks
	Results

	Summary

	Adaptive simplification of polymorphic flow constraints
	Introduction
	Compaction of label-polymorphic expressions
	From expressions to DAGs
	A baseline algorithm

	Simplification through decomposition
	A cluster based approach
	Algorithm and computational costs

	Stress testing the cluster-based approach
	Nature of constraints in information flow analysis
	Quantitative aspects of label-constraint graphs in type-based IFA
	Performance in face of intractable graphs

	Summary

	Conclusion and Future Work
	Future Work
	Enrichment of the existing framework
	Additional areas of application
	Limitations

