A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

F. Marocco^{1*}, H. R. A. Jones¹, A. C. Day-Jones¹, D. J. Pinfield¹, P. W. Lucas¹,

B. Burningham^{1,2}, Z. H. Zhang^{1,3}, R. L. Smart⁴, J. I. Gomes¹, L. Smith¹ ¹Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB

²NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, USA

³Instituto de Astrofísica de Canaria (IAC), C/Vía Láctea s/n, E-38200 La Laguna, Tenerife, Spain

⁴INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy

18 March 2015

ABSTRACT

We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from the United Kingdom Deep Infrared Sky Survey. Using the YJHK photometry from the Large Area Survey and the red-optical photometry from the Sloan Digital Sky Survey we selected a sample of 262 brown dwarf candidates and we have followed-up 196 of them using the echelle spectrograph X-shooter on the Very Large Telescope. The large wavelength coverage $(0.30 - 2.48 \mu \text{m})$ and moderate resolution (R~ 5000 - 9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low gravity M dwarfs. Using a spectral indices-based technique we identified 27 unresolved binary candidates, for which we have determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity for our targets, and we determined the distribution of the sample, which is centred at -1.7 ± 1.2 km s⁻¹ with a dispersion of 31.5 km s^{-1} . Using our results we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are $(0.85\pm0.55)\times10^{-3}$ to $(1.00\pm0.64)\times10^{-3}$ objects per cubic parsec in the L4-L6.5 range, $(0.73 \pm 0.47) \times 10^{-3}$ to $(0.85 \pm 0.55) \times 10^{-3}$ objects per cubic parsec in the L7-T0.5 range, and $(0.74 \pm 0.48) \times 10^{-3}$ to $(0.88 \pm 0.56) \times 10^{-3}$ objects per cubic parsec in the T1-T4.5 range. We notice that there seem to be an excess of objects in the L to T transition with respect to the late T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L to T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following different Initial Mass Functions.

Key words: brown dwarfs - stars: low-mass - binaries: spectroscopic

1 INTRODUCTION

The study of sub-stellar objects still presents a number of open questions. A very intriguing one is the understanding of the physical and chemical processes taking place at the transition between the spectral types L and T.

The sharp near-infrared colour turnaround that characterizes the transition between the spectral types L7 to T5 (Kirkpatrick 2005) is particularly challenging to model.

The dust settling and the onset of the methane and molecular hydrogen absorption are now believed to be the main causes of the turnaround, but the details of these processes, in particular of the dust settling, are still not well understood. A number of different scenarios have been proposed (e.g. Tsuii & Nakajima 2003: Knapp et al. 2004: Marley et al. 2002), but none of them could successfully reproduce the quickness and the sharpness of the turnaround. An important role is also played by atmospheric parameters like metallicity and surface gravity, which influence the nature and the settling of the dust clouds and can lead to the formation of very peculiar spectra (see for instance Kirkpatrick et al. 2010, and references therein). Un-

^{*} E-mail: f.marocco@herts.ac.uk; Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programs 086.C-0450, 087.C-0639, 088.C-0048, 091.C-0452.

derstanding in details the effects of these parameters is another open question.

A significant contribution comes from the modern deep wide-field surveys, like DENIS (Epchtein et al. 1999), SDSS (York et al. 2000), 2MASS (Skrutskie et al. 2006), UKIDSS (Lawrence et al. 2007), VHS (McMahon et al. 2013), and WISE (Wright et al. 2010). Mapping thousands of squared degrees to significant depths in both optical and infrared bands, these surveys provide huge datasets, and mining them is the best way of finding large samples of brown dwarfs. The increase in numbers of known objects will give us the statistic significance necessary to better constrain current models of the structure and evolution of L and T dwarfs.

In this contribution we present a detailed spectroscopic analysis of a sample of 196 late-M, L and T dwarfs selected from the United Kingdom Infra-red Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The spectra of the targets have been obtained with X-shooter (Vernet et al. 2011) on the Very Large Telescope. Spectroscopy is a powerful tool to provide insights to the theory, as the formation of the observed spectra is heavily influenced by the physics and the chemistry of the atmosphere. In particular the wide wavelength coverage delivered by X-shooter $(0.30 - 2.48 \mu m)$ coupled with its good resolution makes it an ideal instrument for this kind of analysis, as it allows us to obtain both the optical and the near-infrared spectra of our targets at the same time. As these portions of the spectrum are sensitive to different parameters, their comparison can provide extremely useful insights in understanding the physics of the atmospheres of brown dwarfs.

In Section 2 we summarize the candidate selection process, the observation strategy adopted, and the data reduction procedures. In Section 3 we present the results obtained, focusing in particular on the determination of the spectral types, the identification and analysis of the unresolved binaries, and the identification and analysis of the peculiar objects found. In Section 4 we study the evolution of the main spectral features via the analysis of spectral indices and equivalent widths. In Section 5 we present the radial velocities obtained for the targets. In Section 6 we use the sample to place constraints on the Initial Mass Function (IMF) and formation history (also known as Birth Rate, BR) of the local sub-stellar population. Finally in Section 7 we summarize the results obtained.

2 CANDIDATE SELECTION, OBSERVATIONS AND DATA REDUCTION

The objects presented here have been selected from the UKIDSS LAS 7th Data Release. The details of the selection criteria can be found in Day-Jones et al. (2013, hereafter ADJ13) and here we briefly summarize them. We selected objects with declination below 20 degrees and brighter than 18.1 in J band. We applied a colour cut of Y - J < 0.8 to remove field M dwarfs (Hewett et al. 2006), and we selected both K band detections and non-detections. Additional quality flags were considered, and their complete list can be found in ADJ13.

We then cross-matched the preliminary list of candidates against the Sloan Digital Sky Survey (SDSS) 7th Data Release using a matching radius of 4 arcsec. We applied a number of colour-colour cuts, the basic one being $z-J \ge 2.4$ and $J-K \ge 1.0$ or $z-J \ge 2.9$ and J-K < 1.0 (Schmidt et al. 2010). Given that mid-T dwarfs have very red z-J colours (typically > 3.0, e.g. Pinfield et al. 2008) some of our objects would be too faint for detection in SDSS, and therefore we also include SDSS non-detections. All the remaining candidates were visually inspected to remove mismatches and cross talk, and we finally removed any previously identified L or T dwarfs. The final list of candidates consisted of 262 objects.

We obtained the spectra of 196 of our targets using X-shooter on the Very Large Telescope under the European Southern Observatory (ESO) programs 086.C-0450(A/B), 087.C-0639(A/B), 088.C-0048(A/B), and 091.C-0452A. Sixty-eight spectra were presented in ADJ13, one in Marocco et al. (2014), and here we present the remaining 127, spanning the RA range 8-16 hours.

The targets were observed in echelle slit mode, following an A-B-B-A pattern to allow sky subtraction. Individual integration times were set equal to 800, 1200, 1600 and 2000s for $J \leq 17, 17.5, 18, 18.1$ respectively in the VIS arm (covering the 550-1000nm range), decreased by 70s in the UVB arm (300-550nm) and increased by 90s in the NIR arm (1000-2500nm). The data were reduced using the ESO X-shooter pipeline (version 2.0.0 or later). The pipeline performs all the basic steps, such as non-linear pixels cleaning, bias and dark subtraction, flat fielding, sky subtraction, extraction of the individual orders, merging, wavelength calibration and flexure compensation, and flux calibration. The final products are one dimensional, wavelength and flux calibrated spectra, one for each arm. We corrected the spectra for telluric absorption, and merged the three arms using our own IDL code. Telluric standards were observed following a target-telluric-target strategy, trying to minimize the airmass difference between the targets and the telluric stars. Telluric stars were selected preferentially in the late-B early-A spectral range, as these types of stars are essentially free of absorption features, except for the H I lines that are not present in brown dwarfs and whose influence can be interpolated over. Their spectra were also reduced using the X-shooter pipeline. Further details about the observation strategy and the data reduction can be found in ADJ13 and in Appendix A.

3 RESULTS

Results of the observations are presented in Table 1. For each object we present the full name, the short ID that will be used in the rest of the paper (see ADJ13 for details), the UKIDSS and SDSS photometry used for candidate selection, and the spectral type derived (see Section 3.1). The spectra of our sample are presented in Fig. 1 - 5, sorted in descending order of spectral type (from early to late). Additional SDSS and WISE photometry can be found in Appendix B.

We note that the red-optical portion of the spectra (i.e. at wavelengths shorter than 1 μ m) tend to be noisier than the infrared portion. In some objects in particular (e.g. BRLT236 and BRLT285) there appear to be strange narrow and broad features, that are due to imperfect background subtraction and/or bad pixels filtering.

3.1 Spectral classification

Spectral types for the targets were determined via χ^2 fitting with standard templates. The template spectra were taken from the SpeX-Prism online library¹. Each of the targets was smoothed down to the resolution of the templates (R=120), and we excluded the noisy telluric bands when computing the statistic. We visually inspected the three best fit templates to check the accuracy of the fit and to identify possible peculiar objects (see Section 3.3). The spectral types obtained are listed in the second from last column of Table 1. The uncertainty on the spectral types was determined from the width of the χ^2 distribution.

Unsurprisingly however, a number of objects in the sample did not provide good fits when compared to the standard templates. We discuss in the following sections how we identified the peculiar objects and how we assigned their spectral types. 3

 $^{^{1}\} http://pono.ucsd.edu/{\sim}adam/browndwarfs/spexprism$

Figure 1. The Xshooter spectra of the objects presented here, sorted in ascending order of spectral type (M8.0–L1.0). All spectra are normallized at 1.28μ m and offset vertically by increments of one flux unit.

Figure 2. The Xshooter spectra of the objects presented here, sorted in ascending order of spectral type (L1.0–L2.0). All spectra are normallized at 1.28μ m and offset vertically by increments of one flux unit.

Figure 3. The Xshooter spectra of the objects presented here, sorted in ascending order of spectral type (L2.0–L5.0). All spectra are normallized at 1.28μ m and offset vertically by increments of one flux unit.

Figure 4. The Xshooter spectra of the objects presented here, sorted in ascending order of spectral type (L5.0–L9.5). All spectra are normallized at 1.28μ m and offset vertically by increments of one flux unit.

Figure 5. The Xshooter spectra of the objects presented here, sorted in ascending order of spectral type (T0.0–T4.5). All spectra are normallized at 1.28μ m and offset vertically by increments of one flux unit.

Name	ID	Y	J	Н	К	i	z	Spectral type	Ref.
ULAS J000613.24+154020.7	BRLT1	$18.954{\pm}0.079$	$17.876 {\pm} 0.052$	$16.713 {\pm} 0.037$	$16.143 {\pm} 0.036$	$24.161 {\pm} 0.694$	$20.609 {\pm} 0.177$	$L9.0 \pm 0.5$	1
ULAS J001040.57+010013.1	BRLT2	$19.361{\pm}0.084$	$18.089 {\pm} 0.038$	$17.457 {\pm} 0.067$	$16.710{\pm}0.059$	$22.215 {\pm} 0.198$	$20.797 {\pm} 0.228$	$L1.0\pm1.0$	1
ULAS J001836.51 -002559.1	BRLT3	$18.731 {\pm} 0.080$	$17.668 {\pm} 0.052$	$16.608 {\pm} 0.038$		$23.108 {\pm} 0.287$	$20.274{\pm}0.103$	$L9.0 \pm 1.0$	1
ULAS J002406.37+134705.3	BRLT6	$19.281{\pm}0.088$	$18.023 {\pm} 0.044$	$17.337 {\pm} 0.060$	$16.528 {\pm} 0.044$	$24.677 {\pm} 0.656$	$24.061{\pm}0.386$	$L3.0 \pm 1.0$	1
ULAS J002707.24+142349.0	BRLT7	$18.956{\pm}0.059$	$17.981{\pm}0.041$	$17.373 {\pm} 0.058$	$16.862 {\pm} 0.063$	$22.638 {\pm} 0.264$	$20.410{\pm}0.145$	$M8.0 \pm 1.0$	1
ULAS J002827.56+142349.1	BRLT8	$18.947 {\pm} 0.071$	$17.563 {\pm} 0.034$	$16.616 {\pm} 0.026$	$15.846{\pm}0.026$	$22.788 {\pm} 0.263$	$20.287{\pm}0.122$	$L8.5\pm0.5$	1
ULAS J002912.25+145604.9	BRLT9	$18.812{\pm}0.077$	$17.559 {\pm} 0.046$	$16.920{\pm}0.053$	$16.330{\pm}0.049$	$22.103 {\pm} 0.149$	$19.966 {\pm} 0.098$	$L1.0 \pm 1.0$	1
ULAS J003259.51+141037.1	BRLT10	$17.830{\pm}0.027$	$16.645 {\pm} 0.016$	$15.689{\pm}0.011$	$15.002{\pm}0.013$	$23.083{\pm}0.413$	$19.421{\pm}0.069$	$L9.0\pm0.5$	2
ULAS J003716.06 -005404.7	BRLT12	$19.449 {\pm} 0.106$	$18.085 {\pm} 0.057$	$17.330{\pm}0.063$	$16.662 {\pm} 0.053$	$22.592{\pm}0.228$	$20.798 {\pm} 0.196$	$L3.0 \pm 1.0$	1
ULAS J004355.61+141117.6	BRLT14	$18.414{\pm}0.039$	$17.327{\pm}0.027$	$16.689 {\pm} 0.036$	$16.120{\pm}0.034$	$21.796{\pm}0.119$	$19.748 {\pm} 0.079$	$L0.0\pm0.5$	1
ULAS J004757.41+154641.4	BRLT15	$19.118 {\pm} 0.067$	$17.827 {\pm} 0.050$	$17.164{\pm}0.045$	$16.415 {\pm} 0.042$			$T2.0{\pm}2.0$	1
ULAS J005038.20-000336.6	BRLT16	$19.032{\pm}0.061$	$17.862 {\pm} 0.043$	$17.068 {\pm} 0.033$	$16.518 {\pm} 0.050$	$22.544{\pm}1.012$	$20.561{\pm}0.144$	$L2.0 \pm 1.0$	1
ULAS J010036.01+062044.1	BRLT18	$18.638 {\pm} 0.051$	$17.768 {\pm} 0.040$	$16.913 {\pm} 0.038$	$16.335 {\pm} 0.035$			$L0.0\pm1.0$	1
ULAS J010531.78+142931.5	BRLT20	$19.258{\pm}0.098$	$18.005 {\pm} 0.053$	$17.461 {\pm} 0.071$	$16.821{\pm}0.080$	$22.924{\pm}0.288$	$20.597{\pm}0.164$	$L1.0\pm1.0$	1
ULAS J011151.89-010534.2	BRLT21	$18.637 {\pm} 0.057$	$17.340{\pm}0.028$	$16.532{\pm}0.031$	$15.933 {\pm} 0.031$	$22.297 {\pm} 0.154$	$20.340{\pm}0.098$	$L3.5\pm0.5$	1
ULAS J011249.67+153657.6	BRLT22	$19.005 {\pm} 0.092$	$17.996 {\pm} 0.056$	$17.408 {\pm} 0.037$	$16.856 {\pm} 0.055$			$\mathrm{M8.0}{\pm0.5}$	1
ULAS J011645.47+144335.3	BRLT24	$19.309 {\pm} 0.085$	$17.960{\pm}0.054$	$17.007 {\pm} 0.034$	$16.300{\pm}0.038$			$L3.5\pm0.5$	1
ULAS J012743.58+135421.3	BRLT26	$17.967 {\pm} 0.034$	$16.772 {\pm} 0.018$	$15.913 {\pm} 0.015$	$15.184{\pm}0.014$	$22.195{\pm}0.170$	$19.626 {\pm} 0.067$	$L5.5\pm0.5$	3
ULAS J012814.40-004153.5	BRLT27	$18.465 {\pm} 0.055$	$17.592{\pm}0.044$	$16.899 {\pm} 0.030$	$16.487 {\pm} 0.044$	$24.132{\pm}0.445$	$20.485 {\pm} 0.111$	$T0.0\pm0.5$	1
ULAS J012906.88+011350.4	BRLT28	$19.315 {\pm} 0.108$	$18.138 {\pm} 0.073$	$17.229 {\pm} 0.060$	$16.275 {\pm} 0.039$			$L6.0\pm0.5$	
ULAS J013243.81+055232.2	BRLT30	$17.764{\pm}0.024$	$16.414{\pm}0.013$	$15.481{\pm}0.011$	$14.750 {\pm} 0.010$	$21.328 {\pm} 0.090$	$19.303 {\pm} 0.066$	$L5.0\pm0.5$	1
ULAS J013619.79+071737.9	BRLT31	$19.460{\pm}0.087$	$18.009 {\pm} 0.044$	$17.101 {\pm} 0.044$	$16.474{\pm}0.040$			$L4.0 \pm 1.0$	1
ULAS J013807.67-010417.0	BRLT32	$19.320{\pm}0.114$	$18.006 {\pm} 0.054$	$17.332{\pm}0.036$		$22.403{\pm}0.152$	$20.816{\pm}0.163$	$L1.5\pm0.5$	1
ULAS J014103.30+131832.6	BRLT33	$19.454{\pm}0.094$	$17.946{\pm}0.041$	$17.095{\pm}0.052$	$16.578 {\pm} 0.044$	$22.404{\pm}0.361$	$20.532{\pm}0.186$	$L3.5\pm0.5$	1
ULAS J014811.69+140028.4	BRLT35	$19.095 {\pm} 0.072$	$17.972 {\pm} 0.051$	$17.164{\pm}0.050$	$16.551{\pm}0.049$	$21.331{\pm}0.096$	$21.487 {\pm} 0.390$	$\mathrm{M9.5}{\pm0.5}$	1
ULAS J014927.11+144108.2	BRLT37	$19.304{\pm}0.091$	$18.039 {\pm} 0.050$	$17.099 {\pm} 0.048$	$16.317 {\pm} 0.039$	$23.488 {\pm} 0.555$	$20.589 {\pm} 0.159$	$L5.0\pm0.5$	1
ULAS J015142.09+124429.3	BRLT38	$17.404{\pm}0.020$	$16.388 {\pm} 0.012$	$15.597{\pm}0.012$	$15.288 {\pm} 0.013$			$T0.0\pm0.5$	2
ULAS J015144.10+134645.8	BRLT39	$18.904{\pm}0.063$	$17.662 {\pm} 0.035$	$16.839 {\pm} 0.037$	$16.094{\pm}0.032$	$23.175 {\pm} 0.373$	$20.281{\pm}0.135$	$L5.0 \pm 1.0$	1
ULAS J020002.96+065808.1	BRLT42	$19.111 {\pm} 0.069$	$17.935 {\pm} 0.042$	$17.203 {\pm} 0.044$	$16.717 {\pm} 0.044$			$\mathrm{M9.0}{\pm0.5}$	1
ULAS J020333.34-010812.4	BRLT44	$18.993 {\pm} 0.085$	$17.693 {\pm} 0.040$	$16.887 {\pm} 0.033$	$16.268 {\pm} 0.032$	24.025 ± 0.444	$20.468 {\pm} 0.115$	$L5.0\pm1.0$	4
ULAS J020529.62+142114.0	BRLT45	$19.141{\pm}0.065$	$17.993 {\pm} 0.039$	$17.266 {\pm} 0.034$	$16.932{\pm}0.064$	$25.173 {\pm} 0.604$	$20.699 {\pm} 0.189$	$T1.0\pm0.5$	1
ULAS J020604.27+054958.8	BRLT46	$18.978 {\pm} 0.070$	$17.915{\pm}0.045$	$17.412 {\pm} 0.069$	$16.801{\pm}0.061$	$22.314{\pm}1.037$	$20.391{\pm}0.143$	$L0.5\pm0.5$	1
ULAS J024703.40-010700.8	BRLT48	$19.192{\pm}0.089$	$17.766 {\pm} 0.045$	$16.827 {\pm} 0.036$	$15.993{\pm}0.027$			$L4.5\pm0.5$	1
ULAS J025244.10+010617.9	BRLT49	$19.102{\pm}0.061$	$18.150 {\pm} 0.050$	$17.541{\pm}0.046$	$17.068 {\pm} 0.070$			$\mathrm{M9.0}{\pm0.5}$	
ULAS J025545.28+061655.7	BRLT50	$19.153 {\pm} 0.071$	$17.992{\pm}0.047$	$18.669 {\pm} 0.177$				$T6.0\pm0.5$	5
ULAS J025940.95+054934.8	BRLT51	$19.279 {\pm} 0.079$	$18.024{\pm}0.045$	$17.189 {\pm} 0.044$	$16.480{\pm}0.038$			$L3.0 \pm 1.0$	1
ULAS J031451.72+045346.2	BRLT52	$18.592{\pm}0.045$	$17.302 {\pm} 0.025$	$16.388 {\pm} 0.019$	$15.589{\pm}0.018$	22.369 ± 1.032	$20.367 {\pm} 0.123$	$L5.5\pm0.5$	1
ULAS J031959.75+061740.7	BRLT56	$19.243 {\pm} 0.085$	$17.785 {\pm} 0.038$	$17.034{\pm}0.034$	$16.396{\pm}0.039$			$L1.5 \pm 1.0$	1
ULAS J032042.15+061837.1	BRLT57	$19.273 {\pm} 0.087$	$18.059 {\pm} 0.048$	$17.480{\pm}0.050$	$16.905 {\pm} 0.061$	$22.424{\pm}0.311$	$20.489 {\pm} 0.190$	$L0.0 \pm 1.0$	1
ULAS J032143.05+054524.3	BRLT58	$18.557 {\pm} 0.052$	$17.333 {\pm} 0.027$	$16.608 {\pm} 0.024$	$15.967 {\pm} 0.025$	$22.419 {\pm} 0.253$	$20.077 {\pm} 0.110$	$L4.0 \pm 1.0$	1
ULAS J032353.82+061352.3	BRLT60	$19.004{\pm}0.068$	$17.639 {\pm} 0.034$	$16.989{\pm}0.031$	$16.313 {\pm} 0.034$			$L1.0\pm1.0$	1
ULAS J033005.72+055653.4	BRLT62	$19.512{\pm}0.107$	$17.948 {\pm} 0.045$	$16.843 {\pm} 0.032$	$15.948 {\pm} 0.024$			$L5.0\pm1.0$	1
ULAS J033027.97+053626.6	BRLT63	$19.219 {\pm} 0.076$	$18.108 {\pm} 0.050$	$17.569 {\pm} 0.058$	$16.716 {\pm} 0.046$			$L1.0\pm0.5$	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Continued from the previous page.									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Name	ID	Y	J	Н	K	i	z	Spectral type	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J033036.84+042657.7	BRLT64	$18.619 {\pm} 0.039$	$17.293{\pm}0.023$	$16.444{\pm}0.019$	$15.749 {\pm} 0.019$	$22.139{\pm}0.153$	$19.984{\pm}0.095$	$L4.0\pm0.5$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J033734.61 $+050026.9$	BRLT65	$19.203{\pm}0.078$	$18.122{\pm}0.054$	$17.486 {\pm} 0.055$	$16.872 {\pm} 0.058$			$\mathrm{M9.0}{\pm0.5}$	
$ \begin{array}{c} ULAS J08005.05-193838.1 \\ ULAS J08410.45-18201.6 \\ ULAS J08410.45-18201.6 \\ RELT68 \\ IS 15.05-0.5 \\ ILAS J082428.08+055742.5 \\ RULT09 \\ IS .724-0.05 \\ ILAS J082428.08+055742.5 \\ RULT09 \\ IS .724+0.05 \\ ILAS J082428.08+015742.5 \\ RULT12 \\ IS .724+0.05 \\ ILAS J08238.06-01124.1 \\ RULT12 \\ IS .724+0.05 \\ ILAS J08238.06-01124.1 \\ RULT12 \\ IS .724+0.05 \\ ILAS J082428.06+0124.1 \\ RULT12 \\ IS .724+0.05 \\ ILAS J082428.06+0124.1 \\ RULT12 \\ IS .724+0.05 \\ ILAS J08240.05 \\ ILAS J082428.06+0124.9 \\ RULT12 \\ IS .724+0.05 \\ ILAS J08240.05 \\ ILAS J08240.07 \\ ILAS J0824$	ULAS J034150.21 $+$ 042324.9	BRLT66	$18.288 {\pm} 0.032$	$16.848 {\pm} 0.016$	$15.947{\pm}0.012$	$15.198{\pm}0.012$	$21.902{\pm}0.175$	$19.778 {\pm} 0.095$	$L5.0\pm0.5$	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J080055.05 $+193838.1$	BRLT67	$18.993{\pm}0.053$	$17.713 {\pm} 0.025$	$16.960{\pm}0.030$	$16.247{\pm}0.028$	$22.402{\pm}0.205$	$20.583 {\pm} 0.115$	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J080441.05+182611.6	BRLT68	$18.815{\pm}0.052$	$17.568 {\pm} 0.025$	$16.541{\pm}0.020$	$15.834{\pm}0.019$	$23.114 {\pm} 0.302$	$20.151 {\pm} 0.095$	$L5.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J082428.08 $+055742.5$	BRLT69	$18.724{\pm}0.055$	$17.492{\pm}0.030$	$16.891{\pm}0.031$	$16.258 {\pm} 0.029$	$22.493{\pm}0.221$	$20.177 {\pm} 0.095$	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J083258.66+011241.9	BRLT71	$19.256{\pm}0.070$	$17.997{\pm}0.045$	$17.138 {\pm} 0.053$	$16.549 {\pm} 0.044$			$L1.5\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J083334.60 -014454.7	BRLT72	$18.674{\pm}0.055$	$17.703 {\pm} 0.032$	$17.011 {\pm} 0.034$	$16.388{\pm}0.038$	$22.463 {\pm} 0.380$	$20.218 {\pm} 0.148$	$\mathrm{M9.0}{\pm0.5}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J083842.51+081700.5	BRLT73	$18.928 {\pm} 0.056$	$17.720{\pm}0.024$	$17.038 {\pm} 0.027$	$16.338 {\pm} 0.032$	$22.120{\pm}0.136$	$20.653 {\pm} 0.162$	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J084302.02+001246.9	BRLT74	$18.792{\pm}0.057$	$17.758 {\pm} 0.036$	$16.799 {\pm} 0.032$	$16.288 {\pm} 0.033$	$23.254{\pm}0.396$	$20.331 {\pm} 0.141$	$L9.5 \pm 1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J084410.65 -015944.2	BRLT75	$19.058 {\pm} 0.077$	$18.017 {\pm} 0.048$	$17.438 {\pm} 0.050$	$16.825 {\pm} 0.055$	$23.011 {\pm} 0.282$	$20.619 {\pm} 0.175$	$M9.0{\pm}1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J084710.35+020413.3	BRLT76	$19.777 {\pm} 0.115$	$18.182{\pm}0.050$	$17.156 {\pm} 0.037$	$16.406 {\pm} 0.039$			$L5.5\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J084849.71+071512.0	BRLT78	$18.956 {\pm} 0.068$	$18.021{\pm}0.031$	$17.417 {\pm} 0.032$	$16.758 {\pm} 0.038$			$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J085035.45+062152.7	BRLT81	$19.158 {\pm} 0.085$	$18.080 {\pm} 0.042$	$17.396{\pm}0.064$	$17.006 {\pm} 0.053$			$M9.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J085311.68+032147.7	BRLT82	$19.119 {\pm} 0.092$	$17.905 {\pm} 0.067$	$17.040{\pm}0.038$	$16.432 {\pm} 0.039$	22.873 ± 0.329	$20.495 {\pm} 0.180$	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J085540.39-021923.9	BRLT83	$18.978 {\pm} 0.058$	$18.159 {\pm} 0.052$	$17.433 {\pm} 0.051$	$16.829 {\pm} 0.054$			$M8.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J085559.77+003048.3	BRLT84	$18.954{\pm}0.054$	$17.541 {\pm} 0.023$	$16.777 {\pm} 0.020$	$15.998 {\pm} 0.022$	$22.059 {\pm} 0.159$	$20.358 {\pm} 0.131$	$L3.5\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J085931.39+063600.6	BRLT85	$19.012 {\pm} 0.050$	$18.077 {\pm} 0.027$	$17.588 {\pm} 0.070$	$17.191{\pm}0.059$			$M8.0 \pm 0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J090521.61+100654.9	BRLT87	$18.202 {\pm} 0.031$	$17.082{\pm}0.018$	$16.389 {\pm} 0.021$	$16.074 {\pm} 0.024$	23.327 ± 0.325	$19.969 {\pm} 0.081$	$T0.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J090710.26-022145.7	BRLT88	$19.216 {\pm} 0.075$	$17.926 {\pm} 0.042$	$17.012 {\pm} 0.032$	$16.313 {\pm} 0.038$			$L4.0 \pm 1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J091544.13+053104.1	BRLT91	$18.084{\pm}0.032$	$16.963 {\pm} 0.016$	$16.582 {\pm} 0.021$		$23.846 {\pm} 0.633$	$20.118 {\pm} 0.138$	$T3.0\pm0.5$	
ULAS J092432.13+005835.6BRLT9719.175 \pm 0.06917.93 \pm 0.02817.263 \pm 0.04116.563 \pm 0.04122.444 \pm 0.33020.364 \pm 0.168L0.0 \pm 1.0ULAS J092646.81-015150.0BRLT9918.906 \pm 0.06217.72 \pm 0.04217.386 \pm 0.038T.4.0 \pm 0.56ULAS J09269.46-005611.1BRLT10119.255 \pm 0.09217.72 \pm 0.05117.370 \pm 0.07216.894 \pm 0.079L5.0 \pm 0.5ULAS J093129.56-020902.8BRLT10219.140 \pm 0.06318.092 \pm 0.04417.314 \pm 0.05116.767 \pm 0.058L0.0 \pm 0.5ULAS J093512.60+012347.4BRLT10318.515 \pm 0.03817.354 \pm 0.02416.595 \pm 0.03516.602 \pm 0.02922.358 \pm 0.32320.226 \pm 0.631L5.5 \pm 0.5ULAS J093930.74+065309.8BRLT10618.088 \pm 0.05517.882 \pm 0.03016.677 \pm 0.01315.161 \pm 0.01216.602 \pm 0.02922.358 \pm 0.32320.226 \pm 0.631L5.5 \pm 0.5ULAS J09406.54+021051.1BRLT10618.083 \pm 0.05517.882 \pm 0.03016.629 \pm 0.03616.225 \pm 0.032M9.0 \pm 0.5ULAS J094742.01+07422.3BRLT11119.407 \pm 0.03016.869 \pm 0.01915.552 \pm 0.01823.163 \pm 0.5320.423 \pm 0.230L6.5 \pm 0.5ULAS J094742.01+074304.7BRLT11118.481 \pm 0.04817.760 \pm 0.0217.063 \pm 0.02416.405 \pm 0.03022.409 \pm 1.02820.503 \pm 0.188L1.0 \pm 0.5ULAS J095401.45+09221.37BRLT11118.821 \pm 0.04817.760 \pm 0.0217.064 \pm 0.02416.405 \pm 0.004<	ULAS J091740.85+004254.0	BRLT92	$18.716 {\pm} 0.046$	$17.608 {\pm} 0.026$	$16.889 {\pm} 0.024$	$16.158 {\pm} 0.028$	$22.693 {\pm} 0.399$	20.212 ± 0.136	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J092432.13+005835.6	BRLT97	$19.175 {\pm} 0.069$	$17.932{\pm}0.028$	$17.263 {\pm} 0.041$	$16.563 {\pm} 0.041$	$22.444 {\pm} 0.330$	$20.364 {\pm} 0.168$	$L0.0 \pm 1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J092624.75+071140.7	BRLT98	$18.527 {\pm} 0.040$	$17.482 {\pm} 0.021$	$17.386{\pm}0.038$				$T4.0\pm0.5$	6
ULAS J092659.46-005611.1BRLT10119.255 \pm 0.09217.972 \pm 0.05117.370 \pm 0.07216.894 \pm 0.079L3.0 \pm 1.0L3.0 \pm 1.0ULAS J093129.56-020902.8BRLT10219.140 \pm 0.06318.092 \pm 0.04417.314 \pm 0.05116.767 \pm 0.058L0.0 \pm 0.5L0.0 \pm 0.5ULAS J09374.66 \pm 071903.3BRLT10418.515 \pm 0.03817.354 \pm 0.02416.595 \pm 0.03516.622 \pm 0.02922.358 \pm 0.32320.226\pm0.631L5.5 \pm 0.5ULAS J09374.466 \pm 071903.3BRLT10518.083 \pm 0.03016.787 \pm 0.01315.864 \pm 0.01315.161 \pm 0.01021.698 \pm 0.13619.617 \pm 0.076L5.0 \pm 0.5ULAS J09406.54 \pm 021051.1BRLT10618.583 \pm 0.04517.470 \pm 0.03016.869 \pm 0.03616.225 \pm 0.032L6.5 \pm 0.5ULAS J094120.50 \pm 042422.7BRLT11119.407 \pm 0.08118.051 \pm 0.02217.116 \pm 0.03716.418 \pm 0.033L2.0 \pm 0.5ULAS J094742.01 \pm 07474232.3BRLT11218.822 \pm 0.04617.760 \pm 0.02416.455 \pm 0.03222.409 \pm 1.02820.503 \pm 0.188L1.0 \pm 0.5ULAS J094759.19 \pm 074304.7BRLT11318.831 \pm 0.04817.784 \pm 0.02117.164 \pm 0.03616.577 \pm 0.03623.940 \pm 0.54320.294 \pm 0.152ULAS J095401.45 \pm 09213.7BRLT11618.99 \pm 0.05417.702 \pm 0.02416.635 \pm 0.02215.667 \pm 0.01820.104 \pm 0.545L2.0 \pm 0.5ULAS J095606.72 \pm 082113.7BRL	ULAS J092646.81-015150.0	BRLT99	$18.906 {\pm} 0.062$	$17.722 {\pm} 0.042$	$16.785 {\pm} 0.030$	$16.141 {\pm} 0.031$			$L5.0\pm0.5$	
ULAS J093129.56-020902.8BRLT10219.140 \pm 0.06318.092 \pm 0.04417.314 \pm 0.05116.767 \pm 0.058LL0.0 \pm 0.5ULAS J093512.60+012347.4BRLT10318.515 \pm 0.03817.354 \pm 0.02416.595 \pm 0.03516.662 \pm 0.02922.358 \pm 0.32320.226 \pm 0.631L5.5 \pm 0.5ULAS J093744.66+071903.3BRLT10418.986 \pm 0.05517.882 \pm 0.03017.189 \pm 0.03216.662 \pm 0.02922.358 \pm 0.32320.406 \pm 0.158M9.0 \pm 0.5ULAS J093930.74+065309.8BRLT10518.083 \pm 0.03016.787 \pm 0.01315.864 \pm 0.01315.161 \pm 0.01021.698 \pm 0.13619.617 \pm 0.076L5.0 \pm 0.5ULAS J094066.54+021051.1BRLT10618.883 \pm 0.05517.511 \pm 0.02616.459 \pm 0.01915.552 \pm 0.01823.163 \pm 0.55320.423 \pm 0.230L6.5 \pm 0.5ULAS J094420.32+024422.7BRLT11119.407 \pm 0.08118.051 \pm 0.02217.16 \pm 0.03716.418 \pm 0.033L2.0 \pm 0.5ULAS J094742.01+074323.3BRLT11218.822 \pm 0.04617.760 \pm 0.02017.063 \pm 0.02416.405 \pm 0.03022.409 \pm 1.02820.503 \pm 0.188L1.0 \pm 0.5ULAS J095261.459.1922.17BRLT11418.724 \pm 0.04317.620 \pm 0.02416.635 \pm 0.02215.867 \pm 0.01822.109 \pm 1.02820.150 \pm 1.152M9.0 \pm 0.5ULAS J095606.72+082115.7BRLT11418.724 \pm 0.04317.092 \pm 0.02317.332 \pm 0.03616.860 \pm 0.047T2.5 \pm 0.5ULAS J005606.72+082115.7BRLT11618.899 \pm 0.057 <td>ULAS J092659.46-005611.1</td> <td>BRLT101</td> <td>$19.255 {\pm} 0.092$</td> <td>$17.972 {\pm} 0.051$</td> <td>$17.370 {\pm} 0.072$</td> <td>$16.894{\pm}0.079$</td> <td></td> <td></td> <td>$L3.0 \pm 1.0$</td> <td></td>	ULAS J092659.46-005611.1	BRLT101	$19.255 {\pm} 0.092$	$17.972 {\pm} 0.051$	$17.370 {\pm} 0.072$	$16.894{\pm}0.079$			$L3.0 \pm 1.0$	
ULAS J093512.60+012347.4BRLT103 18.515 ± 0.038 17.35 ± 0.024 16.59 ± 0.035 16.062 ± 0.029 22.358 ± 0.323 20.226 ± 0.631 $L5.5\pm0.5$ ULAS J093744.66+071903.3BRLT104 18.986 ± 0.055 17.882 ± 0.030 17.189 ± 0.032 16.620 ± 0.038 22.234 ± 0.188 20.460 ± 0.158 $M9.0\pm0.5$ ULAS J093930.74+065309.8BRLT105 18.083 ± 0.030 16.787 ± 0.013 15.864 ± 0.013 15.161 ± 0.010 21.698 ± 0.136 19.617 ± 0.076 $L5.0\pm0.5$ ULAS J09406.54+021051.1BRLT106 18.583 ± 0.045 17.470 ± 0.030 16.869 ± 0.036 16.225 ± 0.032 M9.0\pm0.5ULAS J094136.50+094214.2BRLT108 18.883 ± 0.055 17.511 ± 0.026 16.459 ± 0.019 15.552 ± 0.018 23.163 ± 0.553 20.423 ± 0.230 $L6.5\pm0.5$ ULAS J094742.01+074232.3BRLT111 19.407 ± 0.081 18.051 ± 0.022 17.16 ± 0.037 16.418 ± 0.033 $L2.0\pm0.5$ ULAS J094750.19+074304.7BRLT113 18.831 ± 0.048 17.760 ± 0.021 17.16 ± 0.024 16.405 ± 0.030 22.409 ± 1.028 20.503 ± 0.188 $L1.0\pm0.5$ ULAS J095126.87+075756.8BRLT114 18.72 ± 0.043 17.620 ± 0.024 16.635 ± 0.022 15.867 ± 0.018 23.16 ± 0.386 20.451 ± 0.173 $L5.0\pm0.5$ ULAS J095606.72+082115.7BRLT117 19.302 ± 0.063 17.98 ± 0.037 17.097 ± 0.031 16.46 ± 0.031 23.156 ± 0.386 20.451 ± 0.173 $L5.0\pm0.5$ ULAS J100310.96+075220.3BRLT119 $19.$	ULAS J093129.56-020902.8	BRLT102	$19.140 {\pm} 0.063$	$18.092 {\pm} 0.044$	$17.314{\pm}0.051$	$16.767 {\pm} 0.058$			$L0.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J093512.60+012347.4	BRLT103	$18.515 {\pm} 0.038$	$17.354{\pm}0.024$	$16.595 {\pm} 0.035$	16.062 ± 0.029	$22.358 {\pm} 0.323$	20.226 ± 0.631	$L5.5\pm0.5$	
ULAS J093930.74+065309.8BRLT105 18.083 ± 0.030 16.787 ± 0.013 15.864 ± 0.013 15.161 ± 0.010 21.698 ± 0.136 19.617 ± 0.076 $L5.0\pm0.5$ ULAS J094006.54+021051.1BRLT106 18.583 ± 0.045 17.470 ± 0.030 16.869 ± 0.036 16.225 ± 0.032 M9.0\pm0.5ULAS J094136.50+094214.2BRLT108 18.883 ± 0.055 17.511 ± 0.026 16.459 ± 0.019 15.552 ± 0.018 23.163 ± 0.553 20.423 ± 0.230 $L6.5\pm0.5$ ULAS J094420.32+024422.7BRLT111 19.407 ± 0.081 18.051 ± 0.052 17.116 ± 0.037 16.418 ± 0.033 $L2.0\pm0.5$ ULAS J09472.01+074232.3BRLT112 18.822 ± 0.046 17.760 ± 0.020 17.063 ± 0.024 16.405 ± 0.030 22.409 ± 1.028 20.503 ± 0.188 $L1.0\pm0.5$ ULAS J094759.19+074304.7BRLT113 18.831 ± 0.048 17.784 ± 0.021 17.154 ± 0.026 16.577 ± 0.036 23.940 ± 0.543 20.294 ± 0.152 M9.0\pm0.5ULAS J095126.87+075756.8BRLT114 18.724 ± 0.043 17.620 ± 0.024 16.635 ± 0.022 15.867 ± 0.018 22.610 ± 0.272 20.150 ± 0.126 $L6.0\pm0.5$ ULAS J095401.45+092213.7BRLT116 18.899 ± 0.054 17.792 ± 0.023 17.333 ± 0.036 16.860 ± 0.047 12.50 ± 0.5 ULAS J100310.96+07520.3BRLT119 9.085 ± 0.077 17.63 ± 0.023 17.33 ± 0.036 16.464 ± 0.031 23.156 ± 0.386 20.451 ± 0.173 $L5.0\pm0.5$ ULAS J10073.55+013017.0BRLT121 18.799 ± 0.06	ULAS J093744.66+071903.3	BRLT104	$18.986 {\pm} 0.055$	$17.882 {\pm} 0.030$	$17.189 {\pm} 0.032$	$16.620{\pm}0.038$	$22.234{\pm}0.188$	$20.460 {\pm} 0.158$	$M9.0\pm0.5$	
ULAS J094006.54+021051.1BRLT106 18.583 ± 0.045 17.470 ± 0.030 16.869 ± 0.036 16.225 ± 0.032 M9.0±0.5ULAS J094136.50+094214.2BRLT108 18.883 ± 0.055 17.511 ± 0.026 16.459 ± 0.019 15.552 ± 0.018 23.163 ± 0.553 20.423 ± 0.230 $L6.5\pm0.5$ ULAS J094420.32+024422.7BRLT111 19.407 ± 0.081 18.051 ± 0.052 17.116 ± 0.037 16.418 ± 0.033 L2.0\pm0.5ULAS J094742.01+074232.3BRLT112 18.822 ± 0.046 17.760 ± 0.020 17.063 ± 0.024 16.405 ± 0.030 22.409 ± 1.028 20.503 ± 0.188 $L1.0\pm0.5$ ULAS J094759.19+074304.7BRLT113 18.831 ± 0.048 17.784 ± 0.021 17.154 ± 0.026 16.577 ± 0.036 23.940 ± 0.543 20.294 ± 0.152 M9.0\pm0.5ULAS J095126.87+075756.8BRLT114 18.724 ± 0.043 17.620 ± 0.024 16.635 ± 0.022 15.867 ± 0.018 22.610 ± 0.272 20.150 ± 0.126 $L6.0\pm0.5$ ULAS J095606.72+082115.7BRLT117 19.302 ± 0.063 17.982 ± 0.034 17.097 ± 0.031 16.464 ± 0.031 23.156 ± 0.386 20.451 ± 0.173 $L5.0\pm0.5$ ULAS J100647.06+12117.2BRLT121 18.799 ± 0.067 17.639 ± 0.027 16.869 ± 0.028 16.208 ± 0.025 L4.0\pm0.5ULAS J100731.52+01301.0BRLT123 18.899 ± 0.060 17.63 ± 0.037 16.949 ± 0.029 16.229 ± 0.032 22.266 ± 0.216 20.123 ± 0.130 $L1.0\pm0.5$ ULAS J100731.32+104758.8BRLT123 18.899 ± 0.060 17.63 ± 0.037 <	ULAS J093930.74+065309.8	BRLT105	$18.083 {\pm} 0.030$	$16.787 {\pm} 0.013$	$15.864 {\pm} 0.013$	$15.161 {\pm} 0.010$	$21.698 {\pm} 0.136$	$19.617 {\pm} 0.076$	$L5.0\pm0.5$	
ULAS J094136.50+094214.2BRLT108 18.883 ± 0.055 17.511 ± 0.026 16.459 ± 0.019 15.552 ± 0.018 23.163 ± 0.553 20.423 ± 0.230 $L6.5\pm0.5$ ULAS J094420.32+024422.7BRLT111 19.407 ± 0.081 18.051 ± 0.052 17.116 ± 0.037 16.418 ± 0.033 $L2.0\pm0.5$ ULAS J094742.01+074232.3BRLT112 18.822 ± 0.046 17.760 ± 0.020 17.063 ± 0.024 16.405 ± 0.030 22.409 ± 1.028 20.503 ± 0.188 $L1.0\pm0.5$ ULAS J094759.19+074304.7BRLT113 18.831 ± 0.048 17.784 ± 0.021 17.154 ± 0.026 16.577 ± 0.036 23.940 ± 0.543 20.294 ± 0.152 M9.0\pm0.5ULAS J095126.87+075756.8BRLT114 18.724 ± 0.043 17.620 ± 0.024 16.635 ± 0.022 15.867 ± 0.018 22.610 ± 0.272 20.150 ± 0.126 $L6.0\pm0.5$ ULAS J095606.72+082115.7BRLT117 19.302 ± 0.063 17.982 ± 0.034 17.097 ± 0.031 16.464 ± 0.031 23.156 ± 0.386 20.451 ± 0.173 $L5.0\pm0.5$ ULAS J100310.96+075220.3BRLT119 19.085 ± 0.057 17.727 ± 0.027 16.869 ± 0.028 16.208 ± 0.025 $L4.0\pm0.5$ ULAS J100703.55+013017.0BRLT122 18.963 ± 0.073 17.693 ± 0.037 16.949 ± 0.029 16.259 ± 0.032 22.266 ± 0.216 20.123 ± 0.130 $L1.0\pm0.5$ ULAS J100731.32+104758.8BRLT123 18.899 ± 0.060 17.634 ± 0.034 16.553 ± 0.022 15.757 ± 0.019 $L5.0\pm1.0$ ULAS J101618.77+00028.0BRLT129 18.67	ULAS J094006.54+021051.1	BRLT106	$18.583 {\pm} 0.045$	$17.470 {\pm} 0.030$	$16.869 {\pm} 0.036$	$16.225 {\pm} 0.032$			$M9.0\pm0.5$	
ULAS J094420.32+024422.7BRLT11119.407 \pm 0.08118.051 \pm 0.05217.116 \pm 0.03716.418 \pm 0.033L2.0 \pm 0.5ULAS J094742.01+074232.3BRLT11218.822 \pm 0.04617.760 \pm 0.02017.063 \pm 0.02416.405 \pm 0.03022.409 \pm 1.02820.503 \pm 0.188L1.0 \pm 0.5ULAS J094759.19+074304.7BRLT11318.831 \pm 0.04817.784 \pm 0.02117.154 \pm 0.02616.577 \pm 0.03623.940 \pm 0.54320.294 \pm 0.152M9.0 \pm 0.5ULAS J095126.87+075756.8BRLT11418.724 \pm 0.04317.620 \pm 0.02416.635 \pm 0.02215.867 \pm 0.01822.610 \pm 0.27220.150 \pm 0.126L6.0 \pm 0.5ULAS J095401.45+092213.7BRLT11618.899 \pm 0.05417.705 \pm 0.02317.333 \pm 0.03616.860 \pm 0.047T2.5 \pm 0.5ULAS J095606.72+082115.7BRLT11719.302 \pm 0.06317.982 \pm 0.03417.097 \pm 0.03116.464 \pm 0.03123.156 \pm 0.38620.451 \pm 0.173L5.0 \pm 0.5ULAS J100310.96+075220.3BRLT11919.085 \pm 0.05717.727 \pm 0.02716.869 \pm 0.02816.208 \pm 0.025L4.0 \pm 0.5ULAS J100647.06+121117.2BRLT12118.799 \pm 0.06717.639 \pm 0.03716.949 \pm 0.02916.259 \pm 0.03222.266 \pm 0.21620.123 \pm 0.130L1.0 \pm 0.5ULAS J10073.55+013017.0BRLT12318.899 \pm 0.06017.634 \pm 0.03416.851 \pm 0.03216.242 \pm 0.02422.583 \pm 0.29420.285 \pm 0.147L2.0 \pm 0.5ULAS J101618.77+000028.0BRLT12918.673 \pm 0.057 </td <td>ULAS J094136.50+094214.2</td> <td>BRLT108</td> <td>$18.883 {\pm} 0.055$</td> <td>$17.511 {\pm} 0.026$</td> <td>$16.459 {\pm} 0.019$</td> <td>$15.552{\pm}0.018$</td> <td>$23.163 {\pm} 0.553$</td> <td>20.423 ± 0.230</td> <td>$L6.5 \pm 0.5$</td> <td></td>	ULAS J094136.50+094214.2	BRLT108	$18.883 {\pm} 0.055$	$17.511 {\pm} 0.026$	$16.459 {\pm} 0.019$	$15.552{\pm}0.018$	$23.163 {\pm} 0.553$	20.423 ± 0.230	$L6.5 \pm 0.5$	
ULAS J094742.01+074232.3BRLT11218.822±0.04617.760±0.02017.063±0.02416.405±0.03022.409±1.02820.503±0.188L1.0±0.5ULAS J094759.19+074304.7BRLT11318.831±0.04817.784±0.02117.154±0.02616.577±0.03623.940±0.54320.294±0.152M9.0±0.5ULAS J095126.87+075756.8BRLT11418.724±0.04317.620±0.02416.635±0.02215.867±0.01822.610±0.27220.150±0.126L6.0±0.5ULAS J095606.72+082115.7BRLT11618.899±0.05417.705±0.02317.333±0.03616.860±0.047T2.5±0.5ULAS J100310.96+075220.3BRLT11919.085±0.05717.727±0.02716.869±0.02816.208±0.025L4.0±0.5ULAS J100647.06+121117.2BRLT12118.799±0.06717.639±0.02816.965±0.02916.342±0.04122.071±0.13020.225±0.092L1.0±0.5ULAS J10073.55+013017.0BRLT12318.899±0.06017.634±0.03416.851±0.03216.242±0.02422.583±0.29420.285±0.147L2.0±0.5ULAS J101618.77+000028.0BRLT12918.673±0.05717.443±0.02316.553±0.02215.757±0.019L1.0±0.5	ULAS J094420.32+024422.7	BRLT111	$19.407 {\pm} 0.081$	$18.051 {\pm} 0.052$	$17.116 {\pm} 0.037$	$16.418 {\pm} 0.033$			$L2.0 \pm 0.5$	
ULAS J094759.19+074304.7BRLT11318.831±0.04817.784±0.02117.154±0.02616.577±0.03623.940±0.54320.294±0.152M9.0±0.5ULAS J095126.87+075756.8BRLT11418.724±0.04317.620±0.02416.635±0.02215.867±0.01822.610±0.27220.150±0.126L6.0±0.5ULAS J095401.45+092213.7BRLT11618.899±0.05417.705±0.02317.333±0.03616.860±0.047T2.5±0.5ULAS J095606.72+082115.7BRLT11719.302±0.06317.982±0.03417.097±0.03116.464±0.03123.156±0.38620.451±0.173L5.0±0.5ULAS J100310.96+075220.3BRLT11919.085±0.05717.727±0.02716.869±0.02816.208±0.025L4.0±0.5ULAS J100647.06+121117.2BRLT12118.799±0.06717.639±0.02816.949±0.02916.259±0.03222.266±0.21620.123±0.130L1.0±0.5ULAS J10073.55+013017.0BRLT12318.899±0.06017.634±0.03416.851±0.03216.242±0.02422.583±0.29420.285±0.147L2.0±0.5ULAS J101618.77+000028.0BRLT12918.673±0.05717.443±0.02316.553±0.02215.757±0.019L5.0±1.0	ULAS J094742.01+074232.3	BRLT112	$18.822 {\pm} 0.046$	$17.760 {\pm} 0.020$	$17.063 {\pm} 0.024$	$16.405 {\pm} 0.030$	22.409 ± 1.028	$20.503 {\pm} 0.188$	$L1.0\pm0.5$	
ULAS J095126.87+075756.8BRLT11418.724 \pm 0.04317.620 \pm 0.02416.635 \pm 0.02215.867 \pm 0.01822.610 \pm 0.27220.150 \pm 0.126L6.0 \pm 0.5ULAS J095401.45+092213.7BRLT11618.899 \pm 0.05417.705 \pm 0.02317.333 \pm 0.03616.860 \pm 0.047T2.5 \pm 0.5ULAS J095606.72+082115.7BRLT11719.302 \pm 0.06317.982 \pm 0.03417.097 \pm 0.03116.464 \pm 0.03123.156 \pm 0.38620.451 \pm 0.173L5.0 \pm 0.5ULAS J100310.96+075220.3BRLT11919.085 \pm 0.05717.727 \pm 0.02716.869 \pm 0.02816.208 \pm 0.025L4.0 \pm 0.5ULAS J100647.06+121117.2BRLT12118.799 \pm 0.06717.639 \pm 0.02716.949 \pm 0.02916.259 \pm 0.03222.266 \pm 0.21620.123 \pm 0.130L1.0 \pm 0.5ULAS J10073.55+013017.0BRLT12318.899 \pm 0.06017.634 \pm 0.03416.851 \pm 0.03216.242 \pm 0.02422.583 \pm 0.29420.285 \pm 0.147L2.0 \pm 0.5ULAS J101618.77+000028.0BRLT12918.673 \pm 0.05717.443 \pm 0.02316.553 \pm 0.02215.757 \pm 0.019L5.0 \pm 1.0	ULAS J094759.19+074304.7	BRLT113	$18.831 {\pm} 0.048$	$17.784 {\pm} 0.021$	$17.154 {\pm} 0.026$	$16.577 {\pm} 0.036$	$23.940 {\pm} 0.543$	20.294 ± 0.152	$M9.0 \pm 0.5$	
ULAS J095401.45+092213.7BRLT11618.899 \pm 0.05417.705 \pm 0.02317.333 \pm 0.03616.860 \pm 0.047T2.5 \pm 0.5ULAS J095606.72+082115.7BRLT11719.302 \pm 0.06317.982 \pm 0.03417.097 \pm 0.03116.464 \pm 0.03123.156 \pm 0.38620.451 \pm 0.173L5.0 \pm 0.5ULAS J100310.96+075220.3BRLT11919.085 \pm 0.05717.727 \pm 0.02716.869 \pm 0.02816.208 \pm 0.025L4.0 \pm 0.5ULAS J100647.06+121117.2BRLT12118.799 \pm 0.06717.639 \pm 0.02816.965 \pm 0.02916.342 \pm 0.04122.071 \pm 0.13020.225 \pm 0.092L1.0 \pm 0.5ULAS J10073.55+013017.0BRLT12218.963 \pm 0.07317.633 \pm 0.03716.949 \pm 0.02916.259 \pm 0.03222.266 \pm 0.21620.123 \pm 0.130L1.0 \pm 0.5ULAS J100731.32+104758.8BRLT12318.899 \pm 0.06017.634 \pm 0.03416.851 \pm 0.03216.242 \pm 0.02422.583 \pm 0.29420.285 \pm 0.147L2.0 \pm 0.5ULAS J101618.77+000028.0BRLT12918.673 \pm 0.05717.443 \pm 0.02316.553 \pm 0.02215.757\pm0.019L5.0 \pm 1.0	ULAS J095126.87+075756.8	BRLT114	$18.724 {\pm} 0.043$	$17.620 {\pm} 0.024$	$16.635 {\pm} 0.022$	$15.867 {\pm} 0.018$	22.610 ± 0.272	20.150 ± 0.126	$L6.0 \pm 0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J095401.45+092213.7	BRLT116	$18.899 {\pm} 0.054$	$17.705 {\pm} 0.023$	$17.333 {\pm} 0.036$	$16.860 {\pm} 0.047$			$T2.5 \pm 0.5$	
ULAS J100310.96+075220.3BRLT11919.085 \pm 0.05717.727 \pm 0.02716.869 \pm 0.02816.208 \pm 0.025L4.0 \pm 0.5ULAS J100647.06+121117.2BRLT12118.799 \pm 0.06717.639 \pm 0.02816.965 \pm 0.02916.342 \pm 0.04122.071 \pm 0.13020.225 \pm 0.092L1.0 \pm 0.5ULAS J100703.55+013017.0BRLT12218.963 \pm 0.07317.693 \pm 0.03716.949 \pm 0.02916.259 \pm 0.03222.266 \pm 0.21620.123 \pm 0.130L1.0 \pm 0.5ULAS J100731.32+104758.8BRLT12318.899 \pm 0.06017.634 \pm 0.03416.851 \pm 0.03216.242 \pm 0.02422.583 \pm 0.29420.285 \pm 0.147L2.0 \pm 0.5ULAS J101618.77+000028.0BRLT12918.673 \pm 0.05717.443 \pm 0.02316.553 \pm 0.02215.757\pm0.019L5.0 \pm 1.0	ULAS J095606.72+082115.7	BRLT117	$19.302{\pm}0.063$	17.982 ± 0.034	$17.097 {\pm} 0.031$	$16.464 {\pm} 0.031$	$23.156 {\pm} 0.386$	$20.451 {\pm} 0.173$	$L5.0\pm0.5$	
ULAS J100647.06+121117.2BRLT12118.799 \pm 0.06717.639 \pm 0.02816.965 \pm 0.02916.342 \pm 0.04122.071 \pm 0.13020.225 \pm 0.092L1.0 \pm 0.5ULAS J100703.55+013017.0BRLT12218.963 \pm 0.07317.693 \pm 0.03716.949 \pm 0.02916.259 \pm 0.03222.266 \pm 0.21620.123 \pm 0.130L1.0 \pm 0.5ULAS J100731.32+104758.8BRLT12318.899 \pm 0.06017.634 \pm 0.03416.851 \pm 0.03216.242 \pm 0.02422.583 \pm 0.29420.285 \pm 0.147L2.0 \pm 0.5ULAS J101618.77+000028.0BRLT12918.673 \pm 0.05717.443 \pm 0.02316.553 \pm 0.02215.757\pm0.019L5.0 \pm 1.0	ULAS J100310.96+075220.3	BRLT119	$19.085 {\pm} 0.057$	$17.727 {\pm} 0.027$	$16.869 {\pm} 0.028$	$16.208 {\pm} 0.025$			$L4.0\pm0.5$	
ULAS J100703.55+013017.0BRLT12218.963 \pm 0.07317.693 \pm 0.03716.949 \pm 0.02916.259 \pm 0.03222.266 \pm 0.21620.123 \pm 0.130L1.0 \pm 0.5ULAS J100731.32+104758.8BRLT12318.899 \pm 0.06017.634 \pm 0.03416.851 \pm 0.03216.242 \pm 0.02422.583 \pm 0.29420.285 \pm 0.147L2.0 \pm 0.5ULAS J101618.77+000028.0BRLT12918.673 \pm 0.05717.443 \pm 0.02316.553 \pm 0.02215.757 \pm 0.019L5.0 \pm 1.0	ULAS J100647.06+121117.2	BRLT121	$18.799 {\pm} 0.067$	$17.639 {\pm} 0.028$	16.965 ± 0.029	$16.342 {\pm} 0.041$	$22.071 {\pm} 0.130$	20.225 ± 0.092	$L1.0\pm0.5$	
ULAS J100731.32+104758.8 BRLT123 18.899 \pm 0.060 17.634 \pm 0.034 16.851 \pm 0.032 16.242 \pm 0.024 22.583 \pm 0.294 20.285 \pm 0.147 L2.0 \pm 0.5 ULAS J101618.77+000028.0 BRLT129 18.673 \pm 0.057 17.443 \pm 0.023 16.553 \pm 0.022 15.757 \pm 0.019 L5.0 \pm 1.0	ULAS J100703.55+013017.0	BRLT122	$18.963 {\pm} 0.073$	$17.693 {\pm} 0.037$	$16.949 {\pm} 0.029$	$16.259 {\pm} 0.032$	$22.266 {\pm} 0.216$	20.123 ± 0.130	$L1.0\pm0.5$	
ULAS J101618.77+000028.0 BRLT129 18.673 \pm 0.057 17.443 \pm 0.023 16.553 \pm 0.022 15.757 \pm 0.019 L5.0 \pm 1.0	ULAS J100731.32+104758.8	BRLT123	$18.899 {\pm} 0.060$	$17.634{\pm}0.034$	$16.851 {\pm} 0.032$	$16.242 {\pm} 0.024$	22.583 ± 0.294	20.285 ± 0.147	$L2.0\pm0.5$	
	ULAS J101618.77+000028.0	BRLT129	$18.673 {\pm} 0.057$	$17.443 {\pm} 0.023$	$16.553 {\pm} 0.022$	$15.757 {\pm} 0.019$			$L5.0 \pm 1.0$	

0
2015
RAS,
MNRAS
000,
1-??

Continued from the previous page.										
Name	ID	Y	J	Н	Κ	i	z	Spectral type	Ref.	
ULAS J101658.05 -013258.0	BRLT130	$18.842{\pm}0.045$	$17.939 {\pm} 0.035$	$17.480{\pm}0.044$	$16.989 {\pm} 0.066$			$L3.0 \pm 1.0$		
ULAS J102109.61 -030420.2	BRLT131	$17.038 {\pm} 0.013$	$15.917 {\pm} 0.007$	$15.578 {\pm} 0.010$	$15.374{\pm}0.016$	$23.578 {\pm} 0.558$	$19.297{\pm}0.049$	$T3.0\pm0.5$	7	
ULAS J103553.67 -012126.3	BRLT133	$19.008 {\pm} 0.071$	$17.872 {\pm} 0.053$	$17.317 {\pm} 0.071$	$16.738 {\pm} 0.057$			$M9.0\pm0.5$		
ULAS J104829.08+091939.4	BRLT135	$17.575 {\pm} 0.025$	$16.452 {\pm} 0.017$	$15.966 {\pm} 0.022$	$15.933 {\pm} 0.029$	$24.254{\pm}0.583$	$19.699 {\pm} 0.078$	$T2.5 \pm 0.5$	8	
ULAS J105836.92 $+085429.1$	BRLT136	$19.161 {\pm} 0.091$	$18.059 {\pm} 0.062$	$17.278 {\pm} 0.050$	$16.765 {\pm} 0.050$	22.427 ± 0.290	$20.458 {\pm} 0.130$	$L1.0 \pm 1.0$		
ULAS J111929.43 $+002133.1$	BRLT137	$18.806{\pm}0.049$	$17.502{\pm}0.032$	$16.653 {\pm} 0.029$	$15.936{\pm}0.023$	$22.336{\pm}0.203$	$20.180{\pm}0.113$	$L4.5\pm0.5$		
ULAS J112029.65 -004440.6	BRLT138	$18.227 {\pm} 0.048$	$16.934{\pm}0.026$	$16.034{\pm}0.021$	$15.400{\pm}0.018$	$21.631{\pm}0.096$	$19.583{\pm}0.063$	$L2.0 \pm 1.0$		
ULAS J112043.11+090429.8	BRLT139	$19.146{\pm}0.076$	$17.830{\pm}0.041$	$17.143 {\pm} 0.046$				$L4.0 \pm 1.0$		
ULAS J113151.32 -003620.8	BRLT140	$19.277 {\pm} 0.080$	$18.078 {\pm} 0.052$	$17.475 {\pm} 0.042$	$16.908 {\pm} 0.061$			$L0.0\pm0.5$		
ULAS J113850.09 -002451.3	BRLT142	$18.130{\pm}0.037$	$16.840{\pm}0.018$	$15.910{\pm}0.016$	$15.230{\pm}0.013$	$21.715 {\pm} 0.102$	$19.677 {\pm} 0.064$	$L2.5\pm0.5$		
ULAS J114105.18 $+091647.6$	BRLT144	$18.658 {\pm} 0.034$	$17.354{\pm}0.016$	$16.685 {\pm} 0.014$	$16.091{\pm}0.018$	$22.471 {\pm} 0.348$	$20.041 {\pm} 0.135$	$L5.0 \pm 1.0$		
ULAS J114418.08 $+091025.1$	BRLT145	$19.199 {\pm} 0.049$	$17.995 {\pm} 0.028$	17.202 ± 0.021	$16.533 {\pm} 0.024$	23.104 ± 0.349	$20.944 {\pm} 0.189$	$L1.0\pm0.5$		
ULAS J115759.03+092200.6	BRLT147	$17.986{\pm}0.023$	$16.841 {\pm} 0.015$	$16.440 {\pm} 0.022$	$16.272 {\pm} 0.034$	25.500 ± 0.848	$19.879 {\pm} 0.144$	$T3.0\pm0.5$	9	
ULAS J120009.69 $+120821.4$	BRLT149	$18.976 {\pm} 0.064$	$17.585 {\pm} 0.034$	$16.795 {\pm} 0.029$	$16.216{\pm}0.031$			$L6.0 \pm 1.0$		
ULAS J120315.34 $+095054.8$	BRLT152	$19.005 {\pm} 0.053$	$17.937 {\pm} 0.037$	$17.309 {\pm} 0.043$	$16.741 {\pm} 0.050$	$22.259 {\pm} 0.162$	$20.684{\pm}0.123$	$L0.0\pm0.5$		
ULAS J120323.74 -015655.8	BRLT153	$18.817 {\pm} 0.072$	$17.727 {\pm} 0.046$	$17.208 {\pm} 0.054$	$16.708 {\pm} 0.058$	$22.382{\pm}0.328$	$20.356 {\pm} 0.175$	$L1.0\pm0.5$		
ULAS J120545.92 $+084206.8$	BRLT155	$18.522 {\pm} 0.065$	$17.261 {\pm} 0.037$	$16.357 {\pm} 0.022$	$15.707 {\pm} 0.022$	$22.073 {\pm} 0.181$	$19.847{\pm}0.102$	$L3.0 \pm 1.0$		
ULAS J120943.05 $+065333.0$	BRLT159	$19.461{\pm}0.091$	$18.097 {\pm} 0.049$	$17.166 {\pm} 0.055$	$16.590{\pm}0.053$	$23.362{\pm}0.493$	$20.845 {\pm} 0.186$	$L9.0\pm0.5$		
ULAS J121238.72+000721.9	BRLT162	$16.792{\pm}0.013$	$15.684{\pm}0.008$	$15.037 {\pm} 0.009$	$14.461{\pm}0.009$	$20.287{\pm}0.076$	$18.381{\pm}0.041$	$L0.5\pm0.5$		
ULAS J121320.56 $+150235.1$	BRLT163	$18.776 {\pm} 0.047$	$17.647 {\pm} 0.029$	$16.865 {\pm} 0.033$	$16.204{\pm}0.035$			$L1.0\pm0.5$		
ULAS J121355.51 $+053517.1$	BRLT164	$18.934{\pm}0.071$	$17.882 {\pm} 0.044$	$17.617 {\pm} 0.069$	$17.639 {\pm} 0.133$			$T3.0\pm0.5$		
ULAS J121816.52 $+134953.8$	BRLT165	$19.147{\pm}0.078$	$17.953{\pm}0.050$	$17.321{\pm}0.038$	$16.599 {\pm} 0.043$			$L2.0\pm0.5$		
ULAS J122111.67+122217.0	BRLT168	$19.391{\pm}0.091$	$17.974 {\pm} 0.041$	$17.092{\pm}0.031$	$16.312{\pm}0.031$	$22.366{\pm}0.198$	$20.770{\pm}0.185$	$L4.0\pm0.5$		
ULAS J122325.69 $+044827.6$	BRLT171	$17.681{\pm}0.020$	$16.372 {\pm} 0.010$	$15.448 {\pm} 0.009$	$14.651{\pm}0.008$	$21.467{\pm}0.115$	$19.339{\pm}0.076$	$L5.0\pm0.5$		
ULAS J123012.52+071717.9	BRLT176	$18.822{\pm}0.050$	$17.564{\pm}0.029$	$16.794{\pm}0.021$	$16.110{\pm}0.026$	$22.606 {\pm} 0.252$	$20.249 {\pm} 0.126$	$L4.0 \pm 1.0$		
ULAS J123327.44 $+121952.1$	BRLT179	$19.006 {\pm} 0.078$	$18.020{\pm}0.042$	$18.219{\pm}0.086$		$22.338 {\pm} 0.502$	$22.422{\pm}0.578$	$T4.5\pm0.5$	6	
ULAS J123433.51 $+010742.0$	BRLT181	$19.114{\pm}0.103$	$17.823{\pm}0.056$	$17.093 {\pm} 0.041$	$16.379 {\pm} 0.035$	$22.605 {\pm} 0.265$	$20.578 {\pm} 0.179$	$L1.0\pm1.0$		
ULAS J123845.96+124737.7	BRLT182	$18.779 {\pm} 0.068$	$17.719{\pm}0.037$	$17.098 {\pm} 0.037$	$16.668 {\pm} 0.051$			$T3.0\pm0.5$		
ULAS J124052.92 $+112940.4$	BRLT186	$16.596{\pm}0.010$	$15.509 {\pm} 0.006$	$14.829 {\pm} 0.006$	$14.243 {\pm} 0.006$	$21.519 {\pm} 1.459$	$18.195{\pm}1.498$	$L1.0\pm1.0$		
ULAS J124413.03 $+123201.1$	BRLT190	$18.891{\pm}0.068$	$17.642 {\pm} 0.032$	$17.419 {\pm} 0.046$	$17.455 {\pm} 0.103$			$T4.0\pm0.5$		
ULAS J130435.66 $+154252.6$	BRLT197	$18.611 {\pm} 0.035$	$17.189 {\pm} 0.019$	$16.441 {\pm} 0.021$	$15.863 {\pm} 0.022$	$23.610{\pm}0.405$	$20.210{\pm}0.164$	$T2.0 \pm 1.0$		
ULAS J131106.96 -013742.3	BRLT198	$19.004{\pm}0.077$	$17.832{\pm}0.049$	$17.283{\pm}0.056$	$16.632{\pm}0.043$	$22.491{\pm}0.251$	$20.595{\pm}0.175$	$L3.0 \pm 1.0$		
ULAS J131307.47+123540.7	BRLT202	$18.578 {\pm} 0.047$	$17.425 {\pm} 0.025$	$16.908 {\pm} 0.030$	$16.505 {\pm} 0.039$	$23.617 {\pm} 0.624$	$20.715 {\pm} 0.177$	$T2.5\pm0.5$		
ULAS J131610.13 $+031205.5$	BRLT203	$17.998{\pm}0.032$	$16.747 {\pm} 0.018$	$16.129 {\pm} 0.018$	$15.432{\pm}0.019$	$22.831{\pm}0.369$	20.043 ± 0.114	$T3.0{\pm}1.0$		
ULAS J132410.21 $+025040.6$	BRLT206	$19.394{\pm}0.069$	$18.072 {\pm} 0.043$	$17.254{\pm}0.049$	$16.656 {\pm} 0.047$	$22.672 {\pm} 0.355$	$20.676 {\pm} 0.184$	$L2.0\pm0.5$		
ULAS J132629.65 -003832.5	BRLT207	$17.592{\pm}0.018$	$16.221{\pm}0.011$	$15.111 {\pm} 0.007$	$14.171 {\pm} 0.006$	$21.716{\pm}0.104$	$19.074{\pm}0.041$	$L7.0\pm0.5$	10	
ULAS J132720.56 $+101138.5$	BRLT210	$18.813 {\pm} 0.059$	$17.481 {\pm} 0.025$	$16.580{\pm}0.017$	$15.829{\pm}0.017$	$22.928 {\pm} 0.265$	$20.279 {\pm} 0.104$	$L4.5\pm0.5$		
ULAS J133148.66 -011700.6	BRLT212	$16.498 {\pm} 0.009$	$15.330{\pm}0.006$	$14.671 {\pm} 0.004$	$14.051 {\pm} 0.005$			$L6.0 \pm 1.0$	3	
ULAS J134322.94-010844.0	BRLT216	$18.480{\pm}0.028$	$17.429 {\pm} 0.018$	$16.715 {\pm} 0.016$	$16.224{\pm}0.025$	$21.870{\pm}0.313$	$20.057 {\pm} 0.170$	$\mathrm{M9.0}{\pm0.5}$		
ULAS J134403.78 $+$ 083951.0	BRLT217	$18.391 {\pm} 0.042$	$17.258 {\pm} 0.022$	$16.455 {\pm} 0.017$	$15.955{\pm}0.021$	$23.065 {\pm} 0.325$	$20.005 {\pm} 0.080$	$T0.0\pm0.5$		
ULAS J134414.90 $+092405.0$	BRLT218	$18.624 {\pm} 0.030$	$17.287 {\pm} 0.012$	$16.302{\pm}0.016$	$15.460 {\pm} 0.013$	$22.786 {\pm} 0.257$	$20.207 {\pm} 0.110$	$\rm L6.0{\pm}0.5$		
ULAS J134436.84 $+110957.5$	BRLT219	$18.442{\pm}0.046$	$17.218 {\pm} 0.022$	$16.922{\pm}0.034$	$16.934{\pm}0.058$	$24.733 {\pm} 0.519$	$20.649 {\pm} 0.128$	$T3.0\pm0.5$		
ULAS J134612.77+082503.3	BRLT220	$19.356{\pm}0.108$	18.005 ± 0.043	$17.257{\pm}0.037$	$16.500 {\pm} 0.036$	$22.836 {\pm} 0.274$	$20.434{\pm}0.118$	$L2.0\pm0.5$		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Continued from the previous page.									
$ \begin{array}{ c c c c c c c c c c c c c$	Name	ID	Y	J	Н	K	i	z	Spectral type	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J135556.12+085054.3	BRLT227	$18.667 {\pm} 0.051$	$17.297{\pm}0.020$	$16.385{\pm}0.020$	$15.630{\pm}0.015$	$22.200{\pm}0.145$	$20.281{\pm}0.109$	$L3.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J135848.63 $+014745.5$	BRLT229	$18.493{\pm}0.045$	$17.620{\pm}0.039$	$16.995{\pm}0.034$	$16.520 {\pm} 0.037$	$22.005 {\pm} 0.385$	$20.070 {\pm} 0.131$	$\mathrm{M8.0}{\pm0.5}$	
$ \begin{array}{c} ULAS 14025.67+08064.5 \\ ULAS 141203.88+12009 \\ HLT234 \\ ULAS 141203.88+12009 \\ HLT234 \\ HLT236 \\ HLT236$	ULAS J140152.43 $+090733.1$	BRLT231	$18.640 {\pm} 0.045$	$17.320{\pm}0.018$	$16.398 {\pm} 0.014$	$15.625 {\pm} 0.014$	$22.716 {\pm} 0.218$	$20.288 {\pm} 0.121$	$L5.0\pm0.5$	
$ \begin{array}{c} \mbox{ULAS J141203.85+121009.9} & \mbox{BLIT234} & \mbox{IT234} & I$	ULAS J140255.67 $+080054.5$	BRLT232	$17.991{\pm}0.033$	$16.837 {\pm} 0.014$	$16.204{\pm}0.021$	$15.706{\pm}0.020$	$22.966 {\pm} 0.343$	$19.938{\pm}0.083$	$T2.5\pm0.5$	8
$ \begin{array}{c} ULAS 141405.68 + 0.01700.3 \\ ULAS 1414710.01 + 31737.1 \\ ULAS 141701.01 + 31737.1 \\ ULAS 141720.038 + 0.41026.4 \\ BRLT240 \\ IS 18.01 \pm 0.027 \\ IS 0.48 \pm 0.075 \\ IS 0.48 \pm 0.015 \\ IS 0.$	ULAS J141203.85+121609.9	BRLT234	$17.540 {\pm} 0.017$	$16.325 {\pm} 0.010$	$15.851{\pm}0.014$	$15.430{\pm}0.015$	$21.322{\pm}0.084$	$19.150{\pm}0.047$	$L4.0 \pm 1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J141405.68 $+010709.3$	BRLT236	$18.119 {\pm} 0.040$	$16.791{\pm}0.024$	$15.958{\pm}0.017$	$15.205 {\pm} 0.014$	$21.728 {\pm} 0.132$	$19.605 {\pm} 0.086$	$L3.5\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J141710.01+131737.1	BRLT237	$18.051 {\pm} 0.027$	$16.690{\pm}0.011$	$15.912{\pm}0.009$	$15.208 {\pm} 0.010$	$21.678 {\pm} 0.094$	$19.637{\pm}0.078$	$L4.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J142300.38 $+041026.4$	BRLT240	$18.819 {\pm} 0.078$	$17.386 {\pm} 0.037$	$16.549 {\pm} 0.031$	$15.796{\pm}0.028$	$22.215 {\pm} 0.216$	$20.057 {\pm} 0.143$	$L3.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J142718.33+011206.2	BRLT243	$18.832{\pm}0.075$	$17.481{\pm}0.038$	$16.746{\pm}0.028$	$16.386{\pm}0.041$	$22.676 {\pm} 0.397$	$20.267 {\pm} 0.171$	$T0.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J143256.93+122809.2	BRLT247	$18.626 {\pm} 0.057$	$17.631 {\pm} 0.035$	$16.911 {\pm} 0.030$	$16.356 {\pm} 0.027$			$\mathrm{M9.0}{\pm0.5}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J143615.75+072056.8	BRLT249	$18.524{\pm}0.044$	$17.105 {\pm} 0.022$	$16.180{\pm}0.018$	$15.531{\pm}0.019$	$22.546 {\pm} 0.242$	$20.043 {\pm} 0.095$	$L5.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J143623.86 $+014257.6$	BRLT250	$18.981{\pm}0.060$	$17.603 {\pm} 0.036$	$16.785 {\pm} 0.030$	$16.062 {\pm} 0.026$	$22.866 {\pm} 0.324$	$20.446{\pm}0.167$	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J143705.60 $+115930.1$	BRLT251	$18.856 {\pm} 0.059$	$17.686{\pm}0.033$	$17.130{\pm}0.061$	$16.540{\pm}0.038$	$22.402{\pm}0.182$	$20.291{\pm}0.103$	$L1.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J144151.55+043738.5	BRLT253	$18.443 {\pm} 0.041$	$17.326{\pm}0.028$	$16.784{\pm}0.039$	$16.408 {\pm} 0.043$			$L1.0\pm1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J144220.94+084945.9	BRLT254	$18.601{\pm}0.032$	$17.302{\pm}0.016$	$16.428 {\pm} 0.014$	$15.711 {\pm} 0.015$	$22.443 {\pm} 0.190$	$20.123 {\pm} 0.086$	$L5.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J144600.70+002451.4	BRLT258	$16.895 {\pm} 0.014$	$15.584{\pm}0.007$	$14.657 {\pm} 0.005$	$13.921{\pm}0.005$	$20.760 {\pm} 0.048$	$18.572 {\pm} 0.046$	$L5.0 \pm 1.0$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J144812.93-000018.6	BRLT260	$18.870 {\pm} 0.068$	$17.598 {\pm} 0.040$	$17.121 {\pm} 0.043$	$16.553 {\pm} 0.053$	$22.480{\pm}0.202$	$20.493{\pm}0.138$	$L2.0 \pm 1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J145231.11+033944.0	BRLT262	$19.368 {\pm} 0.114$	$18.066 {\pm} 0.058$	$17.194{\pm}0.054$	$16.514{\pm}0.051$			$L0.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J145541.74+002224.3	BRLT265	$18.864{\pm}0.074$	$17.608 {\pm} 0.046$	$16.727 {\pm} 0.033$	$15.975 {\pm} 0.027$	$22.460 {\pm} 0.210$	$20.169 {\pm} 0.114$	$L2.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J150140.69 -005146.8	BRLT269	$19.255 {\pm} 0.064$	$17.573 {\pm} 0.035$	$16.557 {\pm} 0.026$	$15.618 {\pm} 0.028$			$L7.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J150531.70+010232.7	BRLT270	$18.635 {\pm} 0.043$	$17.441 {\pm} 0.025$	$16.865 {\pm} 0.033$	$16.434{\pm}0.047$	$22.731 {\pm} 0.244$	$20.100 {\pm} 0.100$	$L2.0 \pm 1.0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J150927.83+034449.7	BRLT274	$18.809 {\pm} 0.050$	$17.245 {\pm} 0.026$	$16.178 {\pm} 0.017$	$15.262{\pm}0.017$			$L2.0\pm0.5$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J151114.51+060741.1	BRLT275	$17.220{\pm}0.016$	$15.878 {\pm} 0.009$	$15.183{\pm}0.007$	$14.440{\pm}0.008$	$21.672 {\pm} 0.102$	$19.201{\pm}0.050$	$T2.0{\pm}2.0$	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ULAS J151145.75-021726.5	BRLT276	$18.585 {\pm} 0.041$	$17.420 {\pm} 0.037$	$16.779 {\pm} 0.036$	$16.235 {\pm} 0.040$			$L0.0\pm0.5$	
ULAS J151603.00+025927.7BRLT28117.959 \pm 0.03316.877 \pm 0.02216.075 \pm 0.01715.437 \pm 0.01722.997 \pm 0.38319.709 \pm 0.078T0.0 \pm 0.54ULAS J151649.84+083607.1BRLT28318.741 \pm 0.04117.349 \pm 0.01916.705 \pm 0.02516.258 \pm 0.02922.693 \pm 0.21320.374 \pm 0.098L5.0 \pm 1.0ULAS J151821.34+085517.5BRLT28518.618 \pm 0.03117.419 \pm 0.01416.530 \pm 0.02215.777 \pm 0.01722.553 \pm 0.21520.194 \pm 0.091L5.0 \pm 0.5ULAS J152103.14+013143.2BRLT28717.339 \pm 0.01816.097 \pm 0.01015.679 \pm 0.00915.568 \pm 0.01524.769 \pm 0.51519.606 \pm 0.064T3.0 \pm 0.5ULAS J152502.10+083344.0BRLT29018.249 \pm 0.03117.170 \pm 0.01816.618 \pm 0.02116.217 \pm 0.02822.844 \pm 0.21420.367 \pm 0.101T2.0 \pm 0.5ULAS J153156.73+033605.9BRLT29517.852 \pm 0.02316.607 \pm 0.01115.749 \pm 0.01922.327 \pm 0.20219.950 \pm 0.119L4.0 \pm 2.0ULAS J15403.87-001256.7BRLT29719.129 \pm 0.10517.685 \pm 0.03715.814 \pm 0.01015.175 \pm 0.01216.69 \pm 0.10519.3434 \pm 0.056L4.0 \pm 1.0ULAS J154319.80+080446.3BRLT30118.863 \pm 0.05017.655 \pm 0.02716.937 \pm 0.03916.537 \pm 0.04021.991 \pm 0.13920.335 \pm 0.143L1.0 \pm 0.5ULAS J15448.83+094256.9BRLT30218.803 \pm 0.05317.671 \pm 0.03616.980 \pm 0.02216.367 \pm 0.02522.722 \pm 0.28420.259 \pm 0.146L4.0 \pm 1.0ULAS J21570.0	ULAS J151355.05-013300.6	BRLT279	$17.899 {\pm} 0.030$	$16.758 {\pm} 0.018$	$16.072 {\pm} 0.018$	$15.470{\pm}0.019$	$21.478 {\pm} 0.095$	$19.309 {\pm} 0.067$	$L1.0\pm0.5$	
ULAS J151649.84+083607.1BRLT28318.741±0.04117.349±0.01916.705±0.02516.258±0.02922.693±0.21320.374±0.098L5.0±1.0ULAS J15121.34+085517.5BRLT28518.618±0.03117.419±0.01416.530±0.02215.777±0.01722.553±0.21520.194±0.091L5.0±0.5ULAS J152103.14+013143.2BRLT28717.339±0.01816.097±0.01015.679±0.00915.568±0.01524.750±0.51519.606±0.064T3.0±0.54ULAS J152502.10+083344.0BRLT29018.249±0.03117.170±0.01816.618±0.02116.217±0.02822.844±0.21420.367±0.101T2.0±0.5ULAS J153128.47+073755.0BRLT29517.852±0.02316.607±0.01116.02±0.01315.445±0.01421.547±0.09619.458±0.071L4.0±2.0ULAS J153256.84-012511.0BRLT29719.129±0.10517.647±0.04116.827±0.03916.056±0.032L4.5±0.5ULAS J154308.87-001256.7BRLT30118.863±0.05017.655±0.02716.937±0.03916.537±0.04021.991±0.13920.335±0.143L1.0±0.5ULAS J154448.83+09425.9BRLT30218.803±0.05317.655±0.02716.837±0.04021.991±0.13920.335±0.143L1.0±0.5ULAS J215920.047047b05614.5BRLT30519.258±0.12517.852±0.04716.837±0.04316.105±0.03122.72±0.14920.618±0.130L5.5±1.01ULAS J215920.047BRLT30519.258±0.12517.852±0.04716.837±0.04316.105±0.03122.74±0.14920.618±0.13	ULAS J151603.00+025927.7	BRLT281	$17.959 {\pm} 0.033$	$16.877 {\pm} 0.022$	$16.075 {\pm} 0.017$	$15.437{\pm}0.017$	$22.997 {\pm} 0.383$	$19.709 {\pm} 0.078$	$T0.0\pm0.5$	4
ULAS J151821.34+085517.5BRLT28518.618±0.03117.419±0.01416.530±0.02215.777±0.01722.553±0.21520.194±0.091L5.0±0.5ULAS J152103.14+013143.2BRLT28717.339±0.01816.097±0.01015.679±0.00915.568±0.01524.750±0.51519.606±0.064T3.0±0.54ULAS J152502.10+083344.0BRLT29018.249±0.03117.170±0.01816.618±0.02116.217±0.02822.844±0.21420.367±0.101T2.0±0.5ULAS J153128.47+07375.0BRLT29517.852±0.02316.607±0.01116.022±0.01315.445±0.01421.547±0.09619.458±0.071L4.0±2.0ULAS J153156.73+033605.9BRLT29618.466±0.05317.265±0.03616.401±0.01715.749±0.01922.327±0.22019.950±0.119L4.0±0.5ULAS J154038.87-01251.0BRLT29719.129±0.10517.647±0.04116.827±0.03916.056±0.032L4.5±0.5ULAS J154319.80+080446.3BRLT30118.863±0.05517.655±0.02716.937±0.03916.537±0.04021.991±0.13920.335±0.143L1.0±0.5ULAS J154488.83+094256.9BRLT30519.258±0.12517.652±0.02716.937±0.04316.105±0.03122.274±0.14920.618±0.130L5.5±1.0ULAS J154290.00+003309.7BRLT30619.091±0.11217.734±0.04516.93±0.04816.365±0.04023.008±0.31620.498±1.056L4.5±0.51ULAS J220917.12-005259.9BRLT30719.348±0.09618.006±0.04917.202±0.07016.636±0.05622.7	ULAS J151649.84+083607.1	BRLT283	$18.741 {\pm} 0.041$	$17.349 {\pm} 0.019$	$16.705 {\pm} 0.025$	$16.258 {\pm} 0.029$	$22.693 {\pm} 0.213$	$20.374 {\pm} 0.098$	$L5.0 \pm 1.0$	
ULAS J152103.14+013143.2BRLT287 17.339 ± 0.018 16.097 ± 0.010 15.679 ± 0.009 15.568 ± 0.015 24.750 ± 0.515 19.606 ± 0.064 $T3.0\pm0.5$ 4 ULAS J152502.10+083344.0BRLT290 18.249 ± 0.031 17.170 ± 0.018 16.618 ± 0.021 16.217 ± 0.028 22.844 ± 0.214 20.367 ± 0.101 $T2.0\pm0.5$ ULAS J153128.47+073755.0BRLT295 17.852 ± 0.023 16.607 ± 0.011 16.022 ± 0.013 15.445 ± 0.014 21.547 ± 0.096 19.458 ± 0.071 $L4.0\pm2.0$ ULAS J153126.73+033605.9BRLT296 18.466 ± 0.053 17.285 ± 0.036 16.401 ± 0.017 15.749 ± 0.019 22.327 ± 0.220 19.950 ± 0.119 $L4.0\pm0.5$ ULAS J153256.84-012511.0BRLT297 19.129 ± 0.105 17.647 ± 0.041 16.827 ± 0.039 16.056 ± 0.032 L4.5\pm0.5ULAS J154319.80+080446.3BRLT301 18.863 ± 0.050 17.655 ± 0.027 16.937 ± 0.039 16.537 ± 0.040 21.991 ± 0.139 20.33 ± 0.056 $L4.0\pm1.0$ ULAS J15448.83+09425.9BRLT302 18.803 ± 0.053 17.671 ± 0.036 16.980 ± 0.022 16.367 ± 0.040 21.991 ± 0.139 20.35 ± 0.143 $L1.0\pm0.5$ ULAS J215700.47+005614.5BRLT305 19.258 ± 0.125 17.852 ± 0.047 16.873 ± 0.043 16.105 ± 0.031 22.274 ± 0.149 20.618 ± 0.130 $L5.5\pm1.0$ 1ULAS J220917.12-005259.9BRLT307 19.348 ± 0.096 18.006 ± 0.049 17.262 ± 0.070 16.636 ± 0.056 22.796 ± 0.333 20.482 ± 0.143 $L1.0\pm0.5$ ULAS J2220917.1	ULAS J151821.34+085517.5	BRLT285	$18.618 {\pm} 0.031$	$17.419 {\pm} 0.014$	$16.530 {\pm} 0.022$	$15.777 {\pm} 0.017$	$22.553 {\pm} 0.215$	$20.194{\pm}0.091$	$L5.0\pm0.5$	
ULAS J152502.10+083344.0BRLT290 18.249 ± 0.031 17.170 ± 0.018 16.618 ± 0.021 16.217 ± 0.028 22.844 ± 0.214 20.367 ± 0.101 $T2.0\pm0.5$ ULAS J153128.47+073755.0BRLT295 17.852 ± 0.023 16.607 ± 0.011 16.022 ± 0.013 15.445 ± 0.014 21.547 ± 0.096 19.458 ± 0.071 $L4.0\pm2.0$ ULAS J153156.73+033605.9BRLT296 18.466 ± 0.053 17.285 ± 0.036 16.401 ± 0.017 15.749 ± 0.019 22.327 ± 0.220 19.950 ± 0.119 $L4.0\pm0.5$ ULAS J153256.84-012511.0BRLT297 19.129 ± 0.105 17.647 ± 0.041 16.827 ± 0.039 16.056 ± 0.032 L4.5\pm0.5ULAS J154038.87-001256.7BRLT299 17.838 ± 0.022 16.625 ± 0.015 15.814 ± 0.010 15.175 ± 0.011 21.660 ± 0.105 19.343 ± 0.056 $L4.0\pm1.0$ ULAS J154319.80+080446.3BRLT301 18.863 ± 0.050 17.655 ± 0.027 16.937 ± 0.039 16.537 ± 0.040 21.991 ± 0.139 20.335 ± 0.143 $L1.0\pm0.5$ ULAS J154448.83+094256.9BRLT302 18.803 ± 0.053 17.671 ± 0.036 16.980 ± 0.022 16.367 ± 0.025 22.722 ± 0.284 20.259 ± 0.146 $L4.0\pm1.0$ ULAS J215920.00+003309.7BRLT306 19.091 ± 0.112 17.73 ± 0.045 16.993 ± 0.048 16.365 ± 0.040 23.008 ± 0.316 20.498 ± 1.056 $L4.5\pm0.5$ 1ULAS J220917.12-005259.9BRLT307 19.348 ± 0.096 18.00 ± 0.51 17.262 ± 0.070 16.636 ± 0.056 22.796 ± 0.333 20.482 ± 0.143 $L1.0\pm0.5$ ULAS J2229710.91-004547.3 </td <td>ULAS J152103.14+013143.2</td> <td>BRLT287</td> <td>$17.339{\pm}0.018$</td> <td>$16.097 {\pm} 0.010$</td> <td>$15.679 {\pm} 0.009$</td> <td>$15.568 {\pm} 0.015$</td> <td>$24.750 {\pm} 0.515$</td> <td>$19.606 {\pm} 0.064$</td> <td>$T3.0\pm0.5$</td> <td>4</td>	ULAS J152103.14+013143.2	BRLT287	$17.339{\pm}0.018$	$16.097 {\pm} 0.010$	$15.679 {\pm} 0.009$	$15.568 {\pm} 0.015$	$24.750 {\pm} 0.515$	$19.606 {\pm} 0.064$	$T3.0\pm0.5$	4
ULAS J153128.47+073755.0BRLT295 17.852 ± 0.023 16.607 ± 0.011 16.022 ± 0.013 15.445 ± 0.014 21.547 ± 0.096 19.458 ± 0.071 $L4.0\pm2.0$ ULAS J153156.73+033605.9BRLT296 18.466 ± 0.053 17.285 ± 0.036 16.401 ± 0.017 15.749 ± 0.019 22.327 ± 0.220 19.950 ± 0.119 $L4.0\pm0.5$ ULAS J153256.84-012511.0BRLT297 19.129 ± 0.105 17.647 ± 0.041 16.827 ± 0.039 16.056 ± 0.032 L4.5\pm0.5ULAS J154319.80+080446.3BRLT301 18.863 ± 0.022 16.625 ± 0.015 15.814 ± 0.010 15.175 ± 0.011 21.660 ± 0.105 19.343 ± 0.056 $L4.0\pm1.0$ ULAS J154319.80+080446.3BRLT301 18.863 ± 0.050 17.655 ± 0.027 16.937 ± 0.039 16.537 ± 0.040 21.991 ± 0.139 20.335 ± 0.143 $L1.0\pm0.5$ ULAS J15700.47+005614.5BRLT305 19.258 ± 0.125 17.852 ± 0.047 16.873 ± 0.043 16.105 ± 0.031 22.274 ± 0.149 20.618 ± 0.130 $L5.5\pm1.0$ 1ULAS J215920.0+0403309.7BRLT306 19.091 ± 0.112 17.734 ± 0.045 16.993 ± 0.048 16.365 ± 0.040 23.008 ± 0.316 20.498 ± 1.056 $L4.5\pm0.5$ 1ULAS J221904.07+063059.1BRLT308 19.523 ± 0.088 18.124 ± 0.051 17.208 ± 0.049 16.447 ± 0.045 $L1.0\pm0.5$ ULAS J2229710.91-004547.3BRLT308 19.523 ± 0.088 18.124 ± 0.051 17.208 ± 0.049 16.447 ± 0.045 $L5.0\pm0.5$ ULAS J222958.30+010217.2BRLT311 19.106 ± 0.066 $17.885\pm0.$	ULAS J152502.10+083344.0	BRLT290	$18.249 {\pm} 0.031$	$17.170 {\pm} 0.018$	$16.618 {\pm} 0.021$	$16.217 {\pm} 0.028$	$22.844 {\pm} 0.214$	$20.367 {\pm} 0.101$	$T2.0\pm0.5$	
ULAS J153156.73+033605.9BRLT29618.466 \pm 0.05317.285 \pm 0.03616.401 \pm 0.01715.749 \pm 0.01922.327 \pm 0.22019.950 \pm 0.119L4.0 \pm 0.5ULAS J153256.84-012511.0BRLT29719.129 \pm 0.10517.647 \pm 0.04116.827 \pm 0.03916.056 \pm 0.032L4.5 \pm 0.5ULAS J154038.87-001256.7BRLT29917.838 \pm 0.02216.625 \pm 0.01515.814 \pm 0.01015.175 \pm 0.01121.660 \pm 0.10519.343 \pm 0.056L4.0 \pm 1.0ULAS J154319.80+080446.3BRLT30118.863 \pm 0.05017.655 \pm 0.02716.937 \pm 0.03916.537 \pm 0.04021.991 \pm 0.13920.335 \pm 0.143L1.0 \pm 0.5ULAS J154448.83+094256.9BRLT30218.803 \pm 0.05317.671 \pm 0.03616.980 \pm 0.02216.367 \pm 0.02522.722 \pm 0.28420.259 \pm 0.146L4.0 \pm 1.0ULAS J215700.47+005614.5BRLT30519.258 \pm 0.12517.852 \pm 0.04716.873 \pm 0.04316.105 \pm 0.03122.274 \pm 0.14920.618 \pm 0.130L5.5 \pm 1.01ULAS J220917.12-005259.9BRLT30719.348 \pm 0.09618.006 \pm 0.04917.262 \pm 0.07016.636 \pm 0.05622.796 \pm 0.33320.482 \pm 0.143L1.0 \pm 0.5ULAS J222710.91-004547.3BRLT30819.523 \pm 0.08818.124 \pm 0.05117.208 \pm 0.04916.447 \pm 0.045L5.0 \pm 0.5ULAS J222958.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm 0.03917.499 \pm 0.05417.218 \pm 0.095T3.0 \pm 0.51ULAS J22358.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm	ULAS J153128.47+073755.0	BRLT295	$17.852 {\pm} 0.023$	$16.607 {\pm} 0.011$	$16.022 {\pm} 0.013$	$15.445 {\pm} 0.014$	$21.547 {\pm} 0.096$	$19.458 {\pm} 0.071$	$L4.0 \pm 2.0$	
ULAS J153256.84-012511.0BRLT29719.129 \pm 0.10517.647 \pm 0.04116.827 \pm 0.03916.056 \pm 0.032L4.5 \pm 0.5ULAS J154038.87-001256.7BRLT29917.838 \pm 0.02216.625 \pm 0.01515.814 \pm 0.01015.175 \pm 0.01121.660 \pm 0.10519.343 \pm 0.056L4.0 \pm 1.0ULAS J154319.80+080446.3BRLT30118.863 \pm 0.05017.655 \pm 0.02716.937 \pm 0.03916.537 \pm 0.04021.991 \pm 0.13920.335 \pm 0.143L1.0 \pm 0.5ULAS J154448.83+094256.9BRLT30218.803 \pm 0.05317.671 \pm 0.03616.980 \pm 0.02216.367 \pm 0.02522.722 \pm 0.28420.259 \pm 0.146L4.0 \pm 1.0ULAS J215700.47+005614.5BRLT30519.258 \pm 0.12517.852 \pm 0.04716.873 \pm 0.04316.105 \pm 0.03122.274 \pm 0.14920.618 \pm 0.130L5.5 \pm 1.01ULAS J215920.00+003309.7BRLT30619.091 \pm 0.11217.734 \pm 0.04516.993 \pm 0.04816.365 \pm 0.04023.008 \pm 0.31620.498 \pm 1.056L4.5 \pm 0.51ULAS J220917.12-005259.9BRLT30719.348 \pm 0.09618.006 \pm 0.04917.262 \pm 0.07016.636 \pm 0.05622.796 \pm 0.33320.482 \pm 0.143L1.0 \pm 0.51ULAS J222710.91-004547.3BRLT30819.523 \pm 0.08818.124 \pm 0.05117.208 \pm 0.04916.447 \pm 0.045L7.0 \pm 0.511ULAS J222958.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm 0.03917.499 \pm 0.05417.218 \pm 0.095L7.0 \pm 0.51ULAS J223347 82+002214 0BRLT3121919+06818.068 \pm 0.04	ULAS J153156.73+033605.9	BRLT296	$18.466 {\pm} 0.053$	$17.285 {\pm} 0.036$	$16.401{\pm}0.017$	$15.749 {\pm} 0.019$	22.327 ± 0.220	$19.950 {\pm} 0.119$	$L4.0\pm0.5$	
ULAS J154038.87-001256.7BRLT29917.838 \pm 0.02216.625 \pm 0.01515.814 \pm 0.01015.175 \pm 0.01121.660 \pm 0.10519.343 \pm 0.056L4.0 \pm 1.0ULAS J154319.80+080446.3BRLT30118.863 \pm 0.05017.655 \pm 0.02716.937 \pm 0.03916.537 \pm 0.04021.991 \pm 0.13920.335 \pm 0.143L1.0 \pm 0.5ULAS J154448.83+094256.9BRLT30218.803 \pm 0.05317.671 \pm 0.03616.980 \pm 0.02216.367 \pm 0.02522.722 \pm 0.28420.259 \pm 0.146L4.0 \pm 1.0ULAS J215700.47+005614.5BRLT30519.258 \pm 0.12517.852 \pm 0.04716.873 \pm 0.04316.105 \pm 0.03122.274 \pm 0.14920.618 \pm 0.130L5.5 \pm 1.01ULAS J215920.00+003309.7BRLT30619.091 \pm 0.11217.734 \pm 0.04516.993 \pm 0.04816.365 \pm 0.04023.008 \pm 0.31620.498 \pm 1.056L4.5 \pm 0.51ULAS J220917.12-005259.9BRLT30719.348 \pm 0.09618.006 \pm 0.04917.262 \pm 0.07016.636 \pm 0.05622.796 \pm 0.33320.482 \pm 0.143L1.0 \pm 0.51ULAS J222710.91-004547.3BRLT30819.523 \pm 0.08818.124 \pm 0.05117.208 \pm 0.04916.447 \pm 0.045L5.0 \pm 0.5ULAS J222958.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm 0.03917.499 \pm 0.05417.218 \pm 0.095T3.0 \pm 0.51ULAS J223347 82+002214.0BRLT31219.119 \pm 0.06818.068 \pm 0.04817.361 \pm 0.06316.641\pm0.05021.934 \pm 0.12321.517\pm0.328T0.0 \pm 0.5	ULAS J153256.84-012511.0	BRLT297	$19.129 {\pm} 0.105$	$17.647 {\pm} 0.041$	$16.827 {\pm} 0.039$	$16.056 {\pm} 0.032$			$L4.5 \pm 0.5$	
ULAS J154319.80+080446.3BRLT301 18.863 ± 0.050 17.655 ± 0.027 16.937 ± 0.039 16.537 ± 0.040 21.991 ± 0.139 20.335 ± 0.143 $L1.0\pm0.5$ ULAS J154448.83+094256.9BRLT302 18.803 ± 0.053 17.671 ± 0.036 16.980 ± 0.022 16.367 ± 0.025 22.722 ± 0.284 20.259 ± 0.146 $L4.0\pm1.0$ ULAS J215700.47+005614.5BRLT305 19.258 ± 0.125 17.852 ± 0.047 16.873 ± 0.043 16.105 ± 0.031 22.274 ± 0.149 20.618 ± 0.130 $L5.5\pm1.0$ 1ULAS J215920.00+003309.7BRLT306 19.091 ± 0.112 17.734 ± 0.045 16.993 ± 0.048 16.365 ± 0.040 23.008 ± 0.316 20.498 ± 1.056 $L4.5\pm0.5$ 1ULAS J220917.12-005259.9BRLT307 19.348 ± 0.096 18.006 ± 0.049 17.262 ± 0.070 16.636 ± 0.056 22.796 ± 0.333 20.482 ± 0.143 $L1.0\pm0.5$ 1ULAS J221904.07+063059.1BRLT308 19.523 ± 0.088 18.124 ± 0.051 17.208 ± 0.049 16.447 ± 0.045 $L7.0\pm0.5$ ULAS J222958.30+010217.2BRLT311 19.106 ± 0.066 17.885 ± 0.039 17.499 ± 0.054 17.218 ± 0.095 $T3.0\pm0.5$ 1ULAS J223347 82+002214.0BRLT312 19.119 ± 0.068 18.068 ± 0.048 17.361 ± 0.063 16.641 ± 0.050 21.934 ± 0.123 21.517 ± 0.328 $T0.0\pm0.5$ 1	ULAS J154038.87-001256.7	BRLT299	$17.838 {\pm} 0.022$	$16.625 {\pm} 0.015$	$15.814{\pm}0.010$	$15.175 {\pm} 0.011$	$21.660 {\pm} 0.105$	$19.343 {\pm} 0.056$	$L4.0 \pm 1.0$	
ULAS J154448.83+094256.9BRLT302 18.803 ± 0.053 17.671 ± 0.036 16.980 ± 0.022 16.367 ± 0.025 22.722 ± 0.284 20.259 ± 0.146 $L4.0\pm1.0$ ULAS J215700.47+005614.5BRLT305 19.258 ± 0.125 17.852 ± 0.047 16.873 ± 0.043 16.105 ± 0.031 22.274 ± 0.149 20.618 ± 0.130 $L5.5\pm1.0$ 1ULAS J215920.00+003309.7BRLT306 19.091 ± 0.112 17.734 ± 0.045 16.993 ± 0.048 16.365 ± 0.040 23.008 ± 0.316 20.498 ± 1.056 $L4.5\pm0.5$ 1ULAS J220917.12-005259.9BRLT307 19.348 ± 0.096 18.006 ± 0.049 17.262 ± 0.070 16.636 ± 0.056 22.796 ± 0.333 20.482 ± 0.143 $L1.0\pm0.5$ 1ULAS J221904.07+063059.1BRLT308 19.523 ± 0.088 18.124 ± 0.051 17.208 ± 0.049 16.447 ± 0.045 L5.0\pm0.5ULAS J222958.30+010217.2BRLT311 19.106 ± 0.066 17.885 ± 0.039 17.499 ± 0.054 17.218 ± 0.095 T3.0\pm0.51ULAS J223347 82+002214.0BRLT312 19.119 ± 0.068 18.068 ± 0.048 17.361 ± 0.063 16.641 ± 0.050 21.934 ± 0.123 21.517 ± 0.328 T0.0\pm0.51	ULAS J154319.80+080446.3	BRLT301	$18.863 {\pm} 0.050$	$17.655 {\pm} 0.027$	$16.937 {\pm} 0.039$	$16.537 {\pm} 0.040$	$21.991 {\pm} 0.139$	$20.335 {\pm} 0.143$	$L1.0\pm0.5$	
ULAS J215700.47+005614.5BRLT30519.258 \pm 0.12517.852 \pm 0.04716.873 \pm 0.04316.105 \pm 0.03122.274 \pm 0.14920.618 \pm 0.130L5.5 \pm 1.01ULAS J215920.00+003309.7BRLT30619.091 \pm 0.11217.734 \pm 0.04516.993 \pm 0.04816.365 \pm 0.04023.008 \pm 0.31620.498 \pm 1.056L4.5 \pm 0.51ULAS J220917.12-005259.9BRLT30719.348 \pm 0.09618.006 \pm 0.04917.262 \pm 0.07016.636 \pm 0.05622.796 \pm 0.33320.482 \pm 0.143L1.0 \pm 0.51ULAS J221904.07+063059.1BRLT30819.523 \pm 0.08818.124 \pm 0.05117.208 \pm 0.04916.447 \pm 0.045L5.0 \pm 0.5ULAS J222958.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm 0.03917.499 \pm 0.05417.218 \pm 0.095T3.0 \pm 0.51ULAS J223347 82+002214.0BRLT31219.119+0.06818.068+0.04817.361+0.06316.641+0.05021.934+0.12321.517+0.328T0.0+0.51	ULAS J154448.83+094256.9	BRLT302	$18.803 {\pm} 0.053$	$17.671 {\pm} 0.036$	$16.980{\pm}0.022$	$16.367 {\pm} 0.025$	22.722 ± 0.284	$20.259 {\pm} 0.146$	$L4.0 \pm 1.0$	
ULAS J215920.00+003309.7BRLT306 19.091 ± 0.112 17.73 ± 0.045 16.993 ± 0.048 16.365 ± 0.040 23.008 ± 0.316 20.498 ± 1.056 $L4.5\pm0.5$ 1 ULAS J220917.12-005259.9BRLT307 19.348 ± 0.096 18.006 ± 0.049 17.262 ± 0.070 16.636 ± 0.056 22.796 ± 0.333 20.498 ± 1.056 $L1.0\pm0.5$ 1 ULAS J221904.07+063059.1BRLT308 19.523 ± 0.088 18.124 ± 0.051 17.208 ± 0.049 16.447 ± 0.045 \dots $L5.0\pm0.5$ \dots ULAS J222710.91-004547.3BRLT309 19.503 ± 0.110 18.116 ± 0.061 16.616 ± 0.029 15.322 ± 0.017 \dots $L7.0\pm0.5$ 11 ULAS J222958.30+010217.2BRLT311 19.106 ± 0.066 17.885 ± 0.039 17.499 ± 0.054 17.218 ± 0.095 \dots 13.0 ± 0.5 1 ULAS J223347 82+002214.0BRLT312 19.119 ± 0.068 18.068 ± 0.048 17.361 ± 0.063 16.641 ± 0.050 21.934 ± 0.123 21.517 ± 0.328 $T0.0\pm0.5$ 1	ULAS J215700.47+005614.5	BRLT305	$19.258 {\pm} 0.125$	$17.852 {\pm} 0.047$	$16.873 {\pm} 0.043$	$16.105 {\pm} 0.031$	22.274 ± 0.149	$20.618 {\pm} 0.130$	$L5.5 \pm 1.0$	1
ULAS J220917.12-005259.9BRLT30719.348 \pm 0.09618.006 \pm 0.04917.262 \pm 0.07016.636 \pm 0.05622.796 \pm 0.33320.482 \pm 0.143L1.0 \pm 0.51ULAS J221904.07+063059.1BRLT30819.523 \pm 0.08818.124 \pm 0.05117.208 \pm 0.04916.447 \pm 0.045L5.0 \pm 0.5ULAS J222710.91-004547.3BRLT30919.503 \pm 0.11018.116 \pm 0.06116.616 \pm 0.02915.322 \pm 0.017L7.0 \pm 0.511ULAS J222958.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm 0.03917.499 \pm 0.05417.218 \pm 0.095T3.0 \pm 0.51ULAS J223347 82+002214.0BRLT31219.119\pm0.06818.068\pm0.04817.361\pm0.06316.641\pm0.05021.934\pm0.12321.517\pm0.328T0.0\pm0.51	ULAS J215920.00+003309.7	BRLT306	$19.091 {\pm} 0.112$	$17.734{\pm}0.045$	$16.993 {\pm} 0.048$	$16.365 {\pm} 0.040$	$23.008 {\pm} 0.316$	$20.498 {\pm} 1.056$	$L4.5\pm0.5$	1
ULAS J221904.07+063059.1BRLT30819.523 \pm 0.08818.124 \pm 0.05117.208 \pm 0.04916.447 \pm 0.045L5.0 \pm 0.5ULAS J222710.91-004547.3BRLT30919.503 \pm 0.11018.116 \pm 0.06116.616 \pm 0.02915.322 \pm 0.017L7.0 \pm 0.511ULAS J222958.30+010217.2BRLT31119.106 \pm 0.06617.885 \pm 0.03917.499 \pm 0.05417.218 \pm 0.095T3.0 \pm 0.51ULAS J223347 82+002214.0BRLT31219.119 \pm 0.06818.068 \pm 0.04817.361 \pm 0.06316.641 \pm 0.05021.934 \pm 0.12321.517 \pm 0.328T0.0 \pm 0.51	ULAS J220917.12-005259.9	BRLT307	$19.348 {\pm} 0.096$	$18.006 {\pm} 0.049$	$17.262 {\pm} 0.070$	$16.636 {\pm} 0.056$	$22.796 {\pm} 0.333$	$20.482{\pm}0.143$	$L1.0\pm0.5$	1
ULAS J222710.91-004547.3 BRLT309 19.503 ± 0.110 18.116 ± 0.061 16.616 ± 0.029 15.322 ± 0.017 L7.0\pm0.5 11 ULAS J222958.30+010217.2 BRLT311 19.106 ± 0.066 17.885 ± 0.039 17.499 ± 0.054 17.218 ± 0.095 T3.0\pm0.5 1 ULAS J223347 82+002214.0 BRLT312 19.119 ± 0.068 18.068 ± 0.048 17.361 ± 0.063 16.641 ± 0.050 21.934 ± 0.123 21.517 ± 0.328 T0.0\pm0.5 1	ULAS J221904.07+063059.1	BRLT308	$19.523 {\pm} 0.088$	$18.124{\pm}0.051$	$17.208 {\pm} 0.049$	$16.447 {\pm} 0.045$			$L5.0\pm0.5$	
ULAS J222958.30+010217.2 BRLT311 19.106 ± 0.066 17.885 ± 0.039 17.499 ± 0.054 17.218 ± 0.095 T3.0\pm0.5 1 ULAS J223347 82+002214 0 BRLT312 19.119 ± 0.068 18.068 ± 0.048 17.361 ± 0.063 16.641 ± 0.050 21.934 ± 0.123 21.517 ± 0.328 T0.0\pm0.5 1	ULAS J222710.91-004547.3	BRLT309	$19.503 {\pm} 0.110$	$18.116 {\pm} 0.061$	$16.616 {\pm} 0.029$	$15.322 {\pm} 0.017$			$L7.0\pm0.5$	11
ULAS 1223347 82+002214 0 BRIT312 19 119+0.068 18 068+0.048 17 361+0.063 16 641+0.050 21 934+0.123 21 517+0.328 T0.0+0.5 1	ULAS J222958.30+010217.2	BRLT311	19.106 ± 0.066	$17.885 {\pm} 0.039$	$17.499 {\pm} 0.054$	$17.218 {\pm} 0.095$			$T3.0\pm0.5$	1
	ULAS J223347.82+002214.0	BRLT312	$19.119 {\pm} 0.068$	18.068 ± 0.048	$17.361 {\pm} 0.063$	$16.641 {\pm} 0.050$	$21.934{\pm}0.123$	21.517 ± 0.328	$T0.0\pm0.5$	1

¹²

Continued from the previous page.										
Name	ID	Y	J	Η	Κ	i	z	Spectral type	Ref.	
ULAS J223636.89+011132.3	BRLT313	$18.447 {\pm} 0.039$	$17.109 {\pm} 0.021$	$16.239{\pm}0.017$	$15.474{\pm}0.017$	$22.179 {\pm} 0.144$	$20.149 {\pm} 0.089$	$L3.5\pm0.5$	1	
ULAS J223756.91 $+071656.8$	BRLT314	$18.871 {\pm} 0.064$	$17.491{\pm}0.035$	$16.447{\pm}0.023$	$15.656{\pm}0.022$	$23.195 {\pm} 0.444$	$20.464{\pm}0.116$	$L7.5\pm0.5$	1	
ULAS J224051.81 $+000822.0$	BRLT315	$19.276{\pm}0.078$	$17.819 {\pm} 0.036$	$17.117 {\pm} 0.046$	$16.577 {\pm} 0.049$	$22.286{\pm}0.146$	$20.258 {\pm} 0.114$	$L1.0\pm1.0$	1	
ULAS J224922.85+071527.9	BRLT316	$19.638 {\pm} 0.107$	$18.089 {\pm} 0.051$	$17.542{\pm}0.062$	$16.855 {\pm} 0.057$			$L1.0\pm0.5$	1	
ULAS J225016.39 $+$ 080822.4	BRLT317	$16.670 {\pm} 0.009$	$15.503{\pm}0.005$	$15.048 {\pm} 0.006$	$14.513 {\pm} 0.007$	$20.357 {\pm} 0.041$	$18.243 {\pm} 0.029$	$L3.0 \pm 1.0$	1	
ULAS J225114.89-000724.4	BRLT318	$19.209 {\pm} 0.096$	$17.951 {\pm} 0.059$	$17.353 {\pm} 0.073$	$16.493 {\pm} 0.048$	$22.114{\pm}0.167$	$21.147{\pm}0.292$	$L1.0\pm0.5$	1	
ULAS J225624.82+062152.9	BRLT319	$19.444{\pm}0.098$	$18.139{\pm}0.051$	$17.928 {\pm} 0.079$	$17.646 {\pm} 0.100$			$T3.0\pm0.5$		
ULAS J225630.91+072439.0	BRLT320	$19.421{\pm}0.070$	$17.944{\pm}0.032$	$17.261{\pm}0.036$	$16.732{\pm}0.043$	$23.100{\pm}0.330$	$20.649 {\pm} 0.184$	$\mathrm{M9.0}{\pm0.5}$	1	
ULAS J230203.04+070038.8	BRLT321	$18.954{\pm}0.067$	$17.625{\pm}0.032$	$17.379 {\pm} 0.047$	$17.514{\pm}0.088$			$T4.0\pm0.5$	1	
ULAS J230358.64+005807.3	BRLT322	$19.029 {\pm} 0.070$	$17.821{\pm}0.030$	$16.989 {\pm} 0.060$	$16.151{\pm}0.036$	$23.272 {\pm} 0.416$	$20.677 {\pm} 0.191$	$L5.0\pm0.5$	1	
ULAS J230424.80+130111.3	BRLT323	$18.002{\pm}0.023$	$16.692{\pm}0.012$	$15.926{\pm}0.021$	$15.203{\pm}0.015$	$21.527{\pm}0.109$	$19.470 {\pm} 0.065$	$L5.0\pm1.0$	1	
ULAS J230434.41+080401.4	BRLT325	$19.119 {\pm} 0.072$	$17.888 {\pm} 0.046$	$17.478 {\pm} 0.076$	$17.218 {\pm} 0.090$			$T2.0 \pm 1.0$	1	
ULAS J231236.55 $+000602.3$	BRLT328	$18.955 {\pm} 0.059$	$17.654{\pm}0.022$	$17.051{\pm}0.030$	$16.408 {\pm} 0.043$	$22.348 {\pm} 0.155$	$20.276 {\pm} 0.114$	$L3.0\pm1.0$	1	
ULAS J231645.70+010012.5	BRLT330	$19.100{\pm}0.075$	$17.949 {\pm} 0.030$	$17.263 {\pm} 0.065$	$16.700{\pm}0.062$	$23.017 {\pm} 0.379$	$21.075 {\pm} 0.269$	$L2.0 \pm 1.0$	1	
ULAS J232122.72-004557.3	BRLT331	$19.403{\pm}0.085$	$18.004{\pm}0.043$	$17.604{\pm}0.065$	$17.126{\pm}0.065$	$22.964{\pm}0.272$	$20.526{\pm}0.123$	$L3.0 \pm 1.0$	1	
ULAS J232259.58+000541.5	BRLT332	$19.163 {\pm} 0.070$	$18.009 {\pm} 0.042$	$17.264{\pm}0.050$	$16.855 {\pm} 0.055$	$22.706 {\pm} 0.201$	$20.540{\pm}0.137$	$L3.0 \pm 1.0$	1	
ULAS J232315.39+071931.0	BRLT333	$18.501 {\pm} 0.036$	$17.301{\pm}0.022$	$16.550{\pm}0.027$	$16.200{\pm}0.031$	$23.727 {\pm} 0.354$	$20.349 {\pm} 0.104$	$T2.0\pm0.5$	1	
ULAS J232715.67+151729.5	BRLT334	$17.541 {\pm} 0.020$	$16.203 {\pm} 0.011$	$15.357 {\pm} 0.013$	$14.684{\pm}0.010$	$21.297{\pm}0.073$	$19.171 {\pm} 0.041$	$L3.5\pm0.5$	1	
ULAS J232732.12+010252.7	BRLT335	$19.261 {\pm} 0.070$	$18.068 {\pm} 0.047$	$17.236{\pm}0.063$	$16.608 {\pm} 0.060$			$L4.0 \pm 1.0$	1	
ULAS J233002.13+140329.9	BRLT338	$18.593 {\pm} 0.061$	$17.367 {\pm} 0.035$	$16.792{\pm}0.046$	$16.105 {\pm} 0.036$			$L1.0\pm1.0$	1	
ULAS J233942.81+075327.2	BRLT340	$19.840{\pm}0.128$	$18.134{\pm}0.048$	$17.337 {\pm} 0.065$	$16.541{\pm}0.047$			$L4.0\pm0.5$		
ULAS J234716.98-011009.1	BRLT343	$18.817 {\pm} 0.063$	$17.571 {\pm} 0.033$	$16.720{\pm}0.027$	$15.899 {\pm} 0.026$	$22.616 {\pm} 0.236$	$20.268 {\pm} 0.120$	$L9.0 \pm 1.0$	1	
ULAS J235618.01 $+075420.4$	BRLT344	$19.602{\pm}0.093$	$18.089 {\pm} 0.049$	$16.986 {\pm} 0.047$	$16.215{\pm}0.036$			$T0.0{\pm}1.0$	1	
	Table 1: The objects observed. YJHK magnitudes are from the									

UKIDSS LAS DR7, while iz magnitudes are from the SDSS DR7. The spectral types are derived in Section 3.1. Discovery reference: (1) Day-Jones et al. (2013); (2) Geballe et al. (2002); (3) Hawley et al. (2002); (4) Knapp et al. (2004); (5) Burningham et al. (2013); (6) Burningham et al. (2010); (7) Leggett et al. (2000); (8) Chiu et al. (2006); (9) Pinfield et al. (2008); (10) Fan et al. (2000); (11) Marocco et al. (2014). If no discovery reference is listed, the object was previously unpublished.

Index	Numerator Range	Denominator Range	Feature
$H_{2}O-J$ $H_{2}O-H$ $H_{2}O-K$ $CH_{4}-J$ $CH_{4}-H$ $CH_{4}-K$ K/J	$\begin{array}{c} 1.14 - 1.165 \\ 1.48 - 1.52 \\ 1.975 - 1.995 \\ 1.315 - 1.34 \\ 1.635 - 1.675 \\ 2.215 - 2.255 \\ 2.056 - 2.10 \end{array}$	$\begin{array}{c} 1.26\text{-}1.285\\ 1.56\text{-}1.60\\ 2.08\text{-}2.10\\ 1.26\text{-}1.285\\ 1.56\text{-}1.60\\ 2.08\text{-}2.12\\ 1.25\text{-}1.20\end{array}$	1.15 μm H ₂ O 1.4 μm H ₂ O 1.9 μm H ₂ O 1.32 μm CH ₄ 1.65 μm CH ₄ 2.2 μm CH ₄
K/J H-dip	1.61-1.64	1.25-1.29 1.56-1.59 + 1.66-1.69	$1.65 \ \mu m \ CH_4$

Table 2. The spectral indices used to identify unresolved binary candidates. All the indices are defined in Burgasser et al. (2006) except for H-dip which is defined in Burgasser et al. (2010).

Abscissa	Ordinate	Inflection Points (x,y)
H_2O-J CH_4-H CH_4-H H_2O-H	H_2O-K CH_4O-K K/J $H-dip$	(0.325, 0.5), (0.65, 0.7) (0.6, 0.35), (1, 0.775) (0.65, 0.25), (1, 0.375) (0.5, 0.49), (0.875, 0.49)
$_{ m SpT}^{ m SpT}$	$\begin{array}{l} \mathrm{H}_{2}\mathrm{O}\text{-}J/\mathrm{H}_{2}\mathrm{O}\text{-}H\\ \mathrm{H}_{2}\mathrm{O}\text{-}J/\mathrm{C}\mathrm{H}_{4}\text{-}K\end{array}$	$\begin{array}{c} ({\rm L8.5,}0.925), ({\rm T1.5,}0.925), ({\rm T3.5,}0.85) \\ ({\rm L8.5,}0.625), ({\rm T4.5,}0.825) \end{array}$

Table 3. The selection criteria used to identify unresolved binary candidates. Inflection points are defined in Burgasser et al. (2010).

3.2 Identification of unresolved binaries

One possible source of peculiarity in the spectra of brown dwarfs is binarity. Unresolved binaries are in fact characterized by odd spectra, which are the result of the combination of the two components of the system. This is particularly true in L/T transition pairs, where the two components have comparable brightness but significantly different spectra (e.g. Burgasser et al. 2010).

In order to select binary candidates within the sample, we followed the method described by Burgasser et al. (2010), who used a combination of index-index and indexspectral type diagrams to define a number of criteria based on the distribution of known unresolved binaries, designed to minimize the number of false positives. The selection is therefore *not* complete. Objects that match two of the six criteria are called "weak candidates" while objects that match three or more criteria are called "strong candidates". The indices used are summarized in Table 2, while the criteria applied are listed in Table 3.

With this technique we were able to identify 27 binary candidates, consisting of 17 weak candidates and 10 strong candidates, which are listed in Table 4. The index-index and index-spectral type diagram used are presented in Figure 6, where strong candidates are marked with a diamond and weak candidates are marked with an asterisk.

To deconvolve the spectra of the binary candidates and determine the types of the potential components we used the technique described in ADJ13. We created a library of synthetic unresolved binaries combining the spectral templates taken from the already mentioned SpeX-Prism library. All the templates were scaled to a common flux level using the M_J -spectral type relation defined in Marocco et al. (2010,

excluding both known and possible binaries) and combined. Each candidate was then fitted with this new set of templates using a χ^2 fitting technique, after normalizing both the candidate and the template at 1.28 μ m. The fit are presented in Figure 7 - 11. The results of this fit were compared to the results obtained using the standard templates with a one-sided F test, to assess the statistical significance of the deconvolution. If the ratio of the two chi-squared fits (η) is greater than the critical value ($\eta_{\rm crit} = 1.15$), this represents a 99% significance that the combined template fit is better than the standard template alone. The results are shown in Table 4 where for each target we present the best fit standard template (with the associated χ^2), the best fit combined template (with χ^2) and the η value of the F test. As one can see, 13 out of 27 dwarfs give a statistically "better fit" using combined templates ($\eta > 1.15$) and are therefore the strongest binary candidates.

Three of these candidates have previously been identified as binaries or binary candidates. BRLT131 was resolved into its two component via HST imaging by Burgasser et al. (2006), and their spectral types were estimated to be <T2and T5 based on the resolved photometry. This is in good agreement with the results of our deconvolution, suggesting types T2.0 and T7.0. BRLT275 and BRLT281 were identified as strong binary candidates in Burgasser et al. (2010) and the spectral types of their deconvolution were L5.5+T5.0 for BRLT275 and L7.5+T2.5 for BRLT281. Again these results are in good agreement with ours, with the best fit template for BRLT275 being an L6.5+T5.5 and the best fit for BRLT281 being an L5.5+T3.0. BRLT275 was found to be ~ 1 mag over-luminous compared to objects of similar "unresolved type" by Faherty et al. (2012), reinforcing the possibility of this object being a real binary.

For the other candidates, as clearly stated in Burgasser et al. (2010), the results of this fitting must be taken with caution and a definitive confirmation of the binarity of these objects must come from high resolution imaging, radial velocity monitoring or spectro-astrometry.

3.3 Identification of peculiar objects

As discussed in the previous section, one of the most common origins of peculiarities in the spectra of brown dwarfs is unresolved binarity. The other common sources are unusual values of surface gravity and metallicity.

The first attempts to quantify the effect of surface gravity on the spectra of brown dwarfs were conducted by Martín et al. (1999), Kirkpatrick et al. (2000) and Gorlova et al. (2003). They showed that the absorption lines of K I at 1.25 μ m and of Na I at 1.21 μ m are very sensitive to gravity, while the bands of H₂O and CO at 1.35 μ m and 2.30 μ m are almost insensitive. In the same years Lucas et al. (2001) found that young objects tend to have "triangular-shaped" H band peaks, as opposed to the "trapezoidal-shaped" peaks of field dwarfs.

A few years later Cruz, Kirkpatrick, & Burgasser (2009) defined a gravity based classification scheme for early L dwarfs. A detailed study of the optical spectra of 23 young L dwarfs showed that low-gravity L dwarfs display weak Na I, Cs I, Rb I lines. The prominent K I doublet at 7665,7699 Å has both weak line cores and weak pressure-broadened wings. The molecular bands of FeH

Figure 6. The index-index and index-spectral type plots used for binary candidate selection. The dashed lines enclose the selection areas, as defined in Table 3. Weak candidates are marked with stars, while strong candidates are marked with diamonds.

and TiO are also weaker than in field L dwarfs while, at early types, VO is stronger. Using a set of 12 indices measuring the strength of the features described above, Cruz, Kirkpatrick, & Burgasser (2009) defined three gravity classes, labeled using Greek suffix notations. An α suffix denotes normal-gravity objects, β indicates moderately low gravity, while γ is used for very low-gravity objects.

More recently Allers & Liu (2013) proposed an alternative classification using near-infrared spectra. In this fundamental work the authors analysed a sample of 73 M and L dwarfs, comparing in particular "old" field dwarfs with members of young moving group of different ages. By measuring the strength of the prominent absorption features in the near-infrared, using both spectral indices and direct equivalent width measurements, the authors confirmed that the H_2O bands are gravity-insensitive, and therefore used the "water-based" indices to define the spectral typing scheme. The gravity classification scheme is instead based on the spectral indices and the equivalent widths of the gravity-sensitive features, specifically the K I and Na I lines (weaker in low-gravity objects), the FeH (weaker) and VO bands (stronger), and the "peakiness" of the H band (i.e. quantifying the effect first seen by Lucas et al. 2001). Based on the combination of these indicators, M and L dwarfs are divided in three categories: FLD-G indicates normal field dwarfs (corresponding to α from Cruz, Kirkpatrick, & Burgasser 2009), INT-G labels intermediate gravity (like β in Cruz, Kirkpatrick, & Burgasser 2009), while VL-G stands for low gravity (analogue to γ in Cruz, Kirkpatrick, & Burgasser 2009). Allers & Liu (2013)

© 2015 RAS, MNRAS **000**, 1–??

attempted to establish a rough correspondence between their classification and the ages of the dwarfs studied, indicating that $\mathsf{INT-G}$ objects appear to be ${\sim}50{-}200$ Myr old, while $\mathsf{VL-G}$ objects should be ${\sim}10{-}30$ Myr old.

To determine how the metallicity affects the spectral characteristics, although the theory is of great help, it is necessary to observe reference objects. Since metal poor objects must have formed early in life in the galaxy, they are members of the halo or thick disk and, in general, have higher proper motions than solar metallicity objects. The most effective way to discover them is therefore the kinematic study of large portions of sky. In Zhang et al. (2013) the authors used the SDSS DR8, scanning 9274 deg² of sky. By studying the large sample of late-M and early-L sub-dwarfs found, they conclude that sub-stellar sub-dwarfs tend to be brighter than their solar-metallicity counterparts of similar spectral type, especially in the optical bands.

Kirkpatrick et al. (2010) used multi-epoch 2MASS data covering 4030 deg² to look for high proper motion candidates. Among the various findings, they identified 15 late-M and L sub-dwarfs. All of these ultra-cool sub-dwarfs show stronger hydride bands (CaH, FeH, and CrH) compared to solar-metallicity objects, a result of the reduced opacity from oxides (e.g. VO and TiO). Counter-intuitively, metal-poor dwarfs show stronger alkali (Na I, K I, Cs I, and Rb I) and metal lines (in particular Ti I and Ca I), a consequence of a reduced condensate formation in those metal-deficient atmospheres. Another clear distinction is in the strength of the CIA of H₂. This particularly strong in metal-poor dwarfs,

Figure 7. The spectral deconvolution of the binary candidates. In each panel the target is plotted in black, the best-fit single template in green, the best-fit binary in red, and the two components of the best fit binary in blue and yellow, respectively.

resulting in bluer J–H and J–K colours and spectra for the sub-dwarfs compared to normal dwarfs. However the CIA of H_2 is also very sensitive to surface gravity, and older objects are more compact than field objects.

One way to disentangle the effects of surface gravity and metallicity is by studying binaries (e.g. Day-Jones et al. 2008, 2011; Burningham et al. 2009; Faherty et al. 2010; Zhang et al. 2010). When a brown dwarf is found in a binary system with a brighter star, the study of the primary can provide valuable information. Depending on the type of the primary, one can put precise limits on age and metallicity

Figure 8. The spectral deconvolution of the binary candidates. The colour coding is the same as in Figure 7.

of the system, thus identify the spectral signatures of these quantities in the spectrum of the dwarf.

One of the most famous binaries is probably the T7.5 HD 3651B, companion of a K0 star, discovered by Liu, Leggett, & Chiu (2007). What is particularly interesting is the comparison between HD 3651B and Gl 570D, a T7.5 which is part of another binary system

(Burgasser et al. 2000). The two dwarfs have very similar temperatures (~ 800 K), but quite different ages: Gl 570D is relatively young (~ 2 Gyr) while HD 3651B is relatively old (~ 6 Gyr). In addition, an estimate of the mass of the two (based on the theoretical models of Burrows et al. 1997) led to the conclusion that HD 3651B is more massive. From all these considerations it follows that the first has a surface

Figure 9. The spectral deconvolution of the binary candidates. The colour coding is the same as in Figure 7.

gravity greater than the second (log g = 5.35 against 5.0). As mentioned earlier it was expected a lower strength of the peak at 2.18 μ m in HD 3651B. Liu, Leggett, & Chiu (2007) observed instead the opposite effect. What acts against gravity is metallicity. HD 3651B has a higher metallicity ([Fe/H] = 0.13 against 0.06) and this causes a decrease in the photo-

spheric pressure (Burrows, Sudarsky, & Hubeny 2006) and suppress the CIA.

These first observations were followed by others (Pinfield et al. 2008; Leggett et al. 2009; Pinfield et al. 2012) which essentially confirmed the strong dependence of the CIA of H_2 on metallicity, and indicate that also the ab-

Figure 10. The spectral deconvolution of the binary candidates. The colour coding is the same as in Figure 7.

sorption of CO at $4.5\mu\mathrm{m}$ is influenced, but in an opposite way.

Metallicity and gravity, therefore, have a similar effect on the infrared spectra of brown dwarfs and thus tend to "hide" each other. This makes the study of these parameters in isolated objects extremely complex.

Assuming that all the unresolved binaries in the sample

have been successfully identified in Section 3.2, we now analyse the SEDs of the remaining objects to identify peculiar dwarfs.

Target	Single template	Combined template	F-test
name	best fit (χ^2)	best fit (χ^2)	η
	Strong c	andidates	
BRLT87	T1.0 (4.96)	T0.0+T2.0 (3.91)	1.27
BRLT116	T2.5 (7.58)	L9.5+T3.0~(6.78)	1.12
BRLT133	M9.0 (8.51)	L1.0+L1.5 (10.99)	0.77
BRLT144	L5.0 (12.27)	L2.0+T3.0 (11.80)	1.04
BRLT182	T3.0~(6.59)	L9.0+T4.5~(5.74)	1.15
BRLT197	T2.0 (10.88)	L7.0+T5.5 (6.33)	1.72
BRLT202	T2.5 (7.62)	L7.5+T5.0 (5.82)	1.31
BRLT203	T3.0 (15.90)	L6.0+T5.0 (5.67)	2.80
BRLT232	T2.5~(6.52)	L7.0+T5.0 (4.02)	1.62
BRLT275	T2.0 (12.38)	L6.5+T5.5 (6.02)	2.05
	Weak ca	indidates	
BRLT18	L0.0 (37.43)	L1.5+L2.5 (42.29)	0.88
BRLT20	L1.0 (12.05)	L1.0+T5.5 (9.32)	1.29
BRLT49	M9.0(4.65)	L1.0+T8.0(6.31)	0.74
BRLT71	L1.5(5.80)	L1.0+L1.5 (5.82)	0.99
BRLT91	T3.0(3.71)	T3.0+T4.0 (3.41)	1.09
BRLT103	L5.5 (8.66)	L5.0+T3.0 (5.97)	1.45
BRLT104	M9.0 (26.58)	L1.5+T8.0 (32.18)	0.83
BRLT131	T3.0~(2.95)	T2.0+T7.0 (2.25)	1.31
BRLT164	T3.0 (7.23)	T2.0+T3.0 (6.17)	1.17
BRLT176	L4.0 (7.15)	L4.0+T1.0 (6.76)	1.06
BRLT217	T0.0 (11.81)	L5.0+T2.0 (10.60)	1.11
BRLT219	T3.0 (9.51)	T2.5+T4.0 (8.26)	1.15
BRLT247	M9.0 (12.75)	L1.0+L1.5 (17.95)	0.71
BRLT251	L1.0 (9.03)	L1.5+T5.0 (6.41)	1.41
BRLT281	T0.0 (5.03)	L5.5+T3.0 (3.77)	1.33
BRLT290	T2.0 (4.77)	T2.0+T3.0 (4.45)	1.07
BRLT295	L4.0 (13.23)	L1.5+T5.5 (8.94)	1.48

Table 4. The results of the spectral fitting of the binary candidates with combined templates. If η (last column) is greater than 1.15 the deconvolution is significant and the object highly likely to be a unresolved binary.

3.3.1 Unusually blue L dwarfs

A number of objects in our sample show unusually blue infrared colours, but do not present any clear sign of metal depletion. Hence they cannot be classified as sub-dwarfs. In particular, they do not present significant enhancement of the alkali absorption lines, while they still show significant suppression of the H and K band flux, and in some cases strong FeH and CrH absorption bands.

Previous studies of the kinematics of such peculiar objects (e.g. Faherty et al. 2009; Kirkpatrick et al. 2010) have pointed out that blue L dwarfs could be part of an older population compared to "normal" L dwarfs, but not as old as the halo population. The metal abundances of these peculiar objects would then be reduced, but not enough to be labelled as sub-dwarfs.

Another possible origin for the peculiarity of these brown dwarfs is a variation in the size and location of the dust grains in their atmosphere. Peculiarities in the dust content and the dust property can influence heavily the near-infrared spectra and photometry of L dwarfs (e.g. Marocco et al. 2014).

A problem that arises immediately is how to classify these targets, as their spectra diverge significantly from those of standard objects. We adopted an hybrid way of

Figure 11. The spectral deconvolution of the binary candidates. The colour coding is the same as in Figure 7.

classifying the blue L dwarfs in the sample. We fit the spectra of the targets with the standard templates, but instead of normalizing both the target and the template at a chosen point, we cut the spectra in three parts, roughly corresponding to the optical + J band, H band, and K band, and then separately normalize and fit these three parts. The

final spectral type is given by the template that fits best the three separate portions.

The spectra of the blue L dwarfs identified here are presented in Figures 12 - 14. For each object we overplot in red the best fit standard template. The targets generally present suppressed H and K band fluxes, and enhanced J bands. The H and K band suppression can be an indication of an enhancement of the CIA of H₂, which is the proxy of metal depletion or high surface gravity, and this would be in agreement with the hypothesis of Faherty et al. (2009), suggesting the membership of peculiar L dwarfs to a slightly older population.

Another common feature in all the blue L dwarfs is the presence of very strong H_2O absorption bands. When looking at Figure 17, it is evident how blue L dwarfs tend to lie below the "main sequence" in two of the three plots on the left, with the H_2O -H and the H_2O -K indices typical of objects of later spectral type. This could be the effect of a reduced dust content in these metal poor atmospheres, that makes water the main source of opacity.

It must be noted at this point that an alternative explanation for unusually blue L dwarfs is unresolved binarity. The presence of a close T type companion would produce a similar effect. However, only one of the new blue L dwarfs matches the selection criteria for binaries (BRLT16), and its fit with unresolved binary templates is not significantly better than the one with a single template (see Section 3.2). We therefore conclude that our sample of blue L dwarfs is entirely made of intrinsically blue objects.

3.3.2 Blue T dwarfs

In the same way as for the blue L dwarfs, we identified 2 peculiar T dwarfs which show H and K band suppression.

A number of unusually blue T dwarfs have been presented in Murray et al. (2011), who selected the peculiar objects based on their MKO photometry. One of the two objects identified here, BRLT179, was indeed part of that sample. The spectra of the two blue T dwarfs in the sample are presented in Figure 15. Both of them show a very suppressed K band flux, which is indicative of an enhanced CIA. Whether this enhancement is due to low metallicity or to a higher surface gravity is still a matter of debate (see for instance Murray et al. 2011). A way to distinguish between the two cases is the analysis of the kinematics of the brown dwarfs, as thick disk or halo-like space velocities would be suggestive of a metal-poor nature, while in the case of a thin disk-like space motion high gravity would be the preferred explanation.

BRLT50: the general shape of the spectrum of this object is well fitted by the T6 standard SDSSp J162414.37+002915.6. However, the peak of the J and H band are slightly lower in the target, and the K band is clearly suppressed, all hints to metal depletion. The kinematics can generally offer insights into the interpretation of the nature of peculiar objects like this one, but with no measured proper motion, we cannot address the possibility of this object belonging to a older disk population.

BRLT179: we assigned a spectral type of T4.5 to this object as the T5 standard reproduces quite well the general shape of the SED in the 0.7–1.8 μ m range, except for the

Figure 12. The spectra of the peculiar blue L dwarfs. Overplotted in red we show the best fit template for each target.

depth of the H₂O absorption at 1.15 and 1.35 μ m. These features are much better fitted by the T4 standard. The flux level in the K band is extremely suppressed, with almost no flux left. The assigned spectral type is 1 subtype later than the one given in Burningham et al. (2010), but that is based on a 1.05–1.35 μ m spectrum only. The kinematics analysis of BRLT179 performed by Murray et al. (2011) suggests a

Figure 13. The spectra of the peculiar blue L dwarfs. Overplotted in red we show the best fit template for each target.

young disk nature for this object, which is somewhat surprising as BRLT179 is the second bluest T dwarf known (J–K = -1.2 \pm 0.1), and its K band spectrum is strongly suppressed. This apparent inconsistency is in common with the bluest T dwarf known, SDSS J1416+1348B (Burningham et al. 2010; Scholz 2010) which has young disk kinematics as well.

Figure 14. The spectra of the peculiar blue L dwarfs. Overplotted in red we show the best fit template for each target.

3.3.3 Low gravity objects

While unusually blue infrared colours are generally tracers of reduced metallicity or high surface gravity, unusually red spectra are the product of an increased metal content or a low surface gravity (which is typical of young objects). We refer the reader to Allers & Liu (2013) and references therein for a more detailed description of the spectral sig-

Figure 15. The spectra of the peculiar blue T dwarfs. Overplotted in red and green we show the best fit template for each target.

natures associated (or believed to be associated) with these two atmospheric parameters, and the classification scheme developed for this type of objects.

We identified 2 peculiar low gravity objects within the sample, BRLT22 and BRLT85, and their spectra can be found in Figure 16.

These two late M dwarfs show the peculiar signs of low gravity objects. Specifically they have a somewhat triangular shaped H band, and shallower alkali lines in the J band (in particular in BRLT85). Both objects also show stronger water absorption when compared to the standard template (overplotted in red in Figure 16). In both cases the low gravity M8 template matches better the SED of the target. The gravity classification scheme defined in Allers & Liu (2013) gives a classification of INT-G for BRLT22 and LOW-G for BRLT85, further highlighting the peculiar nature of these two targets. A definitive confirmation has to come from the kinematics, possibly associating the targets to known young moving groups in the solar neighbourhood.

4 SPECTRAL INDICES AND EQUIVALENT WIDTHS

A way to quantify the evolution of spectral features across the spectral sequence is to use spectral indices to measure their strength. The spectral indices calculated for the targets are presented in Table 5, and plotted in Figure 17 and 18. The peculiar objects identified in the previous section are plotted in colour.

In Figure 17 one can see how the indices measuring the *relative* strength of the water absorption bands (the three plots on the left hand side) correlate very well with spectral types. Blue L dwarfs tend to have stronger water absorp-

Figure 16. The spectra of the low gravity M dwarfs. Overplotted in red and green we show the best fit field standard and the best fit low gravity standard

tion bands and their indices therefore are typical of later type objects (as late as T0-T1 in some cases), lying below the "main sequence". A purely index-based classification for these objects could therefore lead to systematically later types.

The right hand side of Figure 17 shows the indices measuring the *relative* depth of the methane absorption bands. Not surprisingly, the correlation between those indices and spectral type is valid only in the T dwarf range, as there is very little methane absorption in L dwarfs, except at midinfrared wavelengths.

In Figure 18 we present a series of index-index plots. It is easy to spot the "main sequence", from the late-Ms and early-Ls on the top-right to the mid-Ts in the bottom-left corner of each plot. Once again, the methane indices do not correlate in the L dwarfs regime, with all of the L dwarfs clustered in the 0.8–1.0 range for each methane index. When looking at the left hand side of the figure, blue L dwarfs tend to be clustered below the sequence in two of the three plots, further stressing the unusual strength of the ~ 1.4 μ m and the ~ 1.9 μ m water absorption bands, while blue T dwarfs sit above it. In particular the two blue T dwarfs have very

high values of the H_2O -K index, which is the effect of their extreme flux suppression in the K band. With very little flux left, their K band spectra are almost flat, and their corresponding indices tend to one.

While these indices give an indication of the evolution of broad molecular absorption bands, to measure the strength of narrow atomic lines we calculated their equivalent width. The main atomic lines in the spectra of brown dwarfs are due to Na I and K I. We calculated the equivalent width of the Na I doublet at 1.139 μ m, and the K I lines at 1.169, 1.177, 1.244, and 1.253 μ m, as these are the strongest and best detected lines.

To measure the equivalent width, we fit each doublet and the region of the spectrum around it using a double Gaussian profile. We decided to fit the doublets together since the lines are too close to allow for a separate fit, as one would have to restrict the region to fit too much, leading to a more uncertain determination of the continuum. The continuum is a parameter of the fit, and is assumed to be changing linearly as a function of wavelength. This is to take into account that, especially in late type objects, some of the lines considered do not fall in regions of flat continuum. The centre of the lines is also a parameter of the fit, but the separation between them is fixed and assumed to be equal to the tabulated separation. The equation describing each doublet is therefore:

$$F(\lambda) = F_0 + \lambda \times C + a_1 e^{(\lambda - \lambda_1)^2 / 2\sigma_1^2} + a_2 e^{(\lambda - (\lambda_1 + \Delta\lambda))^2 / 2\sigma_2^2}$$
(1)

where F_0 and C are the two parameters describing the continuum, λ_1 is the centre of the first line in the doublet, $\Delta \lambda$ is the separation between the two lines, σ_1 and σ_2 are the width of the two lines, and a_1 and a_2 are the depth of the two lines, i.e. the minimum flux at the centre of the lines. $F_0, C, \lambda_1, a_1, a_2, \sigma_1$ and σ_2 are all parameters of the fit.

The equivalent width measured for the targets are presented in Table 6 and plotted as a function of effective temperature in Figure 19. Since the Na I doublet at 1.139 μ m is partly blended, the values presented are the total equivalent width of the doublet. The effective temperature of an object was determined from its spectral type using the type-totemperature conversion presented in Marocco et al. (2013). Objects with very low signal to noise, or with dubious detection of the lines have been omitted. Measurements with relative errors larger than 0.33 are plotted as open circles, while those with relative errors better than 0.33 are plotted as filled circles. Overplotted for reference are the equivalent width calculated for the BT-Settl atmospheric models (Allard, Homeier, & Freytag 2011) for solar metallicity, and three different values of surface gravity. The median equivalent width as a function of effective temperature is plotted as a dashed black line, while one standard deviation around it is shown as a grey shaded area. The median is calculated by binning up our targets in 100 K wide bins. The equivalent widths show a large scatter, and there is no clear separation between blue/red L and T dwarfs and the rest of the sample. However, when looking at the median values, our sample appears to be mostly clustered between the log q = 5.0 and log q = 3.5 lines. These values are lower than what one would expect for thin disk objects, i.e. with intermediate ages ($\approx 1 - 3$ Gyr). Model isochrones

predict values of log g typically around 5 or slightly above (e.g. Allard, Homeier, & Freytag 2011) for L/T transition dwarfs. The discrepancy could be due to a systematic overestimate of the lines equivalent width in the atmospheric models, possibly due to uncertainties in the measured oscillator strengths in the near-infrared regime (e.g. Table 2, Jones et al. 1996).

The models suggest that the lines should reach their maximum strength at $T_{\rm eff} \sim 2000$ K, and then slowly get weaker towards lower temperature. Looking at the values from the sample, only the K I lines at 1.244 and 1.253 μm follow the expected trend, while the Na I doublet and the K I lines at 1.169 and 1.177 μ m remain strong even at temperatures as low as ~ 1200 K. However the discrepant measurements tend to have very large associated errors. This is because the mentioned lines fall in regions of growing H₂O and CH_4 absorption, so in late type (i.e. low T_{eff}) objects the signal-to-noise ratio in those areas decreases sharply, and the fit to the doublet gets less reliable. This would not be a problem in the atmospheric models, nor for the K I lines at 1.244 and 1.253 μ m since they fall in a region where water and methane absorption is less prominent, and therefore follow the expected trend.

Figure 17. The spectral indices as a function of spectral type. Peculiar objects are plotted in colours. The spectral indices calculated for a series of known L and T dwarfs from the literature are overplotted for reference.

Figure 18. Index-index plots. Peculiar objects are plotted in colours. The spectral indices calculated for a series of known L and T dwarfs from the literature are overplotted for reference. The "main sequence" is clearly visible from the top-right to the bottom-left corner of each plot.

Figure 19. The equivalent width of Na I and K I lines as a function of spectral type. Measurements with relative errors larger than 0.33 are plotted as open circles. Peculiar objects are labelled following the same colour scheme of Figure 17 and 18. The median equivalent width as a function of T_{eff} is plotted as a dashed line, while the grey shaded area indicates one standard deviation from the median. Overplotted for comparison are the equivalent width measured from the BT-Settl atmospheric models (Allard, Homeier, & Freytag 2011) for solar metallicity. The yellow line corresponds to a surface gravity log g = 3.5, the black line to log g = 5.0 and the green line to log g = 5.5.

Table 5. Spectral indices for the objects in the sample. For the indices definition, see Table 2.

Name	Spectral type	$\rm H_2O\text{-}J$	$\rm H_2O-H$	$\rm H_2O$ -K	CH ₄ -J	$\rm CH_4-H$	$\rm CH_4-K$	$\rm K/J$	H-dip
BRLT28	$L6.0 \pm 0.5$	0.72	0.69	0.88	0.79	1.04	0.91	0.62	0.48
BRLT49	$\mathrm{M9.0}\pm0.5$	0.99	0.87	1.09	0.86	1.00	1.06	0.36	0.49
BRLT63	$L1.0 \pm 0.5$	0.97	0.82	1.11	0.87	1.01	0.98	0.41	0.49
BRLT65	$\mathrm{M9.0}\pm0.5$	0.99	0.90	1.09	0.87	1.00	1.07	0.37	0.49
BRLT67	$L1.0 \pm 0.5$	0.97	0.81	1.01	0.88	1.06	1.05	0.39	0.48
BRLT68	$L5.0 \pm 0.5$	0.82	0.70	0.88	0.82	1.04	0.92	0.64	0.51
BRLT69	$L1.0 \pm 0.5$	0.95	0.86	1.08	0.92	1.04	1.07	0.41	0.48
BRLT71	$L1.5 \pm 0.5$	0.96	0.80	1.06	0.89	1.00	0.97	0.43	0.49
BRLT72	$M9.0 \pm 0.5$	1.05	0.91	1.13	0.90	1.04	1.07	0.39	0.49
BRLT73	$L1.0 \pm 0.5$	0.93	0.85	0.99	0.84	1.12	0.92	0.44	0.50
BRLT74	$L9.5 \pm 1.0$	0.67	0.66	0.76	0.70	1.03	0.73	0.50	0.53
BRLT75	$M9.0 \pm 1.0$	1.00	0.89	1 14	0.91	1.04	1.04	0.34	0.49
BRLT76	$L5.5 \pm 0.5$	0.78	0.81	0.97	0.82	1.01	0.96	0.51 0.57	0.49
BRLT78	$L1.0 \pm 0.5$ L1.0 ± 0.5	0.98	0.84	1 11	0.80	1.00	1.04	0.35	0.51
BRLT81	$M9.0 \pm 0.5$	1.07	0.88	1.11 1 07	0.89	1.01	0.99	0.00	0.49
BRLT82	$L1.0 \pm 0.5$	0.94	0.85	1.07	0.88	1.01	1.02	0.11	0.49
BRLT83	$M8.0 \pm 1.0$	1 11	0.00	1 39	0.00	1.00	0.94	0.10	0.10
BRLT84	1.35 ± 0.5	0.77	0.55	0.95	0.54	1.02	1.03	0.01	0.40
BRLT85	$M8.0 \pm 0.5$	1.07	0.11	1 21	0.81	1.00	1.05	0.49	0.49
BRLT87	$T0.0 \pm 0.5$	0.50	0.57	1.51 0.77	0.66	0.00	1.04	0.28	0.50
BRI T88	10.0 ± 0.0 14.0 ± 1.0	0.09	0.58	1.01	0.00	1.06	1.06	0.41	0.40
BRI T01	14.0 ± 1.0 T 3.0 ± 0.5	0.03 0.47	0.76	1.01	0.65	0.70	0.40	0.00	0.40 0.47
DRL191	13.0 ± 0.5 110 ± 05	0.47	0.40	1.00	0.00	1.09	0.49	0.20	0.47
DRL192 DDLT07	$L1.0 \pm 0.3$	0.80	0.83	1.00	0.62	1.00	1.02	0.39	0.40
DRL197 DDLT00	10.0 ± 1.0 150 ± 05	0.99	0.64	1.15	0.92	1.00	0.98	0.59	0.49
DRL199	$L5.0 \pm 0.3$	0.81	0.71	0.80	0.84	1.00	0.98	0.55	0.48
BRL1101 DDLT109	$L3.0 \pm 1.0$	0.83	0.08	0.80	0.73	1.13	1.02	0.34	0.49
BRL1102 DD1T102	$L0.0 \pm 0.5$	0.94	0.88	1.00	0.91	1.03	1.05	0.42	0.49
BRL1103	$L_{0.0} \pm 0.0$	0.74	0.74	0.92	0.71	1.00	0.89	0.30	0.50
BRL1104	$M9.0 \pm 0.5$	1.08	0.93	0.93	0.90	0.98	0.80	0.40	0.40
BRL1105	$L5.0 \pm 0.5$	0.82	0.78	0.96	0.84	1.07	0.99	0.53	0.48
BRL1106	$M9.0 \pm 0.5$	0.97	0.88	0.97	0.84	1.03	1.00	0.37	0.48
BRL1108	$L6.5 \pm 0.5$	0.79	0.73	0.91	0.82	1.10	1.01	0.68	0.47
BRETHI	$L2.0 \pm 0.5$	0.86	0.77	0.90	0.81	1.05	1.06	0.53	0.48
BRLT112	$L1.0 \pm 0.5$	0.86	0.79	0.98	0.85	1.04	0.95	0.43	0.48
BRLT113	$M9.0 \pm 0.5$	1.17	0.88	1.05	0.93	1.02	1.05	0.36	0.47
BRLT114	$L6.0 \pm 0.5$	0.76	0.73	0.91	0.82	1.08	0.93	0.68	0.52
BRLT116	12.5 ± 0.5	0.55	0.54	0.82	0.62	0.85	0.74	0.33	0.46
BRLT117	$L5.0 \pm 1.0$	0.88	0.70	0.81	0.78	1.03	0.89	0.56	0.48
BRLT119	$L4.0 \pm 0.5$	0.87	0.76	0.90	0.86	1.03	1.01	0.51	0.46
BRLT121	$L1.0 \pm 0.5$	0.91	0.80	0.99	0.81	1.01	1.03	0.36	0.47
BRLT122	$L1.0 \pm 0.5$	0.91	0.84	0.95	0.82	1.04	0.90	0.40	0.50
BRLT123	$L2.0 \pm 0.5$	0.95	0.80	0.94	0.85	1.03	1.05	0.47	0.46
BRLT129	$L5.0 \pm 1.0$	0.80	0.70	0.95	0.79	1.04	0.95	0.58	0.49
BRLT130	$L3.0 \pm 1.0$	0.94	0.69	0.93	0.78	1.10	1.04	0.34	0.49
BRLT133	$M9.0 \pm 0.5$	1.04	0.86	0.96	0.91	0.99	0.98	0.42	0.46
BRLT136	$L1.0 \pm 1.0$	0.93	0.87	0.96	0.86	1.06	1.02	0.37	0.48
BRLT137	$L4.5 \pm 0.5$	0.76	0.72	0.88	0.75	1.04	0.91	0.52	0.50
BRLT138	$L2.0\pm1.0$	0.88	0.82	0.97	0.86	1.06	0.98	0.50	0.49
BRLT139	$\rm L4.0\pm1.0$	0.80	0.74	0.84	0.73	1.04	0.95	0.41	0.49
BRLT140	$\rm L0.0\pm0.5$	0.94	0.86	0.96	0.84	1.07	1.00	0.41	0.48
BRLT142	$L2.5\pm0.5$	0.85	0.82	0.97	0.85	1.08	0.98	0.54	0.49
BRLT144	$\rm L5.0\pm1.0$	0.86	0.68	0.84	0.81	0.97	0.93	0.46	0.47

Name	Spectral type	H_2O-J	H_2O-H	H_2O-K	CH_4 -J	CH_4 -H	CH_4 -K	K/J	H-dip
BRLT145	$\rm L1.0\pm0.5$	0.93	0.83	1.01	0.84	1.02	0.99	0.42	0.49
BRLT149	$\rm L6.0\pm1.0$	0.78	0.68	0.83	0.77	1.04	0.98	0.43	0.49
BRLT152	$\rm L0.0\pm0.5$	1.05	0.91	0.99	0.91	1.03	1.03	0.41	0.49
BRLT153	$\rm L1.0\pm0.5$	0.91	0.84	1.02	0.82	1.06	1.02	0.34	0.48
BRLT155	$\rm L3.0\pm1.0$	0.86	0.75	1.05	0.88	1.09	1.00	0.50	0.49
BRLT159	$\rm L9.0\pm0.5$	0.73	0.67	0.80	0.78	1.02	0.89	0.62	0.50
BRLT162	$\rm L0.5\pm0.5$	0.97	0.86	1.11	0.84	1.06	1.06	0.35	0.49
BRLT163	$\rm L1.0\pm0.5$	0.83	0.83	1.02	0.90	1.05	1.09	0.44	0.48
BRLT164	$T3.0\pm0.5$	0.54	0.53	0.71	0.57	0.70	0.39	0.24	0.46
BRLT165	$L2.0 \pm 0.5$	0.92	0.86	0.95	0.90	1.04	1.03	0.46	0.50
BRLT168	$\rm L4.0\pm0.5$	0.79	0.75	0.92	0.80	1.09	1.03	0.56	0.46
BRLT171	$ m L5.0 \pm 0.5$	0.79	0.74	0.94	0.82	1.08	1.00	0.55	0.49
BRLT176	$\rm L4.0\pm1.0$	0.87	0.77	0.96	0.79	1.01	0.96	0.44	0.49
BRLT181	$L1.0 \pm 1.0$	1.09	0.88	1.09	0.89	1.03	1.01	0.42	0.49
BRLT182	$T3.0 \pm 0.5$	0.51	0.50	0.74	0.57	0.79	0.61	0.37	0.44
BRLT186	$L1.0 \pm 1.0$	0.92	0.85	1.04	0.85	1.04	1.03	0.39	0.49
BRLT190	$T4.0 \pm 0.5$	0.34	0.47	0.54	0.48	0.54	0.19	0.22	0.36
BRLT197	$T2.0 \pm 1.0$	0.54	0.64	0.87	0.66	0.88	0.70	0.44	0.47
BRLT198	$L3.0 \pm 1.0$	0.90	0.80	1.06	0.84	1.06	1.04	0.39	0.47
BRLT202	$T2.5 \pm 0.5$	0.45	0.57	0.81	0.52	0.79	0.60	0.32	0.44
BRLT203	$T3.0 \pm 1.0$	0.39	0.58	0.82	0.53	0.81	0.74	0.46	0.44
BRLT206	$L2.0 \pm 0.5$	0.90	0.83	0.91	0.82	1.06	1.10	0.45	0.48
BRLT210	$L4.5 \pm 0.5$	0.77	0.75	0.96	0.82	1.09	1.01	0.54	0.49
BRLT216	$M9.0 \pm 0.5$	1.10	0.88	1.07	0.90	1.00	0.99	0.39	0.49
BRLT217	$T0.0 \pm 0.5$	0.69	0.66	0.89	0.75	0.94	0.78	0.50	0.52
BRLT218	$L6.0 \pm 0.5$	0.79	0.71	0.95	0.80	1.13	1.04	0.62	0.52
BRLT219	$T3.0 \pm 0.5$	0.43	0.46	0.73	0.52	0.68	0.40	0.26	0.44
BRLT220	12.0 ± 0.5 12.0 ± 0.5	0.89	0.77	0.83	0.85	1.09	1.07	0.51	0.47
BRLT227	$L3.0 \pm 0.5$	0.83	0.76	0.91	0.85	1.10	1.07	0.55	0.50
BRLT229	$M8.0 \pm 0.5$	1.23	0.95	1.01	0.95	1.05	1.04	0.37	0.50
BRLT231	$1.5.0 \pm 0.5$	0.87	0.77	0.91	0.85	1.07	1.00	0.59	0.49
BRLT234	$L4.0 \pm 1.0$	0.74	0.67	0.87	0.64	1.09	0.95	0.26	0.50
BRLT236	$L3.5 \pm 0.5$	0.82	0.71	0.93	0.76	1.07	0.97	0.43	0.49
BRLT237	$L4.0 \pm 0.5$	0.84	0.69	0.88	0.84	1.01	0.99	0.49	0.51
BRLT240	$L3.0 \pm 0.5$	0.94	0.82	0.93	0.90	1.05	1.05	0.55	0.47
BRLT243	$T0.0 \pm 0.5$	0.70	0.60	0.73	0.69	1.01	0.76	0.50	0.51
BRLT247	$M9.0 \pm 0.5$	1.09	0.90	1.09	0.93	0.97	1.00	0.41	0.48
BRLT249	$L5.0 \pm 0.5$	0.84	0.71	0.84	0.84	1.05	0.92	0.57	0.50
BRLT250	$L1.0 \pm 0.5$	0.85	0.77	0.83	0.79	1.05	0.94	0.46	0.49
BRLT251	$L1.0 \pm 0.5$	0.92	0.80	0.94	0.80	1.00	0.94	0.34	0.48
BRLT253	$L1.0 \pm 1.0$	0.89	0.71	0.86	0.72	1.09	0.99	0.27	0.48
BRLT254	150 ± 0.5	0.84	0.82	0.95	0.89	1.06	1.04	0.54	0.49
BRLT260	$L2.0 \pm 1.0$	0.80	0.70	0.89	0.00	1 11	1.01	0.29	0.49
BRLT262	$L0.0 \pm 0.5$	0.90	0.10	0.96	0.89	1.11	1.00	0.20 0.47	0.49
BRLT265	$L2.0 \pm 0.5$	0.89	0.80	0.92	0.80	1.04	1.07	0.47	0.48
BRLT269	$L7.0 \pm 0.5$	0.62	0.69	0.91	0.82	1.10	0.99	0.76	0.50
BRLT270	$L2.0 \pm 1.0$	0.81	0.72	0.83	0.72	1.05	0.89	0.33	0.50
BRLT274	$L2.0 \pm 0.5$	0.01	0.76	1 11	0.89	1 17	1 07	0.63	0.00
BRLT276	$L0.0 \pm 0.5$	0.10	0.83	1.06	0.85	1.02	1.03	0.38	0.40
BRLT270	$L1.0 \pm 0.5$	0.90	0.83	1.00	0.82	1.02	1.03	0.30	0.49
BRLT283	$L5.0 \pm 1.0$	0.81	0.71	0.88	0.02	0.00	0.87	0.35	0.40
BRLT285	$L5.0 \pm 0.5$	0.80	0.73	0.78	0.82	1.05	0.96	0.62	0.52

Table 5 (Continued from the previous page.)

Name	Spectral type	$\rm H_2O\text{-}J$	$\rm H_2O-H$	$\rm H_2O\text{-}K$	CH ₄ -J	$\rm CH_4-H$	CH_4 -K	$\rm K/J$	H-dip
BRLT290	$T2.0\pm0.5$	0.50	0.49	0.78	0.58	0.90	0.61	0.35	0.50
BRLT295	$\rm L4.0\pm2.0$	0.83	0.80	0.99	0.76	0.96	0.97	0.33	0.47
BRLT296	$\rm L4.0\pm0.5$	0.84	0.75	0.89	0.82	1.05	0.99	0.46	0.49
BRLT297	$\rm L4.5\pm0.5$	0.83	0.76	0.95	0.89	1.06	1.00	0.52	0.50
BRLT299	$\rm L4.0\pm1.0$	0.77	0.74	0.90	0.76	1.03	0.92	0.46	0.49
BRLT301	$\rm L1.0\pm0.5$	0.92	0.77	0.92	0.82	1.03	1.03	0.42	0.47
BRLT302	$\rm L4.0\pm1.0$	0.81	0.72	0.89	0.76	1.07	0.90	0.39	0.49
BRLT308	$\rm L5.0\pm0.5$	0.74	0.72	0.94	0.82	1.09	1.03	0.57	0.50
BRLT319	$T3.0\pm0.5$	0.42	0.47	0.69	0.50	0.79	0.43	0.28	0.47
BRLT340	$\rm L4.0\pm0.5$	0.79	0.75	0.97	0.90	1.08	1.06	0.49	0.49

Table 5 (Continued from the previous page.)

Name	Spectral type	Na 1 1.139µm	Equi [.] K 1 1.169µm	valent widtl K 1 1.177µm	n (Å) K 1 1.244µm	Κ 1 1.253μm
BRLT1	$L9.0 \pm 0.5$	0.90	8.52	3.83	2.50	2.73
BRLT2	$L1.0 \pm 1.0$	6.79	5.23	4.77	9.27	2.38
BRLT3	$L9.0 \pm 1.0$	1.33	3.95	4.72	0.57	3.87
BRLT6	$L3.0 \pm 1.0$	6.88	2.15	2 70	9.36	2.58
BRLT7	$M8.0 \pm 1.0$	6.41	1.26	5.69	3.04	4 95
BRLT8	1.85 ± 0.5	3 50	5 46	1.92	1.68	3.89
BRLT9	$L1.0 \pm 1.0$	7.38	4 97	8.39	5.20	6.09
BRLT10	1.0 ± 1.0 $1.9.0 \pm 0.5$	2 11	2.42	3.52	0.20	1 32
BRLT12	13.0 ± 0.0 $1.3.0 \pm 1.0$	424	2.12	8 70	5 39	5.61
BRLT14	10.0 ± 1.0 $1.0.0 \pm 0.5$	1.21	2.02	0.10	0.00	0.01
BRLT15	10.0 ± 0.0 12.0 ± 2.0		 1 90	• • • •	 1 57	2.66 2.66
BRLT16	12.0 ± 2.0 $1.2.0 \pm 1.0$	6.02	4.23	2.20 4 91	5.80	2.00 2.72
BRLT18	12.0 ± 1.0 $1.0.0 \pm 1.0$	0.32	0.70	4.31	5.85	2.12
BRLT20	10.0 ± 1.0 $1.1.0 \pm 1.0$	5.90	5.08	 8.60	 5.77	2.06
BRLT21	11.0 ± 1.0 1.35 ± 0.5	5.50 8.00	4.08	0.37	7 41	2.00
BRI T22	15.5 ± 0.5 M8.0 \pm 0.5	4 41	4.08 6.26	5.04	6.27	0.02
BRLT24 BRIT24	$M8.0 \pm 0.3$ 135 ± 05	4.41	0.20	5.04 6.04	5.06	 6 70
BRLT24 BRLT26	15.5 ± 0.5 155 ± 0.5	8.07	5.42 5.77	$0.94 \\ 5.57$	0.90 4.03	0.10
DRL120 DDLT97	15.5 ± 0.5 TO 0 \pm 0 5	0.91	5.11	0.01 9.07	4.03	2.00
DRL121	10.0 ± 0.0	3.99	0.09 5.60	3.01 E 6E	5.78	1.07
DRL120	10.0 ± 0.0		0.02	5.05	 1 70	
DRL130 DDLT21	$L5.0 \pm 0.3$ L 4.0 \pm 1.0	••• •••		 6 EO	4.72 5.70	
DRLISI	$L4.0 \pm 1.0$ L15 + 05	0.02 7.80	4.01	0.50	0.72	4.39
DRL152 DDLT22	$L1.3 \pm 0.3$ $L25 \pm 0.5$	1.09	3.03 0.07	9.20	9.20	0.09
DRL155	15.5 ± 0.5	4.41	0.07	9.33	9.04 5.10	4.00
BRL135 DDI T27	$M9.5 \pm 0.5$	9.89	4.11	(.19	5.19	3.70 5.70
BRL137	$L5.0 \pm 0.5$	8.38	3.00	0.83	0.40	5.72 9.05
DRL130	10.0 ± 0.0	2.33	2.09	3.04	1.30 E 19	2.95
BRL139	$L_{0.0} \pm 1.0$	3.29	0.08	1.12	0.18 1.09	7.94
BRL142	$M9.0 \pm 0.5$	8.58	0.81	5.57	1.68	3.40
BRL144	$L5.0 \pm 1.0$	2.02	1.24	1.11	3.34	3.00
BRL140 DDLT40	11.0 ± 0.5	1.07	0.73	2.03	1.88	3.14
BRL140	$L0.3 \pm 0.5$	9.54	8.13	1.45	10.87	3.50
BRL148	$L4.0 \pm 0.5$		•••• • •••	· · ·	···	
BRL149	$M9.0 \pm 0.5$		2.12	<i>Э.23</i>	3.95	<i>5.0</i> 4
BRLT50 DDI TE1	10.0 ± 0.5 12.0 ± 1.0			 1 0C	0.75	 0.91
BRL151	$L3.0 \pm 1.0$	11.88	4.20	4.80	9.75	2.31
BRL152	$L_{0.5} \pm 0.5$		0.53	7.08	1.24	3.31
BRLT56	$L1.5 \pm 1.0$	5.34	4.89	9.50	7.13	4.33
BRLT57	$L0.0 \pm 1.0$	5.53	4.35	4.29	7.53	3.09
BRL158	$L4.0 \pm 1.0$	5.26	4.51	11.05	9.47	4.71
BRL160	$L1.0 \pm 1.0$	12.12	5.83	2.94	9.67	2.43
BRL162	$L5.0 \pm 1.0$	9.46	4.39	6.54 5.00	7.42	3.37
BRLT63	$L1.0 \pm 0.5$	0.03 10.70	3.11 9.50	5.03	0.07	0.90 5.00
BRET64	$L4.0 \pm 0.5$	10.78	2.50	0.51 F 44		5.02
BRET65	$M9.0 \pm 0.5$		 2 05	5.44	4.58	5.82
BRLT66	$L5.0 \pm 0.5$	1.07	3.95	5.28	0.04	4.49
BRET67	$L1.0 \pm 0.5$	8.17	4.98	3.20	7.99	8.89
BRLT68	$L5.0 \pm 0.5$	14.65	4.99	···	 F 0F	3.22
BRLT69	$L1.0 \pm 0.5$	9.03	2.97	5.19	5.65	5.35
BRLT71	$L1.5 \pm 0.5$	9.86	7.50	8.03	6.84	2.80

Table 6. The equivalent width obtained from the spectra. Missing entries indicate the non detection of the line, due eitherto the line being too weak or the spectrum being too noisy. Numbers in *italics* indicate measurements with relative errorslarger than 0.33. For the details on how these values were calculated, see Section 4.

Equivalent width (Å) Name Spectral type Na i Κı Κı Κı Κı $1.139 \mu m$ $1.169 \mu m$ $1.177 \mu m$ $1.244 \mu m$ $1.253 \mu m$ BRLT72 $\mathrm{M9.0}\pm0.5$ 2.067.667.814.204.75BRLT73 $L1.0\,\pm\,0.5$ 9.70 6.78 9.71 12.736.47BRLT74 8.252.12 $\mathrm{L9.5\,\pm\,1.0}$ 3.043.743.16BRLT75 $M9.0\,\pm\,1.0$ 5.805.324.954.260.29BRLT76 $\mathrm{L5.5}\,\pm\,0.5$ 9.98 7.266.589.89 2.55BRLT78 $L1.0\,\pm\,0.5$ 15.598.53 14.00 8.82 . . . BRLT81 $\mathrm{M9.0}\pm0.5$ 4.432.524.947.57 . . . BRLT82 $L1.0\,\pm\,0.5$ 7.93 3.657.387.66 3.86 BRLT83 $\mathrm{M8.0}\,\pm\,1.0$ 7.976.655.465.515.07BRLT84 $\mathrm{L3.5}\,\pm\,0.5$ 7.734.772.071.93. . . 5.77BRLT85 $\mathrm{M8.0}\,\pm\,0.5$ 5.844.035.36. . . BRLT87 $T0.0\,\pm\,0.5$ 1.96 2.74 6.58 BRLT88 $\rm L4.0\,\pm\,1.0$ 5.577.69 7.894.77 3.30 BRLT91 $T3.0\,\pm\,0.5$ 4.006.222.960.624.17 $\rm L1.0\,\pm\,0.5$ BRLT92 6.483.166.497.473.775.46BRLT97 $\mathrm{L0.0}\,\pm\,1.0$ 2.606.336.022.30 $T4.0\,\pm\,0.5$ 8.21 5.37BRLT98 BRLT99 $\mathrm{L5.0}\pm0.5$ 8.47 6.215.50. BRLT101 $\mathrm{L3.0}\,\pm\,0.5$ 18.717.2513.1612.27. . . BRLT102 $L0.0 \pm 0.5$ 14.156.5312.87 BRLT103 $\mathrm{L5.5}\,\pm\,0.5$ 10.30 9.66 7.306.314.27BRLT104 $\mathrm{M9.0}\,\pm\,0.5$ 21.609.47 1.81 12.72 6.38 BRLT105 $\mathrm{L5.0}\,\pm\,0.5$ 7.706.496.976.643.53BRLT106 $M9.0\,\pm\,0.5$ 7.328.73 8.7217.21. . . BRLT108 $\rm L6.5\,\pm\,0.5$ 11.95 2.14. BRLT111 $L2.0\,\pm\,0.5$ 5.895.1211.2711.96 . . . BRLT112 $L1.0 \pm 0.5$ 6.48 9.63 15.86 4.92. . . BRLT113 $M9.0\,\pm\,0.5$ 7.8615.2011.86 6.69. . . BRLT114 $\rm L6.0\,\pm\,0.5$ 6.2914.175.59. BRLT116 $T2.5\,\pm\,0.5$ 4.81 BRLT117 $\mathrm{L5.0}\pm0.5$ 2.5613.99 13.909.778.93 BRLT119 $L4.0 \pm 0.5$ 19.11 5.585.3110.97 16.48 BRLT121 $L1.0 \pm 0.5$ 29.108.06 12.60 8.68 BRLT122 $L1.0\,\pm\,0.5$ 10.634.979.106.531.04 BRLT123 $L2.0\,\pm\,0.5$ 18.7111.031.89 BRLT129 $\mathrm{L5.0\,\pm\,1.0}$ 3.137.276.113.193.86BRLT130 $\mathrm{L3.0}\pm0.5$ 20.0610.648.77 3.99 . . . BRLT131 $T3.0\,\pm\,0.5$ 4.47 4.07 3.07 3.793.09BRLT133 $\mathrm{M9.0}\,\pm\,0.5$ 10.023.525.278.43 . . . BRLT135 $T2.5 \pm 0.5$ 1.87 3.86 3.57 1.32. . . BRLT136 $L1.0\,\pm\,1.0$ 6.105.3212.745.37. . . $\rm L4.5\,\pm\,0.5$ 7.98BRLT137 8.36 6.091.714.662.98BRLT138 $L2.0 \pm 1.0$ 8.163.674.974.237.92BRLT139 $L5.0 \pm 0.5$ 7.1412.1513.207.34BRLT140 $L0.0 \pm 0.5$ 15.303.5610.37 1.69 . . . BRLT142 $L2.5 \pm 0.5$ 6.253.154.495.654.64BRLT144 $L5.0 \pm 0.5$ 10.26 4.40 13.78 6.10 . . . BRLT145 $L1.0\,\pm\,0.5$ 7.44 5.159.3915.89 . . . 2.28BRLT147 $T3.0\,\pm\,0.5$ 5.725.021.82BRLT149 $L6.0 \pm 0.5$ 12.644.46. . . 13.19. . .

Table 6 (Continued from the previous page.)

			Equi	valent widtl	h (A)	
Name	Spectral type	Na i	К і	К і	К і	К і
		$1.139 \mu m$	$1.169 \mu m$	$1.177 \mu m$	$1.244 \mu m$	$1.253 \mu m$
BRLT152	$\rm L0.0\pm0.5$	13.29	3.42	10.16		8.06
BRLT153	$\rm L1.0\pm0.5$	3.69	3.85	10.86	12.93	
BRLT155	$L3.0\pm1.0$	11.26	2.45	5.72	8.17	
BRLT159	$\rm L9.0\pm0.5$		4.61	9.62		
BRLT162	$\rm L0.5\pm0.5$	7.51	2.79	5.51	5.62	3.77
BRLT163	$L1.0 \pm 0.5$	19.13	5.04	5.45	7.36	6.29
BRLT164	$T3.0\pm0.5$	3.14		6.96	2.72	
BRLT165	$\mathrm{L2.0}\pm0.5$	1.63			14.47	5.52
BRLT168	$\rm L4.0\pm0.5$	6.73	4.78	9.16	12.21	12.93
BRLT171	$L5.0 \pm 0.5$	7.22	5.79	5.95	4.61	3.26
BRLT176	$\rm L4.0\pm1.0$					
BRLT179	$T4.5 \pm 0.5$					
BRLT181	$L1.0 \pm 1.0$	7.28	7.31	6.98	4.58	3.60
BRLT182	$T3.0\pm0.5$	3.02	2.93	5.61	3.18	7.41
BRLT186	$L1.0 \pm 1.0$	7.48	2.24	5.39	4.51	2.92
BRLT190	$T4.0 \pm 0.5$					
BRLT197	$T2.0 \pm 1.0$	2.84	4.87	3.53	6.65	2.85
BRLT198	$L3.0 \pm 0.5$	2.07	5.90	16.15	8.15	8.87
BRLT202	$T2.5 \pm 0.5$	4.49	4.41	3.57	1.82	2.02
BRLT203	$T3.0 \pm 1.0$	4.15	3.20	3.63	4.05	1.01
BRLT206	$L2.0 \pm 0.5$	16.86	4.89	8.94	7.47	3.43
BRLT207	$L7.0 \pm 0.5$	6.14	4.55	3.75	2.88	2.19
BRLT210	$L4.5 \pm 0.5$	4.74	3.75	8.24	6.16	2.32
BRLT212	$L6.0 \pm 2.0$	4.46			3.52	
BRLT216	$M9.0 \pm 0.5$	4.40	6.66	6.84	3.07	
BRLT217	$T0.0 \pm 0.5$			4.93	3.43	
BRLT218	$L6.0 \pm 0.5$	6.97	6.01	11.66	3.17	5.89
BRLT219	$T3.0 \pm 0.5$					
BRLT220	$L2.0 \pm 0.5$	4.01	7.71	7.76		8.67
BRLT227	$L3.0 \pm 0.5$	8.12	5.75	16.46	7.24	6.59
BRLT229	$M8.0 \pm 0.5$	5.02		11.39	4.85	2.87
BRLT231	$L5.0 \pm 0.5$	6.58	12.85	9.54	15.08	10.09
BRLT232	$T2.5 \pm 0.5$	2.74	4.51	2.32	3.42	1.71
BRLT234	$L4.0 \pm 1.0$	9.44	7.80	12.22	7.10	4.57
BRLT236	$L3.5 \pm 0.5$					
BRLT237	$L4.0 \pm 0.5$	6.12	4.88	14.21	6.18	
BRLT240	$L3.0 \pm 0.5$	13.35	7.40	11.84		2.69
BRLT243	$T0.0 \pm 0.5$	6.55			7.99	4.86
BRLT247	$M9.0 \pm 0.5$	16.42	3.70	16.27	9.29	
BRLT249	$L5.0 \pm 0.5$	4.02	7.47			
BRLT250	$L1.0 \pm 0.5$	5.99	9.14	8.69	6.73	6.40
BRLT251	$L1.0 \pm 0.5$	4.05	,	3.27		6.88
BRLT253	$L1.0 \pm 0.5$	1.03	5.08	13.56	5.89	
BRLT254	$L5.0 \pm 0.5$	9.96		13.09		
BRLT258	$L5.0 \pm 1.0$					
BRLT260	$L2.0 \pm 0.5$	15.49	4.18	8.72	3.77	
BRLT262	$L0.0 \pm 0.5$	5.80	3.06	10.26	10.55	7.30
BRLT265	$L2.0 \pm 0.5$	8.94	2.86	8.95	11.27	8.38
BRLT269	$L7.0 \pm 0.5$	14.63		5.99	7.25	
BRLT270	$L2.0 \pm 0.5$	12.43	6.30	8.25	15.34	

Table 6 (Continued from the previous page.)

Equivalent width (Å) Name Spectral type Na i Κı Κı Κı Κı $1.139 \mu m$ $1.169 \mu m$ $1.177 \mu m$ $1.244 \mu m$ $1.253 \mu m$ $\mathrm{L2.0}\,\pm\,0.5$ BRLT274 2.74 5.2213.526.16 . . . BRLT275 $\mathrm{T2.0}\,\pm\,2.0$ 2.16 3.69 4.944.64 6.13BRLT276 $\mathrm{L0.0}\,\pm\,0.5$ 7.912.96. BRLT279 $L1.0\,\pm\,0.5$ 8.03 7.974.44 5.10. . . BRLT281 $T0.0\,\pm\,1.0$ 7.44 5.68. BRLT283 $\mathrm{L5.0}\,\pm\,0.5$ 5.0313.08 9.28 7.378.11 BRLT285 $\mathrm{L5.0}\,\pm\,0.5$ 3.257.248.77 BRLT287 $T3.0\,\pm\,0.5$ 3.483.73 3.633.09 3.58BRLT290 $\mathrm{T2.0}\,\pm\,0.5$ 10.653.055.31. $\rm L4.0\,\pm\,2.0$ BRLT295 5.07. 4.97 BRLT296 $\rm L4.0\,\pm\,0.5$ 4.88 3.4216.103.07BRLT297 $\rm L4.5\,\pm\,0.5$ 22.317.225.0310.87 . . . BRLT299 $\rm L4.0\,\pm\,1.0$ 7.06 5.025.735.283.10 BRLT301 $L1.0\,\pm\,0.5$ 9.14 8.24 18.21 11.62 . . . $\rm L4.0\,\pm\,0.5$ 2.08 BRLT302 7.1416.353.20. . . BRLT305 $\mathrm{L5.5\,\pm\,1.0}$ $\rm L4.5\,\pm\,1.0$ BRLT306 BRLT307 $L1.0\,\pm\,0.5$ 9.930.992.408.403.16BRLT308 $\mathrm{L5.0}\,\pm\,0.5$ 7.275.15. BRLT309 $L7.0 \pm 0.5$ 6.11 6.35 2.00 BRLT311 $T3.0\,\pm\,0.5$ 4.250.551.36 1.09 2.25BRLT312 $T0.0\,\pm\,0.5$ 6.46 2.574.47 7.284.52L3.5 \pm 0.5 6.12BRLT313 8.7210.484.731.41 BRLT314 $L7.5\,\pm\,0.5$ 6.827.466.243.202.73BRLT315 $L1.0\,\pm\,1.0$ 5.331.568.78 6.815.95BRLT316 $L1.0\,\pm\,0.5$ 12.462.743.192.695.79BRLT317 $L3.0 \pm 1.0$ 9.77 6.959.81 4.578.67 BRLT318 $L1.0\,\pm\,0.5$ 14.366.336.226.206.10 $T3.0\,\pm\,0.5$ BRLT319 4.197.523.215.84. . . BRLT320 $L1.0\,\pm\,0.5$ 4.900.90 8.12 6.341.88 BRLT321 $T4.0 \pm 0.5$ 2.855.284.995.732.26BRLT322 $\mathrm{L5.0}\pm0.5$ 3.484.194.206.66 5.10BRLT323 $L5.0 \pm 1.0$ 7.97 7.546.30 6.357.85BRLT325 $T2.0 \pm 1.0$ 3.358.20 5.857.344.93BRLT328 $\mathrm{L3.0}\,\pm\,1.0$ 7.789.258.127.302.85BRLT330 $\mathrm{L2.0}\,\pm\,1.0$ 7.532.977.514.764.40BRLT331 $L3.0 \pm 1.0$ 11.68 4.107.023.568.74 BRLT332 $L2.0 \pm 1.0$ 6.677.446.964.926.05BRLT333 $T2.0\,\pm\,0.5$ 2.925.063.55 5.24. . . 5.266.27BRLT334 $L3.5 \pm 0.5$ 7.516.194.74BRLT335 $L4.0 \pm 1.0$ 8.62 4.566.627.055.50 $L1.0\,\pm\,1.0$ 8.90 2.44BRLT338 13.7010.466.94BRLT340 $L4.0 \pm 0.5$ 11.60 6.787.306.37 . . . BRLT343 $L9.0 \pm 1.0$ 2.247.310.624.021.53BRLT344 $T0.0 \pm 1.0$ 5.874.362.802.73. . .

Table 6 (Continued from the previous page.)

Figure 20. An example of a cross-correlation function (CCF) obtained for one of our targets. The offset is measured in pixels and then converted into a radial velocity using the wavelength dispersion of the instrument.

5 RADIAL VELOCITIES

Using a cross-correlation technique we calculated the radial velocities for the objects in the sample. An example of a cross-correlation function (hereafter CCF) obtained is shown in Figure 20. The CCF shows a clear sharp peak around -1 pix, highlighting the precision of the radial velocity obtained. The exact position of the CCF peak was determined using the procedure described in Taylor (1992) and Press, Flannery, & Teukolsky (1986). The two main telluric bands at 1.35–1.45 μ m and 1.80–1.95 μ m are not considered when evaluating the CCF, to avoid a possible systematic bias towards smaller velocities.

The radial velocities have been measured relative to Kelu-1, for which we obtained a very high signal-to-noise ratio spectrum on the night of 07-04-2013. The radial velocity of Kelu-1 is given in Blake, Charbonneau, & White (2010) and is 6.37 ± 0.35 km s⁻¹. Kelu-1 is a known binary with an estimated radial velocity semi-amplitude of 3-4 km s⁻¹ over a period of 38 years (Gelino, Kulkarni, & Stephens 2006; Stumpf et al. 2009). Since this semi-amplitude is similar to the precision of our observations which are made over a much shorter time span of around 3 years, we neglect this systematic error.

The results obtained can be seen in Figure 21, where we plot the estimated precision given by the CCF algorithm as a function of the SNR of the spectra, and in Figure 22 where we plot the radial velocity distribution of our targets. In Figure 21 the difference in spectral types between the target and the standard is indicated by the colour of the point, with black points indicating a difference of zero and light grey points indicating a difference of 12 spectral subtypes. Even with an SNR as low as ~ 5 , we can obtain an average estimated precision of $\sim 5 \text{ km s}^{-1}$. It is clear however that the scatter is very high, and that is probably due to the difference between the late-type targets and the "standard" adopted. In late type objects (i.e. the light grey points in Figure 21) the Na I and K I lines become shallower and the correlation between the standard and the target is therefore weaker.

Figure 21. The distribution of the radial velocity estimated precision given by the CCF algorithm as a function of the signal-tonoise ratio (SNR) of the spectra. The difference in spectral types between the target and the standard is indicated by the colour of the point, with black points indicating a difference of zero and light grey points indicating a difference of 12 spectral subtypes. With a SNR as little as ~5 we can achieve radial velocity estimated precisions of $4-6 \text{ km s}^{-1}$.

The radial velocity distribution of our sample, plotted in Figure 22, peaks at -1.7 ± 1.2 km s⁻¹ with a dispersion of 31.5 km s^{-1} . The dispersion in our distribution is slightly narrower than that obtained by Schmidt et al. (2010, overplotted as a dashed line for comparison), who derived a dispersion of 34.3 km s⁻¹ from a sample of 484 L dwarfs from SDSS. This discrepancy could be due to a geometric effect. Our sample is drawn from a smaller area of sky covering predominantly the northern galactic cap. The radial velocity of our sample is therefore dominated by the W component of the galactic velocity, which is known to have a narrower dispersion than the U and V components (see e.g. Dehnen & Binney 1998). We tested this hypothesis using the Besançon Model of stellar population synthesis of the Galaxy (Robin et al. 2003). For O to M type dwarfs with J < 18.1 we obtain a dispersion of 34.8 km s⁻¹ when considering a sample spread over the SDSS footprint (i.e. the area covered by the Schmidt et al. 2010 sample) and a dispersion of 31.8 km s^{-1} when considering a sample spread over the right ascension and declination limits of our sample (see Section 6.1). Both numbers are in good agreement with the observed ones, and the measured difference between our sample and Schmidt's one seems therefore to be due to a geometric effect.

Another possible explanation is the fact that our sample is focused on field (i.e. thin disk) objects, and is therefore biased towards slightly younger dwarfs, i.e. towards a narrower $V_{\rm rad}$ distribution. Finally, the discrepancy could be due to errors in the determination of our radial velocities, introduced by uncorrected instability of X-shooter (which is however believed to be stable down to 0.5 km s⁻¹, Vernet et al. 2011).

The results presented in this section represent a feasibility study for a larger project to determine accurate and precise radial velocities for the brown dwarfs that will be observed by the European Space Agency mission Gaia. Fur-

Figure 22. The radial velocity distribution of our targets. Overplotted as a dashed line is the distribution obtained by Schmidt et al. (2010) from a sample of 484 L dwarfs from SDSS. Both distributions are normalized to their peak value to allow for direct comparison. The two samples have very similar dispersions of 31.5 and 34.3 km s⁻¹ respectively. The slightly lower dispersion of our sample could be a geometric effect (see text for further details).

ther details on the project can be found in Marocco et al. (MmSAIt, in press).

6 CONSTRAINING THE SUB-STELLAR IMF AND FORMATION HISTORY

The Initial Mass Function (IMF) of stellar objects more massive than the Sun was first derived by Salpeter (1955), who parameterized it as $\Psi(m)\Delta m \propto (m/M_{\rm Sun})^{-\alpha}$ with $\alpha = 2.35$. The Salpeter IMF was later extended to less massive stars by Miller & Scalo (1979) who suggested that the IMF flattened below one solar mass. Currently the most widely accepted parameterizations are the log-normal IMF derived by Chabrier (2003, 2005) and the broken power law introduced by Kroupa (2001).

When trying to extend the IMF further into the substellar regime, one is faced by one fundamental challenge. Sub-stellar objects do not form a main sequence, and keep on cooling down while evolving through the spectral sequence. As a result, there is no unique mass-luminosity relationship that one can use to convert the observed luminosity function (LF) into the IMF (this issue is sometimes referred to as age-mass-luminosity degeneracy). The observed luminosity function is therefore influenced by the formation history (or Birth Rate, hereafter BR) of this kind of objects, and one needs to take this into account while trying to constrain the IMF. While the BR is often assumed to be constant for stars (e.g. Miller & Scalo 1979), it is unconstrained in the sub-stellar regime. Moreover, the formation mechanism of brown dwarfs and giant planets is not well understood. The different formation scenarios proposed would leave their imprints in the IMF and BR, so to distinguish between them it is fundamental to constrain these two quantities in the sub-stellar regime.

One way to break the age-mass-luminosity degener-

acy is to look at young clusters and associations, since their known ages and metallicities allow the use of a mass-luminosity relation based on the cluster age, removing the dependency of the LF on the BR. Therefore they have been the target of many observational campaigns, e.g. Lodieu, Dobbie, & Hambly (2011); Lodieu et al. (2009, 2007); Caballero (2009); Luhman et al. (2009); Alves de Oliveira et al. (2013, 2012). These clusters allow a relatively direct measurement of the sub-stellar IMF, but the initial conditions and accretion histories of individual objects introduce uncertainties regarding the ages, and hence masses, of such young objects (e.g. Baraffe 2010). Moreover, very high and variable extinction increases contamination by reddened field stars. Evolutionary models are also very uncertain at young ages, and the effect of magnetic activity or episodic accretion on the determination of luminosity are not yet fully understood. Finally, some of these regions are still forming stars, introducing further uncertainties and possible biases (see e.g. Alves de Oliveira 2013).

Studying the IMF of the field populations has significant advantages, since there is a larger number of benchmark systems, and therefore the evolutionary and atmospheric models are more mature. Reddening is not an issue, given that even the deepest surveys can only probe the solar neighbourhood. On the other hand, the LF of field brown dwarfs depends on their BR, because only few field sub-stellar objects have age constraints, either as binaries (e.g. Burningham et al. 2011, 2010, 2009; Zhang et al. 2010; Day-Jones et al. 2011; Scholz et al. 2003; Gomes et al. 2013; Delorme et al. 2013) or as members of moving groups (e.g. Gagné et al. 2014; Malo et al. 2014, 2013; Clarke et al. 2010; Gálvez-Ortiz et al. 2010),. The assessment of completeness, contamination, and other observational biases can introduce further uncertainties.

Since the first attempt by Reid et al. (1999), several groups have made measurements of the sub-stellar mass function in the field. Due to the limited samples available, these measurements were either covering only L dwarfs (e.g. Cruz et al. 2007) or only T dwarfs (e.g. Metchev et al. 2008; Burningham et al. 2013; Kirkpatrick et al. 2012; Reylé et al. 2010). Considering the full spectral sequence is in fact a challenge, and those studies that attempted this (e.g. Reylé et al. 2010) have been battling with high associated uncertainties and had to compromise with large bin sizes in order to get statistically significant sampling of the spectral sequence.

With modern large-scale near- and mid-infrared surveys, such as DENIS (Epchtein et al. 1999), SDSS (York et al. 2000), 2MASS (Skrutskie et al. 2006), UKIDSS (Lawrence et al. 2007), VHS (McMahon et al. 2013), and WISE (Wright et al. 2010), which have identified large numbers of brown dwarfs it is now possible to provide the necessary sample of such objects. In particular, while surveys like 2MASS and SDSS were more sensitive to the detection of L dwarfs than T dwarfs, the ULAS probes to greater depth and can provide a more even and statistically robust sampling of the full early-L to late-T range,. The L/T transition region, which is well populated by the sample presented here, is most sensitive to the BR.

This section outlines the efforts to use the sample of mid-L-mid-T dwarfs presented here to empirically constrain the Galactic brown dwarf formation history. This sample is an obvious choice because it covers a large spectral type range (crucially focused on the L/T transition) with a good sampling of each spectral type bin, and it is complete (see Section 6.2), unbiased (see Section 2) and uncontaminated, since its members have been followed up with spectroscopy.

6.1 Determining the space density of L/T transition dwarfs

The spectroscopic follow-up of the full sample is incomplete. However, there are areas of sky where the follow-up is complete. So in order to determine the space density of brown dwarfs we divided the full sample in three sub-samples: between RA = 15h50m to 9h20m the follow-up is complete down to the limit of J = 18.1; between RA = 9h20m to 12h20m the follow-up is complete down to J = 17.87; finally between RA = 12h20m to 15h50m the follow-up is complete down to J = 17.7. These RA ranges correspond to an area of ~620, 375 and 712 deg² in ULAS DR7, and account for 88, 29, and 50 objects respectively.

To determine the volume sampled we calculated the maximum distance at which an object of a given spectral type could have been detected (assuming the given magnitude limit), using the $M_{\rm J}$ -NIR spectral type relation from Marocco et al. (2010). With this distance limit we then calculated the volume sampled by each spectral type bin, and the corresponding space density of objects.

The derived space densities were then corrected for the Malmquist and Eddington biases following the approach described in Pinfield et al. (2008). The Eddington bias is caused by the photometric uncertainties on the magnitudes of objects near our cut (i.e. J < 18.1). However, since the magnitude cut imposed is bright (it corresponds to a ~12 σ detection in the ULAS), the uncertainties at the J = 18.1 limit are typically less than $\sigma = 0.05$ and therefore the Eddington bias correction is less than 1 per cent. This is negligible compared to the other sources of uncertainty. We estimated the Malmquist bias correction considering the mean scatter of the sample of known L and T dwarfs around the adopted M_J -NIR spectral type relation. This represents an increase in the volume sampled of 22 per cent.

To increase the number of objects per bin, and therefore reduce the Poisson errors, we binned up the sample in four spectral type bins: L0-L3, L4-L6, L7-T0, and T1-T4. These bins correspond roughly to effective temperature ranges of \sim 150 K.

6.2 Completeness correction

In order to check the completeness of the sample, first we need to estimate the number of objects lost due to missed detections. As stated above, the imposed magnitude limit (J < 18.1) is bright compared to the limit of the ULAS, and therefore we do not expect to lose any object because of missed detections. This is well demonstrated by Figure 23 where we show the number of objects detected in the original ULAS images as a function of MKO J magnitude. The number of faint sources increases as a power of ten (note that the y axis is in logarithmic scale) up to J ~ 19 (as a consequence of the larger volume probed at fainter magnitudes, Mihalas & Binney 1981), where it sharply drops. The

Figure 23. The number of objects detected as a function of the J magnitude in the images used for the sample selection. The black histogram shows the results for the original images, while the red histogram shows the results in the synthetic images created by duplicating the number of objects. The dotted lines represent a fit to the bright tail of the distribution, i.e. for 14 < J < 17.

dotted line is the fit to the bright tail of the distribution, i.e. for 14 < J < 17. Extrapolating the fit up to J=18.1 and comparing the "expected" number of objects with the measured one gives a completeness of > 99%. The number of objects lost due to incomplete detection in therefore negligible.

Another possible issue, especially when searching for faint objects, is the possible blending with bright sources. However the typical object density in the fields considered is very low, because we are probing regions outside the galactic plane, therefore blending should not be an issue. To quantitatively assess its impact we adopted the following approach. We used the ULAS J band images containing the selected objects. We run the Cambridge Astronomy Survey Unit (CASU) pipeline on the images to detect and extract all the sources in the field. We then doubled the number of objects in every image by taking a 20×20 pixels cut out around every object and copying it into a random position in the image, re-scaling it appropriately to blend the background level and avoid artefacts. We then re-run the CASU pipeline on the images and compared the number of sources identified (as a function of their J magnitude) with the number of sources in the original images. One would obviously expect to detect twice as many objects in the new synthetic images, with no dependence on the objects magnitude. This is indeed the case, as can be seen in Figure 23, where the number of detected objects in the synthetic images is plotted in red. With an average number of sources detected in the synthetic images of ~ 1.987 time the number of sources detected in the original images (recovered sources after doubling / recovered sources prior to doubling = 15427/7764), and no clear dependence on the J magnitude, the incompleteness due to objects blending is 0.3%, which is again negligible compared to the other causes of incompleteness considered below.

To assess the completeness of the photometric selection criteria, the sample was compared to a control sample of known L and T dwarfs taken from www.DwarfArchives.org, for a magnitude limit of $J \leq 16$, removing any objects that

38 F. Marocco et al.

are known to be members of unresolved binary systems. The control sample was cross-matched with the ULAS and SDSS in order to obtain photometry on the same colour system as the selection criteria used. The same set of colour cuts described in Section 2 was imposed to reveal the level of completeness of the sample selection. We retain all of the L4 dwarfs from the control sample, but only some of the L0-L3 dwarfs, indicating that the sample selection is complete for L4 spectral types and later. Similarly, the selection is largely incomplete beyond spectral types of T5. We therefore only consider the three spectral type bins covering the L4–T4 range.

The loss of objects due to photometric scattering of colours was also considered. For L4-L6 types one would expect to lose 3.7 dwarfs, this corresponds to a completeness level of 88%. The L7-T0 range would lose 0.55 dwarfs, corresponding to a 94% completeness; for T1-T4 the expected loss is 0.05 dwarfs, corresponding to a completeness of 99%.

Pixel-noise correlation is not an issue, as demonstrated by Andrews et al. (2014), who estimated the randomness of background noise in the ULAS images by visually selecting 11 empty 7×7 pixel regions from the mosaics. They computed the standard deviation of the mean pixel value of each region (calling it q) and compared it against a similar calculation after randomly swapping pixels between regions. A $q/q_{\rm swapped}$ of 1 indicates perfectly uncorrelated noise while $q/q_{\rm swapped} \gg 1$ is due to non-pixel scale systematic variations. For ULAS images they found $q/q_{\rm swapped} \sim 1$.

6.3 Correction for unresolved binarity

We also corrected the results for the presence of binaries by first considering objects identified as possible binaries (Section 3.2) for which the spectral deconvolution gives a statistically "better fit". We derived the J magnitude of the two components given the unresolved photometry and the two spectral types determined with the deconvolution, and removed from the sample all companions and those primaries that would fall beyond the magnitude limit.

To assess the completeness of this correction we performed numerical simulations, using the spectral templates taken from the SpeX-Prism library. The spectra were combined to create a sample of synthetic unresolved binaries, following the procedure described in ADJ13 and in Section 3.2 of this work. The synthetic templates were "degraded" to the typical SNR of the observed spectra by adding gaussian noise. We then run the binary identification process on each of the synthetic binaries to calculate the rate of successful detections. To avoid false positive detections in low mass ratio binaries, when fitting a given synthetic binary we removed from the template list all the synthetic binaries that had the same primary as the "target" one. For example, when fitting the synthetic binary SDSS J165329.69+623136.5 + 2MASSI J0415195-093506 (L1.0 + T8.0) we removed from the set of templates all the synthetic binaries that had SDSS J165329.69+623136.5as a primary. This is because one can expect that the synthetic L1.0 + T8.0 SDSS J165329.69+623136.5 + HD 3651B would fit better the target than an L1.0 template alone, not because the synthetic binary genuinely fits better, but because the contribution from the T8.0 component is negligible

Figure 24. The detection probability for unresolved binaries as a function of the spectral types of the two components, using the detection and deconvolution technique described in Section 3.2. Interpolated contour level are overplotted to ease the reading of the figure. Overplotted as black circles are the binary candidates identified in Section 3.2.

and we would essentially be fitting the L1.0 component with itself.

The results are shown in Figure 24, where we plot the fraction of synthetic binaries retrieved as a function of the spectral type of the two components. Interpolated contour level are overplotted to ease the reading of the Figure. As expected, the technique is most efficient at the L/T transition, and the fraction of detected binaries steeply declines when moving towards very low mass ratios and early L type binaries. Equal spectral type binaries are also not detectable with this method. Overplotted as black circles are the binary candidates identified in Section 3.2. Not surprisingly the candidates are concentrated mostly in the high detection fraction area.

The sample of binary candidates is probably contaminated by peculiar objects, and therefore the derived binary fraction is somewhat higher than the "true" one. To assess the level of contamination we run the binary identification method on a sample of L and T dwarfs that have been previously targeted by high-resolution imaging campaigns, and have not showed evidences of binarity. The control sample consists of 40 objects covering the L0.0 to T7.5 spectral range, and includes objects taken from Bouy et al. (2003), Gizis et al. (2003), and Burgasser et al. (2006). Two out of 40 objects are flagged as binaries by the detection method, implying a level of contamination of 5%.

We can now use the detected binaries to constrain the binary fraction. To do that we combine the detection probability from Figure 24 with the mass-ratio distribution of sub-stellar binaries from Figure 3 of Burgasser et al. (2007). First of all we correct the observed number of binaries for contamination using the fraction derived above, and then for completeness using the detection probability. All these binaries have mass ratio q < 1, if not they would have equal spectral type. Using the distribution from Burgasser et al. (2007) we could estimate the number of undetected equal mass/equal spectral type binaries and therefore derive the binary fraction. *However* the exact mass ratio of a system depends on its age, which is unconstrained. So we can only correct the number of observed binaries using the ratio between the number of q=1 binaries over the number of q < 1binaries, which is ~1.2.

The numbers derived are presented in Table 7. We calculated the binary fraction in the three spectral type ranges considered above (i.e. L4-L6, L7-T0, and T1-T4). The fraction is 24% in the L4-L6 range but rises to ~70% in the L7-T0 range, before dropping down to ~40% in the early T regime. This variations could be partly due to an underestimate of the number of equal spectral type binaries in the early L regime, due to the fact that the detected binary candidates lie in the $q \ll 1$ range, and the ratio of $(q = 1)/(q \ll 1)$ binaries is higher than the assumed value of ~1.2.

High-resolution imaging and radial velocity surveys typically detect a binary fraction of ~10-20% for brown dwarfs (e.g. Joergens 2008; Kurosawa, Harries, & Littlefair 2006; Basri & Reiners 2006). Many studies however report an higher observed binary fraction in the L/T transition regime (e.g. Liu et al. 2006; Burgasser 2007; Burgasser et al. 2006), with values around $\approx 40\%$. The binary fraction obtained here is even higher, peaking at ~70% in the L7-T0 range. The reason for this discrepancy could be in an higher false positive ratio than estimated here. The control sample used to determine the contamination is in fact limited (only 40 objects) and the L/T transition in particular is poorly sampled. When correcting the derived space densities for unresolved binarity we will therefore use both the binary fraction we measured, and the values published in the literature.

To take into account the presence of the undetected equal spectral type binaries, which would fall beyond the J limit if they were single objects, we used the definition of "observed binary fraction" given by Burgasser et al. (2003),

$$\frac{N_B}{N_m} = \frac{\gamma}{\gamma + (1/\mathrm{BF}) - 1} \tag{2}$$

where N_B and N_m are the observed binaries and the total number of systems, respectively, BF is the "true" binary fraction, and γ is the fractional increase in volume due to inclusion of binaries in the sample. The number of binaries that fall within the magnitude limit because of their increased brightness (N_D) is

$$\frac{N_D}{N_B} = \frac{\gamma - 1}{\gamma} \tag{3}$$

Therefore, the fraction of objects to be excluded from the sample (f_{excl}) is

$$f_{\text{excl}} = \frac{N_B}{N_m} \frac{N_D}{N_B} = \frac{\gamma - 1}{\gamma + (1/\text{BF}) - 1}$$
(4)

For equal spectral type binaries $\gamma = 2\sqrt{2}$.

As stated above, the final correction applied was derived assuming BF= $26 \pm 13\%$, i.e. the mid point between the upper and lower limit to the q = 1 binary fraction derived in this work, and BF= $14\pm10\%$, i.e. the weighted average of the values presented in the literature. The corrections applied are therefore $f_{\rm excl} = 0.30 \pm 0.10$ and $f_{\rm excl} = 0.18 \pm 0.12$.

6.4 Comparison with numerical simulations

We compared the space densities obtained above with the results of numerical simulations computed assuming different IMFs and birth rates from Deacon & Hambly (2006). Details of the simulations are briefly summarized here.

They assume a power-law IMF in the form

$$\Psi(M) \propto M^{-\alpha} \left(p c^{-3} M_{\odot}^{-1} \right) \tag{5}$$

where $\Psi(M)$ is the number of objects per unit volume in a given mass interval. They also assumed an exponential birth rate of the form

$$b(t) \propto e^{-\beta t} \tag{6}$$

where t is in Gyr and β is the inverse of the birth rate scale time τ (in Gyr, since the galaxy was formed). Each simulated object was assigned an age based on the birth rate and a mass based on the IMF, giving a final creation function C given by the equation

$$C(M,t) = \Psi(M) \frac{b(t)}{T_G}$$
(7)

where T_G is the age of the Galaxy. C is therefore the number of objects created per unit time per unit mass. The evolution of each object and its parameters (i.e. $T_{\rm eff}$ and absolute magnitudes) were calculated using the evolutionary models from Baraffe et al. (1998). Any model-dependent systematics would be introduced, but these should not affect the overall trend. The $T_{\rm eff}$ of an object was then converted into a spectral type using the T_{eff} -NIR spectral type relation presented in Stephens et al. (2009, equation 3). The number densities obtained for each bin were finally normalized to 0.0024 pc⁻³ in the 0.1-0.09 M_{\odot} mass range, according to Deacon, Nelemans, & Hambly (2008). We consider the simulations for three different values of β (0.0, 0.2, and 0.5 corresponding to $\tau = \infty$, 5, and 2 Gyr, respectively) and three values of α (+1.0, 0.0, -1.0). The results obtained are shown in Figure 25, where different colours represent different values of α and different line styles represent different values of β.

We compared the calculated space densities, taking into account the completeness and contribution from unresolved binaries, with those presented by various authors in the literature. We considered five different studies: Cruz et al. (2007), Metchev et al. (2008), Reylé et al. (2010), Kirkpatrick et al. (2012), Burningham et al. (2013), and Day-Jones et al. (2013).

The Cruz et al. (2007) space densities probe down to the 2MASS limit (J = \sim 16) and cover the M9-L8 dwarfs, likely suffering from incompleteness at the later types due to colour scattering. The binary correction uses the observed binary fraction of \sim 17% derived via high-resolution imaging

Spectral type range	Total number of objects	q < 1 Binary fraction	Binaries	q = 1 Binary fraction	Binaries
L4-L6 L7-T0 T1-T4	54 19 16	$11\% \\ 34\% \\ 19\%$	5.8 7.1 4.7	$13\% \\ 40\% \\ 23\%$	$7.0 \\ 8.5 \\ 5.6$

Table 7. The derived binary fraction. For each spectral type range we indicate the binary fraction and the expected number of binaries in the sample.

of their sample. Metchev et al. (2008) cross-matched 2MASS with SDSS DR1 and used a series of colour selection criteria to select a sample of L and T dwarfs down to $z \leq 21$. The correction for binarity assumes only the existence of equal mass/equal spectral type binaries for reason of the strong peak in the q distribution (Burgasser et al. 2007, Figure 3). The adopted binary fraction is assumed to decline from 50%in the T0-T2.5 range, down to 21% in the T3-T5.5 range, to 13% in the T6-T8 range, and is therefore comparable to the numbers derived here. Reylé et al. (2010) used CFBDS to select and classify a sample of $\sim 100 > L5$ dwarfs down to z' < 22.5, a comparable depth to this sample. They chose not make any correction for binarity, given the large uncertainty in the measured binary fraction. Kirkpatrick et al. (2012) focused on the late T and Y dwarfs, using the WISEselected sample of nearby objects. Assuming a binary fraction of 30% and correcting for the incompleteness at the faint end of their sample, they derive the space density in the T6 to Y0.5 range. The Burningham et al. (2013) space densities use the same $M_{\rm J}$ -spectral type relations we adopted. They correct for binarity assuming an upper limit on the binary fraction of 45% (Maxted & Jeffries 2005) and a lower limit of 5% Burgasser et al. (2003), hence deriving two values of the space density in each spectral type bin. They also probe down to a magnitude limit comparable to this sample. Finally, Day-Jones et al. (2013) represent an early result from this sample, obtained from the sub-sample falling in the RA = 22h to 4h range. The only difference in the treatment of the data is in the binary correction, since in Day-Jones et al. (2013) we followed the approach of Burningham et al. (2013)and derived two values for each spectral type range.

Our results and those listed above are summarized in Table 8, and in Figure 25. It is important to notice that the numbers in Table 8 are *integrated* over the spectral range quoted, while those plotted in Figure 25 are *per spectral type*, to allow a direct comparison with the simulations. A first look at the plot shows that our space densities do not differ drastically (within uncertainties) from those previously measured and discussed earlier. The differences between our derived densities and those previously published are mostly due to the use of different M_J -SpT conversions and different binary fractions by the various groups.

The most apparent feature is the absence of a significant drop in the number of objects between L7 and T4. The number of L/T transition dwarfs decreases, but not as much as expected. For the predicted theoretical deficit to be realised a higher binary fraction than assumed for the L/T transition would be necessary. That would lead to a larger correction and therefore to lower space densities. Conversely, a lower binary fraction at early types would bring up the density of objects in the L4-L6 range increasing the drop. However, this second scenario would lead to a preference for $\alpha > 0$, which would be inconsistent with the results for late type objects, that consistently point towards $\alpha < 0$. On the other hand, $\alpha > 0$ is found also in nearby young clusters (e.g. Casewell et al. 2007; Bastian, Covey, & Meyer 2010) and by microlensing surveys ($\alpha = 0.49^{+0.24}_{-0.27}$, Sumi et al. 2011).

To reconcile the results in the two temperature regimes, one could assume that the binary fraction in the L/T transition is much higher than currently estimated. An alternative explanation is that objects in the high-mass end and lowmass end form in different environments, with the high-mass brown dwarfs forming predominantly in dense clusters (i.e. resulting in an $\alpha > 0$ IMF) and the low-mass brown dwarfs forming in low density environments, leading to a $\alpha < 0$ IMF (Kroupa et al. 2013). Another possibility, as suggested by Burningham et al. (2013), is that the cooling times assumed to transform the IMF into field luminosity function are affected by systematic errors.

As regards the formation history, it is not currently possible to place robust constraints on the birth rate with this sub-sample. One of the largest sources of uncertainties is the binary fraction. This could be resolved with the follow-up of the unresolved binary candidates identified here, by either AO imaging or radial velocity.

The other main source of uncertainty is the absolute magnitude-spectral type calibration. Although based on an increasing number of objects with well measured parallaxes, the scatter around the current polynomial relation is still large, with typical rms of 0.4 magnitudes (Dupuy & Liu 2012), and this propagates into a factor of ~1.5 in the volume sampled.

7 CONCLUSIONS

In this contribution we have presented the spectroscopic analysis of a sample of 196 late-M, L, and T dwarfs from the UKIDSS LAS DR7. One hundred and twenty two of these represent new discoveries. Among this large sample of objects we have identified 22 peculiar blue L dwarfs and 2 blue T dwarfs, that further increase the population of this class of objects. Suspected to pertain to a slightly older disk population (therefore slightly metal depleted) the kinematics are fundamental to fully characterize these new objects.

We have also identified 2 peculiar low-gravity late-M dwarfs, potentially young objects that can constitute useful benchmarks to study low-gravity atmospheres and constrain early evolution models. Once again the kinematics will be fundamental to confirm or refute their youth.

Using an index-based selection technique coupled with

Reference	Spectral type range	Space density $(\times 10^{-3} \text{ pc}^{-3})$
Cruz et al. (2007)	L0-L3 L3.5-L8	$1.7 \pm 0.4 \\ 2.2 \pm 0.4$
Metchev et al. (2008)	T0-T2.5 T3-T5.5 T6-T8	$\begin{array}{c} 0.86\substack{+0.48\\-0.44}\\ 1.4\substack{+0.8\\-0.8}\\ 4.7\substack{+3.1\\-2.8}\end{array}$
Reylé et al. (2010)	L5-T0 T0.5-T5.5 T6-T8	$2.0^{+0.8}_{-0.7} \\ 1.4^{+0.3}_{-0.2} \\ 5.3^{+3.1}_{-2.2}$
Kirkpatrick et al. (2012)	$\begin{array}{c} {\rm T6-T6.5} \\ {\rm T7-T7.5} \\ {\rm T8-T8.5} \\ {\rm T9-T9.5} \end{array}$	$ \begin{array}{r} 1.1 \\ 0.93 \\ 1.4 \\ 1.6 \\ \end{array} $
Burningham et al. (2013)	T6-T6.5 T7-T7.5 T8-T8.5	$\begin{array}{c} 0.39 \pm 0.22 - 0.71 \pm 0.40 \\ 0.56 \pm 0.32 - 1.02 \pm 0.64 \\ 2.05 \pm 1.21 - 3.79 \pm 2.24 \end{array}$
Day-Jones et al. (2013)	L4-L6.5 L7-T0.5 T1-T4.5	$\begin{array}{c} 0.53 \pm 0.10 - 0.88 \pm 0.16 \\ 0.56 \pm 0.10 - 0.94 \pm 0.16 \\ 0.42 \pm 0.16 - 0.71 \pm 0.27 \end{array}$
This paper, BF = 26 ± 13	L4-L6.5 L7-T0.5 T1-T4.5	$\begin{array}{c} 0.85 \pm 0.55 \\ 0.73 \pm 0.47 \\ 0.74 \pm 0.48 \end{array}$
This paper, BF = 14 ± 10	L4-L6.5 L7-T0.5 T1-T4.5	$\begin{array}{c} 1.00 \pm 0.64 \\ 0.85 \pm 0.55 \\ 0.88 \pm 0.56 \end{array}$

Table 8. The space density derived here compared to values presented in the literature. The numbers are integrated over the spectral range quoted in the second column.

spectral deconvolution, we also identified 27 unresolved binary candidates among our targets. These objects are particularly important as their follow-up constraint on the population properties of multiple sub-stellar systems, and offer hints into the understanding of their formation mechanism.

The sample presented here, being complete, unbiased, and uncontaminated, represents an opportunity to measure the luminosity function of field sub-stellar objects. Our attempt to use the measured space density has however been limited by two fundamental uncertainties. One is the lack of knowledge of the binary fraction. Following up the binary candidates identified here can represent a first step forward towards a more precise constraint of this important observable parameter. In the near future the ESA mission Gaia will provide a more accurate measurement, significantly reducing this source of uncertainty. The other is the use of photometric distances to compute the volume sampled, and the large associated uncertainty due to the scatter of objects around the "main sequence". Only measuring trigonometric parallaxes for a large sample of brown dwarfs would remove this uncertainty, and the astrometric programs focusing on sub-stellar objects represent an encouraging step forward in this direction.

Although limited by these uncertainties, the space densities derived here nevertheless point toward an higher than expected ratio of L/T transition dwarfs to late-Ts. If we assume a power-law IMF with a negative exponent (as suggested by the LF of late-T dwarfs), then the observed density of L/T transition objects is almost a factor of two higher than expected. This discrepancy can be suggestive of a higher than expected binary fraction in the L/T transition range, or that the cooling times assumed to transform the IMF into field LF are affected by systematic errors, or that low-mass and high-mass brown dwarfs are predominantly the product of different formation mechanisms and therefore derive from different underlying IMFs.

The full exploitation of present surveys is revealing larger and larger populations of L, T, and Y dwarfs, and new facilities like SPHERE and GPI will push the boundaries of our observations towards lower and lower masses. Moreover the already mentioned ESA/Gaia mission will provide a more accurate calibration of the absolute magnitude sequence and a more robust constraint on the binary fraction. Therefore it seems we are now approaching a more reliable determination of the sub-stellar IMF and BR, that will lead to a better understanding of their formation.

ACKNOWLEDGMENTS

We thank the referee, John Gizis, for comments that have significantly improved the quality of this paper.

FM would like to thank Antonio Chrysostomou and Philippe Delorme for the useful discussions and their valuable suggestions.

This research is based on observations collected at the European Organisation for Astronomical Research in the

Figure 25. A comparison between measured space densities of L and T dwarfs with simulations from Deacon & Hambly (2006) with α = +1.0, 0.0, 1.0 and β = 0.0, 0.2, 0.5. On the top axis we show an indicative temperature scale.

Southern Hemisphere, Chile programs 086.C-0450, 087.C-0639, 088.C-0048, and 091.C-0452.

The authors would like to acknowledge the Marie Curie 7th European Community Framework Programme grant n.247593 Interpretation and Parameterization of Extremely Red COOL dwarfs (IPERCOOL) International Research Staff Exchange Scheme. FM would like to acknowledge the support received from the European Science Foundation (ESF) within the framework of the ESF activity entitled "Gaia Research for European Astronomy Training", Exchange Grant number 4641.

This research has made use of: the SIMBAD database operated at CDS France; the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://pono.ucsd.edu/~adam/browndwarfs/spexprism;

and, the M, L, and T dwarf compendium housed at dwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser.

REFERENCES

- Allard F., Homeier D., Freytag B., 2011, ASPC, 448, 91
- Allers K. N., Liu M. C., 2013, ApJ, 772, 79
- Alves de Oliveira C., Moraux E., Bouvier J., Bouy H., 2012, A&A, 539, A151
- Alves de Oliveira C., et al., 2013, A&A, 559, A126

- Alves de Oliveira C., 2013, MmSAI, 84, 905
- Andrei A. H., et al., 2011, AJ, 141, 54
- Andrews S. K., Kelvin L. S., Driver S. P., Robotham A. S. G., 2014, PASA, 31, 4
- Baraffe I., Chabrier G., Allard F., Hauschildt P. H., 1998, A&A, 337, 403
- Baraffe I., 2010, HiA, 15, 755
- Basri G., Reiners A., 2006, AJ, 132, 663
- Bastian N., Covey K. R., Meyer M. R., 2010, ARA&A, 48, 339
- Blake C. H., Charbonneau D., White R. J., 2010, ApJ, 723, 684
- Bouy H., Brandner W., Martín E. L., Delfosse X., Allard F., Basri G., 2003, AJ, 126, 1526
- Borysow A., Jorgensen U. G., Zheng C., 1997, A&A, 324, 185
- Burgasser A. J., et al., 2000, ApJ, 531, L57
- Burgasser A. J., Kirkpatrick J. D., Reid I. N., Brown M. E., Miskey C. L., Gizis J. E., 2003, ApJ, 586, 512
- Burgasser A. J., Geballe T. R., Leggett S. K., Kirkpatrick J. D., Golimowski D. A., 2006, ApJ, 637, 1067
- Burgasser A. J., Kirkpatrick J. D., Cruz K. L., Reid I. N., Leggett S. K., Liebert J., Burrows A., Brown M. E., 2006, ApJS, 166, 585
- Burgasser A. J., 2007, ApJ, 659, 655
- Burgasser A. J., Reid I. N., Siegler N., Close L., Allen P., Lowrance P., Gizis J., 2007, Protostars and Planets V,

427

- Burgasser A. J., Cruz K. L., Cushing M., Gelino C. R., Looper D. L., Faherty J. K., Kirkpatrick J. D., Reid I. N., 2010, ApJ, 710, 1142
- Burningham B., et al., 2009, MNRAS, 395, 1237
- Burningham B., et al., 2010, MNRAS, 404, 1952
- Burningham B., et al., 2010, MNRAS, 406, 1885
- Burningham B., et al., 2011, MNRAS, 414, 3590
- Burningham B., et al., 2013, MNRAS, 433, 457
- Burrows A., et al., 1997, ApJ, 491, 856
- Burrows A., Sudarsky D., Hubeny I., 2006, ApJ, 640, 1063
- Caballero J. A., 2009, AIPC, 1094, 912
- Casewell S. L., Dobbie P. D., Hodgkin S. T., Moraux E., Jameson R. F., Hambly N. C., Irwin J., Lodieu N., 2007, MNRAS, 378, 1131
- Chabrier G., 2005, ASSL, 327, 41
- Chabrier G., 2003, PASP, 115, 763
- Chiu K., Fan X., Leggett S. K., Golimowski D. A., Zheng W., Geballe T. R., Schneider D. P., Brinkmann J., 2006, AJ, 131, 2722
- Clarke J. R. A., et al., 2010, MNRAS, 402, 575
- Cruz K. L., et al., 2007, AJ, 133, 439
- Cruz K. L., Kirkpatrick J. D., Burgasser A. J., 2009, AJ, 137, 3345
- Day-Jones A. C., et al., 2008, MNRAS, 388, 838
- Day-Jones A. C., et al., 2011, MNRAS, 410, 705
- Day-Jones A. C., et al., 2013, MNRAS, 430, 1171
- Deacon N. R., Hambly N. C., 2006, MNRAS, 371, 1722
- Deacon N. R., Nelemans G., Hambly N. C., 2008, A&A, 486, 283
- Dehnen W., Binney J. J., 1998, MNRAS, 298, 387
- Delorme P., et al., 2013, A&A, 553, L5
- Dupuy T. J., Liu M. C., 2012, ApJS, 201, 19
- Epchtein N., et al., 1999, A&A, 349, 236
- Faherty J. K., Burgasser A. J., Cruz K. L., Shara M. M., Walter F. M., Gelino C. R., 2009, AJ, 137, 1
- Faherty J. K., Burgasser A. J., West A. A., Bochanski J. J., Cruz K. L., Shara M. M., Walter F. M., 2010, AJ, 139, 176
- Faherty J. K., et al., 2012, ApJ, 752, 56
- Fan X., et al., 2000, AJ, 119, 928
- Gagné J., Lafrenière D., Doyon R., Malo L., Artigau É., 2014, ApJ, 783, 121
- Gálvez-Ortiz M. C., et al., 2010, MNRAS, 409, 552
- Geballe T. R., et al., 2002, ApJ, 564, 466
- Gelino C. R., Kulkarni S. R., Stephens D. C., 2006, PASP, 118, 611
- Gizis J. E., Reid I. N., Knapp G. R., Liebert J., Kirkpatrick J. D., Koerner D. W., Burgasser A. J., 2003, AJ, 125, 3302
- Gomes J. I., et al., 2013, MNRAS, 431, 2745
- Gorlova N. I., Meyer M. R., Rieke G. H., Liebert J., 2003, ApJ, 593, 1074
- Hawley S. L., et al., 2002, AJ, 123, 3409
- Hewett P. C., Warren S. J., Leggett S. K., Hodgkin S. T., 2006, MNRAS, 367, 454
- Joergens V., 2008, A&A, 492, 545
- Jones H. R. A., Longmore A. J., Allard F., Hauschildt P. H., 1996, MNRAS, 280, 77
- Kirkpatrick J. D., et al., 2000, AJ, 120, 447
- Kirkpatrick J. D., 2005, ARA&A, 43, 195
- Kirkpatrick J. D., et al., 2010, ApJS, 190, 100

- Kirkpatrick J. D., et al., 2012, ApJ, 753, 156
- Knapp G. R., et al., 2004, AJ, 127, 3553
- Kroupa P., 2001, MNRAS, 322, 231
- Kroupa P., Weidner C., Pflamm-Altenburg J., Thies I., Dabringhausen J., Marks M., Maschberger T., 2013, Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, 115
- Kurosawa R., Harries T. J., Littlefair S. P., 2006, MNRAS, 372, 1879
- Lawrence A., et al., 2007, MNRAS, 379, 1599
- Leggett S. K., et al., 2000, ApJ, 536, L35
- Leggett S. K., et al., 2009, ApJ, 695, 1517
- Liu M. C., Leggett S. K., Golimowski D. A., Chiu K., Fan X., Geballe T. R., Schneider D. P., Brinkmann J., 2006, ApJ, 647, 1393
- Liu M. C., Leggett S. K., Chiu K., 2007, ApJ, 660, 1507
- Luhman K. L., Mamajek E. E., Allen P. R., Cruz K. L., 2009, ApJ, 703, 399
- Lodieu N., Dobbie P. D., Deacon N. R., Hodgkin S. T., Hambly N. C., Jameson R. F., 2007, MNRAS, 380, 712
- Lodieu N., Zapatero Osorio M. R., Rebolo R., Martín E. L., Hambly N. C., 2009, A&A, 505, 1115
- Lodieu N., Dobbie P. D., Hambly N. C., 2011, A&A, 527, A24
- Looper D. L., et al., 2008, ApJ, 686, 528
- Lucas P. W., Roche P. F., Allard F., Hauschildt P. H., 2001, MNRAS, 326, 695
- Malo L., Doyon R., Lafrenière D., Artigau É., Gagné J., Baron F., Riedel A., 2013, ApJ, 762, 88
- Malo L., Artigau É., Doyon R., Lafrenière D., Albert L., Gagné J., 2014, arXiv, arXiv:1402.6053
- Marley M. S., Seager S., Saumon D., Lodders K., Ackerman A. S., Freedman R. S., Fan X., 2002, ApJ, 568, 335
- Marocco F., et al., 2010, A&A, 524, A38
- Marocco F., et al., 2013, AJ, 146, 161
- Marocco F., et al., 2014, MNRAS, 439, 372
- Martín E. L., Delfosse X., Basri G., Goldman B., Forveille T., Zapatero Osorio M. R., 1999, AJ, 118, 2466
- Maxted P. F. L., Jef0fries R. D., 2005, MNRAS, 362, L45
- McMahon R. G., Banerji M., Gonzalez E., Koposov S. E., Bejar V. J., Lodieu N., Rebolo R., VHS Collaboration, 2013, Msngr, 154, 35
- Metchev S. A., Kirkpatrick J. D., Berriman G. B., Looper D., 2008, ApJ, 676, 1281
- Mihalas D., Binney J., 1981, San Francisco, CA, W. H. Freeman and Co., 1981. 608 p.
- Miller G. E., Scalo J. M., 1979, ApJS, 41, 513
- Murray D. N., et al., 2011, MNRAS, 414, 575
- Pinfield D. J., et al., 2008, MNRAS, 390, 304
- Pinfield D. J., et al., 2012, MNRAS, 422, 1922
- Press W. H., Flannery B. P., Teukolsky S. A., 1986, Cambridge: University Press, 1986
- Reid I. N., et al., 1999, ApJ, 521, 613
- Reid I. N., Gizis J. E., Hawley S. L., 2002, AJ, 124, 2721
- Reylé C., et al., 2010, A&A, 522, A112
- Robin A. C., Reylé C., Derrière S., Picaud S., 2003, A&A, 409, 523
- Salpeter E. E., 1955, ApJ, 121, 161
- Schmidt S. J., West A. A., Hawley S. L., Pineda J. S., 2010, AJ, 139, 1808
- Scholz R.-D., McCaughrean M. J., Lodieu N., Kuhlbrodt B., 2003, A&A, 398, L29

44 F. Marocco et al.

Scholz R.-D., 2010, A&A, 510, L8
Skrutskie M. F., et al., 2006, AJ, 131, 1163
Stephens D. C., et al., 2009, ApJ, 702, 154
Stumpf M. B., Brandner W., Köhler R., Bouy H., Henning T., 2009, AIPC, 1094, 561
Sumi T., et al., 2011, Natur, 473, 349
Taylor J. H., 1992, RSPTA, 341, 117
Tsuji T., Nakajima T., 2003, ApJ, 585, L151
Vernet J., et al., 2011, A&A, 536, A105
Wright E. L., et al., 2010, AJ, 140, 1868
York D. G., et al., 2010, MNRAS, 404, 1817
Zhang Z. H., et al., 2013, MNRAS, 434, 1005

APPENDIX A: OBSERVATIONS LOG

We present in Table A1 the log of the observations for our targets. For each object we show the date of observation, the standard used for telluric correction with its spectral type indicated in brackets, and the spectrophotometric standard used for flux calibration. Objects are referred to using their short ID, for the full ID and coordinates, please see Table 1.

ID	Observation date	Telluric	Spectrophotometric
	(YYYY-MM-DD)	standard (type)	standard
BRLT1	2011-09-19	HIP 014898 (B3V)	LTT 7987
BRLT2	2011-09-20	HIP 105164 (B5V)	LTT 7987
BRLT3	2010-11-28	HIP 038896 (B3V)	GD 71
BRLT5	2010-11-27	HIP 018926 (B3V)	GD 71
BRLT6	2011-09-18	HIP 013327 (B7V)	LTT 7987
BRLT7	2011-09-20	HIP 105164 (B5V)	LTT 7987
BRLT8	2011-09-21	HD 1160 (A0V)	LTT 7987
BRLT9	2011-09-19	HIP 014898 (B3V)	LTT 7987
BRLT10	2010-11-29	HIP 037502 (B2V)	GD 71
BRLT12	2011-09-21	HIP 014972 (B8V)	LTT 7987
BRLT14	2010-11-30	HIP 043520 (B3V)	GD 71
BRLT15	2011-09-20	HIP 001191 (B9V)	LTT 7987
BRLT16	2010-11-28	HIP 038896 (B3V)	GD 71
BRLT18	2010-11-30	HIP 041463 (B2V)	GD 71
BRLT20	2011-09-21	HIP 014972 (B8V)	LTT 7987
BRLT21	2010-11-27	HIP 018926 (B3V)	GD 71
BRLT22	2011-09-21	HD 216009 (A0V)	LTT 7987
BRLT24	2011-09-21	HD 216009 (A0V)	LTT 7987
BRLT26	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT27	2010-11-29	HIP 017734 (B8V)	GD 71
BRLT28	2011-10-04	HIP $105164 (B5V)$	LTT 7987
BRLT30	2010-11-28	HIP $041386 (B8V)$	GD 71
BRLT31	2011-09-18	HIP 013327 (B7V)	LTT 7987
BRLT32	2011-09-20	HIP 001191 (B9V)	LTT 7987
BRLT33	2011-09-19	HD $8864 (B1V)$	LTT 7987
BRLT35	2011-09-21	HD 2811 (A3V)	LTT 7987
BRLT37	2011-09-18	HIP 029429 (B1V)	LTT 7987
BRLT38	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT39	2011-09-18	HIP 029429 (B1V)	LTT 7987
BRLT40	2010-11-29	HIP 017734 (B8V)	GD 71
BRLT42	2011-09-20	HIP $022840 (B5V)$	LTT 7987
BRLT44	2010-11-30	HIP $026450 (B7V)$	GD 71
BRLT45	2011-09-21	HD $2811 (A3V)$	LTT 7987
BRLT46	2010-11-30	HIP $041463 (B2V)$	GD 71
BRLT48	2010-11-28	HIP 038896 (B3V)	GD 71
BRLT49	2011-10-04	HIP $018788 (B5V)$	LTT 7987
BRLT50	2010-11-30	HIP $043520 (B3V)$	GD 71
BRLT51	2011-09-19	HIP 013327 (B7V)	LTT 7987
BRLT52	2010-11-27	HIP 018926 (B3V)	GD 71
BRLT56	2010-11-29	HIP $038727 (B3V)$	GD 71
BRLT57	2010-11-30	HIP 043520 (B3V)	GD 71
BRLT58	2010-11-27	HIP 018926 (B3V)	GD 71
BRLT60	2010-11-28	HIP 038896 (B3V)	GD 71
BRLT62	2010-11-29	HIP 037502 (B2V)	GD 71
BRLT63	2011-10-03	HIP 017457 (B7V)	LTT 7987
BRLT64	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT65	2011-10-03	HIP 017457 (B7V)	LTT 7987
BRLT66	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT67	2013-04-05	HD 40335 (A0V)	LTT 3218
BRLT68	2013-04-06	HD 40335 (A0V)	LTT 3218
BRLT69	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT71	2010-11-29	HIP 037502 (B2V)	GD 71
BRLT72	2010-11-28	HIP 041386 (B8V)	GD 71
BRLT73	2010-11-28	HIP 041386 (B8V)	GD 71
BRLT74	2010-11-28	HIP 038896 (B3V)	GD 71
BRLT75	2011-02-22	HD 40335 (A0V)	LTT 3218
BRLT76	2011-02-23	HIP 030028 (B9V)	LTT 3218
BRLT78	2013-04-08	HR 3300 (A0V)	LTT 3218
BRLT81	2013-04-05	HR 3300 (A0V)	LTT 3218

	Continued	from the previous page.	
ID	Observation date	Telluric	Spectrophotometric
	(YYYY-MM-DD)	standard (type)	standard
BRLT82	2011-02-23	HIP 030028 (B9V)	LTT 3218
BRLT83	2011-02-22	HD 40335 (A0V)	LTT 3218
BRLT84	2010-11-27	HIP 018926 (B3V)	GD 71
BRLT85	2013-04-06	HR 3300 (A0V)	LTT 3218
BRLT87	2012-01-28	HD 62388 (A0V)	GD 71
BRLT88	2011-02-22	HIP 040581 (B9V)	LTT 3218
BRLT90	2011-02-22	HIP 040581 (B9V)	LTT 3218
BRLT91	2011-02-23	HIP 057451 (B8V)	LTT 3218
BRLT92	2011-02-23	HIP $041970 (B2.5V)$	LTT 3218
BRLT97	2011-02-23	HIP $041970 (B2.5V)$	LTT 3218
BRLT98	2013-04-06	HB 3300 (A0V)	LTT 3218
BRLT99	2013-04-07	HR 3300 $(A0V)$	LTT 3218
BRLT101	2013-04-09	HR 3300 $(A0V)$	LTT 3218
BRLT102	2013-04-05	HR 3300 (A0V)	LTT 3218
BRLT102	2010-04-00	HIP 057451 (B8V)	LTT 3218
BRLT104	2011-02-20	HD 40335 ($\Delta 0V$)	LTT 3218
BRI T105	2010-04-10	HID 40350 (R0V)	CD 71
BRLT106	2010-11-30	HP 3300 $(A0V)$	GD 71 ITT 2018
DRL1100 DDIT108	2013-04-00	$\frac{1111}{1111} \frac{3300}{63288} (A0V)$	CD 71
DRLI 100 DDI T111	2012-01-28	$\frac{\text{ID } 02588}{\text{ID } 2200} (A0V)$	GD 71 I TT 2019
DRLIIII DDIT119	2013-04-09	$\frac{1}{100} \frac{1}{2000} \frac{1}{1000} \frac{1}{1000}$	LII 0210 LTT 2019
DRLIII2 DDIT119	2013-04-00	$\frac{1}{100} \frac{1}{1000} \frac{1}{1000}$	LII 3210 LTT 2010
BRLIII3	2013-04-10	HD 40335 $(A0V)$	LTT 3218
BRLI114	2013-04-08	HR 3300 (AUV)	LTT 3218
BRLT116	2013-04-07	HR 3300 $(A0V)$	CD 51
BRLT117	2012-01-28	HD $62388 (A0V)$	GD 71
BRLT119	2013-04-07	HD 130163 $(A0V)$	LTT 3218
BRLT121	2013-04-05	HD 130163 (A0V)	LTT 3218
BRLT122	2011-02-23	HIP 049137 (B2.5V)	LTT 3218
BRLT123	2013-04-09	HIP 063225 (B9V)	LTT 3218
BRLT129	2011-02-22	HR 3300 $(A0V)$	LTT 3218
BRLT130	2013-04-09	${ m HR} 6572 ~({ m A0V})$	LTT 3218
BRLT131	2011-06-05	HIP $055051 (B1V)$	LTT 3218
BRLT133	2013-04-07	HD 130163 $(A0V)$	LTT 3218
BRLT135	2011-06-06	HIP $049110 (B9V)$	LTT 3218
BRLT136	2013-04-05	HD 130163 (A0V)	LTT 3218
BRLT137	2011-02-22	HIP 063225 (B9V)	LTT 3218
BRLT138	2011-06-05	HIP $055051 (B1V)$	LTT 3218
BRLT139	2013-04-05	HD 4130163 (A0V)	LTT 3218
BRLT140	2013-04-08	HIP 061257 (B9V)	LTT 3218
BRLT142	2011-02-23	HIP 049137 (B2.5V)	LTT 3218
BRLT144	2013-04-06	HD 130163 (A0V)	LTT 3218
BRLT145	2013-04-06	HIP 072505 (B9V)	LTT 3218
BRLT147	2011-06-05	HIP 055051 (B1V)	LTT 3218
BRLT149	2013-04-10	HR 3300 (A0V)	LTT 3218
BRLT152	2013-04-09	HR 6572 (A0V)	LTT 3218
BRLT153	2013-04-06	HIP 063225 (B9V)	LTT 3218
BRLT155	2011-06-07	HIP 076071 (B9V)	LTT 3218
BRLT159	2011-00-01	HD 130163 $(A0V)$	LTT 3218
BRLT162	2010 01 00	HD 129655 (A2V)	LTT 3218
BRLT163	2011-02-22	HIP 072154 (B9 5V)	LTT 3218
BRLT164	2013-04-09	HR 6572 ($\Delta 0V$)	LTT 3218
BRLT165	2010-04-09	HR 6572 (A0V)	LTT 2018
BDIT160	2010-04-00	HD 120162 ($A0V$)	LTT 2010
DRL1100 BBI T171	2010-04-09 2011 06 07	$\begin{array}{c} 11D 130103 (A0V) \\ HID 076071 (D0V) \end{array}$	LTT 2210 LTT 2210
DRL11/1 BD1/172	2011-00-07	HID 076071 (D9V)	LTT 9919
$\frac{DRL110}{DDTT170}$	2011-00-07	$\frac{1111}{1111} = 0.00011 (B9V)$	LTT 2010
DRL11/9	2011-00-07	$\frac{1111}{1111} = \frac{1100009}{100009} \left(\frac{1000}{100009} \right)$	LTT 2010
DRLT181	2011-02-22	$\frac{11}{129055} (A2V)$	LII 3218
BRL1182	2013-04-10	пр 130163 (AUV)	L11 3218
	Continu	ed on the next page.	

	Continued	from the previous page.	
ID	Observation date	Telluric	Spectrophotometric
	(YYYY-MM-DD)	standard (type)	standard
BRLT186	2011-06-05	HIP 055480 (B8V)	LTT 3218
BRLT190	2011-06-08	HIP 078530 (B9V)	LTT 3218
BRLT197	2011-06-08	HIP 078530 (B9V)	LTT 3218
BRLT198	2013-04-08	HD 130163 (A0V)	LTT 3218
BRLT202	2011-06-08	HIP 078530 (B9V)	LTT 3218
BRLT202	2011-06-05	HIP 055480 (B8V)	LTT 3218
BRLT206	$2011\ 00\ 00$ $2013\ 04\ 07$	HIP 072154 (B0 5V)	LTT 3218
DRL1200 DDLT207	2013-04-07	$\begin{array}{c} \text{HID} 0.72134 \text{ (D} 9.57 \text{)} \\ \text{HID} 0.76060 \text{ (P0V)} \end{array}$	LTT 2018
DRL1207	2011-00-07	$\begin{array}{c} \text{IIIF} 070009 \text{ (B9V)} \\ \text{IIID} 084445 \text{ (A0V)} \end{array}$	LTT 2210
DRL1210	2011-00-08	$\frac{1110}{1110} \frac{1000}{1000} $	L11 3218
BRL1212	2011-06-07	HIP 088374 (B9V)	LTT 3218
BRLT216	2013-04-10	HD 130163 $(A0V)$	LTT 3218
BRL1217	2013-04-05	HR 6572 (A0V)	L1 ⁻¹ 3218
BRLT218	2013-04-05	HIP 090337 (B9V)	LTT 3218
BRLT219	2011-06-08	HIP $084445 (B9V)$	LTT 3218
BRLT220	2013-04-08	HIP $076069 (B9V)$	LTT 3218
BRLT227	2013-04-08	HIP $076302 (B9V)$	LTT 3218
BRLT229	2013-04-10	HIP $072505 (B9V)$	LTT 3218
BRLT231	2013-04-06	HIP 065628 (B9V)	LTT 3218
BRLT232	2011-06-08	HIP 087150 (A0V)	LTT 3218
BRLT234	2011-02-22	HIP 085195 (B8V)	LTT 3218
BRLT236	2011-06-07	HIP 088374 (B9V)	LTT 3218
BRLT237	2012-01-28	HD 147778 (F0V)	GD 71
BRLT240	2013-04-09	HD 130163 $(A0V)$	LTT 3218
BRLT243	2013-04-07	HIP 072154 (B9 5V)	LTT 3218
BRLT247	2013-04-10	HIP 072505 (B9V)	LTT 3218
BRLT240	2013-04-10	HIP 072154 (B0 5V)	LTT 3218
BRLT250	2013-04-07	HIP 076060 (B0V)	LTT 3218
BRI T250	2013-04-10	HIP 076060 (B9V)	LTT 2218
BRI T252	2013-04-10	HD 130163 $(A0V)$	LTT 2218
DRL1200 DDIT054	2013-04-09	11D 130103 (A0V) 111D 076826 (D0 5V)	LTT 2210
DRL1204	2013-04-10	$\begin{array}{c} \text{IIIF} 070830 (B9.3V) \\ \text{IIID} 000971 (D0V) \end{array}$	LTT 2010
BRL1298	2011-00-07	HIP 090271 (B9V)	LII 3218
BRL1260	2013-04-09	HD 130163 $(A0V)$	LTT 3218
BRL1262	2013-04-05	HD 130163 $(A0V)$	LTT 3218
BRLT265	2013-04-09	HD 130163 (A0V)	LTT 3218
BRLT269	2013-04-10	HIP 076836 (B9.5V)	LTT 3218
BRLT270	2013-04-07	HIP 072154 (B9.5V)	LTT 3218
BRLT274	2013-04-06	HIP $072505 (B9V)$	LTT 3218
BRLT275	2011-06-07	HIP $090271 (B9V)$	LTT 3218
BRLT276	2013-04-09	HD 130163 $(A0V)$	LTT 3218
BRLT279	2013-04-08	HIP $076666 (B9.5V)$	LTT 3218
BRLT281	2012-01-28	HD 147778 (F0V)	GD 71
BRLT283	2013-04-09	HD 130163 (A0V)	LTT 3218
BRLT285	2013-04-06	HD 130163 (A0V)	LTT 3218
BRLT287	2011-06-08	HIP 091286 (B9V)	LTT 3218
BRLT290	2013-04-08	HIP 071974 (B9.5V)	LTT 3218
BRLT295	2011-06-08	HIP 087150 (A0V)	LTT 3218
BRLT296	2013-04-05	HD 130163 (A0V)	LTT 3218
BRLT297	2013-04-09	HD 130163 (A0V)	LTT 3218
BRLT299	2011-06-08	HIP 091286 (B9V)	LTT 3218
BRLT301	2013-04-10	HIP 076836 (B9.5V)	LTT 3218
BRLT302	2013-04-07	HIP 089684 (B9V)	LTT 3218
BRLT305	2011-06-08	HIP 113821 (B9V)	LTT 3218
BRITSOS	2011-06-07	HIP 001286 (R0V)	LTT 2018
BRIT207	2011-00-07	HR 6579 $(\Lambda 0V)$	LTT 7027
BBI T301	2011-09-10	HIP $117097 (R0V)$	LTT 7087
BB1 2000	2011-10-00	$\begin{array}{c} \mathbf{H} \mathbf{H} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	LTT 7007
DDI T911	2011-10-00	$\begin{array}{c} 1111 014149 (D(V)) \\ 1111 000490 (D0V) \end{array}$	LTT 7007
DRLIJII	2011-09-19	$\frac{111}{1000} \frac{1000}{1000} \frac$	LII (987
BRL1312	2011-09-20	HD 216009 (AUV)	L111/1987

Continued from the previous page

D-20HD 216009 (A0V)Continued on the next page.

	Continued	from the previous page	
ID	Observation date	Telluric	Spectrophotometric
	(YYYY-MM-DD)	standard (type)	standard
BRLT313	2010-11-30	HIP 041463 (B2V)	GD 71
BRLT314	2011-06-07	HIP 106243 (A0V)	LTT 3218
BRLT315	2011-09-19	HIP 098428 (B2V)	LTT 7987
BRLT316	2011-09-21	HR 6572 (A0V)	LTT 7987
BRLT317	2010-11-28	HIP 041386 (B8V)	GD 71
BRLT318	2011-09-18	HIP $105164 (B5V)$	LTT 7987
BRLT319	2011-10-04	HIP 117927 (B9V)	LTT 7987
BRLT320	2011-09-20	HD 201941 (A2V)	LTT 7987
BRLT321	2011-06-08	HIP 113821 (B9V)	LTT 3218
BRLT322	2011-09-18	HIP $105164 (B5V)$	LTT 7987
BRLT323	2010-11-29	HIP $037502 (B2V)$	GD 71
BRLT325	2011-09-19	HIP 103889 (B6V)	LTT 7987
BRLT328	2010-11-29	HIP 038727 (B3V)	GD 71
BRLT330	2011-09-20	HD 201941 (A2V)	LTT 7987
BRLT331	2011-09-19	HIP 103889 (B6V)	LTT 7987
BRLT332	2011-09-18	HIP 117315 (B3V)	LTT 7987
BRLT333	2010-11-28	HIP 041386 (B8V)	GD 71
BRLT334	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT335	2011-09-21	HD 1160 $(A0V)$	LTT 7987
BRLT338	2010-11-27	HIP 044423 (B6V)	GD 71
BRLT340	2011-10-04	HIP 117927 (B9V)	LTT 7987
BRLT343	2010-11-28	HIP 038896 (B3V)	GD 71
BRLT344	2011-09-18	HIP 117315 (B3V)	LTT 7987

Table A1: The log of the observations. For each target we specify the observation date, the telluric standard, and the spectrophotometric standard used.

APPENDIX B: ADDITIONAL PHOTOMETRY

We present in Table B1 additional photometric data for our targets. SDSS data were obtained from the DR10, while WISE data were obtained from the All-Sky Data Release (Wright et al. 2010). None of our targets is detected in the WISE W4 band. Objects are referred to using their short ID, for the full ID and coordinates, please see Table 1.

50 F. Marocco et al.

ID	SDSS u	SDSS q	SDSS r	WISE W1	WISE W2	WISE W3	Notes
BRLT1	23.838 ± 0.626	24.458 ± 0.483	24.103 ± 0.500	15.326 ± 0.047	14.870 ± 0.093	> 12.144	
BRLT2	24.875 ± 0.749	25.306 ± 0.526	24.139 ± 0.549	16.484 ± 0.111	16.172 ± 0.325	12.452 ± 0.495	
BRLT3	24.177 ± 0.789	25.244 ± 0.524	24.198 ± 0.700	14.949 ± 0.039	14.340 ± 0.060	> 12.359	
BRLT6	22.220 ± 0.575	25.576 ± 0.535	23.935 ± 0.480	16.054 ± 0.074	16.187 ± 0.364	> 12.400	
BRLT7	$24\ 241\pm0\ 806$	25.025 ± 0.570	25.135 ± 0.651	15.073 ± 0.044	14845 ± 0.167	> 11.062	
BRLT8	25.520 ± 0.593	25.620 ± 0.010 25.621 ± 0.527	25.100 ± 0.001 25.402 ± 0.556	15.035 ± 0.039	14.529 ± 0.155	11380 ± 0404	
BRLT9	20.020 ± 0.000 24.663 ± 0.718	25.021 ± 0.021 25.126 ± 0.594	24.757 ± 0.627	15.009 ± 0.000 15.818 ± 0.057	15.934 ± 0.307	> 12 472	
BRLT10	24.005 ± 0.110 25.035 ±1.030	25.120 ± 0.004 25.436 ± 0.724	24.101 ± 0.021 24.274 ± 0.674	14.261 ± 0.037 14.261 ± 0.032	13.660 ± 0.042	> 12.472 > 12.20	
BRLT12	20.000 ± 1.000 24.413 ± 0.855	25.450 ± 0.124 25.464 ± 0.578	24.214 ± 0.014 25.008 ±0.553	14.201 ± 0.032 16 105 ± 0.088	15.000 ± 0.042 15.072 ± 0.255	> 12.220 > 12.462	
BRIT14	24.415 ± 0.000	20.404 ± 0.018 24.808 ± 0.638	25.000 ± 0.003 24.627 ± 0.668	15.135 ± 0.000 15.512 ± 0.054	15.972 ± 0.200 15.107 ± 0.118	> 12.402 > 12.522	
DRL114 DDIT15	25.500 ± 0.500	24.090 ± 0.030	24.027±0.008	15.512 ± 0.054 15.552 ± 0.055	15.197 ± 0.118 14.070 ± 0.002	212.022 12.022 12.026 \pm 0.200	
DLL15 DLL16	 25 206⊥0 678	 22 766⊥0 240	 วว ⊗ว4⊥0 264	15.002 ± 0.000 15.007 ± 0.072	14.970 ± 0.092 16.212 ± 0.200	12.270 ± 0.390 > 12.140	
DRL110	25.200 ± 0.078	25.700 ± 0.540	23.024 ± 0.304	15.997 ± 0.075 15.001 ± 0.075	10.212 ± 0.390 15 660 ± 0.192	> 12.140	
DRL110	 22 FOOLO FOC		 94 100 L 0 559	15.991 ± 0.075	13.000 ± 0.183	11.023 ± 0.229	a
DRL120	25.369 ± 0.320	24.549 ± 0.407	24.190 ± 0.005			10 500 1 0 400	
BRL121	25.344 ± 0.546	24.571 ± 0.482	25.030 ± 0.473	15.396 ± 0.051	14.926 ± 0.094	12.500 ± 0.466	1
BRL122	•••	•••	•••	16.539 ± 0.107	16.242 ± 0.290	> 12.546	b
BRL124				15.717 ± 0.061	15.651 ± 0.171	> 12.362	a
BRLT26	23.926 ± 0.725	25.185 ± 0.608	23.984 ± 0.523	14.470 ± 0.031	14.112 ± 0.045	> 12.474	
BRLT27	23.771 ± 0.581	24.641 ± 0.438	24.509 ± 0.439	15.941 ± 0.057	15.051 ± 0.081	> 12.969	
BRLT28				15.565 ± 0.049	15.063 ± 0.088	> 12.862	
BRLT30	24.774 ± 0.679	25.009 ± 0.592	23.269 ± 0.312	14.203 ± 0.031	13.897 ± 0.045	11.867 ± 0.266	
BRLT31	•••		•••	15.993 ± 0.065	15.377 ± 0.121	> 12.843	
BRLT32	25.614 ± 0.443	25.910 ± 0.419	23.931 ± 0.376	16.146 ± 0.071	15.675 ± 0.157	12.703 ± 0.498	a
BRLT33	24.387 ± 1.161	25.716 ± 0.657	24.111 ± 0.722	14.081 ± 0.027	13.934 ± 0.042	> 12.534	a
BRLT35	23.405 ± 0.562	$22.996 {\pm} 0.182$	22.143 ± 0.145	16.029 ± 0.062	15.782 ± 0.160	> 12.893	
BRLT37	24.977 ± 0.819	26.486 ± 0.386	$24.369 {\pm} 0.651$	15.573 ± 0.045	14.988 ± 0.081	> 12.757	
BRLT38				14.586 ± 0.031	13.894 ± 0.040	12.476 ± 0.398	a
BRLT39	$23.380{\pm}0.536$	$25.269 {\pm} 0.651$	$25.765 {\pm} 0.485$	15.486 ± 0.043	15.082 ± 0.085	> 12.896	
BRLT42				16.129 ± 0.064	15.614 ± 0.124	> 12.313	
BRLT44	$24.917 {\pm} 0.671$	$25.160 {\pm} 0.516$	$24.273 {\pm} 0.426$	15.415 ± 0.043	15.006 ± 0.080	> 12.381	
BRLT45	$24.476 {\pm} 0.891$	$25.863 {\pm} 0.443$	$24.955 {\pm} 0.735$	16.557 ± 0.087	15.436 ± 0.109	12.160 ± 0.263	a
BRLT46	23.572 ± 0.615	$26.307 {\pm} 0.361$	$25.108 {\pm} 0.559$	16.529 ± 0.084	16.820 ± 0.375	> 12.978	
BRLT48				15.408 ± 0.047	14.954 ± 0.101	> 12.559	
BRLT49				16.472 ± 0.071	16.707 ± 0.316	> 12.894	a
BRLT50							
BRLT51				16.015 ± 0.075	15.494 ± 0.149	> 12.382	
BRLT52	26.277 ± 0.398	25.536 ± 0.483	24.661 ± 0.606	14.827 ± 0.038	14.389 ± 0.064	> 12.414	
BRLT56				15.906 ± 0.073	16.354 ± 0.313	12.320 ± 0.393	
BRLT57	24.694 ± 0.982	24.127 ± 0.440	25.370 ± 0.670	16.713 ± 0.135	16.207 ± 0.289	11.873 ± 0.273	
BRLT58	25.090 ± 0.730	25.011 ± 0.630	23.224 ± 0.329	15.431 ± 0.052	15.140 ± 0.108	> 12.363	
BRLT60	20.000±0.100	20.01120.000	20.22120.020	15.101 ± 0.002 15.918 ± 0.073	15.318 ± 0.124	> 12.000 > 12.217	a
BRLT62	•••		•••	15.387 ± 0.051	15.010 ± 0.121 15.244 ± 0.120	> 12.511 > 12.560	a
BRLT63			•••	16.544 ± 0.001	> 16.354	> 12.000 > 12.622	
BRLT64	23731 ± 0713	25302 ± 0518	 24 443+0 599	15.183 ± 0.045	1/10.004 1/10.007 + 0.007	12.022 12.022 12.022	
BRLT65	20.101 ± 0.110	20.002 ± 0.010	24.445±0.000	15.105 ± 0.045 17.210 ± 0.187	14.511 ± 0.051 > 16 318	$> 12.570 \pm 0.411$	
BRLT66	24.346 ± 1.055	25552 ± 0570	24.125 ± 0.688	14.532 ± 0.035	14.211 ± 0.050	> 12.041 > 12.680	
BRIT67	24.340 ± 1.033 24.027 ± 0.786	25.552 ± 0.570 24.780 ± 0.730	24.125 ± 0.000 25.607 ± 0.478	14.002 ± 0.000	14.211 ± 0.059	> 12.000	
DDITES	24.921 ± 0.180 22.774 ±0.501	24.769 ± 0.739 25.241 ±0.442	25.007 ± 0.478 24.800 ± 0.520	15.069 ± 0.042	14506 ± 0.065		
DRL100	25.774 ± 0.591	20.341 ± 0.443	24.800 ± 0.330 24.057 ± 0.206	15.008 ± 0.043	14.300 ± 0.003 15.426 ± 0.200	> 11.704 > 10.107	
DRL109	25.719 ± 0.550	24.907 ± 0.498	24.037 ± 0.390	15.948 ± 0.005	13.430 ± 0.200	> 12.107	
BRL171				•••	•••	•••	
BRL172	23.410 ± 1.052	24.455 ± 0.722	25.224 ± 0.930		10 000 1 0 041		
BRL173	25.073 ± 0.736	25.068±0.521	24.403 ± 0.370	10.029 ± 0.080	10.238 ± 0.341	> 12.510	a
BRET74	24.673 ± 0.795	25.305 ± 0.527	24.448 ± 0.597	15.650 ± 0.059	14.954 ± 0.099	> 11.958	
BRLT75	23.684 ± 0.615	24.621 ± 0.475	25.085 ± 0.557	16.912 ± 0.156	16.855 ± 0.511	> 12.688	
BRLT76				16.042 ± 0.082	15.965 ± 0.218	> 12.546	
BRLT78			•••	14.685 ± 0.035	14.581 ± 0.067	> 12.550	a
BRLT81	•••	•••	•••	16.672 ± 0.124	15.908 ± 0.213	> 12.260	a
BRLT82	24.002 ± 0.823	$24.488 {\pm} 0.515$	24.230 ± 0.653	16.209 ± 0.088	15.916 ± 0.193	> 12.773	
BRLT83							
BRLT84	$24.581 {\pm} 0.730$	25.502 ± 0.551	$24.214 {\pm} 0.563$	15.292 ± 0.049	14.948 ± 0.104	11.953 ± 0.287	a

Continued from the previous page.							
ID	SDSS u	SDSS g	SDSS r	WISE W1	WISE W2	WISE W3	Notes
BRLT85				17.072 ± 0.175	16.513 ± 0.377	> 12.563	a
BRLT87	24.569 ± 0.679	24.555 ± 0.271	23.857 ± 0.353	15.192 ± 0.047	14.325 ± 0.068	> 12.401	a
BRLT88				15.647 ± 0.058	15.389 ± 0.131	> 12.218	
BRLT91	23.362 ± 0.585	24.402 ± 0.568	24.936 ± 0.822	15.524 ± 0.051	14.799 ± 0.079	> 12.248	a
BRLT92	24.847 ± 1.101	24.946 ± 0.816	24.948 ± 0.872	15.323 ± 0.047	15.148 ± 0.111	> 12.519	a
BRLT97	25.263 ± 0.974	25.142 ± 0.693	24.174 ± 0.735	16.724 ± 0.135	16.489 ± 0.368	> 12.693	
BRLT98	•••	•••	•••	16.919 ± 0.151	15.055 ± 0.105	> 12.728	
BRLT99	•••	•••	•••	15.333 ± 0.047	15.122 ± 0.108	> 12.758	
BRLT101	•••	•••	•••	16.576 ± 0.119	15.928 ± 0.226	> 12.348	
BRLT102				16.851 ± 0.138	16.424 ± 0.328	> 12.729	
BRL1103 DDI T104	24.170 ± 1.030	25.110 ± 0.398	24.737 ± 0.799 24.762 ± 0.716	15.370 ± 0.048 15.644 ± 0.056	14.911 ± 0.080 15.226 ± 0.124	12.227 ± 0.343	
DRL1104 PDIT105	24.107 ± 0.740 25.601 ± 0.822	23.134 ± 0.040 24.710 ± 0.578	24.703 ± 0.710 24.062 ± 0.508	15.044 ± 0.050 14.567 ± 0.024	15.550 ± 0.124 14.202 ± 0.055	> 12.760 10.750 ± 0.522	a
DRL1105 PDLT106	25.091 ± 0.022	24.119 ± 0.010	24.003 ± 0.098	14.307 ± 0.034 16.110 ± 0.080	14.292 ± 0.000 15.814 \pm 0.107	12.750 ± 0.555	0
DRL1100	 22 252⊥0 552	 25 717⊥0 569		10.119 ± 0.080 14.425 ± 0.022	13.814 ± 0.197 12.064 ± 0.045	> 12.505 > 12.752	a
BRIT111	23.232 ± 0.333	25.717 ± 0.508	24.010 ± 0.390	14.425 ± 0.033 15.072 ± 0.074	15.904 ± 0.045 16.020 ± 0.241	> 12.752 > 12.302	a
BRLT112	 24 020 \pm 0 758	 25 282±0 560	 24.032±0.566	15.972 ± 0.074 16.354 ± 0.100	10.020 ± 0.241 15.065 ± 0.236	> 12.592 > 12.581	
BRLT112	24.920 ± 0.100 25.044 ± 0.777	25.282 ± 0.500 25.138 ± 0.525	24.032 ± 0.000 24.436 ± 0.625	16.034 ± 0.100 16.411 ± 0.101	16.300 ± 0.200 16.230 ± 0.202	> 12.001 > 12.644	
BRLT114	23.044 ± 0.111 23.821 ±0.576	20.130 ± 0.023 24.987 ± 0.473	24.430 ± 0.023 25 203 ±0.641	15.051 ± 0.039	10.230 ± 0.232 14.795 ± 0.071	> 12.044 > 12.027	
BRLT116	20.021±0.010	21.001±0.110	20.200±0.011	16.091 ± 0.000 16.290 ± 0.092	15501 ± 0.011	> 12.521 > 12.595	
BRLT117	25.180 ± 0.674	24.442 ± 0.416	23.839 ± 0.415	15.658 ± 0.061	15.346 ± 0.143	> 12.300	
BRLT119	201100201011		_0.000 ±0.110	15.646 ± 0.061	15.487 ± 0.164	> 12.384	
BRLT121	24.602 ± 0.715	25.610 ± 0.448	23.802 ± 0.324	16.175 ± 0.086	15.684 ± 0.174	> 12.512	
BRLT122	23.964 ± 0.706	24.874 ± 0.607	25.377 ± 0.604	15.716 ± 0.063	15.180 ± 0.119	> 12.660	
BRLT123	24.114 ± 1.036	24.261 ± 0.470	23.888 ± 0.416	15.900 ± 0.071	15.828 ± 0.213	12.159 ± 0.352	
BRLT129				15.144 ± 0.043	14.448 ± 0.089	> 12.053	
BRLT130				17.017 ± 0.173	16.174 ± 0.332	> 12.406	
BRLT131	25.223 ± 0.664	$24.494{\pm}0.495$	$23.530{\pm}0.378$	14.740 ± 0.036	13.741 ± 0.040	> 12.063	a
BRLT133				16.528 ± 0.108	16.126 ± 0.269	> 11.995	
BRLT135	$23.917 {\pm} 0.736$	$24.739 {\pm} 0.516$	$26.012{\pm}0.412$	15.335 ± 0.049	14.382 ± 0.068	12.474 ± 0.473	
BRLT136	$25.344{\pm}0.762$	$24.974{\pm}0.649$	$24.109 {\pm} 0.501$	16.612 ± 0.122	16.589 ± 0.409	> 12.314	
BRLT137	$24.496 {\pm} 0.645$	$24.780 {\pm} 0.417$	$25.144{\pm}0.542$				
BRLT138	$23.738 {\pm} 0.791$	$24.214{\pm}0.422$	$23.967 {\pm} 0.553$	14.742 ± 0.036	14.381 ± 0.061	> 12.615	
BRLT139				15.981 ± 0.069	15.749 ± 0.169	> 12.300	
BRLT140				16.797 ± 0.129	15.995 ± 0.214	> 12.599	
BRLT142	24.340 ± 0.915	24.974 ± 0.538	24.740 ± 0.598	14.611 ± 0.035	14.384 ± 0.066	> 11.892	
BRLT144	25.981 ± 0.673	23.618 ± 0.371	25.158 ± 0.982	15.656 ± 0.058	15.261 ± 0.117	> 12.165	
BRLT145	24.041 ± 0.903	24.509 ± 0.597	24.399 ± 0.689	16.272 ± 0.092	16.040 ± 0.231	> 12.743	
BRLT147	26.678 ± 0.385	24.526 ± 0.768	25.260 ± 0.863	16.070 ± 0.074	14.879 ± 0.086	> 12.704	
BRLT149				15.525 ± 0.055	15.257 ± 0.124	> 12.710	а
BRLT152	23.146 ± 0.402	26.318 ± 0.279	23.893 ± 0.437	16.623 ± 0.112	15.674 ± 0.166	> 12.679	
BRLT153	24.408 ± 1.060	25.243 ± 0.713	24.382 ± 0.884	16.497 ± 0.117	16.113 ± 0.267	> 11.918	
BRLT155	23.382 ± 0.495	25.934 ± 0.456	23.538 ± 0.392	15.087 ± 0.040	14.986 ± 0.095	> 12.121	
BRL1159	24.022 ± 1.198	25.010 ± 0.727	25.790 ± 0.525	15.751 ± 0.059	14.985 ± 0.094	> 12.383	
DRL1102 DDI T162	24.241 ± 1.044	25.114 ± 0.999	24.822 ± 0.830	$$ 15.001 \pm 0.067	 15 994 ± 0 199		
DRL1105 DDIT164	•••	•••	•••	15.991 ± 0.007	15.004 ± 0.100	> 12.017	
$\frac{DRL1104}{RRLT165}$	•••	•••	•••	 16 531 \pm 0 103	 16 346 ± 0 302	· > 12 257	
BRLT168	$25,000\pm0.881$	 24 888 \pm 0 712	24.343 ± 0.670	15.663 ± 0.061	15.385 ± 0.130	> 12.257 > 12.658	
BRLT171	25.000 ± 0.001 25.817 ± 0.650	24.000 ± 0.712 25.628 ± 0.693	24.345 ± 0.070 22.879 ±0.263	13.003 ± 0.001 13.001 ± 0.026	13.654 ± 0.047	> 12.000 > 11.060	
BRLT176	20.017 ± 0.050 24.552 ± 1.056	25.020 ± 0.000 24.712 ± 0.616	22.875 ± 0.205 24.854 ± 0.747	15.644 ± 0.026	15.054 ± 0.047 15.054 ± 0.127	> 11.505 > 11.640	я
BRLT179	24.344 ± 0.876	25.684 ± 0.569	24.427 ± 0.626	10.011 ± 0.000	10.001 ± 0.121	> 11.010	a
BRLT181	23.442 ± 0.473	24.633 ± 0.529	25.137 ± 0.604	16.168 ± 0.086	15.564 ± 0.170	> 12.150	
BRLT182				15.991 ± 0.062	15.143 ± 0.113	> 12.436	
BRLT186	24.541 ± 1.156	25.088 ± 0.878	22.658 ± 2.429	10.802 ± 0.025	10.652 ± 0.022	10.525 ± 0.079	
BRLT190				17.343 ± 0.198	16.363 ± 0.319	> 12.823	
BRLT197	$25.507 {\pm} 0.865$	$24.156 {\pm} 0.461$	$25.306 {\pm} 0.716$	15.050 ± 0.040	14.622 ± 0.071	> 12.443	
BRLT198	24.416 ± 0.929	$25.051 {\pm} 0.651$	$25.310 {\pm} 0.623$				
BRLT202	$25.332 {\pm} 0.885$	$24.855 {\pm} 0.533$	$24.696{\pm}0.661$	16.037 ± 0.069	15.269 ± 0.105	> 12.284	
			Continued on	the next page.			

52F. Marocco et al.

Continued from the previous page.

			Continued Itolii	the previous page.			
ID	SDSS u	SDSS g	SDSS r	WISE W1	WISE W2	WISE W3	Notes
BRLT203	$24.596 {\pm} 0.878$	24.697 ± 0.488	$24.506 {\pm} 0.687$	14.175 ± 0.028	13.781 ± 0.043	> 12.289	a
BRLT206	$24.118 {\pm} 0.829$	$24.947 {\pm} 0.612$	$24.619 {\pm} 0.723$	16.202 ± 0.079	16.205 ± 0.270	> 12.576	
BRLT207	$23.456 {\pm} 0.481$	24.455 ± 0.468	$23.699 {\pm} 0.390$	13.269 ± 0.024	12.754 ± 0.026	12.364 ± 0.297	
BRLT210	24.243 ± 0.789	24.187 ± 0.385	24.435 ± 0.487	15.300 ± 0.043	14.801 ± 0.072	> 12.885	
BRLT212				13.412 ± 0.024	13.123 ± 0.028	12.262 ± 0.267	
BRLT216	24.988 ± 0.761	25.322 ± 0.577	25.136 ± 0.555	14831 ± 0.034	14761 ± 0.063	> 12.959	а
BRLT217	24.179 ± 0.457	25.083 ± 0.503	24.589 ± 0.559	15.191 ± 0.038	14.392 ± 0.050	> 13.050	a
BRLT218	21.170 ± 0.101 $24,300\pm0.840$	20.000 ± 0.000 24.740 ± 0.445	24.000 ± 0.000 24.791 ± 0.519	14.586 ± 0.031	14.064 ± 0.040	> 13.000	
BRI T210	21.000 ± 0.019 24.281 ± 0.870	25.430 ± 0.584	24.085 ± 0.682	15.773 ± 0.040	15.286 ± 0.080	12.657 ± 0.360	0
DI(L1219 DDI T220	24.201 ± 0.019 22.020 ± 0.020	25.450 ± 0.004	24.305 ± 0.002	15.775 ± 0.049 15.065 ± 0.052	15.200 ± 0.009 15.466 ± 0.008	12.007 ± 0.000	a
DRL1220 DD17297	23.239 ± 0.932	20.409 ± 0.303	23.003 ± 0.403	13.905 ± 0.003 14.951 ± 0.022	13.400 ± 0.098 14.794 ± 0.069	> 12.947 > 12.720	
DRL1221	23.030 ± 0.030	23.200 ± 0.395	24.007 ± 0.514	14.601 ± 0.055	14.724 ± 0.002	> 12.730 > 12.072	a
BRL1229	23.843 ± 0.880	24.138 ± 0.433	23.993 ± 0.032	10.318 ± 0.078	10.328 ± 0.225	> 13.073	
BRL1231	25.911 ± 0.471	25.011 ± 0.488	24.283 ± 0.464	15.040 ± 0.035	14.852 ± 0.065	> 12.956	
BRL1232	23.250 ± 0.578	24.853 ± 0.695	24.499 ± 0.644	14.924 ± 0.033	14.222 ± 0.044	> 12.913	
BRLT234	24.161 ± 1.013	25.560 ± 0.554	23.891 ± 0.458	14.774 ± 0.031	14.530 ± 0.052	> 12.721	
BRLT236	24.100 ± 1.035	25.481 ± 0.712	23.311 ± 0.342	14.652 ± 0.030	14.474 ± 0.055	> 12.522	
BRLT237	25.244 ± 0.692	24.358 ± 0.442	24.303 ± 0.493	14.574 ± 0.029	14.216 ± 0.042	> 12.313	
BRLT240	25.592 ± 0.882	25.710 ± 0.775	23.682 ± 0.575	15.505 ± 0.042	15.245 ± 0.092	12.653 ± 0.414	a
BRLT243	$22.594{\pm}0.399$	$24.771 {\pm} 0.698$	23.643 ± 0.366	15.528 ± 0.044	14.887 ± 0.076	> 12.244	a
BRLT247				12.605 ± 0.023	12.440 ± 0.023	12.333 ± 0.275	a
BRLT249	$24.174{\pm}0.751$	24.522 ± 0.412	$24.177 {\pm} 0.508$	14.752 ± 0.032	14.363 ± 0.050	> 13.020	
BRLT250	$23.597{\pm}0.769$	$24.284{\pm}0.542$	$24.035 {\pm} 0.552$	15.602 ± 0.045	15.748 ± 0.140	> 12.646	
BRLT251	$25.799 {\pm} 0.503$	$24.553 {\pm} 0.427$	$23.956 {\pm} 0.426$	16.210 ± 0.069	15.716 ± 0.145	> 12.917	a
BRLT253				15.887 ± 0.052	15.464 ± 0.109	> 12.980	
BRLT254	$24.687 {\pm} 0.953$	$24.676 {\pm} 0.626$	$24.251 {\pm} 0.568$	15.236 ± 0.038	14.993 ± 0.074	> 13.095	
BRLT258	24.401 ± 0.659	24.879 ± 0.475	23.417 ± 0.316	13.237 ± 0.023	12.898 ± 0.026	12.424 ± 0.291	
BRLT260	23.616 ± 0.455	25.160 ± 0.508	25.156 ± 0.562	16.075 ± 0.059	15.608 ± 0.120	> 13.089	а
BRLT262				16.133 ± 0.062	15.852 ± 0.147	> 13.055	
BRLT265	25.207 ± 0.665	25.203 ± 0.432	24.183 ± 0.481	15.691 ± 0.047	15.261 ± 0.092	> 13.077	
BRLT269				13.408 ± 0.023	13.339 ± 0.031	12.832 ± 0.445	а
BRLT270	25453 ± 0725	25.963 ± 0.710	24550 ± 0594	15.841 ± 0.049	15.628 ± 0.118	> 13.080	a
BRLT274	20.100±0.120	20.000±0.110	21.000±0.001	14.606 ± 0.030	14.215 ± 0.044	> 12.000	
$\frac{DRLT274}{BRLT275}$	24.402 ± 0.808	24.248 ± 0.382	24.661 ± 0.564	13.676 ± 0.025	14.210 ± 0.044 13.220 ± 0.020	13000 ± 0.476	
BRI T276	24.402±0.000	24.240±0.302	24.001±0.004	15.070 ± 0.025 16.005 ± 0.053	15.229 ± 0.029 15.500 ± 0.126	15.000 ± 0.470 11.746 ± 0.204	
DILLI 270 DDI T270	 22.025⊥0.005	 24 402⊥0 565	 วว ว44⊥0 ว∾∾	15.000 ± 0.000 15.000 ± 0.000	15.039 ± 0.120 15.020 ± 0.085	11.740 ± 0.204 11.862 ± 0.100	
DDLT279	22.935 ± 0.995	24.493 ± 0.303	23.244 ± 0.200	15.252 ± 0.057 14.650 ± 0.021	15.039 ± 0.065 14.104 ± 0.044	11.002 ± 0.199	
DRL1201	23.781 ± 0.020	24.077 ± 0.087	23.310 ± 0.414	14.030 ± 0.031	14.104 ± 0.044	> 12.420	
BRL1283	24.743 ± 0.996	25.473 ± 0.357	24.109 ± 0.523	15.070 ± 0.044	15.507 ± 0.106	> 13.108	
BRL1285	25.048 ± 0.846	25.799 ± 0.480	24.153 ± 0.349	14.810 ± 0.031	14.540 ± 0.049	> 12.884	a
BRL1287	25.044 ± 0.842	25.048 ± 0.612	24.731 ± 0.674	14.944 ± 0.031	13.915 ± 0.037	12.366 ± 0.243	a
BRLT290	25.780 ± 0.564	24.543 ± 0.474	23.855 ± 0.422	15.294 ± 0.036	14.550 ± 0.053	> 12.696	
BRLT295	24.117 ± 0.800	24.704 ± 0.540	24.748 ± 0.602	15.096 ± 0.034	14.721 ± 0.059	> 13.177	a
BRLT296	23.456 ± 2.287	25.191 ± 0.717	25.446 ± 0.619	15.143 ± 0.043	14.816 ± 0.083	> 12.472	
BRLT297		•••		15.526 ± 0.054	14.973 ± 0.099	> 12.628	a
BRLT299	24.964 ± 0.773	25.427 ± 0.519	$23.559 {\pm} 0.503$	14.459 ± 0.033	14.149 ± 0.052	> 12.765	
BRLT301	24.007 ± 1.298	25.089 ± 0.485	$23.991 {\pm} 0.465$				
BRLT302	$22.769 {\pm} 0.390$	24.062 ± 0.392	$23.808 {\pm} 0.492$	15.743 ± 0.057	15.679 ± 0.164	> 12.773	
BRLT305	$23.682{\pm}0.569$	$25.880{\pm}0.384$	$24.273 {\pm} 0.438$				
BRLT306	$25.444{\pm}0.540$	$24.864{\pm}0.544$	$24.524{\pm}0.532$	15.838 ± 0.067	15.901 ± 0.235	> 12.528	
BRLT307	$23.964 {\pm} 0.744$	$25.433 {\pm} 0.544$	$23.738 {\pm} 0.369$	16.356 ± 0.094	16.281 ± 0.307	12.525 ± 0.463	
BRLT308				15.884 ± 0.076	15.607 ± 0.170	> 12.689	
BRLT309				14.295 ± 0.031	13.642 ± 0.041	12.283 ± 0.409	
BRLT311				16.456 ± 0.115	15.444 ± 0.155	> 12.394	
BRLT312	$25.887 {\pm} 0.387$	$23.971 {\pm} 0.284$	$23.362 {\pm} 0.255$	16.079 ± 0.077	15.700 ± 0.196	> 12.574	
BRLT313	23.645 ± 0.784	25.071 ± 0.495	23.669 ± 0.330	14.975 ± 0.045	14.723 ± 0.092	> 12.370	
BRLT314	24.358 ± 0.713	25.483 ± 0.406	24.499 ± 0.443	14.850 ± 0.035	14.493 ± 0.112	> 12.016	а
BRLT315	23.772 ± 0.586	24.682 ± 0.477	24.143 ± 0.440	16.281 ± 0.094	15.933 ± 0.250	11.788 ± 0.310	
BRLT316							
BRLT317	$23\ 402\pm0\ 578$	25.021 ± 0.528	22.857 ± 0.107	13.985 ± 0.028	13676 ± 0.045	> 12 437	
BRLT318	23.849 ± 0.010	24574 ± 0.520	25.001 ± 0.191 25.106 ± 0.694	16.805 ± 0.020 16.805 ± 0.103	14.872 ± 0.040	> 11 205	
DI(11010	20.049±0.140	24.014±0.000	20.100±0.024	10.000 ± 0.190	14.012 ± 0.001	/ 11.490	

Continued from the previous page.

ID	SDSS u	SDSS g	SDSS r	WISE W1	WISE W2	WISE W3	Notes
BRLT319							
BRLT320	$25.335 {\pm} 0.790$	$25.640{\pm}0.428$	$22.691{\pm}0.182$	16.289 ± 0.088	16.010 ± 0.223	> 12.436	
BRLT321				16.928 ± 0.143	15.893 ± 0.198	> 12.709	
BRLT322	$25.739 {\pm} 0.460$	$24.392{\pm}0.414$	$24.061{\pm}0.436$	15.662 ± 0.059	15.182 ± 0.113	> 12.692	
BRLT323	$24.523 {\pm} 0.872$	$25.515 {\pm} 0.543$	$24.157 {\pm} 0.531$	14.692 ± 0.036	14.639 ± 0.075	> 12.759	
BRLT325				16.900 ± 0.148	15.704 ± 0.175	> 12.630	
BRLT328	$25.200{\pm}0.562$	$25.430{\pm}0.434$	$23.723 {\pm} 0.339$	16.137 ± 0.085	15.963 ± 0.251	12.609 ± 0.526	
BRLT330	$23.799 {\pm} 0.617$	$24.587 {\pm} 0.277$	$25.362 {\pm} 0.517$	16.489 ± 0.112	15.919 ± 0.227	12.514 ± 0.518	
BRLT331	$25.168 {\pm} 0.627$	$24.844{\pm}0.371$	$25.189{\pm}0.494$				
BRLT332	$23.946 {\pm} 0.532$	$25.011 {\pm} 0.450$	$24.104{\pm}0.420$	16.613 ± 0.116	16.291 ± 0.298	> 12.702	
BRLT333	$25.389{\pm}0.517$	$25.548{\pm}0.403$	$25.321{\pm}0.383$	15.536 ± 0.054	14.778 ± 0.083	> 12.587	a
BRLT334	$23.770{\pm}0.463$	$25.300{\pm}0.560$	$23.735 {\pm} 0.372$	14.153 ± 0.030	13.989 ± 0.046	> 12.093	a
BRLT335				16.109 ± 0.075	15.540 ± 0.145	> 12.407	a
BRLT338				15.759 ± 0.061	15.398 ± 0.131	> 12.151	
BRLT340				16.079 ± 0.077	16.133 ± 0.277	> 12.447	
BRLT343	$24.499 {\pm} 0.774$	$24.432{\pm}0.571$	$24.377 {\pm} 0.556$	15.037 ± 0.043	14.650 ± 0.081	> 12.142	
BRLT344				15.715 ± 0.060	15.500 ± 0.146	> 12.100	

Table B1: Additional photometry for our targets, obtained from the SDSS DR10 and the *WISE* All-Sky Data Release. Notes: (a) WISE magnitudes likely affected by blending with nearby source or background galaxy; (b) WISE magnitudes likely affected by diffraction spikes of nearby source.