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Objective: Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized
spike-and-wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modula-
tion of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical
oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures.
Methods: Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering,
which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording
single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically
increased or decreased CN neuron activity could modulate GSWD occurrence as well as short-lasting, on-demand
CN stimulation could disrupt epileptic seizures.
Results: We found that a subset of CN neurons show phase-locked oscillatory firing during GSWDs and that manipu-
lating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of
the c-aminobutyric acid type A (GABA-A) agonist muscimol increased GSWD occurrence up to 37-fold, whereas
increasing the frequency and regularity of CN neuron firing with the use of GABA-A antagonist gabazine decimated
its occurrence. A single short-lasting (30–300 milliseconds) optogenetic stimulation of CN neuron activity abruptly
stopped GSWDs, even when applied unilaterally. Using a closed-loop system, GSWDs were detected and stopped
within 500 milliseconds.
Interpretation: CN neurons are potent modulators of pathological oscillations in thalamocortical network activity dur-
ing absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies
should be evaluated.
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Absence epilepsy is among the most prevalent forms

of generalized epilepsy among children and is char-

acterized by sudden periods of impaired consciousness

and behavioral arrest.1,2 Like other types of generalized

epilepsies, absence seizures are electrophysiologically

defined by oscillatory activity in cerebral cortex and the

thalamic complex.3 Thalamocortical oscillations are pri-

marily caused by excessive cortical activity and can be

identified in the electrocorticogram (ECoG) as general-

ized spike-and-wave discharges (GSWDs).3,4 The under-

lying excessive cortical activity not only excites thalamic

neurons, but also provides potent bisynaptic inhibition
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by means of cortical axonal collaterals to the inhibitory

reticular thalamic nucleus.3,5–7 Excess tonic c-aminobutyric

acid (GABA)-mediated inhibition in thalamus may also

contribute to absence seizures.3,7,8 Oscillatory cortical activ-

ity thereby poses a dual excitation–inhibition effect on

thalamic neurons, which drives thalamocortical network

oscillations.5,7–9

Recent studies in several rodent models indicate

that direct stimulation of thalamic nuclei10 or cerebral

cortex11 can be effective in disrupting thalamocortical

oscillations and thereby stopping generalized oscillations

in thalamocortical networks, such as GSWDs. Apart

from direct interventions in thalamus and cortex, tha-

lamic afferents can affect the balance in excitation and

inhibition and thereby potentially mediate thalamocorti-

cal oscillations. One of the initial stimulation sites to

prevent seizures in epileptic patients was the cerebellar

cortex.12–18 Yet, as shown in 3 controlled, blind stud-

ies,19–21 the impact of these cerebellar surface stimula-

tions was highly variable and probably reflects

irregularities in the converging inputs from superficial

and deeper parts of the cerebellar cortex neurons to the

cerebellar nuclei (CN).22

Given the considerable divergence of excitatory axo-

nal projections from the CN to a wide range of motor,

associative, and intralaminar thalamic nuclei,4,6,23–29 we

considered this region an ideal candidate to effectively

modulate thalamocortical oscillations. We hypothesized

that altering the firing patterns of CN neurons should

affect GSWD occurrence. To test this hypothesis, we uti-

lized homozygous tottering (tg) mice that frequently show

absence seizures and harbor a P601L missense mutation in

the Cacna1a gene that encodes the pore-forming a1A-subu-

nit of voltage-gated CaV2.1 Ca21 channels.30,31 Once we

established that tg CN neurons showed oscillatory action

potential firing patterns comparable to that found in rat

models for absence epilepsy,32 we assessed the effect of

increasing or decreasing CN neuronal firing on GSWD

occurrence by local pharmacological interventions using

modulators of GABAA-mediated neurotransmission. In

addition, we generated a closed-loop detection system for

on-demand optogenetic stimulation to stimulate CN neu-

rons with millisecond precision. Finally, to exclude the

possibility that our design of intervention is tailored to the

specific pathophysiology of tg mice, we extended our key

experiments to an unrelated mouse model for absence epi-

lepsy: the C3H/HeOuJ inbred mouse line.33

Materials and Methods

All experiments were performed in accordance with the Euro-

pean Communities Council Directive. Protocols were reviewed

and approved by local Dutch experimental animal committees.

Animals
Data were collected from 4- to 30-week-old homozygous and

wild-type littermates of natural mutant tg mice and 8- to 10-

week-old inbred C3H/HeOuJ mice. Male and female tg and

wild-type littermates were bred using heterozygous parents.

The colony, which was originally obtained from Jackson Labo-

ratory (Bar Harbor, ME), was maintained in C57BL/6NHsd

purchased from Harlan Laboratories (Horst, the Netherlands).

Conformation of the presence of the tg mutation in the

Cacna1a gene was obtained by polymerase chain reaction using

50-TTCTGGGTACCAGATACAGG-30 (forward) and 50-

AAGTGTCGAAGTTGGTGCGC-30 (reverse) primers (Euro-

gentech, Seraing, Belgium) and subsequent digestion using

restriction enzyme NsbI at the age of postnatal day (P) 9 to

P12. Male inbred C3H/HeOuJ mice were purchased from

Charles River Laboratories (Wilmington, MA).

Experimental Procedures

SURGERY. Mice were anesthetized with isoflurane (4% in

0.5l/min O2 for induction and 1.5% in 0.5l/min O2 for main-

tenance). The skull was exposed, cleaned, and treated with

OptiBond All-In-One (Kerr Corporation, Orange, CA) to

ensure adhesion of a light-curing hybrid composite (Charisma;

Heraeus Kulzer, Hanau, Germany) to the skull to form a pedes-

tal. Subsequently, five 200lm Teflon-coated silver ball tip elec-

trodes (Advent Research Materials, Eynsham, UK) or five 1mm

stainless steel screws were subdurally implanted for cortical

recordings by ECoG. Four of the electrodes were bilaterally

positioned above the primary motor cortex (11mm anterior-

posterior [AP]; 61mm medial - lateral [ML] relative to

bregma) and primary sensory cortex (21mm AP; 6 3.5mm

ML). A fifth electrode was placed in the rostral portion of the

interparietal bone to serve as reference (21mm AP relative to

lambda). The electrodes and their connectors were fixed to the

skull and embedded in a pedestal composed of the hybrid com-

posite or dental acrylic (Simplex Rapid; Associated Dental

Products, Kemdent Works, Purton, UK). To enable optogenetic

control of neuronal activity in CN, a subset of tg and C3H/

HeOuJ mice received 2 small (�0.5mm in diameter) cranioto-

mies in the interparietal bone (22mm AP relative to lambda;

61.5–2mm ML) to initially accommodate the injection pipette

and later the optical fibers. CN were stereotactically injected

bilaterally with 100 to 120nl of the AAV2-hSyn-

ChR2(H134R)-EYFP vector (kindly provided by Dr K. Dei-

sseroth [Stanford University] through the Vector Core at the

University of North Carolina) at a rate of �20nl/min 3 to 6

weeks prior to recordings. To allow electrophysiological record-

ings from CN neurons, all mice received bilateral craniotomies

(�2mm diameter) in the occipital bone without disrupting the

dura mater. Finally, a dental acrylic recording chamber (Simplex

rapid) was constructed. The exposed tissue was covered with

tetracycline-containing ointment (Terra-cortril; Pfizer, New

York, NY) and the recording chamber was sealed with bone

wax (Ethicon, Somerville, NJ). After surgery, the mice recovered

for at least 5 days (or 3 weeks in the case of virally injected
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mice) in their home cage and were allowed two �3-hour ses-

sions on consecutive days during which the mice were left

undisturbed to accommodate to the setup.

ELECTROPHYSIOLOGICAL RECORDINGS. During the

accommodation session, the animals’ motor behavior was visu-

ally inspected for behavioral correlates of the oscillatory cortical

activity during episodes of GSWDs. No consistent patterns of

movement were identified during such epileptic activity, as

described before in tg and other rodent models of absence epi-

lepsy.30,32,34 Recordings were performed in awake, head-fixed

animals, lasted no longer than 4 consecutive hours, and were

performed during various times of day. No consistent pattern

was identified in ECoG frequency spectra with respect to the

day–night cycle.35 While being head-restrained, mice were able

to move all limbs freely. Body temperature was supported using

a homeothermic pad (FHC, Bowdoin, ME). For extracellular

single unit recordings, custom-made, borosilicate glass capilla-

ries (outer diameter 5 1.5mm, inner diameter 5 0.86mm,

resistance 5 8–12MX, taper length 5�8mm, tip diameter-

5�1lm; Harvard Apparatus, Holliston, MA) filled with 2M

NaCl were positioned stereotactically using an electronic pipette

holder (SM7; Luigs & Neumann, Ratingen, Germany). CN

were localized by stereotactic location as well as the characteris-

tic sound and density of neuronal activity.36 To record from

medial CN (MCN), electrodes were advanced through vermal

lobules 6 to 7 with 0� jaw angle relative to the interaural axis

to a depth of 1.6 to 2.4mm. To record from interposed nuclei

(IN), electrodes were advanced through the paravermal or hem-

ispheric part of lobules 6 to 7 using a yaw angle of �10� rela-

tive to the interaural axis to a depth of 1.8 to 2.7mm. To

record from lateral CN (LCN), electrodes were advanced

through the paravermal or hemispheric part of lobules 6 to 7

using a yaw angle of �25� relative to the interaural axis to a

depth of 2.7 to 4mm. A subset of electrophysiological recording

sites was identifiable following Evans blue injections (see below)

and confirmed the accuracy of our localization technique.

ECoGs were filtered online using a 1 to 100Hz band pass filter

and a 50Hz notch filter. Single unit extracellular recordings and

ECoGs were simultaneously sampled at 20kHz (Digidata

1322A; Molecular Devices, Axon Instruments, Sunnyvale, CA),

amplified, and stored for offline analysis (CyberAmp & Multi-

clamp 700A, Molecular Devices).

PHARMACOLOGICAL MODULATION OF CN NEURONAL

ACTION POTENTIAL FIRING. To bilaterally target the CN

for pharmacological intervention, their location was first deter-

mined as described above, after which we recorded 1 hour of

"baseline" ECoG. Next, a borosilicate glass capillary (Harvard

Apparatus; tip diameter 5�5lm) filled with 1 of the follow-

ing mixtures replaced the recording pipette to allow high spa-

tial accuracy of the injection: to decrease CN neuronal action

potential firing, we applied 0.5% muscimol (GABAA-agonist;

Tocris Bioscience, Bristol, UK) dissolved in 1M NaCl (Sigma-

Aldrich, St Louis, MO); to increase CN neuronal action

potential firing, we applied 100mM gabazine (GABAA- antago-

nist; Tocris) dissolved in 1M NaCl; or 1M NaCl for sham

injections. The experimenter was blinded for the solutions

injected. The solution was bilaterally administered to CN by

pressure injections of �150nl at a rate of �50nl/min, follow-

ing which 1 hour of postinjection ECoG was recorded. As an

additional control, similarly sized injections of saline with

either gabazine or muscimol were administered to lobules 6

and 7 and Crus I and Crus II of the cerebellar cortex. The

drugs were injected superficially (0.7–1mm from the surface)

to avoid spread to the CN. The locations of the injections

were identified with the use of electrophysiological recordings

and stereotactic coordinates, and most (19 of 26) CN injec-

tions were histologically confirmed using the fluorescence of

Evans blue (1% in 1M saline supplied to the injected solu-

tion; Supplementary Fig).37 To verify the effects of muscimol,

gabazine, and vehicle, we recorded extracellular activity in the

injected area during 20 to 50 minutes after the injections.

Immediately after acquiring the postinjection ECoG, an over-

dose of sodiumpentobarbital (0.15ml intraperitoneally) was

administered allowing transcardial perfusion (0.9% NaCl fol-

lowed by 4% paraformaldehyde in 0.1M phosphate buffer

[PB]; pH 5 7.4) to preserve the tissue for histological verifica-

tion of the injections.

OPTOGENETIC STIMULATION OF CN NEURONS. Optic

fibers (inner diameter 5 200lm, numerical aperture 5 0.39;

Thor labs, Newton, NJ, USA) were placed �200lm from the

injection site and connected to 470nm or 590nm light-emitting

diodes (LEDs; Thor labs), or �200lm above the brain, that is,

in the "wrong location." Light intensity at the tip of the

implantable fiber was 550 6 50lW/mm2 (measured after each

experiment). Activation of LEDs by a single 30- to 300-

millisecond pulse was triggered manually (open-loop) or by a

closed-loop detection system (as described below). In each

mouse, 4 stimulation protocols were used: (1) bilateral stimula-

tion (470nm), (2) unilateral stimulation (470nm), (3) bilateral

stimulation (590nm), and (4) bilateral stimulation (470nm)

with optical fibers outside of the CN (to exclude potential

effects of visual input on the GSWD occurrence.30,32 After the

last experimental session, animals were sedated and perfused (as

described above) to preserve tissue for histological verification

of channelrhodopsin-2 (ChR2) expression.

IMMUNOFLUORESCENCE. After perfusion, the cerebellum

was removed and postfixed in 4% paraformaldehyde in 0.1M

PB for 1.5 hour, placed in 10% sucrose in 0.1M PB at 4�C

overnight, and subsequently embedded in gelatin in 30%

sucrose (in 0.1M PB). Embedded brains were postfixed for 2.5

to 3 hours in 30% sucrose and 10% formaldehyde (in Milli-Q;

Millipore, Billerica, MA) and placed overnight in 30% sucrose

(in 0.1M PB) at 4�C. Forty-micrometer-thick transversal slices

were serially collected for immunofluorescent 40,6-diamidino-2-

phenylindole (DAPI) staining. To confirm correct localization

of the injections, fluorescence was assessed with images captured

using a confocal laser scanning microscope (LSM 700; Zeiss,

Lambrecht, Germany) at 555nm (Evans blue), 405nm (DAPI),

and 488 to 527nm (green fluorescent protein/yellow fluorescent

protein range) and optimized for contrast and brightness
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manually (Zen 2009 software, Zeiss). The fluorescent images

were captured using a tile-scan function of the Zen software

with a 310 objective and have been optimized for representa-

tion using Adobe Illustrator (Creative Suite 6; Adobe Systems,

San Jose, CA).

Data Analyses

OFFLINE GSWD DETECTION. To accurately determine start

and end of absence GSWDs and the locations of ECoG spikes

(negative ECoG peaks during episodes of GSWDs), a custom-

written GSWD detection algorithm (LabVIEW, National

Instruments, Austin, TX) was used. In short, we detected those

time points in the ECoG for which the first derivative of the

filtered ECoG traces (3rd order Butterworth 1Hz high pass)

changed polarity. The amplitude differences between each point

and both its neighbors were summed to detect fast, continuous

amplitude changes and potential GSWDs with a manually set

amplitude threshold. Series of GSWDs were marked when: (1)

5 threshold-exceeding data points appeared within 1 second

and (2) each of the intervals between the points was <300

milliseconds. Furthermore, we separated GSWDs by applying

the following 4 rules: (1) a point is the first spike of a GSWD

episode if there are no other spikes in the previous 300 milli-

seconds, (2) a point is the last spike of a GSWD episode if

there are no other spikes in the next 350 milliseconds, (3) the

inter-GSWD episode interval is �1 second, and (4) the mini-

mal GSWD duration is 1 second.

GSWD DEFINITION. An ictal period is defined as starting at

the first ECoG spike of a GSWD and ending at the last ECoG

spike. Unless stated otherwise, spike-and-wave discharges that

lasted >1 second and appeared in both M1 and S1 were con-

sidered GSWDs.

An interictal period is defined as the time in between

GSWDs starting 2 seconds after 1 GSWD and ending 2 sec-

onds before the next GSWD.

DETECTION OF ACTION POTENTIALS IN EXTRACELLULAR

RECORDINGS. Extracellular recordings were included if activ-

ity was well isolated and held stable for >100 seconds. Action

potential detection in extracellular traces was performed using

threshold-based analyses with customized MATLAB (Math-

Works, Natick, MA) routines incorporating principal compo-

nent analysis of the spike waveform or with the MATLAB-

based program SpikeTrain (Neurasmus, Erasmus MC Holding,

Rotterdam, the Netherlands).

GSWD-RELATED FIRING PATTERN MODULATION. A

custom-written algorithm in LabVIEW was used to assess

whether CN neurons showed GSWD-modulated firing patterns

during GSWDs in the ECoG of the contralateral primary sen-

sory cortex (in the case of medial CN neurons) or primary

motor cortex (in the case of interposed or lateral CN neurons).

The minimum duration per episode was set at 2 seconds to

construct GSWD-triggered raster plots and peri-GSWD time

histograms (PSTHs) with a 5-millisecond bin width, which

allowed us to determine: (1) modulation amplitude: the ampli-

tude difference between the peak and trough near t 5 0; (2)

modulation frequency: frequency of the sine wave that fits the

PSTH best; and (3) mean power at GSWD frequency: a fast

Fourier transform (fft) between 6 and 9Hz (GSWD frequency

range). Next, the interspike intervals (ISIs) used for this PSTH

were randomly shuffled 500 times and converted into a new

PSTH with 5-millisecond bin width to create normal distribu-

tions of modulation amplitude and mean power at GSWD fre-

quency. Z scores were calculated for the real and shuffled data

by applying: Z 5 (X 2 m)/r, where X 5 the value based on the

original PSTH, m5 the mean of the bootstrapped normal dis-

tribution, and r 5 its standard deviation (SD). Cells were iden-

tified as GSWD modulated if: (1) the modulation amplitude

was significantly higher than expected by chance (Z� 1.96,

p� 0.05), (2) the cell modulated at GSWD frequency (6–

9Hz), and (3) the mean power at GSWD frequency was signifi-

cantly higher than expected by chance (Z� 1.96, p� 0.05).

Because all CN neurons that showed significant Z scores of

mean power at GSWD frequency also showed significantly

higher modulation amplitudes, the former was used for further

analyses. The term Z score refers to mean power at GSWD fre-

quency unless stated otherwise.

COHERENCE. To determine the spectral coherence between the

activity of a CN neuron and the ECoG signal during GSWDs, a

custom-written MATLAB routine was used. The extracellular signal

was time-binned at 1-millisecond precision, convolved with a

sinc(x)-kernel (cutoff frequency 5 50Hz) and downsampled to

290 Hz. The ECoG signal was directly downsampled to 290 Hz.

The magnitude squared coherence was calculated per GSWD epi-

sode using Welch’s averaged, modified periodogram method and is

defined as: Cxy(f)5|Pxy(f)|
2/Pxx(f)*Pyy(f) with the following parame-

ters: window 5 290 (Hamming), noverlap 5 75%, length of fft

(nfft) 5 290, sampling frequency 5 290 (due to the window size,

only GSWDs> 1.5 seconds were considered). The coherence value

per GSWD was defined as the maximum coherence in the 6 to 9Hz

frequency band; a weighted average per cell based on GSWD dura-

tion was used.

FIRING PATTERN PARAMETERS. Firing patterns parameters

were assessed using custom-written LabVIEW-based programs

calculating firing frequency, coefficient of variation (CV) of

ISIs 5 rISI/mISI, CV2 5 2|ISIn11 2 ISIn|/(ISIn11 1 ISIn), and

burst index 5 number of action potentials within bursts/total

number of action potentials in a recording, where a burst is

defined as �3 consecutive action potentials with an ISI� 10

milliseconds. CV reports regularity of firing throughout the

whole recording and CV2 quantifies the regularity of firing on

a spike-to-spike basis.38 Firing pattern parameters were specifi-

cally calculated for ictal and interictal periods.

REGRESSION ANALYSES OF INTERICTAL CN ACTIVITY. To

evaluate whether there is a type of CN neuron that is predis-

posed for ictal phase-locking during GSWDs, we analyzed the

neurons’ interictal activity using a custom-made MATLAB

routine, aiming to probe the predictability of the ictal activ-

ity. We used Gaussian process regression,39 which is
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considered to be among the best nonlinear regression meth-

ods, to determine whether the GSWD modulation of the

activity was predictable from the interictal activity of the neu-

rons. The measures that enabled the prediction of the modu-

lation amplitude most accurately were CV, log-interval

entropy, firing frequency, and permutation entropy. The inter-

ictal parts of the extracellular recordings were divided into 1-

second bins. To calculate the log-interval entropy, in which

entropy measures the predictability of a system, first a natural

logarithm of the intervals, in milliseconds, was taken to con-

struct a histogram with a bin width of 0.02 loge (time). Fur-

thermore, a Gaussian convolution was performed using a

kernel of one-sixth SD of the log(ISIs).

The entropy of the ISI histogram p(Ii) was calculated by:

EntðIÞ52
XN

i51

pðIiÞlog2pðIiÞ (1)

Furthermore, we analyzed the permutation entropy,

which is calculated as the predictability of the order of neigh-

boring ISIs rather than the actual values of the ISIs.40

NORMALIZED GSWD OCCURRENCE AND DURA-

TION. GSWDs were detected using the offline ECoG detec-

tion algorithm described above. Total number of GSWDs and

average GSWD duration were calculated and normalized to

baseline values.

ASSESSMENT OF CELLULAR RESPONSES TO OPTOGE-

NETIC STIMULATION. Action potentials were detected as

described above. A custom-written LabVIEW program was used

to construct light-triggered raster plots and peri–stimulus time

histograms with a 5-millisecond bin width. Changes in CN

neuronal firing rate upon optical stimulation were subsequently

determined by calculating the total number of action potentials

during light pulses divided by the total length of the pulse and

compared with the baseline firing rate (calculated from the total

recording time excluding the optogenetic stimulation). In the

current study, we consider differences in action potential firing

rate exceeding 25% as responsive.

ASSESSMENT OF IMPACT OF OPTOGENETIC CEREBELLAR

OUTPUT STIMULATION ON GSWDS. The start and end of

seizures were identified using the offline GSWD detection

method described above. A custom-written LabVIEW program

was used to assess the effectiveness of optogenetic stimulation

in stopping GSWDs. Only light pulses triggered prior to the

natural end of the seizure were used for analysis. The time dif-

ference between the light pulse and the end of the seizure was

calculated. The seizure was considered "stopped by the optoge-

netic stimulation" when this time difference did not exceed 150

milliseconds. Mean power at GSWD frequency (6–9Hz) was

calculated using FFT of the ECoG signal recorded during 1-

second or 0.5-second (in the case of closed-loop optogenetic

stimulation) time periods before and after the light pulse. Aver-

aged responses to light pulses are represented per animal and

per stimulus condition by averaging complex Morlet wavelets of

4-second windows ranging from 2 seconds before to 2 seconds

after the stimulus.

ASSESSMENT OF ONSET OF OPTICAL CEREBELLAR NUCLEI

STIMULATION RELATIVE TO GSWD CYCLE. The time dif-

ference between the onset of stimulation and the last spike

before stimulation was calculated and divided by the median

length of 1 GSWD during that episode, representing 1 cycle of

360�. The outcome was subsequently multiplied by 360. Note

that the optogenetic stimuli were not initiated with a fixed

delay after the occurrence of an ECoG spike; the delay

depended on the visual interpretation and reaction speed of the

experimenter (for manual activation of the LED) or on the

closed-loop detection system for which the delay depends on

the variability of the ECoG directly prior to the GSWDs (see

below and van Dongen et al41).

CLOSED-LOOP GSWD DETECTION. The GSWD detection

system has been implemented using a real-time, digital wavelet-

filter setup. The analog pre-filter used for digitization has 4

functions: (1) amplification, (2) offset injection to match the

signal to the input range of the analog to digital converter

(ADC), (3) artifact removal by using a second-order 0.4Hz

high-pass filter, and (4) antialiasing by means of a second-order

23.4Hz low-pass filter. The filter is realized using discrete com-

ponents on a prototype printed circuit board (PCB). Following

the PCB, the wavelet filter functionality is implemented on a

TI Sitara AM335x ARM microprocessor (Texas Instruments,

Dallas, TX). It first digitizes the signal from the analog filter

with its integrated ADC using a sampling frequency of 100Hz.

Subsequently the signal is filtered using a wavelet filter and the

GSWD episode is detected using signal thresholding. Upon

detection an output LED is switched on to stimulate the target

area in the cerebellum. Wavelet filters have previously been suc-

cessfully applied for real-time GSWD detection.42 Here we

applied a complex Morlet wavelet at 6.7Hz that resembled a

GSWD. The wavelet filter was implemented as a finite impulse

response filter by truncating the ideal complex Morlet wavelet

as described earlier.43 Using the 2 thresholds that are set man-

ually during a recording session, the GSWDs are detected dur-

ing a positive, high-threshold crossing and the detection is

ended upon a negative, low-threshold crossing.

STATISTICAL ANALYSES. Statistical differences in firing pat-

tern parameters between independent groups of CN neuronal

recordings (eg, from tg mice, their wild-type littermates,

GSWD-modulated and non–GSWD-modulated, before and

after gabazine injection) were determined using multivariate

analyses of variance (MANOVAs) with firing frequency, CV,

CV2, and burst index as dependent variables and group as

independent variable. When a MANOVA showed a significant

result, post hoc analyses of variance (ANOVAs) were used to

assess contributions of individual firing pattern parameters with

Bonferroni corrected p-values.

Differences in coherence value between GWSD-

modulated and non–GWSD-modulated cells were assessed

using unpaired samples t tests. Cochran and Cox adjustment
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for the standard error of the estimate and the Satterthwaite

adjustment for the degrees of freedom were used because equal-

ity of variances was not assumed.

Differences in normalized number of GSWD episodes

and their duration between traces pre- and postinjection of

either muscimol, gabazine, or saline were tested by using

nonparametric Friedman ANOVAs with 1 within-subjects

factor (ie, time period) with 2 levels (baseline and

postinjection).

Differences in mean power at 6 to 9Hz before and after

a light pulse were tested using values from all individual pulses

by use of repeated measures analysis of covariance (ANCOVA)

with 1 within-subjects factor (ie, period) with 2 levels (before

and after light pulse) and mouse number added as covariate to

correct for variance in the within-subject factor explained by

variance between mice. To test whether the time difference

between the last ECoG spike before optogenetic stimulation

and the subsequent spike deviates from the median interval

between 2 ECoG spikes in "stopped seizures," a similar statisti-

cal approach was used. A repeated measures ANCOVA was

used with 1 within-subject factor with 2 levels, both and ECoG

spike intervals. Mouse number was again added as covariate.

Because the number of seizures not terminated by the optoge-

netic stimulation was low, a nonparametric Friedman ANOVA

was used to test the same difference.

To determine whether the phase angle of the optogenetic

stimulation onset was related to the success rate of stopping

GSWDs, we compared the phase angle distribution of success-

ful attempts to that of the unsuccessful attempts. We tested for

significant differences between these distributions using the

nonparametric 2-sample Kuiper test.

A p-value� 0.05 (a) was considered significant unless

Bonferroni correction was used; in that case, a p-value of

a/n was considered significant. Two-tailed testing was used

for all statistical analyses and all were performed using

SPSS 20.0 software (IBM, Armonk, NY). Exact information

and outcomes regarding statistical testing are depicted in

Tables 1 to 7.

Results

GSWD-Related CN Neuronal Activity
We first investigated whether CN neuronal activity and

ECoG were correlated during spontaneous episodes of

GSWDs in awake head-fixed homozygous tg mice (Fig

1). We found no significant differences in GSWD occur-

rence (t24 5 20.002, p 5 0.998) and GSWD duration

(t24 5 0.195, p 5 0.847) between male and female tg

mice, which is in line with data from other experimental

animal models of absence epilepsy (reviewed by van Luij-

telaar et al44). Therefore, we grouped data of both gen-

ders. GSWDs appeared simultaneously in bilateral

primary motor (M1) and sensory cortices (S1) at

7.6 6 0.6Hz with an average duration of 3.6 6 1.4 sec-

onds (n 5 17 mice). The GSWD frequency and appear-

ance were comparable to earlier reports of awake tg and

other rodent models of absence epilepsy.30,32,34,45 During

these GSWDs, action potential firing of a subset of CN

neurons was phase-locked to GSWDs. A typical GSWD-

modulated CN neuron showed oscillatory action poten-

tial firing at GSWD frequency; repetitive firing was

observed during the wave in the ECoG, whereas the

spike was accompanied by a pause in CN neuronal activ-

ity. These GSWD-modulated CN neurons showed signif-

icantly increased coherence with ECoG during seizures

(p� 0.001; see Table 1). In each CN type (MCN, IN,

and LCN), a substantial portion of the recorded CN

neurons showed GSWD-modulated firing, with the high-

est percentage (73%; 49 of 67 neurons) in the IN and

35% (35 of 100 neurons) and 44% (19 of 43 neurons)

in the MCN and LCN, respectively. We found no statis-

tical difference (p 5 0.512) in the phase of modulation

of neuronal firing relative to the GSWD cycle for these 3

nuclei.

To assess whether GSWD-modulated CN neurons

differed from non-modulating CN neurons in baseline

activity, we compared their interictal firing patterns. Dur-

ing interictal periods GSWD-modulated CN neurons

showed a higher firing frequency and a more irregular,

burstlike firing pattern compared with non-modulated

neurons (p-values< 0.01), and both modulated and non-

modulated groups showed a more irregular firing pattern

and increased burst index compared to CN neurons

recorded from wild-type littermates (p-values< 0.01; see

Fig 1G, Table 1). Gaussian process regression39 revealed

that in tg mice interictal CN neuronal firing was corre-

lated with the ictal firing pattern; 94% of neurons that

phase-locked their activity to GSWDs could be predicted

correctly, based on their interictal firing pattern (see Fig

1H). These data indicate that a large subset of neurons

within each CN consistently shows seizure-modulated

activity, that is, that these GSWD-modulated CN neu-

rons are different from non-modulated neurons in basic,

interictal firing patterns and that GSWD-related modula-

tion can be predicted based on these interictal firing

patterns.

Impact on GSWD Occurrence of
Pharmacological Interventions That Modulate
CN Action Potential Firing
CN neurons provide excitatory input to thalamic neu-

rons4,6,23–29 and thereby potentially contribute to the

excitation–inhibition balance that sets thalamic activity

patterns. Excess tonic inhibition of thalamic activity has

been linked to the occurrence of absence seizures,3,7,8

and therefore we hypothesized that a decrease in CN

output in tg should increase the occurrence of GSWDs,
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TABLE 1. CN Action Potential Firing

Tested Data Compared Groups N p t or F-value Statistical Test

Differences in phase relation between CN modulation and GSWD cycle

Phase relation MCN 100 0.512 F(2,100) 5 0.674 Watson–Williams
multiple sample test

IN 67

LCN 43

Differences in CN neuronal action potential firing

Coherence tg GSWD-modulated 103 <0.001a t(195.9) 5 13.35 Independent
samples t test

tg non-modulated 107

Overall Wild type 94 <0.001a F(4,192) 5 68.72 MANOVA
(Pillai’s trace)

tg GSWD-modulated
interictal

103

Firing frequency Wild type 94 0.095 F(1,195) 5 2.81 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

Coefficient of variation Wild type 94 <0.001a F(1,195) 5 58.88 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

CV2 Wild type 94 <0.001a F(1,195) 5 34.63 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

Burst index Wild type 94 <0.001a F(1,195) 5 230.86 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

Overall Wild type 94 <0.001a F(4,196) 5 16.66 MANOVA
(Pillai’s trace)

tg non-modulated
interictal

107

Firing frequency Wild type 94 0.092 F(1,199) 5 2.86 ANOVA
(Bonferroni)

tg non-modulated
interictal

107

Coefficient of variation Wild type 94 <0.001a F(1,199) 5 15.13 ANOVA (Bonferroni)

tg non-modulated
interictal

107

CV2 Wild type 94 <0.01a F(1,199) 5 6.79 ANOVA (Bonferroni)

tg non-modulated
interictal

107

Burst index Wild type 94 <0.001a F(1,199) 5 37.99 ANOVA (Bonferroni)

tg non-modulated
interictal

107
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whereas increased CN output should have the opposite

effect. To test this, we locally applied (see Fig 2, Supple-

mentary Fig) either GABAA-agonist muscimol, which

stopped CN neuronal action potential firing (no statisti-

cal comparison was possible due to complete cessation of

action potential firing), or GABAA-antagonist gabazine

(SR-95531), which consistently increased the frequency

(p< 0.01) and regularity of CN neuronal firing

(p< 0.001; see Table 2). Upon bilateral CN injections

with muscimol, the occurrence of GSWDs increased by

160 to 3,700% postinjection (p< 0.01; recorded for 60

minutes; peak of seizure occurrence 34.5 6 16.5 minutes

after injection; n 5 10). In contrast, bilateral CN injec-

tions with gabazine significantly reduced the occurrence

of GSWDs (p< 0.05; first seizure occurred 32.5 6 17.4

minutes after injection; n 5 10) and bilateral sham injec-

tions did not change GSWD occurrence (p 5 0.18). The

duration of GSWDs was not significantly changed fol-

lowing muscimol, gabazine, or saline injections in the

CN (muscimol: p 5 0.21; gabazine: p 5 0.32; saline:

p 5 0.41). As a control, we also injected similar quanti-

ties of gabazine or muscimol into the cerebellar cortex;

this had no significant effect on the GSWD occurrence

(p 5 0.66 and 0.32, respectively) or duration (p 5 0.66

for both gabazine and muscimol injections). Thus, phar-

macological manipulation of neuronal activity in the

CN, but not the cerebellar cortex, is highly effective in

modulating the occurrence of GSWDs in tg mice. Nota-

bly, we observed that muscimol and gabazine were most

effective when the injections were in the IN and/or LCN

(no statistical difference in impact on GSWD-occurrence

after IN and/or LCN injections; p 5 0.70; Mann–Whit-

ney U test) compared to injections in the MCN (p 5 0.07

for muscimol and p< 0.05 for gabazine; see Supplemen-

tary Fig, Table 3). To study whether these differences in

impact of pharmacological interventions aimed at the

MCN or the IN and LCN were due to a variable effect on

neuronal activity, we also performed single unit recordings

in the injected CN. Regardless of the injected nucleus,

muscimol effectively silenced all action potential firing

and gabazine consistently increased the firing frequency

and the regularity of action potential firing (all p-val-

ues< 0.01 for firing frequency, CV, and CV2; see Table

4). These findings indicate that although effects of musci-

mol and gabazine on the neuronal activity were similar

throughout all CN, the effect of manipulating activity in

the IN and LCN seems to exert a larger impact on

GSWD-occurrence in the mutants than targeting the

TABLE 1: Continued

Tested Data Compared Groups N p t or F-value Statistical Test

Overall tg GSWD-modulated
interictal

103 <0.001a F(4,205) 5 17.84 MANOVA (Pillai trace)

tg non-modulated interictal 107

Firing frequency tg GSWD-modulated
interictal

103 <0.001a F(1,208) 5 16.31 ANOVA (Bonferroni)

tg non-modulated interictal 107

Coefficient of variation tg GSWD-modulated
interictal

103 <0.01a F(1,208) 5 7.12 ANOVA (Bonferroni)

tg non-modulated interictal 107

CV2 tg GSWD-modulated
interictal

103 <0.01a F(1,208) 5 9.47 ANOVA (Bonferroni)

tg non-modulated interictal 107

Burst index tg GSWD-modulated
interictal

103 <0.001a F(1,208) 5 62.6 ANOVA (Bonferroni)

tg non-modulated interictal 107

Corresponds to Figure 1.
aStatistically significant.
ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave discharge; IN 5 interposed nuclei;
LCN 5 lateral cerebellar nuclei; MANOVA 5 multivariate analysis of variance; MCN 5 medial cerebellar nuclei.
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MCN. Instead, pharmacological interventions in the CN

of wild-type littermates (n 5 2) did not evoke GSWD-epi-

sodes (data not shown).

Although it has been shown that pharmacological

interventions can have sex-specific differences in animal

models of epilepsy46 that may contribute to the variability

of the current results, our ECoG recordings did not

show a trend toward a sex-specific impact of CN-specific

muscimol or gabazine application (see Fig 2F–H). This

finding was corroborated by the finding that muscimol

was equally effective in stopping CN action potential

FIGURE 1

FIGURE 1: Cerebellar nuclei (CN) neuronal action potential
firing patterns are modulated during generalized spike-and-
wave discharges (GSWDs). (A) Schematic of recording sites
for electrocorticogram (ECoG) from primary motor (M1) and
sensory (S1) cortices and extracellular single unit CN neuro-
nal (CNN) recordings (Th 5 thalamus, hpc 5 hippocampus).
(B) ECoG from M1 and S1 with GSWD episodes (horizontal
lines), indicating absence seizures. (C) Zoom of M1 episode
outlined in B and simultaneously recorded action potential
firing of a single CN neuron. (D; top panel) Zoom of out-
lined M1 and CNN recording in C. Red lines align ECoG
spike with pause in CNN action potential firing. Bottom
panel: Compass plot of phase difference between ECoG
spike and modulated CNN action potential firing.
IN 5 interposed nuclei; LCN 5 lateral CN; MCN 5 medial CN.
(E) Raster plot and accompanying peri–spike-and-wave dis-
charge time histogram of CNN action potentials (AP) for 3
consecutive seizures (t 5 0 is aligned with each ECoG spike).
(F) Distribution of absolute Z scores of mean power at
GSWD frequency as determined by fast Fourier transform
for MCN, IN, and LCN. Note that none of the negative Z
scores was below 21.96, and therefore showing absolute Z
scores does not change the number of data points below
and above the 1.96 cutoff score (corresponding to p < 0.05;
horizontal dashed line). Total number of recorded neurons:
MCN, n 5 100; IN, n 5 67; LCN, n 5 43. (G) Bar plots repre-
senting firing frequency, coefficient of variation, coefficient
of variation 2 (CV2), and burst index for CN neurons
recorded in wild-type littermate (n 5 94; black) and seizure-
modulated (n 5 103; light gray) and non-modulated CN neu-
rons recorded in tg (n 5 107; dark gray). For clarity, we trun-
cated the negative error bars. **p < 0.01, ***p < 0.001
(multivariate analysis of variance, post hoc analyses of var-
iance with Bonferroni correction; see Table 1). (H) Result of
the Gaussian process regression to predict the Z score from
interictal activity parameters (CV, firing frequency, log-
interval entropy, and permutation entropy) represented as a
confusion matrix. The prediction is characterized as being a
true positive (tp) when the predicted Z score is >1.96 (dot-
ted line) and the actual Z score is >1.96. A true negative
(tn) is scored when both predicted and actual Z scores are
<1.96. False positive (fp) and false negative (fn) refer to
neurons that have been incorrectly predicted as GSWD
modulated and GSWD non-modulated, respectively. Note
that we were able to achieve a precision of 0.70 and a recall
of 0.94, which means that 70% of CN neurons (n 5 210) that
were predicted as GSWD modulated actually were GSWD
modulated, and 94% of all GSWD-modulated neurons have
been identified correctly by the model. The Pearson correla-
tion coefficient (r) between the predicted Z score and the
actual Z score was 0.56 with p £ 0.05.
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firing in both male and female mice. Together, these

effects indicate that in the tg animal model of absence

epilepsy CN output forms an integral component of the

neuronal networks involved in generalized epilepsy and

may operate as a potent modulator of GSWD occur-

rence, irrespective of the gender.

Optogenetic Stimulation of Cerebellar Nuclei
The promising impact of long-lasting pharmacological

interventions at the level of the cerebellar output

prompted us to explore whether short-lasting neuromodu-

lation would be equally effective in stopping GSWDs,

that is, whether disrupting oscillatory CN neuronal activ-

ity immediately stops GSWDs. To test this hypothesis,

we virally expressed light-sensitive ChR2 cation channels

in CN neurons (see Fig 3). The optically evoked altera-

tion of CN neuronal firing (see below; Fig 5A) had a

robust effect on GSWD occurrence, in that most if not

all episodes abruptly stopped within 150 milliseconds of

the onset of bilateral stimulation (n 5 4; presented per

mouse: 76% [male], 84% [female], 92% [female], and

100% [female] stopped) and in that the power at GSWD

frequency was significantly reduced (p< 0.001; see Fig 3,

Table 5). Moreover, unilateral optical stimulation of CN

FIGURE 2

FIGURE 2: Bimodal modulation of generalized spike-and-
wave discharge (GSWD) occurrence by pharmacological
manipulation of cerebellar nuclei (CN) neuronal (CNN) action
potential firing. (A) Confocal image of coronal cerebellar
slice with bilateral muscimol injections (blue 5 40,6-diami-
dino-2-phenylindole (DAPI); red 5 Evans blue indicating the
injection sites; IN 5 interposed nucleus; IV 5 4th ventricle;
LCN 5 lateral CN; MCN 5 medial CN). (B) Examples of CNN
recordings before and after bilateral muscimol (top) and
gabazine (bottom) injections. (C) Bar plots for the impact of
gabazine on CNN firing as quantified by the difference
between pre- and postgabazine injections (n 5 81 and
n 5 55, respectively) in firing frequency, coefficient of varia-
tion, median CV2, and burst index; **p < 0.01, ***p < 0.001
(multivariate analysis of variance, post hoc analyses of var-
iance [ANOVAs] with Bonferroni corrections; see Table 2).
(D; top) Representative electrocorticogram (ECoG) of pri-
mary motor cortex (M1) ECoG before and after muscimol
injection; (bottom) representative M1 ECoG before and
after gabazine injection. (E) Time course of the effects of
muscimol (left) and gabazine (right) on the average number
of GSWD episodes (bin size 5 5 minutes). (F, G) Normalized
number of seizures (F) and normalized seizure duration (G)
before and after muscimol (left) and gabazine (right) injec-
tions (1 hour each) for bilateral injections in all CN (n 5 10
for both gabazine and muscimol), in IN/LCN (n 5 6 for mus-
cimol and 5 for gabazine), and in MCN (n 5 4 for muscimol
and 5 for gabazine). Note that for quantification of the sei-
zure duration after gabazine injection, only 9 mice are
included in all CN and 4 mice in the IN/LCN group, because
1 mouse did not show any GSWDs postinjection. Blue dots
indicate data recorded from male mice and red dots from
female. *p < 0.05, **p < 0.01 (Friedman ANOVAs and Mann–
Whitney U tests; see Tables 2 and 3). (H) Normalized num-
ber of GSWD episodes (left) and normalized GSWD episode
duration (right) for control experiments; saline injections in
the CN and muscimol and gabazine injections in superficial
cerebellar cortical areas.
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neurons proved equally effective in stopping GSWDs in

all recorded cortices, regardless of the laterality (n 5 3

females; presented per mouse: 89%, 92%, and 100%

stopped; power reduction: p< 0.001). Bilateral cerebellar

stimulation was ineffective when a different wavelength

(590nm) was applied (n 5 3 females; presented per

TABLE 2. Impact of Pharmacological Manipulations on CN Firing and GSWD Occurrence

Tested Data Compared Groups N p F Statistical Test

Effects of bilateral CN gabazine injections on CNN activity

Overall tg pregabazine 81 <0.001a F(4,131) 5 39.83 MANOVA (Pillai’s trace)

tg postgabazine 55

Firing frequency tg pregabazine 81 <0.001a F(1,134) 5 37.15 ANOVA (Bonferroni)

tg postgabazine 55

Coefficient of variation tg pregabazine 81 <0.001a F(1,134) 5 61.21 ANOVA (Bonferroni)

tg postgabazine 55

CV2 tg pregabazine 81 <0.001a F(1,134) 5 117.63 ANOVA (Bonferroni)

tg postgabazine 55

Burst index tg pregabazine 81 <0.01a F(1,134) 5 8.71 ANOVA (Bonferroni)

tg postgabazine 55

Effects of pharmacological manipulations of CN neurons on GSWDs

GSWD occurrence tg presaline CN 6 0.180 Friedman’s ANOVA

tg postsaline CN

tg premuscimol CN 10 <0.01a Friedman’s ANOVA

tg postmuscimol CN

tg pregabazine CN 10 <0.01a Friedman’s ANOVA

tg postgabazine CN

tg premuscimol cortex 5 0.655 Friedman’s ANOVA

tg postmuscimol cortex

tg pregabazine cortex 5 0.317 Friedman’s ANOVA

tg postgabazine cortex

GSWD duration tg presaline CN 6 0.414 Friedman’s ANOVA

tg postsaline CN

tg premuscimol CN 10 0.206 Friedman’s ANOVA

tg postmuscimol CN

tg pregabazine CN 10 0.317 Friedman’s ANOVA

tg postgabazine CN

tg premuscimol cortex 5 0.655 Friedman’s ANOVA

tg postmuscimol cortex

tg pregabazine cortex 5 0.655 Friedman’s ANOVA

tg postgabazine cortex

Corresponds to Figure 2C, F–H.
aStatistically significant.
ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; CNN 5 CN neuronal; GSWD 5 generalized spike-and-wave discharge;
MANOVA 5 multivariate analysis of variance.
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mouse: 0%, 0%, and 5% stopped; power reduction:

p 5 0.37) or when the optical fiber was placed outside

the CN region (n 5 3 females; presented per mouse: 0%,

5%, and 8% stopped; power reduction: p 5 0.28).

The type of seizure detection and on-demand

stimulation described above renders the procedure con-

ceptually unsuitable for clinical implementation in that

it would require constant online evaluation and decision

making by medics.47 Therefore, we developed a brain–

machine interface (BMI) approach by engineering a

closed-loop system for online detection of GSWDs and

subsequent optogenetic stimulation.41 Using offline

analysis, we optimized the performance of a wavelet-

based GSWD detection filter up to an accuracy of

96.5% and a median latency of 424 milliseconds.

When applied online, this on-demand, closed-loop

stimulation proved efficient in detecting and stopping

GSWDs; bilateral optical stimulation of ChR2-

expressing CN neurons stopped 93.4% of GSWDs and

unilateral stimulation stopped 91.8% of GSWDs, which

is also represented by the GSWD frequency power

reduction (n 5 3 female; p< 0.001; see Fig 3E, F, Table

5). Together, these data highlight that in a clinically

applicable BMI setting single pulse stimulation of CN

TABLE 3. Impact of Local Pharmacological Manipulations on GSWD Occurrence

Tested Data Compared Groups N p Statistical Test

GSWD occurrence pre vs post tg premuscimol IN/LCN 6 <0.05a Friedman’s ANOVA

tg postmuscimol IN/LCN

tg premuscimol MCN 4 <0.05a Friedman’s ANOVA

tg postmuscimol MCN

tg pregabazine IN/LCN 5 <0.05a Friedman’s ANOVA

tg postgabazine IN/LCN

tg pregabazine MCN 5 <0.05a Friedman’s ANOVA

tg postgabazine MCN

GSWD occurrence medial vs lateral CN tg postmuscimol IN/LCN 6 0.067 Mann–Whitney U test

tg postmuscimol MCN 4

tg postgabazine IN/LCN 5 <0.01a Mann–Whitney U test

tg postgabazine MCN 5

GSWD duration pre vs post tg premuscimol IN/LCN 6 0.102 Friedman’s ANOVA

tg postmuscimol IN/LCN

tg premuscimol MCN 4 1.00 Friedman’s ANOVA

tg postmuscimol MCN

tg pregabazine IN/LCN 5 1.00 Friedman’s ANOVA

tg postgabazine IN/LCN

tg pregabazine MCN 5 0.180 Friedman’s ANOVA

tg postgabazine MCN

GSWD duration medial vs lateral CN tg postmuscimol IN/LCN 6 0.352 Mann–Whitney U test

tg postmuscimol MCN 4

tg postgabazine IN/LCN 5 0.413 Mann–Whitney U test

tg postgabazine MCN 5

Corresponds to Figure 2F–G.
aStatistically significant.
ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave discharge; IN 5 interposed nuclei;
LCN 5 lateral cerebellar nuclei; MCN 5 medial cerebellar nuclei.
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TABLE 4. Impact of Local Pharmacological Manipulations on CN Spiking Activity

Tested Data Compared Groups N p F-value Statistical Test

Overall tg pregabazine IN/LCN 40 <0.001a F(4,62) 5 12.41 MANOVA (Pillai’s trace)

tg postgabazine IN/LCN 27

Firing frequency tg pregabazine IN/LCN 40 <0.01a F(1,65) 5 8.80 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

Coefficient of variation tg pregabazine IN/LCN 40 <0.001a F(1,65) 5 23.18 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

CV2 tg pregabazine IN/LCN 40 <0.001a F(1,65) 5 25.13 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

Burst index tg pregabazine IN/LCN 40 <0.01a F(1,65) 5 10.22 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

Overall tg pregabazine MCN 41 <0.001a F(4,64) 5 40.55 MANOVA (Pillai’s trace)

tg postgabazine MCN 28

Firing frequency tg pregabazine MCN 41 <0.001a F(1,67) 5 37.53 ANOVA (Bonferroni)

tg postgabazine MCN 28

Coefficient of variation tg pregabazine MCN 41 <0.001a F(1,67) 5 60.04 ANOVA (Bonferroni)

tg postgabazine MCN 28

CV2 tg pregabazine MCN 41 <0.001a F(1,67) 5 153.36 ANOVA (Bonferroni)

tg postgabazine MCN 28

Burst index tg pregabazine MCN 41 0.614 F(1,67) 5 0.61 ANOVA (Bonferroni)

tg postgabazine MCN 28

Overall tg pregabazine IN/LCN 40 <0.001a F(4,76) 5 6.28 MANOVA (Pillai’s trace)

tg pregabazine MCN 41

Firing frequency tg pregabazine IN/LCN 40 0.438 F(4,79) 5 0.61 ANOVA (Bonferroni)

tg pregabazine MCN 41

Coefficient of variation tg pregabazine IN/LCN 40 0.037 F(4,79) 5 4.51 ANOVA (Bonferroni)

tg pregabazine MCN 41

CV2 tg pregabazine IN/LCN 40 0.494 F(4,79) 5 0.47 ANOVA (Bonferroni)

tg pregabazine MCN 41

Burst index tg pregabazine IN/LCN 40 <0.001a F(4,79) 5 13.53 ANOVA (Bonferroni)

tg pregabazine MCN 41

Overall tg postgabazine IN/LCN 27 <0.001a F(4,50) 5 4.29 MANOVA (Pillai’s trace)

tg postgabazine MCN 28

Firing frequency tg postgabazine IN/LCN 27 0.344 F(4,53) 5 0.91 ANOVA (Bonferroni)

tg postgabazine MCN 28

Coefficient of variation tg postgabazine IN/LCN 27 �0.001a F(4,53) 5 13.55 ANOVA (Bonferroni)

tg postgabazine MCN 28

CV2 tg postgabazine IN/LCN 27 <0.01a F(4,53) 5 10.16 ANOVA (Bonferroni)

tg postgabazine MCN 28

Burst index tg postgabazine IN/LCN 27 0.801 F(4,53) 5 0.64 ANOVA (Bonferroni)

tg postgabazine MCN 28

aStatistically significant.
ANOVA 5 analysis of variance; IN 5 interposed nuclei; LCN 5 lateral cerebellar nuclei; MANOVA 5 multivariate analysis of var-
iance; MCN 5 medial cerebellar nuclei.



neurons suffices to stop GSWDs and that unilateral

stimulation is sufficiently powerful to disrupt bilateral

thalamocortical oscillations.

Key Findings Are Replicated in an Unrelated
Mouse Model of Absence Epilepsy
To exclude the possibility that our current findings in tg
are unique to their pathophysiology,30,48,49 we repeated

key experiments in C3H/HeOuJ, an inbred strain with an

absence epilepsy phenotype33 that is unrelated to tg.

Extracellular recordings in awake ECoG-monitored C3H/
HeOuJ mice confirmed that a smaller but substantial

portion (35%) of CN neurons showed phase-locked

action potential firing and significant coherence with

ECoG (p< 0.001) during GSWDs and that this oscilla-

tory firing was more irregular than their interictal firing

pattern (p< 0.001; Fig 4, Table 6). Similar to tg mutants

(see Fig 2), C3H/HeOuJ mice showed significantly more

seizures following local muscimol injections into CN

(p< 0.05; see Fig 4, Table 6). Moreover, also in C3H/

HeOuJ mice optogenetic stimulation reliably stopped

GSWD episodes (n 5 3; presented per mouse: 82%,

87%, and 91% stopped) and both bilateral and unilateral

stimuli significantly reduced power at GSWD frequency

(p< 0.01 and p< 0.001, respectively); the closed-loop

detection and intervention system reduced the GSWD

frequency power (p< 0.001 for bilateral and p< 0.05 for

unilateral stimulation); and neither optical stimulation at

590nm nor stimulation outside of CN significantly

reduced the GSWD frequency power (p 5 0.43 and

p 5 0.81, respectively). Thus, the main findings from

CN treatment of absence seizures in tg could be repli-

cated in C3H/HeOuJ mutants.

Optogenetic Stimulation of Presumptively
Excitatory CN Neurons Affects GSWDs
To investigate the mechanism underlying the potent

interruption of GSWDs by optogenetic stimulation of

CN in tg and C3H/HeOuJ, we quantified the responses

of CN neurons to bilateral optical stimulation. In C3H/

HeOuJ and tg injected with AAV2-hSyn-ChR2(H134R)-

EYFP, 33 of 50 responsive cells (66%) showed increased

action potential firing, whereas 17 (34%) showed

decreased firing (see Fig 5A). A further 16 recorded neu-

rons showed no response to optical stimulation. This

variety of responses is in line with the properties of the

construct that was used to transfect CN neurons with

ChR2. Because human synapsin (hSyn) is not specific to

a certain type of neuron,50 both excitatory and inhibitory

CN neurons expressed ChR2. Excitatory responses can

FIGURE 3

FIGURE 3: Optogenetic stimulation of cerebellar nuclei reli-
ably stops generalized spike-and-wave discharges (GSWDs).
(A) Confocal image of sagittal brain section showing
channelrhodopsin-2 (ChR2) expression in cerebellar nuclei
(CN) with projections to the thalamus (M1, S1 represent pri-
mary motor and sensory cortex, respectively). (B) Represen-
tative electrocorticogram (ECoG) of bilateral M1 (left M1
[lM1], right [rM1], and left S1 [lS1] recording), which exem-
plifies how bilateral optogenetic stimulation (470nm light
pulse of 100 milliseconds indicated by the vertical blue bar)
stops GSWDs in all recorded cortices. (C) Mean ECoG wave-
let spectrogram of contralateral M1 for all bilateral (n 5 25;
left panel) and unilateral stimuli (n 5 11; right panel) pre-
sented to a single mouse at 470nm. (D) As in C for (left)
590nm stimuli (n 5 36) and (right) stimulation at 470nm out-
side of CN (n 5 18). (E; right) Typical example of the effect
of bilateral closed-loop stimulation on GSWD recorded in
contralateral M1 and S1 and (left) mean ECoG wavelet spec-
trogram of all unilateral stimuli (n 5 44) presented to 1
mouse. (F) ECoG theta-band power before and after open-
loop (bilateral: 3 females, 1 male, n 5 178; unilateral: 3
female, n 5 43) stimulations with the wrong wavelength
(590nm; 3 females, n 5 107) and stimulations outside the
CN (3 females; n 5 185) as well as the responses to closed-
loop stimulation at 470nm in the CN (bilateral: 3 females,
n 5 227; unilateral: 3 females, n 5 49). ***p < 0.001
(repeated measures analysis of covariance; see Table 5).

ANNALS of Neurology

1040 Volume 77, No. 6



be recorded from neurons that express ChR2, and inhibi-

tory responses can be recorded from neurons that do not

express ChR2 but that receive input from ChR2-positive

inhibitory neurons, but neurons devoid of ChR2 expres-

sion either in their membrane or synaptic afferents will

not show any response.

Next, we questioned to what extent the impact of

optogenetic stimulation of CN neuronal action potential

firing depends on the phase of the thalamocortical oscil-

lations, that is, to what extent the disruption of GSWD-

modulated CN firing was evoked during cortical excita-

tion (the ECoG spike) and/or cortical inhibition (the

ECoG wave).51 Because we did not design our stimula-

tion protocol to be activated with a fixed delay relative

to the GSWDs, we could answer this question by com-

paring the phase values of the onset of effective stimuli

relative to the spike-and-wave cycle in M1 and S1 corti-

ces with those of ineffective stimuli (see Fig 5). For both

M1 and S1, success rates were lowest when the stimulus

was applied up to 60� before the peak of a spike (ie,

300�–360� in Fig 5C lower panels), but the overall dif-

ferences of these distributions did not reach statistical sig-

nificance (M1: p 5 0.13; S1: p 5 0.29). However,

effective stimuli evoked a significant shortening

(p< 0.01) of the interval between the last 2 ECoG

spikes, which is indicative of an excitatory effect on corti-

cal activity (Fig. 5D),51 and the timing of the last ECoG

spike could be predicted by the time of the stimulus

onset relative to the spike-and-wave cycle (p< 0.001; see

Fig 5E, Table 7). Together, our combined electrophysio-

logical and optogenetic data indicate that optogenetic

CN stimulation is most effective when applied during

the "wave" of the GSWD, during which cortical neurons

are normally silent.

Discussion

In this study, we show that in 2 unrelated mouse models

of absence epilepsy the activity of CN neurons can be

utilized to modulate the occurrence of GSWDs. We pro-

vide evidence that pharmacological interventions at the

level of CN can exert slow, but long-term, effects and

that optogenetic stimulation of CN neurons can exert

fast, short-term control. The different dynamics of these

experimental approaches, with converging outcomes,

align with the hypothesis that CN neurons can control

the balance of excitation and inhibition in the thalamus,

thereby resetting the oscillatory activity in thalamocorti-

cal loops. In both tg and C3H/HeOuJ strains of mice, a

substantial subset of CN neurons showed phase-locked

action potential firing during GSWDs, which is in line

with a previous study of oscillating cerebellar activity

during GSWDs in WAG/Rij and F344/BN rats.32 We

observed that 35% of neuronal recordings in the MCN

showed GSWD-modulated patterns, whereas the portions

TABLE 5. Effect of Optogenetic CN Stimulation on GSWD-Related Power

Tested Data Compared Groups N p F-value Statistical Test

Open-loop bilateral 470nm tg prestimulation 178 <0.001a F(1,176) 5 74.87 Repeated measures ANCOVA

tg poststimulation

Open-loop unilateral 470nm tg prestimulation 43 <0.001a F(1,41) 5 35.25 Repeated measures ANCOVA

tg poststimulation

590nm tg prestimulation 107 0.367 F(1,65) 5 0.82 Repeated measures ANCOVA

tg poststimulation

470nm outside CN tg prestimulation 185 0.283 F(1,65) 5 1.16 Repeated measures ANCOVA

tg poststimulation

Closed-loop bilateral
470nm

tg prestimulation 227 <0.001a F(1,65) 5 456.3 Repeated measures ANCOVA

tg poststimulation

Closed-loop unilateral
470nm

tg prestimulation 49 <0.001a F(1,65) 5 97.58 Repeated measures ANCOVA

tg poststimulation

Corresponds to Figure 3.
aStatistically significant.
ANCOVA 5 analysis of covariance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave discharge.
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of GSWD-modulated neurons in the IN and LCN were

higher (73% and 44%, respectively). Except for an ana-

tomical evaluation of the local density of large and small

soma-diameter CN neurons in the mouse brain52 and

computational studies on the clustering analysis of CN

neuronal action potential firing in tg,53,54 few experimen-

tal data are available that allow us to unequivocally pin-

point the type(s) of CN neurons responsible for

modification of GSWD activity. With respect to the

extracellular recordings, we presumably recorded mostly

FIGURE 4: Modulation of phase-locked cerebellar nuclei (CN) neuronal (CNN) activity stops generalized spike-and-wave dis-
charges (GSWDs) in C3H/HeOuJ mice. (A) Simultaneously recorded primary motor (M1) and sensory (S1) cortex electrocortico-
grams (ECoGs) and CNN activity. (B) Raster plot and peri–stimulus time histogram of single CNN activity (t 5 0 indicates each
ECoG spike). AP 5 action potential; SWD 5 spike-and-wave discharge. (C) Summary bar plots representing the mean differences
in firing pattern parameters between interictal and ictal periods (n 5 28). ***p < 0.001 (repeated measures analysis of variance
[ANOVA] with Bonferroni corrections; see Table 6). (D) Representative M1 ECoG before and after muscimol injection and (E)
corresponding normalized seizure occurrence and duration. *p < 0.05 (Friedman ANOVA; see Table 6). (F–H) Open-loop (top)
and closed-loop (bottom) optogenetic stimulation stops GSWDs as shown by: (F) typical example trace; (G) ECoG wavelet spec-
trogram averaged over all bilateral open-loop (n 5 11; top panel) stimuli in a single mouse and over all unilateral closed-loop
stimuli (n 5 18; bottom panel) in another mouse; and (H) ECoG theta-band power before and after optical stimulation for bilat-
eral open-loop stimuli (n 5 3 mice, n 5 19 stimulations; top left panel), unilateral open-loop stimuli (n 5 3 mice, n 5 19 stimula-
tions), bilateral closed- loop stimuli (n 5 3 mice, n 5 46 stimulations), and unilateral closed-loop stimuli (n 5 3 mice, n 5 30
stimulations). *p < 0.05, **p < 0.01 ***p < 0.001 (repeated measures ANCOVA; see Table 6).
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TABLE 6. Neuronal Firing and Effect of CN Manipulations on GSWD Occurrence

Tested Data Compared Groups N p t or F-value Statistical Test

Differences in CN neuronal action potential firing

Coherence C3H/HeOuJ
GSWD-modulated

28 <0.001a t(66.6) 5 5.92 Independent samples
t test

C3H/HeOuJ
non-modulated

51

Firing frequency C3H/HeOuJ
GSWD-modulated ictal

28 0.138 F(1,27) 5 2.34 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

Coefficient of variation C3H/HeOuJ
GSWD-modulated ictal

28 0.708 F(1,27) 5 0.14 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

CV2 C3H/HeOuJ
GSWD-modulated ictal

28 <0.001a F(1,27) 5 21.35 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

Burst index C3H/HeOuJ
GSWD-modulated ictal

28 <0.001a F(1,27) 5 15.64 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

Effects of pharmacological manipulations of CN neurons on GSWDs

GSWD occurrence C3H/HeOuJ premuscimol 4 <0.05a Friedman’s ANOVA

C3H/HeOuJ postmuscimol

GSWD duration C3H/HeOuJ premuscimol 4 0.317 Friedman’s ANOVA

C3H/HeOuJ postmuscimol

Effects of optogenetic CN stimulation on GSWD-related power

Open-loop bilateral 470nm C3H/HeOuJ
prestimulation

37 <0.01a F(1,35) 5 8.17 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Open-loop unilateral 470nm C3H/HeOuJ
prestimulation

19 <0.001a F(1,17) 5 20.32 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

590nm in CN C3H/HeOuJ
prestimulation

47 0.809 F(1,45) 5 0.06 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation
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from CN neurons with a large soma-diameter,55 which

incorporates mainly excitatory glutamatergic neurons,56

but in the MCN also inhibitory glycinergic projection

neurons.57 Interestingly, GSWD-modulated CN neurons

also showed characteristic firing patterns during the peri-

ods in between seizures. During these interictal periods,

they fired at higher frequencies with a more irregular and

burstlike pattern than the CN neurons that did not

comodulate with GSWDs. Thus, the interictal firing pat-

tern of CN neurons in tg and C3H/HeOuJ mice appears

to reliably predict whether these cells will show oscilla-

tions phase-locked to GSWDs during seizures.

Pharmacological manipulation of neuronal activity

in the cerebellum proved effective when the injections of

muscimol or gabazine were aimed at the CN, but not

when the cerebellar cortex was targeted.

We found that gabazine application was effective in

reducing GSWD occurrence in all CN, with the most

pronounced effects in IN and LCN. Along the same line,

muscimol injections in IN and LCN evoked the biggest

increase in GSWD occurrence. Effects of MCN injec-

tions were smaller but still significant. Because we know

little about the density of individual types of neurons

throughout the murine MCN, IN, and LCN,52,56 and

considering the similarity in effects of gabazine and mus-

cimol on neuronal activity in these nuclei, we cannot

draw a firm conclusion about a potentially differential

effect of either gabazine or muscimol on the respective

nuclei. These data raise the possibility that the difference

in impact on GSWD occurrence between manipulation

of MCN versus that of IN and LCN does not reflect a

difference in intrinsic activity, but rather a difference in

their efferent projections to the brainstem, midbrain, and

thalamus.24 Although all CN have been shown to project

to a wide range of thalamic subnuclei, such as the ven-

trolateral, ventromedian, centrolateral, centromedian, and

parafascicular nuclei,24,58 and thereby connect to a vari-

ety of thalamocortical networks, the impact of IN and

LCN has been shown to focus on the primary motor

cortex, whereas MCN impact more diffusely on thalamo-

cortical networks.59

CN axons that project to the thalamus have been

shown to originate from glutamatergic neurons, which

synapse predominantly perisomatically and evoke sub-

stantial excitatory responses.4,6,23–29 Upon CN injections

with muscimol, we must in effect have substantially

reduced the level of excitation of thalamic neurons and

thereby disturbed the balance of inhibition and excitation

in thalamocortical networks in favor of inhibition. One

of the main consequences of hyperpolarizing the mem-

brane potential of thalamic neurons through this inhibi-

tion is activation of hyperpolarization-activated

depolarizing cation currents (Ih) and CaV3.1 (T-type)

Ca21 channel currents, which typically results in the

burstlike action potential firing that can drive GSWDs in

thalamocortical networks.7,8,60,61 Moreover, in tg tha-

lamic relay neurons show increased T-type Ca21 channel

currents,62 which probably act synergistically with the

decreased excitation following muscimol treatment, likely

further increasing GSWD occurrence. In contrast, when

TABLE 6: Continued

Tested Data Compared Groups N p t or F-value Statistical Test

470nm outside CN C3H/HeOuJ
prestimulation

56 0.425 F(1,54) 5 0.65 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Closed-loop bilateral 470nm C3H/HeOuJ
prestimulation

46 <0.001a F(1,44) 5 14.20 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Closed-loop unilateral 470nm C3H/HeOuJ
prestimulation

30 <0.05a F(1,28) 5 4.60 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Corresponds to Figure 4.
aStatistically significant.
ANCOVA 5 analysis of covariance; ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave
discharge.
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we applied gabazine to CN, the balance of inhibition

and excitation in the thalamocortical networks probably

shifted toward excitation and thereby may have prevented

the activation of Ih and T-type Ca21 channel currents,

reducing the occurrence of burst firing and GSWDs.

The successful application of short periods of optogenetic

excitation of CN neurons not only confirmed the

deoscillating impact of gabazine, but further refined it by

revealing that GSWDs can be most efficiently stopped

when the interval between ECoG spikes, that is, wave-

length of the oscillations, is instantly shortened and

thereby reset. Given the relatively low success rate of

optogenetic stimulation in the period just preceding the

"spike" state of the GSWDs, which reflects the excitation

state of the thalamocortical relay neurons, it is parsimo-

nious to explain the effective resetting through optimal

interference during the inhibitory or "wave" state of the

GSWD.51 This explanation centered on the resetting

hypothesis argues against the possibility that GSWDs

were terminated by optogenetic activation of the CN

neurons that were inhibited. Regardless of the net effect

of CN stimulation on thalamocortical networks, the cur-

rent approach proved equally effective when applied

bilateral or unilateral. Most likely, instantly resetting the

balance of excitation and inhibition in thalamocortical

relay neurons on one side of the brain will also engage

the other side through combined ipsi- and contralateral

projections from the CN to the thalamus and through

interthalamic and intercortical connections.6,24,63

It remains to be established to what extent the cur-

rent findings for absence epilepsy can help to treat epi-

leptic patients suffering from other types of seizures. Our

findings on the impact of optogenetic manipulation of

CN firing patterns on GSWD occurrence seem to sup-

port the (pre)-clinical studies that apply deep brain stim-

ulation (DBS)64,65 in the CN may be an option to treat

epilepsy patients. So far, only 3 clinical studies applying

electrical DBS to the CN have been reported, which is

in contrast to the dozens of studies performed to investi-

gate the therapeutic use of cerebellar surface stimulation

(as reviewed by Krauss and Koubeissi66). Although

FIGURE 5

FIGURE 5: Excitatory impact of optical cerebellar nuclei (CN)
stimulation on cortical activity stops generalized spike-and-
wave discharge (GSWD) episodes. (A; left panels) Peri–stimu-
lus time histogram and raster plot indicating increased (top)
or decreased (bottom) action potential (AP) firing for individ-
ual CN neurons evoked by 470nm light pulses (blue bars).
Right panels: Scatterplots represent the individual changes in
CN neuronal firing following optical stimulation: (left)
increased firing (n 5 33); (right) decreased firing (n 5 17).
Black and blue bars indicate mean firing frequency when the
470nm light-emitting diode was turned off or on, respec-
tively. (B) Examples of stopped (left) and continuing (right)
GSWD episodes upon optogenetic stimulation. Black hori-
zontal arrows represent the median time interval between
electrocorticogram (ECoG) spikes, which correspond to 1
cycle of cortical oscillation, here represented as 360�. Green
and red vertical arrows represent the onset of the light stim-
ulus. (C) Rose plots of the start of successful and unsuccess-
ful optical stimulation in the 360� GSWD cycle for both
primary motor cortex (left) and primary sensory cortex
(right). (D) Comparison between the median and the last
interval (between the last 2 ECoG spikes) for stopped and
continuing GSWD episodes. ***p < 0.001 (repeated measures
ANCOVA; see Table 7). (E) Scatterplot representing the pre-
dictability of the stimulus-related time interval between
GSWDs by the phase of stimulation onset. p < 0.001 (linear
regression analysis; see Table 7).
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initially promising, the clinical studies on the effects of

cerebellar surface stimulation reported inconsistent

results,12–21 which may partially be due to suboptimal

placement of electrodes. Unlike the current results, which

show a regional preference for the effect of lateral CN

stimulation on GSWD occurrence, it was recently shown

that manipulating Purkinje cells in the medial cerebellum

is most effective in controlling kainate-induced temporal

lobe epilepsy.67 So far, the studies that applied DBS at

the level of CN in an uncontrolled fashion report highly

effective decreases in the level of seizures (corresponding

to class IC and IIIA of the Engel scale68) in a low num-

ber of patients characterized with various types of epi-

lepsy.69–71 Apart from the coherence in location of

stimulation (laterally located nucleus dentatus), these

studies used a wide variety in CN stimulus regimes,

ranging from 3 minutes per day to continuous electrical

stimulation for 12 to 14 hours per day. It appears that

high-frequency stimulation (>50Hz), but not low-

frequency stimulation (1–40Hz), is most effective when

applied to the cerebellar dentate nucleus. In the present

study, we found that the increase in CN neuronal action

potential firing frequency upon optogenetic stimulation

was highly variable (see Fig 4), and thus our current

results do not provide any ground for a conclusion on

whether low- or high-frequency stimulation would be

advantageous to stop GSWD episodes. However, our

results do provide sufficient data to conclude that the

temporal precision determines the level of efficiency, for

example, by stimulating with short pulses as soon as an

epileptic event starts to occur and if possible in a proper

temporal relation with respect to the inhibitory wave of

the GSWDs.

Because absence epilepsy is a commonly prevalent

but in essence a benign form of generalized epilepsy,1

DBS will not very likely be considered as a serious

option. However, patients diagnosed with other forms

of epilepsy who do not benefit sufficiently from medi-

cation may be eligible for (cerebellar) DBS.47 Currently,

the options for applying DBS are limited; only the

anterior thalamic nucleus is currently described in the

US Food and Drug Administration guidelines to treat

intractable epilepsy, and although promising, the out-

come is limited and can result in cognitive and emo-

tional problems.72,73 Given the powerful impact of CN

stimulation on thalamocortical activity that is shown in

the present study, we hypothesize that CN stimulation

may also exert very positive effects in these other, more

severe kinds of epilepsies.
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