-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by University of Hertfordshire Research Archive

INFER: INTERACTIVE TIMING PROFILES
BASED ON BAYESIAN NETWORKS !

Michael Zolda?

Abstract

We propose an approach for timing analysis of software-based embedded computer systems that
builds on the established probabilistic framework of Bayesian networks. We envision an approach
where we take (1) an abstract description of the control flow within a piece of software, and (2) a set
of run-time traces, which are combined into a Bayesian network that can be seen as an interactive
timing profile. The obtained profile can be used by the embedded systems engineer not only to obtain
a probabilistic estimate of the WCET, but also to run interactive timing simulations, or to automat-
ically identify software configurations that are likely to evoke noteworthy timing behavior, like, e.g.,
high variances of execution times, and which are therefore candidates for further inspection.

Keywords: Bayesian networks, embedded systems, hardware modeling, measurement-based execu-
tion time analysis, software modeling, probabilistic modeling, profiling, real-time systems

1. Introduction

With the increasing number of embedded computer systems in everyday life applications, like cars,
digital entertainment systems, or mobile phones, knowledge about the real physical behavior of such
systems is becoming more and more important. In particular, when a computer system is embedded in
areal physical process, like in an engine control system, or a digital media stream decoder, knowledge
of its timing properties becomes crucial.

Despite the notable advances in timing analysis of embedded computer systems, performing a WCET
analysis of state-of-the-art systems is becoming more difficult, as intricate processor features, like
caches, pipelining, and branch prediction, trickle down from the desktop and server to the embedded
processor domain. As a result, such systems are becoming too complex for a complete, detailed
analysis.

Whenever we have to reason about systems the complexity of which prohibits us from explicitly
dealing with each special case, but the details are too important to simply ignore them, it is common
and acknowledged practice to use models that summarize the impact of exceptions.

Probabilistic network models [10] provide a theoretically sound framework for summarizing complex
relationships as probabilistic dependencies. Besides providing mechanisms for simulating the model’s
behavior under various user-defined scenarios, probabilistic network models offer a better traceability

2Institut fiir Technische Informatik, Technische Universitit Wien, TreitlstraBe 3/182/1, A-1040 Wien, Austria,
e-mail: michaelz@vmars.tuwien.ac.at

I'The research leading to these results has received funding from the Austrian Science Fund (Fonds zur Férderung der wis-
senschaftlichen Forschung) within the research project “Formal Timing Analysis Suite of Real-Time Systems” (FORTAS-
RT) under contract P19230-N13.

ECRTS 2008 1
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/vol ltexte/2008/1669

https://core.ac.uk/display/29850811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of effects, compared to traditional regression models.

We propose an approach that uses Bayesian networks to model program execution times of software-
based embedded systems. The structure of our networks is based on the structural properties of the
soft- and/or hardware under test. The network is subsequently parameterized with empirical data
obtained from run-time measurements on the actual target hardware.

2. State Machine Models
2.1. Reactive Systems

Depending on their method of operation, embedded computer systems can be classified into reactive
systems and transformative systems. Whereas a reactive system keeps on running continuously, inter-
acting with its physical environment, a transformative system is characterized by a “one-shot” mode
of operation: the system starts by taking all its inputs, performs some calculation, and terminates with
some output. Transformative systems are popular basic building blocks for more complex systems,
where they are invoked periodically by a scheduler. If the transformative system is part of a (hard
or soft) real time system [5], then it must fulfill certain previously specified timing constraints. Not
meeting those timing constraints is considered a system failure.

We consider software-based transformative systems. Even though there have been various proposals
to make such systems time-predictable by design, software that was written by applying traditional
programming techniques, and/or which is running on modern processors has a highly unpredictable
temporal behavior [4].

When we take a mathematical point of view on such a system, we essentially face an extremely
complex state machine, where each state corresponds to an intricate hardware configuration, and
where the transitions correspond to the change from one such configuration to another. Since each
change between states corresponds to a real physical processes, we can associate an execution time
with each transition. At this level of detail, the system is deterministic, and the execution time for
each transition is cycle-accurate.

Unfortunately, we usually cannot describe a real transformative system in all details, for various
reasons, like, e.g., inadequate detail of the available hardware specification, or sheer size. So we have
to abstract our state machine model (SMM).

We consider three forms of abstraction, which are performed in the given order: State elimination,
Existential abstraction and segment abstraction.

2.2. State Elimination

State elimination is achieved by removing states from the SMM. When a state s is removed, each of its
incoming edges is redirected to the unique successor node s’!. Subsequently, the transition between s
and s’ is dropped, after adding its associated execution time to each of the redirected edges.

!'The uniqueness is guaranteed by our premise of determinism of the SMM. From this uniqueness, it also follows that the
SMM is free of cycles, because we are modeling a transformative system that is supposed to terminate with some output.

2.3. Existential Model Abstraction

Existential abstraction is achieved by collecting the concrete states of the SMM into sets, and viewing
these sets as the abstract states of an abstract state machine model (ASMM). The transitions of the
ASMM are induced by may-semantics: There is an abstract transition between two abstract states of
the ASMM, iff there is at least one concrete transition between two concrete states of the underlying
SMM. Accordingly, the execution times of all the concrete transitions are collected into a multi-set
with a corresponding may-semantics.

For software written in imperative programming languages, we usually consider basic blocks and
their static control flow structure. In that case, transitions are identified with basic blocks, and abstract
states are identified with basic block numbers.

Figure 1(a) gives an example source code written in the C programming language. Figure 1(b) shows
the structure of the corresponding ASMM.

2.4. Segment Model Abstraction

Segment Abstraction is another form of abstraction, normally performed after existential abstraction.
Whereas in existential abstraction we collect states into abstract states, in segment abstraction we
collect paths into segments.

A segment is characterized by its entry/exit interface. It essentially binds together all paths that start
at the entry interface (which is given as a collection of states) and end at the exit interface (another
collection of states).

The utility of segments is threefold:

Handling of path explosion. The execution time of an individual basic block generally depends on
the execution history. As a consequence, the execution times of individual basic blocks are not com-
posable without loss of information. If the executions times are, for example, given as probability
distributions, combining them through a convolution operator might lead to over- and underestima-
tion of the probabilities of certain execution times. Even more importantly, in the measurement-based
approach individual measuring of basic blocks may totally miss execution times that depend on a rare
system state that is only reached through certain execution histories.

For maximal accuracy w.r.t. the ASMM, in the measurement-based approach, we would have to
measure the execution time of each ASMM path. However, the number of ASMM paths is typically
prohibitively large.

Segments are used to specify restricted measurement/coverage regions. They should be chosen such
as to contain a limited number of paths, thus alleviating the path explosion problem. However, the
paths within the segments should not be too short, such as not to sacrifice too much history-dependent
information. A good segmentation algorithm should balance these two opposed goals.

Dependencies across segments can be captured/modeled by the Bayesian network model.

Obtaining accurate measurements. When we want to obtain the execution time information through
measurement, we face the problem that some measurement methods are intrusive in the sense that the

S0« if (m==0) {

s1: if(y!=0) 50
So: m=x%y; ?
s3: 1f (m==0)
Sq: zZ++; A
S5 k++; }593 560\

} else { | = | | s |
Sg : £f=1;

} R
s7: 1if (m==0) { ¢
sg: £=0;

}

S9 : 59

(a) Example source code (b) Abstract state machine (c) ASMM with segmentation (d) Abstract view on the
model (ASMM) segmentation

Figure 1. Illustration of an abstract state machine model (ASMM) and its segmentation

act of measuring affects the result. A typical example of this is measuring using software instrumenta-
tions. Such instrumentations affect the hardware state and may therefore also the affect the execution
time of subsequent code. Secondly, some measurement methods can only provide limited accuracy,
e.g. if they employ a timer with low granularity.

Both effects can be alleviated by avoiding the measuring of short sequences of instructions. Segments
are used to specify measurement spans of a minimal length that is specific to the applied measurement
method.

Logical Structuring. We do not only want to model the overall execution time behavior of the entire
program, but also want to get more insight into the timing interactions within the program.

Segment are used to structure the program into smaller parts whose execution time behavior is made
visible to the user.

For example, the engineer might consider a small loop as basic unit of functionality. Then this loop
would be a candidate for a segment.

A segment is an ordered pair (£, X'), where E is a set of entry states, and X is a set of exit states.
Semantically, F is related to X through the segment (F, X), iff, for each state in £, there is a directed
path to some state in X that does not touch any other state in X.

. . ! l ln—
The set of associated paths through a segment (E, X) is the set of all paths® sy —> s, —> ... = s,,,
suchthat sp € F, s, € X,and s; € X, forany 0 < ¢ < n and any n > 0.

Figure 1(c) indicates the partitioning of the ASMM from Figure 1(b) into four segments. For example,
segment (G is the segment with £ = {so} and X = {s3, s¢}. We can reach s3 from s, e.g. via sy,
without touching sg, and we can reach sg directly from so. The paths associated through G are
S — 81 — Sy — 83, So — S1 — S3, and sy — sg. Figure 1(d) provides a more abstract view of the

2We use labels to distinguish parallel edges. If there are no parallel edges, we can omit them.

segments and their interconnection. Note how the entry and exit states act as “connectors” between
segments.

The idea behind segments is to abstractly and implicitly specify the set of paths that can be taken
through a given region simply as an entry/exit interface. We then associate, with each segment, the
multi-set of execution times of all its associated paths.

A segment is an over-approximation of the underlying subgraph of the SMM, in the sense that it
summarizes all possible paths through that subgraph, and thus all possible path execution times.
Segments should thus be seen as the primitives of a program with which we can associate meaningful
timing information.

Segment abstraction can be performed by iteratively replacing subgraphs of the ASMM with matching
segments, until all transitions have been collected into segments.

For a given ASMM, the choice of segments is not unique. We do not, at this moment, provide a
concrete algorithm that incorporates all the requirements on segments that were discussed in this
section.

3. Probabilistic Modeling
3.1. Bayesian Network Essentials

In probability theory, we consider random experiments, i.e., experiments with an outcome that is
governed by some indeterministic mechanism. The possible outcomes of such an experiment are
called events. To express a certain degree of confidence that a certain event will occur, real numbers
from the interval [0...1] are used. Greater values indicate greater confidence; a value of 1 indicates
absolute confidence that an event will occur, 0 indicates absolute confidence that an event will fail to
occur, 0.5 indicates total indifference about the occurrence of an event. These real numbers are called
probabilities.

A random variable is a variable whose value depends on the outcome of a random experiment.
Through this dependency, random variables inherit probability values from the probabilities of their
underlying events. Consequently, constraints over random variables can themselves be viewed as
events.

When performing probabilistic reasoning, we always consider a specific probabilistic model that de-
scribes a set of random variables, as well as their qualitative and quantitative interconnections.

The conditional probability P(X =z | Y=y, ...Y,=y,) designates the probability that variable X
obtain the value x, given the a-priori knowledge that Y; obtain the value y;, for 1 < ¢ < n. Note that
the order of the conditions is irrelevant, but that generally P(X=z |Y=y,...) # P(Y=y| X=z,...).
The unconditional probability P(X=x) designates the probability that variable X obtain the value z,
given no further information about the outcomes of any other variables in the model.

Two variables X and Y are conditionally independent given a set of variables Y1, ..., Y,, iff P(X=
x| Y=y, Yi=w,... Yo=y,) = P(X=z|Yi=y1,...Y,=y,). Intuitively speaking, the outcome of ¥’
does not influence the outcome of X, under the given a priori knowledge. Conditional independence

Success —Success
Happiness 0.6 0.3
— Happiness 0.4 0.7

Effort 0.5
— Effort 0.5

Ideas 0.5
— Ideas 0.5

Success 0.7 0.4 0.3 0.2
— Success 0.3 0.6 0.7 0.8

Happiness

Figure 2. Example of a bayesian network

is a symmetric relation.

Bayesian network (BN) are a representation mechanism that can express the important class of causal
probabilistic models. In a BN, the model’s variables are expressed as nodes of a graph. For each
variable X, the BN has a conditional probability table (CPT) that specifies the conditional probabil-
ities P(X=x|Y1=vy1,...Y,=y,) over all possible combinations of outcomes of its parent variables
Yy, ... Y,.

The connection between a BN and the represented probabilistic model is completed by the following
formal property: Any variable X is conditionally independent of all its non-descendants, given its
parents Y = {Y7,...Y,}, and no subset of Y satisfies this condition [10]. Intuitively speaking, each
direct causal dependency between variables of the model implies a corresponding directed arc in the
BN.

Figure 2 depicts a simplified Bayesian network model of success. The variables of this simplified
model—effort, ideas, success, and happiness—are all binary: either you are happy or not. The prob-
ability of success depends on both, effort and ideas. Effort indirectly affects happiness via success,
but there is no direct causal influence. Therefore, if you are definitely a successful person, making
a change in effort won’t affect your 60% probability of happiness: Happiness is conditionally inde-
pendent from effort, given success. If there was a direct connection between effort and happiness, we
would have to add an extra arc between them.

Note how the conditional probability tables specify, for each node, the probability of each outcome,
for all combinations of outcomes of their parent nodes. For effort and ideas, which have no parents in
our model, we need to specify the unconditional a priori probabilities. The uniform 50-50 distributions
are appropriate to express complete ignorance about the unconditional likelihood of effort or ideas.

3.2. Using Bayesian Networks for Simulation

The salient feature of a Bayesian network is its direct applicability for simulations. The network
constitutes a complete probabilistic model of the variables in its domain and can, amongst other
things, be used to solve “what-if?” scenarios. A simple simulation on a BN consists of the following
steps:

1. The user provides hypothetical evidence Y, = c1,...,Y, = c, for some selected nodes of the
network?, i.e., he fixes the value of some variables to one of their possible outcomes.

3Note that this hypothetical evidence is provided as part of a query. The user is not required to provide such information
during the model construction. Also, it is possible to have queries without any hypothetical evidence (where n = 0).

2. A belief update is performed on the network®. During this operation, the conditional proba-
bilities P(X = z|Y; = ¢4,...,Y, = ¢,) are evaluated for all network variables X. Note that

¢1,...,C, are constant values. The conditional probabilities P(X = x|Y; =¢1,...,Y, = ¢,)
thus represent the probability distribution of random variable X under the user-defined sce-
narioYy=cy, ..., Y, =cy).

3. The user reads the probability distributions of his interest from the model.

For illustration, consider, once again, the Bayesian network from Figure 2. Assume that the user
wants to perform the diagnostic query “How likely is it that a happy person is putting in some effort?”
By setting the evidence of the happiness node to true and running a belief update over the network,
the user can obtain the numeric answer, which is “55%7, i.e., slightly higher than the corresponding
a priori likelihood of “50%”. A detailed explanation of the corresponding calculations is out of the
scope of this work, but for an intuive explanation, consider that fixing happiness to “true” leads to an
increase of the likelihood of success, via the direct link between those nodes. The increased likelihood
of success, in turn, yields an increase in the likelihood of both, effort and ideas.

We are convinced that such a mechanism for performing simulations of user-defined “what-if?” sce-
narios is a highly desirable and useful tool in the hands of an engineer who is performing a timing
analysis of a given system.

3.3. Probabilistic Interpretation of Abstraction

A segment (£, X') summarizes the timing behavior of all SMM paths from F to X by collecting the
execution times of these paths in a multi-set. Interpreting relative frequencies as probabilities, we
obtain, for each segment, a random variable on the possible execution times.

The random variables for different segments are generally not conditionally independent. Rather,
they show some degree of correlation; a result of the fact that the concrete SMM path taken through a
segment during an actual run of the software depends on the concrete SMM state through which the
segment is entered, and thus on the concrete SMM path that was taken through previous segments.

At our level of abstraction, the correlations between the execution times of basic blocks can be viewed
is being established via a “hidden” information channel. For example, an instruction cache can act as
a mediator between the timing variables of two basic blocks that share a common cache line, creating
a probabilistic dependency between them.

Once we have identified such information channels, we can create a Bayesian network model that
incorporates the corresponding probabilistic dependencies.

3.4. Deriving the Network Structure

Besides performing the segmentation of the ASMM, we also have to identify the relevant dependen-
cies between segments.

Let G be a segment. The context set cs(G) of G is the set of all segments on which G causally and
directly depends.

“Various different algorithms that perform this task have been proposed and implemented [9, 6, 3, 14].

For our application, the restriction to causal dependencies means that cs(() can only contain ancestor
segments (w.r.t. the flow of control) of GG. The restriction to direct dependencies means that transitive
dependencies are not modeled explicitly.

Technically, the variables associated with the context set of ¢s(G) will later form the Markov bound-
ary of the variable associated with G.

The identification of context sets should generally be done in parallel to identifying segments, as both
choices depend on each other.

Given a segment GG, how can we determine the context set cs(G) of G?

It is important to note that we cannot provide a feasible method for automatically identifying all
dependencies of (. Rather, we propose a best-effort approach that yields a good approximation of
¢s(G) by considering candidate segments that are likely to exert a strong influence on G.

Our primary source for candidate segments is our abstract knowledge about the hardware architecture
and software semantics.

For example, if we have some knowledge about the instruction cache and memory layout of our target
architecture, then we might be able to identify segments that are in conflict through the sharing of a
common cache line.

Another example is the consideration of pipelining effects over segment borders: in a pipelined ar-
chitecture, a segments potentially depends on its immediate predecessors through the shared pipeline
state at the common segment boundary.

Our third example is the analysis of control flow dependencies. In the following we give a sketch of
how we can identify candidate segments for cs(G) through the use of use-definition chains.

Let z be a program variable that is used inside the condition of a control flow statement within segment
(. Since the value of = can influence the flow of control in G, it also has a potential influence on
the execution time of (G. Next, consider the corresponding assignments of = (which can be easily
obtained by static program analysis). If such an assignment of x is contained in at least one branch
of a control flow statement St of segment G’, then GG depends on G’ by way of the “hidden” common
dependencies of both segments on the condition of St.

3.5. Classifying Execution Times

In a Bayesian network, we need to specity, for each variable X, the conditional probabilities w.r.t. all
parent variables. If we have n possible outcomes (here: different execution times) for each segment,
then the CPT for a segment with a context set size of m requires n™*! entries. It is thus clear that we
have to limit both, the size of the context set for each segment, and the number of outcomes for each
variable.

The size of the context set of a segment can be reduced by considering only the strongest dependen-
cies. The strength of a dependency can, for example, be judged by the measure of mutual informa-
tion [13] of corresponding variables.

On the other hand, the number of outcomes for a variable can be reduced by classifying values. For
example, if the possible execution times for segment G are in the range of 100 to 750 microseconds,
then we might summarize the possible outcomes as intervals [100, 250), [250, 500), [500, 750], plus
a special outcome “null” that represents the situation where a segment is not executed. A reasonable
classification is crucial for obtaining a significant probabilistic model.

3.6. Parameterizing the Network with Measurements

Once we have identified segments and their associated context sets, we have to parameterize the
network with appropriate conditional probabilities of execution times. As mentioned in Section 3.3,
our probabilities are based on relative frequencies.

We obtain the relative frequencies of execution times by performing measurements on the real com-
puter system. The main advantage of our measurement-based approach is that we obtain our timing
data from the actual system, which incorporates all the numerous and possibly peculiar implementa-
tion details and quirks of the future production system.

To parameterize our network, we need to obtain, for each segment G, the conditional relative fre-

quencies f(T = c|Ty = ¢,...,T, = ¢,) of execution times, where T, 7T, ...,T, are random
variables representing the execution times for the segment G, and its corresponding context segments
{G4,...G,} € ¢s(G), and where ¢, ¢y, . .., ¢, are the corresponding classes of execution times. This

can be achieved as follows:

1. Generate test data vectors dy, . . ., d,,, that force a flow of control through G. This can be done
by harnessing techniques like random test data generation and model checking [11].

2. For each test data vector d;, 1 < 7 < m, measure the execution times t; ¢, Gy, - - -, tiGn
of G,G4, ..., G,. Available options for this step are the use of intrusive techniques like static
source code instrumentation, or non-intrusive techniques like timing trace generation with hard-
ware trace probes.

3. Obtain the joint absolute frequencies as
F(c,cry...,c0) =|{i|tig€c, ticy €y ..., tig, €cn, 1 <i<m}|,

and subsequently the conditional relative frequencies as

F(e,e1,...,¢)
f(c|cla"'acn>: d 1’7 il .
erdomain(T) (l’, C1y ey Cn)
To obtain representative frequency distributions for the segment, the test data vectors dy,...,d,,

should throughly cover the timing behavior of GG. Since a full coverage of all possible SMM paths
is usually infeasible, we confine ourselves to up to k£ random samples per ASMM path, i.e., we try
to achieve full path coverage of the abstract model within the segment and try to generate up to &
unbiased measurements per path. Full ASMM path coverage can be achieved by applying techniques
like random test data generation and model checking [11].

Ts, 10ms 11ms null
Ts, 20ms | 21lms | null | 20ms | 21lms | null | 20ms | 2Ims | null
30ms 1 0 0 0 0 0 0 0 0
31ms 0 1 0 1 0 0 0 0 0
Ts 32ms 0 0 0 0 1 0 0 0 0
null 0 0 0 0 0 0 0 0 1
inconsistent 0 0 1 0 0 1 1 1 0

Table 1. Example CPT that relates the execution time of two sequential segments S; and S5 with the execution
time of their corresponding super-segment S

3.7. Multiple Layers of Abstraction

The modeling we have described so far produces Bayesian networks that capture the running times of
individual segments. However, the engineer will usually also be interested in the execution times of
larger program sections, in particular the execution times of the whole program (most specifically in
the overall WCET). To this end, we introduce multiple layers of abstraction to our model.

Above the basic segmentation layer, we introduce a coarser super-segmentation layer, such that the
basic segmentation layer can be seen as a refinement of the coarse layer. The network corresponding
to the super-segmentation layer is, however, not parameterized by measurements, but the values of
these nodes depend functionally on their corresponding basic segments.

Such functional dependencies can by modeled as “deterministic” conditional probability tables, i.e.,
CPTs that contain only zeros and ones. Table 1 shows an example CPT that relates the execution time
of two sequential segments (G; and GG with the execution time of their corresponding super-segment
G. Note the outcome “inconsistent”, which is an artifact of our modeling approach. We must include
such hypothetical situations in our model to capture anomalous flows of control between segments
that violate structural flow constraints [8]. However, additional consistency nodes can easily reduce
the actual probability of these outcomes to zero.

The final BN model includes several layers of segment abstraction, where the top layer contains only a
single segment that represents the overall behavior of the system. The corresponding variable captures
the execution time of the complete system, including the empirical, probabilistic worst case outcome.

4. Related Work

Lemeire and Dirkx [7] present an approach for performance analysis of concurrent systems that is
based on Bayesian networks. Whereas the structure of our networks is based on the structural proper-
ties of the system under test, the approach of Lemeire and Dirkx is based on a functional description
of the system that requires system-specific knowledge. In contrast to this, our approach is generic.
Eventually it should be possible to perform all steps, i.e., construction of the ASMM, segmentation,
identification of candidate dependencies, and parameterization, automatically.

Bernat et al. [1, 2] present a probabilistic approach for WCET calculation where the execution time
frequency distributions of different code sections are combined by one out of three combination op-
erators. The choice of the operator depends on whether the distributions are correlated via a known
joint distribution, correlated via an unknown joint distribution, or uncorrelated. The operators are
used to calculate an overall frequency distribution for the whole program. Compared to this opera-
tional approach, which is targeted at the derivation of one particular static distribution, our approach

10

is aimed at the derivation of an interactive timing model of the system under test, on which the user
can perform arbitrary simulations. Obtaining the overall execution time distribution over all possible
inputs (and thus obtaining a probabilistic estimate of the WCET) is only one particular use case of
such a timing model.

The concept of ASMM segments that we introduce in this paper is a generalization of the concept of
CFG segments introduced in [11, 12].

5. Future Work

In Section 2.4 we introduced the concept of segments and indicated their application. We have yet to
provide a concrete segmentation algorithm.

In Section 3.5 we argued that we have to limit the number of possible outcomes of random variables,
and proposed classification as a solution. We are currently working on a WCET-aware classification
method for execution times that tries to minimize the loss of information that is relevant for WCET
calculation.

In Section 3.7 we have presented a brief description of how we can include multiple layers of model
abstraction into a single Bayesian network model. Further work is needed on this concept.

The Bayesian network structure that we propose in this paper models variables for segment execution
times and their dependencies. We are currently developing a scheme for deriving much richer network
models that expose conditions on program variables and the flow of control. These models will feature
clearer and hopefully more intuitive dependency structures and richer choices for simulation.

We are planning to integrate the presented approach in the timing analysis suite that is currently being
developed within the FORTAS project®. Within the project, we are developing a fine-grained abstract
system machine model, where states will carry more information than merely a basic block number.
Augmenting and adapting the presented concepts to this model will be a challenge for future work.

Also, in acknowledgment that our ideas need to be tested within quantitative experiments, we are
planning to provide a working implementation of our approach within the FORTAS framework.

6. Summary and Conclusion

In this work, we have presented a probabilistic approach for modeling the execution time of software-
based embedded systems that is based on the framework of Bayesian networks. The structure of our
networks, which represents the conditional dependencies between execution times, is derived from
knowledge about the hardware architecture and software semantics, where is the parameterization is
obtain by performing measurements on the real physical system.

The salient benefit of having a Bayesian network model of the timing behavior of the system under
test is its ability to let the engineer perform simulations, like, e.g., “what-if” timing scenarios. We are
convinced that this ability provides a highly desirable and useful tool to the hands of an engineer who

>The FORTAS project is a cooperation between the Real Time Systems Group at the TU Wien and the Formal Methods
in Systems Engineering Group at the TU Darmstadt, with the goal of developing a software engineering oriented timing
analysis method that integrates measurement-based and formal methods. Please c.f. http://fortastic.net/.

11

is performing a timing analysis of a given system.

In particular, the querying abilities of the BN model subsume unconditional queries for the total exe-
cution time of the underlying system. Such queries return a probability distribution of total execution
times. The upper bound of that distribution is a probabilistic estimate of the WCET of the system.
Thus, our approach is more general, and provides a broader setting for timing analysis then pure
WCET calculation.

7. Acknowledgment

We would like to thank the reviewers for providing many useful hints on how to improve the present
paper and pointing out the aspects of our approach that require particular attention in our future work.

References

[1] Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET analysis of probabilistic hard
real-time systems. In Proc. 23rd Real-Time Systems Symposium, pages 279288, Austin, Texas,
USA, Dec. 2002.

[2] Guillem Bernat, Antoine Colin, and Stefan M. Petters. pwcet: a tool for probabilistic worst case
execution time analysis of real-time systems, 2003.

[3] Jian Cheng and Marek J. Druzdzel. AIS-BN: An adaptive importance sampling algorithm for
evidential reasoning in large bayesian networks. Journal of Artificial Intelligence Research,
13:155-188, 2000.

[4] Raimund Kirner and Peter Puschner. Obstacles in worst-cases execution time analysis. In
Proc. 11th IEEE International Symposium on Object-oriented Real-time distributed Computing,
Orlando, Florida, May 2008.

[5] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embedded Applica-
tions. Kluwer, 1997. ISBN: 0-7923-9894-7.

[6] Steffen L. Lauritzen and David J. Spiegelhalter. Readings in uncertain reasoning, chapter Local
computations with probabilities on graphical structures and their application to expert systems,
pages 415-448. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[7] Jan Lemeire and Erik Dirkx. Causal models for parallel performance analysis. In Proc. 5th
PA3CT Symposium, Edegem, Belgium, Sept. 2004.

[8] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using im-
plicit path enumeration. In Proc. 32nd ACM/IEEE Design Automation Conference, pages 456—
461, June 1995.

[9] Judea Pearl. Fusion, propagation, and structuring in belief networks. Journal of Artificial Intel-
ligence, 29(3):241-288, 1986.

[10] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers, San
Mateo, CA, 1988. ISBN: 0-934613-73-7.

12

[11] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter Puschner. Automatic timing
model generation by CFG partitioning and model checking. In Proc. Design, Automation and
Test in Europe (DATE’05), Munich, Germany, Mar. 2005.

[12] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter Puschner. Measurement-based
worst-case execution time analysis. In Proc. 3rd IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS’05), pages 7-10, Seattle, Washington, May
2005.

[13] Yiyu Yao. Entropy Measures, Maximum Entropy Principle and Emerging Applications, chap-
ter Information-theoretic measures for knowledge discovery and data mining, pages 115-136.
Springer, 2003.

[14] Changhe Yuan and Marek J. Druzdzel. An importance sampling algorithm based on evidence
pre-propagation. In Proc. 19th Annual Conference on Uncertainty in Artificial Intelligence,
2003.

13

