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Abstract 

Over the past decade, efforts to move towards a low carbon economy have been increasingly 

coupled with the acknowledgement that we also need develop climate resilient economies, 

capable of adapting and responding to changes in climate. To shift society in these directions 

we need to quantify impacts in relation to these objectives and develop cost-effective 

interventions. Techniques for quantifying greenhouse gas emissions are relatively well 

established and enable identification of hotspots where there is emissions reduction potential. 

However, there are no established techniques to assess and quantify adaptation vulnerability 

issues and identify hotspots for intervention. This paper presents work undertaken at a 

European level with the objective of identifying potential hotspots where ecosystem services 

may be vulnerable to climate change and thus where intervention may be required under the 

European Rural Development Programme. A pragmatic and relatively simple approach is 

presented, based on data that is readily available across Europe. The vulnerability assessments 

cover: Water (quality: dilution and filtration, regulation: flooding and provision); Soils (erosion 

and organic matter); and Biodiversity (forest fires, migration and pollination). The framework 

and assessments presented are considered fit for purpose (at a basic level) and they are 

potentially valuable tools for targeting limited resources to achieve desirable outcomes. They 

also contribute towards providing a better understanding of the climate change challenges we 

face and support the formulation of solutions to optimally address those challenges. There is 

scope to further improvement and a number of options are discussed and explored within this 

paper. 

Keywords: adaptation; adaptive capacity; climate change; ecosystem services; rural 

development; vulnerability 
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1.0. Introduction 

1.1. Background and objectives 

Since the 1970's the issue of anthropogenic induced climate change has steadily risen up the 

political agenda resulting in the emergence of government regulations and interventions that 

aim to steer society in a more climate friendly direction towards a low carbon economy. This is 

now coupled with the acknowledgement that, as well reducing the concentration of 

atmospheric greenhouse gases (GHGs), we need to develop climate resilient economies, 

capable of adapting and responding to the changes in climate that do occur. The process of 

implementing regulations and interventions has largely been specific regulations to tackle 

emissions or address adaptation issues. These still exist but are now coupled with a process of 

mainstreaming climate change objectives (mitigation and adaptation) into other policies, for 

example the European Union (EU) Common Agricultural Policy (CAP), and specifically pillar 2 of 

the CAP on rural development. In process of developing rural development programmes 

(RDPs) for the next programming period (2014-2020), there is an opportunity to incorporate 

climate change objectives and consequently develop measures and operations that tackle 

these objectives alongside other rural development issues. Techniques for quantifying GHG 

emissions and potential reductions are relatively well established and enable identification of 

hotspots where there is emissions reduction potential. However, there are no established 

techniques to assess and quantify adaptation issues and identify hotspots for intervention. 

This paper presents work undertaken at a European level where the objective was to develop a 

framework to assess the potential of rural development measures and operations for improving 

the adaptive capacity of ecosystem services. It focuses on the vulnerability risk assessment 

that was undertaken as part of this project in order to help identify potential ‘hotspots’, where 

ecosystem services may be vulnerable to climate change and thus where intervention may be 

required to increase the adaptive capacity. The work focuses on ecosystem services and their 

ability to adapt to climate change, with an emphasis on physical aspects, where clear RDP 

interventions could be made to address issues. However, it is important to acknowledge that 

there can also be socio-economic impacts and vulnerabilities. These largely fall beyond the 

scope of the work undertaken within this study, although they are not disconnected as, for 
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example, rural development funds may be used to invest in infrastructure to boost the 

adaptive capacity and resilience of regions, including ecosystem services within those regions. 

For example, investments in farm waste structures may reduce pollutant loads and thus 

impact upon water quality dilution ecosystem services. Such investments can boost the 

financial capacity of a region to adapt, while also addressing environmental and ecosystem 

service issues. 

An important aspect to the work undertaken was that it had to be pragmatic in the context of 

developing rural development programmes and operations. In an ideal world we would collect 

all the data needed to undertake the most scientifically robust and credible assessment 

possible. However, such data can be extremely costly to collate and thus in many instances 

does not exist, yet policies and programmes are still required to address the issues society 

faces. Consequently in many instances the work has involved simple pragmatic approaches 

using readily available/existing data sources. This inherently introduces limitations to the study 

and the use of its results. These limitations are reviewed in the discussion. 

The landscape of climate change programmes, policies and strategies is outlined below to 

illustrate the evolution in societal understanding and responses. This is accompanied by a 

review of recent studies and literature on climate change adaptation, resilience, adaptive 

capacity and vulnerability, the linkages between them and the various approaches to metrics 

to aid assessments. This forms the basis for the approach taken to the vulnerability 

assessment presented herein. 

1.2. A brief history of climate change programmes, policies and 
strategies 

In 1979 evidence of the negative effects of human activity on climate were presented at the 

first World Climate Conference in Geneva (WMO, 1979). This was followed by the 

establishment of the Intergovernmental Panel on Climate Change (IPCC) to assess scientific, 

technical and socio-economic information relevant for the understanding of climate change, its 

potential impacts and options for adaptation and mitigation. In 1990, the First Assessment 

Report of the IPCC (IPCC, 1990) confirmed that human-induced climate change is a threat and 
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the UN General Assembly formally launched negotiations on a convention, resulting in the UN 

Framework Convention on Climate Change (UNFCCC) in 1992. This was followed by the Kyoto 

Protocol in 1997, in which the then EU-15 agreed to reduce collective emissions during 2008-

2012 to 8% below 1990 levels. The UN Climate Change Conference in Durban, South Africa in 

2011 agreed to maintain existing commitments and to negotiate a new regime by 2015 and 

steps were taken towards a new global climate agreement at the Doha conference (18th 

session of the Parties to the UNFCCC and the 8th session of the of the Parties to the Kyoto 

Protocol) in 2012.  

Since the 1990’s the main emphasis of these initiatives has been reduction in the emissions of 

greenhouse gases (GHGs). However, in the last 10 years there has been increasing recognition 

that measures to reduce emissions need to be accompanied by action to adapt to the 

consequences of climate change. This is apparent in the European Commission’s seventh 

Environment Action Programme that was published in 2012 (EC, 2012). Alongside emissions 

reduction, adaptation to climate change is one of the programme's key features, as it is linked 

to many other issues on the environmental agenda such as sustainable land use, urban 

environment, sustainable food, protecting water and the marine environment. In April 2013, 

the Commission adopted an EU Strategy on Adaptation to Climate Change (EC, 2013). 

1.3. Adaptation, resilience, adaptive capacity and vulnerability 

Assessing adaptation issues and developing policies and interventions to enhance the ability of 

a region to adapt to climate change is a complex and dynamic issue. It involves developing an 

understanding of the resilience, adaptive capacity and vulnerability of our environmental and 

socio-economic systems, i.e. their ability to perform their functions, meeting the needs of 

current and future generations, when faced with perturbations such as climate change. 

Resilience, adaptive capacity and vulnerability are emergent properties of a complex system 

and so are not directly measureable. Consequently assessing potential impacts and 

vulnerabilities is difficult. Additionally, as Engle (2011) highlights with respect to resilience, in 

its strict definition (the ability of a system to return to a single stable equilibrium) may actually 

be a negative property in some circumstances, and what is actually needed is the ability to 
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adapt, which may involve a shift in the system to a new equilibrium. For example, the 

resilience of cropping systems that require certain amount of water could be enhanced through 

more efficient irrigation practices when water is scarce (i.e. yield maintained despite 

fluctuating water availability), but what may be required is adaptation to cropping systems 

that fundamentally require less water, but maintain yields – the new equilibrium is crop 

production with lower water consumption. There may also be instances where the shift in the 

system is desirable, for example there is some evidence to suggest that the Sahara desert 

may be greening due to increased rainfall as a consequence of climate change (Owen, 2009). 

It is a question of the system being able to perform desired functions and ecosystem services, 

and thus have the capacity to adapt to continue to provide desired functions and services when 

faced with pressures such as climate change. The vulnerability (risk to) these ecosystem 

services is a "function of the character, magnitude, and rate of climate variation to which a 

system is exposed, its sensitivity, and its adaptive capacity" (Houghton et al., 2001; McCarthy 

et al., 2001). Adger (2006) also highlights that the absence of capacity to adapt also increases 

vulnerability. Thus 'adaptive capacity', the ability of a system to prepare for stresses and 

changes in advance or adjust and respond to the effects caused by stresses, forms a key 

intervention point to assess and enhance adaptability and reduce vulnerability (Vincent, 2007). 

In the context of climate change, Engle (2011) outlines how increasing adaptive capacity 

improves the opportunity of systems to manage varying ranges and magnitudes of climate 

impacts, while allowing for flexibility to rework approaches if deemed at a later date to be on 

an undesirable trajectory. 

In the context of developing programmes, policies and interventions to address climate change 

objectives, with regard to mitigation of GHG emissions there are relatively well established 

scientific techniques. Concentrations of GHGs in the atmosphere can be measured and 

monitored, GHG emission sources can be directly measured and we can derive emission factors 

to model emissions, likewise we can measure carbon sequestration and derive sequestration 

factors and models. There are clear units for these measures, i.e. tonnes of carbon or carbon 

dioxide equivalents (tCO2e). However, with respect to adaptation, adaptive capacity, resilience 

and vulnerability, there are no units of measurement and it is not directly measureable. This 
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presents a challenge to overcome if we are to be able identify hotspots where adaptation to 

climate change may be an issue and to able to quantify the potential impact of interventions 

and thus determine and prioritise those which are most cost-effective. 

1.4. Metrics of adaptation, adaptive capacity and vulnerability 

Several attempts have been made to develop metrics of adaptation, adaptive capacity and 

vulnerability. A common approach in recent years is the use of indices. For example, O'Brien et 

al. (2004) developed a measure of adaptive capacity based on a composite of biophysical, 

social, and technological indicators and applied it to districts in India. More recently, a similar 

approach was undertaken for Europe as part of the ESPON programme (ESPON, 2012) in the 

context of the impact of climate change on territorial cohesion. This work involved assessing 

adaptive capacity, by calculating a weighted combination of economic capacity, infrastructural 

capacity, technological capacity, knowledge and awareness and institutional capacity, with the 

weights being based on a Delphi survey of the ESPON Monitoring Committee. This resulted in a 

map of Europe showing the overall capacity to adapt to climate change for each NUTS3 

(Nomenclature d'Unités Territoriales Statistiques) region. 

These are relatively high level assessments and are thus quite generic, as was their intended 

purpose, i.e. to provide a broad overview. It is possible to develop less generic approaches, 

which usually comes down to the choice of indicators. For example, Swanson et al. (2009) 

developed indicators of adaptive capacity for agriculture in the prairie region of Canada, 

focusing on six areas: economic resources; technology; information, skills and management; 

infrastructure; institutions and networks; and equity. Similar work has also been undertaken in 

Australia (Brown et al., 2010; Nelson et al. 2010a & b, 2007) which drew upon the concepts of 

human, social, natural, physical and financial capital developed by Ellis (2000) to develop an 

adaptive capacity index. Schröter et al. (2004) developed a spatially explicit generic macro-

scale index of adaptive capacity based on six determinants which were identified by the IPCC 

(IPCC, 2001): power, flexibility, freedom, motivation, knowledge and urgency. 

Many of these studies (e.g. Brown et al., 2010; EPSON, 2012; Nelson et al. 2010a & b, 2007) 

have only developed a generic/single metric for the adaptive capacity of a region. These are 
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often overlaid with climate change projections to provide an assessment of vulnerability. For 

example, EPSON (2012) combined regional potential impacts of climate change with the 

regional capacity to adapt to climate change to produce the vulnerability map. 

Some have taken this concept further and overlaid these adaptive capacity indices with 

impacts on ecosystem services. For example, Schröter et al. (2004) combined ecosystem 

models with global change scenarios to identify potential changes in ecosystem services. 

Socio-economic indicators were combined with global change scenarios to derive maps of 

changes in adaptive capacity, and then these two outputs were combined to produce 

vulnerability maps. Natural England (2011) extended this concept further and assessed the 

biophysical vulnerability of key biodiversity assets to climate change in England. In this study 

adaptive capacity was based on the assumption that permeable, topographically 

heterogeneous landscapes, with a greater number of soil types and land cover diversity, will 

have a greater adaptive capacity to climate change. It was then quantified by measuring the 

extent of ecological networks to give an estimate of permeability; variation in height to give an 

estimate of topographic heterogeneity; the number of different soil types to give an estimate 

of soil diversity; and land cover dominance to give an estimate of land cover diversity. 

Adaptive capacity was then combined with climate change projections and habitat sensitivity 

data to produce a vulnerability assessment, for example, the vulnerability of upland heath 

areas in England. 

Despite the studies reviewed above, a consistent and established approach to measuring and 

assessing adaptation, adaptive capacity and vulnerability is yet to emerge. What is apparent is 

that the approach taken is often driven by the data available, as opposed to defining a method 

and then gathering the necessary data. This is largely to due to the cost and practicalities of 

collecting data over large areas. In the studies above, many of the indicators used were 

already being recorded at national or regional levels, and some were bespoke to those regions 

and consequently not easily transferable to other countries or regions. Therefore data 

availability with the EU-27 was a key driver in the vulnerability assessment presented herein. 

A pragmatic approach was required to utilise existing data sets to generate the assessments 

necessary to tackle the issue of adaptation climate change. 
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2.0. Vulnerability assessment 

2.1. Methodology 

2.1.1. Overview 

The work described below draws upon many of the ideas and concepts outlined above. A risk 

assessment approach has been taken by combining data on sensitivity with data on exposure 

(i.e. in this instance projected changes in climate). A key issue for this work was to utilise data 

that was readily available for all the EU-27 Member States. There was no scope to identify and 

collect new data for this assessment. Consequently, this resulted in a relatively simple 

approach with respect to the data involved and how it was combined for the risk assessment. 

With regard to climate change data, there are many climate change projection models and 

data sets (Christensen et al., 2011; ESPON, 2012; Semenov and Stratonovitch, 2010). The 

vulnerability assessments could be calculated using a variety of climate change models and 

projections. However, in this instance the ESPON data set (ESPON, 2012) was deemed 

suitable, firstly because it was readily available for the EU-27 and secondly because it was in a 

suitable spatial format. The climate parameters included projected: 

 Decreases and increases in winter and summer rainfall 

 Increases in the number of days with heavy rainfall 

 Increases in run-off 

 Increases in mean annual temperature 

These parameters are outputs from the climate model COSMO-CLM (CCLM) (Rockel et al., 

2008) averaged over models runs (Climate of the 20th Century (run no.1 and 2) and Scenario 

A1B (run no.1, 2 and 3)), time periods (1961-1990, 2071-2100). They have then been 

aggregated to European NUTS3 regions by share of cell coverage of regional area. The 

aggregation to NUTS3 regions does reduce the resolution of the outputs. A 1km or 10km grid 

resolution for the climate data would have been better, but this was not available. However, 

the NUTS3 resolution was considered to be acceptable for the purposes of this study. Further 
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details on the COSMO-CLM model and all the parameters used are available from the CLM-

Community (2013). 

With regard to ecosystem services, there are numerous and multiple classifications (Balmford 

et al., 2011; de Groot et al., 2002; Haines-Young and Potschin, 2010; McInnes et al., 2008; 

MEA, 2003). The vulnerability assessment focuses on those services which are likely to be 

sensitive to climate change and for which data are readily available for the EU-27. These 

criteria were used to scope down the number of services to be assessed and also meant that in 

some instances (due to data availability) a simplistic approach was necessary. Additionally, in 

some instances the ecosystem services explored may be viewed more as impacts due to the 

nature of the data available, but there are inherent connections to ecosystem services. For 

example, soil erosion is not an ecosystem service itself, but the regulation of soil erosion and 

the provision of soil are ecosystem services. The scoping and simplification process resulted in 

the classification of services into Water, Soils and Biodiversity (see Table 1) representing the 3 

key areas within the EU priorities for rural development (Priority 4, EC, 2011). The assessment 

of other ecosystem services could be developed in the future should data become available. 

There is also scope to combine the outputs from the key services shown in Table 1 to assess 

other services. For example, the outputs from the forest fires, water provision and soil erosion 

vulnerability assessments could be combined to assess potential impacts on landscape (thus 

covering aesthetic and recreational ecosystem services). 
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Table 1: Key ecosystem services assessed 

Category Service Description 

Water Quality: Dilution Dilution of pollutants in surface waters. 

Quality: Filtration Filtration of pollutants in surface waters. 

Regulation: Flooding The regulation of water to prevent 

flooding, e.g. attenuation of flood peaks 

Provision The provision of water for human use. 

Soils Erosion The regulation of soil erosion processes to 

reduce loss of productive land. 

Organic matter The protection and increase of soil organic 

matter to aid soil protection, fertility and 

other services. 

Biodiversity Forest fires The regulation/prevention of forest fires. 

Migration The ability of wildlife and biodiversity to 

migrate to adapt changing climate. 

Pollination The population of pollinators and their 

ability to pollinate agricultural crops. 

Spatial data on climate change and ecosystem services were imported into ArcGIS and 

converted into a raster format. The datasets were then re-classed, i.e. converting the units of 

the original datasets into integer classes (see below for further details). This enabled the use 

of the 'map algebra' tool (within the Spatial Analyst tool of the ArcGIS toolbox) to 

mathematically combine the data, using the equations presented below, to calculate/assess 

vulnerability of each ecosystem service. The results are presented in the form of maps showing 

the spatial distribution of vulnerability classes across the EU-27.  

The climate projection data outlined above have been linearly re-classed as shown in Tables 2 

and 3. The re-classing and equations used for each assessment are outlined below and 

resulting vulnerability maps are presented in the results section. In many instances the re-

classification is a simple linear classification, but in other instances the classification follows 
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categories used by the original authors of the data in order to ensure consistency in approach 

with other projects. The classes that result from both the reclassification and the various 

equations (presented below) do not have any units. They are simply a numerical scale of 

relative vulnerability. The results of each vulnerability assessment have different ranges of 

vulnerability classes. It would be possible to normalise the class ranges, e.g. onto a scale of 0 

to 100, however this would be meaningless and could also be misleading, as it would imply 

some equivalency in vulnerability across the different assessments, when this is not the case. 

Each assessment should be viewed individually and a vulnerability class for one assessment is 

not equivalent to a vulnerability class in another assessment. 

Table 2: Projected changes in winter and summer rainfall (re-classed) 

Winter rainfall Summer rainfall 

Class Decrease (%) Class Increase (%) Class Decrease (%) Class Increase (%) 

0 - 0 -39.3 to 0 0 - 0 -83.7 to 0 

1 39.7 to 0 1 0 to 4 1 53.8 to 0 1 0 to 5.5 

2 0 to -4.4 2 4 to 8 2 0 to -9.3 2 5.5 to 11 

3 -4.4 to -8.7 3 8 to 12 3 -9.3 to -18.6 3 11 to 16.5 

4 -8.7 to -13.1 4 12 to 16 4 -18.6 to -27.9 4 16.5 to 22 

5 -13.1 to -17.5 5 16 to 20 5 -27.9 to -37.2 5 22 to 27.5 

6 -17.5 to -21.8 6 20 to 24 6 -37.2 to -46.5 6 27.5 to 33 

7 -21.8 to -26.2 7 24 to 28 7 -46.5 to -55.8 7 33 to 38.5 

8 -26.2 to -30.6 8 28 to 32 8 -55.8 to -65.1 8 38.5 to 44 

9 -30.6 to -34.9 9 32 to 36 9 -65.1 to -74.4 9 44 to 49.5 

10 -34.9 to -39.3 10 36 to 39.7 10 -74.4 to -83.7 10 49.5 to 53.8 
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Table 3: Projected changes to heavy rainfall, run-off and temperature (re-classed) 

Heavy rainfall Run-off Temperature 

Class Increase (%) Class Increase (%) Class Increase (%) 

0 -8.1 to 0 0 - 0 - 

1 0 to 2 1 -59.5 to 0 1 0 to 0.46 

2 2 to 4 2 0 to 4.1 2 0.46 to 0.91 

3 4 to 6 3 4.1 to 8.2 3 0.91 to 1.37 

4 6 to 8 4 8.2 to 12.3 4 1.37 to 1.82 

5 8 to 10 5 12.3 to 16.5 5 1.82 to 2.27 

6 10 to 12 6 16.5 to 20.6 6 2.27 to 2.73 

7 12 to 13.1 7 20.6 to 24.7 7 2.73 to 3.19 

- - 8 24.7 to 28.8 8 3.19 to 3.64 

- - 9 28.8 to 32.9 9 3.64 to 4.10 

- - 10 32.9 to 37.0 10 4.10 to 4.55 

2.1.2. Water quality: Dilution 

Surface water quality data was taken from the European Environment Agency (EEA) Water 

Framework Directive (WFD) Surface Water Viewer (in January 2012) (EEA, 2012), and the 

percentage of water bodies (within a River Basin District – RBD) that fell into the Poor and Bad 

classes was calculated. This data was then linearly re-classed onto a scale of 1 to 10 (1 = 0-

10, 2 = 10-20, etc.). 

Two aspects relating to ecosystem services were explored using this data, dilution and 

filtration, on the basis that both these services can contribute to reducing water pollution and 

thus improve its quality. Dilution and filtration services are not unconnected as clearly filtration 

can impact on dilution and vice versa. However, with respect to potential RDP interventions, 

there are likely to some operations (e.g. buffer strips) which may specifically impact upon 
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filtration capacity and others which may impact on both filtration and dilution (e.g. reduced 

pollutant loads). Thus the two services are differentiated here to aid this analysis. 

With respect to dilution, decreases in rainfall could result in less water available to dilute 

pollutants entering water bodies. Consequently in areas where there are currently water 

pollution issues, projected decreases in rainfall may result in less dilution and thus an increase 

in the concentration of pollutants and lower water quality. To reflect this issue, water quality 

data was combined with projections of decreases in winter and summer rainfall. This was done 

by re-classing the winter and summer rainfall projections onto a scale of 1 to 10 as shown in 

Table 2. 

Water quality dilution vulnerability was calculated using Equation 1, resulting in vulnerability 

map shown in Figure 1a. 

Water quality: Dilution vulnerability = ((DWRC + DSRC) / 2) x WQC 

Where: 

DWRC = Decrease in Winter Rainfall Class 

DSRC = Decrease in Summer Rainfall Class 

WQC = Water Quality Class 

(Equation 1) 

2.1.3. Water quality: Filtration 

With respect to filtration, the issue filtering pollutants in surface run-off (rather than filtration 

in groundwater) was focused on. A similar approach to dilution was adopted, in that areas 

where there are currently water pollution issues, projected increases in run-off could require 

greater capacity for filtration in order to ensure pollutant loads into surface water do not 

increase due to increased run-off of pollutants. To reflect this issue, water quality data was 

combined with projections of increases in run-off. This was done by re-classing the run-off 

projections onto a scale of 1 to 10 as shown in Table 3. 
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Water quality filtration vulnerability risk was calculated using Equation 2, resulting in the 

vulnerability map shown in Figure 1b. 

Water quality: Filtration vulnerability risk = IRC x WQC 

Where: 

IRC = Increase in Run-off Class 

WQC = Water Quality Class 

(Equation 2) 

2.1.4. Water regulation: Flooding 

Flooding is a well documented concern with respect to climate change (Booij, 2005; 

Christensen and Christensen, 2003; Prudhomme et al., 2013). As such there already has been 

a lot of work undertaken to spatially analyse where there may be areas of concern. The work 

undertaken for the PESETA (Projection of Economic impacts of climate change in Sectors of the 

European Union based on boTtom-up Analysis) project (Ciscar et al., 2009) was used as the 

basis for the flooding vulnerability map. The PESETA project used the IPCC SRES scenario A2 

and NUTS2 level to calculate a projected change in damage of river floods with a 100-year 

return period between 2071–2100 and 1961–1990. This data was linearly re-classed onto a 

scale of 1 to 10 as shown in Table 4. 
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Table 4: Projected change in damage of river floods with a 100-year return period 

between 2071–2100 and 1961–1990 (re-classed) 

Class Projected change (%) 

0 -44.9 - 0 

1 0 - 9 

2 9 - 18 

3 18 - 27 

4 27 - 36 

5 36 - 45 

6 45 - 54 

7 54 - 63 

8 63 - 72 

9 72 - 81 

10 81 - 92.9 

As there data already incorporated climate change projection, the data in Table 4 were plotted 

to produce the vulnerability map shown in Figure 1c. 

2.1.5. Water provision 

The assessment of vulnerability with respect to water provision focused on those areas that 

are already water stressed combined with projections of decreases in winter and summer 

rainfall. For water stress, data from Vörösmarty et al. (2010) have been combined into a single 

water stress index. Vörösmarty et al. (2010) present 23 drivers in relation to water stress, 

however for the purposes of this study, three indicators with the most relevance to water 

provision (for human use) were selected: 

 Consumptive water loss (0.43) 

 Human water stress (0.33) 

 Agricultural water stress (0.24) 
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These have been combined into a single index using the weightings shown in brackets above 

(following the proportions used by Vörösmarty et al., 2010). Vörösmarty et al. (2010) used a 

scale of 0 to 1 for each indicator, so the resulting single index is also 0 to 1. This index was 

then linearly re-classed to 0 to 10 (where 0 to 0.1 = 1, 0.1 to 0.2 = 2, etc.), thus facilitating 

combination with the climate data. This water stress index has then been combined with 

projections on decreases in winter and summer rainfall and the water provision vulnerability 

risk was calculated using Equation 3, resulting in the vulnerability map shown in Figure 1d. 

Water provision vulnerability = WSC x ((DWRC + DSRC) / 2) 

Where: 

WSC = Water Stress Class 

DWRC = Decrease in Winter Rainfall Class 

DSRC = Decrease in Summer Rainfall Class 

(Equation 3) 

2.1.6. Soils: Erosion 

Soil erosion is a key issue for agricultural production as the loss of soil can result in decreases 

in agricultural productive capability. Increases in rainfall can increase overland flow and thus 

the risk of soil erosion, and increased days of heavy rainfall can also contribute to increases in 

soil erosion (Kirkby et al., 2003). Projected increases in winter, summer and heavy rainfall 

were re-classed as shown in Table 2. 

The data shown in Tables 2 and 3 were combined using Equation 4, resulting in a Rain_inc with 

35 classes. 

Rain_inc = ((IWRC + ISRC) / 2) x IHRC 

Where: 

IWRC = Increase in Winter Rainfall Class 

ISRC = Increase in Summer Rainfall Class 

IHRC = Increase in Heavy Rainfall Class 
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(Equation 4) 

To assess the vulnerability of an increase in soil erosion due to climate change, data on soil 

erosion risk were required. The soil risk assessment undertaken for the PESERA project (Kirkby 

et al., 2003) was drawn upon for this work. This data was re-classed into 8 classes using the 

same classification used in the PESERA project as shown in Table 5: 

Table 5: PESERA soil erosion estimates (t/ha/yr) (re-classed) 

Class t/ha/yr 

1 0 - 0.5 

2 0.5 - 1 

3 1 - 2 

4 2 - 5 

5 5 - 10 

6 10 - 20 

7 20 - 50 

8 50 - 426.61 

Data from the PESERA project, on the risk to soil erosion by water, were then combined with 

the project increased rainfall data (Rain_inc). To provide a more equal weighting to the soil 

erosion risk, Rain_inc was linearly re-classed into 7 classes (i.e. 0 - 5 = 1, 5- 10 = 2, etc) to 

give Rain_inc_rc. Note: zero Rain_inc is given a score of 1 so that when it multiplied with soil 

erosion below, any soil erosion risk will score 1 rather than 0. The soil erosion vulnerability was 

then calculated by simply multiplying the soil erosion data by the increase in rainfall data as 

shown in Equation 5, resulting in the vulnerability map shown in Figure 1e. 

Soils: Erosion vulnerability = PESERA x Rain_inc_rc 

Where: 

PESERA = PESERA Class 
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(Equation 5) 

2.1.7. Soils: Organic matter 

Soil organic matter (SOM) is composed of dead and decaying plant and animal tissue of which 

58% is carbon (C) (IPCC, 2006). In the context of climate change, SOM is not only important 

with respect to sequestration of atmospheric C, but also from the perspective of general soil 

quality and the fertility of the soil. Organic matter binds soil particles, prevents compaction and 

run-off, permits movement of air and water, facilitates seed germination and plant root 

penetration, and absorbs and retains soil moisture (NSRI, 2001). Decreases in SOM are 

therefore not only undesirable from a carbon storage perspective but can also result in poorer 

soil structure, reduced water retentive capacity and decreased crop yield. Generally, an 

increase in temperature and decrease in precipitation correlates with increased rates of OM 

oxidation to CO2, and smaller quantities of OM within the soil (Jones et al., 2004). Lower levels 

of SOM are typically observed in southern Europe compared to an equivalent land use and soil 

type in more northerly climates. Projected changes in climate of pertinence to SOM include 

decreased winter and summer rainfall and an increase in temperature, all of which have 

potential to result in a decrease in SOM (Jones et al., 2004). 

Projected decreases in winter and summer rainfall were re-classed onto a scale of 1 to 10 as 

shown in Table 2, and changes in temperature were re-classed as shown in Table 3. 

The existing SOM content of soils has been drawn from the JRC map of soil organic carbon 

content (Jones et al., 2005 and JRC 2012) and has been re-classed into 8 classes (0 to 7) 

using the same classification as the JRC (2012) as shown in Table 6. 
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Table 6: Soil organic carbon content (%) in the surface horizon of soils in Europe (re-

classed) 

Class SOC (%) 

0 -3.4 - 0 

1 0 - 0.99 

2 0.99 - 2 

3 2 - 6 

4 6 - 12.5 

5 12.5 - 20 

6 20 - 35 

7 35 - 63 

Soil organic matter vulnerability is calculated using Equation 6, resulting in the vulnerability 

map shown in Figure 1f. 

Soils: Organic matter vulnerability = (((DWRC + DSRC)/2) + ITC) x SOCC 

Where: 

DWRC = Decrease in Winter Rainfall Class 

DSRC = Decrease in Summer Rainfall Class 

ITC = Increase in Temperature Class 

SOCC = Soil Organic Carbon Class 

(Equation 6) 

2.1.8. Biodiversity: Forest fires 

Increased incidence of forest fires is not a new phenomenon during periods of hot and dry 

weather. Therefore projected increases in temperature and decreases in summer rainfall could 

result in an increased risk of forest fires, which not only impacts on biodiversity, but also 
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impacts upon the provision timber, recreational and cultural ecosystem services (Lindner et al., 

2010). 

The assessment of vulnerability of forests to increased incidence of forest fires is relatively 

simple. Projected decreases in summer rainfall and increases annual temperature (re-classed 

as shown in Tables 2 and 3) are combined with CORINE land cover data (EEA, 2006) on 

forested areas using Equation 7, resulting in the vulnerability map shown in Figure 1g. 

Biodiversity: Forest fires vulnerability = (ITC x DSRC) x FC 

Where: 

DSRC = Decrease in Summer Rainfall Class 

ITC = Increase in Temperature Class 

FC = Forest Class (1 or 0 if forest present or not) 

(Equation 7) 

2.1.9. Biodiversity: Migration 

This is a complex area which is difficult to assess at a European scale. It is based on the 

assumption that increases in temperature will create pressure for species to migrate to cooler 

areas, be that northwards or upward in altitude (Bellard et al., 2012; Dawson et al., 2011; 

Jackson et al., 2009; Pearson, 2006). Therefore the diversity of elevation and level of habitat 

fragmentation will impact upon species with respect to their vulnerability to temperature 

increase (i.e. ability to migrate). 

Elevation diversity within a NUTS3 region has been derived using the standard deviation of 

elevation within the NUTS3 region, which then linearly re-classed into 10 classes of elevation 

diversity as shown in Table 7. This was derived from the EEA elevation map of Europe (EEA, 

2004) which is made using the global digital elevation model (DEM) derived from GTOPO30 

(note: the units used are ArcGIS metrics and are not altitude in metres). 
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Table 7: Elevation diversity in Europe (re-classed) 

Class Standard deviation in NUTS3 area 

1 66 to 73.3 

2 58.6 to 66 

3 51.3 to 58.6 

4 44 to 51.3 

5 36.7 to 44 

6 29.3 to 36.7 

7 22 to 29.3 

8 14.7 to 22 

9 7.3 to 14.7 

10 0 to 7.3 

Habitat/landscape fragmentation data were taken from a study on landscape fragmentation in 

Europe (EEA, 2011) and were re-classed onto a scale of 0 to 10 (using the same classification 

used in the EEA study) as shown in Table 8. 
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Table 8: Landscape fragmentation in Europe (re-classed) 

Class Number of meshes per 1 000 km2 

0 -2 - 0 

1 0 - 0.1 

2 0.1 - 0.25 

3 0.25 - 0.5 

4 0.5 - 1 

5 1 - 5 

6 5 - 10 

7 10 - 25 

8 25 - 50 

9 50 - 100 

10 100 - 100078008 

Habitat/landscape fragmentation data and projected increases in temperature were then 

combined as shown in Equation 8, resulting in the vulnerability map shown in Figure 1h. 

Biodiversity: Migration vulnerability = ((EDC + HFC) / 2) x ITC 

Where: 

EDC = Elevation Diversity Class 

HFC = Habitat Fragmentation Class 

ITC = Increase in Temperature Class 

(Equation 8) 

2.1.10. Biodiversity: Pollination 

Pollination is a key ecosystem service, for example insect pollination in the EU has an 

estimated economic value of €15 billion per annum (Gallai et al., 2009). Climate change poses 

a number of issues for pollinators, especially increases in temperature. Changes in 
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temperature may affect the timing of flower plants and thus pollinators become 

desynchronised with the plants on which they depend; there can increases in pest and disease 

pressure; temperature may affect foraging patterns; and temperature may affect the 

migration/location of pollinators (de Groot et al., 2010; Potts et al., 2010; UNEP, 2010). 

To assess the potential risk posed by climate change to pollination, projected increases in 

temperature (see Table 3) were combined with data on the proportion of crops requiring 

pollination (sugar beet; oilseeds; sunflower; oil flax; soya bean; cotton seed; fruit trees; soft 

fruit; and vineyards) (based on Eurostat statistics for area of crops grown 2002 to 2011) 

(Eurostat, 2012). This is designed to reflect a potential decrease in the population of 

pollinators (due to temperature change) in the areas where they are most needed to pollinate 

crops. The proportion of crops requiring pollination was linearly re-classed onto a scale of 1 to 

5 as shown in Table 9. 

Table 9: Proportion of crops requiring pollination (re-classed) 

Class Proportion of cropped area (%) 

1 0 - 18.4 

2 18.4 - 36.9 

3 36.9 - 55.3 

4 55.3 - 73.8 

5 73.8 - 92.2 

The pollination vulnerability assessment is calculated using Equation 9, resulting in the 

vulnerability map shown in Figure 1i. 

Biodiversity: Pollination vulnerability = CRPC x ITC 

Where: 

CRPC = Crops Requiring Pollination Class 

ITC = Increase in Temperature Class 
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(Equation 9) 

2.2. Results 

2.2.1. Vulnerability assessments 

The outputs from the vulnerability assessments described above consist of spatial data in a 

raster format. This spatial data consists of a number of classes, which varies with each 

vulnerability assessment, ranging from low to high vulnerability. The results of the 

vulnerability are presented in Figure 1 in the form of maps of Europe showing the distribution 

of the different vulnerability classes. 

  

(a) Water quality: Dilution (b) Water quality: Filtration 
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(c) Water regulation: Flooding (d) Water provision 

  

(e) Soils: Erosion (f) Soils: Organic matter 
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(g) Biodiversity: Forest fires (h) Biodiversity: Migration 

 

 

(i) Biodiversity: Pollination  

Figure 1: Vulnerability assessment results maps for the EU-27 

Table 10 shows the range of theoretical vulnerability classes that could exist for each 

ecosystem service and the range that exists in the EU-27. In many instances the theoretical 

range is also closely if not fully represented in the EU-27. The two soils services are the main 

exception, with the higher vulnerability classes not found in the EU-27. 
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Table 10: Range of vulnerability classes 

Ecosystem service Theoretical range EU-27 range 

Water quality: Dilution 0 to 100 0 to 54 

Water quality: Filtration 0 to 70 0 to 60 

Water regulation: Flooding 0 to 10 0 to 10 

Water provision 0 to 100 0 to 100 

Soils: Erosion 0 to 56 0 to 21 

Soils: Organic matter 0 to 140 0 to 84 

Biodiversity: Forest fires 0 to 100 0 to 81 

Biodiversity: Migration 0 to 100 0 to 90 

Biodiversity: Pollination 0 to 50 0 to 50 

2.2.2. Hotspots 

With respect to hotspots, all the vulnerability maps presented above clearly demonstrate 

regional variation on a European scale. In some instances this variation is only at a NUTS2 or 

NUTS3 level (e.g. pollination or flooding), but in other instances the variation is at a finer 

resolution (e.g. soil erosion, SOM or forest fires). This largely stems from the resolution of the 

underlying data used. However, even at a NUTS2 or NUTS3 level, it is possible to determine 

some areas where there are potential adaptation hotspots For example: 

 Water quality dilution issues in eastern Spain and Greece. 

 Water filtration capacity issues in north-west France and Ireland. 

 Flooding issues in north-east England. 

 Water provision issues in southern European countries. 

 Soil erosion issues in Denmark. 

 Soil organic matter issues in the Auvergne region in southern France. 

 Forest fire issues throughout southern Europe, particularly in south-west Spain and 

Portugal, Sardinia and Corsica, and Cyprus. 

 Biodiversity Migration issues throughout the densely populated areas of northern Europe 

and patches in southern Europe. 
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 Pollination issues in southern Spain and France and north-east Italy. 

It is also possible to perform basic spatial analysis to determine the proportion of a region that 

falls into different vulnerability classes. For example, we can divide the European range (in 

Table 10) for each vulnerability assessment into thirds, to represent low, moderate and high 

vulnerability classes. It is then possible to determine the proportion of the land area of a 

region (as a percentage of the total) that falls into the moderate and high classes. For 

example, Table 11 presents this data as a hotspot analysis for nine rural NUTS3 regions, 3 in 

north-eastern England in the UK, 3 in north-west France and 3 is south-east Spain. 

Table 11: Example of adaptation hotspot analysis for regions in France, Spain and the 

UK 

NUTS3 region 
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North-east England, UK  

 

     

 

 

 

Durham CC 2203 0 0 100 0 0 32 0 60 0 

Northumberland 4966 0 0 100 0 0 35 0 44 0 

North Yorkshire CC 7939 0 0 0 0 0 27 0 29 0 

Basse-Normandie, France           

Calvados 5540 0 94 100 0 0 3 100 100 0 

Manche 5939 0 93 100 0 0 2 100 100 0 

Orne 6080 0 48 100 0 0 39 100 100 0 

Cataluña, Spain           

Girona 5923 100 0 0 100 1 69 100 0 100 

Lleida 12203 0 0 0 0 0 41 100 58 100 

Tarragona 6337 100 54 0 0 0 22 100 2 100 



30 

 

Table 11 shows both the variation between the three countries, but also variations between 

the NUTS3 regions within those countries with respect the proportion of the land that is 

moderately and highly vulnerable. For example, Durham and Northumberland in the UK have a 

high proportion of land that is vulnerable for flooding; Orne in France has a high area of land 

where SOM is vulnerable; and Lleida in Spain has a high proportion of land that is vulnerable 

for biodiversity migration. 

Given these hotspots, there may be scope within RDPs to develop operations to address these 

issues – some examples in relation to the rural development priorities (EC, 2011) of water, soil 

and biodiversity are discussed below. 

2.2.3. Example RDP operations 

With respect to water quality, there is not normally scope to increase dilution (i.e. quantity of 

water) to improve quality. Therefore, reducing pollutant loads may help reduce concentrations 

of pollutants in regions where there is less dilution capacity (Figure 1a) due to climate change. 

For example, in rural areas this may include reducing losses of nutrients and pesticides from 

agriculture. This could be coupled with increasing filtration capacity in areas where increased 

run-off may occur due to climate change (Figure 1b). For example, increasing buffer strips 

around arable fields or designing and implementing more effective buffer strips may increase 

the filtration capacity within a region and thus help improve water quality. 

In relation to the regulation of water flows, there can be efforts to attenuate flood peaks/flows 

in areas where there are flooding issues (Figure 1c). For example, increasing the water holding 

capacity of land, e.g. the restoration of upland moorland and peat bogs may help buffer heavy 

rainfall events and thus help attenuate flood peaks. At the other extreme, where there are 

deficiencies in water provision (Figure 1d), action tends to focus on reducing demand, 

increasing water efficiency or better capture and storage of water resources. For example, in 

areas currently water stressed and where rainfall is projected to decrease, more efficient 

irrigation of crops (technological and biological), or capturing and storing water when it is 

plentiful (e.g. in reservoirs) may help increase the capacity of an area to cope with water 

provision issues. 
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In the context of soil protection, the issue of soil erosion is not a new phenomenon. Thus it is a 

case of implementing soil conservation techniques in areas which are prone to erosion. Those 

those areas identified as at an increased risk due to climate change (Figure 1e) can target 

rural development funds towards soil erosion control techniques and technologies. The issue of 

soil organic matter is a more complex area and can be cross-cutting as it also impacts on soil 

erosion, water provision/use by crops, carbon sequestration and agricultural production. Areas 

identified as being vulnerable (Figure 1f) are most likely to benefit from RDP operations to 

conserve SOM or increase it. This could be via inclusion of a 1-2 year grass/clover ley following 

an undersown spring crop, sensitive management of high erosion risk crops (e.g. maize) or 

using reduced depth non-inversion tillage (Dawson and Smith, 2007). In southern Europe, zero 

tillage may be an effective technique but with minimal risk of increased N2O emission 

(Helgason et al., 2005; Marland et al., 2001). Avoidance of soil compaction by livestock in 

northern Europe (e.g. by removal of livestock from vulnerable grazing land during the winter) 

provides the opportunity to enhance grass growth and return of organic matter to the soil on 

grasslands (Louwagie et al., 2009; Moorby et al., 2007). 

Regarding biodiversity, although forest fires can be part of natural ecosystem processes 

(Brūmelis et al., 2011), in the context of the densely populated areas of Europe, and the 

ecosystem services forests provide, they are undesirable (Lindner et al., 2010). There are two 

aspects to focus on, fire prevention and fire fighting. In regions where there may be an 

increased risk of forest fires (Figure 1g), RDPs could be used to implement operations to 

reduce the risk of fire, for example removal of forest trash as potential fuel source or creation 

of fire breaks (PNW, 2010). Additionally, in areas of increased risk, improved fire fighting 

infrastructure may also help increase the capacity of the region to deal with forest fires. 

Biodiversity migration (Figure 1h) is a challenge in the densely populated areas of Europe. 

However, there may be scope, especially in rural areas, to address habitat fragmentation 

issues. For example, the creation of wildlife corridors to connect patches of habitat may help 

reduce fragmentation and/or increase the capacity for biodiversity to migrate when faced with 

changes in climate. The issue of pollination vulnerability (Figure 1i) is also partly connected to 

migration, but with a focus on the population of pollinating species. Efforts to tackle the 
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migration issue may help pollinators, but more specific action might include the creation of 

habitat to support greater numbers of pollinators in and around crops that require pollination. 

Different operations will have different degrees of impact with respect to increasing the 

capacity of a regions ecosystem services to adapt to climate change. Quantifying the degree of 

impact is a challenging task, especially when (as discussed above) there is no unit of adaptive 

capacity. However, at a basic level it is possible to use expert judgement to provide an 

indication of relative degree of impact that might be expected from two or more operations. If 

a nominal index of this relative impact is used, it can then be combined with the vulnerability 

scores (classes) shown above. For example, if the relative impact score of an operation is 

multiplied by the vulnerability class in the location it is applied, these scores across a whole 

region (with multiple vulnerability classes) would provide an overall relative measure of the 

potential impact of an operation with a region. It does not quantify the impact on adaptive 

capacity, but it provides a numerical means of assessing relative potential impact when 

considering multiple operations, as is the case when developing rural development 

programmes. As such it facilitates the focusing of relevant operations in the areas that most 

need them. 

3.0. Discussion and conclusions 

3.1. Fitness for purpose 

The vulnerability assessments presented above are in many respects relatively simple. They 

are based on data that are readily available for the EU-27 and in format to allow spatial 

analysis. There will always scope to use 'better' data, e.g. data of a higher resolution, more 

recent data, or more complex data/greater number of parameters. However, the key issue to 

determine is are they fit for purpose and suitable for the application for which they were 

developed. 

The work presented was undertaken in the context of developing European Rural Development 

Programmes (RDPs) for the 2014-2020 period to optimally address climate change objectives 

(reducing GHG emissions, increasing carbon sequestration and increasing capacity to adapt). 



33 

 

The vulnerability assessments above can be used to support this process in two ways. Firstly, 

by aiding the identification of hotspots with respect to areas where they could be adaptation 

issues. Secondly, to help assess the potential impact RDP operations might have with respect 

to increasing the adaptive capacity of ecosystem services. As shown in the results, it is 

possible to use the vulnerability assessments for this task. However, there are undoubtedly a 

number of limitations and areas for improvement that need to be taken into consideration. 

3.2. Limitations and areas for improvement 

The vulnerability assessments presented herein provide a simple and pragmatic approach to 

tackling the issue of adaptation to climate change with respect to ecosystem services. 

However, they are a prototype and very much a 'first draft' and consequently there are a 

number of areas where they could be improved (without deviating from a simple approach 

utilising readily available data). 

For example, with respect to water quality, data that underpins both the dilution and filtration 

vulnerability assessments was based on data that was available in early 2012. This was a snap 

shot of what had been reported under the Water Framework Directive (WFD) up to that time. 

Since then additional data has been added (e.g. some data were missing in 2012, such as that 

for Poland and Portugal) and other data have been updated. Consequently there is scope for 

this assessment to become out of date. It would be possible to revise the data set, however 

the WFD data are not readily available in a format suitable for GIS analysis – thus it is not 

conducive to regular updating. Additionally, the assessment of dilution was based on the WFD 

water quality data combined with projected percentage decreases in winter and summer 

rainfall (Table 2). This percentage data does not take account of existing levels of rainfall and 

thus volume of water available for the service of dilution. The impact on dilution in areas which 

are projected to have a large percentage decrease in rainfall but which have low rainfall to 

start with, may be less of an impact on dilution (in terms of volume of water) that areas which 

have a lower percentage decrease in projected rainfall but which have higher current rainfall. 

Consequently, in the vulnerability assessment shown in Figure 1a, some of the areas, for 

example Greece, which have been highlighted has having high vulnerability, may actually be 
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less vulnerable due to lower existing rainfall. To overcome this, the projected percentage 

decrease in rainfall could be combined with current winter and summer rainfall, to determine 

an actual reduction in rainfall and thus volume. 

The water provision vulnerability assessment utilised water stress indicators developed by 

Vörösmarty et al. (2010). Just three of the human water security (HWS) indicators provided by 

Vörösmarty et al. (2010) were selected. These were the key indicators, but there is scope to 

base the water stress indicator using all six of the HWS indicators (dam density, river 

fragmentation, consumptive water loss, human water stress, agricultural water stress, and 

flow disruption). Additionally, Vörösmarty et al. (2010) also provide an alternative weighting of 

the 6 indicators to provide an indicator of water stress on river biodiversity (BD). Thus there is 

scope to provide an alternative perspective on water stress and potentially water provision, i.e. 

from the perspective of water provision for biodiversity – thus providing an overlap with the 

water and biodiversity vulnerability assessments. 

The biodiversity migration vulnerability assessment is one of the more complex assessments 

that have been undertaken. It presents an assessment for biodiversity for the whole area of 

Europe. However, in relation to the issue of the capacity of biodiversity to migrate, perhaps a 

more significant issue relates to areas where we protect and conserve our most valued and 

endangered species – such as the Natura 2000 network of designated sites. The problem with 

designated areas is that in the event of climate change we cannot extend a nature reserve 

northwards due to fragmentation and/or human infrastructure. Many of the Natura 2000 sites, 

and the species they contain, are surrounded by vulnerable areas. Consequently there may be 

scope to make an assessment of the degree of fragmentation to the north of Natura 2000 

areas and/or the degree of elevation diversity within the areas, to make an assessment 

specifically for Natura 2000 areas. Additionally in relation to this issue, the assessment of 

fragmentation and elevation diversity is quite crude in resolution, especially with respect to the 

latter, which is elevation diversity within NUTS3 areas (i.e. there are  single values for whole 

NUTS3 regions). The ability of biodiversity to migrate could depend on localised issues and 

features. For example, a NUTS3 region may have low elevation diversity, but there could be 

small area within that region which is rich in biodiversity and does have greater elevation 
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diversity (i.e. it is hilly), and thus there could be scope for biodiversity to migrate by adjusting 

their altitude. 

The pollination vulnerability assessment is based on projected temperature increase and the 

proportion of crops within a region that require pollination. There are two areas where 

potential improvements might be made. Firstly, as well as increased temperature, increases in 

rainfall, and especially heavy rainfall, may also have negative impacts on pollinating species 

because, for example, it may reduce the longevity of flowers reducing the availability of pollen 

and nectar production. There may be scope to incorporate projected changes in rainfall into 

the vulnerability assessment to address this issue. Secondly, the area of crops requiring 

pollination does not take into account the potential value and yield of the crop. There may be 

scope address this issue by multiplying crop value and yield by the area, thus highlighting 

where the most valuable and high yielding crops may be vulnerable. 

Given the numerical vulnerability classes, there may be scope to combine some of the 

vulnerability assessments using tools within ArcGIS. In so doing this would enable the 

identification of regions where there are multiple vulnerability issues to address, and possibly 

compounding issues, where problems are exacerbated due to their incidence in one location. 

For example, regions where there may be water provision issues (Figure 1d) and risks of forest 

fires (Figure 1g), where clearly a lack of water may impact on a region's capacity to fight forest 

fires, in which case greater efforts (in terms of RDP measures and operations) should be 

targeted on fire prevention. 

Data resolution is another area where improvements could be made. For example, the climate 

change projection data used was aggregated to European NUTS3 regions, which are relatively 

large areas and the boundaries are determined based on population, consequently population 

density impacts on geographical size. This means that in some sparsely populated areas, one 

set of climate change data covers a large geographical area, and when this is combined with 

similar low resolution data, e.g. water quality for river basin districts (RBDs), single 

vulnerability classes can cover large areas (e.g. see Filtration vulnerability in Sweden – Figure 

1b). This could be improved by using either higher resolution (e.g. 1km or 10km grid) data for 
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either the climate change or water quality data, or both. Similar issues exist for some of the 

other vulnerability assessments such as pollination. 

Not unrelated to data resolution is the issue of uncertainty. This is particularly the case with 

climate change projections, where the issue of uncertainty has been a key issue and is a topic 

in its own right (Foley 2010; Moss et al., 2010; Pindyck 2013; Reto et al., 2010). There is also 

scope to adjust values in some of the indicators, e.g. the weightings used for the water 

provision index derived from Vörösmarty et al. (2010), and as described above there are 

different data sets for water quality. Thus there is scope to derive variations in the 

vulnerability assessments. It was beyond the scope of the project (given the number of 

variables) to undertake a full sensitivity analysis to identify the potential range that may arise 

in the results. However, it was acknowledged at the outset that the vulnerability assessments 

can only ever represent a snapshot and there is always scope to replicate the assessments 

with different data sets. For example, managing authorities in individual Member States may 

wish to use their own data (which may be higher resolution) or different climate projections 

bespoke to their region. In so doing this fits with the pragmatic approach of the framework 

developed, in making use of data that is readily available within the region of interest. 

3.3. Conclusions 

The work presented herein is currently (at the time of writing this article) being digested by 

the European Commission, so to do date there is little detailed feedback to report. However, 

the work was well received by the Commission and it is understood that they plan to develop it 

further in 2014 to support the development of RDPs in the EU-27. Despite the limitations 

outlined above, including the low data resolution and uncertainties, at a European level (and 

within some Member States) the vulnerability assessments do help shed light on some of the 

key adaptation issues for ecosystem services that may arise due to climate change and thus 

help inform the debate on potential responses in the context of rural development programmes 

and operations. However, like any government programme or policy, it is important to 

recognise that any decisions should not be based solely on assessments such as those 

presented herein. They should be used to in conjunction with other evidence including local 



37 

 

knowledge and data to ensure that any interventions are well suited to the areas in which they 

are implemented. We also need to recognise that many interventions may need to be multi-

functional, i.e. they may need to address multiple rural and environmental objectives. Climate 

change is only part of one of six EU priorities for rural development (EC, 2011). 

The vulnerability assessments presented herein are fit for purpose at a basic level. They use 

readily available data to help inform complex decisions to support the EU rural development 

priority number 5: 'Promoting resource efficiency and supporting the shift towards a low-

carbon and climate-resilient economy in the agriculture, food and forestry sectors' (EC, 2011). 

As outlined above, there is considerable scope to improve the analyses, but given the 

pragmatic and relatively simplistic framework developed, there is scope for individual Member 

States to duplicate the process and address the areas for improvement as best meets their 

specific requirements and priorities. At the very least, especially in Member States that have to 

date lacked data and analyses of their regions, the vulnerability assessments provide an 

analysis of an issue not examined previously, but which is now of increasing importance as 

reflected in EU and national priorities. 

Over the past decade there has been a growing acknowledgement that as well as tackling the 

causes of climate change (i.e. greenhouse gas emissions) that we need to adapt and respond 

to the changes in the climate that do arise, and this is now reflected in the policies and 

strategies at European, national and regional levels. Mainstreaming these strategic priorities 

and policies into action on the ground is a key challenge from 2014 onwards. We also need to 

acknowledge that our scientific understanding of the issues, and our associated data and tools, 

also need to adapt and evolve to meet the challenges of not just climate change, but the many 

other environmental and socio-economic objectives required for sustainable development. The 

framework, analyses and assessments presented herein, are potentially valuable tools for 

targeting limited resources to achieve desirable outcomes. They are also flexible and have 

scope to be improved and updated in the future, such as incorporating improvements in 

scientific understanding and utilising higher resolution data as it becomes available. In so 

doing it will facilitate a better understanding of the climate change challenges we face and 

support the formulation of solutions to optimally address those challenges. 
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