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Abstract

Based on the view of an agent as an information processing system, and the
premise that for such a system it is evolutionary advantageous to be par-
simonious with respect to informational burden, an information-theoretical
framework is set up to study behaviour under information minimisation pres-
sures. This framework is based on the existing method of relevant informa-
tion, which is adopted and adapted to the study of a range of cognitive aspects.

Firstly, the model of a simple reactive actor is extended to include layered de-
cision making and a minimal memory, in which it is shown that these aspects
can decrease some form of bandwidth requirements in an agent, but at the
cost of an increase at a different stage or moment in time, or for the system as
a whole. However, when combined, they do make it possible to operate with
smaller bandwidths at each part of the cognitive system, without increasing
the bandwidth of the whole or lowering performance.

These results motivate the development of the concept of look-ahead infor-
mation, which extends the relevant information method to include time, and
future informational effects of immediate actions in a more principled way. It
is shown that this concept can give rise to intrinsic drives to avoid uncertainty,
simplify the environment, and develop a predictive memory.

Next, the framework is extended to incorporate a set of goals, rather than deal
with just a single task. This introduces the task description as a new source
of relevant information, and with that the concept of relevant goal informa-
tion. Studying this quantity results in several observations: minimising goal
information bandwidth results in ritualised behaviour; relevant goal and state
information may to some point be exchanged for one another without affect-
ing the agent’s performance; the dynamics of goal information give rise to a
natural notion of sub-goals; bottlenecks on goal memory, and a measure of
efficiency on the use of these bottlenecks, provide natural abstractions of the
environment, and a global reference frame that supersedes local features of
the environment.

Finally, it is shown how an agent or species could actually arrive at having
a large repertoire of goals and accompanying optimal sensors and behaviour,
while under a strong information-minimisation pressure. This is done by in-
troducing an informational model of sensory evolution, which indicates that
a fundamental information-theoretical law may underpin an important evo-
lutionary catalyst; namely, even a fully minimal sensor can carry additional
information, dubbed here concomitant information, that is required to unlock



the actual relevant information, which enables a minimal agent to still ex-
plore, enter and acquire different niches, accelerating a possible evolution to
higher acuity and behavioural abilities.
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Chapter 1

Introduction

“Real understanding will only come from distillation of general principles at a
higher level, […] if we look forward far enough into the future, we are driven
to seek general principles rather than detailed minutiae. ”Richard Dawkins

1.1 Foundation: Life and Trade-Offs
Life is full of trade-offs: should we buy a car, or invest the money? Should I pursue a
specific goal, or keep my options open? Can you achieve more by thinking less?

In general, an organism may be seen as the result of a possibly large set of trade-
offs, which are induced by different and opposing evolutionary pressures. For example,
a predator may be driven to become bigger and stronger to enable it to overpower larger
prey, while at the same time there may be a pressure towards lighter and leaner bodies,
such that it can better outrun its meal. One can expect that species under evolutionary
pressure are driven towards the optimal trade-off, in this case where it would be as fast
as it can be, while still keeping enough strength to overpower a prey.

Similarly, there may be yet another pressure to be more observing or cunning, so
there is less need to be strong or fast. Larger brains, and larger or more precise sensors
to supply such brains with more detailed input, open up a wider range of behaviour for
an organism, possibly enhancing its performance in its niche. However, this comes at
a significant energetic cost, as exemplified by multiple studies; e.g. the eye of a resting
fly accounts for 10% of its energy consumption [57], and about 20% of human energy
consumption is accounted for by our brain [44].

Such numbers suggest that there is indeed a real trade-off to be made under evolution-
ary pressure. This assumed process is schematically visualised in Fig. 1.1: with growing
cognitive capacities, and the burden associated with employing them, the achievable per-
formance of an organism is expected to grow monotonically, tracing out some optimal
trade-off curve. The existence of such a trade-off curve induces two possible, comple-
mentary questions: 1) what is the maximum performance that can be achieved under a
given limit on cognitive burden, and 2) what is the minimal cognitive burden that must
be employed to achieve a given performance level?
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Figure 1.1: Trade-off between cognitive burden and behavioural performance. The avail-
able cognitive power restricts the range of feasible behavioural performance, denoted by
the shaded area. The boundary of this area (solid line) traces the optimal trade-off curve,
i.e. the highest performance achievable without surpassing a given load, or, equivalently,
the minimal load needed to achieve a given level of fitness, with the global optimumwith
the highest performance at the tip (square). A species below this curve will feel evolu-
tionary pressures to be cognitively more efficient, and/or use its cognitive power more
parsimoniously (solid arrows), moving it towards a point on the optimal curve (dotted
arrow, filled circle).
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A species that operates underneath this curve can be said to behave sub-optimally,
as it spends more energy on its cognitive processes than necessary to achieve its current
fitness. From this I arrive at the following two dual hypotheses, that form the foundation
of the work in this thesis:

Hypothesis 1. The Effectiveness Hypothesis: A species or agent is under evolutionary
pressure to increase fitness through more effective utilisation of any superfluous cognitive
capacity.

Hypothesis 2. The Parsimony Hypothesis: A species or agent is under evolutionary pres-
sure to degenerate sensory and cognitive capacity, to be more efficient and do away with
unneeded energy consumption.

These pressures effect a move towards the optimal curve, until it is hit.
There are some arguments that one could put forward as possible opposition against

the two hypotheses that form the foundation of this thesis as described above, which I
would like to get out of the way directly.

‘Redundancy Reduction’ was Wrong

Forms of the Parsimony Hypothesis have been around for a long time, and the idea that
it can be studied with information theory came about shortly after Shannon’s creation
of the field. Notable proponents were Barlow and Attneave [12, 6], who predicted that
the brain would minimise the amount of redundancy of information that it processes.
However, armed with decades of empirical results and new knowledge, this prediction is
now discredited. In the words of Barlow [11]:

“Originally both Attneave and I strongly emphasised the economy that could be
achieved by re-coding sensory messages to take advantage of their redundancy,
but two points have become clear since those early days. First, anatomical evi-
dence shows that there are verymanymore neurons at higher levels in the brain,
suggesting that redundancy does not decrease, but actually increases. Second,
the obvious forms of compressed, non-redundant, representation would not be
at all suitable for the kinds of task that brains have to perform with the infor-
mation represented; […]. ”How can an abundance of redundancy still fit with the idea of parsimony? The main

answer lies in what Barlow points out that redundancy reduction is not : stripping away
information that is unimportant, which in contrast is the type of parsimony that I will
study here. My hypothesis is that an agent is driven to structure its cognitive system
and/or its actions such that it can discard as much unimportant information as possible.
The observation that the information that is important is represented with a lot of redun-
dancy, that this redundancy increases at higher levels, and the idea that this redundancy
must be available for a brain to be able to perform its tasks only increases this drive: the
cognitive cost of operating under the optimal curve is exacerbated by this redundancy.
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There is no Trade-Off in Nature

Experiments have shown that rods in the retina of toads can respond already to just a
single photon [15]. A viper’s pit heat sensor can react to heat differences of 0.003◦ [23],
and is directionally accurate enough to enable a blindfolded viper to strike a target within
five degrees of dead centre [70]. Finally, it was shown that the inner ear detects forces
comparable to the thermal-noise limit [33], and the fly Ormia ochracea can detect a time
difference of 1.5µs between auditory impulses arriving at its ears, and use this to localise
sound sources within 2 degrees azimuth [65].

From these examples, it seems that evolution is simply seeking out the far end of
the trade-off curve between sensory acuity, and the cognitive burden that comes with
processing the high amount of information they give. Is there then actually an optimal
trade-off curve, on which each point is locally optimal? Or is there just a global optimum
that nature is moving towards and that is only limited by the laws of physics? In other
words, is the only interesting point of Fig. 1.1 the upper right corner?

I would argue this is not the case; evolution has no predefined direction, and is un-
moved by our amazement at the hyperacuity that is achieved. There is a plethora of ex-
amples where evolution drove the degeneration of vestigialized characters, not excluding
sensory and cognitive apparatus, such as in blind cavefish [42] and a range of other cave
dwelling animals, flightless birds, loss of hearing in moths, and countless more [37].

So, it seems that the earlier examples only show one possible outcome, where there has
been enough pressure to develop highly accurate sensors and specialised neural facility
to work with these, to outweigh the costs of operating them, but this is not necessarily
the final outcome. The occurrence of organisms operating on or close to the physical
limits however still poses an interesting question: how can this end of the trade-off curve
actually be achieved? It may seem unlikely, as the pressures visualised in Fig. 1.1 only
effect a drive ‘backwards’ towards the optimal curve. In this view it seems difficult to
climb the curve towards the end. I will investigate this problem in more detail in Chap. 7.

1.2 Behaviour, Cognition, Sensing and Acting
In the previous section some key concepts were mentioned such as ’behaviour’ and ’cog-
nition’, which are some of those concepts that are hard to define in a general yet specific
way, and satisfactory for all purposes. Moreover, they involve more of these seemingly
abstract terms, such as ’sensing’ and ’acting’. One may have an ’I know it when I see it’
idea of these concepts: when you see or feel something, you are sensing; when you pick
it up and manipulate it, you are acting; and when you are solving that difficult puzzle,
or try to figure out the local public transport network, there is certainly some cognition
going on. But how would you formulate concrete definitions that capture it all? Is acting
just what you do with your hands, or is any muscle movement an action? Is speaking?
And what if you talk to yoursel? Does cognition consist just of those obviously mentally
taxing thought processes, or is cognition also applied in those mundane every day, semi-
conscious, or even unconscious behaviours, such as cycling, making coffee, or breathing?

To be able to develop this thesis, I must make these concepts more explicit, and put in
place a concrete model. Purposefully, these will still be as abstract as possible: the goal

4



agent

environment

G

G’

W

S

M

A

Figure 1.2: Sketch of the full cognitive model studied in this thesis. An agent interacts
with the world W through its sensors S and actions A. It may have a memory M , to re-
tain information that can guide future actions, and internal drives that induce behaviour
directed towards some goals G . The currently relevant knowledge about these goals can
be made accessible for concrete action decisions in a goal working memory G ′.
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is to present properties and fundamental phenomena of cognition and behaviour without
needing to specify, and thereby limit, the physical systems that could underlie the studied
processes. With that in mind, Fig. 1.2 shows the model of behaviour generation that I
will use. It is very much in line with classic definitions of agents and their so called
Perception-Action loop [80], and consists of the following parts:

Agent/World The model makes a hard distinction between two interacting entities: the
agent and the world. Although this may seem a valid distinction, it is important
to note that skips over some possible issues. For instance, if you rely on artificial
prostheses, do they belong to you as an agent, or to the world? More generally,
some argue that any item used actively to support cognition can be considered an
extension of the mind, instead of as part of the environment [29]. Also in cases of
tight symbiosis such as lichen, or ’swarm intelligence’ such as with ants or bees,
one may say that the full cognitive process is not contained with a single individual
organism. Finally, in artificial systems wholly different and novel interactions may
be possible that may blur the line: consider a group of robots partly controlled by
a central computer, or robots that can join up and separate by linking and discon-
necting their bodies and circuitry at will. For the purpose of this thesis, I contend
that the place of the boundary depends on the observer, and make no assumption
on where the distinction is made, only on the fact that this distinction can be made,
and that the world and agent can be described concretely and separately.

Sensing With the distinction between the agent and the world in place, sensing is then
the reception of any information from the world by the agent, or any change in
the agent directly caused by interaction with the world, which affects its cognitive
process and/or its actions.

Acting Acting covers the remainder of interaction with the world: any manipulation of
the state of the world directly by the agent.

Cognition In this model, cognition consists of whatever process that links sensing with
acting. This includes some really basic links for which the term ‘cognition’ as used
in daily language may seem an exaggeration, such as a pain reflex that makes you
lift your hand from a hot stove before you are aware of it. However, this definition
allows one to study a system in terms of information processing requirements and
make fundamental statements about it without concern of the implementation: the
reflex may actually be a result of lightning fast mental processing of all possible out-
comes of not lifting your hand (although I hope the work in this thesis will support
a bias towards a simpler assumption), it still processed the same input information
with the same outcome. This is not to say that one is unable to break down the pro-
cess and study the possible role of its parts. This I will do for 2 major components:
memory and internal drives. The first is modeled purely as a sensory memory, be-
cause by definition sensations capture all external information on which actions
are based. The second is introduced to drive those differences in behaviour that are
not readily explained by current sensations and memory, with traditional examples
such as hunger and thirst resulting in different behavior in the kitchen.
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Behaviour Finally, behaviour encompass everything, as the combined result of the sens-
ing, cognitive, and acting processes over time.

1.3 Research Questions and Contributions
In this thesis, I will study the trade-off between cognition and behaviour, as well as some
purely cognitive trade-offs, based on the hypotheses stated in Sec. 1.1. Specifically, I will
study the following questions:

• What trade-offs are involved in sensing, cognition and performance?

• How can such trade-offs be rigorously formalised?

• Under such a formalisation, how does one find optimal trade-offs?

• How do different assumptions on the cognitive architecture determine different
trade-offs?

• What fundamental properties of cognitive processes and behaviour can be studied,
determined, and predicted from such a formalisation and its optimal solutions?

These investigations result in the following novel contributions contained in this thesis:

Methods

1. Extensions to the application of the relevant information method (c.q. Sec. 2.6) to a
range of cognitive models, including models of distributed decision making, mem-
ory, and goal-directedness, and to different or combined information constraints in
these models.

2. The novel concept and associated methods of look-ahead information, which finds
informational trade-offs that take into account future informational effects of their
actions.

3. A learning method, based on look-ahead information, as the first demonstration of
an agent acquiring an information minimising policy solely based on experience, in
an on-line, situated scenario.

4. Amethod to study information transitions in theworkingmemory of a goal-directed
agent through sampling.

5. A framework to study drives in sensor evolution from an informational standpoint.

Contributions to Knowledge

1. Quantitative evidence that a properly organised multi-component cognitive struc-
ture can alleviate cognitive burden, as compared to a single unit.

2. Quantitative results that show that an agent that can take into account future in-
formational effects of actions and that is under a drive to limit sensory bandwidth:
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• is driven to avoid future states with unpredictable outcome

• is driven to make its world simpler

• can develop a memory that is useful in predicting future state, even when it is
not needed to increase performance

3. That it is possible for different forms of information in an agent’s decision making
process to be substituted for each other, with no effect on performance.

4. That natural sub-goals and segmentations, while in other research often imposed
on the scenario, arise intrinsically and naturally from the viewpoint of information
minimisation.

5. That the fundamental properties of a perception-action loop, arising from information-
theoretic laws, induces a strong candidate to be an evolutionary catalyst, in the
form of concomitant information: additional information not relevant in itself, but
required to access information that is relevant.

1.4 Scope
Again, concepts such as behaviour and cognition are very broad, and there are a vast
amount of interesting research questions and as many approaches to treat them. To re-
main manageable, the research in this thesis will be contained to the behaviour and cog-
nition of a single agent, using computational models of elemental discrete action selection
scenarios; the goal of this work is to offer a formal framework in which to study the afore-
mentioned hypotheses, with presupposing, and depending on, as few details of agents and
their environments as possible, while still allowing the observation of a range of impor-
tant phenomena. The scenarios and experiments are chosen with the aim to strike this
balance. Their relevance will further be discussed in the final chapter, where I will also
discuss the prospects and opportunities of moving beyond these scenarios.

The basic hypotheses are inspired by nature, and the framework that will be developed
is aimed to capture aspects of biological life. Throughout the thesis I will relate results to
findings in nature wherever possible. However, I will not claim that the methods used to
study different phenomena map directly to specific biological processes, but rather have
as purpose to analyse the properties and outcomes of such processes. For instance, I will
not explain what specific evolutionary steps are required to arrive at a sensory channel
with minimum capacity, but rather what general inherent structures can be observed once
such a channel is achieved.

Similarly, I will also at various points relate my results to work on artificial intelligence
and machine learning, on which a large part of the framework is built, but there the aim
is to provide a novel, in a sense more fundamental viewpoint to regard this work from.
None of the methods used are aimed to be practical ways to achieve intelligent artificial
behavior, although I will discuss how the results may point towards natural concepts that
may guide its development.
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1.5 Outline
Theremainder of this thesis is organised as follows. Thenext chapter provides an overview
of the technical background of the work presented later. In it I will give an introduction
to familiarise the reader with the formal frameworks and methods, and introduce some
vocabulary that underpin this work, as well as provide some examples and interpretations
of their results. After that, Chap. 3 will review other work that is related to these meth-
ods and the investigations performed in this thesis. The four chapters following these
overviews present the original work performed.

The first of these, Chap. 4, will apply the parsimony hypothesis, and extend the rele-
vant information methods to cognitive systems with more intricate spatial and temporal
organisation, and show how such differences in organisation affect informational require-
ments. The results of this chapter will form a guideline for the remainder. In Chap. 5 I will
present the novel concept of look-ahead information, and with it develop new methods
to find and study cognitive trade-offs that take into account future informational effects.
Chapter 6 applies the relevant information method to agents that have internal drives that
induce different goal-directed behaviour at different times. Finally, Chap. 7 will formu-
late sensor evolution in terms of the informational framework, and show how a strong
evolutionary catalysing effect can be grounded in fundamental informational laws.

Together, Chapters 4–7 study parts, and combinations of parts, of the cognitive model
sketched in Sec. 1.2 and Fig. 1.2. More precisely, they study the effects of the parsimony
hypothesis, or constraints, on the bandwidth of the information channels in this cognitive
model.

Chapter 8 rounds up the results of these chapters in a general discussion. Finally,
App. A provides some more technical details of the methods discussed throughout this
thesis.
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Chapter 2

Technical Background

“No one really knows what entropy really is, so in a debate you will always have
the advantage. ”John von Neumann, in discussion with Claude E. Shannon

2.1 Introduction
Much of the work presented in this thesis is the result of the combination of two funda-
mental frameworks: that of Markov decision processes, and secondly that of information
theory. The first is used to describe formally the process of an agent making decisions
and acting in a possibly stochastic world. With this formulation, the second framework is
used to model, analyse and optimise the informational properties of such processes, again
in a formal way.

In this chapter I will give a brief introduction to these frameworks, and discuss the
methods that have been developed in the respective fields. The aim of this introduction
is to provide a sufficient and self-contained base on which to develop the methods of the
coming chapters. Where needed, more specific backgroundmay be found in the following
chapters. For a more in-depth review of MDPs and their solutions, the reader is directed
to work by Sutton and Barto [97] and Bertsekas [18]; a thorough treatise of information
theory is given by Cover and Thomas [31].

2.2 Information Theory

2.2.1 Basic Concepts and Notation
An important concept in probability theory, and by extension in information theory, is
the random variable. This is a variable which can take on values from some set, called its
alphabet, according to some probabilistic process. I will write random variables as capital
letters, such as X , Y , W , and A, and their alphabets with the corresponding calligraphic
capitals, X , Y , W , andA . The size of an alphabet is called its cardinality, and is denoted as
|X |. Specific values of variables, also called events, will be written with the corresponding
lower case letters, e.g. x, y , w , and a.
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Figure 2.1: The entropy of a binary random variable X as a function of the probability
of one of the two events, p(x1).

The probability distribution underlying a random variable is a function over all events
in an alphabet, Pr(X = x), ∀x ∈X . To simplify notation, I will write p(x) for the probabil-
ity Pr(X = x) whenever it is clear which random variable is used. Whenever p(x) is used
without x specifically bound, I mean to refer (by abuse of notation) to the full distribution
of X . In a similar vein I will write sums over the elements of alphabets, e.g.

∑
x∈X , as

∑
x .

Some variables are ‘more random’ than others: a variable where it is as likely to see
any of the possible events (picking a card from a well shuffled deck) shows more random-
ness than one that has one value with probability 1 (taking the top card of an ordered
deck). This idea of randomness, or the uncertainty about the value of a random variable,
is quantified by the information-theoretical concept of the entropy of a variable, H(X ),
defined as follows:

H(X ) =−∑
x

p(x) log p(x) (2.1)

The base of the logarithm determines the units in which entropy (and, as we will see later,
information) is measured; I will use base 2, such that the units are bits.

As an example, take a binary random variable X with alphabet X = {x1, x2}. In this
case, the entropy is equal to −p(x1) log p(x1)−p(x2) log p(x2). However, because proba-
bilities add up to one, we know that p(x2) = 1−p(x1). Thus, we can plot the entropy as a
function of p(x1), as is done in Fig. 2.1. As one would expect, this quantity is zero when
p(x1) = 0 and p(x1) = 1, where there is no uncertainty about the outcome, and entropy is
highest in the most uncertain case where p(x1) = p(x2) = 0.5.

One definition of information is as the resolution of uncertainty. In other words, know-
ing the value of a variable takes away the uncertainty about it. In that light, the entropy
can then also be interpreted as the average amount of information you gain when you
get to know a variable’s value. If there are multiple variables, it could be that they are
correlated, so that knowing the value of one reduces the uncertainty about the other. The
average uncertainty still left about Y when you know the value of X is quantified by the
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conditional entropy H(Y |X ):

H(Y |X ) =−∑
x,y

p(x, y) log p(y |x) ≤ H(Y ) (2.2)

The average reduction in uncertainty is then interpreted as the amount of information
that knowing X gives about Y , which gives us the mutual information I (X ;Y ) between
the two variables:

I (X ;Y ) = H(Y )−H(Y |X )

=∑
x

p(x)
∑

y
p(y |x) log

p(y |x)

p(y)
(2.3)

The mutual information has some important well-known properties:

• It is non-negative: I (X ;Y ) ≥ 0

• It is zero if and only if the variables are fully independent: ∀x, y : p(x)p(y) =
p(x, y) ↔ I (X ;Y ) = 0

• It is symmetric: I (X ;Y ) = I (Y ; X )

• It is upper bounded by the entropy of each separate variable: I (X ;Y ) ≤ H(X ),
I (X ;Y ) ≤ H(Y )

Finally, if there is a third variable Z , one can determine how much information X
gives about Y given knowledge of the value of Z , using the conditional mutual information
I (X ;Y |Z ):

I (X ;Y |Z ) = H(Y |Z )−H(Y |X , Z )

=∑
z

p(z)
∑

x
p(x|z)

∑
y

p(y |x, z) log
p(y |x, z)

p(y |z)
(2.4)

The value of the this conditional mutual information depends on how the variables
interact. Here an important concept is theMarkov chain: three randomvariables X , Y , and
Z are said to form a Markov chain X → Y → Z if X and Z are independent given Y . This
implies for the joint probability that p(x, y, z) = p(x)p(y |x)p(z|y), and that I (X ; Z |Y ) = 0.

A central result in information theory is the so called data processing inequality, which
states that in a Markov chain X → Y → Z , it always holds that I (X ; Z ) ≤ I (X ;Y ). The term
comes from the interpretation of this inequality as showing that processing of data can
only reduce information content: if the value of Y is obtained by processing X according
to some function y = f (x), no further processing of this value by a second function z =
g (y) can ever recover more data about the original input than what is retained in Y .

A corollary result is that in a Markov chain it always holds that I (X ;Y |Z ) ≤ I (X ;Y ).
If the inequality is strict, it is said that there is redundancy between Y and Z : some of the
information in X about Y is already given by knowing Z , so is redundant. This is certainly
not always the case, however. If the variables do not form a Markov chain, it can be that
I (X ;Y |Z ) > I (X ;Y ). The canonical example of this is the XOR operation, where Z = 1 only
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X Y

Figure 2.2: Basic memory-less channel without feedback, with input X and output Y .
The possible input and output values are described by X and Y , and its behaviour by
p(y |x).

if the binary input variables X and Y differ in value. If the inputs are fully independent,
knowing one gives no information about the other, so I (X ;Y ) = 0. However, if the output
is given, the value of one is known exactly when knowing the other, and, assuming say
that both X and Y are uniformly distributed, I (X ;Y |Z ) = H(X ) = H(Y ) = 1. This effect,
where one variable ‘unlocks’ information between some other variables, is called synergy,
and the intricate relationship between redundancy and synergy and their decomposition
are currently the subject of active research and discussion [39].

A final important informational measure to introduce is the Kullback-Leibler diver-
gence between two distributions, defined as:

DK L
(
p(x) ∥ q(x)

)=∑
x

p(x) log
p(x)

q(x)
(2.5)

We will encounter this measure throughout this thesis. It gives some sense of distance
between two distributions, being zero when they are equal, and growing if their prob-
abilities diverge. However, it is not a proper metric, as it is not symmetric (generally,
DK L

(
p ∥ q

) 6= DK L
(
q ∥ p

)
). Also, it can be not well behaved: when q(x) = 0 for some x for

which p(x) > 0 a division by 0 occurs.
Luckily these drawbacks do not appear in one important use case: when giving an-

other definition of mutual information. One can namely show that:

I (X ;Y ) =∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
= DK L

(
p(x, y) ∥ p(x)p(y)

)
(2.6)

So, mutual information between two variables is the divergence between their joint dis-
tribution and the product of their marginals. This supports the second property of mutual
information listed earlier: if X and Y are independent, i.e. p(x)p(y) = p(x, y), the diver-
gence, and therefor the mutual information, is 0.

2.2.2 Information Channels
‘Static’ information is not very interesting; we want information to ‘move around’. When
we use a telephone or the internet, information is constantly transferred from one point to
another. Similarly, in an organism, information is passed around in its body: information
about the environment is captured by its sensors, after which it can be transferred to its
brain. Here it could be stored for later use, or it is passed on to its motor faculties to guide
an action.

If information is passed from one place to the other, we say it travels through a chan-
nel. A channel is modelled with two random variables and their alphabets, that describe
the possible inputs and outputs, and a transition probability function that defines its be-
haviour. For instance, the channel of Fig. 2.2 is defined by X , Y , X , Y , and p(y |x).
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Channels come in several flavors, determined by the possible interactions between
the input and the output. In our basic example, the output of the channel only de-
pends on the immediate input given to it; neither past inputs nor outputs have effect
anymore: p(yt |xt , yt−1, xt−1, . . . , yt−k , xt−k ) = p(yt |xt ) for any k > 0. Such a channel is
called memory-less, and if this equality does not hold the channel is said to have memory.

Alternatively, or additionally, it could be that a channel’s output affects its next input.
In this case we have that p(xt+1|yt ) 6= p(xt+1). For example, when calling over a bad
phone line, you get information about the output on the other side when your friend
says he cannot understand you. You can then select your input differently based on this
information, perhaps by using simpler words, or by shouting. We say that such a channel
has feedback.

2.2.3 Informational Variational Problems
With the concepts of the previous sections we are now ready to dive into what is the
underlying process ofmost of thework in this thesis: the analysis of extremal properties of
channels. I will look at interesting and necessary properties and structure of channels that
operate at some minimal or maximal end of an informational spectrum. Specifically, I will
try to find a channel’s transition probability distribution that minimises and/or maximises
some informational value(s), under some constraints.

Such problems fall under the mathematical field of calculus of variations: we optimise
a mapping from probability distributions, or functions, to real numbered values, over the
set of all permissible distributions. In this section I will summarise some of the existing
work on such informational variational problems.

Rate-Distortion

One of the oldest informational variational problems is the Rate-Distortion problem1. It
is described by Shannon in his seminal work [86]. All further concepts in this thesis can
be seen as stemming from Rate-Distortion theory, so I will give a thorough introduction
here.

The Rate-Distortion problem arises when you want to send data with as much com-
pression as possible, while losing as little valuable information as possible. Imagine for
instance when you want to transfer an image on a network, or onto a storage device,
without compromising the quality too much. The compression can be arbitrarily large,
up to where all information is lost, but it comes at a cost: losing more information makes
the image ugly. Finally then, the question is: ‘what is the least amount of information
that needs to be preserved such that the cost does not get too high?’.

If X and Y are the input and output of a channel, and the cost of a mapping, called the
distortion is Dp , then the rate-distortion problem is formulated as:

min
p(y |x)

I (X ;Y ), subj. to: Dp ≤CD , (2.7)

1The other being the channel capacity problem.
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where CD is the maximum permissible cost/distortion2. A common way to define Dp is
via a distortion matrix ρ(x, y), that gives the cost of giving a certain output symbol for all
input symbols. For instance, if you want a channel that simply reproduces all input, this
function can be defined as:

ρ(x, y) =
{

0 if x = y

1 if x 6= y
(2.8)

In this case one wants to get the symbol right, and any wrong symbol is as bad as any
other. A different example is when some symbols can bemorewrong than others. Imagine
that the symbols are integers and you think an output of 5 for an input of 2 is worse than
an output of 1 or 3. In this case, you could alternatively use ρ(x, y) = |x − y |. To obtain
the total cost, the expected value of ρ is taken:

Dp := E [ρ(X ,Y )] =∑
x,y

p(x)p(y |x)ρ(x, y) (2.9)

The problem of Eq. (2.7) is a constrained convex optimisation problem: the mutual
information I (X ;Y ) is convex in p(y |x) for any specific x, and the constraint is a basic
inequality constraint. The problem can be solved by using the method of Lagrange mul-
tipliers. First, the constrained problem is turned into an unconstrained problem by sum-
ming the function to minimise with the inequality constraint multiplied by a Lagrange
multiplier, β. This gives the Lagrange function Λ(p(y |x)), and the following new problem:

min
p(y |x)

Λ(p(y |x),β) = min
p(y |x)

I (X ;Y )+βE [ρ(X ,Y )] (2.10)

Given a fixed value of β the Lagrange function is still convex, for which the unique
minimum can be found at

δ
δp(y |x)Λ(p(y |x),β) = 0. Determining this derivative and solving for p(y |x) finally gives
the following self-consistent solution:

p(y |x) = 1

Z
p(y)exp[βρ(x, y)], (2.11)

where Z=∑
y ′ p(y ′)exp[βρ(x, y ′)] is a normalising factor to ensure that p(y |x) is a valid

probability distribution and sums up to 1, and:

p(y) =∑
x

p(x)p(y |x) (2.12)

As this solution is defined in terms of p(y |x) itself, this does not give us the actual
distribution yet. However, it turns out that if we set β ∈ (0,∞), start with any random
guess of p(y |x), and then iterate Eqs. (2.11) and (2.12), the distributions are guaranteed
to converge to the solution of the original problem [31]. This method is known as the
Blahut-Arimoto algorithm, after the two scientists who independently discovered it at the
same time [20, 3].

2Theminimisation is over all valid probability distributions, i.e. with the constraint that ∀x,
∑

y p(y |x) =
1. For readability, this constraint will not be mentioned explicitly any more in this thesis.
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The value chosen for β determines the tightness of the distortion constraint: increas-
ing it makes the constraint stronger, decreasing the amount of distortion. Conversely, de-
creasing β loosens the constraint, allowing to decrease the amount of information needed
to be transferred, in exchange for an increase in distortion.

It is instructive to realise what happens at the limits of β. Firstly, the case where
β approaches ∞ coincides with forcing the distortion to be at the absolute minimum.
For our simple input copying channel example of before this would mean that Dp :=
0. The solution gives a channel that achieves this constraint while only transferring the
least amount of information to do so. At the other end, where β approaches 0, distortion
becomes less and less important, allowing us to compress more and more, until finally all
information is lost. Note however that even as I (X ;Y ) approaches 0, this does not mean
that the distortion can grow indefinitely, or that any information-destroying distribution
is a valid variational solution. To see this, it may help to rewrite the problem as:

min
p(y |x)

I (X ;Y )+βE [ρ(X ,Y )] = min
p(y |x)

β′I (X ;Y )+E [ρ(X ,Y )], (2.13)

where β′ = 1
β . So when β→ 0, β′ →∞, and thus we can describe the solution as before: a

channel that transfers the minimum amount of information (0 bits) while only producing
the least amount of distortion needed to do so.

As an example, again consider our input copy problem, now with ρ(x, y) = |x−y |, and
let X = {0,1,2} and p(x) be uniformly distributed. It is intuitive to see that any mapping
that gives different output distributions for different inputs transfers some information.
On the other hand, if every input results in the same output, this output gives you no
information at all about what went in. More generally, it holds that if each input gives the
same distribution over outputs, the input and output are independent and no information
is retained. To put it formally: for any solution where for all x, p(y |x) = p(y), it holds
that I (X ;Y ) = 0.

The resulting distortion for each result of this type however may not be the same. In
our example, if all inputs are mapped to ‘0’, i.e. p(y = 0) = 1, we have for instance:

E [ρ(X ,Y )] = 1

3
·0+ 1

3
·1+ 1

3
·2 = 1. (2.14)

Another solution that has p(y) being uniform reduces this slightly, to 8
9 . However, the

solution found using the algorithm described above with β→ 0 is p(y = 1) = 1, which
gives the least distortion, of Dp = 2

3 .
Traversing the full range of possible values for β gives a convex curve, as shown in

Fig. 2.3 for our example. As said, at the extreme of β → 0, we find zero information
transmitted at the cost of a distortion of 2

3 . On the other end, when β→∞, we find that
to have no distortion at all, about 1.58 bits of information must be transmitted. The exact
amount is log3 = H(X ), in other words the full entropy of X .

Keep in mind that it is not always necessarily the case that all the information about
the input needs to be transmitted to achieve minimal distortion. Above, we have enforced
it through the distortion matrix, ρ. However, imagine we actually do not care about the
output that is given for an input of ‘2’, indicated by setting ρ(2, y) = 0 for all y . We can
nowmap this input uniformly to either ‘0’ or ‘1’ without increasing distortion. The overall
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Figure 2.3: Rate-Distortion trade-off curve for the input copy problem. The convex curve
traces the solutions for all possible optimal trade-offs, parameterised by β ∈ (0,∞). The
banded area above the curvemarks the feasible solutions: any channel distribution p(y |x)
results in a rate-distortion combination in this area. Or in other words: no solution can
be found underneath the curve.

output is now 50% ‘0’ and 50% ‘1’, so H(Y ) = 1. It turns out that in this case the rate that
gives minimum distortion is even less than this, namely I (X ;Y ) = 2

3 . This is a result from
the non-deterministic mapping, which prevents one to fully predict the output from the
input, or to recover the correct input from the output; knowing one leaves some entropy
about the other, which in this case results in H(Y |X ) = 1

3 .
One last important thing to realise about the trade-off curve in Fig. 2.3, is that it sep-

arates all feasible solutions from the impossible ones. Any channel distribution p(y |x)
results in a rate-distortion combination on or above the curve; no channel can achieve a
trade-off underneath the curve, and the curve is a fundamental property of the combined
input distribution and distortion matrix.

Information Bottleneck

As we saw in the previous section, in rate-distortion theory, the relevance of information
in the input is determined by the distortionmatrix: information that does not influence the
distortion is seen as irrelevant and discarded. This idea can be generalised to incorporate
other indicators of relevance.

Imagine for instance that we have two random variables, X and Y , where knowing
the value of X helps us to predict the value of Y . In other words, X holds information
relevant to predicting Y , measured by I (X ;Y ) > 0. We can now construct a channel,
with input X and output X̃ , to transfer this, and only this information. So, similar to the
rate-distortion problem, we aim to minimise the information transferred, I (X ; X̃ ). How-
ever, instead of constraining distortion, we have the new condition that at least a certain
amount of information C I about Y must be retained. This means we have the following
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problem:

min
p(x̃|x)

I (X ; X̃ ) subj. to I (X̃ ,Y ) ≥C I (2.15)

This is known as the Information Bottleneck (IB), introduced by Tishby et al [104]. It
derives its name from the observation that X̃ can be seen as a bottleneck variable through
which information from X about Y is squeezed. A solution to the IB problem can be found
in a similar way to the rate-distortion problem, by using a Lagrange multiplier to form a
Lagrange equation and an unconstrained problem:

min
p(x̃|x)

Λ(p(x̃|x),β) = (2.16)

min
p(x̃|x)

I (X ; X̃ )−βI (X̃ ,Y ), (2.17)

and solve δΛ(p(x̃|x),β)
δp(x̃|x) = 0 for p(x̃|x). This results in the following self-consistent solution:

p(x̃|x) = p(x̃)exp
[−βDK L

(
p(y |x) ∥ p(y |x̃)

)]
(2.18)

With this solution, an iterative method similar to the Blahut-Arimoto algorithm can be
performed to find solutions for the full range of β ∈ (0,∞). It is however important to note
that although this algorithm will always converge, it may not do so to the global mini-
mum of Eq. (2.17), since the original problem of (2.15) is non-convex. Several methods
have been developed to find the optimum [91], in this thesis I will perform the itera-
tive algorithm multiple times starting from different random initialisation of p(x̃|x), to
increase the probability of finding the desired solution.

Multivariate Information Bottleneck

In the IB method as described above there is a single input variable, and a single rele-
vance variable. This can be extended to scenarios where there are more variables with
more complex interactions, where we can apply the so-called Multivariate Information
Bottleneck (MIB) methods [92].

In this more general paradigm, the single variables are replaced by sets of random
variables: given a set of random variables X = {X1, . . . , Xn}, we can construct a multivari-
ate bottleneck with a set of bottleneck variables T = {T1, . . . ,Tk }. These variables should
capture the information in a selected input subset, Xi n ⊆ X, that is relevant to a selected
output subset Xout ⊆ X. This induces the new variational problem:

min
p(T|Xi n )

I (Xi n ;T) subj. to I (T;Xout ) ≥C I (2.19)

One can represent this graphically to make it more intuitive. Figure 2.4 for instance
gives a Bayesian network representation of one type of multivariate bottleneck. It con-
sists of two networks: Gi n which represents the original dependencies and which input
variables the bottleneck variables should capture information from, andGout which shows
which variables this information should be relevant to. In this example, X = {A,B ,C }. Vari-
ables A and B predict C , so a reasonable choice for input variables could be Xi n = {A,B},
and Xout = {C }. Here a single bottleneck-variable is used, so T = {T }.
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Figure 2.4: Example of a multi-variate information bottleneck, where information from
two variables, A and B , relevant to predicting C , is ‘squeezed’ through a bottleneck vari-
able T . The given conditional dependencies are shownwith thin grey arrows; those which
are induced by the bottleneck, and are apparent in the final minimisation problem, with
black arrows.

Let U = X∪T be the set containing all random variables. Given the networks Gi n and
Gout , it can then be shown that the problem of (2.19) can be rewritten as:

min
p(T|Pa

Gi n
T )

∑
i

I
(
Ui ;PaGi n

Ui

)
subj. to

∑
i

I
(
Ui ;PaGout

Ui

)
≥ C̃ I , (2.20)

where the sums are over all variables in the networks, and PaG
X denotes the set of parents

of variable X in graph G . This means that the information between variables connected
in Gi n is minimised, while maintaining a certain amount C̃ I between those connected in
Gout . The summations in (2.20) can often be further simplified, as usually several terms
are constant with respect to p(T|PaGi n

T ). In the example of Fig. 2.4 this includes I (X ; A,B),
symbolised by thin grey edges. This then gives the final problem as:

min
p(T|Pa

Gi n
T )

I (T ; A,B) , subj. to: I (C ;T ) ≥ C̃ I , (2.21)

To solve such a problem, we can again take the familiar approach, of creating an un-
constrained problem by introducing a Lagrange multiplier, set the derivative of the re-
sulting Lagrange equation to zero, and solve for p(T|PaGi n

T ). For our example this results
in:

p(t |a,b) = 1

Z
p(t )exp

[−βDK L
(
p(c|a,b) ∥ p(c|t )

)]
(2.22)

2.3 Markov Decision Processes
The framework of Markov decision processes (MDPs) is used to formulate an agent-
environment system and its interactions. The formulation of an MDP describes how the
state of a system develops over time and is transformed as a result of decisions made by
an acting agent. It also describes the costs of performing the actions as an outcome of the
available decisions, and as such opens up the problem of finding a decision making policy
that minimises the amount of this cost incurred over time.

The following subsection will give the formal description of an MDP, and introduces
more of the notation that will be used in the remainder of this thesis. The rest of this
section will introduce some standard methods for solving MDPs.
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2.3.1 Formulation
An MDP can be broadly described as a formal description of a sequence generated by a
non-linear recurrence relation [17]. In the context of agent-environment systems, this
sequence consists of a series of costs incurred, or rewards received, by a decision making
agent.

Let the set of possible states that the agent-environment system can be in be W (the
state set). In the remainder, it is assumed that the state set is finite, and that both time
and state are discrete. At a given time t , the system is in a specific state wt ∈W , and the
agent chooses and performs an action at , from its set of available actions A (the action
set). The evolution of the system’s state, given the current state and the chosen action, is
determined by the state transition probabilities:

P a
w w ′ = Pr (wt+1 = w ′|wt = w, at = a) (2.23)

In this framework, it is assumed that the agent receives direct feedback about the actions
that it takes. This feedback comes in the form of some quantifiable reward, or conversely
some cost which is modelled with negative reward, which it receives in the time step after
performing an action. The amount of expected direct reward rt+1 received at some time
t +1 (after acting in time t ), is determined by a reward function:

Ra
w w ′ = E [rt+1|wt = w, at = a, wt+1 = w ′] (2.24)

Given these concepts, an MDP is then defined by a tuple <W ,A ,P a
w w ′ ,Ra

w w ′ >.
The problem for an agent that makes decisions and acts inside such a process, is to do

this in such a way as to maximise the expected reward received, or minimise the expected
cost incurred by it. Its decision making process is modelled by a policy, π, which gives the
probability of performing an action given a certain state of the world:

π(a|w) = Pr (at = a|wt = w) (2.25)

Note that the policy in this thesis is assumed to be time-invariant: after setting on a policy,
the probability of selecting an action when in a certain state is the same for any time t .
In parts later chapters I will treat learning agents, of which the policy does change over
time, however in all methods this is ignored and time-invariance is still assumed. As will
be shown, this does not prevent those methods from arriving at important results.

Together with the MDP definition, the policy fully defines the expected sequence of
generated reward. Let V π(w), the value function, be the function that gives the expected
sum of the rewards in such a sequence, starting with the system in state w and following
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policy π, then it holds that [97]:

V π(w) = E

[ ∞∑
k=0

γk rt+k+1|wt = w,π

]

= E

[
rt+1 +γ

∞∑
k=0

γk rt+k+2|wt = w,π

]

=∑
a
π(a|w)

∑
w ′

P a
w w ′

[
Ra

w w ′ +γE
[ ∞∑

k=0
γk rt+k+2|wt+2 = w ′,π

]]
=∑

a
π(a|w)

∑
w ′

P a
w w ′

[
Ra

w w ′ +γV π(w ′)
]

(2.26)

The last, recursive form is commonly called a Bellman equation, after one of the first au-
thors to describe MDPs, Richard Bellman [17]. The factor γ ∈ [0−1] is a discount factor.
It indicates the importance of future expected reward compared to short term reward: if
γ is large, future reward is weighed high in the expected sum, but if it is low, immediate
rewards have a much higher relative weight. In a pragmatic sense, it is inserted to prevent
the expected sum from becoming infinite. Formally, one can treat it as the probability of
the agent ‘surviving’ and seeing the next time step, an interpretation that will emerge in
chapter 5.

2.3.2 Solving MDPs
Since their first formulations in the 1960s, a large amount of work has been performed
into solving MDPs. Finding a solution comes down to finding a policy that maximises the
expected future sum of reward, which is equivalent to solving:

π∗ = argmax
π

V π(w), (2.27)

where π∗ is called an optimal policy.
Such a solution is not necessarily unique. The number of solutions can even be infinite:

if there are two optimal policies π∗
1 and π∗

2 , any convex combination, απ∗
1 (·|w)+ (1 −

α)π∗
2 (·|w) with α ∈ [0,1], results in a new optimal policy. When we do have a set of

policies that result in the same expected reward, the question arises of whether one is
preferred over the other. This thesis centrally discusses one possible source of preference:
the cognitive requirements of a policy, or the cost of making decisions. Before we delve
into that, however, we look at some traditional methods for solving MDPs, which inspire
methods developed and used later on.

Value Iteration

Instead of finding an optimal policy directly, one can first find the optimal value function:

V ∗(w) = max
a

P a
w w ′

[
Ra

w w ′ +γV ∗(w ′)
]

. (2.28)

If the full MDP is known, this optimal value function solution can be found through a
process called value iteration, which is formed by simply iterating Eq. (2.28), until the
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value function converges. It can be shown that this process is guaranteed to converge to
the globally optimal value function.

If we then define the state-action value function, which from here will be referred to
as the utility function, as:

Uπ(w, a) =∑
w ′

P a
w w ′

[
Ra

w w ′ +γV π(w ′)
]

(2.29)

=∑
w ′

P a
w w ′

[
Ra

w w ′ +γ
∑
a′
π(a′|w ′)Uπ(w ′, a′)

]
, (2.30)

with the optimumU∗(w, a) = maxπUπ(w, a), one optimal policy, which maximizes action
entropy (see the next chapter for discussion of such a choice) is then found by choosing:

π∗(a|w) =
{

1
n(w) if U∗(w, a) = maxa′ U∗(w, a′)
0 otherwise

, (2.31)

where n(w) = ∣∣{a : U∗(w, a) = maxa′ U∗(w, a′)}
∣∣, i.e. the number of optimal actions for

state w .

Reinforcement Learning

Value iteration is an off-line algorithm. This means that an agent can perform it before
it starts to find an optimal policy, and use this outcome to plan its actions ahead of time.
In contrast, an on-line algorithm is used when an agent learns the value of states (and
actions) as it is interacting with the environment. Such an approach is necessary if the
agent does not know either or both of the reward and transition function.

A popular example of such an on-line algorithm is Q-learning. Using this method, the
agent maintains an estimate Ũ (w, a) of the utility function, which gives the utility that an
agent predicts. At any time t +1, however, the agent can also make an empirical estimate
based on a combination of the actual observed reward and the maximum estimated future
utility, rt+1 +maxat+1 Ũ (wt+1, at+1). The learning then consists of updating the utility
estimate to be closer to the observation, following the rule:

δ= rt+1 +γmax
at+1

Ũ (wt+1, at+1)−Ũ (wt , at ) (2.32)

Ũ (wt , at ) ← Ũ (wt , at )+αδ. (2.33)

The difference δ is known as the prediction error, and the parameter α> 0 is the learning
rate. A higher rate can cause faster learning, butmay cause large oscillations of the learned
values, which may hinder convergence. A common strategy is to start out learning with
a high learning rate, and slowly decrease it over time. This learning method will converge
on the optimal solution if the rate is decreased slow enough [97].

Besides being on-line, Q-learning also is an off-policy method. This means that it will
converge to an optimal solution, without requiring that the agent follows the policy that it
deems optimal at all times. This helps an agent prevent getting stuck in a local optimum:
instead of sticking to what it knows, given by its value estimate, it can try out random
actions to see if there is a better solution, without polluting its hitherto gained experience.
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In theory it could even perform a completely random walk, but in practice it is more
efficient to limit the randomness. One approach is to follow a policy which is optimal
with respect to the current value estimate, but with probability ε ∈ (0,1] choose a random
action instead. Such a policy is called ε−g r eed y . Another possibility is to use a soft-max
approach, where the policy is defined as:

π(a|w) = 1

Z
exp[βŨ (w, a)], (2.34)

where Z = ∑
a′βŨ (w, a′) is a normalisation factor. The parameter β functions as an in-

verse temperature: when set to 0, behaviour is fully random, and action selection becomes
more greedy with growing β. In the limit β→∞, this equation becomes equivalent to
Eq. (2.31). As we will see later, this type of exponential form is arrived at naturally when
combining Information Theory with MDPs.

2.4 Partially Observable MDPs
The MDP formulation makes the assumption that the full state of the world is available to
the decision making agent. In other words, the world is fully observable. This assumption
does not always hold true, especially not if we consider agents operating in a real envi-
ronment, embodied with limited sensors, such as animals, physical robots, or ourselves.
We can only sense our immediate surroundings, and cannot observe directly the state of
things behind walls, or the mental state of other agents. In such a case, the world is said
to be partially observable.

In the MDP framework, this can be modelled by having a policy π(a|s) that depends
not on the world state w directly, but on a possibly incomplete observation s of that state
by the agent’s sensors. The possible observations are given by the sensation set S , and
the sensing process is described by a probabilistic sensing model p(s|w). An MDP with
this extension is referred to as a partially observable MDP, or POMDP. For a review of
solutions to POMDPs, and usage examples, the reader is directed to work by Kaelbling et
al [43] and Littman [60].

2.5 Informational Treatment of MDPs
The interactions between an agent and the environment form a closed loop, the perception-
action loop (PA-loop). The world is in a state, part of which is captured by the agent’s
sensors. Based on this, the agent selects an action, which is combined with the inherent
development of the world to determine the next world state, which closes the loop. This
loop is graphically sketched in Fig 2.5a. In the POMDP description, these interactions are
stochastically and fully described by the transition probabilities P a

w w ′ , π(a|s), and p(s|w).
Thismeans that the states of the system can be represented as random variables: the world
state at time t is represented by Wt , and the agent’s sensor state and its selected action by
St and At , respectively. By unrolling the PA-loop in time and constructing a graph with
the random variables as vertices and their interactions indicated with edges, one arrives
at a causal Bayesian network (CBN) description of the system: a directed acyclic graph
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Figure 2.5: The perception-action loop (PA-loop). (a) The interactions between an agent
and the environment can be graphically represented with a loop: the world is in a state
W , part of which is captured by the agent’s sensor S. Based on this, the agent selects an
action A, which is combined with the inherent development of the world to determine
the next world state, which closes the loop. (b) When the PA-loop is unrolled in time, and
its elements are represented by random variables, a causal Bayesian network as a formal
description of the system is constructed.

where the edges coming into a vertex are from its immediate causes, and the joint prob-
ability over all variables is the product of the distributions of all variables conditioned on
their direct parents [73]. The CBN of a POMDP is shown in Fig. 2.5b. In a fully observable
scenario, the world and sensor states collapse, and the sensor variables can be replaced
with a direct link from Wt to At .

The edges entering the random variables in a CBN can be thought of as information
channels: information about the world is transferred through the sensory channel, which
is processed in the agent’s cognitive channel resulting in an action selection, and this
action induces an actuation channel that governs the transition of the world state [107,
51]. In this view, one can apply the information theoretical concepts described previously
to MDPs, opening up a large collection of tools, formalisms and proofs to the study of
decision making.

In the following section I will discuss the fundamental concept for this thesis which
arises from applying information theory to behaviour: relevant information.

2.6 Relevant Information
In the informational view of the PA-loop, one can formally quantify the amount of world
information that is on average gathered by the agent through its sensor with the mutual
information I (W ;S). The mutual information I (S; A) gives howmuch of this sensed infor-
mation is on average actively used in the action selection process. As mentioned before,
in the fully observable case, which I will adhere to for now and for most of first part of
this thesis, the sensor and world state collapse, and one can regard I (W ; A) directly as the
amount of information that an agent on average takes in and processes per time step.
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This amount depends on the agent’s policy: the mutual information is convex in
π(at |wt ). In other words, different policies require different informational bandwidths,
or different information processing capacity in the agent. It is argued that this required
capacity can be correlated to the metabolic cost of information acquisition and process-
ing, and as such constitutes a quantitative measure of cognitive burden [76]; an argument
that is fundamental to the work in this thesis.

The parsimony pressure put forward in the previous chapter, then would act to min-
imise this quantity, while the efficiency pressure drives towards higher performance. With
the formal framework of the previous sections, one can now make this trade-off precise.
To determine the minimum bandwidth that is required to achieve at least a certain level
of performance, as measured by the expected utility described above, one seeks to solve
the following minimisation problem:

min
π

I (W ; A) subj. to E [Uπ(W, A)|π] ≥CU (2.35)

The mutual information found as the solution of this problem is dubbed the relevant in-
formation (RI) [77]: similar to how an information bottleneck aims to only capture the
information that it is relevant to predicting the output variable, solving (2.35) gives the
amount of information that is strictly relevant to successfully achieving the required per-
formance. Any other amount can be discarded, to alleviate the costs of requiring a larger
bandwidth.

To solve the problem, a similar approach is taken as with the earlier variational prob-
lems. Firstly, a Lagrange equation is constructed:

Λ(π,β) = I (W ; A)−βE [Uπ(W, A)|π] (2.36)

Next, one finds the partial derivative of this equation:

δ

δπ
Λ(π,β) = p(w) log

π(a|w)

p(a)
−βp(w)U (w, A) (2.37)

Finally, this derivative is equated to zero, which after some rearranging of terms gives the
self-consistent solution:

π(a|w) = 1

Z
p(a)exp[βUπ(w, a)] (2.38)

This solution has a form very similar to that of the rate-distortion problem, however
with one important distinction: the distortion measure, i.e. the cost, or negative utility,
here does depend on the mapping, given by the policy, that the minimisation is done over.
When an iterative algorithm is constructed in order to find the final solution, using (2.38)
to update the policy in each iteration, one must ensure that the utility is consistent with
the policy.

In the relevant information method this is done by interleaving the updates according
to (2.38) with value-iteration updates of the utility function according to (2.30). Perform-
ing these iterations until convergence of both the policy and the utility function results
in the final algorithm listed as Alg. 1. Currently no convergence proof of this algorithm
consists, but in practice convergence is good.
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Figure 2.6: Example grid-world navigation problem. At any time the agent finds itself in
one of the open cells, which determines the fully observable state. The task for the agent
is to choose actions based on its observed location in such a way as to navigate towards
a goal state, where it receives a reward of 1. At all other steps the reward is 0. In the left
two figures the goal, g1 is in the north-west corner, in the right two the goal, g2 is in the
centre. The top two figures show the policies resulting from applying the RI method with
β→∞, whereas the bottom two show those acquired with β→ 0, where the length of
the lines from the center of the cells is proportionate to the probability of selecting the
action that would move the agent into that direction.
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Algorithm 1 Relevant Information
Require: <W ,A ,P a

w w ′ ,Ra
w w ′ >,β,γ

1: p(w) ← 1
|W |

2: π0(a|w) ← 1
|A |

3: U0(w, a) ← 0
4: k ← 0
5: repeat
6: pk (a) ←∑

w p(w)π(a|w)
7: πk+1(a|w) ← 1

Zpk (a)exp
[
βUk (w, a)

]
8: Uk+1(w, a) ←∑

w ′ P a
w w ′

[
Ra

w w ′ +γ
∑

a′ πk (a′|w ′)Uk (w ′, a′)
]

9: k ← k +1
10: until D JS(πk ∥πk−1) ≤ επ, ∥Uk −Uk−1 ∥∞≤ εU

As an example to show the properties of relevant information, consider a navigation
task in a simple grid world, shown in Fig. 2.6. At any time, the agent is located in one of
the 7×14 cells, and this location gives the state of the world Wt , which is fully observable
to the agent. Based on these observations, the agent can choose one of four actions: move
north, east, south or west. Transitions are noiseless, so the agent will always move to
the cell targeted by its action, except for when it hits the surrounding wall. In this case
the agent stays in the same cell. The agent’s task is to reach a goal cell, where it receives
a reward of 1. At any other step the reward is 0. In Figs. 2.6 two possible goals are
shown: one in the north-west corner (g1), and one in the centre of the world (g2). For the
remainder, γ= 0.95 is chosen.

One can now apply the relevant information method to these two scenarios. Firstly,
we want to set β → ∞, to acquire the policies that achieve maximum utility with the
lowest bandwidth. Actually moving towards infinity is not feasible, in practice a high
enough value is chosen such that increasing it further does not change the outcome more
than some small value ε. Choosing a value too high however can make the computed
exponents diverge and cause numerical instability. For this example, a choice of β= 106

is a good trade-off, and is chosen as well as for experiments in the remainder of this thesis,
unless noted otherwise.

The policies obtained for this value of β are shown for both cases in Figs. 2.6a and
2.6b, with bars whose lengths are relative to the probability of choosing the corresponding
action. Some properties of the policies are visible, that are commonly seen in RI solutions:

• In states where the same set of actions achieves the required utility level, the dis-
tribution over these actions is the same. In contrast, this is not a necessary result
in traditional MDP solutions, since different local policies do not change the final
expected reward. When taking into account the informational cost however, the
result seen here is desired: due to this, all these states can be treated together, and
the agent does not need to make a distinction between them. Making distinctions
requires information, and if the local policy at some state deviates, additional infor-
mation is required to check if this state is the current one.

• The common distribution of the previous point is a particular, skewed one. The
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Figure 2.7: Trade-off curves obtained with the RI method for the scenarios of Fig. 2.6.

probability of moving sideways is 5
8 , against a probability of 3

8 of moving along the
north/south axis. It is no coincidence that this distribution matches the layout of
the world. Specifically, this distribution is shaped by the states where the agent has
no choice: those in a straight line with the goal state. The policy in the other states
is chosen to match the distribution over the actions in these critical states as closely
as possible.

Both properties can be summarised as one drive in the relevant information method:
make the local policy π(at |wt ) as close to the average policy p(at ) as possible. Informa-
tionally, this causes the conditional entropy H(At |Wt ) to be as close to the a-priori entropy
H(At ) as possible, the difference of which exactly is themutual information I (Wt ; At ). The
value of this difference, and thus the relevant information, differs significantly for the two
scenarios: 0.35 bit in the case of g1, and 1.19 bit for g2. Moving into a corner is informa-
tionally much easier than exactly hitting a cell in the centre; there are only 2 actions to
choose between, and in a large part of the world the choice probabilities are the same,
whereas in the other scenario the agent has to discern with much more detail where it is
relative to the goal to select the correct action.

Next, we will compare the other end of the trade-off curve, where β → 0, and see
that this difference in difficulty can also be seen here. As before, moving indefinitely
towards the limit is not feasible, so in practice β is reduced until convergence of the found
trade-off. Note that setting β= 0 would fully cancel out the utility condition, allowing any
zero-bandwidth policy, which is not what we are after: we want the one that gets the best
performance with (, in practice, very close to) no information. Figures 2.6c and 2.6d show
the policies obtained for both scenarios in this case. For both, the relevant information is
0, but the expected utility differs greatly: 0.67 for g1, against 0.13 for g2. The difference
in policies is clear: in the first scenario the policy can still be directed, such that even a
blind agent can still hit the goal by randomly going north or west, whereas in the second
scenario the agent has no such guidance, and can do no better than a random walk.
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The full trade-off curve is traced by moving the value of β along the range (0,∞).
These curves for the two scenarios above are plotted in Fig. 2.7. Again, the significant
informational difference is apparent, a difference that would not be apparent in traditional
machine learning treatments that focus solely on reward. These examples hint towards
recurring principle in this thesis: Exploitable structure in the perception-action loop supplies
an opportunity to alleviate cognitive burden.

There is one aspect of the RI method I have not discussed yet: the choice of the state
distribution p(wt ). This distribution strongly influences, together with the policy, the
values of p(at ), I (Wt ; At ), and E [Uπ(Wt , At )]. Here, inlinewith the original formulation of
the RImethod [77], the uniform distribution is chosen. This corresponds to the assumption
that the agent has no prior knowledge about which state is more likely to be observed,
and where it has no knowledge about how its actions determine this distribution, or how
a change in behaviour could shift it. In chapter 5 I will investigate the result of dropping
this assumption.
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Chapter 3

Related Work

3.1 Information and Cognition
Thework in this thesis is based on the viewpoint of an agent as an information processing
system, and that the fundamental aspects of such a system can be studied using the tools
of information theory. This approach was already adopted by some early pioneers shortly
after the birth of the field, and has gained in popularity in the last decades. In this section,
I will provide an overview of work following this approach, and discuss the relation to the
work presented in this thesis. I will start with its use in the study of biological cognition,
which has a slightly longer history, followed by its application in computational domains,
noting however that there often is some overlap between the two.

3.1.1 Biology and Neuro-Science (wet information)
Some of the earliest applications of information theory to cognition I have already men-
tioned earlier in the introduction. The new field created by Shannon was recognised by
Attneave [6], Watanabe [111], and Barlow [12] to provide a concrete grasp on an idea
that had been put forward in more abstract form already a century earlier [11]: that the
statistics of sensory input, and in particular the statistical redundancies in this input, are
important for cognition. The main hypothesis of Attneave and Barlow was that of infor-
mational economy: it is expected that the perception and cognition of an organism is no
more expensive than it needs to be, and that this expense can be measured using the tools
of information theory, which is very close to the Parsimony hypothesis.

This hypothesis was picked up in the work of a range of authors, which was reviewed
by Attick [5]. In his review, he presented the principle trade-off of coding to improve
efficiency without losing information as a variational minimisation problem, which can
be seen as an early form of the information bottleneck method introduced by Tishby et al.
[104], and is very similar to ones that I will use to study the trade-off between parsimony
and performance.

As discussed before, one prediction stemming from the economy hypothesis was that
informational redundancy is minimal in sensors and the brain. It now turns out that this
prediction does not accurately describe reality, but as Barlow noted, this does not invali-
date the original economy hypothesis, and the informational study of redundancy is still
a worthwhile endeavour [11]. In any case, these results have shown that the application
of information theory to perception and cognition can supply quantitative predictions,
which can be measured and tested in biology, bringing a wide range of formal tools and
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laws into the field.
The strength of this approach is recognised by Borst and Theunissen [21], who state

that information-theoretical comparisons ‘validate assumptions present in any neuro-
physiological analysis’. They go on to present an overview of the use of methods from
information theory to make quantitative observations of neural processes, showing how
to measure information transfer in practice directly, or through lower or upper bounds.
Such results provide empirical grounding for the more theoretical work in artificial, com-
putational systems; work as reviewed in the following section, and as will be performed
in the remainder of this thesis.

Although in general the use of information theory as an observational tool in neuro-
science seems accepted, the question of which informational measurement is best to use
may still spark some discussion. One fundamental question is how to treat individual
events. Informational quantities such as entropy and mutual information are averages
over the full distribution of possible events. Decompositions of these quantities on a per-
symbol basis may not be well-behaved. For instance, the entropy H(X ) is the weighted av-
erage of the symbol specific ‘self-information’ − log p(x), which is undefined for p(x) = 0.
Several measurements have been proposed for information in a single impulse or re-
sponse, based on different properties that such a measure is required to have [35, 24].

In Sec. 5.2.2 I will discuss these, and how to choose between them in more detail.
One shared property however is that they derive from the mutual information between
impulse and response, as most of the used measurements are (c.q. again Borst and The-
unissen [21]). Sinanović and Johnson however put forward that to measure how well
systems actually process information, mutual information is not a good choice [90]. Their
argument is based on the claim that it is inherently impossible to determine the distribu-
tion from which ‘information’, is drawn. If one overlooks their seeming confusion of raw
symbols with the information that is carried by them, this comes down to saying that it is
not possible for an experimenter to present stimuli to a system, distributed exactly as how
the system would receive them ‘in the wild’. Since the mutual information relies heav-
ily on the input distribution, measurements of this quantity can be influenced heavily by
the choice of inputs by the experimenters, and may not be related to actual information
processing. To overcome this, the authors develop a measurement called the information
transfer ratio, which aims to quantify, using the Kullback-Leibler divergence, the response
to changes in inputs.

In the artificial scenarios studied in this thesis, I am not affected by the practical diffi-
culties encountered by a neuro-scientific experimenter, that motivated these authors. I
argue that for the study performed here, the mutual information between input and out-
put is a valid measure for what the information transfer ratio was designed for: to what
precision are changes in input reflected in the output? Furthermore, in the experiments
presented here, and in those of other authors as reviewed in the next section, one is able
to determine the full joint distribution of input and output.

This being said, the observation of the importance of the input distribution is instruc-
tive to keep in mind, and underpins the work presented in chapter 5. Furthermore, two
other foundations mentioned by the authors also underlie the work in this thesis:

1. “What may or may not be information is determined by the information sink.” This
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way of phrasingmay again confuse data with information, in the vocabulary of built
up in the previous chapter this translates to: ‘Information is measured by Shannon
information, what of this information is relevant is determined by performance.’

2. “When systems act on their input signal(s) and produce output signal(s), they indi-
rectly perform information processing [and] the result of processing information is
an action.” This is in line with the ‘agent as information processing system’ view
adopted in this thesis.

3.1.2 Artificial Agents (dry information)
Most work in the previous section focuses on modelling and studying properties of bio-
logical systems, using information-theoretical concepts mainly to performmeasurements.
Some of it already showed one opportunity given by applying information theory: it can
give quantitative predictions about cognition. More strongly, its formal laws and methods
allow one to formulate and study hard bounds on perception, cognition, and action. This
is the main motivation of grounding the work of this thesis in information theory, as it
has been done for a body of work before, which I will review here. The main approach
is as follows: formulate an informational concept that is of importance to a system, and
apply the well established methods of information theory to study it.

As an example, the study of information-theoretical limits of control by Touchette
and Lloyd [108, 107], and their models of a control loop, strongly underpin the work in
this thesis. They formulated controllability, observability, and stability of a control sys-
tem using purely information-theoretical concepts, which allowed them to derive formal
bounds on these concepts. Tatikonda and Mitter performed similar studies on systems
with feedback [100].

I will employ similar models, however placed in the slightly different domain of act-
ing agents. A main theme in this type of work, including the work presented here, is
how information is organised in an agent, and how properties of information can help
self-organisation. Topics related to this theme include how informational structure is im-
posed on sensory input by embodiment [74], and how this information is further shaped
by coordinated and dynamic interactions with the world [61]. Such work supplies a for-
mal foundation to the idea that embodiment is a crucial aspect of cognition, and show
that studying the informational interaction between agents and their environment can
provide important insights.

For instance, one can consider an acting agent as ‘injecting’ information into the en-
vironment, and the more it can inject, the more control it has on the environment. The
informational concept of empowerment [52] determines the upper bound on the observable
control that an agent can exert, in contrast to control that is unobservable and therefor
irrelevant to the agent. Empowerment is formulated as the maximum capacity of the
information channel from an agent’s actions to its future sensory states. Posing maximi-
sation of this quantity as an intrinsic drive results in interesting self-organisation, such
as internal representations of space and time [49], emergent pole balancing [50], forming
an Umwelt[26], and ‘meaningful’ pathways through an environment [2]. The maximisa-
tion of possible actuation bandwidth as done to maximise empowerment is in some sense
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dual to the approach taken in this thesis, where I minimise the required sensory band-
width, which similarly, but differently, gives rise to self-organised aspect of cognition and
behaviour.

Other examples of self-organisation driven by informational optimisation include info-
taxis [110], where a drive to acquire information about a target can be sufficient for an
agent to achieve it in a biologically plausible way, and organisation of behaviour to max-
imise the information between the past and the future [8]. This latter quantity, predictive
information, has been posed to equate the complexity of a system, and to indicate bounds
on the learnability of a model of the system [19].

Information theory has been applied to other facets of learning as well. It provides a
minimum bound on the information that is required to learn a task simultaneously with
other tasks [14], or it is used to develop novel learning algorithms, such as by apply-
ing the information-theoretical methods of an information bottleneck [85]. Introducing
information-theoretical costs on actions, to punish ‘large’ actions that deviate a lot from
doing nothing, can even transform learning problems such that they become linear and
can be solved analytically, rather then through exhaustive search [106], though under the
assumption that the agent can freely manipulate the complete dynamics of the agent-
environment system.

Exploration is another aspect of learning for which information theory readily sup-
plies tools to study it. The simplest way to perform exploration is through sheer random
action selection. A popular concept in this is that ofmaximum entropy [41]: given knowl-
edge gathered so far of a system, from the best fitting models choose the one with the
highest entropy. This is the model with the least commitment, and in a learning acting
agent leads to maximum randomisation of actions and thus exploration. With explo-
ration equated to action entropy, one can even trade off exploration with performance in
a principled way [81], giving rise to methods similar to those I will employ to trade off
performance with sensory bandwidth. Another learning application of maximum entropy
is in reverse reinforcement learning, where an agent learns to solve a task by observing
how another (human) agent performs solutions [114].

Other approaches that arrive at similar methods that also induce intrinsic exploration
are based on maximising predictive information [7], and maximising information about
the dynamics of the environment through interaction with it [94], which provides an
information theoretical model of curiosity that may drive reinforcement learning [95].

Much of these approaches involve trade-offs between different drives and costs, which
also forms the foundation of this thesis. Another closely related example of such a trade-
off is that between a learner’s performance, and the capacity needed to store solutions
[102]. Whereas this work shows how to derive necessary bounds on the static information
storage capabilities of an agent’s cognition, I will perform similar studies on the dynamic
information processing requirements, starting with a similar hypothesis and arriving at
an analogous outcome: an agent prefers informational minimisation, which gives rise to
inherent structuring.

The work in this thesis will only involve single agents, however the approach of infor-
mation optimisation can also be applied to multi-agent scenarios. Maximising structure
in the available information for instance aids the evolution of coordinated behaviour [93],
whereas predictive information maximisation can lead to cooperation [34]. Interestingly,
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coordinated behaviour can also arise when agents perform purely egocentric information
minimisation. The concept of digested information [83] tells us that due to the symmetric
properties of information, an agent that minimises the information that it takes in to the
relevant minimum, also injects this information back into the world in a highly densified
form through its actions. This motivates other relevant information seeking agents to stay
within range of this agent, and induces coordination of their actions, giving rise to a form
of flocking grounded in egocentric drives.

3.2 Further Related Work
The work in this thesis is partly related to behavioural ecology: the study of the conse-
quence of behaviour on fitness [54]. In this case, cognitive burden is posed as a cost that
affects fitness, and I will study some properties of behaviour under a pressure to minimise
this cost. Again, an important theme is that of the constraints and trade-offs that arise
from such a cost. Some examples of such constraints and trade-offs that are studied in
behavioural ecology, that are closely related to the ones I will consider, include that of
limited attention [30], and the trade-off between speed and accuracy in optimal sampling
and signal detection [1].

These results, and the work performed here, show the effects of trade-offs on high level
behaviour generation. Physical constraints can however be found all the way down to the
earliest stages of perception, governing the maximum resolution of lens and compound
eyes [48], and trade-offs between heat dissipation, energy consumption and temporal and
spatial resolution in visuo-motor systems [53]. The work in this thesis gathers a range
of these specific costs under the title of ‘cognitive burden’, allowing the study of their
consequences in a principled way by applying information-theoretical tools, without the
need to formulate their exact source and form explicitly.

Finally, the term ‘cognitive burden’ often comes up in work on cognitive load theory
[72], which studies optimal teaching and learning methods given the premise of limited
cognitive capacity of the learner. Although this premise is shared by the work in this
thesis, I will make no attempt to extend the results towards recommendations for best
practices in the classroom.
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Chapter 4

Some Effects of Cognitive Organisation on
Bandwidth Requirements

“It is a very sad thing that nowadays there is so little useless information. ”
Oscar Wilde

4.1 Introduction
Information processors are ubiquitous. In the digital age that we currently live in, the
first examples you may think of is your PC, or more recently, your smart phone. These
are capable of taking some information, process it, and perform some operation based on
the outcome of this processing. When multiple of such information processing devices
work together, the processing capabilities grow larger and larger, culminating in the vast
information processing infrastructure that is the internet.

There is also a class of more traditional information processors that form structures
at least as complex: organisms. We, as well as other animals, and even very simple or-
ganisms such as bacteria, can be considered as processing information about the world,
and acting as a result of this processing. This process can be very intricate, involving a
large amount of information. Rather than processing this amount in one central place,
again the infrastructure, i.e. our brain, is made up of many smaller information process-
ing units. The structure of these combined units achieve the processing requirements for
performing what we call intelligent behaviour.

In this chapter, I will provide an initial survey into this effect: how the structure of
the system in which information is processed affects the bandwidth requirements for this
processing, both for separate units, and for the system as a whole. I will do this using
the model of an agent acting in an artificial environment, but the methods that are used,
and the insights derived from applying them, are kept as general as possible, such that
they can be applied to a range of information processors that observe and interact with
the environment they are in. This is achieved by specialising the generic information the-
oretic framework, constructed from the methods described in the previous chapter. This
framework was agnostic about the actual form and implementation of the information
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G

Figure 4.1: Grid world environment used in experiments. The state of the world is de-
scribed by the cell that the agent occupies. The agent can move north, east, south, or
west. Every action has a negative reward of -1, except when that action brings the agent
into the goal cell marked with ‘G’.

Wt−1

At−1

Wt
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Wt+1

At+1

Wt+2

Figure 4.2: Causal Bayesian Network of the perception-action loop. In this case, full
observability is assumed, which allows the world and sensor states to be contracted into
a single variable Wt .

processing units that it deals with. In this chapter, I will step away from this and intro-
duce some organisation. The results obtained by doing so will give a better understanding
of the effects of different aspects of the perception-action loop, and form a guideline for
the rest of this thesis.

4.2 Agent and Environment
Consider a grid-world scenario, as shown in 4.1, which is similar to popular navigation
problems used in machine learning literature [97, 98, 88]. At any time, an agent is posi-
tioned in one of the free grid cells. This position determines the state of the world. The
set of possible positions is denoted W . The agent can move around the world, having 4
different actions at its disposal in its action set A : move north, east, south or west. Its
goal is to reach the cell marked ‘G’, in as few steps as possible. This goal is modelled using
a reward function that gives a negative reward (i.e. a cost) for each step that does not take
the agent to the goal: Ra

w w ′ =−1 if w ′ 6= g , 0 otherwise, where g is the state in which the
agent is at grid cell ‘G’.

As discussed in the previous chapter, if we treat the state at some time t and the action
selected by the agent at that time as random variables Wt and At , the agent-environment
interactions can be formally described by a causal Bayesian network, as reproduced in
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Figure 4.3: Causal Bayesian network of perception-action loopwith layered action selec-
tion. State information is used to select an initial option Ot . This option, plus additional
state information, is then used to select an action. Dashed edges indicate connections
that are purely informational, rather than causal.

Fig. 4.2. The relevant information method can then be applied to find the minimum
amount of state information that goes into action selection on average at each time step,
measured with I (Wt ; At ), to achieve a certain amount of expected utility averaged over
all states and actions, as well as the policy that achieves this minimum. In this scenario
this amount, the relevant state information, is 1.39 bits in order to achieve maximum per-
formance1. In the remainder, I will denote the policy achieving this minimal bandwidth
with π f l at .

It must be stressed again that this is a fundamental minimum: no reactive policy can
be optimal without requiring at least a bandwidth of 1.39 bits. From the discussion in
the introduction of this chapter it may seem that this constraint may be alleviated by
using a more intricate organisation of the cognitive system than a single action selection
unit. However, as a result from the data processing inequality, no structure could possibly
reduce the total amount of information that is required. Whatmay be possible to achieve,
is to spread the information processing over several smaller decision making units, or
reduce the average amount of information intake by having access to relevant information
from another source than direct observation of the world..

To study such effects, I will look at three slightly more complex action selection struc-
tures: 1) layered action selection, in which action selection is done in stages. 2) action
selection with action memory, in which a memory of the previous action is available. 3)
dispersed processing with memory, in which again action selection is done in stages, but
with intermediate decisions persisting for a longer time.

4.3 Layered Action Selection
I present a simple model of layered action selection. Instead of selecting an action di-
rectly, an initial option2 is chosen first, according to some distribution p(ot |wt ). Next, the
actual action is selected, according to the standard policy π(at |wt ). Note that the action
selection is not directly influenced by the selected option; rather, the option acts as ‘side

1To calculate the mutual information, here, and for similar measures in the remainder of this chapter,
p(wt ) is assumed to be uniform. This choice will be discussed later.

2This terminology is taken from the field of hierarchical reinforcement learning, where options are
higher level, temporally extended abstract actions[98]. The options of this chapter (will) have some of
these properties, but do not implement those of the RL framework precisely.
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information’, that is accessible by the action selection process. This is indicated in Fig. 4.3
by the dashed edges, which are not purely causal connections, but rather indicate rele-
vance. If one considers Ot to be a bottleneck variable, a view I will arrive at further down,
the solid edges form Gi n , and the dashed edges make up Gout .

Having access to this side information may reduce the additional sensory bandwidth
needed to select an action: if Ot predicts At well, only a small amount of additional world
information needs be accessed. However, of course now there are two information chan-
nels that may incur an informational cost: one selecting the option, and one selecting
the action with the option as side information. The total average information use per
step is the mutual information between state and the combination of the selected op-
tion and action I (Wt ; At ,Ot ). This is equal to the sum of the information captured in the
option selection and the additional information that is still required given this option:
I (Wt ; At ,Ot ) = I (Wt ;Ot )+ I (Wt ; At |Ot ). According to the parsimony hypothesis, there is
a drive to minimise this quantity, so the interest is again on the minimal case.

Since it also holds that I (Wt ; At ,Ot ) = I (Wt ; At )+ I (Wt ;Ot |At ), and I (Wt ;Ot |At ) ≥ 0,
one can quickly conclude one property of layered action selection: it will never reduce
the total amount of information processing. A trivial solution to a naive minimisation of
the total over all valid mappings p(ot |wt ) therefore is one that results in I (Wt ;Ot ) = 0,
and I (Wt ; At |Ot ) = I (Wt ; At ). In other words, the layered process is simply flattened.

However, the benefit of adding another layer of pre-processing is to limit the infor-
mational burden on the action selection process, so to find a useful mapping we can add
a constraint on the information requirements of this part. This results in the following
problem:

min
p(o|w)

I (Wt ;Ot , At ) subj. to I (Wt ; At |Ot ) ≤C (4.1)

With a simple proof (see Sec. 4.7), it can be shown that solving this problem is equiv-
alent to solving:

min
p(o|w)

I (Wt ;Ot ) subj. to I (Ot ; At ) ≥ C̃ . (4.2)

This is useful since this new problem has the form of a standard information bottleneck,
which confirms the view of Ot as a bottleneck variable. This means that one can apply the
well-established IB methods. In particular, we can use the iterative Blahut-Arimoto-type
IB algorithm to solve the problem, as described in Sec. 2.2.3. As you may recall, this
involves finding the zero of the derivative of the Lagrange equation

I (Wt ;Ot )−βI (Ot ; At ), (4.3)

where we can trace β through the full range [0,∞) to find the optimal trade-off curve.
The curve that is found by doing so for the layered action selection scenario in our

grid world is shown in Fig. 4.4. In this experiment, the number of options |O | is set to
two, so it effects a real bottleneck. For comparison, the figure also shows the imaginary
line that the curve should have followed to keep the total information intake I (Wt ; At ,Ot )
at the same level as in the flat case (i.e. 1.39 bit). The actual curve however lies above
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Figure 4.4: Trade-off between state information required at each stage in a two-layered
system. Flattening, i.e. no effective use of options occurred at top left (β → 0), (near)
maximal bandwidth of 1 bit for the initial option selection channel at bottom right (β→
∞). Where the required bandwidths of both stages are equal, i.e. where the minimum
bandwidth for either of the channels is smallest, found by iterative bisection of the plotted
range of β, is marked, at I (Wt ;Ot ) = I (Wt ; At |Ot ) = 0.819, with β= 1.77. For comparison,
the imaginary line that the curve should have followed to keep the total intake at the
minimum of the relevant state information is marked with the thin diagonal line.

this line, which means that the layered structure indeed increases the total information
requirements. In other words, the information needed at the top level is more than what
can be saved at the lower level.

Each stage individually however requires less information than in the flat case along
the whole curve, except for β = 0 (leftmost point on the curve, which reduces to the flat
framework). An interesting trade-off is marked in the graphwith a circle and dashed lines:
here the information requirements at each level are equal. Since all points on the trade-off
curve are Pareto optimal, this point is the solution to minβmax(I (Wt ;Ot ), I (Wt ; At |Ot )).
In other words, at this point the maximum bandwidth of the most complex component is
minimized.

This point is here found by iterative bisection of the range of β until it becomes suffi-
ciently small. At this point, the units at each individual level need just over 0.8 bit of
state information, which is significantly lower than the 1.39 bits that a single unit in a flat
structure uses. In other words, even though the total system requires more information,
the state information channel of each separate sub part requires a much lower bandwidth.

Figure 4.5 shows themapping that results from the trade-off solutionmarked in Fig. 4.4.
The first option is chosen with probability 1 whenever the agent should move east, the
second whenever it has to move west. The selection becomes stochastic when the agent
should move only either north or south. From this we can see how the action selection
process, and with it the information intake, is divided over the two layers: the top layer
uses some information to make distinctions along the east-west axis, whereas the lower
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Figure 4.5: Visualisation of option selection in the layered action selection equilibrium
marked in Fig. 4.4. Dark shading signifies a high probability of selecting the first option
in a cell, light shading shows preference for the other option.

level uses further information to differentiate between north and south. Together they
process all information needed to decide on the correct action.

4.4 Action Memory
Next, I investigate a simple model of a memory effect, which can be considered to be
orthogonal to that of the previous section: instead of decomposing immediate relevant
information, we will see how information stays relevant and can be reused over time. In
the flat and layered cases above, the agentwas assumed to be highly ‘demented’: after each
action he would forget everything and needs to take in all information that is relevant in
the new state. However, it is likely that there is a high degree of correlation between a
series of states, due to the way actions affect state and as such feed information back into
the world. There can be a large overlap between the relevant information at subsequent
steps, which means that due to this redundancy, the total amount of state information
that goes into a full action sequence is probably much lower than the sum over time of
single step relevant information.

This actual amount of information from one sequence (states) that ‘flows’ into a second
sequence (actions) can be measured with Massey’s directed information [66]:

I (W N → AN ) =
N∑

t=1
I (W t ; At |At−1), (4.4)

where the notation X N denotes a random variable constructed from a sequence of length
N of readouts of variable X . The arrow indicates the directionality of this measure: it only
measures information flowing from one sequence to the other, not counting any feedback
from the output into the input. In other words, it measures how an action sequence is in-
fluenced by a state sequence, not how actions influence states. Normalmutual information
does not discard this feedback, and thus generally it holds that I (W N → AN ) ≤ I (W N ; AN ).
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Figure 4.6: Causal Bayesian Network of one-step action memory model. To decide upon
an action, the agent now has access to a memory of the action selected in the previous
time step. This could reduce the additional state information that needs to be accessed.

The directed information is a measurement on a whole sequence of length N . To ac-
quire a per-step average information measurement that can be compared to those used
so far, one can measure the directed information rate in the limit of an infinite sequence,
limn→∞ 1

n I (W n → An). An iterative method exists to estimate this quantity, while run-
ning the process described by the state transition model and agent policy [113]. Applying
this method to the current scenario, and the RI-optimal flat policy π f l at , we arrive at a
rate of 0.064 bit, less than 5% (!) of the total per step relevant information. This means
that more than 95% of the information taken in and processed by a memory-less agent is
redundant: this information was already captured in previous states and/or actions. An
agent with complete, or in any case sufficient memory of the past could therefore reduce
its sensory bandwidth requirements by a factor of 20.

A complete memory of the past however may be unrealistic, and the required memory
bandwidth may outweigh the reduced cost on the sensory bandwidth. Therefore, it is
instructive to also study themost simplememorymodel: where the agent only remembers
its previous action. This is modelled with the CBN of Fig. 4.6. Remember that the dashed
edges indicate side information, not strictly causal influences. In this scenario, the state
information intake of the agent is described by the 2-step horizon directed information:

I (W 2 → A2) = I (W1; A1)+ I (W1,W2; A2|A1). (4.5)

The first term in the sum on the right is the average immediate information intake of an
agent dropped in the world at a random state without any memory, and the second term,
which due to Markovianess reduces to I (W2; A2|A1), gives the average additional infor-
mation needed, given a memory of the previous action, in subsequent steps. Determining
this term in our grid-world, again with the optimal flat policy of before, shows that this
intake drops to 1.14 bits. So, here even a limited action memory of just one step already
provides 20% of the relevant information.

But perhaps the agent can do even better than that. Maybe it could shape its policy
in such a way that its previous actions become more informative. It could for instance
use a rule such as ‘move east after every time I moved south’. Each time it applies this
rule, it does not need to observe any state information directly. In other words, we want
to minimise the second term, the information intake given the knowledge of the previous
action, over all policies, to a given amount. This can only be done by increasing the
information intake at the previous step, which results in the trade-off formulated as the
following minimisation problem:

min
π(a|w)∈Π∗ I (Wt ; At ) subj. to I (Wt+1; At+1|At ) ≤C , (4.6)
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Figure 4.7: Dark curve: trade-off between state information required at subsequent steps
in an actionmemorymodel. The lighter curve shows the resulting average over two steps,
or the normalised two-step directed information. The minimum of this curve is marked,
which gives the optimal average information intake for an agent that remembers its last
action every second step.

where Π∗ is the set of all policies that are optimal in the sense of expected utility. Again
it can be shown (c.q App. 4.7.1) that this problem is equivalent to one similar to an IB
normal form, namely:

min
p(a|w)∈Π∗ I (Wt ; At ) subj. to I (At ; At+1) ≥ C̃ , (4.7)

This means that as before, the standard IB methods can be used to trace out the full
trade-off curve, which is shown as the dark line in Fig. 4.7. It shows that indeed it is
possible to pick a policy that can benefit even more from a single step action memory,
in terms of additional information requirements, up to the point where the conditional
information drops to 1.07 bits, just over 75% of the memory-less case.

This reduction comes at the cost of an increase in information intake at the initial step,
to 1.46 bits at the end of the curve. Over a long period this initial intake may be negligi-
ble. However, if the agent loses its action memory frequently, perhaps because its limited
memory was needed to store something else, or if the previous action often becomes ir-
relevant due to noise, these additional memory ‘bootstrapping’ costs may outweigh the
benefits. If we consider for instance the extreme example where the agent has no memory
every second step, the average intake becomes the normalised two-step directed informa-
tion, 1

2 I (W 2 → A2). The light curve in Fig. 4.7 shows this average for the trade-offs found
on the dark curve, and we see indeed that there is a minimum, at I (Wt ; At ) = 1.41 and
I (Wt+1; At+1|At ) = 1.09, after which the initial intake grows faster than the subsequent
savings.
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Figure 4.8: Causal Bayesian Network of layered action selection with memory. Here, at
any time step the agent has access to both the option currently selected, as to a memory
of the previously selected option.

4.5 Layered Action Selection with Memory
Finally, we will look at a combination of the effects of the action selection organisation of
the previous two sections: layered decision making, and memory. To do so, the layered
model can be extended, to give the agent a memory of the option selected at the previous
time-step. The new CBN corresponding to this model is shown in Fig. 4.8.

There are now three possible sources of information relevant to action selection: the
state Wt as always, the initial decision of this time step Ot , and that of the previous time
step, Ot−1. Note that there is no direct informational connection assumed between the
previous action and the next: information about the previous action that may be relevant
can now be more explicitly stored in the option choice.

If we again postulate the aim of the option selection to decrease the necessary further
sensory input, but this time not only for this time step, but also for the next, we arrive at
the new problem:

min
p(o|w)

I (Wt ;Ot , At ) subj. to I (Wt ; At |Ot ) ≤C1, I (Wt+1; At+1|Ot ) ≤C2 (4.8)

To be fully correct, the first term of the constraint should also be conditioned on Ot−1, as
the value of this variable is known to the agent at t ; adding it would capture the desire to
have the previous decision carry relevant information for the current action. This would
however make the solution much more complex by introducing a double dependency
on p(o|w) in the constraint. Also, due to stationarity, the second term already forces
options to be informative for the next action, so for simplicity this is omitted here. In the
next chapter I will develop methods that deal with future informational effects of current
decisions more rigorously.

Once again, this problem is equivalent to the following (multivariate) IB formulation
(c.q. App. 4.7.1):

min
p(o|w)

I (Wt ;Ot ) subj. to I (Ot ; At ) ≥ C̃1, I (Ot ; At+1) ≥ C̃2, (4.9)

leading to the Lagrange equation:

L
(
p(o|w),β

)= I (Wt ;Ot )−β1I (Ot ; At )−β2I (Ot ; At+1). (4.10)

If one sets β1 = β2 = β, again we can find the zero of this equation, along the range
β ∈ [0,∞], which we will do for our scenario. First, however, a base policy π(a|w) needs
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Figure 4.9: Informational trade-offs found for layered decision making with memory.
The solid lines give the information bandwidth of the system’s parts: option selection
(thin light line), immediate action selection given option (medium line), and second step
action selection given option (thick dark line). The dashed line shows the average per-step
intake, Ī = 1

2 [I (Wt ;Ot )+I (Wt ; At |Ot )+I (Wt+1; At+1|Ot )]. The point where the bandwidth
of each part is equal, and the maximum bandwidth over parts is minimised, is marked
with thin dashed lines. The lack of smoothness at the right end of the graphs is caused
to limitations of the IB algorithm; see the main text for details.

to be chosen again; for the results given below, the policy that minimises the normalised
two-step directed information of the previous section is used, as we know that it has a
good potential for capturing current information that is relevant in the future. For these
experiments, the cardinality of the option set is doubled, to |O | := 4, to give the option
selection channel enough potential bandwidth to capture information relevant in two time
steps.

The results of finding the trade-offs in this model are given in Fig. 4.9. Trade-offs
are shown for β ∈ [0− 0.25], for higher values the iterative IB algorithm was not able
to find valid trade-offs, even after 100 iterations. The difficulty of finding good global
optima is visible in the lack of smoothness at the high end of the curves. Performing more
iterations would smoothen the graph further, however the selected amount and range for
β is already sufficient to determine the general trends and some interesting trade-offs.

As expected, the low level bandwidths for both the current step and the next step drop
as the higher level decision captures more and more information, and rather significantly
so. The dashed line shows that for low β, the information intake at the higher level bal-
ances the drop in bandwidth at the lower level. For higher beta, when more than 1 bit
is processed by the higher level, we see that the total average per-step bandwidth does
drop, as it did in the action-memory model. In contrast with that model however, there is
a range where this total is lower and the individual bandwidth of each part is lower than
required in the flat case. This shows, that with the correct organisation of processing
units, it is possible to reduce the sensory bandwidth requirements of the whole system,
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Figure 4.10: Summary of bandwidth results shown for the average per-step bandwidth
of the full system (Iav g ), and for the maximum average for a single component of the
architecture (Imax), for different models: flat, layered, infinite directed information rate
(= infinite action memory), normalised 2-step directed information (= 1-step action mem-
ory with 50% memory loss), and two for layered selection with memory; 1: trade-off that
minimises Imax , and 2: trade-off where Imax = Iav g .

and of each separate unit at the same time.
The thin dashed lines mark the trade-offs where the maximum bandwidth required for

a single unit is minimised. The green line shows that here the total per step bandwidth is
similar to the flat case.

4.6 Discussion
In this chapter, I have looked at how some different organisations of a decision making
and acting system can affect the informational bandwidth requirements of that system
and its parts. A summary of the bandwidth requirements for the studied frameworks are
show in Fig. 4.10. From these results, one can make several observations, some of which
form the foundation of the upcoming work in this thesis.

4.6.1 Dividing decision making over multiple layers can signifi-
cantly decrease the bandwidth at each separate layer.

The global decrease however comes at the cost of a higher bandwidth of the total system.
This result is not specific to our scenario: stemming from the data processing inequality,
it can be shown that indeed the total bandwidth will never drop due to layered deci-
sion making. Moreover, experience has shown that it is common that in an information
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bottleneck, the information between input and bottleneck variable is not just non-less, but
significantly larger than the information that is ultimately encoded in the output variable.

This will be a recurring theme in this thesis: to be able to be more parsimonious with
information somewhere, you will have to pay with a higher bandwidth somewhere else.
However, I will also show, and have actually already shown in this chapter, that certain
organisations of an agent’s cognitive framework and/or its actions can make the benefits
outweigh the costs (see below, and chapter 5), that informational costs of one source can
be exchanged for that of another (see chapter 6), and that the additional, concomitant
information in an information bottleneckmay be a driving evolutionary force (see chapter
7).

4.6.2 Memory can reduce overall bandwidth, due to capturing tem-
poral redundancy.

The infinite directed information rate results show that a memory of all previous actions
can greatly reduce the amount of additional information that is still required. It is im-
portant to note however that the dramatic drop in our scenario is partly due to the fact
that the world is fully deterministic, i.e. performing the same action in the same state
always has the same result. Because of this, an agent that takes in all the available state
information when it is placed in the world, can thereafter blindly move to the goal state
along an optimal path; the start state combined with the action history fully predicts the
current state. In a less deterministic world, previous actions become less and less relevant,
the further in the past they are. However, one can still expect that in anything but the
most antagonistically random and unstructured environment, knowledge of the previous
action helps in predicting the current state, which is relevant to selecting the next action.

The 2-step DI result shows the same no-free-lunch principle as seen in the layered
framework, though inverted: the overall average bandwidth is lowered, but at the cost of
a higher immediate bandwidth requirement on memory loss.

4.6.3 Combining layered decisionmakingwithmemory can result
in a free lunch.

The last two rows of Fig. 4.10 shows that layered action selection with memory combines
the benefits of the other models: a lower total average bandwidth is achieved, as with
action-memory, as well as a lower per-unit bandwidth. In other words: more parsimo-
nious units can be organised into a more parsimonious structure than a flat, memoryless
decision maker can achieve!

Two trade-off results are shown, one at the trade-off marked with dashed lines in
Fig. 4.9, the second at the trade-off where the I (Wt ;Ot ) curve crosses the green average
curve. The second trade-off definitely shows the free-lunch property (though arguably not
significantly), but for the first Iav g still seems higher than that of the flat case. However,
Fig. 4.9 shows that the average at this trade-off is nearly equal to that when the higher
layer captures no information, i.e. at I (Wt ;Ot ) = 0, which should reduce to the flat case.
Where does this discrepancy come from?

46



One sees that the higher average is caused by a bandwidth measurement for the next
step that is higher than that for the current step. The fact that there is a difference is ex-
plained by the fact that this next bandwidth, I (Wt+1; At+1|Ot ) (which equals I (Wt+1; At+1)
because Ot carries no information), is calculated using p(wt+1) =∑

wt p(wt+1|wt )p(wt ).
This causes generally that p(wt+1) 6= p(wt ) : wt+1 = wt , and I (Wt ; At ) 6= I (Wt+1; At+1).
This effect, that the mutual information between impulse and response can be manipu-
lated by choosing to present the impulses with a different distribution, have lead some
to argue that mutual information is the wrong measurement for information processing,
if the choice can be arbitrary [90]. Luckily, as we will see later, we can find the actual
state distribution in our abstract framework that is consistent with the MDP description
and policy. Moreover, the insight that the state distribution depends on the selected pol-
icy forms the foundation of the next chapter, which allows me to find new trade-offs and
interesting policies for a class of agents.

4.7 Proofs and Derivations

4.7.1 IB Equivalence
Layered

Theorem 1. Given the CBN of Fig. 4.3, the constrained minimisation problem:

min
p(o|w)

I (Wt ;Ot , At ) subj. to I (Wt ; At |Ot ) ≤C (4.11)

is equivalent to the Information Bottleneck:

min
p(o|w)

I (Wt ;Ot ) subj. to I (Ot ; At ) ≥C (4.12)

Proof. If we make the problem unconstrained using a Lagrange multiplier, we have:

L(p(ot |wt ),β) = I (Wt ;Ot , At )+βI (Wt ; At |Ot )

= I (Wt ;Ot )+ I (Wt ; At |Ot )+βI (Wt ; At |Ot )

= I (Wt ;Ot )+ (1+β) [I (Wt ; At )+ I (Ot ; At |Wt )− I (At ;Ot )]

From the CBN, we can see that the Markov property Ot →Wt → At holds, and thus that
I (Ot ; At |Wt ) = 0. Finally, because I (Wt ; At ) is constant under p(ot |wt ), the solution of
(4.11) is characterised by:

argmin
p(ot |wt )

L(p(ot |wt ),β) = argmin
p(ot |wt )

[
I (Wt ;Ot )− (1+β)I (At ;Ot )

]
(4.13)

Similarly, the solution of (4.12) is characterised by [104]:

argmin
p(ot |wt )

L′(p(ot |wt ),β′) = argmin
p(ot |wt )

[
I (Wt ;Ot )−β′I (At ;Ot )

]
,

which is equivalent to (4.13), under β=β′−1.
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Action Memory

Theorem 2. Given the CBN of Fig. 4.6, the constrained minimisation problem:

min
π(a|w)

I (Wt ; At ) subj. to I (Wt+1; At+1|At ) ≤C (4.14)

is equivalent to the Information Bottleneck:

min
π(a|w)

I (Wt ; At ) subj. to I (At ; At+1) ≥C (4.15)

Proof. If we make the problem unconstrained using a Lagrange multiplier, we have:

L(π(at |wt ),β) = I (Wt ; At )+βI (Wt+1; At+1|At )

= I (Wt ; At )+β [I (Wt+1, At ; At+1)− I (At ; At+1)]

= I (Wt ; At )+β [I (Wt+1; At+1)+ I (At ; At+1|Wt+1)− I (At ; At+1)]

= (1+β)I (Wt ; At )+β [I (At ; At+1|Wt+1)− I (At ; At+1)] (4.16)

From the CBN, we can see that the Markov property At → Wt+1 → At+1 holds, and thus
that I (At ; At+1|Wt+1) = 0. Thus, the solution of (4.14) is characterised by:

argmin
p(at |wt )

L(p(at |wt ),β) = argmin
p(at |wt )

[
(1+β)I (Wt ; At )−βI (At ; At+1)

]
(4.17)

Similarly, the solution of (4.15) is characterised by [104]:

argmin
p(at |wt )

L′(p(at |wt ),β′) = argmin
p(at |wt )

[
I (Wt ; At )−β′I (At ; At+1)

]
,

which is equivalent to (4.13), under β′ = β
β+1 .

Layered Action Selection with Memory

Theorem 3. Given the CBN of Fig. 4.8, the constrained minimisation problem:

min
p(o|w)

I (Wt ;Ot , At ) subj. to I (Wt ; At |Ot ) ≤C1 and I (Wt+1; At+1|Ot ) ≤C2 (4.18)

is equivalent to the (multivariate) Information Bottleneck:

min
p(o|w)

I (Wt ;Ot ) subj. to I (Ot ; At ) ≥C ′
1 and I (Ot ; At+1) ≥C ′

2 (4.19)

Proof. If we make the problem unconstrained using Lagrange multipliers, we have:

L(p(ot |wt ),β1,β2) = I (Wt ;Ot , At )+β1I (Wt ; At |Ot )+β2I (Wt+1; At+1|Ot )

= I (Wt ;Ot )+ I (Wt ; At |Ot )+β1I (Wt ; At |Ot )+β2 [I (Wt+1,Ot ; At+1)− I (Ot ; At+1)]

= I (Wt ;Ot )+
(1+β1) [I (Wt ,Ot ; At )− I (Ot ; At )]+ (4.20)
β2 [I (Wt+1,Ot ; At+1)− I (Ot ; At+1)]
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We further know that:

I (Wt ,Ot ; At ) = I (Ot ; At |Wt )+ I (Wt ; At ) (4.21)
I (Wt+1,Ot ; At+1) = I (Ot ; At+1|Wt+1)+ I (Wt+1; At+1). (4.22)

From the CBN, we can see that the following Markov properties hold: Ot →Wt → At and
Ot →Wt+1 → At+1. Given this, and the fact that I (Wt ; At ) = I (Wt+1; At+1) is independent
of p(o|w), the solution of (4.18) is characterised by:

argmin
p(ot |wt )

L(p(ot |wt ),β1,β2) =

argmin
p(ot |wt )

[
I (Wt ;Ot )− (1+β1)(I (Ot ; At )−β2I (Ot ; At+1)

]
(4.23)

Similarly, the solution of (4.19) is characterised by [92]:

argmin
p(ot |wt )

L′(p(ot |wt ),β′
1,β′

2) = argmin
p(at |wt )

[
I (Wt ;Ot )−β′

1I (Ot ; At )−β′
2I (Ot ; At+1)

]
which is equivalent to (4.23), under β′

1 = 1+β1 and β′
2 =β2.

4.7.2 Self-Consistent Solutions
In this section I show the self-consistent solutions of the three optimisation problems of
above, which are used in the iterative methods to solve them, as explained in the main
text.

Lemma 1. The self-consistent solution for the layered system is given by:

p(ot |wt ) = 1

Z
p(ot )exp

[−βDK L
(
p(at |wt ) ∥ p(at |ot )

)]
(4.24)

Proof. This is the standard solution for a single-variate information bottleneck, see Tishby
et al. [104] for a derivation.

Lemma 2. The self-consistent solution for the system with action memory is given by:

p(at |wt ) = 1

Z
p(at )exp

[
−β ∑

wt+1

p(wt+1|wt , at )DK L
(
p(at+1|wt ) ∥ p(at+1|at )

)]
(4.25)

Proof. We seek the solution of:

δ

δπ(at |wt )

[
I (Wt ; At )−βI (At ; At+1)

]= 0 (4.26)

The derivative of the first term is known to be (c.q. A.2.2):

p(wt ) log
π(at |wt )

p(at )
(4.27)
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Due to the Markov property At →Wt → At+1, one finds:

δp(at |at+1)

δπ(at |wt )
= p(wt |at+1) ,

δp(at )

δpπ(at |wt )
= p(wt ) (4.28)

Filling this in to the derivative of the second term of (4.26), one gets:

p(wt ) log
π(at |wt )

p(at )
−βp(wt )

∑
at+1

p(at+1|wt ) log
p(at+1|at )

p(at+1)
= 0 (4.29)

Finally, rearrangement of terms and adding p(wt )
∑

at+1 log p(at+1|wt )
p(at ) to both sides of the

equality results in the solution of (4.25).

Lemma 3. The self-consistent solution for the layered system with memory is:

p(ot |wt ) = 1

Z
p(ot )exp

[−β1DK L
(
p(at |ot ) ∥ p(at )

)−β2DK L
(
p(at+1|ot ) ∥ p(at+1)

)]
(4.30)

Proof. This is the standard solution for a multivariate information bottleneck, with differ-
ent valuations of the information relevant to different variables; see Slonim at al. [92] for
a derivation.
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Chapter 5

Look-Ahead Relevant Information

“It is always wise to look ahead, but difficult to look further than you can see. ”
Winston Churchill

5.1 Introduction
I have pointed out an implied assumption of the relevant information method as it is
originally formulated, and as applied in the previous chapter: the agent has no better guess
for the state distribution than a uniform distribution; it is not able to assess the influence
of its actions with regards to this distribution, which clearly is large. As the model of
the perception-action loop showed, actions affect the state of the world. Different actions
have different results, and choosing one action over the other can change an agent’s life
course significantly.

In terms of reward, this means that local, immediate decisions determine the long
term expected future accumulated reward. It could well be that actions have a higher
short term cost, but that this is made up for with a higher long term gain. The knowledge
of this is, albeit arguably implicitly, available in the value function. What is missing is a
similar consideration for the future effects of actions on informational costs. The following
example makes this idea more concrete, and shows how such considerations can change
behaviour.

Imagine that you are driving a car, and need to get to the other side of a large city. You
are at a crossing with two options: either drive through the centre of the city, or take the
motorway around it. It would be no surprise if you prefer the easier second option over
having to spend a lot of mental energy on navigating the many crossings in a complex
city road layout.

Now imagine that at this initial crossing the option to go through the city is easy:
you can simply, blank-mindedly drive straight ahead. In contrast, to get on the orbital
road you would need to navigate a complex multi-laned roundabout. How much more
extra cognitive load would you be willing to accept locally to be able to avoid all the other
difficult crossings and make life easier for yourself in the future? This is analogous to
asking how much reward you would be willing to give up now in order to increase future
reward. To make it even more interesting: would you be willing to trade performance
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to make the future easier? In the driving example this could mean still taking the easy
orbital, even when that makes the journey take longer.

In this chapter I will consider these kind of questions in more detail. I will do this by
extending the relevant information methods to explicitly take into account future effects
of actions on informational burden. With this I will show how issues as those from the
previous paragraph can be studied formally. Furthermore, this will enable us to step down
from abstract off-line solutions, and apply the relevant information framework to on-line
learning agents.

5.1.1 Channels with Feedback
Rate-distortion theory is generally applied to channels without feedback. This means that
a channel’s input does not depend on its past output: p(xt+1|x t , y t ) = p(xt+1|x t ), where
x t and y t denotes the input and output history up to and including time t . This is the case
for instance in data compression, a main application of the theory: the content of the next
video frame does not depend on the compression results of the previous frames1.

It is obvious however that this does not hold when we model an agent’s actuation
channel in the PA-loop; the world state transitions (and thereby an agent’s sensor states)
are not solely determined by the previous state, but also by the actions performed by the
agent: p(wt+1|w t , at ) = p(wt+1|wt , at ) 6= p(wt+1|wt ). The main consequence of this is,
that when changing an agent’s policy, one also changes the marginal distribution over
world and sensor states.

Because the classical RI method ignores this feedback, one firstly ignores that the fixed
state distribution that is used is most likely not consistent with the final policy, and, more
importantly, that local changes in the policy can result in a very different development of
the future with very different informational properties.

Channels with feedback have received a great deal of attention throughout the field of
information theory, as such channels are abound in practical applications. When making
a phone call, we get feedback from the person on the other side about the quality of
the phone line, which we can use to choose to repeat information, or to use different
wording. An early result by Shannon [87] is that feedback cannot increase the capacity
of a memory-less channel, although feedback is still often useful to make coding cheaper.
Recently, Kim [47] showed how to determine the capacity of a wide family of feedback
channels with memory, using Massey’s directed information [66].

Literature on rate-distortion optimisation with feedback is more sparse. Some ex-
amples are available, such as an interesting distributed sensing application by Beferull-
Lozano et al. [16]. One study that is closely related to the work in this chapter is by
Chou and Miao [28], who present a dynamic-programming based approach to achieve
optimal rate-distortion trade-offs for streaming media. They however define rate in terms
of raw bits of data being transmitted, instead of bits of Shannon information, such that
the contribution to the global rate is fixed for each local decision. This is not the case
for an agent: the rate cost of choosing an action depends on the global distribution over
actions. Another dynamic-programming solution to rate-distortion with feedback is due

1Note that some compression methods do depend on past input. In this case, p(xt+1|x t ) 6= p(xt+1|xt ),
and the channel is said to be one with memory.
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to Tatikonda [99], who models the selection of an encoder as a control problem. However,
his modelling is also not directly transferable to an agent’s perception-action loop: firstly
his work implies perfect (or at least sufficient) memory of the full history, which I will not
require; and secondly, for his purposes he can model feedback as side-information, sep-
arate from the input, in contrast to the PA-loop where feedback is inseparably combined
in the world state.

5.1.2 Consistent State Distributions
As mentioned earlier, the original relevant information formulation fixes the state distri-
bution to be uniform. In this section I will make an initial extension of the method by
explicitly maintaining a state distribution that is consistent with the current policy. This
extension would fit an agent that is able to deduce, or learn the distribution resulting from
its policy.

Given a fixed policy π(a|w), and the transition model P a
w w ′ , the development of the

world state is described by a first-order Markov chain, with transition probabilities:

p(w ′|w) =∑
a
π(a|w)p(w ′|w, a) (5.1)

If all states in an MDP are positive recurrent, which means that the average return time
for each state is finite, the process has a stationary distribution, which satisfies

p(w) =∑
w ′

p(w ′|w)p(w), (5.2)

In an episodic scenario the presence of absorbing states invalidates this requirement: after
a sufficiently long time the probability of being in such a state approaches 1. To overcome
this, we can manipulate p(w ′|w) to be uniform (over possible start states) if w is absorb-
ing. The stationary distribution can now be determined, as detailed in App. A.2.1.

Doing this at each iteration of Algo. 1 gives the distribution pk (w) that we can plug
into the next iteration instead of the original fixed p(w), to make the iteration fully con-
sistent. I will refer to this version of the algorithm as consistent relevant information (C-RI).

Example

To show how taking into account the consistent state distribution changes outcomes,
consider the MDP in Fig. 5.1. The task for the agent is to travel to the goal as quickly as
possible. Which policy will an RI optimal agent follow? One may recall from Sec. 2.6, that
in information minimisation, the policy in states with the fewest options will shape the
policy in the remaining states. In this case, there are 12 states where only one action is
optimal; 6 with action 1 (1–5 and 12) and 6 with action 2 (0, 7–9, 11 and 13). So, over these
states, the average probability under a uniform distribution for each action is 0.5, which
determines the policy for the one state where the agent has a choice: π(a = 1|w = w6) =
π(a = 2|w = w6) = 0.5.

However, an optimal agent will actually not follow the longer top path; if it starts in
w0, or in the non-episodic case where it is replaced there every time after reaching the
goal, the states in this path are never visited at all. This greatly reduces the probability
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Figure 5.1: Example MDP where taking into account the consistent state distribution
results in a different policy. Each step has a cost of 1, except for when the agent enters
the goal state, denoted g . This makes only the bottom two paths optimal. The top and
middle paths requires choosing the same action (nr. 1 and 2 respectively) at every step,
the bottom involves switching between both actions.

that action 1 is chosen, which means that an RI optimal agent has a higher tendency of
choosing action 2 when it has a choice, giving it a preference of following the middle path.
Ultimately, when applying the RI method with consistent updates, one even settles on a
policy where the agent only follows the middle path. With this solution, the agent blindly
chooses action 2 at every step, reducing I (W ; A) to zero.

Counter Example

This method however is not always optimal in all scenarios. Figure 5.2 shows a simple
MDPwith two possible optimal paths to the goal: one where the agent has to alternate be-
tween actions 1 and 2 (top), and one where at each state either action is optimal (bottom).
When applying the RI algorithm to this MDP with a uniform state distribution, the solu-
tion will be a uniform distribution over actions for all states but w1-w4: remember again
that the RI method drives the policy towards the average policy over the states with the
fewest optimal choices. In this case one can quickly confirm that I (W ; A) = 1

3 bits2.
There is a much better solution however: the agent should choose action 2 at ev-

ery time step. This policy is optimal, getting the agent to the goal as fast possible, and
blind: I (W ; A) = 0. The C-RI algorithm initialised with this solution does not diverge
from it, whereas the original RI algorithm does move away and again converges on the
sub-optimal 50-50 solution. When seeding the policy randomly however, neither is able
to find the optimal solution; any probability of traversing the upper route is reinforced by
pulling the policy in the first state towards being uniform. The algorithms find at every

2Note that the start and end states are visited at every run, whereas the other states only in 50% of the
runs. So, p(w0) = p(g ) = 1

6 , p(w1 ∨w2 ∨w3 ∨w3) = 1
3 , and thus I (W ; A) = 1

3 log 1
0.5 = 1

3
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Figure 5.2: Example MDP where taking into account the consistent state distribution is
not sufficient to find the most parsimonious policy. Each step has a cost of 1, except for
when the agent enters the goal state, denoted g . Both paths are optimal. The top path
requires alternately choosing a single action, in the bottom either action can be chosen.

step the best policy for the given state distribution, they do not see that a local policy
that is costly against that state distribution can be countered by leading to a path that
is less costly in the long run. In the following section I introduce a new RI concept and
algorithms that do take such future informational gains into account.

5.2 Look-Ahead Relevant Information

5.2.1 Definition
To develop a method that takes into account the future, we will have to introduce time.
Let X t be the read-out of variable X at given time t , and XT be a read-out at a random time
step. The relevant information of the previous section did not assume a given time step,
and here I will make that explicit by writing I (WT ; AT ). We can now break this quantity
down over time.

I (WT ; AT ) =∑
wT

p(wT )I (WT = wT ; AT )

=
∞∑

t=0
p(t )

∑
wt

p(wt )I (WT = wt ; AT )

= p(t = 0)
∑
w0

p(w0)I (WT = w0; AT )+p(t = 1)
∑
w1

p(w1)I (WT = w1; AT )+ . . .

1= p(t = 0)
∑
w0

p(w0)I (WT = w0; AT )+p(t = 0)γ
∑
w1

p(w1)I (WT = w1; AT )+ . . .

= p(t = 0)

[∑
w0

p(w0)[
I (WT = w0; AT )+ . . .+γk

∑
wk

p(wk |w0)I (WT = wk ; AT )+ . . .

]]
(5.3)
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For equality 1, it was assumed that the probability of experiencing a time-step depends
on the probability of experiencing the previous time-step according to p(t = k) = γp(t =
k−1), where γ can be seen as a ’survival’ probability, which is the same for each time-step.
The final result takes a form similar to a Bellman equation, the recursive part of which I
will take out.

Defintion 1. The look-ahead information of a state wt under policy π, written as Iπ(wt ),
is the expected total future action-relevant information intake when starting at that state at
time t and subsequently following π:

Iπ(wt ) = I (WT = wt ; AT )+γ ∑
wt+1

p(wt+1|wt )Iπ(wt+1), (5.4)

where p(wt+1|wt ) =∑
at π(at |wt )p(wt+1|wt , at ).

With this definition, Eq. (5.3), and the assumption that the process is time homoge-
neous, we have that:

I (WT ; AT ) = p(t = 0)
∑
w0

p(w0)Iπ(w0). (5.5)

If every time-step is as likely, i.e. the future is infinite, γ= 1, and we get that I (WT ; AT ) =
limN→∞ 1

N

∑
w0 p(w0)Iπ(w0). So, as one would expect, the single step information intake

is the look-ahead information rate.

5.2.2 Information in a Single Experience
Next, we must choose a way for quantifying I (WT = wt ; AT ), the amount of information
taken from a single state instantiation to choose an action. As noted before, this must
fulfill

∑
wt p(wt )I (WT = wt ; AT ) = I (WT ; AT ). It turns out there is an infinite range of

ways to construct a quantity for which this holds, and if one is only interested in the
averaged E [Iπ(W0)], the choice from this range is arbitrary. However, if we also want to
analyse the amount of look-ahead information at a specific state, or specific sequences,
the choice matters, because here different definitions give different results. As described
by DeWeese and Meister [35], out of all the possibilities, there are two definitions that
have interesting properties that are of interest in our context, and which are the only
definitions that have these properties.

DeWeese and Meister argue that the most important criterion to choose a definition
is additivity of the quantity. This means that the amount of information given by two
separate symbols should be equal to the information in one, plus the information in the
other given that we already know the first: I (x, y ; Z ) = I (x; Z )+ I (y ; Z |x). They show that
the only definition that satisfies additivity is the reduction of entropy that occurs when
observing a symbol: H(Y )−H(Y |X = x).

However, look-ahead information sums over time, and there this definition can give
some counter-intuitive results. It is well known that although mutual information is al-
ways non-negative, due to H(Y |X ) ≤ H(X ), a specific instantiation of a variable could
still increase the entropy of another variable, i.e. it may be that H(Y |X = x) > H(Y ).
For instance, usually a train may be very punctual, however learning that work is being
done on the tracks increases the uncertainty of its arrival time. If this measure is used
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for look-ahead information, this means that the amount of information at a certain time
step becomes negative. If one interprets look-ahead information as the accumulated in-
formation intake over time, this would imply that this intake can drop, if we increase the
horizon over which we measure. Or, put differently, a higher uncertainty about an action
than usual at a specific state would ‘cancelled out’ cognitive burden spent in the past. This
does not give a viable definition of information intake and processing over time which fits
our intuitions about causality. So instead, what is needed is a formulation where single
step information intake is always non-negative.

There is again only a single definition where this holds [35]: the Kullback-Leibler di-
vergence between the posterior and prior distributions of the relevance variable: I (wt ; AT ) :=
DK L(p(at |wt )||p(at )) =∑

at p(at |wt ) log p(at |wt )
p(at ) . This is the definition we will use.

5.2.3 New Solution to Trade-Off
Finally, I will develop an algorithm for finding theminimal Look-Ahead information under
a fixed performance constraint. This is done in a way similar to the original RI algorithm.
First, we construct the same Lagrangian equation as for the RI-algorithm, but this time
we fill in Eq. (5.5):

ΛL A(π,β) = p(t = 0)
∑
w0

p(w0)Iπ(w0)−βE [Uπ(WT , AT )] (5.6)

By taking the partial derivative again this version, equating it to 0 and solving for π, under
the assumption that p(t = 0) does not depend on the policy (e.g. p(t = 0) = 1

N when γ→ 1),
we now arrive at:

π(at |wt ) = 1

Z
p(at )exp

[
−γ ∑

wt+1

p(wt+1|wt , at )Iπ(wt+1)+βUπ(wt , at )

]
(5.7)

Note that this solution is similar to the original single-step RI solution, with the expected
future information cost subtracted from the β-weighted expected future reward.

The final algorithm, which I will denote as LA-RI, is then obtained by substituting step
6 of the RI algorithm with this equation, and performing Eq. (5.4) as an additional update
step at each iteration. Applying this new algorithm until convergence on the problem of
Fig. 5.2 gives us the desired result: the optimal policy where the agent deterministically
chooses action 2 at each state.

5.2.4 Scenario 1: Avoiding Uncertainty
To display the effects of a drive to minimise the look-ahead information to the relevant
minimum, we present an example scenario in the form of a navigation problem. In this
scenario, the agent has to traverse the environment, which offers several pathways that
the agent can take. Some of these pathways are optimal, while one path results in the
agent enduring a higher cost. Also, some paths are deterministic, while other paths are
more noisy and require more information to perform the optimal policy. These differences
ensure that the agent can increase performance, decrease informational requirements, or
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Algorithm 2 Look-Ahead Relevant Information
Require: <S ,A ,P a

ss′ ,Ra
ss′ >,β,γ,επ,εU ,επ

I
Ensure: πk = argminπ

[
Iπ(S)−βE [U (S, A)|π]

]
1: p0(s) ← 1

|W |
2: π0(a|s) ← 1

|A |
3: U0(s, a) ← 0
4: Iπ0 (s) ← 0
5: k = 0
6: repeat
7: pk (s) ← StaticDistribution(πk , P a

ss′)
8: pk (a) ←∑

s p(s)π(a|s)
9: πk+1(a|s) ← 1

Zpk (a)exp
[−γ∑

wt+1 p(wt+1|wt , at )Iπ(wt+1)+βUk (s, a)
]

10: Uk+1(s, a) ←∑
w ′ P a

ss′
[
Ra

ss′ +γ
∑

a′ πk (a′|s′)Uk (s′, a′)
]

11: Iπk+1(s) ← DK L
(
π(a|s) ∥ p(a)

)+γ∑
a,s′ π(a|s)P a

ss′I
π
k (s′)

12: k = k +1
13: until D JS(πk ∥πk−1) ≤ επ and ∥Uk −Uk−1 ∥∞≤ εU and ∥ Iπk −Iπk−1 ∥∞≤ επ

I
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1 5 10 15 20 25 30 35 40

Figure 5.3: The navigation scenario used in the experiments. An agent is placed on one
of the west-most cells and has to cross over to the other side of the world, onto one of the
east-most cells. Pieces of land are marked with a dark, brown background, and water is
denoted with a light, blue shade. The water cells in rows 6-8 and 10-12 are covered by lily
pads, denoted with green circles. The agent can move in three ways: jump north-east,
east, or south-east. Jumps from land are deterministic, they result in the agent moving
in the intended direction. Jumps made from open water are more noisy, 50% of the time
these result in the agent landing one cell north or south of where it would normally land.
Every jump costs the agent 1 point, however jumping from the water is more difficult, so
the agent endures a cost of 10 points when landing into it.
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settle on a trade-off, by changing the distribution of the paths it will take to get to the
final goal.

More concretely, the agent is placed in a world that consists of a rectangular grid of
40×17 cells, as shown in Fig. 5.3. The world contains a patch of land 5 cells wide in the
west and a line of land in the east. There are two land pathways between these pieces
of land, in rows 2-4 and 14-16. The southern of the two is cut off by a line of water at
the end. Two additional pathways are formed by lily pads, covering rows 6-8 and 10-12.
The four pathways are divided by three lines of open water. The state of the world at a
given time, St , is the location of the agent in the world, which can be in any of the 680
cells in the grid. At each time step the agent can select one of 3 actions: jump either one
cell north-east, one cell east, or one cell south-east. The world is bordered by walls in the
north and south; performing an action that would have the agent run into the wall results
in the agent moving simply eastwards. The world wraps around, such that a move in the
last column in the east brings it back to the first column in the west.

Each jump consumes energy, incurring a cost to the agent. This cost is represented by
a negative reward: Ra

w w ′ :=−1. Moving is more costly when the agent has fallen into the
water. In this case, the cost goes up to 10, i.e. Ra

w w ′ :=−10 when in w the agent is in open
water. The agent can prevent this by hopping onto the lily pads that float on the water.
Finally, the reward is 0 when the agent arrives in one of the goal states, to mark that it
has finished the task and to limit the total cost.

A policy thus is already optimal when it brings the agent to the other side, without
falling into the water. This is achieved by following the northern land path, or one of
the two paths formed by lily pads. However, the lily pads are unstable, making the effect
of a jump from one uncertain. With a probability of 0.5, such a jump results in the agent
landing either one cell further north or one cell further south than where the action would
normally take the agent. The same indeterminacy holds when the agent attempts to jump
from open water.

This means that on the two pathways formed by lily pads the agent has to be extra
careful not to end up in the water. In fact, on these pathways there always is only a
single optimal action available: when next to the open water, try to move away from it,
otherwise try to move straight ahead. Any other strategy has the risk of diverting the
agent into the water. This means that it has to pay close attention to where it is, to be able
to select the correct action.

On the two outer paths, however, the structure of the world offers the agent help to
alleviate its cognitive burden. Here, the lack of noise allows it to venture closer to the
water and to worry less about which action to take. In each cell on these pathways there
are multiple actions that ensure that the agent will not get wet.

In this environment we perform three experiments. Firstly, we determine a policy fol-
lowing the original single-step relevant information method, for different β values, using
a uniform state distribution for each iteration. This is Alg. 1, and the method originally
introduced by Polani et al [77]. Secondly, we will perform the same experiment, but with
the added step of making the state distribution consistent to the current policy at each
iteration. To differentiate these experiments, we will refer to the first as the inconsistent
single-step case, due to the fact that the uniform state distribution that is used generally
is not consistent with the policy that is considered. Finally, for the third experiment the
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Figure 5.4: Trade-off curves obtained in the navigation task of Fig. 5.3, using the relevant
information (RI), relevant information with consistent state distribution (C-RI), and the
look-ahead relevant information (LA-RI) methods.

second is repeated using look-ahead information.
For the final policies that are found in these three experiments, we determine the av-

erage per-step information intake, I (Wt ; At ), and the performance, measured by the ex-
pected utility Eπ[Uπ(Wt , At )], both using the state distribution consistent with the policy.
Doing so for the full range of values of β results in the information-performance trade-off
curves shown in Fig. 5.4.

The first thing that we notice is that the trade-offs found by the inconsistent relevant
information algorithm do not trace out a proper trade-off curve, when considering the
consistent state distribution: it is not monotonically growing, and even at some point
achieves lower levels of information with rising β. This of course may not be surprising,
since the algorithm is not designed to consider changes in the state distribution. The
curve for the consistent 1-step algorithm shows that taking these effects into account
makes the algorithm converge onto a well-formed trade-off curve, and find policies with
a considerably higher performance for the same actual information intake for a significant
range.

However, this simple improvement still does not result in finding the true optimal
trade-off curve, as is clear from the fact that the curve found by using look-ahead in-
formation lies still higher. Especially for high performance, looking ahead resulted in a
significant decrease in the information required. At optimal performance, marked by the
vertical dashed lines in Fig. 5.4, the decrease is close to 25%, down to 0.76 bit as compared
to 1.01 (C-RI) and 1.04 (RI).

We can infer what causes this drop of information from the resulting state distribu-
tions, p(wt ). These distributions, shown in Fig. 5.5, indicate how often an agent visits
each cell over time. Firstly, we see that both the single-step (a) and the look-ahead (b)
methods avoid the lowest pathway, which would force the agent to perform a costly wa-
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Figure 5.5: Left: State distributions resulting from a) consistent relevant information and
c) look-ahead relevant information optimisation, in the environment of Fig. 5.3. Right:
immediate information costs per state. Dark shading denotes higher probability/higher
information cost.

ter crossing. Secondly, however, the path choice differs on the upper part of the world:
whereas the single-step method results in a roughly 50-50 distribution between the top
land path and the upper lily pad path, the look-ahead method avoids this second option
whenever possible. It is able to see that picking the deterministic topmost path helps to
relieve its long term cognitive burden, since it does not have to consider in full detail on
which side of the water it is. Moving simply forward is always safe, and having a default
option available reduces the sensory bandwidth needs.

5.2.5 Learning Parsimony
The recursive formulation of Def. 1 is very similar to the definition of the value function
of Eq. (2.26) that is the main topic of optimisation in Reinforcement Learning. Indeed, the
updates of the LA-RI algorithm are reminiscent of that of the value iteration algorithm
used to find the optimal value function. This leads to the question whether we can take
inspiration from the field of RL and apply its methods to informational optimisation.

This entails to learning the relevant methods and which policy is optimal from a set of
experiences, where each experience consists of the tuple 〈wt , at ,rt , wt+1〉. Such an experi-
ence gives some information about the value function that is to be learned. In Temporal-
Difference learning (TD-learning) such a tuple is used to determine the accuracy of the
current estimate of the value function. This estimate predicts the value of a state to be
V (wt ), whereas the value that is observed by the agent is rt +γV (wt+1). The difference
between these is the prediction error : δ= rt +γV (wt+1)−V (wt ). This error can be used to
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Figure 5.6: Surveillance example. An agent moves clockwise in the environment, choos-
ing to either stay in the same lane, or move one lane out or in. Several obstacles block the
path; the agent can move around them, or push them down and step on them, without
incurring additional cost.

adjust the value function towards its actual value through the updateV (wt ) ←V (wt )+αδ,
where α> 0 is the learning rate.

A similar learning rule can be devised for the LA-information function. Again, the
predicted LA-information is Iπ(wt ), whereas the observed amount is I (wt ; at )+Iπ(wt+1).
Here, I (wt ; at ) = log π(at |wt )

p(at ) , such that
∑

at π(at |wt )I (wt ; at ) = I (wt ; At ). The LA-information
TD update rule then becomes:

δ= I (wt ; at )+γIπ(wt+1)−Iπ(wt )

Iπ(wt ) ← Iπ(wt )+αδ (5.8)

Using this update rule, an agent can learn the look-ahead information function on-line
solely from experience.

To summarise, we now have the following set of algorithms: original (or consistent)
single-step relevant-information ((C)RI, Sec. 2.6), Look-ahead relevant-information value-
iteration (LA-RI, Sec. 5.2.3), and look-ahead learning (LA-RIL, current section). In the
following section we will apply them to an example problem.

5.2.6 Scenario 2: Clearing Obstacles
The example problem is based on a robotic surveillance scenario. An agent moves around
on a circular track, as shown in Fig. 5.6. It takes the agent 10 steps to go around, and there
are three lanes, resulting in a total of 30 possible cells the agent can be in. At each step the
agent moves one step forward (clock-wise), and he can choose to stay in the same lane,
or move one lane left or right; if this would cause him too move outside of the track, he
stays in the same track after all.

The agent can not move around freely: there are six obstacles around the track. If a
move would bring the agent to a cell blocked by an obstacle, the move is unsuccessful,
and the agent remains in the same state. The agent however can also choose to perform
a push action while moving, which would push an obstacle in the target cell down at the
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Parameter Value
T 107

α 1− t
T

γ 0.99
ε 1− t

T
β 107

Table 5.1: Learning parameters used for the Q-learning and LARIL methods in the
surveillance task. α: learning rate, γ: discount factor, ε: exploration rate, β: Lagrange
parameter (only for RI), T : experiment duration.

same time of the move, making the move possible. Pushed down obstacles come back up
again with a probability of 0.1 after each successful round.

In this scenario, |S | = 30×26 = 1920 (number of cells times obstacle configurations)
and |A | = 6 (3 moves and whether or not the agent pushes). The reward function, Rwt+1

wt ,at

is 1 when the agent finishes a round by crossing the line at the top, -0.1 when the agent
performs a push action without there being an obstacle in the target cell (or one that is
already down), and 0 otherwise.

There is a whole range of optimal policies in this environment: it is possible for the
agent to slalom around the obstacles, but since we did not make pushing down obsta-
cles costly, it may also go around pushing away every one. It is no surprise then that
traditional value iteration gives a policy that has the agent moving around the track ran-
domly, pushing obstacles at some steps, moving around them at others. This results in
the state distribution as depicted in Fig. 5.7a, and a per-step information requirement of
I (W ; A) = 1.83 bits.

This intake seems excessive, considering that an agent that never pushes only selects
from three actions, so should need no more than log(3) = 1.58 bits. Using the RI method
we indeed discover a policy that avoids the cells with obstacles, as is evident from the
resulting state distribution shown in Fig. 5.7b. It turns out that such a policy even reduces
the information intake to less than a quarter of the original.

However, what the single-step RI algorithm does not see, is that an obstacle that is
pushed down will remain down for ten rounds on average and that the world is a simpler
one during that time. The LA-RI algorithm on the other hand does see this, and with
that an even more efficient solution can be found. The policy of this solution moves the
agent around in a single lane, only moving straight ahead, pushing down the obstacles
that are in the way when they are up. The state distribution of this solution is shown in
Fig. 5.7c, and the information intake has been reduced again to less than one third of the
RI solution; a full 93% drop from the Q-learning solution.

These results are found using the Blahut/value-iteration type algorithms. Next, wewill
see if a learning agent is able to find these solutions as well. Firstly, for comparison, an
experiment with a Q-learning agent is performed, using the learning parameters as given
in Tab. 5.1. Note that the learning and exploration rates decrease linearly over time, as is a
popular choice for Q-learning [97]. These parameters are not tweaked to minimise learn-
ing time, but are chosen to give the agent a chance to fully explore; decreasing these too
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(a) VI, I (W ; A) = 1.83
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(b) C-RI, I (W ; A) = 0.45
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(c) LA-RI, I (W ; A) = 0.13

Figure 5.7: Surveillance experiments results, depicting the stationary distribution re-
sulting from the policies found using different methods; darker shades indicate higher
probability of the agent occupying the given cells, the height of an obstacles is propor-
tional to the probability of that obstacle being up at any random time-step. VI = value
iteration, C-RI = consistent single-step relevant information, LA-RI = look-ahead relevant
information.
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Figure 5.8: The obstacle pushing behaviour of learning agents over time during typical
experiments. Successful pushes while the agent is not exploring are recorded as a series
of unit impulses. These are then filtered using a sliding Hann window of size 105 to get
an idea of the development of push frequency over time.

fast prevents the look-ahead information values to be learned accurate enough and makes
the agent settle on an informationally sub-optimal policy too quickly, keeping them the
high makes the learned value too much based on random actions, instead of those deemed
optimal (remember that look-ahead information learning is on-policy) Not surprisingly,
the Q-learning agent settles on the same solution as found using value iteration.

Next, we run the same experiment with an agent that performs Look-Ahead Relevant
Information learning. During this experiment, the Lagrange trade-off parameter β is set
to 107, to enforce reward optimal policy. Indeed, the pressure to minimise the look-ahead
information does not prevent it from converging on an optimal policy. Moreover, it finds
the same RI-optimal policy as the Blahut-type LA-RI algorithm does.

A comparison of the behaviour over time of the two described learning agents is shown
in Fig. 5.8. The plain Q-learning agent continuously increases the amount of times it
pushes an obstacle down along its learning trajectory. As discussed, this does not increase
its performance, but it also does not hurt it. From this agent’s point of view pushing or
not does not make a difference. At the end of the experiment, it pushes down an obstacle
roughly once in every 20 steps, so once every 2 revolutions.

The LA-RI agent on the other hand relatively quickly stops the increase in push fre-
quency in the first part of the experiment; because non-pushing actions aremore frequent,
pushing an obstacle is against the norm, and uncommon actions increase the information
needed to select when to use them. So, the agent avoids directly costly actions and the
push frequency remains low. However, as it is gaining more experience, it learns that
pushing obstacles out of the way is informationally beneficial in the long run. We see
that the push frequency increases again, but still not close to the level of the RL agent.
Instead, it only removes obstacles just as often as needed to be able to move around in a
simple circle, arriving at the behavior of the LA-RI agent of Fig. 5.7: it removes just the
two obstacles in a single lane, which on average results in 2 pushes every 100 steps.
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Figure 5.9: Example MDP with two different recurrent patterns. Each step has a cost
of 1, except for when the agent enters the goal state, denoted g . This makes either path
optimal. The top requires switching between each of both possible actions at every step,
the bottom involves switching between both actions every second step.

5.3 Looking Ahead with Memory
Consider the MDP of Fig. 5.9. Again, there are two paths leading to the goal state. Both
paths are optimal, and at each step along each of the paths only one action is optimal;
only at w0 does an optimal agent have a choice. Also, each action is chosen equally
often along each path: three times. This means that the paths differ neither in value nor
informationally, and all methods used earlier in this chapter arrive at the same policy for
the agent to follow: choose uniformly in w0, and afterwards pick the one action that is
optimal.

However, if one looks more closely, there is a distinction between the paths: an agent
travelling along the top alternates which action it takes at every step, whereas along the
bottom it would alternate every two steps. An agent with abilities that go beyond simple
reactive behaviour should be able to use this structure to alleviate its cognitive burden.
In the previous chapter it was already shown that in a case like this, where the previous
action predicts the next one well, some form of memory could significantly reduce the
required sensory bandwidth. In this section I use the look-ahead information framework
to extend on this observation, with a more concrete memory model, in the sense that it is
modelled explicitly. In another sense this model is more general, as it is not restricted to
retaining information across just a single time step.

5.3.1 Model
Figure 5.10 shows the perception-action loop causal Bayesian network extended with a
memory. There are some similarities to the networks of Chapter 4, but the interactions
are more intricate this time. Besides selecting an action, the agent also selects a memory
state mt ∈M at each time step. In contrast to the options of the layered systems before,
the influence of such a state is not limited to a single time step: the current memory state
also depends on the previous, and it influences the next memory state, as well as the next
action.
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Figure 5.10: Causal Bayesian Network of perception-action loop with memory. At a
time step t the agent selects an action and sets a memory state Mt , based on world
information and information retained in the previously selected memory state.

Note that in this model all edges are part of the CBN; they are modelled directly. In this
model, the action selection policy becomes π(at |wt ,mt−1), the memory state-selection
policy is given by the probability p(mt |wt ,mt−1). To ease notation, one can combine the
action and memory selection: let Jt be a new variable with alphabet J , |J | = M +A ,
and f : J → M ×A be a bijective function that deterministically maps each value jt to
a unique pair (mt , at ). Finally, let fm : J →M and fa : J →A return the memory state
and action element of that mapping, respectively. One can now treat the combined action
and memory state selection as one policy π( jt |wt ,mt−1).

The measurement for the average sensory bandwidth in this model now becomes the
information that goes into selection of an action and a memory state, or Jt , beyond that
which may already be available in the previous memory state, or: I (Wt ; Jt |Mt−1). To find
the minimal, relevant information for a given level of performance, under a memory, we
arrive at the new constrained problem:

min
π( jt |wt ,mt−1)

I (Wt ; Jt |Mt−1) subj. to E [U (Wt , At )] ≤C (5.9)

Applying the by now familiar RI methods to this problem gives a new consistent solution:

π( jt |wt ,mt−1) = 1

Z
p( jt |mt−1)exp

[
βU (wt , fa( jt ))

]
(5.10)

and an accompanying iterative algorithm. However, solving the problem this way does
not tend to give an interesting solution. For example, for the scenario of Fig. 5.9, this
method consistently gives the solution p(mt |·) = 1

|J | , which gives I (Wt ; Mt ) = 0 and
I (Wt ; Jt |Mt ) = I (Wt ; At ). In other words, the memory is not used at all. This can be
explained by noting that the utility does not depend on the memory state, thus that
I (Wt ; Mt |Mt−1) is minimised unconstrained, and a trivial minimum lies at I (Wt ; Mt ) = 0.

To put it differently, this method only sees the direct, single step cost of using mem-
ory: the additional immediate demand on sensory bandwidth that it brings along. But a
memory is only of use in the future; the agent should look ahead. Here I will apply the
look-ahead information framework to this problem.
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5.3.2 A New Definition and Solution
Similar to before, one can define a look-ahead information function, but now this time
with memory. The look-ahead information of entering a state wt , while maintaining the
previous memory state mt−1, is defined as:

Iπ(wt ,mt−1) = I (wt ; Jt |mt−1)+γ ∑
wt+1,mt

p(wt+1,mt |wt ,mt−1)Iπ(wt+1,mt ) (5.11)

where:

I (wt ; Jt |mt ) = DK L
(
p( jt |wt ,mt−1) ∥ p( jt |mt−1)

)· (5.12)
p(wt+1,mt |wt ,mt−1) =∑

jt

π( jt |wt ,mt−1)1 jt (mt )p(wt+1|wt , fa( jt )) (5.13)

1 jt (mt ) =
{

1 if fm( jt ) = mt

0 otherwise
(5.14)

Minimising this quantity over all policies, constrained to a minimum expected utility,
gives us the following new self-consistent solution:

π( jt |wt ,mt−1) = 1

Z
p( jt |mt−1)·

exp

[
βU (wt , fa( jt ))− ∑

wt+1

p(wt+1|wt , fa( jt ))Iπ(wt+1, fm( jt ))

]
(5.15)

With this solution the long term effects of choosing a particular memory state are taken
into account: a memory state that reduces the expected future informational burden gets
a higher probability of being selected.

5.3.3 Experiment
Scenario 1: |M | = 2

Let us now apply the newmethod of look-ahead information with memory to the example
of Fig. 5.9. Initially, we will choose |M | = 2, i.e. the agent can choose between two
different memory states. Resulting state distributions of doing so are shown in Fig. 5.11.
Firstly, for comparison, Fig. 5.11a shows the state distribution achieved with RI, C-RI,
LA-RI and the earlier single step RI with memory result, in which each path is chosen
with the same probability. Compare this to Fig. 5.11b, the state distribution resulting
from looking ahead with memory. This time, the agent chooses the upper path just over
3 out of every 4 times.

The memory process of the agent is pictured in Fig. 5.11c. Clearly, this time the mem-
ory is extensively used: at almost every state the agent has a distinct memory state with
probability 1, and this memory state differs among the world states. Only in the first state
there is a mixture, which coincides with the probabilities of taking the upper route or trav-
elling along the bottom; I will discuss this outcome later. In this outcome, each memory
state is coupled to an action: blue means ‘take action 1’, and orange means ‘take action
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(a) p(wt ), no memory (b) p(wt ), with memory

(c) p(mt−1|wt ), |M | = 2

(d) p(mt−1|wt ), |M | = 4

Figure 5.11: Results of experiments in the MDP of Fig. 5.9. The top figures show the
state distribution given by a policy obtained (a) without memory and (b) with memory.
Whereas without memory each path is chosen 50% of the time, with memory the upper
path is selected 78% of the time. Figure (c) shows the probability of either of two possible
memory states being selectedwhen the agent enters a state, Fig. (d) shows the same result
for an agent with 4 possible memory states (larger radii of coloured segments denote
higher probabilities).
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2’. This means that the action for the current step is already defined in the previous step,
which means the agent does not have to take in any information any more to choose an
action.

This effect can be seenwhen calculating the required sensory bandwidth: I (Wt ; Jt |Mt−1) =
0.7, compared to I (Wt ; At ) = 0.875 when nomemory is used. The reasonwhy it is not zero,
is that the agent still needs some information to select a memory state: most of the time
blue is followed by orange, and vice versa, but the agent must still check whether it is not
somewhere where the same state is selected, i.e. in w7, w9, and w11, and sometimes in g .

So far these results are not much different from those obtained in the previous section:
there we also saw more parsimonious sensing thanks to being able, or making it easier,
to predict the next action. In the next section I will show that the new look-ahead model,
however, is indeed more general.

Scenario 2: |M | = 4

One can perform the previous experiment again, but now with a memory with a higher
capacity; this time, the agent can select from 4 different memory states. Firstly, the path
choice in this scenario does not differ much from the previous: the agent has a similar
preference for the upper path. The memory process on the other hand has become more
complex, utilising the greater capacity, shown in Fig. 5.11d. Along the top path we find
the same alternating choices as before, but at the bottomwe see a new pattern: a repeating
ordered sequence of all four memory states.

This shows that the agent manage to discover the regularity of the second path as well,
which spans over more than just one time step. The memory states used here can here be
interpreted as predicting the next two actions; for instance, purple and green mean ‘do 1
now, then 1 again’, and ‘do 1, but then 2’, respectively. Alternatively, they can be thought
of as predicting both the next action and the next memory state. This predictive power
causes a significant further drop in required sensory bandwidth: down to 0.23 bits, or just
over 26% of the case without memory, and close to 1

3rd of the case with half the available
memory states. The fact that it still hasn’t dropped to zero is explained by noting that
the memory states, do not unambiguously predict the next action and memory state: the
blue state has two meanings: ‘take action 1 and pick yellow’, and ‘take action 1 and pick
purple’. Some additional information is required to decide which interpretation is used.

5.4 Discussion
In this chapter I have introduced look-ahead information: the cumulative amount of future
relevant information. I showed how an agent that takes into account this amount, rather
than single-step relevant information, can decrease its overall bandwidth requirements,
as it is aware of future informational effects of current actions. This gave rise to behaviour
that caused an agent to avoid world states with uncertain outcome, to actively simplify
the environment, and develop an informative memory.

These results are all grounded in the same fundamental principle of information band-
width minimisation. They display self-organisation of behaviour driven by an intrin-
sic principle, rather than through externally applied pressure. Minimising informational
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bandwidth forces an agent to utilise the organisation of the world, and by doing so use,
or create, structure in the environment that is not picked up by traditional computational
decision making and learning algorithms.

Memory for instance is commonly introduced only when it is required to solve a prob-
lem, as in a partially observable MDP [60]: the agent needs to hold a memory of the past,
making up its believe state, to have access to enough relevant information to select the
best action. In this chapter however the world is fully observable, but the parsimony
pressure still gives rise to memory that predicts the world state well. Thus, this approach
shows how memory can be bootstrapped without presupposing a requirement, possibly
opening up solutions to new problems where memory is required. Similarly, in the ob-
stacle removal scenario, the observed behaviour is not necessary performance wise, but
may open up tasks where this already acquired behaviour is beneficial. This effect, where
information minimisation gives rise to beneficial properties, will come up again, and be
discussed in more detail, in Chaps. 7 and 8.

The effects observed in this chapter are not limited to the scenarios that were used;
whether they appear only depends on whether there are local decisions that the agent can
make that affect the state distribution enough to make the local policy on average more
similar to the global average action choice. The focus is on ‘enough’: if for instance the
world of Fig. 5.3 would have been reduced, the chance of jumping into the water from
a lily pad would have been lower, reducing the effect of that happening on the average
information intake. If it is reduced below the effects of deviating from the average policy
when trying to ensure a land route is taken, and the preference for specific routes dis-
appears as with using single step RI. Similarly for the obstacle removal scenario, if the
obstacles would come back more frequently, the future effect of the immediately informa-
tionally costly action of removal may become too low to be worth it. This same result is
expected when reducing the discount factor g amma: if it is set low, and thus the agent
values immediate information reduction more, the effect of looking ahead is reduced.

Some authors have arrived at results related to those presented here. Firstly, look-
ahead information is highly related to information to-go [105]. This measurement also
gives a cumulative future information, given as a Bellman-type recursive equation. How-
ever, the information to-go includes the environmental response, determined by the tran-
sition model, as well as the agent’s decision complexity. The look-ahead information is
derived by taking only the latter term, plus the direct informational cost of the current ac-
tion at . This addition is important, since as the examples of this thesis show that reduction
of future informational cost often requires a higher immediate cost.

A similar result as in the memory experiments is arrived at in an informational treat-
ment of interactive learning [94], in the form of an internal model that predicts the future
state of the world. In that work however, this is posed as an a-priori goal, by explicitly
maximising the information between the model built by the agent and the world state. In
this chapter, the predictive memory arises on the other hand from a drive for information
minimisation. Furthermore, the look-ahead information framework would reward mem-
ory that is relevant to any future time step (if it is maintained in memory for that long),
whereas the referenced methods are limited to predicting a single time step. In any case
comparison is difficult as the authors do not provide empirical experimental results.

The parenthesised note in the previous paragraph hints at some questions that are
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still open. Mainly, I have focused solely on the cost of sensory bandwidth, implying that
memory, and its input and output channels, are free. In the next chapter I will discuss
a trade-off between different informational costs, an interesting endeavour may be to
perform a similar analysis by introducing costs on memory usage. A difficult question
here however is how to select a good cost function, specifically on the cost of maintaining
static memory over time, versus a dynamically changing memory.
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Chapter 6

Relevant Goal Information

6.1 Introduction
Up until nowwe have only treated a simplistic model of behaviour, where the current state
of the environment supplies all information needed to drive an agent’s actions. Although
this simple model can fit a wide range of behaviour, it does not fully capture more com-
plex behaviour repertoires, where the current state, or even the full state history, of the
environment is not enough to decide upon an action. Finding myself entering the kitchen
does not give enough information to know whether I should make tea or a sandwich. The
decision on which behaviour is applicable here depends on the state of an internal drive,
e.g. on the internal states of being hungry or thirsty.

There are many drive states that one could identify. What they have in common is
that the behaviour that is performed under their influence can be said to be performed in
order to achieve something specific. As Kupfermann et al. [55] put it:

Drive states […] serve three functions: they direct behaviour toward or away
from a specific goal; they organise individual behaviours into a coherent, goal-
oriented sequence; and they increase general alertness, energising the indi-
vidual to act.

They go on to describe a range of drive states that can be modelled with servo-control
processes, such as hunger, temperature, and some forms of addiction. In these processes,
one could ask whether the ‘specific goal’ that is mentioned is a real concept, identifiable
in the agent, or rather a high level human modelling tool. Neural correlates of goal rep-
resentations have been identified in human brains, both in the context of generating be-
haviour [69], and of observing goal-directed actions [38]. Similar results have been found
for monkeys [82]. In any case, I would argue that any organism that is able to switch
between alternative coherent behaviour patterns, beyond reactive responses to external
stimuli, must maintain some internal representation that can be related to a goal to regu-
late these patterns. This argument goes at least as far down as to the complexity scale of
the nematode worm C. elegans [58].

In this chapter I will extend the framework introduced so far to incorporate goal-
directed behaviour. In line with the previous chapters, I am interested in the necessary
properties of the agent’s internal cognitive facilities that generate goal-directed behaviour.
Again, the underlying proposal is that these facilities are not unbounded; the extension of
the model introduce several new possible constraints in different sections of the cognitive
processes. In this chapter, I propose and formulate several of such constraints, derive what
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Figure 6.1: Overview of cognitive model of goal-directed behaviour underpinning this
work. The agent has full, persistent knowledge about the current goal, represented by G.
As denoted with the smaller disks, different aspects of this knowledge is used at different
times while acting to achieve the goal. The currently relevant part is loaded in a dy-
namic working memory, G’, which has a limited capacity. There, this goal knowledge is
combined with sensory information about the world state W, and the agent chooses its
actions A based on this combination.

the tightest constraints are that still allow an agent to perform well, study how they influ-
ence goal-directed behaviour, and, conversely, investigate to what extent they drive the
structure of goals and the environment to be reflected in the agent’s cognitive processes.

An informal sketch of the cognitive model of goal-directed behaviour that I will use is
given in Fig. 6.1. It shows that State information is now combined with information about
the internal motivations of the agent, or goal information, to generate actions. From this
model, we can develop an extended formal description of the perception-action loop, with
which we can again pose cognitive constraints as informational limitations.

In the remainder of this chapterwewill study the properties of goal-directed behaviour
under several such constraints. Firstly, we start with some observations resulting from
such limitations: a limited working memory leads to ritualised behaviour patterns, and,
to some extent, sensory and goal information can be substituted for each other if they
have different costs. Next, we take a look at the dynamics of information that is loaded
and unloaded in the constrained working memory described above. We find that these
dynamics reflect salient and natural transition points in the environment. Finally, we
show how restricting the bandwidth on a persistent memory channel, combined with a
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notion of effectiveness of use of that channel, allows one to identify the ‘dual’ of the above
transitions, namely helping the agent to decompose the world into a natural abstraction.

When we talk about goal-directed behaviour, we imply the ability to make a distinc-
tion between different goals: the agent selects one goal and then generates behaviour
by selecting actions that should achieve this goal. This behaviour is of course distinct
for differing goals. The following section develops a formal model in which this idea is
embedded.

6.1.1 Base Model: a Family of MDPs
The formal model of goal-directed behaviour that I will employ is that of a family of MDPs,
which I will introduce here. This model is similar to how Multi-Task Learning problems
are defined by Taylor et al[101].

In this family, each MDP consist again of state and action sets, state transition prob-
abilities, and a reward function, as described in Sec. 2.3.1. The first three of these are
equal and fixed throughout all MDPs; the distinction between them is expressed in the
difference in which actions are preferred in certain states, which is given by the reward
function. If we denote a specific MDP with an index g , out of the set of indexes G , the
reward function belonging to this MDP is then given as Ra

g w w ′ . Each MDP is then defined
by the tuple <W ,A ,P a

w w ′ ,Ra
g w w ′ >.

When presentedwith a set ofMDPs, the problem is now to find a policy thatmaximises
the expected reward over the full set. To be able to do so, an agent can no longer keep a
single policy for each state. Instead, it will have to select actions based on both the current
state and the currently selected MDP. In other words, the agent’s decision making process
is now described by a probability distribution π(a|w, g ) = Pr (At = a|Wt = w,G = g ).

For each MDP and an according policy, a value function V π
g (w) and a utility function

Uπ
g (w, a) as before (c.q. Sec. 2.3.1). The generally expected value than is equal to the sum∑
g∈G p(g )V π

g (w), where p(g ) is the probability of MDP being currently selected. In the
remainder the distribution over MDPs within a set is set to be uniform.

6.1.2 Specific Example, and Generality of Concepts
As an example of a goal-directed scenario that can be described as a family of MDPs, we
use a grid-world navigation problem, which is a popular test scenario in RL literature [97].
The specific scenario is the same as one used by ŞimŞek and Barto [88], shown in Fig. 6.2,
where an agent has to navigate across a number of rooms to reach some goal location. The
set of world states W consists of the possible locations of the agent, i.e. corresponding to
the empty cells. The action set A contains four possibilities: move north, east, south, or
west. A specific goal consists of navigating to a certain cell, and the goal set G contains
all possible cells as goal state. For each goal, a reward function Ra

g w w ′ is constructed as
follows: each transition gives a reward of -1, except when entering the goal cell, where
the reward is 0.

This means that in this scenario each goal corresponds to a target world state that
should be reached. I focus on such scenarios because goal state-directed navigation is
a fundamental and often studied problem, the results of which are easy to interpret and
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Figure 6.2: Example goal-directed scenario: Grid-world navigation. The world state
consists of the location of the agent (circles), and here a goal consists of reaching a certain
location (crosses). This figure shows three possible goal-directed action sequences, with
possible start states and (optimal) solution paths.

relate to the work of the previous sections. However, note that in general, scenarios do
not necessarily have a direct correspondence between goal and a desired world state. As
quoted before from Kupfermann et al. [55], a drive state could actually direct behaviour
away from some state. Or, in some scenarios a relative change of state may be what
determines desirable actions, such as obtaining more food in a foraging task. Therefore, it
is important to keep in mind that a goal g is merely an index on a set of (possibly random)
reward functions, and that the fundamental principles of our approach apply unchanged
to this more general concept of goal-directedness.

6.1.3 Information
The formulation of a family of MDPs can be captured graphically as a graph of its elements
and how these elements influence each other, the persistent overall goal is represented by
a random variable G , which is the same throughout time. The variables St and At , on the
other hand, correspond to the fast-changing states of the sensors and the actuators of the
agent during its run. Connecting these variables based on their causal interactions results
in the network of Fig. 2.5a, which models the perception-action loop.

As the edges of the network show, information about the world state is no longer
sufficient to select an action, in contrast to the models of the previous chapters: in-
formation about both the current state and the goal is required. One can again as be-
fore apply information theoretical measurements to this new network. For the investi-
gation for this thesis, it is for instance of interest to know the amount of information
from the combination of world state and goal as information sources that is actually
required on average to select an action. This can be determined with the mutual in-
formation between the combination of state and goal variables, and the output action:
I (Wt ,G ; At ) = ∑

wt ,g ,at p(wt , g , at ) log π(at |wt ,g )
p(at ) . Finally, we can determine the informa-
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Figure 6.3: (a) Perception-action loop (arrows in (a) are to be understood informally as
scheme of influence between the different variables in the system, while the arrows in (b)
are to be understood in the formal framework of BayesianNetworks.) (b) Causal Bayesian
network of the perception-action loop unrolled in time. As before, it is assumed that the
agent in theory can fully observe the world, such that the world and sensor state at time
t can be contracted into the variable Wt . The action selected by the agent, according to
its policy π, by At . The current goal is determined by G , which persists throughout time.

tion that is directly given specifically by one of these inputs. For instance, the conditional
mutual information I (G ; At |Wt ) gives how much information about the goal is reflected
in the chosen action, given knowledge about the current state. The conditioning on the
current state is important, since there is a strong interplay between state and goal infor-
mation: knowing the goal is often not very informative if the current state is not known.
This means concretely that we can generally observe the relation I (G ; At ) < I (G ; At |Wt ).

6.2 Informational Bounds in Goal-Directed Behaviour
The framework of the previous section allows us to make the concepts and goals of this
chaptermore concrete. In linewith the previous chapters, here I am interested in the effect
and properties of cognitive constraints on the behaviour of agents, and the informational
framework offers a natural formulation of such constraints as limited bandwidths of the
channels between information sources and other components of the behaviour generating
system.

With the current goal identified as a required information source, one can find how
much goal information needs to be accessed to reach a certain level of performance. Ap-
plying the method of relevant information, this again is formulated as a minimisation
problem of the following form:

min
π(at |wt ,g )

I (G ; At |Wt ) subj. to: E [Uπ
G (Wt , At )] ≥CU , (6.1)

This problem gives a new self-consistent solution, that can be used in the fixed point it-
eration, Blahut-type algorithm to find the minimum1. In parallel to the relevant state
information studied before, the solution of this problem is dubbed the relevant goal infor-
mation (RGI), as it is the amount of information about the current goal that on average is

1see 6.6.2 for derivations of the solution to this problem, as well as to other problems introduced below.
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(a) RGI (b) VI

Figure 6.4: State distribution resulting from policies obtained by (a) Relevant Goal Infor-
mation minimisation, and (b) traditional Value Iteration. The shading of a cell is propor-
tional to the log-likelihood log(p(wt )) (chosen to easier discern the difference between
low probabilities) of the agent occupying that cell at a randompoint in time. See Sec. A.2.1
for details on how the state distribution is determined.

relevant to achieving a certain level of performance; any other available information be-
yond this amount is irrelevant and does not need to be accessed when selecting an action.
In other words, a working memory needs to maintain on average only this amount of in-
formation, and as such it gives a necessary lower bound on the goal-information capacity
of such a working memory.

In general, in a scenario where a small set of actions is available to achieve a large set
of varying goals, such a memory can be significantly smaller than the persistent memory
that maintains all goal information. This can be seen by realising that the relevant goal
information is bounded by themaximum action entropy: I (G ; At |Wt ) ≤ log(|At |), which in
general is significantly less than the goal entropy H(G), except for simple caseswhere only
a few goals have a high probability of becoming active. In our navigation scenario we can
for example determine the maximum average goal-information capacity that the agent’s
working memory ever needs, by performing the relevant goal information optimisation
in the special case of CU = maxπE [Uπ

G (Wt , At )], i.e. when we quantify the required goal
information for achieving the best possible reward.

Doing so, we find a policy requiring on average 1.06 bits of goal information, which is
indeed significantly less than the total of H(G) = 9.4 bits that are in principle required to
identify the complete goal. So, only about 1 bit of information about the goal needs to be
available on average in the agent’s working memory to select an action; the agent does
not have to process the full 9.4 bits at once.

6.2.1 Observation 1: Ritualised Behaviour
Now that we have established that the agent can get away with a very small working
memory, we study what effects such a small working memory has on the organisation
of the agent’s behaviour. One way is to determine the marginal state distribution p(wt )
resulting from this policy. This distribution gives the possibility of finding the agent at

78



any given cell at a random point of time, and as such provides an indication of the paths
an agent tends to take towards its goal.

When we determine this distribution in our example pictured in Fig. 6.4a2, given the
minimal optimal policy found in the previous section, a lattice pattern of ‘preferred states’
is visible: there is a relatively high probability of finding the agent in a direct line with
one or more of the doorways. For comparison, Fig. 6.4b shows the state distribution in-
duced by the policy that uniformly chooses between optimal actions, without also taking
informational optimality into account

This preferred paths can be explained as a direct result of the posed informational
constraints, and thus expected generally in other scenarios, by noting that the policy
minimises the difference between the a-priori action entropy and the entropy given the
goal: I (G ; At |Wt ) = H(At |Wt )− H(At |Wt ,G). This minimisation is achieved when the
local policy at different states for different goals is similar to the policy averaged over
all goals, i.e. when p(at |wt , g ) ≈ p(at |wt ). In other words, optimisation aims to render
the behaviour for different goals as similar as possible, which leads to a form of ‘ritualised
behaviour’ thatmoves the agent along the preferred trajectories that are visible in Fig. 6.4a.

6.2.2 Observation 2: Independent Types of information can be In-
terchanged

As Fig. 6.3 shows, the agent’s behaviour is determined by both the goal, and state infor-
mation input. We can construct a minimisation problem similar to that of (6.1) to find
the relevant state information, or the lower bound on the working memory capacity for
state information. Moreover, we can find the combined trade-off between state and goal
information and performance, formulated as the following problem:

min
π

αI (Wt ; At |G)+ (1−α)I (G ; At |Wt ) subj. to: E [Uπ
G (Wt , At )] ≥CU . (6.2)

Here, α ∈ [0−1] allows us to weigh the two types of information. For instance, in the case
that the capacity is limited due to some cost on information processing, e.g. due to energy
constraints, this parameter lets us model the relative size of such costs.

From our earlier discussion of the relevant information as the minimum amount that
is required to achieve a certain level of performance, one can expect that the relative cost
does not influence the result: this amount is necessary, regardless of how costly it is.
However, it turns out that this only holds for optimal behaviour; for sub-optimal policies
the more expensive type of information may be traded off against the other type.

To illustrate this, Fig 6.5 shows for instance the results of solving (6.2) for the full pos-
sible ranges of α and CU , in a grid-world navigation scenario using the simpler 6-room
world of Fig. 6.9 in order to keep finding the large number of trade-offs tractable. As de-
noted with the solid lines, different trade-offs of the two types of information are possible
in order to achieve a given level of performance, depending on their relative cost. In other
words, knowing the state of the current world in higher precision allows you to consider
your goal in less detail. Alternatively, if obtaining or processing sensory information is

2See A.2.1 for details on how this distribution is determined
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Figure 6.5: Trade-offs between state information, goal information, and utility, obtained
for a 6-room navigation scenario. The thin isolines show trade-offs between sensory and
goal information that achieve the same level of performance. The thick outer lines mark
the boundaries of the sensory-motor optimised area, in which all optimal state-/goal-
information/performance trade-offs lie.

more costly or has stronger constraints, the agent must employ a larger goal information
bandwidth.

Finally, note that the area within the dashed curves encompasses the full range of
sensory-motor optimised behaviour : any policy outside of this set is sub-optimal for any
combination if bandwidth constraints and desired performance, as there is always another
policy that achieves better performance with the same amount of information, and/or de-
creases the information bandwidth requirements on one or both of the sources of infor-
mation without deteriorating performance.

6.3 Working-Memory Dynamics
In the previous part we have looked at how much the capacity of a working memory in
a goal-directed agent can be constrained, by deriving the lower bound on the amount
of information that must be retained to behave successfully. This amount is an average
over all world states. This amount can be broken down for each state, which shows that
the actual relevant information changes over time. In Fig. 6.6 this breakdown is shown,
as it visualises the quantity I (G ; At |wt ) for each state wt . Some patterns are visible in
this figure, most notably that the amount of information on the outside of the world is
significantly lower than around the centre. This can be explained by the fact that most of
the time, when the agent is in these outer states, it is on the way to a goal state in this
outer region. This means that most of the time the agent will not choose a sub-optimal
action that would backtrack and bring it back inwards again. Knowing this, the a-priori
action entropy is lowered and the relevant goal information is limited, compared to the
inner states where there is no (or at least much less) such a-priori knowledge of the action

80



Figure 6.6: Relevant goal information per state. The darkness of the shading of each
cell is proportional to the value of I (G ; At |wt ), where wt denotes the state of the agent
occupying that cell.

distribution.
Beyond this distinction between inner and outer states, one canmake themore general

statement that in some states more information is required than in others. Furthermore,
even when the amount is the same, the actual content can still be different. This means
that the agent must continuously ‘download’ different parts from the persistent complete
goal memory into its working memory, and can ‘unload’ parts that are no longer needed.
As one would expect from the name, the working memory is dynamic, and in this part
we will study its dynamics.

Againwewill adopt the viewpoint of constrained cognition, and find the lower bounds
on the information in and out flow of the working memory. We can expect that these are
lower than the total amount of relevant information: it is likely that part of the goal in-
formation that was relevant at one time step is still relevant the next, and thus can be
retained in the working memory. This means that the minimum amount of new informa-
tion that must be transferred from the static memory at a certain state, is that which is
relevant to the current action selection, beyond that which was relevant to past decisions
and therefore possibly already is available in the working memory. These past decisions
are reflected by the state-action pairs encountered thus far, which we will denote as the
random variable Et−1 = (W0, A0,W1, A1, . . . ,Wt−1, At−1). The amount of new goal informa-
tion transfer needed at a state wt , which wewill denote with I new

G (wt ), is then determined
by:

I new
G (wt ) = I (G ; At |Et−1, wt ) = ∑

g ,at ,et−1

p(g , at |et−1, wt ) log
p(at |g ,et−1, wt )

p(at |et−1, wt )
(6.3)

In a similar way, one can define the dual quantity of I old
G (wt ) = I (G ;Et−1|At , wt ). This

quantity gives the amount of old information that was relevant and available (at some
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(a) p(wt )I new
G (wt ) (b) p(wt )I old

G (wt )

Figure 6.7: Goal information transitions in a 6-room grid world navigation task. Fig-
ure (a) shows the amount of new goal information needed to select an action for each
state, I new

G (wt ) = I (G ; At |Et−1, wt ). Figure (b) shows the amount of old goal information
no longer needed to select an action for each state, I old

G (wt ) = I (G ;Et−1|At , wt ). Values
are weighed with p(wt ), to give the contribution at each state to the total average in-
formation transfer. Darker shades denote higher values. States that lie on the crossing
points between two doorways, which show local maxima in the amount of required new
information required, are marked with × in (a).

point) in the working memory in the past, which is no longer relevant and can thus be
offloaded to make space in a constrained working memory

6.3.1 Observation 3: Two Types of Natural Sub-Goals
In Fig. 6.7 we show the results of determining the two goal information-transfer quantities
introduced above. They are shown weighed by the state distribution p(wt ), to give the
contribution at each state to the total average information transfer over all states. In
both figures a salient pattern appears: around the doorways, both the amount of new
information that needs to be loaded into the working memory (I new

G (wt ), Fig. 6.7a), and
the amount that is no longer relevant and thus can be unloaded (I old

G (wt ), Fig. 6.7b) is
high.

These results can be understood by considering what goal information an agent needs
to be able to select an action. Imagine an agent navigating from one room to a goal in the
next room. Before transitioning into this room, the only goal knowledge that the agent
needs to use is that the goal is not in the current room, and which doorway to go through
to get into the next room on its way to the goal. Once in this doorway, this information
can be discarded. Next, when entering the following room, the agent now needs to load
and consider the new information of where in the room the goal actually is.

More concretely, we can expect to find this kind of transitions at states where the
local policy is independent of past experiences, which is especially the case at states that
connect separate strongly connected areas. As we have discussed previously [109], these
states tend to coincide with the top-down definition of sub-goals as commonly used in
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Figure 6.8: Causal Bayesian Network with goal-information bottlenecks G̃1 and G̃2. The
grey wavy arrow from G̃2 denotes that the information in this bottleneck does not di-
rectly influence a specific other variable, as is represented by the normal edges, but rather
modulates the state information pathway to enable the selection of the relevant state in-
formation.

the field of reinforcement learning [88]. The results of this section indicate that such
concepts can expressed immediately in terms of cognitive (informational) requirements
of goal-directed behaviour, and arise naturally when one considers how the task needs to
be organised in the case of tight cognitive resources.

However, there is an additional benefit of grounding these kind of concepts in inter-
nal processing requirements, rather than external properties of the world. Consider the
comparison of I new

G (wt ) with the novel results for I old
G (wt ) in more detail. Local maxima

of I new
G (wt ) can be found not only at obvious locations, such as doorways, but also at

states at the crossing between different doorways, marked with × in Fig. 6.7a. Interest-
ingly, there is no corresponding peak at these states in the amount of information that
can be discarded. So, at these states the transition consists mostly of requiring additional
goal information to that already available in the working memory. These then constitute
a second distinct type of salient transition points, arising from our framework, in addi-
tion to those traditionally regarded as sub-goals, and these two types can be intrinsically
distinguished via their goal information signature.

6.4 Explicit Constraints onGoal-InformationPathways
Up to this point, we considered informational limits of cognition implicitly, by determin-
ing the lower bounds on the amount of information that a working memory must contain,
and on the amount that must be loaded and could be unloaded from this memory. We will
now study the scenario where explicit constraints are placed on the bandwidths of goal-
informational pathways.

The first pathway that we consider is the one which transfers the goal information
that directly influences the selection of actions. This is the aforementioned relevant goal
information, measured with I (G ; At |Wt ). A restriction on the capacity of this pathway is
modelled by placing a random variable G̃1 between G and At , as shown in Fig. 6.8. The
bandwidth constraint is then established by a strongly reduced cardinality of the alphabet
of G̃1, i.e. |G̃1|¿ |G |.

The Information Bottleneck (IB) method [104] covers exactly this problem: the variable
G̃1 constitutes a ‘bottleneck’ through which the relevant information must be squeezed.
In this paradigm, the problem of transferring as much relevant information as possible
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through this bottleneck, while limiting the amount of irrelevant information that is cap-
tured in it, is posed as another constrained information minimisation:

min
p(g̃1|g )

I (G ;G̃1) subj. to I (G̃1; At |Wt ) ≥C I1 (6.4)

This problem has a form similar to the relevant information problem (6.1). However, here
the relevance of the information is determined purely informationally, by the lower bound
imposed on the retained information. The solution of (6.4) results in a distribution p(g̃1|g )
that induces a stochastic mapping, or soft clustering of the set of goals into a smaller
set, and as such can be regarded as a coarser abstraction that captures the most relevant
structure of a goal description.

The second pathway for goal information that we examine is more subtle. As we have
mentioned previously, goal and state information display an intricate interplay; one can
not be considered separate from the other, as one modulates the other type of information
to ‘unlock’ the relevant aspects. As noted earlier, the effect of goal information on the
relevance of state information is quantified by the increase of I (Wt ; At |G) with respect to
I (Wt ; At ). Our second pathway can be seen as one which transfers the goal information
that is needed to achieve the necessary modulation of the state information channel.

The bottleneck variable G̃2 shown in Fig. 6.8 models an explicit bandwidth constraint
on this second pathway. Whereas G̃1 must capture information relevant to At , the success
of which is measured with I (G̃1; At |Wt ), G̃2 must capture information that increases the
relevance of Wt , measured with I (Wt ; At |G̃2). From this comparison we construct the
following IB-type problem to find the optimal bottleneck distribution for this pathway:

min
p(g̃2|g )

I (G ;G̃2) subj. to I (Wt ; At |G̃2) ≥C I2 (6.5)

6.4.1 Observation 4: Natural Abstraction
Firstly we will study the primary pathway, constrained with bottleneck G̃1, and solve (6.4)
to find the goal mapping induced by this bottleneck on the pathway. Figure 6.9 shows
such mappings found for different capacities of the bottleneck variable in a 6-room grid
navigation scenario with the lower bound C I1 fixed as high as possible (see 6.6.2 for more
details), such that the clustering becomes most informative.

One result to note is that the stringent lower bound results in a hard clustering: each
goal state is deterministically mapped to a single element in G̃1. Secondly, the mapping
adheres to the local connectivity of goals: goal states in the same cluster are connected
directly in the transition graph of the MDP.

Moreover, the clustering also attempts to adhere to the physical boundaries of the en-
vironment: goal states within a single room tend to be clustered together, with transitions
between clusters tending to be at the doorways. Especially when the number of clusters
coincides with the number of rooms, i.e. for |G̃1| = 6, the decomposition of the world
induced by the mapping seems to match the environment especially well. We can quanti-
tatively identify a number of clusters as the most adequate, by introducing a measurement
for the degree of effective use of the restricted bottleneck capacity.
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(a) |G̃1| = 3 (b) |G̃1| = 4

(c) |G̃1| = 5 (d) |G̃1| = 6

Figure 6.9: Goal clusters induced by the bottleneck G̃1 on the primary goal-information
pathway in a 6-room grid world navigation task. Figures (a) to (d) show the mappings
for increasing cardinality of the bottleneck variable.
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Figure 6.10: Effectiveness of clustering, measured by the ratio of the amount of goal
information captured in the clustering, I (G ;G̃1), to the total capacity of the bottleneck,
|G̃1|, plotted for different cardinalities of the bottleneck variable. Values closer to 1 indi-
cate better use of the available capacity. The maximum for each scenario is marked with
a dotted line.

The maximum capacity of the bottleneck is given by log |G̃1|; e.g. if the cardinality of
the variable is 4, these four clusters could maximally capture 2 bits of goal information.
The bandwidth use is given by the actual amount of goal information that is reflected in the
clustering, I (G ;G̃1). The ratio of these quantities, 0 ≤ I (G ;G̃1)

log |G̃1| ≤ 1, then gives a quantitative

indication of the effective use of the available capacity. The residual quantity 1− I (G ;G̃1)
log |G̃1| is

known as the Shannon redundancy, as it gives the ratio of the bandwidth that is not used
and thus is redundant; see [11] for a discussion of its importance in neuro-science.

In Fig. 6.10 we show the result of determining the above ratio ratio for several room-
navigation scenarios, for a range of bottleneck sizes. It is clear that some sizes result in
more effective use of the constrained pathway than others, and that a less stringent con-
straint does not necessarily result in less redundancy. As a matter of fact, we find that for
the 4, 6, and 9 room scenarios the maximum effectiveness is achieved when the number
of clusters exactly matches the number of rooms. For instance, in the case of the 6 room
scenario, the clustering that achieves maximum effectiveness is indeed that of Fig. 6.9d.

We suggest that these maximally effective factorizations, induced by an explicitly con-
strained information pathway, supply natural abstractions of the environment that capture
the most relevant structure that is available most effectively.

The graphs also show other interesting factorizations as secondary and tertiary peaks.
Here, the bottleneck, though not able to assign a single cluster to each room, still ad-
heres mostly to room boundaries, such as for |G̃ | = 3 in the 6-room world (cf. Fig 6.9a),
and |G̃ | = 3 and |G̃ | = 6 in the 9-room world. Interestingly, for the asymmetric 6-room
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(a) |G̃ | = 4 (b) |G̃ | = 5

(c) |G̃ | = 6 (d) |G̃ | = 7

Figure 6.11: Goal clusters induced by the bottleneck G̃2 on the secondary, state-
information modulating goal-information pathway in a 9-room grid world navigation
task. Figures (a) to (d) show the mappings for increasing cardinality of the bottleneck
variable.

world, the peak does not lie at a cluster number of 6, but it turns out that a mapping with
one extra cluster leads to more effectiveness. This clustering splits (not shown) the large
north-eastern room into two parts, such that the sizes of the individual clusters are more
uniform.

6.4.2 Observation 5: Global Reference Frame
Finally, we perform an analysis analogous to observation 4 of the previous section, on
the secondary goal-information pathway, constrained by the bottleneck G̃2. Again, we
achieve a mapping p(g̃2|g ) that effects a factorisation of goals. The result of this analysis
is shown in Fig. 6.11. Similar to the clusterings of the previous section, the world is divided
into several regions, however note that in this case the regions are not always constrained
by walls: clusters tend to ‘spill’ over into neighbouring rooms. Instead of reconstructing
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the local connectivity of cells, these regions seem to adhere to a more general notion of
‘nearness’ of cells, which transcends the walls of the world as if they were not present.
Furthermore, the clusters are roughly evenly distributed around the centre of the envi-
ronment, with small clusters marking the centre of the environment when the cardinality
is high enough. Due to these properties, we interpret this abstraction as capturing the
global relative placing of the goal cells regardless of local structure created by walls, a
pattern that is reproduced robustly in other scenarios shown in this paper.

We can understand this organisation by consideringwhat aspect of a state is important
in selecting actions in goal-directed behaviour. We stress that state knowledge is only
informative when considered with respect to the current goal: only by knowing how it
relates to the goal can an agent decide which action to take. For example, when taking
the stairs, one needs to consider where the current floor is relative to the target floor to
decide whether to take the flight of stairs up or down.

The optimal clustering in the context of our secondary bottleneck, is then one that
preserves the possibility to determine such relations as much as possible. In other words,
the clustering must preserve a global frame of reference in which state information can be
considered. From Fig. 6.11 we can see that such a clustering results in a decomposition of
the environment into its most salient global directions (or bearings), while disregarding
disruptions of the structure by local obstacles.

It is important to note that the global relations between states and goals is strongly
determined by the set of available actions. Consider for instance the subset of ’north-
eastern goals’, i.e. those shaded darkest in Fig. 6.11a. Knowing that the goal is in this
subset allows the agent to use state knowledge to make the informative distinction of
whether the goal is likely to the north or to the west. But this distinction is only relevant
because the agent has access to distinct actions that define these directions. Differently
defined actions would induce other relations with goals, and likely a different abstraction
would appear as the goal-based frame of reference. In the extreme, a much less structured
set of actions, e.g. one where the action has different results in different situations [75],
most likely makes it difficult to construct a useful abstraction under constraints on the
informational pathways.

6.5 Discussion
In this chapter I have studied goal-directed behaviour in the light of informational con-
straints on the generation of behaviour. Using the Relevant-Information framework, I
have studied lower bounds on how strongly a goal-information working memory can be
constrained to still allow for successful goal-directed behaviour. Furthermore, I have ap-
plied the variants of the Information Bottleneck method to study explicit constraints on
goal-information pathways.

The various results of this inquiry complement the main story line that is arising: in-
formational limitations induce an organisation on the internal decision making processes
and the thereby produced behaviour. Furthermore, this organisation aligns with and cap-
tures the organisation of the environment and the set of possible goals: we observed
1) ritualised behaviour along preferred paths between salient transition points, 2) that
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these extrinsic transition points are represented intrinsically by large informational tran-
sitions, and 3) natural abstractions that factorise the environment into sub-components
most fittingly given a restricted information pathway.

As in the previous chapter, it must be stressed that all these effects arise solely as
direct results from considering informationally bounded cognition. This is in contrast
to approaches where these features are formulated a-priori and explicitly searched for,
such as in finding sub-goals [68, 10, 45, 88], state and goal abstractions [46, 64] and goal-
clustering [27] in transfer-based reinforcement learning [101]. The results presented here
propose an intrinsically grounded justification for defining sub-goals and other abstracted
concepts of typical tasks, which I will discuss in more detail in Chap. 6.5.

Finally, these methods might also offer opportunities to shed light on empirical results
on the organisation of cognition in biological organisms; the large information ‘unloading’
transitions found at the doorways in Fig. 6.7b could for instance be related to recent results
that show how people forget information when walking through a door [79].

6.6 Methodological Details

6.6.1 Goal Information Transition Sampling
The following sampling method was used to find I (G ; At |Et−1, wt ) and obtain Fig. 6.7a.
The mutual information between the goal and action is equal to the reduction in entropy
of At resulting from knowing the value of G :

I (G ; At |Et−1,Wt ) = H(At |Et−1, wt )−H(At |G ,Et−1, wt ) (6.6)

Because of the symmetry of information, it also holds that:

I (G ; At |Et−1, wt ) = H(G|Et−1, wt )−H(G|At ,Et−1, wt ) (6.7)

Considering the asymptotic equipartition theorem [31], these entropy terms can be es-
timated by drawing n i.i.d. samples from the combination of G , Et−1 and At , according
to:

H(G|Et−1, wt ) ≈− 1

n

n∑
i=1

∑
gi

log p(gi |et−1,i , wt ) (6.8)

H(G|At ,Et−1, wt ) ≈− 1

n

n∑
i=1

∑
gi

log p(gi |at ,et−1,i , wt ) (6.9)

for large values of n. The probability distribution p(gi |et−1,i , wt ) is obtained by applying
a series of Bayesian updates p(gi |ek ) ← 1

Zp(ak |wk , gi )p(gi |ek−1) for k from 0 to t , whereZ
is a normalisation factor and p(gi |e−1) is set to be uniform. Noting that p(gi |at ,et−1,i , wt ) =
p(gi |et ,i , wt ) gives the other distribution needed to obtain the approximation.

The estimation of I (G ;Et−1|At , wt ) is obtained in a similarly fashion.

6.6.2 RI and IB Self-consistent Solutions
The following subsections derive the self-consistent solutions of the relevant information
and bottle-neck type problems discussed in the text, by determining the partial derivative
of the respective Lagrangian and finding the zero of that gradient.
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Relevant State Information

Here, the Langrangian is given as:

Λ
(
π(at |wt , g ),β

)
= I (Wt ; At |G)−βE [Uπ

G (Wt , At )], (6.10)

and its partial derivative with respect to p(at |wt , g ):
∂

∂p(at |wt , g )
Λ

(
π(at |wt , g ),β

)
= p(wt , g ) log

p(at |wt , g )

p(at |g )
−p(wt , g )βUπ

g (wt , at ) (6.11)

Equating this derivative to zero and rearrangement of terms leads to the self-consistent
solution:

p(at |wt , g ) = 1

Z
p(at |g )exp

[
−βUπ

g (wt , at )
]

, (6.12)

where Z is a normalisation term.

Relevant Goal Information

Here, the Langrangian is given as:

Λ
(
π(at |wt , g ),β

)
= I (G ; At |Wt )−βE [Uπ

G (Wt , At )], (6.13)

and its partial derivative with respect to p(at |wt , g ):
∂

∂p(at |wt , g )
Λ

(
π(at |wt , g ),β

)
= p(wt , g ) log

p(at |wt , g )

p(at |wt )
−p(wt , g )βUπ

g (wt , at ) (6.14)

Equating this derivative to zero and rearrangement of terms leads to the self-consistent
solution:

p(at |wt , g ) = 1

Z
p(at |wt )exp

[
−βUπ

g (wt , at )
]

, (6.15)

where Z is a normalisation term.

State-Goal Information Trade-Off

Here, the Langrangian is given as:

Λ
(
π(at |wt , g ,β)

)
=αI (Wt ; At |G)+ (1−α)I (G ; At |Wt )−βE [Uπ

G (Wt , At )], (6.16)

and its partial derivative with respect to p(at |wt , g ):
∂

∂p(at |wt , g )
Λ

(
π(at |wt , g ),β

)
=αp(wt , g ) log

p(at |wt , g )

p(at |wt )
+

(1−α)p(wt , g ) log
p(at |wt , g )

p(at |wt )
−

p(wt , g )βUπ
g (wt , at ) (6.17)

Equating this derivative to zero and rearrangement of terms leads to the self-consistent
solution:

p(at |wt , g ) = 1

Z
p(at |wt )αp(at |g )1−αexp

[
−βUπ

g (wt , at )
]

, (6.18)

where Z is a normalisation term.
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6.6.3 Goal Information Bottleneck
For G ′

1, the Langrangian is given as:

Λ
(
π(g ′

1|g ),β
)
= I (G ;G ′

1)−βI (G ′
1; At |Wt ). (6.19)

Taking its partial derivative with respect to p(g ′
1|g ), equating this derivative to zero and

rearrangement of terms leads to the self-consistent solution:

p(g ′
1|g ) = 1

Z
p(g ′

1)exp
[∑

wt

p(wt )DK L

(
p(at |g , wt )||p(at |g ′

1, wt )
)]

, (6.20)

whereZ is a normalisation term, and the Kullback-Leibler divergence DK L

(
p(at |g , wt )||p(at |g ′

1, wt )
)
=∑

at p(at |g , wt ) log p(at |g ,wt )
p(at |g ′

1,wt ) .
For G ′

2, the Langrangian is given as:

Λ
(
π(g ′

2|g ),β
)
= I (G ;G ′

2)−βI (Wt ; At |G ′
2) (6.21)

= I (G ;G ′
2)−β

(
I ({Wt ,G ′

2}; At )− I (G ′
2, At )

)
. (6.22)

Taking its partial derivative with respect to p(g ′
2|g ), equating this derivative to zero and

rearrangement of terms leads to the self-consistent solution:

p(g ′
2|g ) = 1

Z
p(g ′

2)exp
[∑

wt

p(wt )DK L

(
p(at |g , wt )||p(at |g ′

2, wt )
)
−

DK L

(
p(at |g )||p(at |g ′

2)
)]

. (6.23)
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Chapter 7

Sensor Evolution

“To suppose that the eye, with all its inimitable contrivances for adjusting the
focus to different distances, for admitting different amounts of light, and for the
correction of spherical and chromatic aberration, could have been formed by
natural selection, seems, I freely confess, absurd in the highest possible degree.1”Charles Darwin

7.1 Introduction
Figure 7.1, reproduced from the introduction, shows the hypothesised pressures and the
trade-off that are the foundation of the work in this thesis. Recall that, if an organism does
not operate at an optimal trade-off level, this assumes that there is a drive to increase fit-
ness through more effective actuation processes that utilise the superfluous cognitive ca-
pacity, while another pressure pushes towards degeneration of the sensory and cognitive
capabilities to be more efficient and do away with unneeded energy consumption. This
implies an ‘arms race’ of sorts between an agent’s cognitive and behavioural facilities,
which continues until the drives meet in the middle.

At this point a so called ‘Pareto-efficient’ optimum is reached, where a unilateral
change in a single component will push the organism away from the optimal trade-off.
With none of the pressures pushing along the curve, how may it be possible for evolution
to still move up or down the curve?

Moving down the curve can be imagined as following a 2-step pattern: first, if the
performance pressure drops, an organism is free to move down in the trade-off plane.
This could be caused by the decrease, or disappearance of some environmental factor,
such as a competitor or a predator. Secondly, if this does happen, parsimony will push it
back, to a point lower on the optimal curve to where it was before.

Moving up the curve however seems more problematic. The parsimony pressure does
not suddenly drop, cognitive burden always comes with a cost. A step against the par-
simony pressure therefore will always result in a drive back towards the same point on

1Continued: “Yet reason tells me, that […] the difficulty of believing that a perfect and complex eye could
be formed by natural selection, though insuperable by our imagination, can hardly be considered real”
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Figure 7.1: Trade-off between cognitive burden and behavioural performance, and par-
simony and effectiveness pressures that form a drive towards the curve.

the curve. Moving from one point on the trade-off curve to one further up would thus
need concurrent, well matched evolutionary steps in both cognitive and actuation space.
Such synchronous, mutually reinforcing steps are highly unlikely, since in a random evo-
lutionary scenario this requires two coordinated mutations. If this reasoning is correct,
evolution would be slowed down considerably once a species’ sensory-motor system has
reached and operates on the optimal trade-off curve.

It is clear from nature however that this is not the case: species evolve continuously,
and sometimes at considerable speeds. Species that are optimally adapted to a specific
niche still seem able to rapidly specialise for and occupy another niche if the opportunity
arises. Even more fascinating is that biological organisms do not seem to evolve simply
towards any random locally optimal trade-off, but are instead driven to the near-global
optima where their sensory capabilities are only limited by the laws of physics, some
striking examples of which were given in the first chapter [15, 23, 33].

These considerations lead to the following questions. Firstly, how is it possible that
species can evolve quickly from one local optimum to another, while local changes seem-
ingly can only reduce their fitness, without the need of highly unlikely large and coordi-
nated mutations? Secondly, what are possible factors that drive and facilitate evolution
towards the ultimate limit of cognitive precision?

In the current chapter I will study these questions, specifically focusing on sensory
bandwidth as an aspect of the cognitive burden. To help gain insight into these problems
I will extend the information-theoretic framework build up earlier. Doing so, I will show
1) how the apparent co-dependence of sensory and actuation systems can be decoupled,
2) how this enables the gradual development of the combined system from one optimum
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Figure 7.2: Causal Bayesian network of the perception-action loop used in this chap-
ter. Note that the agent’s, possibly incomplete, sensation of the world state is modelled
explicitly this time.

to another, and 3) how this results in strong evolutionary pressure towards maximally
advanced sensors.

In the following two sections I will introduce the formal frameworks that form the
foundation of the approach. Next, I will develop a model of how the evolution of sensors
and actuation can be uncoupled to facilitate transition from one locally optimal trade-
off to another. Then, I will adapt this framework to model how evolution could drive
sensors towards the upper limits of precision. Finally, I discuss fundamental information-
theoretic properties of sensory systems that facilitate such processes, and argue that these
properties constitute major, general, and fundamental drivers of sensor evolution.

7.2 Perception-Action Loop
As before, I will treat the perception-action loop as a causal Bayesian network, shown in
Fig. 2.5b. In contrast to the previous chapters however, this time I will model the agent’s
sensor state at some time t explicitly, with the random variable St , which I will also refer
to as the sensor. Values of this variable, specific instances of which are denoted with st

are taken from the set S . Note that this model results in a POMDP, where an agent may
be able to observe only part of the world state.

The value of the agent’s sensor is determined by the sensor distribution, which is the
probabilistic mapping p(st |wt ). The policy of the agent is then given by the conditional
distribution π(at |st ), indicating that the agent acts upon the sensed state, not directly on
the actual state.

7.3 Parsimonious Policy-Sensor Combination
In this framework, one can again ask for the minimal amount of informational burden
required to achieve a fixed level of performance. There are now two channels that have
informational burden: the sensory channel with average bandwidth I (Wt ;St ), and the
actuation channel with bandwidth I (St ; At ). The parsimony hypothesis applies to both,
so I will aim to find the optimal trade-off for each, starting with the latter, for reasons that
will become clear after the following small proof.

Lemma 4.

I (St ; At ) = I (Wt ; At )

94



Proof. The CBN of Fig. 7.2 imply the Markov chains Wt → St → At , and At → Wt → St ,
due to which I (Wt ; At |St ) = I (St ; At |Wt ) = 0. Thus:

I (St ; At ) = I (St ; At )+ I (Wt ; At |St )

= I (Wt ,St ; At )

= I (Wt ; At )+ I (St ; At |Wt )

= I (Wt ; At )

This means that one can first find the minimal actuation bandwidth independent of a
sensor, by minimising I (Wt ; At ) over all possible policies π(at |wt ) (which I will denote a
direct policy, as opposed to the definition of a policy above that selects an action based on
the world state indirectly through a sensor). This minimum is found with the traditional
relevant information method. In this chapter I will only treat full optimality, i.e with
β→∞.

Once an RI-optimal direct policy is found, we can find a sensor mapping p(st |wt ) for
this policy. This is a mapping that minimises the bandwidth of the sensory channel, while
still acquiring enough information to perform the minimal direct policy:

min
p(st |wt )

I (Wt ;St ) subj. to I (St ; At ) = I (Wt ; At ) (7.1)

This problem, in turn, is equivalent to a standard single-variate information bottleneck.
The sensor mapping that is found is minimally optimal: it is optimal in the sense that
it retains all relevant information to support a policy π(at |st ) that is consistent with the
RI-optimal direct policy, and minimal in the sense that it captures the minimum amount
of information about the world state to be able to reconstruct this information.

Once a sensor mapping is found, the final sensor based policy is given by:

π(at |st ) =∑
wt

1

p(st )
π(at |wt )p(st |wt )p(wt ) (7.2)

7.4 Uncoupled Sensor-Actuation Evolution
With the formal foundation in place, I will now develop an evolutionary model in which
transitions between different locally optimal trade-offs are made feasible, by uncoupling
the evolution of sensors and actuation.

In this model, we start out with an agent whose sensor and action selectionmechanism
operate on the optimal trade-off curve between informational burden and performance.
Any point can be picked, but for now assume that the agent performs at the globally
optimal trade-off at the end of the curve. This trade-off is fully determined by the utility
of its actions and the world dynamics, and can be found using the RI and IB methods
as discussed in the previous section. As noted before, this point seems to constitute an
evolutionary dead-end, even more than any other locally, Pareto-optimal trade-off, since
no improvement at all seems possible, which is problematic.
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Figure 7.3: Graphical representation of uncoupled iterative evolution model

The solution to this problem is based on the idea that, given the currently evolved
minimally optimal sensor, there could be other niches available for which this sensor is
near-optimal. I will show that this view allows sufficient decoupling of the development
of the components, which makes the necessary individual evolutionary steps much more
likely.

The basic functioning of this model is visualised in Fig. 7.3: even when the sensor
may be strictly minimal for a policy achieving optimal performance given one reward
structure, this sensor may still give enough information to allow successful operation
under a different reward function, and achievement of a similar level of fitness in this new
scenario. In that case, evolution can drive the agent’s behaviour, as expressed by its policy,
to become optimal in this new situation,without the need of coordinated adaptation of the
sensor. Once the transition to this new niche has started, the development of the sensor
can instead follow that of the action selection mechanism, to again become minimally
optimal. Here, I make no explicit assumption of what motivates such a transition between
different niches, but possible drives may be toughening competition in the original niche,
or perhaps simply evolutionary drift when the fitness achievable in both niches is similar
enough.

To clarify this idea, I will apply this model to an example of the transformation of a
sensor from nature. Tachinid flies posses a balloon-like sensor to detect movement of the
head, which in the parasitoid Therobia leonidei has been evolved into an auditive sensor,
which now is used in locating the bush-crickets that serve as its host [56]. This transfor-
mation can be explained in our model by noting that the original sensor, even if it would
be fully optimised and minimal for its original use, may capture additional information
that is relevant to the organism. In this case, the cognitive and actuation system of the
organism can evolve to utilise this information, i.e. to better locate hosts, which consti-
tutes the first step of the cycle above. Once this adaptation is set in motion, the evolution
of the sensor can be driven towards higher auditive precision to better support the new
strategy, which forms the second step of the cycle. These processes can then repeat until
a new local optimum is reached, where the now auditive sensor is minimally optimal for
its new function. Note that at no point of this process a coordinated adaptation of the
combined sensory-actuation system is needed.

In this chapter, I will use a simple toroidal grid-world navigation task example, as de-
picted in Fig. 7.4, to show how this model works. The notion of different possible niches
central to our model, formulated as different reward structures, is in such scenarios rep-
resented by a set of tasks, each with its according reward function. Here, each task is
described by a goal state g that the agent needs to move into in as few steps as possible,
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Figure 7.4: (a) Example 7×7 toroidal grid-world used to demonstrate the evolutionary
model. The world-state consists of the agent’s location. The agent receives a penalty of -1
for each step taken, unless it enters the goal state markedG , where reward is 0. The agent
has access to 4 actions: move one cell north, east, south or west. Three randomly chosen
cells, marked by grey disks, incur a reward of -5 when entered. (b) Location distinctions
as given by minimally optimal sensor for task shown in (a). (c) Example of sequence of
goals of first 12 tasks in expanding repertoire scenario.

Algorithm 3 Uncoupled Sensory-Motor Evolution
1: Select initial task g
2: Find RI-optimal direct policy πg (at |wt )
3: Use IB to find minimal optimal sensor p(st |wt ) for this policy
4: Find the optimal policy πg ′(at |st ) for other tasks given current sensor
5: Determine task g∗ with highest performance given sensor, resolving ties by random

selection
6: g ← g∗
7: Repeat steps 2–3 for this new task

formalised by a reward function that penalises each step with a reward of -1, unless the
agent enters the goal state, where the reward is 0. To prevent trivial solutions due to the
high symmetry of the world, and to make lack of information about the world state more
costly, several states are marked as ‘danger’ states that incur a cost of 5 upon entering.

A sensor in this world induces a possibly stochastic map, or clustering, of world states
to a smaller set of sensor states, determining the precision in which the agent can observe
its location. Because the sensor is achieved as an optimal trade-off with β → ∞, the
mapping ends up being deterministic [104]. Figure7.4b shows an example of a partitioning
of the world by such a sensor.

The scenario, and the clustering induced by the sensor described here is similar to
that of the multi-task scenario of the previous section. However the method for finding
a policy is different, as well as how goals are selected, as described below. Furthermore,
the clustering of the previous chapter was on goal states, whereas here the sensor clusters
world states.

In this a scenario, one can formulate and perform the decoupled evolutionary itera-
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Figure 7.5: Typical example of utility achievable on each task using the minimal opti-
mal sensor obtained for a specific initial task, denoted by the solid line, ordered from low
to high achievable utility given this sensor. The task with the highest order number is
the initial task for which the agent was optimised. The dashed line indicates the util-
ity achievable using the action that would be taken for the initial task as the source of
information, instead of the sensor input.

tions as follows. The agent starts with a single task selection g , which determines the
current reward structure, or niche. Next we find the minimally optimal policy and sensor
for this task. Finally, it is determined which other tasks can be performed well with the
given sensor. The agent then moves onto the most rewarding of these tasks, and starts the
optimisation process again. The technical description of this process is given in Alg. 3.

Step 4 of this algorithm, of which a detailed description can be found in the final
section of this chapter, gives us a policy for all tasks, and the respective expected utility
for these tasks under the policy that is found. The solid line in Fig. 7.5 shows a typical
example of the result of plotting these maximally achievable utilities on the full range of
tasks given the sensor for the initial task. The most striking observation in the context
of the argument of this chapter, is that there is a group of tasks on which the agent can
perform close to the optimum of the initial task, despite that the sensor that is used is fully
optimised and minimised to provide only the information strictly relevant to the initial
task.

When we obtain these results for all possible initial tasks, one can construct an evolu-
tionary landscape, which indicates for which tasks an agent can still achieve near-optimal
performance given the minimally optimal sensor of the predecessor task. This would
show which evolutionary transitions are relatively easy to bring about, while at all times
moving towards an optimal (local) information-utility trade-off, without the necessity of
synchronised adaptation of both sensor and actuation, and with that how easy it is to
move through the full space of niches. The relative ease of transitioning can for instance
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Diameter Radius Avg. Path Length Connected
α= 0.9 8 14 3.75 No
α= 1.0 4 10 2.38 Yes
α= 1.1 4 11 2.27 Yes
α= 1.5 4 6 1.94 Yes

Table 7.1: Structural properties of the transition graphs of Fig. 7.6. Diameter: longest
shortest path from one node to another; Radius: minimum of the longest distance from
one node to another; Average path length: average over the shortest paths between all
nodes; Connected: whether all nodes are (strongly) connected by some path with each
other.

be determined by observing the ratio:

Eg ′[U (S, A)|pg (st |wt )]

Eg [U (S, A)|pg (st |wt )]
, (7.3)

i.e. the ratio between the utility achievable on task g ′ given the sensor of initial task g ,
and the achievable utility on the initial task.

Figure 7.6 gives several examples of graphs obtained by connecting tasks for which
the defined ratio is larger than some threshold 1

α
. The inverse is used here, because the

negative reward that is used is easier interpreted as a cost, such that the threshold α

implies ‘the expected cost on the next task can be no more than α times that of the initial
task’. From these graphs different observations can be made. Firstly, Fig. 7.6a shows
the striking possibility that there is a number of tasks for which the agent can achieve a
lower expected cost than on a different task, with the minimally optimal sensor for this
second task. Secondly, the connectivity of the graph grows rapidly when small increases
in expected cost are tolerated, implying that in this scenario it is easy to move through
the evolutionary landscape.

Such claims can be made more precise by applying the tools of graph theory to the
results of this section. Table 7.1 for example lists some structural properties of the graphs
of Fig. 7.6. These confirm the earlier claims: it is possible tomove through all taskswithout
reducing expected utility at any step, and within on average 2.4 steps any point can be
reached from any other, but in any case within 8 steps.

7.5 Sensor Evolution for Expanding Behaviour Reper-
toire

In the previous section I have given a model of how evolution could continuously drive
an organism from being optimally adapted on one task (niche) to another. These steps
can be seen as transitions from a point on the trade-off curve of one task to a point on
the curve of another, and these transitions induce a drive to adapt a sensor for the new
tasks. In this variant of the model, the complexity of the sensor could even decrease, if this
precision is not necessary for the new task. Such an effect is seen in nature for instance
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(a) α= 0.9 (b) α= 1.0

(c) α= 1.1 (d) α= 1.5

Figure 7.6: Directed graph showing feasible evolutionary transitions between different
tasks under the uncoupled evolution model. Each task is represented by a point on the
outer circle (in no particular order), and an arrow from one task to a second indicates that
the minimally optimal sensor obtained for the first task allows an expected utility on the
second task of no less than 95% than the maximum achievable on that task.
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in blind Spalax mole rats and cave fish [37], that have occupied a niche where eyes are no
longer relevant sensors and form an unnecessary burden. In this section I will show how
the informational framework may increase understanding of how species could be driven
towards the other, much more striking extreme that was noted in the introduction: where
the sensory accuracy is pushed towards the limits of physics.

To do so, I change the interpretation of different reward functions from modelling
specific mutually exclusive niches, only one of which an organism can occupy during its
lifetime, to a set of goals that all can be imposed on an organism during its lifetime, drawn
from some distribution p(g ). In this scenario, the overall performance of the agent is then
determined by the expected utility averaged over all possible tasks, E [U (S, A,G)]. This
means that there is a pressure to perform optimally on all tasks, instead of over-fitting on
one or a small selection. This now gets closer to the model of the previous chapter, though
now I aim to study the question that arose from that model: how can an agent acquire a
repertoire of behaviour solving a set of tasks, while under the parsimony pressure?

The results of the previous section should supply a hint towards the answer to this
question: even when minimally optimal on one task, it is still possible to perform other
tasks at a high level of performance as well. The behavioural complexity could thus be
increased by adding these other tasks to the agent’s repertoire and retaining its existing
skills, instead of doing away with them completely..

One can change the iterative decoupled evolutionary model of Alg. 3 at one point in
order to fit this scenario: instead of letting the agent’s sensor adapt fully to a new task,
and by doing so move away from the old task, we let it adapt to incorporate the new task
while preserving the optimality of its existing repertoire of behaviour. This means that,
instead of adapting the agent’s sensor to be optimal for the new task in step 3 of Alg. 3,
we create an addition to the sensor, S′

t , that is optimised using an information bottleneck,
such that it captures the relevant information for the new task, beyond what is already
available in the existing sensor. Formally, this is done by solving:

min
p(s′t |wt )

I (Wt ;S′
t ) subj. to I (St ,S′

t ; At |Gk )
!= I (Wt ; At |Gk ), (7.4)

where the value of Gk signifies a choice of task from the set of acquired tasks at iteration
k of the algorithm.

This process can then be repeated, increasing the precision of the sensor at each step
when necessary, until the agent’s sensor has reached the maximum required precision to
allow the agent to achieve all possible tasks optimally. This new iterative model is detailed
in Alg. 4, of which step 5 is elaborated in the final section.

Performing this process in the grid-world scenario, and determining the overall per-
formance of the agent at every iteration, gives the development curve shown in Fig. 7.7.
This curve shows that indeed every adaptation to add a single task to the agent’s reper-
toire monotonically increases the performance on the full range of tasks, even though at
each step its sensor is only explicitly optimised to support a limited range of tasks. The
most striking aspect however is how rapidly the sensor is driven toward the globally op-
timal precision: after optimisation for only 7 of the total of 46 tasks (less than 20%) the
sensor is already precise enough to be able to perform near to optimal globally, with full
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Algorithm 4 Sensor Evolution Towards Optimal Precision
1: Initialise ‘blind’ sensor (|S | = 1)
2: Select initial task g
3: Find RI-optimal direct policy πg (at |wt )
4: Use IB to find minimal optimal addition to sensor p(s′t |wt , st ) for this policy
5: Combine the original sensor St and the addition S′

t into a new equivalent minimal
sensor St

6: Find the optimal policy πg ′(at |st ) for other tasks given current sensor
7: Determine task g∗ with highest performance given sensor, resolving ties by random

selection
8: g ← g∗
9: Go to step 3 unless all tasks are treated

optimality possible after only 7 more epochs. Figure 7.4c shows the goals that were se-
lected in these first 14 iterations. Note that the set of goals does not grow out from the
first goal, but rather that successive goals can be some distance apart, but also that the
final set of goals still only cover a distinct area, which apparently is enough to require a
sensor to be accurate enough to reach any possible goal in the world optimally.

7.6 Concomitant Sensor Information as aMajor Evolu-
tionary Drive

The iterative model that I presented in this chapter is able to show that sensory evolution
can be driven by the adoption of a novel behaviour/niche that is already well supported
by the existing sensor, after which the sensor can be optimised for the new (repertoire
o) behaviour. The results show that this process can rapidly bring about large evolu-
tionary steps, based on the observation that, even when a sensor may be adapted fully
for a single task, it still enables the achievement of different tasks near to optimality, or
even fully optimally. An important question is whether this is an artefact of the particular
examples chosen here, or of the constructed algorithms, or whether this is likely to hold
more generally. In other words, are these dynamics generic? I argue that there is indeed
a structural aspect of the PA-loop that facilitates adaptation towards novel optima, and
that this aspect is reflected directly in the informational structure of the system.

From experience, in the information bottleneck paradigm it is common that the amount
of information that a bottleneck variable (here: the sensor state) captures about the source
variable (the world state) can be significantly larger than the amount it gives about the
relevance variable (the action). Moreover, one can show formally that this inequality must
hold for all possible combinations of worlds, sensors and policies, by employing the gen-
eral information theoretic law of the data processing inequality [31]. In the framework
of this chapter,this means that I (Wt ;St ) ≥ I (St ; At ), which one indeed encounters: in our
scenarios the first term is between two to three times greater than the second. This obser-
vation is important: such a large amount of additional information available in the sensor
state greatly increases the chance of a significant overlap with the information that is
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Figure 7.7: Typical example of the development curve of an agent in the grid-world
navigation scenario, under the behaviour repertoire model. The curve plots the average
over all tasks, after only being optimised for a subset of the tasks. The first dashed line
shows where global optimality is approached closely, the second where full optimality
has been achieved.

relevant for other task.
From this, I arrive at the following hypothesis:

Hypothesis 3. Concomitant sensor information, the information that comes piggyback
with the relevant information in a minimal optimal sensor, is a major factor in enabling
sensory-actuation evolution.

To test this, I will consider the maximum achievable performance on novel tasks using
the sensor, which is likely to carry concomitant information, and compare it to the level
achievable when strictly using only the minimum of information relevant to the initial
task. This ‘strict’ relevant information is expressed in the final actions selected [83], so
to obtain the latter performance one can alter step 4 of Alg. 3, to instead use the action
selected according to the policy π(at |wt ) as our ‘sensor’. The results of this for the ex-
ample grid-world scenario are depicted by the dashed curve in Fig. 7.5. They show that
for many of the possible novel tasks, using the full sensor enables a significantly higher
performance compared to utilising only the relevant information captured in the policy,
as would be predicted from the above hypothesis.

7.7 Discussion
I have given a general model based on information-theoretical concepts of uncoupled
sensor and actuation evolution, and shown how in thismodel evolutionary jumps between
locally minimal optimal sensory-motor trade-offs can be facilitated.

The edges in a transition graph such as Fig. 7.6 give insight into the ease with which
evolution can explore the full space of possibilities. Firstly, one can note that from each
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point amajor subset of the other points can be reached through a limited number of transi-
tions, implying that even a highly specialised species could evolve away into a wide range
of completely different niches. Secondly, the fact that from many points not just one, but
several points are directly reachable, indicates a possibility for diverging evolutionary
pathways. And finally, the graph uncovers the irreversibility of parts of the evolutionary
process. This is exhibited by a number of solutions that are only connected unidirection-
ally, indicating that the optimal sensor for one task is usable for the second, without the
optimal sensor for the second supplying enough relevant information for the first task.
Further graph-theoretical analysis of this graph, e.g. determining its radius, components,
etc., or by integrating a similarity measure between tasks and/or between the minimally
optimal sensors for those tasks, may uncover other interesting aspects, however this is
outside the scope of the current chapter.

The most striking result of the current work is presented in Fig. 7.7, which shows a
strong drive towards optimal sensory precision. The gradient of this curve indicates a
significant pressure to optimise a sensor for novel behaviour. This occurs because this not
only adapts the agent optimally to that specific novel behaviour, but the improvements
of the sensor that follow this adaptation turn out to make a significant range of other
beneficial behaviour feasible as well.

I argue again that the major facilitator of this process is the concomitant information,
that is available in a sensor beyond that which is purely relevant, even in a sensor that is
explicitly informationally minimal. Most notably, the presence of concomitant informa-
tion is not an aspect of the specific model applied here, but derives from general, basic
information-theoretical laws.

7.8 Methodological Details

7.8.1 Policy Optimisation for Novel Tasks
A value-iteration [97] type method is used to find the maximum achievable performance
given a fixed sensor mapping p(st |wt ). Here, the following is iterated until convergence,
starting with a random policy π:

1. Perform value iteration until convergence of Uπ(wt , at )

2. Determine Uπ(st , at ) =∑
wt p(wt |st )Uπ(wt , at )

3. Set policy to be greedy with respect to the new utility estimate, i.e. π(at |st ) ← 1/n
if Uπ(st , at ) = maxa′

t
Uπ(st , at ), otherwise π(at |st ) ← 0. Here, n is the number of

actions having the maximum utility, i.e. |{at : Uπ(st , at ) = maxa′
t
Uπ(st , at )}|.

Finally, perform 1. to find the ultimate maximum performance E [Uπ(Wt , At )] given the
final policy and sensor combination.

Due to the partial observability induced by a limited sensor, this process may not
converge, but end up in an oscillation between a number of policies. In this case we stop
after 1000 iterations and use the best policy in this oscillation. This may not be the global
optimum, however this oscillation only occurs for tasks for which a sensor is notably
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unfitting, and thus does not influence our model, which is only concerned with well fitting
tasks.

7.8.2 Sensor Extension and Merging
The bottleneck variables used in Algs. 3 and 4 (i.e. St and S′

t ) have the same cardinality
as the full world state variable, to ensure that there is no structural limitation on how
much information they can capture. However, naively combining the existing sensor, St ,
and the addition optimised for a novel task, S′

t , in Alg. 4 leads to an exponential growth
of the sensor size. As this makes the model computational unfeasible, and biologically
implausible, we construct an equivalent minimal combination as follows (using Bayes’
rule):

1. Determine p(wt |st , s′t ) = p(st |wt )p(s′t |wt )p(wt )
p(st ,s′t )

2. Cluster all combinations st , s′t that give sufficiently similar conditional distributions
of Wt (as measured by the Jensen-Shannon divergence [31]) into a single new sensor
state.

Practically, this results in a sensor with size no larger than that of the alphabet of world
states.
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Chapter 8

Discussion

This thesis started out with the model of behaviour generation and cognition repeated in
Fig. 8.1. Throughout the following chapters the different parts of this model were studied
by applying the same method on each:

1. Identify cognitive burden as the informational cost of some segment.

2. Determine how this cost trades off against some other cost, either in performance,
or an additional informational cost.

3. Observe key structures, features and phenomena arising from this trade-off.

This one approach gave rise to a wide range of observations: preference for organized
structure in action selection (Chap. 4); uncertainty aversion, active simplification of the
environment, and development of a predictive memory (Chap. 5); ritualized behaviour,
natural sub goals and abstractions (Chap. 6); the potentiality of rapid sensor evolution
even under tight parsimony pressures (Chap. 7).

Themost important aspect of these results is that all the phenomena appeared without
an explicit requirement built into the scenarios: they came about due to self-organization
under the parsimony pressure. One could definitely imagine other drives that give similar
results. For instance, there would be an obvious pressure to develop a memory if it helps
to get a better performance, by making available more relevant information that may not
be directly available through direct sensing. Similarly, sub goals and abstractions may
arise if they are needed to learn new tasks faster. From this point of view, if asking why
we see such phenomena develop in nature, or why an artificial agent should develop them,
the answer would be that they are needed to deal with some external complexity.

This is in stark contrast to the approach taken in this thesis, based on internal sim-
plicity. It showed that the thinking described above may already be some steps too far:
I explicitly ensured that none of the scenarios used required the agent to develop any
of the observed phenomena; taking preferred paths, using memory, and finding natural
transition points and abstractions did not make the agent perform his tasks any better.

This lays out a whole new possible story line for evolution and development: rather
than having a species or an agent develop new structures or concepts when the need
arises, we nowhave a fully intrinsic drive that could already give rise to themmuch earlier,
which then could open up new capabilities and evolutionary or developmental pathways.
A concurrent dependency similar to that discussed in Chap. 7 is broken by such a process:
instead of requiring the development of new capabilities and the application of these on
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Figure 8.1: Sketch of the full cognitive model studied in this thesis.
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novel things to happen together, the results of this thesis show the possibility of splitting
these steps into an sequential, incremental process.

An important question is why the approach works. The model used was (purpose-
fully) kept abstract, and the scenarios that were studied may be strong simplifications of
real life. In the remainder of this final chapter I will discuss several possible extensions
and open ends that may be studied to widen the approach and further test its results.
My prediction however is that the encountered pattern, of self-organized structure under
cognitive burden, will hold, and is fundamental, based on reasoning as follows.

All observed phenomena can be seen as reflecting salient features of the agent/en-
vironment system in the informational and behavioural outcome of the agent’s decision
making process. If cognitive processes are costly, which is difficult to deny they are, or
more strongly, if they are under some finite limit, which is even more to be expected, an
agent is forced to structure its decision making processes as effectively as possible to be
able to act efficiently and successfully. I believe that such self-organisation of an agent can
then only stem from the organisation that is available in the environment and the agent’s
goals and its embodiment. The agent can utilise this structure to alleviate its constraints,
which results in this organisation being reflected internally.

These arguments and the obtained results, along with empirical evidence for infor-
mational constraints as a basis for the structuring of human behaviour [76], lead to the
following proposal: a closed approach to generate a family of organisational concepts in
a coherent way, by systematically applying cognitive constraints, as taken in this work
in the form of information limitations, can constitute an important step towards guiding
self-organisation. Put more simple: if you want to explain or achieve some organisation,
simply assuming or imposing cognitive constraints may suffice.

Note that I have focused on informational constraints, but theymay also have different
forms, such as energy, time, or space constraints. Generally I would pose the following
hypothesis as the main message of this thesis, and as an important possible foundation of
future work:

Hypothesis 4. Explicitly considering the properties of the cognitive facilities that a decision
making process is embedded in, including but not limited to its informational aspects, should
be a guiding principle: similar to how embodiment restricts and thereby shapes the interac-
tions of an agent with the world, and in combination with embodiment, taking into account
the agent’s ‘embrainment’ might be a key to understanding the organisation of cognition
and behaviour.

In the following section I will discuss in more detail how these ideas apply to, and how
they may guide future work in a specific area of research: hierarchical decision making.
The remainder of the chapter will discuss some further open avenues of research.

8.1 Hierarchy Through Parsimony
A popular model of decision making and behaviour generation, both in biology as in
computational sciences, is that of a decision hierarchy. In such a model, sensory input is
available at each layer in the decision making process; at each of these layers a decision is
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made in a different class, possibly based on different aspects of the sensory input. A hier-
archy is formed through the influence that decisions at higher levels have on the decision
making process at lower levels.

Models of decision hierarchies are often motivated by work from Tinbergen in the
1950s, on the behaviour of birds [103], and later refined by Baerends, a student of Tinber-
gen [9]. Some examples of where such hierarchies seem apparent are in vocal behaviour
in singing birds [112] and ordering tasks in Capuchin monkeys [67]. Throughout decades
much discussionwas had about whether a decision hierarchywas a valid biological model,
or a mere human projection on animal behaviour [32, 62, 63]. In computational applica-
tions this discussion was easier, and the application of hierarchical decision frameworks
in artificial agents has flourished, initially in static systems [78], but more recently also in
dynamically learning and organizing systems [13, 68, 25].

Nowwe know through empirical evidence that inherently hierarchical cognitive orga-
nizations are real-world entities (e.g in leeches [36], in mantids, cats crickets, and chickens
[59], and in the human pre-frontal cortex [22]). In any case, at another scale the use of
hierarchy is self evident: social animals for instance can form and operate under a hier-
archical structure, such as a pack of wolves, and human government, armed forces, and
businesses form hierarchies to control its more complex activities.

With all this evidence for hierarchies, one question is not yet fully answered: why
would hierarchical organizations prevail? What is their benefit, and can we arrive at a
quantitative theory of this benefit? Machine learning results have shown that learning
with hierarchies can speed up the process. The results presented in this thesis could pro-
vide some insight into the benefits of acting with hierarchies.

Firstly, the layered action selection model with memory of Sec. 4.5 is one of the main
frameworks used in the field of hierarchical reinforcement learning (HRL) [98, 13], from
which the name ’option’ for a higher level, temporally extended action is taken, with that
difference that in the learning framework, the option choice is normally fixed over some
time: a new option is only chosen at special states. These states can be seen as sub goals,
which mark the end of a sub task that a specific option is said to perform.

From a learning point of view, the drive for building a behavioural hierarchy is to
facilitate future learning: some options may be reused in new tasks, so the agent only
has to learn when to start the option and then run its sub policy for several steps, instead
of independently learning a separate policy for each separate state visited in those steps.
However, the results of Chap. 4 indicate a more fundamental internal drive, active before
and regardless of any need to learn different tasks: cognitive parsimony.

When at some point there is a drive towards hierarchy, which is now fully intrinsic,
the next question that arises is which hierarchical structure is best, or most natural. The
action selection hierarchy can be built to contain an almost arbitrary number of levels,
where at each level options can be structured in many different ways. How many levels
should there be, where should the boundary between them be, and what abstractions are
best tomake? From the point of view of learning, the answers to these questions should be
guided by how well they facilitate future learning. However, this is problematic, because
in general one can not expect which structure will perform well in future tasks: the whole
problem is that the agent still has to learn about these tasks.

In this light it may not be surprising that commonly in the HRL literature, a hierarchy
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is built based on some heuristic which is assumed to provide useful abstractions. Often
the abstraction is in the form of a sub goal state, that must be common for different tasks,
and the heuristic is some feature of such states: times visited on successful performances
[68, 96, 4], hand crafted abstractions [10], or various graph-theoretical ideas such as graph
partitioning [89, 45] or betweenness [88].

The results of Chap. 6 indicate that again information minimization is enough to give
rise to the sought after concepts, such as sub goals and abstractions, without the need to
invoke learning capabilities. In their current form, these results don’t fully answer the
question of what is the best or most natural way to build a hierarchy (e.g. how many
sub-goals are best, and can the natural abstractions be put in a natural hierarchy?), which
is out of the scope of this thesis, but they are the first steps that open a path of future
research that may lead there.

In the framework developed here, the most natural hierarchy is one for which some
trade-off involving cognitive burden is the most favorable. We saw in the example of
Chap. 4 that an additional layer reduced both the per-layer and the total sensory band-
width, but one could point out different costs to trade-off against this reduction. For
instance, with 4 options the maximum available bandwidth for the second level is 2 bits,
but only just over half was used. Is there another number of layers where the bandwidth
is more fitting, minimizing the Shannon redundancy, similar to how this allowed one to
find a natural number of goal clusters in Sec. 6.4.1? Also, I have treated the lower lev-
els as channels with side information, where this side information, the option choice at
the next level, was freely available. However, we can imagine an additional channel that
transmits this information, with its own additional bandwidth cost. One could then study
the trade-off between this cost and the sensory bandwidth reduction, to find the informa-
tionally optimal hierarchical structure for the full range of relative costs, similar to what
was done in Sec. 6.2.2 for the sensory versus goal information trade-off. Finally, one could
combine the drives for cognitive parsimony and learning speed, to study whether these
give rise to yet another trade-off.

8.2 Going Further

8.2.1 Completing the Cognitive Model
In this thesis, I have used the model drawn in Fig. 8.1. However, it was only possible to
focus on the interaction of a few aspects of this model at a time. There are still several
aspects that can be studied, and observing the model as a whole may uncover further
interesting phenomena. As amatter of fact, one could point out several additional possible
informational costs, or introduce further structure, and analyse many trade-offs that this
brings about.

One example is some trade-off on the use of memory developed in Sec. 5.3. There, I
only looked at how the memory can help reduce sensory burden, but it is likely that a
memory adds its own cost. Actually, one could discern two types of costs: that of actually
accessing the retained relevant information from the memory, and that of maintaining
and/or possibly processing the information within the memory.
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Thefirst cost could readily be fit into the developed framework, by introducing I (M ; A)
as another informational cost, with a new parameter to set different trade-offs between
sensory and stored information, similar to how the sensory and goal relevant information
were traded off in Sec. 6.2.2. With this extension, one can study under what trade-offs
memory still develops, and how its structure may change under these trade-offs. One
interesting outcome for instance could be the transition between memory at different
timescales, which was obtained in a less principled manner by setting a hard limit on
memory size in Sec. 5.3.3.

The second cost, that of storing and possibly processing of informationwithinmemory
seems more difficult to define. One could add a cost in the form of I (M ; M ′), which may
give the possibility to study the effects of memory size in a smoother way than simply
setting its cardinality. However, there is one intuitive aspect of memory that such an
informational cost does not capture: the dynamicity of memory, and its related cost. To
explain, recall the memory experiment in Sec. 5.3.3, where the agent seemed to count
either 1,2,1,2,… or 1,2,3,4,1,2,3,4,…, based on the taken pathway. It had to remember at
which number it was, and dynamically update it at each step. However, there must also be
somememory that is more static: throughoutmoving along a path, the agent should know
on which path it is, to know up to what number to count. Intuitively, these two types
of memory handle different types of information with different dynamics and possibly
different costs. An interesting direction of future work could be to find a way to split
these types and study their interactions: when do you need static memory, when dynamic;
can one be traded off against the other? Answering these questions in the framework as
constructed here seems difficult, andmay require combining the relevant information idea
with others, for instance time series complexity [84].

8.2.2 Continuity
The framework that was developed only treated scenarios having discrete time and state
and action sets. This is not what one observes in real life; time and space appear continu-
ous, and the possible ways of doing things nearly infinite. The main reason that the scope
of this thesis was limited to discrete scenarios is practical: the information-theoretical
tools and concepts that the study is based on are mature, practical, precise and well un-
derstood for these cases. In continuous scenarios, both the theory of Markov decision
processes and information theory (with rate distortion theory specifically) only provide
analytic solutions in rare, often trivial cases.

However, my believe is that the results in such discrete decision making processes are
still valid, and that that they do indeed apply to actual cognitive processes. I would argue
that in our experience, these processes are indeed of a more discrete nature: we tend to
construct our models of the world from discrete entities, and think about discrete actions
instead of continuous muscle control. To quote Barlow again [11]:

111



“ […] the logic-like faculties of brains that lie behind higher mental functions
are more interesting than the linear analysis that continuous signals link with
most naturally, so my own bias is to regard the simpler concept of redundancy
in discrete signals as more interesting and important. ”More generally however, without invoking higher order faculties thatmay not be com-

mon in other species, the reasoning behind expecting the observation of internal reflection
of, and self-organisation based on, salient features and structures in the environment as
given above does not exclude continuous scenarios.

This is certainly not to say that it is not worthwhile to extend the framework to con-
tinuous scenarios: it would be an important step in developing it further, and test which
of the observed phenomena are still seen in these cases, and what others may arise.

One consideration seemingly limits the applicability of the framework: although con-
tinuous variables have an infinite amount of possible values, only one may be the best
choice. In a navigation scenario for example, the fastest path consists of a straight line to
the target, compared to a grid world where there may be many paths that take the same
amount of steps. Here one would already see one of the results of this thesis crumble:
informational burden don’t decide preferred paths anymore, only their optimality. As a
matter of fact, it is even worse than that: the amount of information needed to select the
one optimal value is infinite, so there seems no hope to reduce it for any of the channels
that were considered.

However, luckily perfectly optimal solutions are hardly ever required. Though in-
teresting from a learning theorist’s point of view, a quick look at ourselves and nature
indicates that it is often enough to be good enough, and no better, which is exactly in line
with the original parsimony hypothesis. Reducing the pressure towards optimality makes
more solutions good enough, which increases the range of possible choices and makes the
amount of information that is required finite again.

8.2.3 Information Hiding and Multiple Agents
An important feature of information is that it is symmetric, formally given by the fact that
I (X ;Y ) = I (Y ; X ). In the context of acting agents, that means that an external observer,
such as another agent, can obtain relevant information from observing actions of an agent,
if there is overlap in what information is relevant for both. It can be shown that utilizing
this preprocessed, or ‘digested’ information can motivate interesting social interactions,
such as flocking [83]. The symmetry of information makes this possible without requiring
that any agent knowingly transmits information to another agent.

From this point of view however, a relevant-information minimizing agent may be
seen as anti-social: it seems to hide information from an external observer. A goal-
information minimizing agent for instance only makes as little as possible known about
its intentions.

This indicates a possibly very interesting opportunity for ongoing research: the fur-
ther extension of the approach taken in this thesis into multi-agent scenarios. Some ques-
tions to study could be
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• What trade-offs exist between egocentric information minimization and interacting
with other agents, both adversarial, where information hiding may be beneficial,
and social, where there may be pressures against parsimony?

• What other interactions may arise from egocentric parsimony? One imaginable
possibility is the emergence of stigmergy from one agent reducing cognitive burden
by offloading information into some change of the world, and another reducing his
by using the digested information available in this change.

• What trade-offs would an explicit, active communication channel between agents
and the associated burden of this channel bring about, and what structure would
arise in this channel under the parsimony pressure?

8.2.4 Concomitant Information: a Universal Catalyst?
The previous chapter provided results that indicate that sensory evolution can be catal-
ysed, even under strong evolutionary pressure to be informationally minimal, and intro-
duced concomitant information as the main driver of this process. Again, it is instructive
to note that the possible availability of this additional information is a direct result of the
data processing inequality, one of the fundamental laws of information theory.

The fundamentality of this phenomenon leads me to hypothesise that it may not only
be one of the major drives in sensor evolution, but that it could also play a large role in
the evolution of many other aspects of cognitive systems. For instance, if the concomitant
sensory information of the previous chapter is also relevant to future behaviour, it may
significantly accelerate the evolution of memory.

Moreover, concomitant information is possible in any cognitive aspect where infor-
mational bottlenecks appear. Again taking memory as an example, one can consider the
memory that arose from look-ahead information minimisation in Sec. 5.3: it formed an
information bottleneck carrying predictive information about future states relevant to a
single task. The concept of concomitant information would make the falsifiable prediction
that this bottleneck may also carry additional information needed to ‘unlock’ the relevant
information. This additional information could then act as a catalyst to adapt to different
tasks, similar to the sensory case of the previous chapter.

Finally, taking this concept still further, it may even offer an insight into examples
where relevant information happens to be captured by non-sensory systems, driving them
to be adapted as useful sensors, as happened with lung-based hearing in amphibians [40].
Such directions of further exploration of the phenomena could give important insights
into evolution and the importance of information therein.
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Chapter A

Appendix

A.1 Publications
Peer-reviewed Work Contained in This Thesis

• Sander G. van Dijk, Daniel Polani, and Chrystopher L. Nehaniv. Hierarchical be-
haviours: Getting the most bang for your bit. In Proc. European Conference on
Artificial Life 2009, Budapest, Budapest, Hungary, 2009.

• Sander G. van Dijk, Daniel Polani, and Chrystopher L. Nehaniv. What do you want
to do today? relevant-information bookkeeping in goal-oriented behaviour. In
Harold Fellermann, Mark Dörr, Martin Hanczyc, Lone L. Ladegaard, Sarah Maurer,
Daniel Merkle, Pierre-Alain Monnard, Kasper Stø y, and Steen Rasmussen, editors,
Artificial Life XII: The 12th International Conference on the Synthesis and Simulation
of Living Systems, pages 176–183, Odense, Denmark, 2010. MIT Press.

• Sander G. van Dijk and Daniel Polani. Grounding subgoals in information transi-
tions. In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, pages 105–111, Paris, France, 2011.

• Sander G. van Dijk and Daniel Polani. Look-ahead relevant information: Reducing
cognitive burden over prolonged tasks. In IEEE Symposium on Artificial Life, pages
46–53, Paris, France, 2011.

• Sander G. van Dijk and D Polani. Informational drives for sensor evolution. In
Artificial Life XIII: The 13th International Conference on the Synthesis and Simulation
of Living Systems, pages 333–340, 2012.

• Sander G. van Dijk and Daniel Polani. Informational constraints-driven organiza-
tion in goal-directed behavior. Advances in Complex Systems, 0(0):1350016, 2013.
Electronic version of article published by ACS (c) copyright World Scientific Pub-
lishing Company.

Other Peer-Reviewed Publications

• Valerio Lattarulo and Sander G. van Dijk. Application of the “alliance algorithm”
to energy constrained gait optimization. In The 15th Annual RoboCup International
Symposium, pages 393–404, Istanbul, Turkey, 2011.
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Other Publications

• Yo Sato, Ze Ji, and Sander G. van Dijk. I think i have heard that one before:
Recurrence-based learning of word-like units – learning by ’echoing’ in human-
robot interaction–. In L. Gogate and G. Hollich, editors, Theoretical and Computa-
tionalModels ofWord Learning: Implications for Psychology andArtificial Intelligence,
pages 327–349. IGI Global, 2013.

A.2 Equations, Derivations, and Solutions

A.2.1 Stationary State Distribution
For derivations and proofs of the results in this sub-section, the reader is referred to Norris
[71].

Let p(xt+1|xt ) be a transition probability distribution that describes a first order, sta-
tionary Markov chain (X0, X1, X2, . . .). A distribution p̄(xt ) is then said to be a stationary
distribution for this chain if:

p̄(xt+1) =∑
xt

p̄(xt )p(xt+1|xt ), (A.1)

i.e. if for some t the distribution of X t is equal to p̄ , the distribution of all future state
variables will be the same.

If the Markov chain is irreducible, the stationary distribution exists, and the sys-
tem will converge onto this distribution after enough time. If one constructs the state-
transition matrix T, with its elements set as pi , j = p(xt+1 = j |xt = i ), and treat a distribu-
tion p(xt ) as a vector p, (A.1) can be stated as

p̄ = Tp̄, (A.2)

and the stationary distribution is found by applying T to any initial distribution until
convergence:

p̄ = Tn as n →∞ (A.3)

A quicker way to find p̄ is by constructing a set of linear equations from (A.2), and the
condition 1T p = 1: [

(I−T)
1T

]
p̄ =

[
0
1

]
(A.4)

and solve these for p̄.
The specific transition probabilities that are used in this thesis are:
C-RI p(wt+1|wt ) =∑

at π(at |wt )p(wt+1|wt , at )
LA-RI w mem. p(wt+1,mt |wt ,mt−1) =∑

jt π( jt |wt ,mt−1)1 jt (mt )p(wt+1|wt , fa( jt ))
RGI p(wt+1|wt ) =∑

g ,at π(at |wt , g )p(wt+1|wt , at )p(g )

115



A.2.2 Information Derivatives
What follows are solutions to the derivatives of common information measures, used to
derive the self-consistent solutions to the optimization problems of this thesis. All are
based on the known equality:

∂

∂x
f (x) log g (x) =

[
∂

∂x
f (x)

]
log g (x)+ f (x)

g (x)

[
∂

∂x
g (x)

]

Mutual Information 1

∂

∂p(x̃|x)
I (X ; X̃ ) = ∂

∂p(x̃|x)

∑
x,x̃

p(x, x̃) log p(x̃|x)− ∂

∂p(x̃|x)

∑
x,x̃

p(x, x̃) log p(x̃)

= [p(x) log p(x̃|x)+p(x)]− [p(x) log p(x̃)+∑
x ′

p(x ′|x̃)p(x)]

= p(x) log
p(x̃|x)

p(x̃)

Mutual Information 2

If the Markov property X̃ → X → Y holds, then

∂

∂p(x̃|x)
p(x̃, y) = ∂

∂p(x̃|x)

∑
x

p(x̃|x)p(y |x)p(x) = p(x, y)

∂

∂p(x̃|x)
p(x̃|y) = ∂

∂p(x̃|x)

∑
x

p(x̃|x)p(x|y) = p(x|y)

∂

∂p(x̃|x)
p(x̃) = p(x),

which gives:

∂

∂p(x̃|x)
I (X̃ ;Y ) = ∂

∂p(x̃|x)

∑
x̃,y

p(x̃, y) log p(x̃|y)− ∂

∂p(x̃|x)

∑
x̃,y

p(x̃, y) log p(x̃)

=∑
y

[p(x, y) log p(x̃|y)+p(y)p(x|y)]−∑
y

[p(y, x) log p(y)+p(y |x̃)p(x)]

= p(x)
∑

y
p(y |x) log

p(y |x̃)

p(y)
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Conditional Mutual Information 1

∂

∂p(x̃|x, z)
p(x̃|z) = ∂

∂p(x̃|x, z)

∑
x

p(x̃|x, z)p(x|z) = p(x|z)

∂

∂p(x̃|x, z)
I (X ; X̃ |Z ) = ∂

∂p(x̃|x, z)

∑
x,x̃,z

p(x, x̃, z) log p(x̃|x, z)−

∂

∂p(x̃|x, z)

∑
x,x̃,z

p(x, x̃, z) log p(x̃|z)

= p(x, z) log p(x̃|x, z)+p(x, z)−

p(x, z) log p(x̃|z)−∑
x ′

p(x ′, x̃, z)

p(x̃|z)
p(x|z)

= p(x, z) log
p(x̃|x, z)

p(x̃|z)

A.2.3 Conditional Mutual Information 2
If the Markov properties X̃ → X → Y and X̃ → X → Z hold, then

∂

∂p(x̃|x)
p(x̃, y, z) = ∂

∂p(x̃|x)

∑
x

p(x̃|x)p(y |x, z)p(z|x)p(x) = p(x, y, z)

∂

∂p(x̃|x)
p(x̃|y, z) = ∂

∂p(x̃|x)

∑
x

p(x̃|x)p(x|y, z) = p(x|y, z)

∂

∂p(x̃|x)
p(x̃|z) = ∂

∂p(x̃|x)

∑
x

p(x̃|x)p(x|z) = p(x|z),

which gives

∂

∂p(x̃|x)
I (X̃ ;Y |Z ) = ∂

∂p(x̃|x)

∑
x̃,y,z

p(x̃, y, z) log p(x̃|y, z)− ∂

∂p(x̃|x)

∑
x̃,y,z

p(x̃, y, z) log p(x̃|z)

=∑
y,z

[p(x, y, z) log p(x̃|y, z)+p(x, y, z)]−
∑
y,z

[p(x, y, z) log p(x̃|z)+ p(x̃, y, z)

p(x̃|z)
p(x|z)]

= p(x)
∑

z
p(z|x)

∑
y

p(y |x, z) log
p(y |x̃, z)

p(y |z)

A.2.4 Conditional Mutual Information 3

∂

∂p(x̃|x)
I (X̃ , Z ;Y ) = ∂

∂p(x̃|x)
[I (X̃ ;Y |Z )+ I (Z ;Y )]

= ∂

∂p(x̃|x)
I (X̃ ;Y |Z ),

which results in the solution of the previous section.

117



Bibliography

[1] Kevin R Abbott and Thomas N Sherratt. Optimal sampling and signal detection:
unifying models of attention and speed–accuracy trade-offs. Behavioral Ecology,
24(3):605–616, 2013.

[2] Tom Anthony, Daniel Polani, and Chrystopher L Nehaniv. Impoverished empow-
erment : ‘ meaningful ’ action sequence generation through bandwidth limitation.
In Proc. European Conference on Artificial Life 2009, Budapest, 2009.

[3] S. Arimoto. An algorithm for computing the capacity of arbitrary discrete memo-
ryless channels. Information Theory, IEEE Transactions on, 18(1):14–20, 1972.

[4] Mehran Asadi and Manfred Huber. Accelerating action dependent hierarchical re-
inforcement learning through autonomous subgoal discovery. In In Proceedings of
the ICML 2005 Workshop on Rich Representations for Reinforcement Learning, 2005.

[5] Joseph J Attick. Could information theory provide an ecological theory of sensory
processing? Network, pages 213–251, 1992.

[6] Fred Attneave. Some informational aspects of visual perception. Psychological Re-
view, 61(3):183–193, May 1954.

[7] N. Ay, N. Bertschinger, R. Der, F. Güttler, and E. Olbrich. Predictive information
and explorative behavior of autonomous robots. The European Physical Journal B -
Condensed Matter and Complex Systems, 63(3):329–339, 2008.

[8] Nihat Ay, Holger Bernigau, Ralf Der, and Mikhail Prokopenko. Information-driven
self-organization: the dynamical system approach to autonomous robot behavior.
Theory in Biosciences, 131:161–179, 2012.

[9] Gerald P. Baerends. The functional organization of behaviour. Anuimal Behaviour,
24:726–738, 1976.

[10] Bram Bakker and J. Schmidhuber. Hierarchical reinforcement learning based on
subgoal discovery and subpolicy specialization. In Intelligent Autonomous Systems
8, pages 438–445. IOS Press, 2004.

[11] H. Barlow. Redundancy reduction revisited. Network, 12:241–254, 2001.

[12] HB Barlow. Possible principles underlying the transformation of sensory messages
sensory communication ed wa rosenblith. In W. Rosenblith, editor, Sensory Com-
munication, volume 1, pages 217–234. MIT Press, Cambridge, MA, USA, 1961.

118



[13] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003.

[14] Jonathan Baxter. A Bayesian/information theoretic model of learning to learn via
multiple task sampling. Machine Learning, 28(1):7–39, 1997.

[15] D. A. Baylor, T. D. Lamb, and K. W. Yau. Responses of retinal rods to single photons.
The Journal of physiology, 288:613–634, March 1979.

[16] Baltasar Beferull-Lozano, Robert L. Konsbruck, and Martin Vetterli. Rate-distortion
problem for physics based distributed sensing. In Proceedings of the 3rd international
symposium on Information processing in sensor networks, IPSN ’04, pages 330–339,
New York, NY, USA, 2004. ACM.

[17] Richard Bellman. A markovian decision process. Indiana University Mathematics
Journal, 6:679–684, 1957.

[18] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
3 edition, 2005.

[19] W Bialek, I Nemenman, and N Tishby. Predictability, complexity, and learning.
Neural computation, 13(11):2409–63, November 2001.

[20] Richard E Blahut. Computation of channel capacity and rate-distortion functions.
IEEE Transactions on Information Theory, 18:460–473, 1972.

[21] Alexander Borst and Frédéric E.Theunissen. Information theory and coding. Nature
Neuroscience, 2(11):947–957, 1999.

[22] Matthew M Botvinick. Hierarchical models of behavior and prefrontal function.
Trends Cogn. Sci. (Regul. Ed.), 12(5):201–208, 2008.

[23] T. H. Bullock and F. P. J. Diecke. Properties of an infra-red receptor. J. Physiol.,
134:47–87, 1956.

[24] Daniel a Butts. How much information is associated with a particular stimulus?
Network (Bristol, England), 14(2):177–87, May 2003.

[25] Özgür Şimşek andAndrewG. Barto. Using relative novelty to identify useful temporal
abstractions in reinforcement learning. ACM Press, New York, New York, USA, July
2004.

[26] Philippe Capdepuy, Daniel Polani, and Chrystopher L. Nehaniv. Constructing the
basic umwelt of artificial agents: An information-theoretic approach. In Fernando
Almeida e. Costa, Luis Mateus Rocha, Ernersto Costa, Inman Harvey, and António
Coutinho, editors, Proceedings of the Ninth European Conference on Artificial Life,
pages 375–383. Springer, 2007.

119



[27] James L. Carroll and Kevin Seppi. Task similarity measures for transfer in reinforce-
ment learning task libraries. In The 2005 International Joint Conference on Neural
Networks, (IJCNN 2005), pages 803–808, 2005.

[28] Philip A. Chou and Zhourong Miao. Rate-distortion optimized streaming of pack-
etized media. IEEE Transactions on Multimedia, pages 390–404, 2006.

[29] Andy Clark and David J. Chalmers. The extended mind, 1998.

[30] ColinW. Clark and ReuvenDukas. The behavioral ecology of a cognitive constraint:
limited attention. Behavioral Ecology, 14(2):151–156, 2003.

[31] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, January 1991.

[32] Richard Dawkins. Hierarchical organisation: A candidate principle for ethology.
In P. P. G. Bateson and R. A. Hinde, editors, Growing points in ethology, pages 7–54.
Cambridge University Press, 1976.

[33] Winfried Denk and Watt W. Webb. Thermal-noise-limited transduction observed
in mechanosensory receptors of the inner ear. Phys. Rev. Lett., 63:207–210, Jul 1989.

[34] Ralf Der, Frank Güttler, and Nihat Ay. Predictive information and emergent coop-
erativity in a chain of mobile robots. In Artificial Life XI. MIT Press, 2008.

[35] M R DeWeese and M Meister. How to measure the information gained from one
symbol. Network (Bristol, England), 10(4):325–40, November 1999.

[36] Teresa Esch andWiliam B. Kristan Jr. Decision-making in the leech nervous system.
Integrative and Comparative Biology, 42(4):716–724, 2002.

[37] Daniel Fong, Thomas Kane, and David Culver. Vestigialization and loss of nonfunc-
tional characters. Annual Review of Ecology & Systematics, 26:249–268, 1995.

[38] Antonia F De C Hamilton and Scott T Grafton. Goal representation in human an-
terior intraparietal sulcus. The Journal of neuroscience : the official journal of the
Society for Neuroscience, 26(4):1133–7, January 2006.

[39] Malte Harder, Christoph Salge, and Daniel Polani. Bivariate measure of redundant
information. Physical Review E, 87:012130, 2013.

[40] T. E. Hetherington and E. D. Lindquist. Lung-based hearing in an earless anuron
amphibian. Journal of Comparative Physiology, 184:395–401, 1999.

[41] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620–630,
May 1957.

[42] W R Jeffery. Cavefish as a model system in evolutionary developmental biology.
Developmental biology, 231(1):1–12, March 2001.

120



[43] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence,
101(1):99–134, 1998.

[44] E.R. Kandel, J.H. Schwartz, and T.M. Jessell. Principles of neural science. McGraw-
Hill, Health Professions Division, 2000.

[45] S. Kazemitabar andHamid Beigy. Automatic discovery of subgoals in reinforcement
learning using strongly connected components. Advances in Neuro-Information Pro-
cessing, pages 829–834, 2009.

[46] Ghorban Kheradmandian and Mohammad Rahmati. Automatic abstraction in re-
inforcement learning using data mining techniques. Robotics and Autonomous Sys-
tems, 57(11):1119–1128, 2009.

[47] Young-Han Kim. A coding theorem for a class of stationary channels with feedback.
IEEE Transactions on Information Theory, 54(4):1488–1499, 2008.

[48] K. Kirschfeld. The resolution of lens and compound eyes. In F. Zettler and R. Weiler,
editors, Neural principles in vision, pages 354–370. Springer, 1976.

[49] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Representations
of space and time in the maximization of information flow in the perception-action
loop. Neural computation, 19(9):2387–432, September 2007.

[50] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Keep your options
open: an information-based driving principle for sensorimotor systems. PloS one,
3(12):e4018, January 2008.

[51] A.S. Klyubin, D Polani, and C.L. Nehaniv. Organization of the information flow
in the perception-action loop of evolved agents. In R. S. Zebulum, D. Gwaltney,
G. Hornby, D. Keymeulen, and A. Lohn, J. andStoica, editors, Proceedings of 2004
NASA/DoD Conference on Evolvable Hardware, pages 177–180. Published by the
IEEE Computer Society, 2004.

[52] A.S. Klyubin, D. Polani, and C.L. Nehaniv. Empowerment: a universal agent-centric
measure of control. Procs of the 2005 IEEE Congress on Evolutionary Computation 1
pp.128 -, 135:128–135, 2005.

[53] R. Kortmann, E. Postma, and J. van den Herik. Evolution of visual resolution con-
strained by a trade-off. Artif Life, 7(2):125–145, 2001.

[54] J.R. Krebs and N.B. Davies. Introduction to Behavioural Ecology. Blackwell Science
Ltd, 1993.

[55] I Kupfermann, E.R. Kandel, and S. Iversen. Motivational and addictive states. In
E.R. Kandel, J.H. Schwarz, and T.M. Jessell, editors, Principles of neural science, pages
998–1013. Elsevier, 2000.

121



[56] Reinhard Lakes-Harlan and Klaus-Gerhard Heller. Ultrasound-sensitive ears in a
parasitoid fly. Naturwissenschaften, 79:224–226, 1992.

[57] S B Laughlin, R R de Ruyter van Steveninck, and J C Anderson. The metabolic cost
of neural information. Nature neuroscience, 1(1):36–41, May 1998.

[58] Jonathan Lipton, Gunnar Kleemann, Rajarshi Ghosh, Robyn Lints, and Scott W.
Emmons. Mate searching in caenorhabditis elegans: A genetic model for sex drive
in a simple invertebrate. The Journal of Neuroscience, 24(34):7427–7434, 2004.

[59] Eckehard Liske. The hierarchical organization of mantid behavior. In Frederick R.
Prete, Harrington Wells, Patrick H. Wells, and Lawrence E. Hurd, editors,The Pray-
ing Mantids, pages 224–250. Johns Hopkins University Press, 1999.

[60] Michael L Littman. A tutorial on partially observable markov decision processes.
Journal of Mathematical Psychology, 53(3):119–125, 2009.

[61] Max Lungarella and O. Sporns. Information self-structuring: Key principle for
learning and development. In Proc. of the 4 th Int. Conf. on Development and Learn-
ing, pages 25–30. IEEE, 2005.

[62] Pattie Maes. A bottom-up mechanism for behavior-selection in an artificial crea-
ture. In J.-A. Meyer and S.-W Wilson, editors, From Animals to Animats, pages
169–175. MIT Press/Bradford Books, 1991.

[63] Pattie Maes. Modeling adaptive autonomous agents. Artificial Life, 1(1-2):135–162,
January 1993.

[64] Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in
reinforcement learning via clustering. In ICML ’04: Proceedings of the twenty-first
international conference on Machine learning, page 71, New York, NY, USA, 2004.
ACM.

[65] AndrewC.Mason, Michael Oshinsky, and RonHoy. Hyperacute directional hearing
in a microscale auditory system. Nature, 410:686–690, April 2001.

[66] J. Massey. Causality, feedback and directed information. In Proc. 1990 Intl. Symp.
on Info. Th. and its Applications, pages 27–30. Citeseer, 1990.

[67] B McGonigle. Concurrent disjoint and reciprocal classification by cebus apella in
seriation tasks: Evidence for hierarchical organization. Animal cognition, 2003.

[68] A. McGovern and A.G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In ICML ´01: Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, pages 361–368, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[69] P Read Montague, Steven E Hyman, and Jonathan D Cohen. Computational roles
for dopamine in behavioural control. Nature, 431(7010):760–7, October 2004.

122



[70] E. A. Newman and P. H. Hartline. The infrared ”vision” of snakes. Scientific Ameri-
can, 246(3):98–107, 1982.

[71] James R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics (no 2). Cambridge University Press, 1998.

[72] Fred Paas, Alexander Renkl, and John Sweller. Cognitive load theory and instruc-
tional design: Recent developments. Educational psychologist, 38(1):1–4, 2003.

[73] Judea Pearl. Causality: models, reasoning and inference, volume 29. Cambridge Univ
Press, 2000.

[74] Rolf Pfeifer, Max Lungarella, Olaf Sporns, and Yasuo Kuniyoshi. On the
information-theoretic implications of embodiment – principles and methods. In
50 Years of Artificial Intelligence, volume 4850, pages 76–86. Springer-Verlag, 2007.

[75] D. Polani. An informational perspective on how the embodiment can relieve cog-
nitive burden. In IEEE Symposium on Artificial Life, pages 78 – 85, 2011.

[76] Daniel Polani. Information: currency of life? HFSP journal, 3(5):307–16, October
2009.

[77] Daniel Polani, C. Nehaniv, Thomas Martinetz, and J.T. Kim. Relevant information
in optimized persistence vs. progeny strategies. In Artificial Life X: Proceedings of
the Tenth International Conference on the Simulation and Synthesis of Living Systems,
pages 337–343. Citeseer, 2006.

[78] J.R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[79] Gabriel A Radvansky, Sabine A Krawietz, and Andrea K Tamplin. Walking through
doorways causes forgetting: Further explorations.Quarterly journal of experimental
psychology, 64(8):1632–45, August 2011.

[80] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd
Edition). Prentice Hall, December 2002.

[81] Marco Saerens, Youssef Achbany, François Fouss, and Luh Yen. Randomized
shortest-path problems: Two related models. Neural Comput., 21(8):2363–2404,
2009.

[82] Naohiro Saito, Hajime Mushiake, Kazuhiro Sakamoto, Yasuto Itoyama, and Jun
Tanji. Representation of immediate and final behavioral goals in the monkey pre-
frontal cortex during an instructed delay period. Cerebral cortex (New York, N.Y. :
1991), 15(10):1535–46, October 2005.

[83] Christoph Salge and Daniel Polani. Digested information as an information the-
oretic motivation for social interaction. Journal of Artificial Societies and Social
Simulation, 14(5), January 2010.

123



[84] Cosma Rohilla Shalizi. Causal Architecture, Complexity and Self-Organization in
Time Series and Cellular Automata. PhD thesis, 2001.

[85] Ohad Shamir, Sivan Sabato, and Naftali Tishby. Learning and generalization with
the information bottleneck. InAlgorithmic LearningTheory, pages 92–107. Springer,
2008.

[86] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–656, 1948.

[87] Claude. E. Shannon. The zero-error capacity of a noisy channel. IRE Transactions
on Information Theory, 1956.

[88] Özgür Şimşek and Andrew G. Barto. Skill characterization based on betweenness.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 1497–1504, 2009.

[89] Özgür Şimşek, A.P. Wolfe, and A.G. Barto. Identifying useful subgoals in reinforce-
ment learning by local graph partitioning. In Proceedings of the 22nd international
conference on Machine learning, pages 816–823. ACM, 2005.

[90] Sinan Sinanovic and Don H. Johnson. Toward a theory of information processing.
Signal Processing, 87:1326–1344, 2007.

[91] Noam Slonim. The Information Bottleneck: Theory and Applications. PhD thesis,
Hebrew University, 2002.

[92] Noam Slonim, Nir Friedman, and Naftali Tishby. Multivariate information bottle-
neck. Neural computation, 18(8):1739–89, August 2006.

[93] Olaf Sporns and Max Lungarella. Evolving coordinated behavior by maximizing
information structure. In Artificial life X: proceedings of the tenth international con-
ference on the simulation and synthesis of living systems, pages 323–329. Citeseer,
2006.

[94] Susanne Still. Information-theoretic approach to interactive learning. EPL (Euro-
physics Letters), 85:28005, 2009.

[95] Susanne Still and Doina Precup. An information-theoretic approach to curiosity-
driven reinforcement learning. Theory in Biosciences, 2011. To appear.

[96] Martin Stolle and Doina Precup. Learning options in reinforcement learning. Lec-
ture Notes in Computer Science, 2371:212–223, 2002.

[97] Richard S Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, March 1998.

[98] Richard S Sutton, Doina Precup, and Satinder Singh. Betweenmdps and semi-mdps:
a framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112(1-2):181–211, 1999.

124



[99] S. Tatikonda. The sequential rate distortion function and joint source-channel code-
ing with feedback. In 41st Allerton Conference on Communication, Control, and Com-
puting, 2003.

[100] S. Tatikonda and S. Mitter. Control under communication constraints. IEEE Trans-
actions on Automatic Control, 49(7):1056–1068, July 2004.

[101] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. The Journal of Machine Learning Research, 10:1633–1685, De-
cember 2009.

[102] Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning.
In Advances in Neural Information Processing Systems (NIPS) 7, 1995.

[103] Niko Tinbergen. The Study of Instinct. Clarendon PRess, 1951.

[104] Naftali Tishby, Fernando C Pereira, andWilliam Bialek. The information bottleneck
method. In Proc. of the 37-th Annual Allerton Conference on Communication, Control
and Computing, pages 368–377, 1999.

[105] Naftali Tishby and Daniel Polani. Information theory of decisions and actions. In
Vassilis Cutsuridis, Amir Hussain, and John G. Taylor, editors, Perception-Action
Cycle, Springer Series in Cognitive and Neural Systems, pages 601–636. Springer
New York, 2011.

[106] Emanuel Todorov. Efficient computation of optimal actions. Proceedings of the
National Academy of Sciences of the United States of America, 106(28):11478–83, July
2009.

[107] H. Touchette and S. Lloyd. Information-theoretic approach to the study of con-
trol systems. Physica A: Statistical Mechanics and its Applications, 331(1-2):140–172,
2004.

[108] Hugo Touchette and Seth Lloyd. Information-theoretic limits of control. Physical
Review Letters, 84(6):1156–1159, 2000.

[109] Sander G. van Dijk and Daniel Polani. Grounding subgoals in information transi-
tions. In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, pages 105–111, Paris, France, 2011.

[110] Massimo Vergassola, Emmanuel Villermaux, and Boris I. Shraiman. ’infotaxis’ as a
strategy for searching without gradients. Nature, 445(7126):406–409, January 2007.

[111] Satosi Watanabe. Information-theoretical aspects of inductive and deductive infer-
ence. IBM Journal of Research and Development, 4(2):208–231, 1960.

[112] A. C. Yu and D. Margoliash. Temporal hierarchical control of singing in birds.
Science, 273(5283):1871–1875, September 1996.

125



[113] Lei Zhao, Haim H Permuter, Young-Han Kim, and Tsachy Weissman. Universal
estimation of directed information. In IEEE International Symposium on Information
Theory, pages 1433–1437, 2010.

[114] B.D. Ziebart, Andrew Maas, J.A. Bagnell, and A.K. Dey. Maximum entropy inverse
reinforcement learning. In Proc. AAAI, pages 1433–1438, 2008.

126


