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ABSTRACT 
 

Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors and 
members of the nuclear hormone receptor superfamily. PPARβ/δ is ubiquitously expressed and 
has a central role in homeostasis, and has been suggested as a therapeutic target for a number of 
metabolic and cardiovascular disorders. This important nuclear receptor controls transcription 
under different modes of molecular activity which directly control the cellular function and fate of 
tissues. This complex activity of induction and transrepression of gene expression (with and without 
exogenous ligands) is poorly understood and yet understanding this molecular control through 
novel drug development would led to control over a key molecular switch in all cells. This review 
outlines the main molecular mechanisms of PPARβ/δ, and links the modes of activity to the 
signalling pathways in inflammation, proliferation and senescence, with the goal to understand how 
this will translate into novel drug design to control the PPARβ/δ molecular switch. 
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ABBREVIATIONS 
 
apoE: Apolipoprotein E; Bcl6:B cell lymphoma-6; ECs: Endothelial cells; GSK: Glaxo Smith Kline; 
HDL cholesterol: High Density Lipoprotein; IL-6: Interleukin 6; LDL cholesterol: Low Density 
Lipoprotein; MAPK: Mitogen-activated protein kinase; NF-κB: Nuclear factor κB; PDGF: Platelet 
derived growth factor; PPARs: Peroxisome proliferator-activated receptors; PPRE: peroxisome 
proliferator-response elements; ROS: Reactive oxygen species; RXR: Retinoid X receptor; TNF-α: 
Tumour necrosis factor alpha; VSMCs: Vascular smooth muscle cells; VCAM-1: Vascular cell 
adhesion protein 1. 
 
1. INTRODUCTION 
 
Peroxisome proliferator activated receptors 
(PPARs) are ligand-activated transcription 
factors and members of the nuclear hormone 
receptor superfamily. PPARs were originally 
identified as members of the nuclear receptor 
superfamily that are activated by peroxisome 
proliferators, whereby they received their name 
[1]. The PPAR family consists of three isoforms, 
PPARα, PPARβ/δ and PPARγ with different 
tissue expression profiles: PPARα is expressed 
in tissues of high fatty acid catabolism, most 
importantly the liver, kidneys, heart and brown 
adipose tissue; PPARγ is found as three 
isoforms, PPARγ1 is expressed in the gut, brain, 
vascular cells and immune cells, PPARγ2 in 
adipose tissue, and PPARγ3 in adipose and large 
intestine [2]; PPARβ/δ is ubiquitously expressed, 
although more highly active in skeletal muscle, 
arteries and endothelium [3,4]. PPARβ/δ is 
present in all animal cells, from C. elegans and 
drosophila to all mammals tested [5], however 
the biology of how this ubiquitous protein controls 
gene expression is complex and poorly 
understood and is yet to be fully explored. 
Signalling via PPARβ/δ has a number of effects 
on cell function, including lipid metabolism [6], 
glucose metabolism [7], insulin sensitivity [7], 
inflammation [8] and cell proliferation [9], 
suggesting that the control over such an 
important molecular switch is a desirable goal for 
research.  
 

There are a large number of PPARβ/δ agonists, 
both endogenously produced (prostacyclin, fatty 
acids including the ‘omega 3’ fatty acids, 
arachidonic acid and linoleic acid [10]) although 
very little is known about their biological activity 
within the cell via PPARβ/δ. The PPARβ/δ 
agonist GW501516 completed proof-of-concept 
clinical trials successfully for dyslipidaemia [11] 
and hypercholesteremia [6], indicating that the 
control of PPARβ/δ activity has a significant 
effect on lipid profiles in metabolic syndrome-like 
patients. However, further clinical trials with 

GW501516 were halted due to a suspected link 
with tumour development [6,12] and Glaxo Smith 
Kline (GSK) did not continue investigating with 
GW501516. Other studies have suggested 
PPARβ/δ agonists (GW501516 and GW0742) as 
treatments for pulmonary hypertension [13], 
atherosclerosis [14,15] and kidney disease [16]. 
Taken together, it is clear that our understanding 
of PPARβ/δ in health and disease is not 
sufficient to rule out PPARβ/δ as a therapeutic 
target. 

 

2. PPARβ/δ MULTIPLE MECHANISMS OF 
ACTION 

 

2.1 Induction Mode 

 
PPARβ/δ forms a complex with retinoid X 
receptor (RXR) and together as a heterodimer, 
regulate the target genes by binding to the 
promoter PPRE (peroxisome proliferator-
response elements). The promoter is composed 
of the repetition of the consensus sequence 
AGGTCA separated by one nucleotide, whereas 
PPARs are orientated to the 5’-end and RXR to 
the 3’-end [17]. In the absence of ligand, co-
repressor proteins are bound to the heterodimer 
and prevent binding to the PPRE sites. The 
presence of ligand induces a conformational 
change in PPARs that releases the co-repressor 
proteins and allows the binding to the promoter 
[3,4]. 

 

2.2 Transrepression Mode 

 
PPARβ/δ regulates gene expression in a PPRE-
independent manner through the suppression of 
other transcription factors such as nuclear factor 
κB (NF-κB) [18], AP-1 [19] and B cell lymphoma-
6 (Bcl6) [14,20]. Once PPARβ/δ is non-ligand 
bound it binds to the nuclear factor and 
suppresses the production of numerous 
cytokines, chemokines, and pro-inflammatory 
genes such as VCAM-1 and E-selectin [14]. 
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Control over other nuclear factors can occur 
different ways:  
 

1) Direct competition between PPARs and 
other transcription factors for limiting 
amounts of shared co-activators [19]. 

2) Direct interaction of the PPAR-RXR 
heterodimer with other transcription factors 
preventing binding with their promoters 
and thus inhibiting gene transcription [21]. 

3) PPAR-RXR heterodimer inhibition of 
mitogen-activated protein kinase (MAPK) 
phosphorylation and activation, resulting in 
the inhibition of transcription factors [22]. 

 

2.3 Direct, Non-genomic Actions of 
PPARβ/δ 

 

Surprisingly, PPARs also have non-genomic and 
off-target effects (Table 1). For example, the 
activated PPARβ/δ receptor binds directly to 
PKCα in platelets to inhibit aggregation [23], 
inducing vasodilatation in arteries, possibly 
mediated by direct interaction with RhoA [13,24], 
activation of PI3-Akt-eNOS pathways [25] or 
activation of K+ channels [26]. 
 

2.4 Transcriptomics 
 

A key insight into the complexity of transcription 
and transrepression has been provided through 
microarray analysis of mouse keratinocytes, 
where GW0742 was used as the principle 
agonist in PPARβ/δ+/+ and PPARβ/δ-/- mice. 
Khozoie et al. [28] organised the genes into four 
main groups plus a further 4 minor groups 
(constituting 5% of responses collectively)      
(Fig. 1). 
 

This model compares well with a study in human 
myofibroblasts, where Adhikary et al. [29].  used 
gene silencing to parallel the use of knockouts by 

Khozoie et al. [28]. By exposing cells to 
GW501516 and comparing the results from 
siPPARβ/δ to normal untreated cells, they 
developed a three mode of action model for 
PPARβ/δ: Group I; Transrepression no 
exogenous ligand, Group II; induction or 
repression with exogenous ligand, and Group III; 
induction no exogenous ligand [29]. Strikingly, 
both studies [28,29] indicate that PPARβ/δ 
induces gene transcription when there is no 
exogenous ligand (Fig. 1), although this is 
explained by Khozoie et al. [28] as likely to be 
due to gene induction by endogenous ligands 
found within the cell; however, few studies have 
shown the extent to which these ligands induce 
cellular effects by binding to PPARβ/δ. The 
models so far proposed to explain the different 
modes of PPARβ/δ action may be further 
complicated by endogenous ligands, which may 
account for induction with no exogenous ligand, 
suggesting that signalling by different ligands 
would have a large impact on the functional 
outcome for the cell [28,30]. While this is a novel 
concept to explain the diverse range of effects of 
PPARβ/δ in the control of cellular function, a 
parallel argument has been made on the cause 
of the side effects of glucocorticoids. It has been 
argued that subtle changes to transcriptional 
activity of glucocorticoid receptors would alter the 
related side effects of these drugs as opposed to 
the traditional view that the benefits of 
glucocorticoids are due to the inhibition of 
transcription and the side effects due to 
activation of transcription by the glucocorticoid 
receptor [31]. Implications for drug design for 
PPARβ/δ therefore needs to take this difference 
into account. It is tempting to think that direct 
control of the PPARβ/δ molecular switch would 
be possible by tipping the balance between 
endogenous-like ligands and exogenous ligands.

 
Table 1. Non-genomic effects of PPARβ/δ activation 

 
Species Tissue Effect References 
Cell line HEK 293 cells Coronary vasoconstriction. [24] 
Rat Endothelium from aorta rings Relaxation of aorta. [25] 
Rat Heart Increment of cardiac contractility 

but not heart rate. 
[27] 

Rat and mice Pulmonary arteries, aorta and 
mesenteric arteries 

Relaxation of vessels. [13] 

Human and rat Platelets Inhibits platelet activation and 
aggregation. 

[23] 

Human Umbilical vein endothelial cells 
(HUVECs) 

NO production and 
phosphorylation of eNOS. 

[25] 

Human PASMCs and pulmonary arteries Vascular relaxation. [26] 
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Fig. 1. Transrepression and induction modes of PPARβ/δ; the type of molecular control 

exerted by the receptor relates to the functional outcome of the cell; based on published 
microarray data [28] 

Group I: Repression with no exogenous ligand (185 genes; involved in cell adhesion and communication, 
developmental processes and fatty acid and lipid transport, eg. Slc43a2). 

Group II: Induction with no exogenous ligand (297 genes; involved in calcium signalling, cell communication, 
proliferation and differentiation, oncogenesis and a wide variety of other functions egSlc26a9). 

Group III: Induction with exogenous ligand (71 genes; fatty acid beta oxidation and metabolism, lipid fatty acid 
steroid metabolism egCes5 and Hdhb). 

Group IV: Repression of other nuclear receptors (such as BCl6) with exogenous ligand (28 genes; including 
Pmp22 and Morn4) 

 

Understanding how PPARβ/δ switches between 
modes of action, and how this determines 
cellular function is therefore of great interest and 
could hold the key to the development of many 
non-communicable diseases. Whether 
differences in endogenous and exogenous 
ligands induce slightly different genes in different 
cells is a great possibility, and one that has not 
been so far explored. The question that needs to 
be addressed is not whether activation leads to 
proliferation and cancer, but whether the type of 
agonist activation and the subsequent molecular 
control can be adjusted to place the cell into a 
non-proliferative and non-inflammatory state, i.e. 
with a Group III profile [28] of gene expression. A 
parallel argument has been made on the cause 
of the side effects of glucocorticoids; the type of 
ligand determines whether the glucocorticoid 
receptor forms a homodimer, and the 
subsequent type of transrepression and 
transcriptional control exerted leads to change in 
cellular function [31]. 
 

3. CONTROL OF METABOLIC DISEASES 
 
The benefits of PPARβ/δ agonist GW501516 are 
highlighted by their control of dyslipidaemia [11] 
and hypercholesteremia [6] in patients, with 
significant changes to the lipid profiles including 
increases in HDL cholesterol and reductions in 
LDL cholesterol, triglycerides, apoB and free fatty 
acids [6]. Other studies have shown the key 

importance PPARβ/δ has in controlling 
metabolism; agonists for this receptor alleviate 
hyperglycaemia and improve insulin sensitivity in 
diabetic db/db mice [7], and expression of 
PPARβ/δ is decreased significantly in hearts 
from streptozotocin (STZ) treated rats (a Type I 
model of diabetes). GW501516 significantly 
reduced the size of established atherosclerotic 
lesions and increased HDL in apoE

-/-
 mice, 

although they had no effect on total cholesterol 
levels [32]. This phenomenon was not mirrored in 
hypercholesterolemia mice with advanced 
lesions, where PPARα and PPARγ agonists but 
not PPARβ/δ agonist inhibited the development 
of atherosclerosis and foam cells formation [33].  
 

3.1 Role of PPARβ/δ in the Inflammatory 
Responses 

 
Several cellular pathways that have been 
recently identified describe powerful PPARβ/δ 
anti-inflammatory effects, and transrepression of 
Bcl6 is likely to be a key mechanism. In the 
absence of ligand, PPARβ/δ acts in the 
transrepression mode by sequestering Bcl6, 
which leads to a pro-inflammation response. 
Ligand activation of PPARβ/δ releases Bcl6, 
which is free to repress inflammatory gene 
expression (Fig. 2). Therefore care needs to be 
given when using experiments involving 
PPARβ/δ

-/-
, where Bcl6 would be permanently in 

the activated free state, thus falsely resembling 

Group II: Induction Mode
No exogenous ligand

Group I: Transrepression mode
no exogenous ligand

PPARβδ Bcl-6

Group III: Induction Mode
With exogenous ligand

Group IV: Transrepression mode
With exogenous ligand

RXRPPARβδ Bcl-6PPARβδ

RXRPPARβδ
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the anti-inflammatory effects of PPARβ/δ 
activation [34]. 
 
In addition, the Akt/GSK-3β/NF-kB inflammatory 
pathway has been shown to be involved in 
PPARβ/δ activation [34]. Akt is a member of the 
phosphoinositide 3-kinases signal transduction 
enzyme family that reduces apoptosis and 
inflammation when phosphorylated [35]. Ligand 
activated PPARβ/δ contributes to the 
phosphorylation of Akt, and hence, contributes to 
the anti-inflammatory effects. On the other hand, 
GSK-3β is a serine-threonine kinase which is 
inactivated by phosphorylation, and it is 
regulated by multiple signalling pathways 
including the Akt pathway [35]. NF-kB is a 
transcriptional factor that regulates the 
transcription of genes involved in local and 
systemic inflammation, such as cytokines, 
chemokines, cell adhesion molecules, apoptotic 
factors, and other mediators [36] and several 
studies have reported an association between 
GSK-3β and NF-KB [37]. Taking this together, it 
is likely that activation of PPARβ/δ 
phosphorylates and activates the Akt pathway 
[34], which goes on to phosphorylate and hence 
inhibit GSK-3β, resulting in the inhibition of NF-
κB and its subsequent pro-inflammatory effects.  
 
The tumour necrosis factor alpha (TNF-α) 
induces the expression of the pro-inflammatory 
molecules VCAM-1 and E-selectin in endothelial 
cells (ECs), which is suppressed by PPARβ/δ 
activation [38]. Interestingly, the 5’-flanking 
regulatory regions of VCAM-1 and E-selectin 
genes lack PPRE, which means that these 
proteins are regulated via transrepression rather 
than induction mechanism of PPARβ/δ, and 
transcription factors such as NF-kB might play an 
important role [38]. 
 
There are a few studies involving interleukin 6 
(IL-6) that suggest a similar anti-inflammatory 
mechanism. IL-6 is a molecule related to the 
development of rheumatoid arthritis and other 
inflammatory disorders, atherosclerosis, 
osteoporosis and septic shock [39]. The 
activation of PPARβ/δ inhibits IL-6-mediated 
inflammatory responses and subsequent acute 
phase reaction in the liver by increasing the 
phosphorylation of STAT-3 [34,40]. Activation of 
PPARβ/δ in adipocytes also inhibits NF-kB and 
consequently IL-6 expression  [41]. 

 
Changes in PPARβ/δ activity leads to changes in 
the induction of gene expression of three 

important anti-oxidative stress enzymes, SOD1, 
catalase and thioredoxin, which are key in the 
elimination of reactive oxygen species (ROS) 
from the cell [41]. A new mechanism (induction 
and transrepression) for the anti-inflammatory 
effects of PPARβ/δ in ECs has been proposed, 
namely that the activation of PPARβ/δ leads to 
the activation of the target genes, including the 
antioxidative enzymes SOD1, catalase and 
thioredoxin (induction), and releases Bcl6, which 
represses the transcription of pro-inflammatory 
genes such as VCAM-1 and E-selectin 
(transrepression). Such a synergistic action leads 
to a potent inhibition of endothelial activation and 
therefore to the vascular protection. On the 
contrary, the activation of PPARα and PPARγ, 
but not PPARβ/δ leads to the inhibition of 
allergen-induced airway inflammation in a murine 
model of asthma, and what is more, this 
inhibition does not involve the NF-KB pathway 
[42]. Additionally, in other cell types such as 
epithelial cells, eosinophils, neutrophils, and 
lymphocytes, the PPARβ/δ activation was 
ineffective in inhibiting inflammatory processes 
[42]. 
 

3.2 Role of PPARβ/δ in Cell Proliferation, 
Migration and Angiogenesis 

 
A number of growth factors and cytokines 
participate in the processes of abnormal vascular 
remodelling, inflammation, and cell proliferation 
involved in vascular diseases. PDGF is a potent 
mitogen involved in cell proliferation and 
migration that induces the expression of CDK2, 
CDK4, Cyclin D1 and Cyclin D3, enzymes that 
stimulate quiescent vascular smooth muscle cells 
(VSMCs) to enter the cell cycle [43].It was 
reported that PDGF increases the expression of 
PPARβ/δ in VSMCs from rats and humans; 
moreover, the over expression of PPARβ/δ 
promotes the proliferation of in vitro VSMCs from 
rat [44,45]. However, ligand-activation of 
PPARβ/δ inhibits PDGF, and hence, inhibits cell 
proliferation and migration of in vitro human and 
rat arterial VSMCs as well as in vivo rat VSMCs 
[45,46]. This suggests that PPARβ/δ regulates 
cell proliferation through the modulation of cell 
cycle regulatory genes. Interestingly, it has 
described a non-transcriptional inhibitory effect of 
L-165041 after 1 h treatment [46]. The authors of 
this study proposed the cooperation between the 
non-genomic effect and the conventional 
genomic effect of L-165041 to produce anti-
proliferative effect of L-165041 through a Src and 
ERK1/2 dependent pathway.  
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Fig. 2. Switch between transrepression and induction mode of PPARβ/δ 
 
PPARβ/δ has a profound effect on skin wound 
healing, having a direct effect on two 
phosphatidylinositol 3-kinase-dependent 
pathways, namely, the Akt and the Rho-GT Pase 
pathway by amplifying keratinocyte responses to 
chemotactic signalling and inducing cell 
migration [47] and protect cells against apoptosis 
[48]. 
 
IL-1β also induces proliferation and migration of 
VSMCs through a TGF-β- and IL-1Ra mediated 
process, which is attenuated by GW501516. 
Furthermore, it was found that ERK is also 
involved in this pathway, since inhibition of ERK 
significantly reduced the effects of GW501516 
[49]. On the contrary, the ligand-activation of 
PPARβ/δ induces proliferation and angiogenesis 
of human endothelial cells through a VEGF-
dependent mechanism [50]. In addition, 
proliferation of cells after PPARβ/δ-activation has 
also been reported in human keratinocytes [51] 
and colorectal tumourcells of mice [52]. 
 

3.3 Role of PPARβ/δ in Senescence 

 
It has been demonstrated that angiotensin II 
(Ang II) promotes senescence of vascular cells, 
leading to vascular remodelling and 
atherosclerosis [53]. Ligand-activated PPARβ/δ 
prevents the Ang II-induced cellular senescence 
through two different mechanisms, induction and 
transrepression. The induction mode was 
described both in vitro (human aortic VSMCs) 
and in vivo (mice) [53]. It was shown that ligand-
activated PPARβ/δ reduces the intracellular ROS 
by the binding of PPARβ/δ to the PPRE of the 
PTEN gene, which up-regulates anti-oxygen 
genes and protects against senescence; at the 
same time, the transrepression of Bcl6 by 
PPARβ/δ also plays a role in senescence. A 
recent study in rat cardiac cells showed that the 
PPARβ/δ ligand L-165041 increased Bcl6 

expression via p38, JNK and Akt activation, and 
also induced the release of Bcl6 from PPARβ/δ, 
thereby enabling Bcl6 to bind to its anti-
senescent genes [54]. This study went on to 
show that the protective effects of PPARβ/δ 
exogenous agonists involve mitogen-activated 
protein kinases (MAPKs) and Akt 
activation.GW501516 ligand-activation of 
PPARβ/δ also produces anti-senescence effect 
in cultured human coronary artery endothelial 
cells by up-regulation of SIRT-1 [53]. Although 
the transcriptional regulation of SIRT1 is poorly 
understood, it is known to be PPRE-independent; 
hence, it could be another example of trans-
repression mode. In this context, PPARβ/δ may 
serve as an anti-senescent mediator in age-
related vascular changes such as 
atherosclerosis. 
 

3.4 Dual Effect of PPARβ/δ 
 
There are great discrepancies in the literature, 
which may be due to differences in experimental 
variables. PPARβ/δ receptor appears to be a 
sensitive molecular switch, that has both 
endogenous and exogenous ligands, and which 
controls cellular function through changes in very 
small concentration range [55]. Added to this, in 
any cell or tissue, the activity of PPARβ/δ may 
also depend on its promoter activity and relative 
expression, as well as presence and activity of 
co-repressor and co-activator proteins [3,28]. It is 
clear though that PPARβ/δ has a dual effect in 
the cell and indeed acts as a molecular switch 
having both pro- and anti- effects in 
inflammation, proliferation and differentiation. It 
has been shown that GW0742 is capable of 
behave as a PPARβ/δ agonist and antagonist, 
activating transcription at lower concentrations 
(in the order of nM) and inhibiting this effect at 
higher concentrations(in the order of µM) [56]. 
The mechanism by which GW0742 inhibits 

PPARβδ RXR PPARβδ Bcl-6 PPARβδ 

+ PPARβδ 
agonist 

Bcl-6 

 

  

Transrepression mode 
PPARβδsequesters Bcl-6 
and prevents 
transcription 

Induction Mode 
Ligand bound – PPARβδ 
heterodimerises with RXR 
and leads to gene 
transcription 
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activity is not absolutely clear, but it has been 
suggested that GW0742 inhibits PPARβ/δ by 
competing with the co-activators [56]. 
Alternatively  the large ligand binding pockets of 
the receptor that can accommodate more than 
one ligand and high GW0742 concentrations 
could result in unusual PPAR: ligand-
stoichiometries that could trigger inactive 
receptor conformations [56], an issue that 
requires further investigation. 
 
4. CONCLUSION 
 
The models of molecular control exerted by 
PPARβ/δ have given us a valuable insight into 
the complex actions of this receptor on control of 
key regulatory gene expression. However, these 
models are based on the effects of addition of 
exogenous ligands and do not provide any 
insight as to the extent of endogenous ligand 
binding and resultant gene expression. Exploring 
the pathways associated with PPARβ/δ 
signalling in inflammation and senescence 
indicates that there is a great deal to yet 
understand in terms of mode of action and 
cellular function, and moves the study of this 
interesting nuclear receptor away from the 
metabolic diseases and towards the 
cardiovascular. How we control the molecular 
switch with different types of ligands is an area 
that needs a great deal of consideration. 
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