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ABSTRACT

The bulk of p isotopes is created in the ’gamma processes’ mainly by se-

quences of photodisintegrations and beta decays in explosive conditions in Type

Ia supernovae (SNIa) or in core collapse supernovae (ccSN). The contribution

of different stellar sources to the observed distribution of p-nuclei in the Solar

System is still under debate. We explore single degenerate Type Ia supernovae

in the framework of two-dimensional SNIa delayed-detonation explosion models.

Travaglio et al. (2011) (hereafter TRV11) discussed the sensitivity of p-nuclei pro-

duction to different SNIa models, i.e. delayed detonations of different strength,

deflagrations, and the dependence on selected s-process seed distributions. Here

we present a detailed study of p-process nucleosynthesis occuring in SNIa with

s-process seeds at different metallicities. Based on the delayed-detonation model

DDT-a of TRV11, we analyze the dependence of p-nucleosynthesis on the s-seed

distribution obtained from different strengths of the 13C-pocket. We also demon-

strate that 208Pb-seed alone changes the p-nuclei production considerably. The

heavy-s seeds (140 ≤ A < 208) contribute with about 30-40% to the total light-p

nuclei production up to 132Ba (with the exception of 94Mo and 130Ba, to which

the heavy-s seeds contribute with about 15% only). Using a Galactic chemical

evolution code (see Travaglio et al. 2004) we study the contribution of SNIa to

the solar stable p-nuclei. We find that explosions of Chandrasekhar-mass sin-

gle degenerate systems produce a large amount of p-nuclei in our Galaxy, both

in the range of light (A ≤ 120) and heavy p-nuclei, at almost flat average pro-

duction factors (within a factor of about 3). We discussed in details p-isotopes

such as 94Mo with a behavior diverging from the average, which we attribute to

uncertainties in the nuclear data or in SNIa modelling.

Li et al. (2011) find that about 70% of all SNeIa are normal events. If these are
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explained in the framework of explosions of Chandrasekhar-mass white dwarfs

resulting from the single-degenerate progenitor channel, we find that they are

responsible for at least 50% of the p-nuclei abundances in the Solar System.

Subject headings: hydrodynamic, supernovae, nucleosynthesis, p-process
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1. Introduction

The origin of heavy nuclei was discussed by Cameron (1957), who called 35 species

excluded isotopes. Indeed they are outside of both the s and r neutron capture paths,

and they are typically 10−1000 times less abundant than the corresponding s- and/or

r-isotopes in the Solar System. The origin of p-nuclei was investigated starting with the

pioneering work of Cameron (1957) and Burbidge et al. (1957), and later by Audouze

& Truran (1975) and Arnould (1976). The first work analyzing the possibility of having

efficient photodisintegrations in Chandrasekhar-mass SNIa explosions was published by

Howard, Meyer & Woosley (1991). The initial s-seed distribution they used was derived

from helium flashes as calculated by Howard et al. (1986). In Figure 2 of that work, the

authors claim that they can reproduce the abundance pattern of all p-nuclei, including

light-p nuclei, within a factor of about three. However, they obtained an overproduction of

74Se, 78Kr, and 84Sr. The p-process abundances of these three isotopes are very sensitive to

the proton density, which the authors considered rather uncertain. They also obtained a

rather low production of 94Mo and 96Ru with respect to the other light p-nuclei. A detailed

discussion on these light p-nuclei will be given in Section 4 of the present paper. Later

Goriely et al. 2002, Goriely et al. 2005, and Arnould & Goriely 2006, analyzed the p-process

production in He-detonation models for sub-Chandrasekhar mass WDs. These authors

considered as seeds s-process solar abundances. They found Ca to Fe to be overabundant

with respect to p-nuclei (with the exception of 78Kr) by a factor of ≃100. They concluded

that a He detonation is not an efficient scenario for the production of the bulk Solar-System

p-isotopes. Kusakabe et al. (2011) presented p-process nucleosynthesis calculations in

a CO-deflagration model of SNIa, i.e., the W7 model of Nomoto et al. (1984). Similar

to Howard et al. (1986), they assumed enhanced s-seed distributions using the classical

s-process analysis, testing two different mean neutron exposures τo, a flat distribution for

τo = 0.30 mb−1, and a decreasing s-process distribution corresponding to τo = 0.15 mb−1.
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They noticed that for a flat s-seed enhanced distribution the production factors of light

p-nuclei show a strong deficiency in the range 78Se to 98Ru. From this, they concluded that

SNIa may have contributed to the enrichment of p-nuclei more effectively than ccSNe.

In our previous TRV11 paper, we obtained a consistent production of p-nuclei

in the single-degenerate Chandrasekhar mass WD explosion scenario. We presented

two-dimensional hydrodynamic models of SNIa. The corresponding nucleosynthesis was

calculated in a post-processing step following the thermal history of Lagrangian tracer

particles. We found a significant production of p-nuclei from these stellar explosions, at the

same level compared to 56Fe for light as well as heavy p-nuclei. We demonstrated that our

model is able to produce light and heavy p-nuclei in one single process. In our analysis, we

assumed enhanced s-seed distributions directly obtained from a sequence of thermal pulses

in the material accreted onto the exploding white dwarf from a normal companion star

(see Gallino et al. 1998). In the context of light-p nuclei production, the major problem

discussed in TRV11 is the resulting abundance of 94Mo, found to be far too low relative

to the abundances of the other light-p nuclei. We also found an important contribution

from p-process nucleosynthesis to 80Kr and 86Sr (originally considered s-only nuclei), to

the neutron magic 90Zr, and to the neutron-rich 96Zr (due to neutron captures from the

residual abundance of 22Ne during the explosive phase). Concerning the heavy p-isotopes,

the s-process nature of 152Gd has been later confirmed by different works on s-process

nucleosynthesis (Gallino et al. 1998; Bisterzo et al. 2010), where a predominant s-process

origin was demonstrated (see also discussion in TRV11).

In the present paper we investigate for the first time in the literature the effect of

metallicity on p-process nucleosynthesis in SNIa, starting with a range of s-seed distributions

obtained for different metallicities. Using a simple chemical evolution code (Travaglio et

al. 2004), we estimate the contribution of SNIa to the solar p-process composition. The
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same study was recently done for radiogenic p-isotopes by Travaglio et al. (2014).

It is currently impossible to discuss the interplay between the role of SNeIa and ccSNe

in the production of p-nuclei in the Galaxy. Infact a complete study of p-nucleosynthesis

with metallicity is missed for ccSNe. But also from the observational point of view,

unfortunatey there is no way to measure observed chemical evolution of p-nuclei since they

are too rare with respect to the s- and r-fractions. For example, there are recent attempts

to observe elements like Mo and Ru (very debated for p-process nucleosynthesis studies)

in field stars of the Galaxy at different metallicities (see e.g. Hansen et al. 2014; Peterson

2013). Only a small fraction of the elements Mo and Ru are p: 14.84% of the total Mo

is 92Mo and only 9.25% is 94Mo; for Ru, only 5.5% of the element is 96Ru and 1.88% is

98Ru. The p-fractions indicated above are therefore too small to be of any interest when the

elements are observed in field stars. Only when will be possible to observe isotopes of Mo

and Ru in the spectra then we will be able to give interesting indications on the details of

their nucleosynthesis processes.

For this work, the adopted SNIa model (described in detail in TRV11) is summarized

in Section 2, together with a brief description of the tracer particles method used for

nucleosynthesis calculations. In Section 3 the s-process seed distributions considered in

our study are described in detail. The resulting p-process production and the effect of

metallicity on p-nuclei is discussed in Section 4, where also an analysis of the various

production mechanisms of the p-nuclei will be performed, taking into account nuclear

uncertainties. In Section 5 we analyzed in detail how s-seeds with different atomic mass

number contribute to the p-nuclei production. Galactic chemical evolution calculations are

presented in Section 6, and the contribution of SNIa to the solar system p-nuclei abundances

is studied. In Section 7 we discuss the contribution of SNIa to the production of radiogenic

92Nd, 146Sm and 97,98Tc. Finally, conclusions and work in progress are drawn in Section 8.
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2. Type Ia supernova models and tracer particles

We used the SNIa-explosion model (DDT-a) described in detail by TRV11. It is a

representative example of the single-degenerate scenario in which the WD has accreted

material from a main-sequence or evolved companion star until it finally approaches the

Chandrasekhar mass and explodes as a delayed detonation. The model is based on the

two-dimensional simulations presented by Kasen et al 2009.

The explosion itself is simulated in 2D by means of the combustion code LEAFS

(Reinecke et al. 1999; Reinecke et al. 2002; Röpke 2005; Röpke & Hillebrandt 2005) which

follows the evolution with an Eulerian grid. In order to compute for each zone of the star

the history of temperature and density over time for each zone of the star we introduce

a Lagrangian component in the form of tracer particles. With the tracer-particle method

it is possible to reconstruct the ensuing nucleosynthesis. The nuclear post-processing

calculations are performed separately for each tracer. Summing the chemical composition

over all tracer particles gives the total yields. The tracer particles method was first

introduced by Nagataki et al. (1997) for ccSSNe, and by Travaglio et al. (2004b, 2005) for

SNIa.

For 2D simulations it has been verified that 51,200 particles as used here, uniformly

distributed in mass coordinates, give sufficient resolution (Seitenzahl et al. 2010). For each

tracer particle we follow the explosive nucleosynthesis with a detailed nuclear reaction

network for all isotopes up to 209Bi. We select tracers within the typical temperature range

for p-process production, i.e. (1.5 − 3.7) × 109 K, and analyze their behavior in detail,

exploring the influence of different s-process seeds on the p-process nucleosynthesis. In order

to determine the s-process enrichment prior to the explosion, we assume recurrent flashes

occurring in the He-shell during the accretion phase with neutrons mainly released by the

13C(α,n)16O reaction (Iben 1981; TRV11). This applies under the assumption that a small
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amount of protons are ingested in the top layers of the He intershell. Protons are captured

by the abundant 12C and convert it into 13C via 12C(p,γ)13N(β+ν)13C at T ≃ 1× 108 K.

3. s-seeds at different metallicities

In our model, p-process nucleosynthesis occurs in SNIa starting from a pre-explosion

s-process enriched seed composition. Therefore, it is essential to determine the s-process

enrichment prior to the explosion. Here, we assume enhanced s-distributions produced

directly by a sequence of thermal-pulse instabilities in the accreted material. This idea has

been described in detail by TRV11 and was previously discussed by Iben (1981), Iben &

Tutukov (1991), and Howard & Meyer (1993).

To be more specific, we assume recurrent flashes to occur in the He-shell during the

accretion phase. The matter accumulated onto the carbon-oxygen white dwarf (hereafter

CO-WD) therefore becomes enriched in s-nuclei. However, the mass involved and the

physical properties of the 13C-pocket, providing the free neutrons for the s-process, still

have to be considered as free parameters. Since no physical models are available we explore

different s-process distributions in order to better understand the dependence of our results

on these initial seeds (see also the discussion in TRV11 and Travaglio et al. 2012).

For the present work we calculate s-process distributions for 8 metallicities, i.e.

Z =0.02, 0.019, 0.015, 0.012, 0.011, 0.010, 0.006, 0.003 (a refined s-seed metallicity grid is

necessary for chemical evolution calculations since the s-seeds are strongly dependent on

metallicity), and we interpolate for all the other metallicities in between in order to calculate

Galactic chemical evolution. We also investigate the effect of the s-seeds with different

13C-pocket properties (ST×2, ST×1.3, ST, ST/1.5, where ∼4 × 10−6M⊙ of 13C in the

pocket corresponds to the ST case, Gallino et al. 1998; see Gallino et al. 1998 and Bisterzo
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et al. 2010 for a detailed discussion of 13C-pocket profiles). The s-process seeds adopted are

shown in Figure 1 for the ST×2 13C-pocket case, and metallicites of Z =0.01, 0.006, 0.004,

0.003. In Figure 2 we show the average of four 13C-pockets at different metallicities. In all

figures the s-seed abundances are normalized to the solar abundances of Lodders (2009).

As discussed by Gallino et al. (1998) and Travaglio et al. (1999), the synthesis of

heavy nuclei requires neutron captures starting from Fe seeds, so that the s-process is

expected to decrease with decreasing metallicity, i.e. to be of secondary nature. However,

the abundances produced depend not only on the initial Fe concentration but also on the

neutron exposure. The concentration of 13C in the pocket is of primary-like nature (it

is built from H and freshly made C, and hence is independent of metallicity), while the

abundance of the neutron absorber 56Fe varies linearly with Z. Therefore, for a given

amount of 13C in the pocket, the neutron exposure (proportional to the ratio 13C/56Fe)

is expected to increase linearly with decreasing metallicity. This dependence would

compensate for the secondary nature of the s-elements, if the yields of s-nuclei were linearly

dependent on both neutron exposure and Z. In addition, the behavior of 208Pb has to be

considered separately (Travaglio et al. 2001). The gradual increase of the neutron exposure

towards low metallicities masks the expected secondary behavior (see also Clayton 1988),

resulting in a rather complex dependence of s-process yields on metallicity. For the lower

metal content the neutron flux feeds Pb (in particular 208Pb). A clear understanding of

the s-seeds behavior versus metallicity, including the production of neutron-magic 208Pb at

the termination of the s-process path, is very important for the nature of p-process (see

Section 4).

Figure 1 shows a variation by a factor of ≃10 for the abundances of the light s-only

isotopes (up to A ≃140) when Z = varies from 0.003 to 0.01, and a spread of ≃5 for heavy

s-only nuclei (with A >140). For 208Pb, the variation is by a factor of ≃8, but its trend is
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inverted with respect the behavior of other s-only isotopes (i.e. lower Z gives higher 208Pb

abundance). In Figure 2 we plot the average of four different 13C-pockets (ST×2, ST×1.3,

ST, ST/1.5) for the metallicities discussed above. The behavior of the s-only isotopes is

different from that seen in Figure 1: still a rough dependence on Z for light s-nuclei in the

range 90< A < 120 is observed, but the variation is now reduced by a factor of 3. The

spread is progressively decreasing for higher metallicities. Further on, for heavy s-isotopes

with 140 < A ≤ 204, an almost unique and flat distribution is obtained, independent of

metallicity with an enhancement around 2000 times solar. Eventually, for 208Pb a spread

of about a factor of 4 stands out again, with the lowest metallicity showing the highest

208Pb abundance, at the level of 5000× solar. The general trend sketched above can be

understood in the light of the typical s-process enhancement occurring in AGB stars. For a

given 13C-pocket strength, decreasing the metallicity the s-flow feeds more and more 208Pb

at the termination of the s-path. At the same time a progressive depletion of the lighter

s-process isotopes is found up to the magic neutron number N = 82 (138Ba to 142Nd).

In the region between the magic neutron number nuclei N =82 and N =126, an almost

flat s-process production factor ensues. A similar trend occurs at a fixed metallicity by

increasing the 13C-pocket strength. We recall here that case STx2 is around the maximum

13C-pocket strength we can reach, beyond which further proton ingestion during a third

dredge up episode from the envelope would result in a decrease of 13C and production of

the neutron poison 14N (see the review by Busso, Gallino, & Wasserburg 1999). In other

words, with decreasing metallicity the otherwise flat s-process distribution near the neutron

magic numbers N = 50 amd N = 82, corresponding to atomic mass numbers around A =90

and A =140, and also at the termination of the s-path at around A =208 are progressively

distorted.

In Figure 3 we show the s-seeds for the range of 13C-pockets (ST×2, ST×1.3, ST,

ST/1.5, ST/2) and metallicities (Z = 0.02, 0.019, 0.015, 0.012, 0.011, 0.010, 0.006, 0.003)
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we cover in the Galactic chemical evolution calculations (see Section 6 for discussion).

4. p-process at different metallicities

The p-process nucleosynthesis is calculated using a nuclear network with 1024 species

from neutrons and protons up to 209Bi combined with neutron, proton, and α-induced

reactions and their inverse. The code used for this work was originally developed and

presented by Thielemann et al. (1996). We employ the nuclear reaction rates based on the

experimental values and the Hauser & Feshbach statistical model NON-SMOKER (Rauscher

& Thielemann 2000), including the recent experimental results of Maxwellian-averaged

neutron capture cross section of various p-only isotopes (Dillmann et al. 2010; Marganiec

et al. 2010). Theoretical and experimental electron capture and β-decay rates are from

Langanke & Mart́ınez-Pinedo (2000).

We discuss in this Section the sensitivity of p-process production to s-seeds at different

metallicites. We analyze the primary/secondary nature of the resulting p-nuclei. According

to Rauscher et al. (2013) (and references therein) the p-process is of secondary nature

and scales with the amount of seed nuclei in the star. In this work we present our results

obtained with SNIa models which only partly confirm this statement.

In Figure 4 we plot the resulting p-process abundances, starting from 74Se, obtained

by using different s-seeds at different metallicities. On the axis of ordinates the production

factor of each isotope is plotted with respect to solar, normalized to 56Fe. Note that

the abundances of p-nuclei heavier than A = 100 are much higher than a factor of ∼3

times their solar value. However, in this Figure we plot the nucleosynthesis resulting from

one single star and not the integrated abundances over all the Galaxy (see Section 6 for

discussion). The choice for these 13C-pockets and metallicities will be used for our best fit
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of Galactic chemical evolution calculation.

In order to better understand the dependence of p-nuclei production on metallicity

and the 13C-pocket, we show in two separate figures (Figure 5 and Figure 6) the behavior

of p-process nucleosynthesis as a function of metallicity and the 13C-pocket, respectively.

From Figure 5 we can see that the first three p-only isotopes, 74Se, 78Kr, and 84Sr, show a

secondary behavior: their abundances scale almost linearly with Z. They depend mainly

(for about 60-70%) on the light (up to A ≃140) s-seeds that, as shown in Figure 1 and

Figure 2, are strongly dependent on metallicity. Starting from 90Zr (even if this isotope

is not p-only it has to be included in the discussion, see also TRV11) and 92Mo and up

to 138Ba, the p-nuclei show a very weak dependence on Z. The isotopes in this atomic

mass-number range are mainly produced by photodisintegration from the heavy s-seeds

isotopes, thus showing a primary-like behavior (see Figure 6). Isotopes in the region from

136Ce up to 196Hg scale with metallicity but show the opposite trend, i.e. highest abundances

for the lowest metallicities. TRV11 (see also Dillmann et al. 2008a) discussed the fact that

Pb-seeds are converted to nuclei of lower mass by photodisintegration sequences starting

with (γ,n) reactions. Therefore, an important contribution to the heavy p-only isotopes is

obtained.

We also found, as discussed in TRV11, that the isotopes 113In, 115Sn, 138La, 152Gd, and

180mTa, diverge from the average p-process production. Among them, 152Gd and 180mTa

have an important contribution from the s-process in AGB stars (Arlandini et al. 1999),

or the neutrino process in ccSN (Woosley et al. 1990; Wanajo et al. 2011). Both 113In and

115Sn are not fed by the p-process nor by the s-process. For these, we refer to the discussion

of Dillmann et al. (2008b) and TRV11.

The still puzzling 94Mo deserves special attention. Can nuclear uncertainties account

for the low 94Mo yield, compared to the other p nuclei, in our models? Howard et al. (1991)
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demonstrated that most of the 94Mo is produced from 98Mo through a (γ,n) chain.

We confirmed that a similar reaction chain also acts in our models. To illustrate this,

Figure 8 shows three exemplary trajectories for which time-integrated reaction flows are

plotted in Figures 9−11. The flow shown in Figure 9 gives a maximum production of 94Mo

(the corresponding trajectory is labeled “94Momax” in Figure 8). The one shown in Figure

10 also favors 94Mo production but at a lower level (the corresponding trajectory is labeled

“94Modrop” in Figure 8). In both cases, 94Mo is fed through (γ,n) reaction sequences, with

the strongest flow originating at 98Mo, which,in turn, is replenished to some extent also

by a small flow originating from 100Mo. It should be noted that the reactivities for this

(γ,n) sequence are experimentally well constrained, as they involve stable nuclei and the

corresponding (n,γ) reaction cross sections have been measured (Dillmann et al. 2006).

Thermal population of excited states does not play a role in these nuclei and thus the

measured (n,γ) cross sections allow to compute the (n,γ) and (γ,n) rates without further

theory uncertainties (Rauscher 2012, 2014). Therefore this part of the flow does not bear

large nuclear uncertainties, it is rather determined by the seed abundances received by

the stable Mo isotopes. Some production of 94Mo is also found via 95Tc(γ,p)94Mo. Its

contribution to 94Mo, however, is an order of magnitude lower than that of the (γ,n)

sequence and thus it does not contribute appreciably to the uncertainty although the

94Mo(p,γ) reactivities are unmeasured.

Consequently, the only significant nuclear uncertainty is found in the destruction of

94Mo by 94Mo(γ,n)93Mo. As already discussed by Travaglio et al. (2014), the sequence

94Mo(γ,n)93Mo(γ,n)92Mo, leads to production of 92Mo, with 94Mo(γ,n)93Mo being the

slower, and thus determining, reaction here. A conservative estimate for the uncertainty of

this rate (taken from Rauscher & Thielemann 2000) is a factor of 2.

The comparison between the “94Momax” and “94Modrop” trajectories in Figure 8 shows
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that “94Modrop” reaches a slightly higher peak temperature. This higher temperature not

only increases the (γ,n) flow, that destroys 94Mo without increasing the production notably

but also enables further destruction of 94Mo by 94Mo(γ,α)90Zr. The latter reaction is offset

by a slight enhancement in 95Tc(γ,p)94Mo but the flow through this reaction is still lower

by a factor of 0.1 than the increased destruction flow. This illustrates that 94Mo can only

be produced within a narrow temperature window: at low temperature, the (γ,n) flow is

small or non-existent, at too high temperature 94Mo is destroyed by additional reactions.

Prerequisite for the efficient production of 94Mo by photodisintegration in any site is that

the mainly contributing trajectories spend as much time as possible in this temperature

window.

Finally, Figure 11 shows the flows for a trajectory leading to a minimal production

of 94Mo although the achieved peak temperature is similar to that in the “94Momax” case

(the corresponding trajectory is labeled “94Momin” in Figure 8; incidentally this is the

same trajectory giving a maximum 92Nb production as shown in Figure 5 of Travaglio et

al. 2014). Inspection of the flows shows that all (γ,n) flows in this region are significantly

suppressed compared to the “94Momax” case in Figure 9. The 94Mo−→93Mo flow is too

small to show in the plotted range. The 91Zr−→92Zr flow is even replaced by its reverse.

The key to understanding the difference is the fact that the “94Momin” trajectory reaches

photodisintegration temperatures only at much higher density (note the logarithmic scale

of the horizontal axis in Figure 8). At all times, A(n,γ)B and B(γ,n)A rates are competing.

Their relative strengths are on one hand determined by the reaction Q-value (which is given

through the well-known nuclear masses) but on the other hand (n,γ) rates also scale with

the available neutron density whereas (γ,n) do not (Rauscher 2011). At the temperatures

at which photodisintegration of nuclei in the Mo region becomes possible, heavier nuclei

are already significantly destroyed because they are less tightly bound (their Q-value for

(n,γ) is lower than that of lighter nuclei; see also Rauscher et al. 2013). This allows (n,γ)
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reactions to occur in the lighter region and at high density they will be faster than their

(γ,n) counterparts. This illustrates the important point that significant production of

p-nuclei in a γ-process is possible only when the densities remain limited, i.e. it depends

sensitively on the thermodynamic histories of the explosive layers. For example, a model

in which more trajectories experience lower densities during γ-processing would lead to

increased 94Mo production. However, since this scenario will affect all (n,γ)/(γ,n) ratios and

thus it is unclear whether it would lead to an enhancement of the final 94Mo with respect

to the other light p-nuclides. This has to be investigated in detail in future calculations

because the impact of enhanced (n,γ) rates at higher density is not trivial as it depends on

the specific Q-values in the (γ,n) chains producing specific isotopes. Furthermore, it will

also impact other reaction types (such as (p,n), (p,γ), and their reverses) in different ways

and thus the final outcome strongly depends on the actual reaction sequences producing

and destroying a specific nucleus. This may change the ratio of the 94Mo abundance also

relative to abundances of other p-nuclei but it remains an open question whether the

required relative increase by a factor of 10 can be achieved.

5. The role of s-seeds of different atomic mass number for p-process

nucleosynthesis

In order to understand in detail the s-seed origin of each p-nucleus, we performed the

following study: fixing the metallicity (Z = 0.006, i.e., to a value where we find the highest

production of p-nuclei in our Galactic chemical evolution calculations, see Section 6) and

fixing a 13C-pocket (i.e., STx2 which is the highest value we used), we first tested the role

of the s-seed 208Pb alone, by assigning solar abundances to all other s-seed nuclei. Details

of the resulting effect on p-nucleosynthesis are given in Table 1 (third column for the 208Pb

only case, and second column for the standard case). A 208Pb seed alone contributes about
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30% to 74Se, and 10-20% (or less) to all the other light-p nuclei up to 158Dy (with the

exception of 144Sm, where 208Pb alone accounts for about 45%). The contribution to the

isotopes between 162Er and 190Pt from 208Pb is about 40%. Finally, for the heaviest of the

p-only nuclei, 196Hg, we find the highest share ( 60%) in production originating from 208Pb.

In Table 2 we list all s-isotopes which we find to have p-contribution. For these isotopes

we report in the last column the effect of 208Pb. We find that most of these isotopes (from

80Kr up to 176Hf), the 208Pb seed contributes about 10-20% (or less). A similar analysis

has been carried out accounting for either as s-nuclei either the only heavy s-nuclei (140

≤ A < 208) or the light s-nuclei (70 ≤ A < 140) only. The results are shown in Table 1:

in Column 6 the results for the heavy s-seed only case and in Column 7 the light s-seed

only case are given. Not surprisingly, the heavy s-nuclei are most important for the heavy

p-nuclei, in particular for 184Os (100% of contribution), 158Dy (89%), 136,138Ce (about 84%

and 75%, respectively), 190Pt (about 73%), and 156Dy (about 70%), but there are also

significant contributions of about 40-60% are to the other heavy p-isotopes in the region

from 144Sm up to 196Hg. We also find ∼30-40% of the light p-nuclei up to 132Ba to originate

from heavy s-seeds, with the exception of 94Mo and 130Ba, which have a lower share of

∼15%. In contrast, light s-seeds are the main producers of the light p-isotopes, and they

account for about 73% for 74Se and 94Mo (where important contribution from other stellar

sources or errors in reaction rates can be estimated), and finally 130Ba (about 80%). All

other light-p isotopes are produced from light-s seeds with typical sharesin the rage from

40 to 60%. The heaviest p-nuclei are almost unaffected by the light-s seeds.

In the fourth columns of Table 1 and Table 2 we show results of a second test for

comparison, where we retain a metallicity of Z = 0.006, but reduce the strenght of the

13C-pocket by using the STx1.3 model. For this case we test the role of 208Pb seed for

p-process nucleosynthesis, as we did in the above standard case (see fifth column in Tables



– 17 –

1, 2). Comparing the two cases presented in Table 1 (column 3 and 5), we notice that

typically the case with STx2 13C-pocket and a 208Pb seed contributes by a factor of ∼2

to the light-p nuclei with respect to the case STx1.3 13C-pocket and 208Pb seed. For the

abundance of 144Sm we obtain identical results for STx2 and STx1.3 cases. In contrast,

however, we observe an increased production of the heavy-p nuclei for the case STx2 and

208Pb seed by ∼10%. The only exception is for the heaviest p-nucleus 196Hg, where we find

a highest abundance in the case STx1.3 208Pb alone. The reason for this behavior is that at

the same metallicity (Z = 0.006) the 13C-pocket STx1.3 is less efficient than the 13C-pocket

STx2 for the production of heavy-s as well as for 208Pb.

6. Galactic chemical evolution

The main goal of this work is to provide predictions for Galactic chemical evolution

of p-nuclei. For this, we employ the Galactic chemical evolution code presented by

Travaglio et al. 1999, 2001, 2004. The model considers the Galaxy as the evolution of three

interconnected zones, halo, thick disk and thin disk. The matrix of the isotopes within the

chemical evolution code was set to cover all the light nuclei up to the Fe-group, and all

the heavy nuclei along the s-process path up to 209Bi. For the present work we extended

the matrix of the isotopes to account for the p-nuclei and we followed their evolution over

time/metallicity until solar metallicity was reached. We included in the code the p-nuclei

abundances obtained from our SNIa model at various metallicities as discussed in Section 4,

and interpolate between them smoothly. In Figure 7 we show the resulting p-process

production factors taken at the epoch of Solar System formation for nuclei in the atomic

mass number range 70 ≤ A ≤ 210. To be more clear we note that for these results we only

include SNIa for the contribution to p-nuclei. Our choice for the s-seeds was introduced in

Section 3 (see Figure 3). As discussed in the previous section, it is clear that a few nuclei
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originally ascribed to the p-only group (113In, 115Sn, 138La, 152Gd, and 180mTa) are far below

the average of the other p-nuclei. Thus, if this model is correct, they should be ascribed to

different astrophysical sources. As shown in Figure 7 and detailed in Table 3, we find in

our Galactic chemical evolution calculations that all the other p-only isotopes are—within

a factor of about three—produced at the Solar System composition. The lightest p-nucleus

78Kr and the heaviest 158Dy and 180W can be ascribed to the same production site when

an additional uncertainty factor of two is included (which seems reasonable given the large

uncertainties in photodisintegration rates). Therefore, for the first time, we are able to

explain the synthesis of almost all p-isotopes production in one single scenario. The most

striking problem we face is the very low relative abundance of the true p-only 94Mo with

respect the the average of all other p-only nuclei, which is possibly related to the theoretical

estimate of the neutron capture on unstable 93Mo. The effect of the nuclear uncertainties

will be explored in a forthcoming paper.

Figure 7 and Table 4 also show that neutron magic 90Zr and especially 96Zr receive an

important contribution by the p-process (about 20% and 40%, respectively). Moreover, it

is not excluded that the most proton-rich s-only isotopes for a given element may receive

some contribution from the p-process. As illustrated in Figure 7, this is the case for 80Kr

and 86Sr, with p-contribution of the order of 10%. However, before examining the problem

in more detail, an analysis of the uncertainties in the involved reaction rates is necessary.

Out of the light p-nuclei the isotopes 78Kr, 94Mo, 108Cd, and 114Sn are by a factor of

three or more (for 94Mo) less abundant compared to the solar value. Among the heavy-p

nuclei 158Dy is also by more than a factor of three below the solar abundance. In contrast,

we found 180W higher by a factor of more than three with respect to solar. Under the

hypothesis that SNIa are responsible for 2/3 of solar 56Fe, and assuming that our DDT-a

model represents the typical SNIa with a frequency of 70% (Li et al. 2011), we conclude

that they are responsible for at least 50% of all p-nuclei.
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With the same approach, Travaglio et al. (2014) discussed the origin of the short-lived

radionuclides 92Nb and 146Sm. They compared the value of the ratio between the

abundances of these radionuclides and those of the corresponding stable reference isotopes

92Mo and 144Sm to what has been recently measured in meteorites (Rauscher et al. 2013).

The conclusion is that SNIa can also play a key role in the production of 92Nb and 146Sm,

but nuclear uncertainties have to be taken into account.

In the framework of Galactic chemical evolution of p-nuclei, the role of ccSN has

also to be taken into account. Rauscher et al. (2002) followed the γ-process through the

presupernova stages and the supernova explosion. As expected for the weak s-process

component in massive stars, only s-nuclei in the mass range 64 ≤ A ≤ 88 are produced and

occurred in situ prior to the explosion phase. Rauscher et al. (2002) presented results for 15,

19, 21, 25 M⊙ ccSNe modeled in spherical symmetry and with initial solar metallicity. For

the 15, 21, and 25 M⊙ models, proton-rich heavy isotopes in the mass ranges 124 ≤ A ≤ 150

and 168 ≤ A ≤ 200 were produced in solar abundance ratios within about a factor of two

relative to 16O, the most abundant nucleus in the ejecta of ccSNe. For mass numbers

A ≤ 124 and 150 ≤ A ≤ 165 the production of the p-isotopes is down by about a factor of

3− 4. While the main γ-process synthesizes p-nuclei through photodisintegration reactions

during the SN shockfront passage, some of the models showed pre-explosive p-production

due to a high entropy in the O/Ne shell of the evolved star. Most of this is wiped out

again when the supernova shock sweeps through the layer. Nevertheless, depending on the

adopted convection model (see also Bazan & Arnett 1994), some light, strongly bound

p-nuclei may survive from pre-explosive production. This behavior complicates predictions

for the contribution of ccSNe to the solar composition of p-nuclei. In addition, it has to

be taken into account that the SNIa scenario discussed here may not explain all normal

events. Thus, alternative scenarios for p-process nucleosynthesis in binary systems should

be explored, such as SNeIa from WD-WD mergers (e.g. Pakmor et al. 2010, 2012) or double
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detonations in sub-Chandrasekhar mass WDs (e.g. Fink et al. 2010).

7. Conclusions

We have presented results of detailed p-process nucleosynthesis calculations for

two-dimensional models of delayed detonations in Chandrasekhar-mass WDs resulting from

the single degenerate progenitor scenario. In these SNIa models, the nucleosynthesis was

followed by the tracer-particles method. The initial s-seeds were assumed to be created

during the mass accretion phase. Since up to now no nucleosynthesis calculations of the

accretion phase are available our hypothesis is based on the assumption that a small amount

of protons are ingested at the top layers of the He intershell. Following the work of TRV11

on the nucleosynthesis for a solar metallicity SNIa model in the same scenario, we tested

and discussed the consequences of different amounts of 13C and different metallicites on the

synthesis of p-nuclei. We demonstrated that the 208Pb s-seed alone plays an important role

for p-nuclei production, due to photodisintegration chains starting from the heaviest nuclei

and going down in mass number. We analyzed the dependence of all the p-isotopes on

metallicity, and we identified the isotopes with a weak (like 92Mo and 138Ba) and a strong

(in particular the lightest p-isotopes, 74Se, 76Kr, and 84Sr) dependence on Z.

We discussed the still puzzling origin of 94Mo. Clearly, nuclear uncertainties cannot

account for the factor of 10 deficiency in 94Mo abundance relative to other p-abundances.

The 94Mo production was found to depend on the seeds in the Mo isotopes as well as on

the density at which the photodisintegration process occurs. This leaves room for possible

variations in the hydrodynamic history of the mainly contributing explosive trajectories

which could change the relative p-abundances.

By means of a simple Galactic chemical evolution code, including p-process
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contributions at different metallicities, we explored the SNIa contribution to the p-nuclei

abundances in the Solar System. We concluded that p-nuclei are mainly of primary-like

origin, and that SNIa can contribute at least 50% to the solar abundance of all p-nuclei

provided that they result from standard Chandrasekhar-mass delayed-detonations forming

in the single-degenerate progenitor channel. Thus we identified a stellar source which, in

principle, is able to produce light and heavy p-nuclei almost at the same level relative to

56Fe, including the much debated neutron magic 92Mo and 96,98Ru.

The important contribution from p-process nucleosynthesis to the s-only nuclei 80Kr,

86Sr, and to the neutron magic 90Zr has also been elaborated. Another relevant contribution

is to the neutron rich 96Zr, due to neutron captures from the residual abundance of 22Ne

during the explosive phase. With our Galactic chemical evolution calculations, it was

possible to predict a significant contribution from SNIa in the considered scenario to the

extinct p-radionuclides 92Nb, 146Sm, and 96,98Tc in the early Solar System as shown in

Travaglio et al. 2014. Alternative scenarios for p-process nucleosynthesis in binary systems

have to be taken into account, such as SNeIa from WD-WD mergers, where we also

expect some p-process production. A detailed analysis of different SNIa progenitors will be

explored in a future work.
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Fink, M., Röpke, F.K., Hillebrandt, W., Seitenzahl, I.R., Sim, S.A., & Kromer, M. 2010,

A&A, 514, 53

Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A.,

& Limongi, M. 1998, ApJ, 497, 388
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Travaglio, C., Röpke, F.K., Gallino, R., & Hillebrandt, W. 2011, ApJ, 739, 93

Travaglio, C., Gallino, R., Hillebrandt, W., & Röpke, F.K. 2012, Proceedings of Science, 45
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2014, ApJ, in press

Wanajo, S., Janka, H.-T., & Müller, B. 2011, ApJ, 726, L15

Woosley, S.E., & Howard, W.M. 1990, ApJ, 354, L21

This manuscript was prepared with the AAS LATEX macros v5.2.



– 27 –

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Mass number, A

Fig. 1.— Different s-seed production factors relative to solar for the ST×2 13C-pocket and

Z = 0.02 (red), Z = 0.019 (brown), Z = 0.015 (blue), Z = 0.012 (cyan), Z = 0.011 (dark

green), Z = 0.01 (magenta), Z = 0.006 (light green), and Z = 0.003 (black). Filled dots are

for s-only isotopes. The big open dot is for 208Pb, see text for discussion. The solar values

for this figure and all other figures of this paper are from Lodders 2009.
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Fig. 2.— Different s-seed preduction factors relative to solar for an average of four different

13C-pockets (ST×2, ST×1.3, ST, ST/1.5 see text for discussion). Colours and symbols used

are the same of Figure 1.
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Fig. 3.— Distribution of s-seed abundances relative to solar for all 13C-pockets cases and

metallicities covered, used for our Galactic chemical evolution calculation. Colours and

symbols are the same of Figure 1. See text for a detailed discussion.
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Fig. 4.— p-process yields normalized to solar and to Fe, obtained by using 51,200 tracer

particles in the two-dimensional DDT-a model, different metallicities combined with their

choosen 13C-pockets. Colours are the same of Figure 1. Filled dots are for p-only isotopes.
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Fig. 5.— p-process yields normalized to solar and to Fe, obtained using 51,200 tracer particles

in the two-dimensional DDT-a model, with a fixed metallicity (Z =0.006) and changing 13C-

pocket abundance.
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Fig. 6.— The same as Figure 5, but for this figure we fixed the 13C-pocket abundances

(ST×1.3) and changed the metallicity.
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Fig. 7.— Galactic chemical evolution of the p-process taken at the epoch of Solar System

formation. Filled dots are for the 35 isotopes classicaly defined as p-only. The isotopes of

each element are connected by a line, and for each element we adopt a different colour. For

the s-seeds we used the abundances shown in Figure 3 and discussion in the text.
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Fig. 8.— Temperature vs density for three different tracers relevant for 94Mo production

(see text for details).
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Fig. 9.— Reaction flow for maximum 94Mo production (trajectory 94Momax in Fig. 8); size

and color of the arrows relate to the magnitude of the time-integrated flux on a logarithmic

scale. Only flows down to a factor 0.001 of the maximum flow are shown.
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Fig. 10.— Reaction flow for maximum 94Mo production beyond the dropping edge (trajectory

94Modrop in Fig. 8); size and color of the arrows relate to the magnitude of the time-integrated

flux on a logarithmic scale. Only flows down to a factor 0.001 of the maximum flow are shown.
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Fig. 11.— Reaction flow for a 94Mo production minimum (trajectory 94Momin in Fig. 8); size

and color of the arrows relate to the magnitude of the time-integrated flux on a logarithmic

scale. Only flows down to a factor 0.001 of the maximum flow are shown.
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Table 1. p-nuclides Z = 0.006

Isotope STx2 (a) only 208Pb (STx2) STx1.3 (a) only 208Pb (STx1.3) only heavy-s (STx2) only light-s (STx2)

(%) (%) (%) (%)

74Se 5.9766D-08 32 7.7692D-08 22 37 73

78Kr 2.2814D-08 14 2.6779D-08 5 22 60

84Sr 1.6684D-07 15 1.7652D-07 5 24 63

92Mo 3.3110D-07 20 2.5454D-07 10 33 46

94Mo 1.5926D-08 10 1.5816D-08 4 16 74

96Ru 1.5192D-07 22 1.1276D-07 11 35 44

98Ru 5.6763D-08 20 4.4197D-08 10 33 49

102Pd 1.9007D-07 21 1.4257D-07 11 35 45

106Cd 3.4325D-07 22 2.5156D-07 11 37 43

108Cd 7.3755D-08 19 5.7087D-08 10 33 49

∗113In 2.3632D-09 14 1.9788D-09 6 24 59

112Sn 4.4177D-07 21 3.2332D-07 11 36 43

114Sn 1.2393D-07 17 9.9142D-08 8 30 54

∗115Sn 1.3516D-10 8 1.2630D-10 3 14 75

120Te 3.0791D-08 15 2.5063D-08 7 28 56

124Xe 1.1681D-07 18 8.7859D-08 9 36 45

126Xe 1.6423D-07 20 1.1991D-07 10 40 40

130Ba 9.3644D-08 6 8.6408D-08 2 14 79

132Ba 8.2042D-08 12 6.7356D-08 6 32 56

∗138La 1.5568D-10 - 1.5268D-10 - - 99

136Ce 2.9490D-08 16 2.0296D-08 9 84 -

138Ce 6.1838D-08 25 3.7265D-08 16 75 -

144Sm 4.7213D-07 44 1.9701D-07 40 54 -

∗152Gd 4.2205D-10 6 2.8463D-10 3 94 -

156Dy 4.5886D-09 29 2.3545D-09 22 71 -

158Dy 2.4326D-09 11 1.5200D-09 7 89 -

162Er 1.0113D-08 39 4.5391D-09 33 61 -

∗164Er 3.2957D-08 40 1.4267D-08 35 59 -

168Yb 3.2922D-08 40 1.4330D-08 34 60 -

174Hf 2.3801D-08 37 1.0562D-08 31 63 -
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Table 1—Continued

Isotope STx2 (a) only 208Pb (STx2) STx1.3 (a) only 208Pb (STx1.3) only heavy-s (STx2) only light-s (STx2)

(%) (%) (%) (%)

∗180Ta 1.0371D-11 - 6.4666D-12 - 100 -

180W 3.9411D-08 40 1.6578D-08 36 60 -

184Os 3.8775D-09 - 2.2520D-09 - 100 -

190Pt 5.2488D-09 27 2.3916D-09 23 73 -

196Hg 9.9030D-08 58 3.5696D-08 61 41 -

(a) – Nucleosynthesis yields.

(∗) – Isotopes pointed with * have to be excluded from the p-only list, as discussed by TRV11.

Table 2. s-nuclides with important p-contribution, Z =0.006

Isotope STx2(a) only 208Pb (STx2) STx1.3(a) only 208Pb (STx1.3) only heavy-s (STx2) only light-s (STx2)

(%) (%) (%) (%)

80Kr 1.2508D-07 12 1.5196D-07 4 19 58

86Sr 4.2708D-07 13 4.8676D-07 4 20 67

90Zr 3.2537D-06 17 2.8889D-06 7 28 55

96Zr 1.6979D-07 - 2.2666D-07 - - 100

(a) – Nucleosynthesis yields.

(∗) – Isotopes pointed with * have to be excluded from the p-only list, as discussed by TRV11.
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Table 3. Galactic chemical evolution of p-nuclides

Isotope GCE (GCE/Solar)

74Se 4.186D-10 0.41

78Kr 9.968D-11 0.23

84Sr 5.760D-10 1.93

92Mo 3.643D-10 0.37

94Mo 3.663D-11 0.06

96Ru 1.431D-10 0.55

98Ru 6.294D-11 0.71

102Pd 7.251D-11 1.84

106Cd 1.173D-10 2.02

108Cd 3.067D-11 0.74

∗113In 1.232D-12 0.05

112Sn 1.451D-10 1.35

114Sn 5.177D-11 0.69

∗115Sn 8.794D-14 0.002

120Te 1.254D-11 0.76

124Xe 3.350D-11 1.41

126Xe 4.281D-11 2.07

130Ba 3.186D-11 1.83

132Ba 2.364D-11 1.40

∗138La 5.825D-14 0.04

136Ce 5.816D-12 0.72

138Ce 1.045D-11 0.95

144Sm 5.238D-11 1.66

∗152Gd 8.258D-14 0.03

156Dy 6.448D-13 0.65

158Dy 4.439D-13 0.26

162Er 1.231D-12 0.78

∗164Er 3.792D-12 0.20

168Yb 3.792D-12 2.75

174Hf 2.802D-12 1.96

∗180Ta 2.261D-15 0.18
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Table 3—Continued

Isotope GCE (GCE/Solar)

180W 4.416D-12 4.48

184Os 7.157D-13 1.42

190Pt 6.640D-13 0.64

196Hg 8.884D-12 1.65

(∗) – Isotopes pointed with * have to be excluded from the p-only list, as discussed by TRV11.

Table 4. Galactic chemical evolution of s-nuclides with important p-contribution

Isotope GCE (GCE/solar)

80Kr 5.610D-10 0.20

86Sr 1.692D-09 0.31

90Zr 5.734D-09 0.43

96Zr 8.258D-10 1.08

(∗) – Isotopes pointed with * have to be excluded from the p-only list, as discussed by TRV11.
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