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The 85Rb(p,n)85Sr reaction and the modified
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Abstract. The cross sections of the astrophysically relevant85Rb(p,n)85Srg,m reaction have been
measured between Ec.m. = 2.16 and 3.96 MeV. The cross sections have been derived by measuring
theγ radiation following theβ decay of the reaction products. A comparison with the predictions
of Hauser-Feshbach calculations using the NON-SMOKER codeconfirms a recently derived mod-
ification of the global optical proton potential.
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INTRODUCTION

The synthesis of the so-calledp nuclei [1, 2] (the heavy, proton-rich isotopes which
cannot be synthesized by neutron capture reactions in the s-or r-process) is still one of
the least known processes of nucleosynthesis. It is generally accepted that the synthe-
sis of thep nuclei, the astrophysical p-process, mainly involvesγ-induced reactions on
abundant seed nuclei produced at earlier stages of nucleosynthesis by the s- or r- pro-
cess. During the p-process, material from the bottom of the valley of stability is driven
to the proton-rich side by consecutive (γ,n) reactions. As the neutron separation en-
ergy increases while the charged particle separation energies decrease along this path,
charged-particle emitting (γ,α) and (γ,p) reactions become increasingly important for
the more proton-rich region.

Theoretical investigations show that in the case of the production of the lightp nuclei,
(γ,p) reactions play a key role [3, 4]. The relevant astrophysical reaction rates can be
determined from the cross section of the inverse capture reactions through the detailed
balance theorem if the corresponding capture cross sections are known experimentally.
In the last few years several proton capture cross section measurements forp process
studies were carried out [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. However,
it has been shown recently that not only (γ,p) reactions are important for modeling the
synthesis of the lightp nuclei, but (n,p) and (p,n) reactions should also be taken into
account [4].

To investigate the impact of nuclear reaction rates on predictedp process abundances,
simulations with different sets of neutron, proton,α-capture and photodisintegration
rates have been performed by Rappet al., [4]. It is stated that some (p,n) reactions —
such as the85Rb(p,n)85Sr — exhibit strong influence on the finalp abundances.
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TABLE 1. Decay parameters of85Rb(p,n)85Sr reaction products taken
from [21].

Residual
nucleus

Half-
life

Gamma energy
[keV]

Relativeγ-intensity
per decay [%]

85Srg 64.84± 0.02 d 514.01± 0.02 96± 4
85Srm 67.63± 0.04 m 231.64± 0.01 84.4± 0.2

Contrary to the well studied (p,γ) reactions, there is only limited experimental infor-
mation available about the low-energy (p,n) cross sectionsin the mass region. Recently,
the cross section of the76Ge(p,n)76As reaction has been measured [17] and considerable
discrepancies between the experimental data and the theoretical prediction were found.
To reproduce the cross sections the strength of the imaginary part of the widely-used
semi microscopic potential of [23] (including low-energy modifications by [24]) had to
be increased by approximately 70%.

The above considerations show that certain (p,n) reactionsinfluence directly the
results of ap process network calculations and they also provide a sensitive probe for the
statistical model calculations. Therefore it is advised tocontinue the systematic study
of nuclear reactions relevant for thep process by measuring the cross section of the
85Rb(p,n)85Sr.

EXPERIMENTAL TECHNIQUE

The experiment was similar to our previous76Ge(p,n)76As studies [17]. Here a brief
summary on the experimental details is given.

The targets were produced with evaporating natural RbCl (chemical purity: 99.99%)
onto thin Al foil. The isotopic abundances of85Rb and87Rb are 72.17 and 27.83%
respectively [21]. The absolute number of target atoms and the uniformity were de-
termined by Rutherford Backscattering Method (RBS) using the Nuclear Microbeam
facility of ATOMKI [22]. The energy of the proton beam provided by the Van de Graaff
and cyclotron accelerators of ATOMKI was between 2 and 4 MeV (covered with 200
keV steps) with 600 nA beam current. Each irradiation lastedapproximately 8 hours.
The check the possible systematic errors, the Ep = 2.6 MeV irradiation was carried out
with both the Van de Graaff and the cyclotron accelerators and no difference in the cross
section was found.

The 85Rb(p,n) reaction leads to ground (85Srg) and isomeric states85Srm of the
Strontium isotope. The85Srg decays byβ+ to 85Rb and the85Srm with internal transition
to the ground state of85Sr and with electron capture andβ+ to 85Rb. For determining
the cross section of the85Rb(p,n)85Srg reaction the 514.01 keV, for the85Rb(p,n)85Srm

reaction the 231.84 keV gamma line was used. The decay parameters of85Srg,m isotopes
are summarized in Table I. Since proton induced reactions onRbCl are leading to stable
or short lived isotopes - except the 388.51 keV gamma radiation from the87Rb(p,n)87Srm

reaction - no disturbing gamma lines were observable.
For measuring the inducedγ-activity a lead shielded HPGe detector was used as

in our previous (p,n)-study [17]. After each irradiation the γ spectra were taken for
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FIGURE 1. Typical activationγ-spectra taken after the irradiation of RbCl target with 2.4(left panel)
and 3.8 MeV (right panel) proton beam. The 514 keV peak from the 85Rb(p,n)85Srg reaction can be well
separated from the annihilation peak as can be seen on the insets. The length of the waiting time (tw)
between the end of the irradiation and the start of theγ-countings were 540 (Ep = 2.4 MeV) and 30
min (Ep = 3.8 MeV). The lower panels shows typical spectra taken in the repeated activity measurement
approximately one month after the irradiations (for details see the text).

12 h. The main experimental challenge was to separate the transition of Eγ = 514.01
keV from the usually broad annihilation peak coming from beam-induced reactions on
impurities of the target and the backing by carefully choosing the waiting and measuring
time. The 511 keV peak was always less than or comparable to the one of the relevant
transition at 514 keV, as shown in the insets of Fig. 1. Because of the relatively long
half life of 85gSr (T1/2 = 64.84 d) we were able to repeat the activity measurement for
each target after approximately 1 month when the intensity of the 511 keV radiation
is substantially reduced. The spectra taken in the repeatedactivity measurement in the
case of the 2.4 and 3.8 MeV irradiations are shown in the lowerpanels of Fig. 1. The
two measurements yielded consistent cross sections proving the proper separation of the
511 keV and 514 keV peaks.

RESULTS AND CONCLUSIONS

Based on the activity measurement one hour after the irradiation and the repeated activity
measurement one month later, two separated analysis were done in the case of the
85Rb(p,n)85Srg reaction. The derived cross sections agree within 4%. The final results
were calculated from the average weighted by the statistical uncertainty of the twoγ
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FIGURE 2. AstrophysicalS factor of the85Rb(p,n)85Sr reaction. The lines correspond to Hauser-
Feshbach statistical model calculations performed with the NON-SMOKER code [25] using different
proton optical potentials as input.

countings.
The measured astrophysicalSfactors (S(E) = σE−1exp(−2πη), whereη is the Som-

merfeld parameter for taking into account the Coulomb barrier penetration) obtained
from the total cross sections leading to the isomeric and ground state of85Sr are com-
pared to theoretical predictions obtained with the NON-SMOKER code [25] in Fig. 2.
Two different proton optical potentials were used as input for the calculations: the well
know JLM potential [23, 24] and a modified JLM potential [17].As can be seen in Fig.
2, the theoretical energy dependence of the resultingS factor is slightly steeper than
the experimental data in the case of the use of the JLM potential, although there is a
general agreement in magnitude. In the energy range coveredby the measurement, the
proton width is smaller than the neutron width (except closeto the threshold) and thus
uncertainties in the description of the proton width (and proton transmission coefficient)
will fully impact the resultingSfactor. Figure 2 shows also the prediction resulting from
the use of the JLM potential with the imaginary strength increased by 70%. This mod-
ification was introduced in [17], leading to an improvement of the reproduction of the
70Ge(p,γ)71As as well as76Ge(p,n)76As data (further comparison to available experi-
mental data can be found also there).

In the case of the85Rb(p,n)85Sr reaction we find that the energy dependence of
the theoreticalS factor — calculated using the modified proton optical potential — is
changed a in such a way as to show perfect agreement with experimental data. This fact
supports the conclusions of previous work [17].

The85Rb(p,n)85Sr reaction was already studied by Kastleineret al., at several proton
energies between Ec.m. = 3.1 and 70.6 MeV. Unfortunately, the low energy experimental
points has large uncertainty in the center of mass energy (ascan be seen in Fig. 2.) —
typically between 0.3-0.5 MeV. Consequently, the accuracyis not sufficient to provide a
sensitive probe for the statistical model calculations.
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