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ABSTRACT 

The mechanisms controlling the transmission of bluetongue virus (DTV) by vector 

Clilicoides species were studied using immunohistochemistry, virus titration assays, in 

vitro transmission tests, viral binding protein analyses and transmission electron 

microscopy. 

After infection with BTV by intrathoracic (IT) inoculation, 100% of C. variipennis 

individuals from a susceptible colony developed a fully disseminated infection and 

transmitted the virus through their saliva. However only 35.4% of midges were 

. persistently infected after ingestion of an infectious blood meal, while only 12.1 % of 

persistently infected midges transmitted the virus through their saliva. The titres of BTV 

were about 10,·oTCIDsJmidge [Standard error of means (SEM) of log-transformed 

data=0.15, n=1400] in IT inoculated midges and varied from 0.32 to lQs.oTCIDsJmidge 

in orally infected individuals. Only those midges containing ~1 03.oTCIDso of BTV could 

transmit the virus through their saliva. The following patterns were observed in orally 

(persistently) infected individuals: 1) virus was restricted to the anterior and posterior 

midgut, and the foregut-midgut junction; 2) virus replicated in the gut cells, disseminated 

into the haemocoel but could only be detected in a few sporadic fat body cells beyond the 

gut; 3) virus escaped from the gut cells into the haemocoel and replicated in some 

secondary organs/tissues but at low levels; 4) a fully disseminated infection was observed 

and virus replicated in the haemocoel and secondary organs/tissues, including the salivary 

glands, at high levels. The infection of the gut can be divided into two main types: 1) 

virus replication in gut cells ranging from very low to higher levels but with virus spread 

throughout the cytoplasm of the infected cells; 2) virus positive reaction restricted to 

endosome-like structures in the cytoplasm of some gut cells. 

BTV was detected in the anterior and posterior midgut, foregut-midgut junction, fat body, 

ganglia, salivary glands and ommatidia of the compound eyes of some infected midges. 

No virus was ever found in the hindgut cells, muscles, Malpighian tubes and oocytes/nurse 

cells of the ovaries. 

i 



BTV infection of the salivary glands of C. l'ariipcnnis was shown to follow a typical 

pattern. Virus entered the acinar cells from the haemococl passing through the basement 

membrane, then localised and replicated in virus inclusion bodies (VIBs) in the cytoplasm 

of acinar cells. Mature progeny virus particles were released into acini, then transported 

through intermediate ducts and accumulated in crystalline arrays in the lumen of the major 

secretory ducts. No virus was released back into the haemocoel through the basement 

membrane; nor was virus released back into acinar cells from the acini. 

Nervous tissue of C. l'ariipennis is one of the most susceptible tissues to BTV. 

Ultrastructural observation showed characteristics ofBTV replication, including formation 

of VIBs, large amounts of progeny virus particles and tubules, in infected thoracic ganglia. 

A 60-kD viral protein adhered to both BHK-21 (mammalian) cells and a Culicoides cell 

line, KC cells. A 44-kD BTV viral protein, co-migrating with non structural protein NS2, 

adsorbed to BHK-21 cells but not to KC cells, while a 39.6 kD viral protein, co-migrating 

with major inner capsid protein VP7, adhered only to KC cells but not to BHK-21 cells. 
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CHAPTER 1 
LITERATURE REVIEW 

1.1 INTRODUCTION 

Bluetongue (BT) is a non-contagious, infectious arthropod-borne viral disease of ruminants 

caused by bluetongue virus (BTV). All species of ruminant are susceptible to infection but 

severe disease is usually seen only in certain breeds of domestic sheep (Hutcheon 1902; 

Thomas and Neitz 1947; Bowne 1971; Erasmus 1975; Hourrigan and Klingsporn 1975; 

Gorman 1990). The virus has a wide geographical distribution between latitudes 400N and 

35°S and has been found in the Americas, Africa, Asia and Australia (Mellor 1990). 

Presence of the virus within a country can lead to serious losses both directly in terms of 

disease and indirectly due to disruption in international trade in bovine and ovine products. 

1.2. BLUETONGUE VIRUS 

1.2.1 Structure and Classification of BTV 

Bluetongue virus is the prototype of the Orbivirus genus in the family Reoviridae (Holmes 

et al 1995). The virus is non-enveloped, and has an icosahedral structure which 

approximates 68 nm in diameter by negative contrast electron microscopy, and 86 nm by 

cryo-electron microscopy (Hewat et al 1992). The intact virus particle is composed of a 

double-layered protein coat surrounding a genome of ten segments of double-stranded 

RNA, each of which encodes at least one viral protein (Verwoerd 1969; Verwoerd et al 

1972). The inner capsid layer, or core, contains 5 distinct proteins: two major proteins 

VP3 and VP7, and three distinct minor proteins VP1, VP4, and VP6NP6a. The outer 

capsid layer is composed of two major proteins, VP2 and VPS, and in some cases has 

been reported to be associated with a third minor component, NS2 (Mertens et al 1987). 

Sixty copies of VP3 form the subcore upon which the VP7 capsomers are located 

(Huismans et al 1987a; Hyatt and Eaton 1988). There are 780 molecules of VP7 which 

form 260 triangular spikes protruding 5 nm from the base of the inner shell, and 

comprising the characteristic ring-shaped capsomers seen on the surface of the BTV core 
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particle (Huismans el at 1987a; Hyatt and Eaton 1988; Loudon and Roy 1991; Prasad el 

at 1992; Hewat el at 1992). There is also some evidence that VP7 is not completely 

shielded by the outer capsid and recent three-dimensional analysis of the nTV virion, 

using cryoelectron microscopy and image processing techniques, has revealed that a 

portion of the VP7 molecules is exposed at the surface of virions (Hewat el at 1992). 

Twenty VP7 spikes (which contain group-specific antigens) are accessible on the surface 

of the virus and can be recognized by VP7 specific antibodies (Hyatt and Eaton 1988). 

Three non-structural proteins (NS1, NS2, NS3INS3a) have also been identified in BTV 

infected cells (Mertens el at 1987; Verwoerd et at 1972; Van Dijk and Huismans 1988; 

Huismans and Els 1979). NS 1 forms the tubules associated with BTV replication in 

infected cells (Huismans and Els 1979). NS2 has been reported to be associated with the 

outer capsid layer of the BTV particles (Mertens el at 1987). It also binds single- stranded 

RNA and is a major constituent of the virus inclusion bodies (VIB) seen in infected cells 

(Hyatt el at 1993). NS3INS3a have been found to be released from infected cells with 

fragments of plasma membrane and are thought to be involved in the release of BTV 

particles from infected cells prior to cell lysis (Hyatt el a/1991a,b, 1993). 

To date, 25 distinct serotypes of BTV have been identified, on the basis of neutralisation 

assays with type-specific antiserum, although a variety of other tests have also been used 

to differentiate BTV s (Howell 1970; Howell and Verwoerd 1971; Verwoerd et al 1979; 

Gonnan el a11983; Davies el aI1992). Individual animals infected with a single serotype 

of BTV produce a solid immunity against reinfection with that serotype but not other 

serotypes (Neitz 1948; Howell 1960, 1969; Jeggo and Wardley 1985). The geographical 

distribution of individual BTV serotypes is reviewed in Section 1.3. 

Being a virus with a segmented genome, BTV is capable of genetic reassortment. Previous 

studies have shown that genome reassortment occurs when BTV of two different strains 

or different serotypes are injected into a natural host animal (Samal et al 1987a, b; Stott 

et aI1987). No such result has yet been reported in relation to BTV-vector interaction. 
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1.2.2 Replication of BTV 

The replication of BTV has been studied mainly in mammalian cell lines (BHK21, Vero, 

MOBK) although some work has also been carried out in insect cells (Mertens et aJ 1984, 

1987; Howell et aJ 1967; McPhee el aJ 1982; Hyatt el aJ 1989, 1993). In mammalian 

cells, BTV replication is typically short term and cytocidal, while in insect cells it is long­

term and persistent, generally without cytopathic effect. 

The major events in BTV replication are: adsorption and penetration; uncoating; 

formation ofreplicative complexes, viral inclusion bodies (VIB); formation of tubules; and 

movement of the virus to, and release from, the cell surface (Eaton el al 1990; Gould and 

Hyatt 1994). 

Firstly, virus particles attach to specific receptor sites on the cell surface and are then 

taken up by endocytosis and penetrate the cell membrane (Dales 1973; Hyatt et al 1989). 

Efficient neutralisation by antibodies to outer capsid proteins can occur at the cell surface, 

preventing receptor mediated, endocytosis and subsequent internalisation ofBTV (Brookes 

el aJ 1993). In general, with BTV and other reovirus infections, it has been shown that 

the endosomes fuse with lysosomes where the outer coat of the virus is partially disrupted 

(modified) by lysosomal proteases (Sturzenbecker el al 1987; Eaton and Hyatt 1989). 

Subviral particles or cores are released into the cytoplasm by crossing the lysosomal 

membrane (Tyler and Fields 1985), a process involving complete removal of the outer 

coat before the synthesis of viral RNAs and proteins (Watanabe et al 1968). However, 

contrary to these findings, Eaton et al (1990) reported that the majority of BTV particles 

are released from endosomes into the cell cytoplasm prior to fusion with Iysosomes. This 

may indicate that the mechanism of cell entry by BTV is independent of lysosomal 

enzymes. 

Subsequent to these events, removal of the outer protein layer activates a fully 

conservative viral-associated RNA polymerase, and RNA capping enzymes which 

transcribe the ten segments of dsRNA into 10 mRNAs. These mRNAs are, in turn, 

translated into at least seven structural and three non-structural viral proteins (Mertens et 
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a11984; Huismans cl aI1987b). VIIls develop in the early stages of the infection and arc 

believed to be the major sites of viral RNA and protein synthesis, and subsequently of 

virus particle assembly (virus factories) (Eaton and Hyatt 1989; Thomas cl a/1990; Hyatt 

cl 01 1991 b; Roy 1992; Brookes et al 1993). 

Like other double-stranded RNA viruses, transcription (defined as the synthesis of viral 

(+) strand RNA) takes place within the parental core particles. The new (+) strands are 

extruded from the core particles and are translated to make viral proteins. The same (+) 

strands are also packaged with the virus structural proteins to make nascent sub-viral, or 

replicase particles. These particles mature via a process that involves synthesis of 

complementary negative strands on the ten positive strand RNA templates, thus reforming 

the dsRNA segments of the progeny virus genome. Once the new progeny or core 

particles have been formed, they are also able to synthesise positive strand RNA copies 

of the genome. Addition of a layer of new outer coat proteins completes the virus 

replication cycle (Wickner 1993) and the virus is then destined for export. Like other 

reoviruses, a majority of the newly synthesized BTV particles remain cell associated. 

Subsequent to assembly, the progeny virus particles that are produced early in infection, 

are either released by budding, which involves the temporary acquisition of a lipid 

membrane, or by an unknown mechanism of extrusion, without acquiring a membrane. 

These two kinds of release are believed to occur in insect cells and also at the early stage 

of infection in mammalian cells (Eaton et 0/1990; Hyatt et 0/1989, 1991a, 1993). During 

late stages of infection, virus is released from mammalian cells as a result of cell lysis. 

However, BTV infection in insect cells is persistent without cell lysis. The release ofBTV 

particles from infected cells has been shown to involve trans-membrane transport mediated 

by NS3INS3a, a process which may occur during BTV exit from both mammalian and 

insect cells (Hyatt et 01 1991a, 1993). A much higher level of NS3INS3a synthesis has 

been observed in insect cells than in mammalian cells (M. Jennings and PPC Mertens, 

personal communication). 

Upon release, BTV can reinfect the same cell, a process defined as superinfection (Hyatt 

et al 1989). The subsequent release of more transcriptase-active cores into the cytoplasm 
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and the generation of more VIDs would then effectively increase the multiplicity of 

infection and may accelerate the whole replication process. 

NS 1 is a major nonstructural protein synthesized in DTV infected cells and polymerizes 

to fonn tubules. These tubules, 68 nm in diameter, are a characteristic structure in the 

cells infected with DTV and other orbiviruses (Huismans 1979; Huismans and Els 1979; 

Urakawa and Roy 1988). The function of these tubules is so far unknown and virus 

particles have not to date been reported to be associated with them (Gould and Hyatt 

1994). However, it has been suggested that NS 1 is associated with virus particles and 

VIDs (Eaton el al 1988). 

1.3. THE EMERGENT DISEASE 

BT in Africa was first reported by Hutcheon (1902) and Spreull (1905). The virus was 

initially thought to be confined to Africa until 1943 when an outbreak of BT was 

recognised in Cyprus. Subsequently, Gambles (1949) reported that there had been a series 

of BT epizootics outside Africa; in Cyprus in 1924, 1943 and 1977, in Palestine in 1943 

and in Turkey in 1944, 1946 and 1947 respectively (Mellor 1990). More recently, DT has 

also been reported in Israel (Komarov and Goldsmit 1951) and in Western Turkey in 

1977-1979 (Yonguc el a/1982; Yonguc 1987). 

The confinnation of BT in the USA was associated with an extensive epizootic in 1948. 

Since then BT has been recognized in sheep in several parts of the United States, 

including Texas, California, New Mexico, Wyoming, Idaho and Florida, and 5 BTV 

serotypes (serotype 2, 10, 11, 13 and 17) have been isolated from sheep, cattle or 

Culicoides (Hardy and Price 1952; McKercher el al 1953; Gibbs el al 1983a, 1983b; 

Gibbs and Greinerl983; Gonnan 1990). BTV was isolated for the first time in the USA 

from sheep in California in 1952. Recent genetic analyses indicate that several BTV 

serotypes could have had a long evolutionary history in North America (Heidner el al 

1991). In the United States, the disease is enzootic in the southwestern region, occurs in 

sporadic outbreaks in the central and southeastern areas, and is rare or absent in the north­

central and northeastern states (Metcalf el al 1981, 101mson 1992). 
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In 1956/57, a major epizootic of ST in sheep began in Portugal and extended into Spain 

causing 179,000 deaths with a mortality rate up to 75% within the first 4 months (Manso­

Ribeiro el al 1957). The last case was rccorded in 1960 (Anon 1960). No clinical cases 

or serological evidence of virus activity have been reported from either Spain or Portugal 

since then. The virus circulation in the environment was apparcntly successfully blocked 

through a coordinated campaign of quarantine, slaughter, and compulsory annual 

vaccination. This is one of the few recorded instances of STV circulation being stopped 

in a geographical area. The virus is not currently considered to be enzootic in the 

European continent although BT epizootics have also occurred in Greece in 1979 [Lesbos] 

and 1980 [Rhodes ](V assai os 1980; Mellor et al 1983; Gibbs and Greiner 1994; Mellor 

1995). 

In 1958, BT was reported in Western Pakistan in a flock of Rambouillet sheep previously 

vaccinated and imported from Utah, USA (Howell 1969). An outbreak of BT in goats and 

sheep also occurred in Pakistan in 1960 and in Maharashtra State of India in 1961 (Sapre 

1964). Subsequently BT was not observed in this area in India for almost 20 years. 

However, in 1981, epizootics occurred in sheep throughout the region and also involved 

other parts of India. The morbidity rate varied from 3.7% to 43.2% during the years of 

1981-82, 1983-84, 1985-86 and 1988-89. During interval years no cases of the disease 

were reported (Kulkarni et al 1991). BT outbreaks are now reported annually from the 

states of Andhra Pradesh, Karnataka, Maharashtra and Tamil Nadu (P.S. Mellor, personal 

communication). BTV therefore seems to be enzootic in this region. 

Before 1977, Australia was considered to be an area free of BTV. However, eight 

serotypes of the virus have subsequently been isolated, mainly from healthy cattle or from 

insects, in the Northern Territory of Australia. Of these serotypes, three have so far been 

recorded only in Australia (serotype 20, 21 and 23) and five have also been found in other 

countries (serotype 1, 3, 9, 15 and 16) (St George et al 1978, 1980; Gard et al 1987a, 

1987b). Apart from one clinical case in a sentinel sheep flock on a research station, no 

clinical disease has been reported in th/? field. This is possibly because in Northern 

Australia cattle are the main domestic ruminant whereas sheep, the most susceptible 

animal to BT disease, are not farmed. No evidence of BTV has yet been found in 
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Southeast or Southwest Australia where the sheep industry is dominant. However, there 

is evidence that DTV 1 and DTV 21 are widely spread in Queensland, and small numbers 

of sheep and goats have been detected with natural infections with these serotypes in 

enzootic areas with high cattle density (Flanagan el al 1993). 

A pattern similar to that seen in Australia also appears to be emerging from DTV studies 

in 11 Caribbean and Central American countries. Although there is no evidence of clinical 

BT in this region, at least 100 strains and 6 serotypes of BTV have been isolated from 

healthy animals (Gibbs et a11983a; Homan et a11990; Gorman 1990; Greiner ct a/ 1993; 

Mo el al 1994). 

Serological evidence for the presence of BTV and/or virus isolation has also been reported 

from Japan (Miura et aI1980), Papua New Guinea, Malaysia and Indonesia (Sellers 1981; 

Miura el al 1982; Sendow el al 1991; Hassan 1991). Eight BTV serotypes have been 

isolated from wide areas of Indonesia although clinical disease has only been reported 

once, in imported Suffolk sheep in Java (Sendow el al 1986, 1993). In China, the virus 

was first isolated in 1979 in Yunnan Province (Zhang ct aI1989). Clinical cases have now 

been reported in 4 provinces and serological evidence has shown that the virus has a wide 

distribution in at least 29 provinces in the country (Zhang et al 1989; Hu et al 1989). 

The geographical distribution of BTV in the world is shown in Table 1.1. 

Table 1.1 Geographical distribution of BTV 

Continent/region 

Africa 
Asia 
Australia 
Europe 
North America 
South America and 
Caribbean 

Serotypes of BTV isolated 

1-16, 18, 19, 24, 25 
1-4, 7, 9, 10, 12, 16, 17, 20, 21, 23 
1, 3, 9, 15, 16, 20, 21, 23 
4, 10 
2, 10, 11, 13, 17 
1, 3,4,6, 8, 12, 17 
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1.4. TRANSMISSION OF nTV 

BTV is an arbovirus (arthropod-borne virus) and transmission from infected to susceptible 

mammalian hosts by arthropod vectors is therefore a critical facet in the life cycle of this 

virus, particularly in terms of its distribution, seasonal incidence, rate of spread, 

susceptible hosts and also in regard to control. 

1.4.1 The host animals 

All species of ruminant appear to be susceptible to BTV infection but the consequences 

of the infection vary. Severe disease is usually seen only in certain breeds of domestic 

sheep and some species of deer (Gibbs el al 1983a, 1983b; Gibbs and Greiner 1983; 

Herniman et a11983; Gorman 1990; MacLachlan et a/1992; Weiser-Schimpf et a/1993). 

In cattle the disease is usually asymptomatic although there may be an extended period 

(weeks) of viraemia lasting for as long as 100 days (Owen el a/1965; Luedke et a11982, 

MacLachlan et a/1987; MacLachlan 1995). Serological studies have shown that in some 

areas a large proportion of the wild ruminant population seem to be natural hosts for BTV 

and the virus has been isolated from two distinct enzootic areas in the United States, 

Southwest USA and Florida (Davies 1980; Erasmus 1980; Thome et al 1988). 

BTV-associated disease has been observed in a free range population of to pi [Damaliscus 

korrigum (Ogilby)] in Uganda and also a captive eland [Tragelaphus strepsiceros (Pallas 

1766)] in the USA (Well 1962; Hoff el al 1973). Mortality and abortion affecting 

domestic dogs have been reported recently following the use of a BTV contaminated 

vaccine (Anita el al 1994). Recent studies have also shown evidence of BTV infection 

among African carnivores (Alexander et al 1994). 

1.4.2 The vectors 

BTV is transmitted by certain species of biting midge belonging to the genus Culicoides 

(Diptera: Ceratopogonidae). In nature it is maintained through a series of alternating cycles 

of replication between its Culicoides vectors and susceptible ruminant hosts (Du Toit 
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1944; Walker and Davies 1971; Draverman and Galun 1973; Draverman cl al 1985; 

Mellor el al 1984a, 1984b; Mellor 1990, 1995). Out of 1,000 plus Culicoides species in 

the world (Doorman 1988), only 17 have been connected with DTV transmission (Mellor 

1990), suggesting that Culicoides can be divided into two distinct groups, susceptible and 

unsusceptible species. Susceptibility is likely to be a complex situation under genetic 

control and even within a known vector species a variable proportion of individuals will 

not be susceptible (Foster and Jones 1979; Mellor 1990, 1995; Tabachnick 1991, 1992; 

Mecham and Nunamaker 1994). 

To date, only six species of Culicoides, namely C. variipennis (Coquillett 1901), C. 

imicola (Kieffer 1913), C.lulvus (Sen and Das Gupta 1959), C. actoni (Smith 1929), C. 

wadai (Kitaoka 1980), and C. nubeculosus (Meigen 1830) have actually been proven to 

transmit the virus after oral infection although this number is likely to increase in the 

future (Greiner el al 1985; Standfast el al 1985; Mellor 1990). 

1.4.3 Distribution of the vector species of Culicoides 

So far it has been shown that BTV and vector species of Culicoides have a wide 

geographical distribution around the world, approximately between latitudes 400N and 

35°S, and SOON and 300S respectively (Mellor 1990; Sellers 1991). In many areas the 

species of Culicoides transmitting BTV have already been identified although in some 

areas the major vector species remain to be determined. 

Culicoides imicola, first shown to transmit BTV from infected to susceptible sheep in 

South Africa (Du Toit 1944), is now considered the major vector throughout Africa and 

the Middle East. In these areas outbreaks of BT seem to be invariably related to the 

presence of this species of midge. Numerous isolations of DTV have been made in many 

countries in this region (Du Toit 1944; Navai 1971; Walker and Davies 1971; Braverman 

and Galun 1973; Jennings el al 1983; Mellor el a/1984a, 1984b; Braverman el al 1985; 

Wirth and Dyce 1985; Shimshony 1987; P.S. Mellor personal communication 1991). In 

addition, BTV has been isolated from C. tororoensis (Khamala and Kettle 1971) and C. 

milnei (Austen 1909) in Kenya (\Valker and Davies 1971) and from C. obsoletus (Meigen 
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1818) in Cyprus (Mellor and Pitzolis 1979). However, further evidence to link any of 

these three species of Culicoidcs to DTV transmission has not been obtained and it seems 

likely that they are of only local or minor significance in the epidemiology of DTV in the 

region. 

Although DT in sheep has been recorded in Pakistan (Sarwar 1962; Sapre 1964; Howell 

and Verwoerd 1971), India (Snpre 1964; Dhambani and Singh 1968; Uppal and Vasudevan 

1980) and serological evidence of the virus has been observed in Japan, Papua New 

Guinea, Malaysia and Indonesia (Miura et al 1980, 1982; Sellers 1981), in respect of the 

vectors in these areas, DTV has only been recovered from a single pool of Culicoides of 

the A\'aritia subgenus which contained C. fulvus and C. orientalis (Macfie 1932) in 

Indonesia (Sendow et aI1993). There is no further published work relating to the isolation 

of BTV from any species of Culicoides from other parts of these areas. However several 

species of Culicoides [CO wadai, C. fulvus, C. brevitarsis (Kieffer 1917), C. oxysloma 

(Kieffer 1910) and C. actoni] that are known or suspected vectors of BTV in Australia 

are distributed widely across Southeast Asia (Wirth and Dyce 1985; Kurogi et al 1987, 

1989; Sukarsih et al 1993). Culicoides imicofa also occurs across the region having been 

recorded in Iran (Navai 1971), India (Dyce and Wirth 1983) and Laos (Howarth 1985). 

BTV has not apparently been isolated from Culicoides in China although suspected vector 

species of Culicoides are widely distributed in that country (quoted by Zhang et aI1993). 

In Australia, BTV was first isolated in 1977 from a pool of Clilicoides collected in the 

Northern Territory during 1975. Of the eight serotypes of the virus which have now been 

identified in Australia (St George 1985; Gard 1987a, 1987b), two have so far been 

isolated from Clilicoides species, including C. fulvlIs and C. brevitarsis (St George and 

Muller 1984; Standfast et al 1985). In the laboratory, C. wad ai, C. acton; C. peregrinlls 

(Kieffer 1910) and C. oxystoma support BTV replication after oral infection, and C. fulvlls 

and C. actoni have transmitted the virus between sheep (Cybinski et af 1980; Standfast 

et af 1985). Culicoides ll'adai, C. fulvlls and C. actoni exhibited higher experimental 

infection rates than C. brevitars;s when feeding on infected sheep. All of these four 

species are closely related to C. imicola although their relative importance in the 

transmission of DTV remains to be determined. Of seven species of Clilicoides suggested 

10 



as potential vectors of DTV in Australia, only C. brcvitarsis has a distribution that covers 

almost all of the northern cattle breeding areas and stretches as far south as the sheep 

breeding arens (Standfast el al 1985). The latest study in Australia suggests that both C. 

brcvilarsis and C. wadai are capable of supporting the circulation of DTV 16 and DTV 

23 in the field (Dellis ct a/1994). 

Culicoides \'ariipennis is the major vector species of DTV throughout the USA and in the 

Okanagan Valley in Canada, with numerous isolates of virus from field collected midges 

(Sellers 1981; Jones et a/1981; Weiser-Schimpf el a/1993). However, C. variipcnnis does 

not occur in southern Florida, the Caribbean region, most parts of Central America and 

all of South America, areas where BTV has also been detected (Sellers 1981; Homan el 

al 1985; Walton el al 1984; Gibbs and Greiner 1983). In these areas, C. insignis (Lutz 

1913), C. PUSillllS (Lutz 1913) and C.filariferus (Hoffman 1939}/C. ocumarensis (Ortiz 

1950) are the most common species at those times of the year when BTV transmission 

occurs (Greiner el a/1992, 1993; Saenz cl aI1994). Culicoides insignis has recently been 

incriminated as a BTV vector, through the isolation of BTV 2 from this species in Florida 

(Greiner el al 1984, 1985; Walton el al 1984) and in French Guyana (Lefevre 1988, 

quoted by Mellor 1995). It has also been shown to be capable of transmitting BTV in 

southern Florida (Tanya et a/1992). Other vector competence studies on North American 

midges showed that C. debilipalpis (Lutz 1913) and C. venustus (Hoffman 1925) would 

be inefficient BTV vectors in the field, because these species exhibited very low oral 

infection rates even under ideal experimental conditions (Jones el al 1983; Mellor el al 

1985). Typically, BT outbreaks in USA occur in late summer and autumn, when vector 

popUlations of C. variipennis are high (Osburn el al 1981; Loomis el al 1985). 

Before 1981 there was no information on the identity of BTY vectors in European 

countries, although BT outbreaks had occurred in Spain, Portugal and Greece (Manso­

Ribeiro et a11957; Mellor et a/1983; Vnssalos 1980; Dragonns 1981). However in 1981, 

C. imicola was recorded in areas of Turkey adjacent to BTY affected Greek islands 

(Jennings el al 1983). Then in 1982 the species was discovered on the Greek island of 

Lesbos (Boorman and Wilkinson 1983), and in 1984 on Rhodes (Boorman 1986). At the 

other end of the Mediterranean C. imicola was recorded in Spain and Portugal .during 
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1982 and 1984 respectively (Mellor cl a/ 1983, 1985). It has been suggested by further 

research that C. imico/a is the only major vector of STV in the Mediterranean basin 

(Mellor 1987). However, a number of other potential vector species of Culicoides occur 

in this area. Cu/icoides sclw//zei (Enderlcin 1908), a suspected vector in Australia 

(Standfast cl a/ 1985), has been found in Greece (Mel1or cl a/ 1984b). Culicoidcs 

obso/elus (Meigen 1918), from which STV has been isolated in Cyprus (Mellor and 

Pitzolis 1979), and C. nubecu/osus, a laboratory vector of STV (Jennings and Mellor 

1988), both occur widely throughout the region. These three species may have been of 

only secondary importance in past outbreaks of STV in the Mediterranean area. However, 

together they have a very wide distribution in Europe and should therefore be regarded 

as posing a potential threat during any future BTV outbreaks in this area (Mellor 1987). 

1.4.4 Infection of Clilicoides with BTV 

As an arbovirus, BTV has to replicate both in its vertebrate and invertebrate hosts. 

Furthermore, in the invertebrate host (Cu/icoides), BTV must be capable of replication in 

a variety of tissues in order to facilitate transmission and maintain the virus. Successful 

infection of vector Cu/icoides with BTV, replication of the virus in the vector and 

subsequent transmission of the virus to a susceptible host animal are determined by the 

type or strain of virus, the characteristics of the vector and certain environmental factors 

(Jones and Foster 1974, 1978; Mullens 1992; Mecham and Nunamaker 1994; Mullens e/ 

alI995). 

It has been well established that in the wild, Culicoides are infected with BTV only when 

ingesting viraemic blood from an infected vertebrate host (Mellor 1990). There is no 

evidence of transovarial transmission of BTV through Culicoides (Jones and Foster 1971 b; 

P.S. Mellor, personal communication). In the laboratory, however, artificial feeding 

techniques (Rutledge el a/ 1964; Mellor 1971; Braverman and Swanepoel 1981) and 

intrathoracic inoculation (Mellor el al 1974) have been used in studies on BTV infection 

of Culicoides and transmission of the virus. 
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1.4.4.1 The susceptibility of Clilicoidcs to DTV 

Vector species of arthropod rarely have a susceptibility rate (SR)· of 100% to an 

arbovirus and Culicoides are no exception. The SR of Culicoides to DTV can vary widely 

and is affected by various factors, including the serotype of the infecting virus, the species 

and population of Cu/icoidcs, and individual variability of the insects (Jones and Foster 

1974, 1978; Mullens 1992; Tanya et al 1993; Mecham and Nunamaker 1994; Mullens et 

aI1995). 

Studies on both laboratory and field-collected populations of C. variipennis have 

confirmed the importance of both viral and vector components on the oral susceptibility 

of the insect to DTV infection. Mecham and Nunamaker (1994) have shown statistically 

significant differences in the responses of two laborary colonies of C. variipennis 

sonorensis to two BTV serotypes. They demonstrated a higher infection rate (lR)" of the 

AA colony with BTV serotype 13 and a higher infection rate of the AK colony with BTV 

serotype 11. Within a vector species, such as C. variipennis. the population present during 

a BTV outbreak is most susceptible to the strains of the DTV serotype that are circulating, 

at the time, and is less susceptible to all other BTV serotypes (Jones and Foster 1978). 

Individual populations of C. variipennis in the USA have been shown to have SRs to 

different BTV serotypes varying from 0 to 69% (Jones and Foster 1978; Barber and Jones 

1984; Tanya et aI1993). Even within a single field population of C. variipennis, SRs have 

been recorded as being highly variable (Mellor 1990). Jennings and Mellor (1987) also 

found that within an established laboratory colony of C. variipennis, the response to oral 

infection with a single serotype of BTV could vary widely between experiments and they 

recorded IRs ranging from 0 to 51.6%. 

Of the environmental factors which may influence the infection rate of Culicoides, 

temperature is thought to be the most critical (Mullens 1992; Mullens et al 1995) . 

• SR: the proportion ofa vector population capable of supporting infection, replication and transmission of 

an infectious agent after oral infection. 

"IR: the proportion of a vector population actually infected with an infectious agent after oral infection 
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A recent study showed that the susceptibility of C. l'ariipennis sonorensis to infection with 

BTV is under the control of a single genetic locus (Tabachnick 1991). Additional genetic 

loci may act as modifiers to regulate the major locus and the level of infection achieved 

with different virus scrotypcs (Jones and Foster 1974; Tabachnick 1991; Mecham and 

Nunamaker 1994). Similarly, studies on mosquitoes have also suggested that the 

susceptibility of Aedcs aCg}pti (Linnaeus 1762) to yellow fever virus is likely to be 

governed by a single major gene and modifying minor genes, or a group of closely linked 

genes (Miller and Mitchell 1991). 

1.4.4.2 Intrathoracic inoculation 

In numerous studies, mosquitoes, and even those Culicoides not susceptible to arbovirus 

infection by ingestion of an infectious blood meal, can be infected by intrathoracic 

inoculation (IT) of the virus (Houk et al 1986; Mellor 1990; Kramer et al 1992). Direct 

inoculation of virus into the haemocoel of midges, by-passing the gut, the primary 

infection barrier in these refractory insects, results in rapid, initial virus replication, 

without the "lag-phase" seen after oral infection (Jones and Foster 1966; Foster and Jones 

1979; Mellor 1990). Moreover, after inoculation, 100% of infected individuals develop a 

persistent infection which lasts for life. Virus transmission may occur after a period of 4 

to 5 days compared with 10 to 14 days postinfection (pi) in orally infected midges (Jones 

and Foster 1966; Foster and Jones 1973). 

\Vhen C. variipennis, the major Northern American vector of BTV, is inoculated 

intrathoracically with the virus, the virus replicates to a level of about 1O~ TCIDso (50 

percent tissue culture infection dose) per insect after a 4 day incubation period at 25°C 

(±I°C). In orally infected C. variipennis, maximum virus titres do not develop until at 

least 7 days pi and transmission does not normally occur before 10 days pi at this 

temperature (Mellor 1990). 

However the results of IT inoculation do not reflect the natural route of virus infection 

and subsequent to this method, virus may replicate in both susceptible and insusceptible 

individuals (Mellor et al 1974; Mellor and Boorman 1980). Nevertherless, IT inoculation 
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Fig. 1.2 atural infection and dissemination of STV in a vector C. variipennis. 
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The amount of virus transmitted to susceptible animals during biting by an infected C. 

variipennis has not been accurately estimated but Mellor (personal communication) has 

recovered 3-20 TCIDso of virus, after allowing individual BTV -infected C. variipennis to 

feed through a membrane on uninfected blood. Other authors have also reported that the 

bite of a single C. variipcmnis is sufficient to infect a susceptible sheep (Foster et aI1968). 

The IR of C. variipennis by the oral route has been shown to be dependent on the 

concentration of virus in the blood meal and the susceptibility of the species (Jones and 

Foster 1971a). It has been reported that a single blood meal containing 3x106 ELDso (50 

percent egg lethal dose) of virus per ml will produce an IR which is equal to the SR, i.e., 

the percentage of individuals in a population able to be orally infected (Jones and Foster 

1971a). 

1.5 TRANSMISSION BARRIERS TO THE INFECTION OF CUL/CO/DES WITH 

BTV 

More than 60 years ago, Storey (1933) demonstrated that, if the integrity of the 

mesenteron of leafhoppers is disrupted by puncture with a needle, non-transmitting strains 

become transmitters. It was suggested that the mesenteron is the initial barrier to the 

transmission of maise-steak. virus. A similar phenomenon with arboviruses and mosquitoes 

has also been demonstrated (Merrill and TenBroeck 1935; McLean 1955). It has also been 

observed that IT inoculated mosquitoes were more efficient vectors of arboviruses than 

those orally infected (Kramer et al 1993). These findings strongly suggest that 

susceptibility to virus infection is determined mainly at the mesenteronal level and 

indicates the presence of mesenteronal barriers. Subsequent to these finding, many 

hypotheses have been put forward to explain the basis of the gut-barrier to arbovirus 

infection in mosquitoes (Chamberlain and Sudia 1961; Chamberlain 1968; McLintock 

1978; Murphy et a11975; Tinsley 1975). The same situation probably also applies to the 

infection of Culieoides with BTV since 100% of a vector popUlation of Culieoides have 

been shown to become persistently infected with BTV, subsequent to IT inoculation of the 

virus, while a much smaller proportion of the same population was persistently infected 
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after oral ingestion of DTV in a blood meal (Jones and Foster 1966, Foster and Jones 

1973). 

However, Chamberlain and Sudia (1961) found that Anopheles quadrimaculatus (Theobald 

1911) cannot transmit eastern equine encephalomyelitis virus even though 79% of the 

females contain high concentrations of the virus in their bodies. Similar observations were 

made on the soft tick Ornithodoros moubata (Murray 1877) some populations of which 

can be persistently infected with certain strains of African swine fever virus (ASFV) 

although transmission occurs rarely (P.S. Mellor, personal communication). It has also 

been shown that only a proportion of persistently (orally) infected C. variipennis 

subsequently become competent to transmit DTV (P.S. Mellor, personal communication). 

It is therefore evident that though the mesenteron may playa key role as an infection 

barrier, it may not be the only site of interference with the normal infection and 

subsequent transmission of an arbovirus by an arthropod. 

Although a considerable amount of work has been carried out on the transmission of 

arboviruses by arthropod vectors, the nature of the biochemical mechanisms underlying 

transmission are still poorly understood. Nevertheless it is becoming increasingly apparent 

that in non-vector insects, or even in some individuals within a vector species, a series of 

constraints exist which limit the ability of these insects to become infected with an 

arbovirus or to transmit the virus to susceptible animals, after ingestion of an infective 

blood meal. Therefore the vector competence of arthropods for arboviruses seems to be 

associated with and is controlled by complex and multiple barrier systems to virus 

dissemination within the insect's body. The hypothetical and conceptual barriers are 

summarized in Fig. 1.3, which shows the pathway of viral replication within a mosquito, 

from ingestion of a viraemic blood meal until the virus is transmitted orally or vertically. 

1. Intact virus particles are ingested as a part of a blood meal from a viraemic host 

and are deposited in the mid-gut of the vector. 

2. The virus attaches to the luminal surface of the mid-gut cells, penetrates the cell 

wall and replicates in the gut cells. Occasionally virus may bypass the gut cells and leak 

directly into the haemocoel. 
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Fig. 1.3 Hypothesized and conceptual barriers to arbovirus infection of mosquitoes. Mm. mesenteron 

infection barrier; MEB. mesenteron escape barrier; SGm. salivary gland infection barrier; SGEB. sali\":uy 

gland escape barrier; TOTB. transovari~1 transmission barrier. (Adapted from Hardy et ar 1983) 

3. Progeny virus particles are released through the basement lamina of mid-gut 

wall into the haemocoel in which the secondary target tissues or organs, including salivary 

glands, are suspended. These are then infected. 

4. Virus replicates in the salivary glands and release of virus from the glands may 

then result in virus transmission during biting activity on susceptible animals. 

5. Virus may infect the ovary tissues and egg cells, which can lead to vertical 

transmission to progeny insects. The female insects infected by vertical transmission may 

then be able to transmit virus during biting on susceptible animals. 
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In a competent insect vector, DTV, like any other arbovirus, must follow this general 

cycle of events (P.S. Mellor, personal communication). 

1.5.1 Mesenteronal infection barriers to BTV 

A critical event in the transmission of arboviruses is the initial infection of the gut cells 

of the vector insects following ingestion of an infectious blood meal. For mosquito-borne 

viruses, infection is believed to begin in the abdominal or posterior midgut where most 

of the blood meal is deposited during engorgement (Chamberlain and Sudia 1961; 

McLintock 1978; Hardy el al 1983; Hardy 1988). 

Like mosquitoes, the midgut of female Culicoides consists of a single layer of columnar 

cells and the posterior part of the midgut is the site both of nutrient absorption and the 

entrance of arboviruses. After ingestion, the virus is deposited in the midgut with the 

blood meal and the cells of the midgut are the first to be infected. It has been 

demonstrated that the midgut represents the primary barrier to infection and is of major 

importance in determining the susceptibility of Culicoides to BTV infection. This barrier 

is under genetic control (in mosquitoes and midges) and susceptible and refractory 

phenotypes can be selected (Miller and Mitchell 1991). The mesenteronal infection barrier 

(MIB) is associated with the initial interaction between the virus and the cells and the 

early events in the infection process (Chamberlain and Sudia 1961); a number of 

mechanisms controlling the MIB have been proposed . 

1.5.1.1 Specific BTV receptor 

The most persuasive suggestion postulates the presence or absence of specific BTV 

receptors on the luminal surface of the insect midgut cell wall. Infection of the midgut 

would thereby be initiated by the binding ofBTV to the receptors. The biochemical nature 

of receptor sites for attachment of BTV to arthropod (or mammalian) cells has yet to be 

determined. However the specificity of the BTV-vector relationship does seem to support 

the presence of such a specific viral receptor. 
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1.5.1.2 Digestive enzymes in midgut 

Recent studies have suggested that modification of the virus particles by treatment with 

proteolytic enzymes such as chymotrypsin or trypsin can affect their ability to initiate 

infection of Culicoides and experimental work has shown that this can enhance their 

infectivity for Culicoides cell culture by approximately 100-1,000 times (depending on the 

level of virus particle aggregation) (Mellor 1990; Mertens el a/1993; Mertens el a/1995). 

There is no direct evidence concerning the composition of Culicoides digestive enzymes, 

but many groups of haematophagous insects including mosquitoes, tsetse flies, tabanids 

and sandflies are known to secrete mixtures of proteases, especially chymotrypsin and 

trypsin, into the midgut (Champlain and Fisk 1956; Akov 1972; Gooding 1972; Spiro­

Kern and Chen 1972; Briegel and Lea 1975; Thomas and Gooding 1976; Houseman 1980; 

McFarlane 1985; Clements 1992). It therefore would be surprising if this were not also 

the case with Culicoides. 

These data suggest that digestive enzymes within the Culicoides gut could modify virus 

particles, whilst in the gut lumen, either enhancing or diminishing their ability to attach 

to the midgut cells. Mertens el al (1987) produced infectious subviral particles (lSVP) by 

treating intact BTV particles with chymotrypsin and trypsin, and core particles (CP) by 

uncoating either ISVPs or intact virus particles (IVP) in vitro by cation treatment. ISVPs 

showed a similar infectivity for mammalian cells (BHK-21) to that of IVPs, whereas CPs 

have only very limited infectivity for these cells (approximately 104
•
5 times less infectious 

than either IVP or ISVP). All three types of BTV particle are orally infective to 

susceptible Culicoides. However IVP and CP showed similar levels of infectivity, while 

ISVPs were 100-500 times more infectious for Culicoides (Mertens el aI1995). Similarly, 

cleavage of a protein exposed on the surface of virions of La Crosse virus is necessary for 

initiating infection in mosquitoes (Ludwig el al 1989). 

It is, therefore, suggested that the insect digestive enzymes could modify DTV particles 

so that the binding domain of the virus would be more effectively exposed to viral 

receptors on the luminal surface of midgut cells. Since VP2 has been implicated as being 

the main cell attachment! neutralisation component in mammalian cell systems, it is 
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thought likely that it, or some other component of the outer coat, may playa similar role 

in the infection of insect cells with IVPs. However, as the outer coat is entirely missing 

from CPs it is probable that their ability to infect insect cells is mediated through an 

entirely different mechanism, possibly involving different viral protein (s) exposed on the 

surface of the BTV particles. It is therefore possible that there may be different BTV 

specific receptors on the mid-gut cells of susceptible Clllicoides, which could function in 

response to the different types of BTV particles. If this is the case, in susceptible 

Clllicoides the process of conversion of IVP to ISVP, and their subsequent binding to a 

large numbers of ISVP sp~cific receptors could result in enhanced infection facilitated by 

some aspect of the digestive process. Other research has indicated that BTV and African 

Horse Sickness virus (AHSV) seem to share common Culicoides vector species (P.S. 

Mellor, personal communication). It is likely that the transmission mechanisms of these 

two viruses are similar, especially at the level of the initial interaction between the viruses 

and the midgut cells of the vector insects. 

The susceptibility of C. variipennis to infection with BTV has been shown to be under the 

contol ofa single genetic locus (Tabachnik 1991; Roberston and Tabachnick 1992) which 

may determine the presence or absence of the specific BTV receptor on the luminal cell 

surface of the gut epithelium. 

1.5.2 Mcsenteronal escape barrier (MEn) 

The MEB reflects later events in viral replication and release from the infected midgut 

cells of vector insects. Research on mosquitoes has already shown that viral multiplication 

subsequent to oral infection is confined solely to the cells of the mesenteron in some 

females. The virus is unable to be released from the midgut and cannot initiate infection 

of secondary target cells elsewhere in the insect (Hardy et aT 1983; Romoser et aT 1987). 

Jennings and Mellor (1987) demonstrated that a MEB to BTV exists in C. variipennis. 

They found that the maximum titre of BTV in orally infected C. variipennis varies from 

less than 101.0 to lOs TCIDso of virus per insect. In those midges containing less than lOB 

TCIDso of BTV, the virus was completely restricted to the midgut cells and failed to 

disseminate to the secondary organs (Mellor 1990). These midges exhibited a MEB and 
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were incapable of operating as vectors. The nature of the MEn has not been established. 

However, ultrastructural observation on mosquitoes infected with western equine 

encephalomyelitis virus suggests that virus may not be maturing in MEn females. This 

assertion is based on the fact that in MEn females there is an an unusual accumulation of 

naked nucleocapsids along the basal margins of the mesenteronal epithelial cells (Houk 

quoted by Hardy et al 1983). There is no evidence to date to show that a similar 

phenomenon exists in Culicoides. 

1.5.3 Salivary gland infection and escape barriers 

The presence of salivary gland infection (SOl B) and salivary gland escape (SOEB) 

barriers have been suggested by Hardy et al (1983), based on studies of arbovirus­

mosquito interaction. Observations supporting the existence of a SOIB indicate that no 

detectable viral infection of the salivary glands occurred in some mosquitoes orally 

infected with West Equine Encephalomyelitis (WEE) virus even though virus was present 

in the haemocoel (Kramer et a11981; Hardy et aI1983). However, the concentrations of 

virus in the haemocoel were usually low (Hardy et aI1983). It was also observed that a 

SOIB to Rift Valley fever virus developed in female Anopheles stephens; (Liston) during 

the maturation of the insects, since the salivary glands supported virus replication in 

immature (larvae) mosquitoes but not in mosquitoes infected as adults (Romoser et al 

1994). Factors important in the formation of a SOIB might include the physical barriers 

presented by the thoracic fat body which sometimes surrounds the salivary glands and/or 

~he basal lamina of the salivary glands themselves (Weaver et al 1990); low levels of 

infectious virus in the haemocoel; or a lack of specific receptors. It is also well known that 

insects produce potent antimicrobial compounds that kill invading bacteria and it has been 

queried whether these or similar compounds, produced in vectors, can also protect the host 

against the viral pathogens that they transmit. In this context the cellular and humoral 

immune systems in insects may play an important role in inactivating virus within the 

haemocoel (Woodring 1985; Clements 1992; Lowenberger et al 1994), thereby limiting 

its dissemination to secondary target organs including the salivary glands. 
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It has also been demonstrated that some mosquitoes with infected salivary glands arc 

unable to transmit the virus orally (Hardy el a/ 1983; Hardy 1988), suggesting that a 

SGEB may be exhibited in these insects. The existence of this barrier may be due to low 

levels of infectious virus produced in some salivary glands, low levels of virus secretion 

into the salivary gland ducts, a modulation of virus replication in the salivary glands or 

to virus-induced cytopathology of salivary glands (Hardy el a/ 1983; Hardy 1988). No 

study has yet been made of SGIB and SGEB to BTV in Culicoides. 

1.5.4 Mesenteronal physical barrier 

In mosquitoes, infectious virus has been found in haemolymph samples taken from some 

females within 4 hours of feeding (Hardy el al 1983; Hardy 1988). This supports the 

concept that ingested virus can enter the haemocoel of a small proportion of insects 

without initial replication in mesenteronal cells, which is the so-called 'leaky midgut' 

phenomenon. Furthermore there appears to be a relationship between the efficiency of the 

midgut mesenteronal physical barrier (MPB) and mosquito body size, in that small 

individuals have been shown to be more susceptible to a 'leaky gut' than large individuals. 

It has been implied that this may be connected to the thickness of the basal lamina, which 

appears to be linearly related to mosquito body size (Paulson and Hawley 1991; Grimstad 

and Walker 1991; Leake 1992). It has been observed that the basal lamina of the midgut 

presents a physical barrier or impediment to vesicular stomatitis virus dissemination within 

sandflies (Weaver el al 1992). However, a recent study failed to demonstrate a role for 

basal lamina thickness as a modulator of Dengue-I virus dissemination across the midgut 

epithelium of Ae. albopiclUS (Skuse 1894) (Thomas el a/1993). No direct information on 

the 'leaky-gut' phenomenon has been published in relation to Culicoides species. 

However, a study of BTV-microfilariae co-infection in Culicoides supports the function 

of the gut wall as a physical barrier which can stop BTV breaking through to the 

haemocoel. Culicoides nubeculosus was unable to support BTV replication unless 

microfilariae were ingested simultaneously. The penetration of the gut barrier by 

micro filariae allowed BTV to enter and replicate in the haemocoel (Mellor and Boorman 

1980). Similar results were observed in coinfections of chickungunya virus and 

micro filariae in mosquitoes, and electon-microscopy has identified the holes made by the 
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microfilariae that penetrated through the midgut epithelial layer (Zytoon el al 1993). 

1.5.5 Transovarial transmission barrier 

Vertical transmission ofarboviruses has been observed in sandflies and mosquitoes (Beaty 

el al 1980; Turell el al 1982; Turell 1988; Comer el al 1990; Dosio el al 1992; Daquar 

el al 1993; Kramer el al 1993; Fulhorst el al 1994). 

Transovarial transmission does not appear to occur with BTV in C. variipennis (Jones and 

Foster 1971b, Nunamaker el a/1990). In the laboratory BTV has not been detected in the 

progeny C. variipennis of parental midges infected with the virus (P.S. Mellor, personal 

communication). This suggests that there is a transovarial transmission barrier (TOTD) in 

C. variipennis which can prevent parental midges transmitting DTV directly to their 

progeny. The nature of TOTB in Culicoides is still unknown. 

1.6 SUMMARY 

Bluetongue is an arthropod-borne disease of ruminant animals and BTV is distributed 

across a vast area of the world. The virus is maintained in nature by an endless series of 

alternating cycles of replication in vector species of the biting midge, Culicoides, and 

various ruminant animal hosts. The susceptibility of Culicoides to infection with BTV and 

the ability of infected Culicoides to transmit BTV to susceptible animals are controlled by 

a complex series of intrinsic factors. These comprise a series of potential barriers to virus 

infection or dissemination within individual Culicoides. Because of these barriers not all 

female midges, even within a single vector species, are susceptible to infection with BTV, 

or if infected, are competent to transmit the virus. 

In a competent vector, BTV can pass through all of the barriers and eventually be 

transmitted. Once ingested by a competent vector, the virus binds to the luminal surface 

of the midgut cells, enters these cells and replicates in them. The progeny virus particles 

are then released through the basement lamina into the haemocoel from where the 

secondary susceptible organs, including salivary glands, are infected. Alternatively in a 
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small number of individuals, the virus may, under certain conditions, "leak" directly from 

the gut lumen, through the gut wall and into the haemocoel and so infect other organs. 

Transmission of BTV can take place by biting activity of the insect subsequent to virus 

replication in salivary glands. The whole cycle from oral infection to transmission takes 

10 to 15 days at 25°C. Once infected, a vector insect usually remains so and is able to 

transmit virus for the rest of its life. 

In relation to the transmission of BTV, the midgut, salivary glands and ovaries of the 

vector insects are the location of the most important parts of the barrier system. It is 

known that the presence or absence of these barriers, which determine either susceptibility 

or resistance, are under genetic control. However, the nature of the biochemical 

mechanisms underlying such barriers are still poorly understood and remain to be 

elucidated. 

1.7 PURPOSE OF THE PROJECT 

The purpose of this project is to analyze the mechanisms which limit or facilitate the 

transmission of BTV by Culicoides biting midges by studying the interactions between the 

virus and Culicoides at both the cellular and the whole insect levels, using a variety of 

established methods and new techniques to study virus replication in vitro and in vivo, and 

to provide for the first time parallel quantitative and qualitative data. 
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CHAPTER 2 
TilE KINETICS AND LOCALISATION OF BLUETONGUE VIllUS INFECTION 
IN TIlE VECTOR, CULICO/DES VARIIPENNIS 

2.1 INTRODUCTION 

Culicoides variipennis, a proven BTV vector species, was used in this study. 

Immunohistochemical techniques were used for the first time to observe BTV replication 

and the localisation of BTV in different organs/tissues of C. variipennis after infection by 

inoculation or by oral ingestion of an infectious blood meal. Conventional virus titration 

assays were performed on infected C. variipennis to comparatively link these quantitative 

data with the localisation study. The objective of this study was to identify and 

characterise the barriers to BTV infection, dissemination and transmission in a vector 

species. 

2.2 J\;IATERIALS AND l\IETIIODS 

2.2.1 Virus 

BTV serotype 1 (BTV ISA) was obtained from the Veterinary Research Institute, 

Onderstepoort, South Africa and is maintained in the Pirbright Laboratory, Institute for 

Animal Health (IAH), UK. The virus was passaged two times in chicken embryos and 7 

times in baby hamster kidney (BHK-21) cells. The intact virus particles (IVP), infectious 

subviral particles (ISVP) and core particles (CP) of BTV ISA were provided by Dr. 

P.P.C. Mertens also at IAH-Pirbright (Mertens et al 1987). 

2.2.2 Tissue culture cells 

Both BHK-21 cells and a Culicoides variipennis cell line (KC cells) were used in this 

study. The KC cell line was provided through the courtesy of S.1. Wechsler, Arthropod­

borne Animal Diseases Research Laboratory, Wyoming, USA. BHK-21 cells were used 

for routine propagation and titration of BTV. Both BHK-21 cells and KC cells were used 
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to study the infectivity of the different DTV particles, for immunohistochemical (IHC) 

detection of virus replication and to detect expression of the DTV nonstructural protein 

NS3. DHK-21 cells were grown at 37°C in modified Eagle's medium containing 5% 

normal foetal calf serum (FCS) which had been heat inactivated at 56°C for 30 minutes. 

KC cells were grown at room temperature (RT, 22±2°C) in Schneider's insect medium 

(Sigma S9895) (Wechsler et al 1989) containing 10% FCS. For IHC detection, the cells 

were grown on coverslips (12 mm in diameter) in plastic pelri dishes (60 mm). For virus 

titration, 96-well micro plates were used. 

2.2.3 Infection of tissue culture cells 

Suspensions containing 102
•
3 BHK-21 TCIDso ofBTV per ml were prepared to infect cell 

cultures grown on coverslips. When the monolayers were almost confluent the medium 

was discarded, the cells were washed with phosphate-buffered saline (PBS) and were 

infected with 0.2 ml of the virus suspension mixed with 0.8 ml of fresh Eagle's medium 

(BHK-21 cells) or Schneider's medium (KC cells). The cells were then incubated at 37°C 

(BHK-21 cells) or RT (KC cells) for 30 min, before removing the viral suspension and 

washing the cells three times with Eagle's medium. The cells were then incubated at 37°C 

in Eagle's medium containing 2% FCS (BHK-21 cells) or at RT in Schneider's medium 

with 5% FCS (KC cells) respectively. As required, cells were rinsed twice in PBS and 

were fixed at various intervals postinfection (pi) in a series of time course experiments. 

For IHC detection cells were fixed for 5 min in prechilled acetone and air dried for 15 

min at RT. Cells could be used for IHC detection at once or could be kept at -20°C in 

sealed plates. The medium was also collected and was used in virus titration experiments 

using the same time course series. 

2.2.4 Antibodies and reagents for immunohistochemistry assay 

A group-specific monoclonal antibody against the core protein VP7 ofBTV (MAbA3) was 

provided by Dr. J Anderson of the IAH-Pirbright Laboratory (Anderson 1984). This MAb 

was used to detect replication of BTV 1 SA in cells and in intact Culicoides. Polyclonal 

antibody against the NS3 polypeptide 10C (amino acids 37-46) (PAbl0C) was provided 
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by Dr.A Wade-Evans also of the Pirbright Laboratory and was used to assay the 

expression of NS3 in cells infected with BTV 1 SA. Horseradish peroxidase conjugated 

rabbit-anti-mouse and goat-anti-rabbit immunoglobulins were obtained from the DAKO 

Corporation (DAKOPA TIS P260 and DAKOPA TIS P448). 

2.2.5 Clllicoides 

Culicoides variipennis, the major vector ofBTV in North America, was used in this study. 

The insects were originally imported from the USA in 1967 and have been maintained as 

a self-sustaining colony in the insectaries of the IAH-Pirbright Laboratory for over 25 

years (Boorman 1974). Adult midges are held in waxed cardboard boxes and maintained 

with 10% sucrose. Anaesthetised mice provide a blood meal source. Larvae are reared in 

enamel pans on a substrate of glass fibre in a medium which contains 4 ml of nutrient 

broth, 3/4 of teaspoon of grass meal and 114 teaspoon of Bemax (a proprietary wheat germ 

product, Wm. Lillico & Son Ltd, Surrey) per litre of dechlorinated water. The room 

temperature in the insectary is kept at 240 ± I°C 

2.2.6 Infection of Clllicoides with BTV 

Adult female Culicoides midges, 3 days old, were used in experiments and were infected 

with BTV by intrathoracic (IT) inoculation or by feeding on virus suspensions in blood. 

For IT inoculation, all of the insects were injected with approximately 103TCIDso ofBTV 

1 SA (suspended in Eagle's medium) per midge by using fine glass needles connected to 

a semi-automatic inoculation device (Boorman 1975). The inoculated midges were then 

incubated at 2SoC, collected at intervals after infection and stored at -70°C for titration and 

IHC assay. 

For oral infection, blood meals were prepared using citrated normal sheep blood, diluted 

in the ratio of 3:7 with suspensions of BTV in Eagle's medium, so that the final 

suspension contained 106-7TCIDsolml of the virus. The midges were fed through a parafilm 

membrane on the blood-virus suspension maintained at 37°C by using the method of 
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Mellor (1971). All engorged female midges were transfered to cardboard boxes after 

feeding, provided with 10% sucrose and were incubated at 25°C until required. Female 

Culicoidcs fed a similar blood meal but without DTV were used as virus-negative controls. 

2.2.7 Titration of virus 

For titration, midges were ground individually in Eppendorf tubes using a motor-driven 

plastic pestle and were suspended in 0.1 ml of Eagle's medium. Medium collected from 

cell cultures, and the suspensions of Clilicoides were diluted tenfold serially. Titration was 

carried out in 96-well microplates with confluent BHK-21 cell monolayers. Cytopathic 

effect (CPE) was used as a positive indicator of the presence of virus. TC1DsJml was 

determined using the method of Karber (quoted by Whitaker 1972): 

logTC1Dso = m - b. (S - 0.5) 

m: log dilution containing the highest concentration of virus; b.: log dilution factor; S: sum 

of proportion of positive cultures; 0.5: constant 

2.2.8 Preparation of cryostat sections of Clilicoides 

For cryostat sectioning (Bancroft 1990), the midges were first dipped in 2% SDS for 1 

minute and were then rinsed twice in PBS. After the liquid on the surface of insects had 

been removed with a piece of paper tissue, the midges were placed on a cork (20-30 

midges per cork) 7 mm in diameter and then embedded in OCT embedding compound 

(Raymond A Lamb, Tissue-tek C-I01.25), before being left at RT for 5 minutes. The 

block was frozen at -70°C and could then be used immediately or stored at -70°C. 

Alternatively, the block could be frozen rapidly by dipping in liquid nitrogen. 

Before sectioning, the temperature of the microtome was set at -24±loC and the frozen 

block was put in the cryostat chamber for about 30 min until the temperature of the block 

had risen to the same level. Serial sections 10 J..lm thick were cut and mounted on 

microscope slides coated with polylysine (Sigma P1339), and air dried for 10 min at RT 

before fixation. For IHC staining, the sections were rinsed twice in PBS, fixed with 

prechilled acetone for 10 min and air dried at RT. They were then suitable for use at once, 
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or could be stored at -20°C in a scaled container. 

2.2.9 Immunohistochemistry assay 

The indirect immunoperoxidase technique (Taylor 1978, De Jone et al 1985, Bancroft 

1990) was carried out as follows. The fixed cells or sections were rinsed twice in PBS (pH 

7.3) and then incubated for 30 min at RT in blocking buffer (5% normal bovine serum 

in 1% milk-PBS, pH 7.3) with 0.3% H20 2 to stop non-specific reactions and to eliminate 

endogenous peroxidase activity of cells or insect tissues. After incubation for 90 min at 

37°C in a 1:20 dilution of MAbA3 (or PAblOC 1:1,000) diluted in 1% milk-PBS, the 

slides were washed three times for 5 minutes at 37°C in PBS. The slides were then 

incubated for 30 min at RT with peroxidase conjugates, diluted 1 :200 with 1 % milk-PBS. 

After being washed extensively with PBS, the immunochemical reactions were developed 

for 10 min at RT with 0.5 mg/ml diaminobenzidine (DAB) solution containing 1 ).11 30% 

H20 2 per ml. The reaction was stopped by washing with PBS for 5 min at RT. 

Haematoxylin (Merck Ltd 35060 4T) (Taylor 1978; Bancroft 1990) was used to 

counterstain the cells or sections. The cells or sections were dehydrated with gradient 

ethanol and then mounted using liquid Eukitt mounting medium (Merk Ltd. 36189 40). 

Antigen-positive cells and tissues were identified by the presence of a rusty brown 

precipitate. The negative controls included virus-negative and antibody-negative cells or 

sections. 

Statistical analyses, including calculation of mean, standard error of mean (SEM) and 

standard error of proportion (SEP*, see Page 50), t-test of mean and x2-test, were carried 

out using conventional statistical methods (Rowntree 1991; Clarke and Cooke 1992). 

2.3 RESULTS 

2.3.1 Infection of BHK-21 and KC cells with BTV IVP, ISVP and CP 

Fig. 2.1 shows the results from 3 experiments of the replication curves of BTV 1 SA in 

BHK-21 cells which were infected with IVP, ISVP and CP ofBTV ISA. The experiments 
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Fig. 2.1 Yield of progeny BlV in BHK-21 cells infected with IVP. ISVP and CP of BlV I SA at 0-48 h 

postinfection. Data are derived from three experiments. IVP: intact virus particles; ISVP: infectious subviral 

particles; CP: core particles. Data and standard error are shown in appendix I. 
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Fig. 2.2 Yield of progeny BlV in KC cells with IVP. ISVP and CP of BlV ISA at 0-48 h postinfection. 

data are derived from three experiments. IVP: intact virus particle; ISVP: infectious subviral particle; CP: 

core particle. Data and standard error are shown in appendix 2. 
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gave highly reproducible results. Data are shown in appendix 1. In BIlK cells infected 

with ISVP and IVP, virus replication showed a similar pattern. The virus was first 

detected in ISVP infected cells at 4 h pi, titre increased gradually and reached the peak 

level at about 10s·o-rCIDsolml. However in IVP infected cells, the virus could only be 

detected from 8 h pi, about 4 h later than in ISVP infected cells. The titre of the virus 

reached a peak level of about 107
.
sTCIDsolml at 28 h pi. The result of the infection was 

the death of the cells. No detectable virus was found either by titration or by IHC in CP 

infected BHK-21 cells. 

The replication ofBTV lSA in KC cells infected with IVP, ISVP and CP is shown in Fig. 

2.2. These results were from 3 experiments and were highly reproducible. Data are shown 

in appendix 2. In IVP and CP infected cells, the virus was first detected at 8 h pi and the 

titre then increased gradually to reach a peak level at 48 h pi. However, in ISVP infected 

KC cells, the virus was first detected at 6 h pi, about 2 h earlier than in IVP and CP 

infected cells. The virus grew rapidly to a level of about 10s.0 TCIDsolml at 10 h pi and 

then increased slowly to the peak of 106
.
5 TCIDsolml at 48 h pi. The infection of KC cells 

was persistent and could last for months at around 106
.
0 TC1DsJml if the cells were well 

maintained. 

A detectable virus reaction was found by IHC in infected BHK-21 cells as early as 6 h 

pi and in the infected KC cells at 8 h pi. After infection typical perinuclear inclusion 

bodies formed in BHK-21 cells (Fig. 2.4a) while no obvious morphological change was 

observed in KC cells. Virus positive reactions were only seen in a certain proportion 

(about 50%) of KC cells (Fig 2.3a). Fig. 2.3b shows uninfected KC cells. 

2.3.2 Detection of NS3 from BHK-21 cell cultures infected with nTV 

NS3 has previously been shown to be associated with release of progeny virus from 

infected cells (Hyatt et al 1991, 1993). Therefore in the present study a technique was 

devised to detect its presence in BHK-21 cells before commencing work with KC cells. 

In this study NS3 was successfully detected using a polyclonal antibody against BTV NS3 
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Fig 2.'a IH del clion f BTV infe lion in K el l (4 8 h ur pi). ~ BT p iti ell ; 

~ BT n gati e ell ( unler lained \ ith haemal x lin) 

. ., Ig. _. bil l taining in uninfe led K el l ( linter tained \\ ilh hucmalOx lin) 
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Fig. 2.4a IHe Detection ofN 3 in BHK-21 cells infected with BTY I A (16 h pi) 

.... 3 po iti e cell (co un tel tained \ ith haematoxylin) 

Fig.. _ . ..tb IH detection of BT infe lion in BIIK-21 cell (16 h pi) . .. BT positi e cell; 

~ BT neg.ative ell (counter [nined \\ ilh haematox lin) 
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polypeptide, by using the IHC technique. Fig. 2.4 shows the expression ofNS3 in BHK-

21 cells infected with BTV ISA. It was expressed at a very low level and was distributed 

in the cytoplasm apparently in association with viral inclusion bodies (VIB) (Fig 2.4a). 

Fig 2.4b shows BTV infected BHK-21 cells stained with MAbA3. The expression ofNS3 

in KC cells infected with BTV has not been studied and will be subject of future work. 

2.3.3 Infection and replication of DTV ISA in C. variipe""is 

A final total of 282 IT inoculated midges were titrated individually for BTV at intervals 

of up to 14 days pi (Table 2.1) and growth curves in Fig. 2.5. One hundred percent of 

ITinoculated midges with BTV were infected. The virus replicated rapidly in individual 

Table 2.1 Infection of C variipemlis with DTV after IT inoculation 

Time pi 
days hours 

<1 1 
2 
4 
8 
12 
16 
20 

1 24 
2 
3 
4 
5 
6 
7 
8 
9 
10 
14 

Total 

No. of midges 
(inoculated) 

10 
10 
10 
10 
10 
10 
10 
10 
20 
18 
24 
21 
21 
19 
20 
18 
19 
22 

282 

No. of midges 
(BTV+) 

10 
10 
10 
10 
10 
10 
10 
10 
20 
18 
24 
21 
21 
19 
20 
18 
19 
22 

282 

36 

Detection rate (%) 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

100 



Table 2.2 Infection of C. l'ariipe""is with IlTV after an infectious blood meal 

Time pi 
days hours 

< 1 
1 
2 
4 
8 
12 
16 
20 

1 24 
28 
32 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
14 

Total 

No. of midges 
(fed) 

20 
20 
62 
67 
63 
66 
68 
59 
87 
76 
71 
98 
81 
74 
60 
157 
80 
99 
80 
95 
59 
133 

1,675 

No. of midges 
(BTV positive) 

20 
20 
62 
67 
63 
66 
68 
59 
69 
30 
29 
26 
27 
23 
19 
54 
31 
36 
29 
35 
20 
46 

---* 

detection rate 
(%)* 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
79.3 
39.5 
40.8 
26.5 
33.3 
31.1 
31.7 
34.4 
38.8 
36.4 
36.3 
36.8 
33.9 
34.6 

---* 

• detection rates for initial 24 hours of 100% reflect presence of residual virus from the blood meal in the 
gut lumen. Rising detection rates from 3 days onwards reflect productive infection. 

midges to a level about 10s,0 TCIDso per insect in 3 days and apparently remained at the 

same level for the rest of the insect's life (Fig. 2.5, Appendix 3). There was no 'lag phase' 

in IT inoculated Culicoides as observed in orally infected ones. It was later confirmed that 

fully disseminated tissue involvement could be seen by IHC at this time. 

Table 2.2 shows that a total of 1,675 midges fed with an infectious blood meal 
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weretitrated individually for BTV at intervals of up to 14 days pi. Initially virus was 

detected in 100% of the orally infected insects up to 24 hours pi. This then declined 

rapidly to 26.5% positive by day 3 pi as virus was eliminated from orally insusceptible 

individuals. Subsequently recovery of this infection rate to over 30% represents replication 

and dissemination of the virus in persistently infected insects. There was no significant 

difference between the highest and lowest infection rates during 7 to 14 days pi [x,2=0.160, 

degree of freedom: df= 1, P>0.05), suggesting that the infection rate was constant over this 

period. The infection rate of orally infected Culicoides, based on the titration results of 

the midges from 7 to 14 days pi, was 35.4% (2701763, SEP=0.017: i.e. SEP=1.7%). The 

replication of BTV in orally infected Culicoides varied with individuals. Detailed titration 

results showed that the titre of BTV fell from about 103.0 to 10o.75TCIDso per midge in 

some insects in the first 24 hours pi. This fall was significant (t=6.43, P<O.OI df=76). The 

virus then replicated gradually to J;"each a peak of about 105.oTCIDso per insect by 5 days 

pi in some individuals. This increase from 10o.75TCIDsolmidge was also significant (t=3.03, 

df=78, P<O.OI)(Fig. 2.5, 2.6, Appendix 4). The daily titres ofBTV in different individuals 

varied from 0.32 to lOs.oTCIDso per insect (Fig. 2.5, 2.6, Appendix 4). Once the midges 

were persistently infected, they remained so for life. 

2.3.4 Characteristics of BTV infection and dissemination in C. variipellIlis 

A total of more than 2,000 midges fed on an infectious blood meal were processed for 

IHC detection. It was not practical to embed individual midges in separate blocks since 

the infection rate was low and a series of sections was needed from each midge to provide 

a reasonable chance of detecting the virus. Therefore about 20-30 midges were embedded 

in each block and approximately 80-100 sections were obtained from each block. Because 

of these constraints it was impossible to quantitate the patterns of virus dissemination 

observed by IHC. Generally speaking, after ingestion of a viraemic blood meal, infections 

were sporadic and the following patterns were observed in persistently infected 

individuals: 1) virus was restricted to the anterior and posterior midgut, and the foregut­

midgut junction; 2) virus replicated in the gut cells, disseminated into the haemocoel but 

could only be detected in a few sporadic fat body cells beyond the gut; 3) virus escaped 

from the gut cells into the haemocoel and replicated in secondary organs/tissues but at low 
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Mean TCIDso Imidge 
1~~----------------------------------------------~ 

• 

-ll-IT inoculated 

-+-Orally infected 

o o 1 2 3 4 5 6 7 8 9 10 

Days pi 

Fig. 2.5 Comparison of the replication of BTY I SA in inoculated and orally infected C. mriipellll;s. Mean 

titre each day is from the titres of 10-24 IT inoculated or 19-69 orally infected midges. Data arc shown in 

Appendices 3 and 4. 

TCID so Imidge 
106~-------------------------------------------, 

10~ 

-II-The highest titre/midge 
-+- Mean titre/midge 

. ___ The lowest titre/mid 

. , 
o o 1 2 3 4 5 6 7 8 9 10 11 

Days (pi) 

Fig. 2.6 The replication of BTV ISA in orally infected C. ,·ariipmn;s. The titres each day are from the 

titration results of 19-69 "BTV positive midges. Data are shown in Appendix 4. 
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levels; 4) a fully disseminated infection was observed and virus replicated in secondary 

organs/tissues at high level. Each of these patterns was seen in the sections from at least 

60 blocks. These patterns were not temporal stages in virus dissemination, since each of 

them could be seen at any time interval from 3 to 14 days pi. Once virus escapes from 

the gut into the haemocoel, dissemination to other tissues is usually a rapid process. The 

virus was first observed by IHC in fat body cells at 48 h, in ganglia at 3 days and in the 

salivary glands at 5 days after ingestion of an infective blood meal. However it is difficult 

to determine the exact time when the salivary glands first became infected because they 

were not always contained in the sections. The virus infection patterns of gut cells in 

orally infected midges prior to 2 days pi are difficult to interpret because endogenous 

peroxidase in the red blood cells of the blood meal causes false positive reactions. 

More than 500 IT inoculated midges were processed using IHC (in 33 blocks, 15-20 

midges per block). All IT inoculated midges showed a fully disseminated infection and, 

as expected, virus spread to other tissues was more rapid than in orally infected insects. 

However after 5 days pi, there appeared to be no difference in the degree of dissemination 

between inoculated and some orally infected individuals. 

2.3.5 Distribution of the virus in C variipellllis 

In orally infected individuals, the virus was detected in gut cells (specifically the 

anteriorand posterior midgut epithelium, and also the cells of the foregut-midgut junction 

possibly involving cardial and posterior foregut cells) (Fig. 2.7), in fat body, cephalic and 

thoracic ganglia, salivary glands and ommatidia of the compound eyes. No virus was 

found in the hindgut cells, muscles, Malpighian tubules and oocytes/nurse cells of the 

ovaries. In the 500 IT inoculated individuals examined, the organs/tissues infected with 

the virus were the same except that infection of gut cells was never observed. No evidence 

of infection of the abdominal ganglia or heart was observed because these tissues were not 

seen in the sections. 

In orally infected flies, anterior midgut, posterior midgut and foregut-midgut junction cells 

including cardial epithelium and possibly the posterior part of foregut were the most 
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Fig. 2.7 Infection of the gut (in thorax) in C. I'ariip nnis raIl infected with STY I A (10 days pi).AM 

anteri r midgut; M muscl ; V STY positi e reaction; ..... the anterior end of thorax; +- foregut-midgut 

junction; C cutic le (counter tained with haemalo 'ylin) 

ig. 2. In feclion of the gut (i n abdomen) in variipel7l1is orall infect d \ ith BT I A (10 da s pi). PM 

po teriar midgut : ..... STY po iIi e reaction : MT Malpighian tubule ; C cuti Ie ( ounter lain d with 

haema! .\. lin) 
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Fig. 2.9 Full di seminal d infection in . variipennis orall infected with BTY I A (thora and head, 7 

da pi). BTY+ reaction in :CG ephalic ganglia ·TG thoracic ganglia ; FBfat body cells; 0 ommatidia of 

compound e es· M muscle (BTY-) (counterstained with haemato ylin) 

Fig. 2. 10 Fully disseminated infection in C. variipe/111is orall infected with BTY I A (thora and head 7 

days pi) . BTY+ reaction in :CGcephalic ganglia ; .... anterior midgut·FBfat body cells; .. salivary glands · 

o ommatidia of compound e es; M muscle (BTV-) · C cuticle (counterstained with haematoxylin) 
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Fig. 2.11 Detection of BTV lSA in a few cells in the haemocoel of orall infected C. variipennis (abdomen, 

7 da s pi) . ~ BTV+ fat body cells· C cuticle (counterstained with haemato ylin) 

Fig. 2.12 Fully disseminated BTV infection in C. variipennis after an infectious blood meal (abdomen 7 

days pi). ~ BTV+ fat body cells; ~ egg sheath; E egg cells; C cuticle (counterstained with 

haematoxylin) 
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commonly infected tissues. However virus replication in these tissues seemed to be at a 

lower level than in other infected organs/tissues. The infection rate of the cells of the gut 

including anterior and posterior midgut and foregut-midgut junction was higher than that 

of the disseminated infection rate, i.e., infection of midgut occurred in both individuals 

with and without a disseminated infection. The infection of the gut could be divided into 

two main types: 1) virus replication in gut cells ranging from very low to higher levels 

(Fig. 2.7) but virus spread throughout the cytoplasm. Sometimes there were also a few 

condensed virus-positive structures of different sizes found in the cytoplasm, which were 

probably VIBs. 2) virus restricted to endosome-like structures in the cytoplasm of gut 

cells, which were strongly stained, while the rest of the cytoplasm showed a negative 

reaction (Fig. 2.8). No association was found between the infection pattern in gut cells and 

the degree of dissemination of the virus throughout the insect. 

Once virus was released from the midgut cells through the basement lamina, fat body c~lls 

in the haemocoel were invariably infected. Virus was first identified in the fat body by 

IHC at about 48 hr after an infective blood meal. In some individuals virus replicated at 

a high level in all of the fat bodies in the head, thorax and abdomen (Fig. 2.9, 2.10), 

while in other individuals virus replication was at much lower level. In a third group of 

insects only a few of the fat body cells in the abdomen showed a weak virus positive 

reaction, while all other tissues were virus negative (Fig. 2.11). The intensity of fat body 

infection was positively associated with the level of virus replication in other secondary 

target organs such as salivary glands and nerve ganglia. 

Once dissemination had occurred, nerve ganglia seemed to be the most susceptible tissue 

to virus infection. Virus was detected in nerve ganglia in the thorax and head, including 

the antennae, in many individuals (Fig. 2.9, 2.10). The earliest infection of ganglia was 

detected by day 3 after an infective blood meal. It was found that the level of virus 

replication in ganglia was similar to that in the fat bodies but the fat body seemed to 

become infected about one day earlier than nerve ganglia. The infection of nerve ganglia 

in the abdomen has not been observed because these tissues were absent from the sections 

examined. Ommatidia of the compound eyes were also a frequently infected neural tissue 

(Fig. 2.9, 2.10). 
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The involvement of the salivary glands seemed to be associated with that of the ganglia 

and fat bodies. The stronger the virus positive reactions were in nerve ganglia and fat 

bodies, the more likely were the salivary glands to also be infected. The level of virus 

replication in the salivary glands also appeared to be positively related to that detected in 

the ganglia and fat bodies. However salivary glands usually became infected at the same 

time as the neural tissues while fat body was always infected at an earlier stage. 

The egg sheath was non-specifically stained in the IHC test and a strong positive reaction 

was observed from both infected and negative control individuals. However oocytes/nurse 

cells were never seen to become infected with BTV in either IT inoculated or orally 

infected midges (Fig. 2.12). 

2.4 DISCUSSION 

Immunohistochemical techniques have been used previously in the study of vector insects 

infected with arboviruses (Leake and Johnson 1987; Romoser e/ al 1992), and in this 

context immunoperoxidase assays have a number of advantages. Firstly, sensitivity is high. 

Secondly the results can be examined repeatedly by light microscopy and the sections can 

be maintained permanently. Thirdly, good tissue/cell architecture can be obtained because 

the reaction conditions used during detection are mild. 

The wax-embedding technique is commonly used in the study of arbovirus-insect 

interactions. However, compared with cryostat sectioning, the wax-based technique is time 

consuming and sometimes antigenicity can be decreased or lost during processing. 

Cryostat sectioning is ideal for IHC assays because the antigenicity of the virus and the 

structure of tissues are not damaged during processing. However, technically it is very 

difficult to produce insect sections with good structure because the hardness of the cuticle 

compared with other tissues frequently causes distortion. In this study the method of 

cryostat sectioning was modified to overcome inherent problems when sectioning insects. 

It was found that ideal sections of Culicoides can be obtained if the embedded insects are 

frozen at -70°C, instead of being quickly frozen by dipping in liquid nitrogen, and are cut 

at _24°± 1°C. 
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In this study, 100% of IT infected C. variipennis were shown to develop a fully 

disseminated BTV infection both by the IHC test and by viral titration; while the infection 

rate of orally infected midges was only 35.4%. Consequently, it is clear that the 

alimentary tract of C. variipennis presents the primary (major) barrier to virus infection, 

i.e. a mesenteronal infection barrier (MIB), which determines the susceptibility of 

ClIlicoides to BTV infection. Furthermore virus was shown to replicate to a range of 

levels in orally infected individuals (Fig. 2.7, 2.8, 2.9, 2.10, 2.11, 2.12) and the results by 

IHC showed that virus dissemination only occurred in a proportion of these individuals 

and the degree of dissemination also varied between individuals. It is therefore apparent 

that a mesenteronal escape barrier (MEB) also exists in some C. variipennis. These results 

support the hypotheses of gut barriers to arbovirus infection in biting midges based on 

previous studies of BTV-ClIlicoides and of arbovirus-mosquito interactions (P.S. Mellor, 

personal communication; Hardy e/ al 1983, 1988; Chandler e/ al 1985; Leake 1992; 

Romoser e/ al 1992; Kramer e/ al 1993). These earlier studies suggested that the MIB to 

arbovirus infection of insects operated at the level of the midgut and could be related to 

the presence or absence of specific viral receptors on the luminal surface of the midgut 

cells, or to the composition of digestive enzymes in the gut (Chamberlain and Sudia 1961; 

Hardy et al 1983; Leake 1992; Mellor 1990; Mertens e/ al 1993). The present results 

confirm the existence of a MIB in Culicoides midges but the nature of this barrier remains 

to be elucidated. Specific virus receptors may be involved in the mechanism, but further 

work is clearly necessary to confirm this supposition. 

The results of the infection of BHK-21 and KC cells with IVP, ISVP and CP of BTV 

have shown that ISVPs initiate an infection earlier than IVPs in BHK-21 cells and earlier 

than either IVPs or CPs in KC cells (Fig. 2.1, 2.2). This may indicate a different route of 

entry of ISVPs into the cytoplasm. In addition, at a concentration equivalent to 

103·<>rCIDso of IVP/ml, CPs were unable to infect BHK-21 cells but the same particle 

concentration was able to infect KC cells and has a similar level of infectivity for them 

as does IVP. These results support the results of previous studies on mammalian cells 

(Mertens e/ al 1987) and on the oral infection of susceptible Culicoides species (Mertens 

e/ aI1993). These authors found that ISVPs had a similar infectivity for mammalian cells 

(BHK-21 cells) as do IVPs, whereas CPs had only a very limited infectivity. They also 
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found that all three types of BTV particle are orally infective to susceptible Culicoides, 

both IVPs and CPs showing similar levels of infectivity while ISVPs seemed to be 100-

500 times more infectious than either IVPs or CPs. Therefore it is likely that the initiation 

of infection of BTV in mammalian cells is different from that in insect cells. 

Consequently specific virus receptors on the cell surfaces may also differ or it may be that 

entry of virus into insect cells involves an entirely different mechanism from those used 

to enter mammalian cells. 

The KC cell line consists of a mixed population of cells from different tissues of C. 

lJariipennis. Only a certain proportion (about 50%) of these cells were shown to be 

susceptible to BTV infection in this study (Fig. 2.3). Similarly, some organs/tissues in 

intact C. lJariipennis, including the hindgut cells, muscles and Malpighian tubules, were 

also found to be insusceptible. 

It was found that, after ingestion of an infectious blood meal by susceptible Culicoides, 

the gut epithelium, including anterior and posterior midgut and the foregut-midgut junction 

were the first cells to be infected, similar to the findings of Romoser et al (1992) and 

Leake (1992) when working with mosquitoes. In addition, the anterior midgut epithelium 

and the cells at the foregut-midgut junction of C. lJariipennis became infected as 

frequently and as early as the posterior midgut, and showed the same types of infection 

as did the posterior midgut. The high frequency of infection of the cells at the foregut­

midgut junction is not surprising because all of the virus in an infective blood meal passes 

through a very narrow opening at this junction and the susceptible epithelium in this 

region has extensive exposure to the virus. Therefore, although the posterior midgut of 

Culicoides is considered the main route of infection for BTV, the anterior midgut and 

cardia, plus parts of the posterior foregut at the foregut-midgut junction, probably share 

this property. In other words, the MIB and MEB to BTV probably also exist in this part 

of the alimentary tract in addition to the posterior midgut. Also, considering the proximity 

of the foregut-midgut junction to the proboscis of the insect, if BTV were to be released 

back into the gut tract from the luminal surface of this region of the gut then this might 

supplement virus from salivary glands in being ayailable for transmission to susceptible 

animals during biting. Furthermore, Webb (1990), working with Stomoxys calcitrans 
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(Linnaeus 1758), observed that, after being ingested with a blood meal, virus could be 

pushed back to the anterior part of the alimentary tract by regurgitation. Should this reflex 

also occur in Culicoides species then this would enhance the likelihood that virus released 

back into any part of the gut lumen would be available for transmission. In addition, the 

natural digestive enzymes present in the Culicoides gut would then partially digest the 

intact virus particles during their time in the gut lumen to produce more infective ISVPs 

and so further enhance the likelihood of gut infection. 

The initiation of a Culicoides gut cell infection with BTV apparently occurs rapidly and 

infected cells were first observed 48 h after an infective blood meal. Two main types of 

gut infection were observed (Fig. 2.7, 2.8). It is possible that the first type of low level 

infection is merely an early stage of the higher level infection. However, both the low and 

high level types of gut infection occurred with or without a disseminated infection. 

Furthermore both types of gut infection were observed in different individuals at the same 

time after infection, and over periods extending to more than 10 days after an infective 

blood meal. Based on the gut infection patterns that have been observed so far in this 

study, the MEB seems to involve at least two factors: 1) the physical barrier effect of the 

basement lamina of the gut wall; 2) the endocytosis-like function of gut epithelia (Fig. 

2.8), which could stop the spread of BTV to the haemocoel from gut cells. The detailed 

nature of these phenomena remains to be elucidated. 

Like arbovirus infections of mosquitoes (Leake and Johnson 1987; Faran et al 1988; 

Romoser et al 1992), in the present study the dissemination of BTV in C. variipennis has 

been found to be a rapid process, subsequent to virus passing the gut barriers. The virus 

was first found by IHe to have passed through the gut cells and entered the fat body 

within 48 h pi. In a fully disseminated infection, once the fat body had been infected then 

other secondary target organs/tissues including ganglia, salivary glands and ommatidia of 

the compound eyes were also usually involved, and the greater the amount of virus in the 

fat body, the more that was present in the other tissues. This indicates that fat body, which 

is a relatively massive tissue in Culicoides, might be an important factor affecting the 

infection of other secondary organs/tissues beyond the gut. However, it is also possible 

that fat body might serve as a barrier to limit virus dissemination through the haemocoel. 
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In the present study it has been observed that on some occasions only a few sporadic fat 

body cells in the abdomen showed virus positive reactions and at relatively low level, 

while no detectable virus was found elsewhere beyond the gut (Fig. 2.11). This may 

represent a 'self-clearance function' of the Culicoides 'immune system', which could 

thereby playa major role as a barrier to BTV dissemination to the salivary glands and 

other secondary organs/tissues. The same phenomenon has not been observed in IT 

inoculated Culicoides. This may be because inoculation provides concentrations of virus 

at a level above the threshold at which the fat body could clear the system; while in some 

orally infected individuals virus is only released into the haemocoel at concentrations 

below this level. The infection of fat body has been described in other arbovirus-vector 

insect studies though its possible significance in modulating virus dissemination has not 

previously been suggested (Beaty and Thompson 1978; Kuberski 1979; Scott et al 1984; 

Leake and Johnson 1987; Romoser et a11992; Weaver et aI1992). 

The ganglia in the thorax and head are some of the most susceptible secondary tissues to 

BTV infection in C. variipennis and virus was first detected in the thoracic ganglia 3 days 

after an infective blood meal. The level of virus replication in the ganglia seemed 

coincident with that of the fat body and salivary glands but the significance of this 

relationship, if any, is not known. 

Infection of the salivary glands is a prerequisite for biological transmission of arboviruses 

to vertebrate animals by vector insects. Previous studies have shown that infection of the 

salivary glands is a rapid process in some mosquitoes (Scott et al 1984; Romoser et al 

1992). These workers showed that Rift Valley fever virus is found in the salivary glands 

of Cx pipiens (Linnaeus 1758) as early as 48 h after an infective blood meal. In the 

present study, detectable BTV infection of the salivary glands of C. variipennis was first 

found on day 5 after an infective blood meal. The infection of salivary glands seems to 

be associated with the infection of nerve ganglia and the fat body. The replication level 

of BTV in salivary glands was similar to that in neural tissues and the fat body (as 

indicated by the extent and intensity of virus specific staining using IHC). Studies of 

arbovirus-mosquito interactions have suggested that in IT inoculated specimens neural cells 

become infected before the salivary glands and that the salivary glands subsequently 
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become infected via the nerve trunks from infected cerebral ganglia (Miles el al 1973; 

Leake and Johnson 1987). In addition, the latter authors indicated that fat body may also 

become infected before the salivary glands. Since the salivary glands are surrounded by 

fat body cells, it is possible that salivary gland infection could originate from these 

surrounding fat body cells. On the other hand, as mentioned earlier, the 'self-clearance' 

phenomenon postulated for some orally infected Culicoides in the present work, implies 

that the fat body might act as a barrier to the infection of salivary glands with BTV. The 

mechanisms involved in this are unknown and may possibly be a part of the immune 

response of Culicoides to BTV infection. No evidence has been obtained from this study 

to describe the initiation of infection of the salivary glands because of the low infection 

rate. 

Vertical transmission of arboviruses in mosquitoes and sandflies has been reported and has 

been demonstrated experimentally and in nature for several vector-virus combinations 

(Beaty el al 1980; Leake and Johnson 1987; Leake 1992; Ture11 el al 1982; Ture11 1984; 

Comer el al 1990; Bosio el af 1992; Baquar el al 1993; Kramer el al 1993; Fulhorst el 

a/1994). However other studies dealing with Culicoides-borne viruses have indicated that 

vertical transmission does not appear to occur with BTV in C. variipennis, and BTV has 

not been detected in progeny C. variipennis of parental midges infected with the virus 

(Jones and Foster 1971 b; Nunamaker e/ al 1990; P.S. Mellor, personal communication). 

In the present study, oocyteslnurse cells of susceptible Culicoides were never found to 

become infected with BTV in either IT inoculated or orally infected midges, even in 

individuals with fully disseminated infections (Fig. 2.12). This supports the assertion that 

vertical transmission of BTV does not occur in C. variipennis and suggests the presence 

of a transovarial transmission barrier which prevents access of the virus to the egg cells. 

SEpt: Standard error of proportion. With a large number of samples, the distribution of the proportion 

would be approximately normal and centred around the true proportion (the proportion of the population). 

SEP which can be calculated from a single proportion is used to show how close the observed proportion 

is to the true proportion. Generally speaking, the bigger the sample size and the smaller SEP, the more 

certain we can be about that the observed proportion is close to the true proportion. 
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CHAPTER 3 
QUANTIFICATION OF BLUETONGUE VIRUS RELEASE FROM 
THE SALIVARY GLANDS OF C. VARIIPENNIS 

3.1 INTRODUCTION 

Salivary gland barriers, including the salivary gland infection barrier (SOIB) and the 

salivary gland escape barrier (SOEB), are believed to be the final barriers to arbovirus 

transmission by vector insects (Jones and Foster 1966; Hardy el al 1983; Hardy 1988; 

Mellor 1990; Leake 1992). However, the nature of these barriers in mosquitoes is 

unknown whilst even their very existence in Culicoides has not been proven. 

This study compared the infection and transmission rates of BTV in intrathoracically (IT) 

inoculated, and orally infected midges of a susceptible and a refractory colony of C. 

variipennis using virus titration arid in vitro transmission assays. The purpose of this study 

was to investigate the role of the salivary glands of the midge as a barrier to the 

transmission of BTV. 

3.2 MATERIALS AND METHODS 

3.2.1 Virus and tissue culture cells 

BTV ISA and BHK-21 cells used in this experiment were as described in Chapter 2. 

BHK cells were used to titrate BTV in infected C. variipennis, in saliva secreted by 

infected midges and in the blood samples fed upon by infected midges. The cells were 

grown at 37°C in modified Eagle's medium containing 5% normal foetal calf serum, 2 

mM glutamine and antibiotics (100 IU/ml penicillin and 0.1 mglml streptomycin) and 

were maintained in Eagle's medium with 2% normal foetal calf serum, 2 mM glutamine 

and antibiotics. 
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3.2.2 Infection of C. l'ariipellllis with BTV lSA 

Both the BTV susceptible and refractory colonies of C. variipennis used in this study were 

maintained in the insectaries ofPirbright Laboratory, Institute for Animal Health, UK.The 

susceptible colony was originally imported from the USA in 1967 (see Chapter 2). The 

refractory colony of C. variipennis was derived by selection from the susceptible colony 

and has been shown to be unable to transmit BTV to susceptible host animals (P.S. Mellor 

personal communication). Adult female midges, 2-3 days old, were infected with BTV 

ISA by IT inoculation or by feeding upon viraemic blood and were maintained at 24±I°C 

provided with 10% sucrose as described in Chapter 2. The infected individuals were 

collected for in vitro transmission tests (see below) by using micro-membrane feeding and 

salivation tests from day 3 on, after infection. Uninfected female midges inoculated with 

Eagle's medium or fed with a similar blood meal but without BTV were used as negative 

controls. 

3.2.3 III vitro transmission 

3.2.3.1 Micro-membrane feeding test 

Sterilised microtubes with parafilm bottoms were used in the feeding test. Each tube was 

filled with 0.1 ml of a mixture of warm (37°-40°C) sheep blood plus Eagle's medium in 

a ratio of 1:5 respectively and was placed on the top of a waxed pill box cage containing 

a single midge. Feeding and engorgement were then observed over a period of 10-30 

minutes. Engorged individuals only, were collected and were stored individually at -70°C 

in Eppendorf tubes until assayed for BTY 1 SA. The blood samples fed upon by the 

midges were also collected subsequent to feeding. Each sample was added to 0.9 ml of 

Eagle's medium and was kept at -70°C until assayed. Both midges and the relevant blood 

meal samples were labelled individually to ensure that each midge was linked to its own 

blood meal sample. 
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3.2.3.2 Salivation test 

Induction of salivation was carried out following a method used previously (Boorman 

1987). A garden insecticide, malathion (Murphy Chemical Co., \Vheathams~ 

Hertforshire), was used to initiate salivation. The midges were anaesthetized with carbon 

dioxide and were then stuck ventral-side up on a petri dish with double-sided sticky tape. 

The salivation test was carried out under a dissecting microscope. A glass capillary tube 

was used to apply approximately 0.5 III of malathion solution (0.01 % in absolute acetone) 

• topically onto the abdomen of each fly. One to two minutes after the application of the 

malathion, globules of saliva were observed and saliva samples were collected from 

individual midges via capillary acti.on from the distal end of the proboscis by using extra 

fine glass capillary, ~bes (Fig 3'.1). The p~ of each capillary containing the saliva was 

then broken off, put into 1 ml Eagle's medium and stored at -.10oC until aSsayed for BTV 

lSA later. The midges were also collected individually and stored at -70°C in Eppendorf 

tubes for virus detection. The midges and their saliva samples were labelled as described 

above. 

Fig~ 3.1 Salivation test on C. variipennis 
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3.2.4 Titration of BTV 

For titration of BTV, midges were ground individually in Eppcndorftubes using a motor­

driven plastic pestle and each was then suspended in 1.0 ml of Eagle's medium. The 

saliva samples, the blood meal samples and the suspensions of the midges were each 

diluted tenfold serially, with Eagle's medium. The samples were then inoculated on to 96-

well microplates with confluent monolayers ofBHK-21 cell cultures. The inoculated plates 

were incubated at 37°C for 3-4 days in maintenance medium (using 10 replicates for the 

saliva and blood meal samples and 4 replicates for the midges, 0.1 mllwell). The 

development of cytopathic effect (CPE) was used as a positive indicator of the presence 

of the virus. The titre of virus, 50% tissue culture infection dose (TCIDso) per ml, was 

determined using the method of Karber (quoted by Whitaker 1972, see Chapter 2). 

Statistical analyses, including calculation of mean, standard error of mean (SEM), standard 

error of proportion (SEP, see Page 50), t-test of means and x,2_test were carried out using 

conventional methods (Rowntree 1991; Clarke and Cooke 1992). 

3.3 RESULTS 

3.3.1 Experimental infection rate 

Both infection rates and transmission rates were calculated, based on the data collected at 

day 14 pi. 

The infection rate was 100% in both IT inoculated susceptible (52/52) and refractory 

(27127) c. variipennis (Table 3.1). However, only 35.4% (2701763, SEP=0.017, i.e. 

SEP=1.7%) of susceptible midges and 31.3% (62/198, SEP=0.033, i.e. SEP=3.3%) of 

refractory midges, orally ingesting virus, were persistently infected. These two proportion 

do not significantly differ [x,2=1.154, degrees offreedom(df)=I, P>0.05] (Table 3.1). No 

BTV replication was observed in any negative control midges. 

54 



Table 3.1 Comparison of BTV infection rates and transmission 
rates of susceptible and refractory colonies of C. mriipellllis 

The routes of 
infection 

IT inoculation 

Oral infection 

C. variipennis 

Susceptible colony 
Refractory colony 

Susceptible colony 
Refractory colony 

Infection rate 
(%) 

100 (52/52)* 
100 (27/27)* 

35.4 (2701763)** 
31.3 (62/198)** 

• No. of persistently infected midges/No. of IT inoculated midges with BTV 
•• No of persistently infected midges/No. of midges fed with infectious blood meal 
••• No. of midges transmitting BTV through salivaINo. of midges tested 

3.3.2 III vitro transmission 

Transmission 
rate (%) 

100 (52/52)* ** 
100 (27/27)* ** 

3.8 (4/105)*** 
o (0/62)*** 

Virus was detected in 100% of the saliva samples taken with capillary tubes from IT 

inoculated individuals, comprising 52 midges from the susceptible colony and 27 midges 

from the refractory colony (Table 3.1). However, only 35.4% of susceptible midges and 

31.3% of refractory insects were persistently infected after ingestion of an infectious blood 

meal (Table 3.1). Virus was detected in 3.8% (4/105) of samples of saliva from the orally 

infected susceptible midges, of which 33 were known to be persistently infected, i.e., 

12.1% (4/33) of known orally infected individuals released BTV through their saliva. No 

saliva samples from the orally infected refractory insects (0/62) (Table 3.1) and the 

negative controls were shown to be BTY positive. These proportions (411 05 and 0/62) are 

significantly different ("1..2= 7.845, df=l, P<O.Ol). 

Only midges of the susceptible strain were tested for transmission by using the micro­

membrane feeding method. Slightly lower transmission rates were observed using this test 

than using the salivation method. BTY was detected from 92.3% (24/26) and 10.8% (7/65) 

of the blood meal samples fed upon by IT inoculated midges and virus positive orally 

infected midges, respectively. These levels are significantly different ("1..2:54.97, df= 1, P<O.O l). 
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The titre of virus detected in saliva and blood meal samples from individual flies varied 

significantly. Individual BTY positive saliva samples collected by the salivation test 

contained virus ranging from 1.78-7.97 TCIDso, (mean±SEM=3.27±O.03, n=69) while 

single midges released 0.32-1.78 TCIDso of BTY (mean±SEM=O.8S±0.09, n=37) into a 

blood meal during engorgement. The earliest time of transmission, measured by both 

salivation and micro-membrane feeding test, occurred at 4 and 7 days pi, respectively in 

IT inoculated (10/13) and orally infected midges (2/68) maintained at 24±t DC. 

The results also showed a threshold relationship between the replication of BTY in C. 

variipennis and the ability to transmit the virus through saliva. Only those infected midges, 

containing BTY at a level of 103.oTCIDso per midge or higher, were able to transmit virus 

via saliva (13/144). All infected midges, containing less than 103.oTCIDso of BTY, 

consistently failed to transmit detectable virus via their saliva (1311144). It should be 

pointed out that the limit of the detection method used (BHK-21 cells) was 0.32 

TC1Dsolsampie of BTY. 

3.4 DISCUSSION 

This study showed that all C. variipennis, whether from susceptible or refractory strains, 

when infected with BTV by IT inoculation, were able to support virus replication and 

were able to transmit virus in their saliva. However, orally infected susceptible and 

refractory colonies of C. variipennis both had much lower infection rates (35.4% and 

31.3% respectively). Only 12.1% of orally infected susceptible midges transmitted the 

virus while none of the orally infected refractory ones released the virus through their 

saliva. This study also showed a threshold relationship between the replication level of 

BTY in the midge and ability to transmit the virus through saliva. Individuals with BTV 

replicating to a level lower than 103·orCIDso per midge were unable to transmit the virus. 

A similar result was also obtained in a previous study (P.S. Mellor and M. Jennings, 

personal communication). These results suggest that the salivary glands of C. variipennis 

are inevitably infected with BTY if the virus succeeds in gaining entry to the haemocoel 

and replicates above a certain level (ie. ~103.oTCIDsolmidge). Furthermore, midges are 

always able to transmit BTY through their saliva as long as their salivary glands are 

56 



infected. These data therefore support the contention that in C. ~'ariipcnnis the salivary 

glands themselves present neither a SOIB nor a SOEB to BTV. These results also confirm 

that the main barriers to the oral transmission of BTV by C. variipennis exist at the level 

of the gut of the insect. 

However, in the present study it has also been observed that in some orally infected 

midges small amounts of BTV are sometimes 'trapped' in fat body cells after release of 

the virus from the gut into the haemocoel (see Chapter 2). This 'trapping' prevents further 

virus dissemination in these individuals. The same phenomenon of 'virus trapping' by fat 

body cells did not occur in IT inoculated midges probably because in this study IT 

inoculation always resulted in relatively large amounts of the virus being introduced 

directly into the haemocoel. It may be therefore that in circumstances when only small 

amounts of virus enter the haemocoel, the fat body cells can operate as a ' self-clearing 

mechanism' acting as a part of a Culicoides 'immune system'. This may prevent infection 

of the salivary glands and thereby preclude transmission. If virus enters the haemocoel at 

a level above the threshold at which the 'immune system' is able to inactivate it, then the 

barrier is 'swamped', the fat body is heavily infected and infection of the salivary glands 

proceeds normally and transmission can occur. In this respect, it is known that mosquitoes 

have efficient cellular and humoral 'immune systems' which defend the insect against 

bacteria and parasites (Lackie 1988, Hultmark 1993). However there is only very limited 

information on antiviral activity in insects infected with arboviruses (Chadwick and 

Dunphy 1986). Although the existence of SGIBs and SGEBs to viruses has been 

confirmed by studies on the interaction of arboviruses and mosquitoes, the essential nature 

of these barriers remains unknown (Hardy et al 1983; Leake 1992). According to these 

authors, the SGIB of mosquitoes seems to operate at some point(s) before infection of the 

salivary glands, though not necessarily at the surface of the salivary glands themselves but 

subsequent to virus release from the gut. If this is the case then this barrier might more 

properly be termed a dissemination barrier rather than a SOIB. Nevertheless, the threshold 

relationship between the level of viral replication in the haemocoel and the likelihood of 

infection of the salivary glands, as described here for Culicoides, also occurs in 

mosquitoes (Hardy el al 1983; Leake 1992). 
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In the present study, the transmission of BTV by C. l'ariipennis occurred as early as 4 

days pi in IT inoculated midges but not until 7 days pi in orally infected ones. These 

times are earlier than the results shown in previous studies (Jones and Foster 1966; P.S. 

Mellor, personal communication). Such detailed and reliable data are essential for accurate 

epizootiological studies, modelling and prediction of disease spread. 

The amount of the virus transmitted in the saliva of C. variipennis per bite was very low, 

1.78-7.97 TCIDso by the salivation test and 0.32-1.78 TCIDso when feeding through a 
• 

membrane. However, earlier studies have shown that despite this, the bite of a single C. 

variipennis is sufficient to cause infection and disease in susceptible ruminant animals 

(Foster e/ al 1968). 

Malathion is an organic ester of thiophosphoric acid and a powerful acetylcholinesterase 

inhibitor. Inhibition of acetylcholinesterase causes accumulation of acetylcholine, a 

neurotransmitter at cholinergic synapses in central, sympathetic and especially 

parasympathetic nervous systems. The accumulation of acetylcholine at the synaptic 

junction of the parasympathetic nervous system cause a series of strong physical reactions 

including oversecretion of the glands in the head, neck and thorax (Blood and Studdert 

1988). The salivation test used in this study is an efficient and sensitive method for 

detecting the presence and the quantity of BTV in the saliva of C. variipennis. With care 

using the technique described in this chapter, 100% of midges could be encouraged to 

salivate. Therefore, it is an ideal technique to study the transmission of BTV and probably 

other arboviruses by vector Culicoides. The microtube feeding method is also a useful 

technique. Compared with the salivation test, this method was less sensitive but it does 

reflect a more natural way of assessing virus transmission by biting and may provide a 

more reliable estimate of the amount of virus actually transmitted through saliva when 

biting in the field. The reduced amounts of virus detected per bite by the microtube 

feeding method as compared to the salivation test is probably related to the smaller 

volumes of saliva that midges secrete when feeding naturally, rather than when stressed 

by the application of such pharmacologically active compounds as malathion. 
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In conclusion, this study has showed that the salivary glands of C. variipennis do not 

present SGIBs and SGEBs to BTV. However the study has also shown that factors in the 

haemocoel of C. variipennis operate as part of an 'immune system' and may play an 

important role in limiting dissemination of virus to the salivary glands. The nature of this 

'immune' mechanism remain to be elucidated. 
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CHAPTER 4 
ULTRASTRUCTURAL STUDIES ON MAMMALIAN CELLS (BIIK-
21), CULICOIDES CELLS (KC), THE GUT, NERVE TISSUE AND 
THE SALIVARY GLANDS OF C. VARIIPENNIS INFECTED WITH 
BLUETONGUE VIRUS 

4.1 INTRODUCTION 

Transmission electron microscopy (TEM) was used in this study to investigate 

ultrastructural aspects of BTV 1 SA infection of BHK-21 cells, KC cells, the gut, nervous 

tissue and the salivary glands of C. variipennis. The objectives were to compare BTV 

infection in mammalian and Culicoides cells, and to elucidate those factors in the gut, 

nerve tissue and the salivary glands of Culicoides. which may affect dissemination or 

transmission of the virus by the midges. 

4.2 l\'IATERIALS AND METHODS 

4.2.1 Virus, tissue culture and medium 

BTV 1 SA, BHK-21 cells, KC cells and the media used in this study are as described in 

Chapter 2. The cells were grown in 175 cm2 plastic flasks. When the monolayers were 

almost (about 70%) confluent, the medium was discarded, the cells were rinsed three times 

with PBS and each flask was infected with 2 ml of virus suspension containing 102
-
3 

TC1Dsolmi BTV ISA mixed with 8 ml of fresh Eagle's medium (BHK-21 cells) or 

Schneider's media (KC cells). The cells were incubated at 37°C (BHK-21 cells) or at room 

temperature (RT)(KC cells) for 30 minutes. The medium was then removed and replaced 

by 50 ml Eagle's maintenance medium containing 2% foetal calf serum (FCS) (BHK-21 

cells) or Schneider's medium with 5% FCS (KC cells). The cells were then incubated at 

370C (BHK-21 cells) or at RT (KC cells). The cells were rinsed in PBS (pH 7.3) when 

a cytopathic effect (CPE) occurred (BHK-21 cells) or at various times as required (BHK-

21 and KC cells). 
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4.2.2 Antibodies 

For immunogold EM, the following antibodies and immunogold conjugates were used: a 

polyclonal antibody against BTV ISA (PAbV), and a monoclonal antibody against the 

core protein VP7 of the virus (MAbA3) [provided by Dr. J. Anderson and Mrs. J. 

Thevasagayam of the IAH Pirbright Laboratory (Anderson 1984)]; two polyclonal 

antibodies against BTV ISA non-structural protein NS3 polypeptide 10C (amino acids 37-

46 ofNS3) (PAbl0C), and a monoclonal antibody against NSI (MAbNSI) (provided by 

Dr. A Wade-Evans also of the Pirbright laboratory). Gold-labelled goat antibodies against 

rabbit (GAR) and against mouse immunoglobulin (GAM) were obtained from British 

BioCell International Ltd (BioCell). 

4.2.3 Infection of C. variipe""is and preparation of gut and salivary gland samples 

Midges were infected with BTV 1 SA by intrathoracic (IT) inoculation or orally, and then 

incubated at 22±2°C as previously described (see Chapter 2). The infected midges were 

dissected at 7 days (IT inoculated) or 10 days postinfection (pi) (orally infected). 

Dissection was carried out in cold PBS under a dissecting microscope. The salivary glands 

oflT inoculated midges and the guts (whole midgut and foregut-midgut junction) of orally 

infected insects were dissected out. The salivary glands were obtained by pulling off the 

heads of the midges. Both salivary glands (connected to the heads) and gut samples were 

transferred into cold 3% glutaraldehyde in cacodylate (0.1 M) immediately after being 

dissected. Two pieces of thoracic ganglia tissue were obtained when dissecting the salivary 

glands. 

4.2.4 Pre-embedding immunogold labelling of the cell cultures infected with BTV 

ISA 

For pre-embedding immunogold staining, infected BHK-21 cells showing CPE and KC 

cells at 24 hours pi, were washed at least three times with PBS and then incubated in 

blocking buffer (5% normal adult bovine serum in PBS, pH 7.3) at RT for 30 minutes. 

After incubation with one of the specific antibodies diluted in PBS (MAbA3 1 :20; PAb V 
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and PAb toC 1: 1 ,000) at RT for 2 hours, the cells were washed with PBS at least 3 times 

at RT and were then incubated for 30 minutes at RT in different immunogold conjugates 

diluted 1 :30 in PBS. After being extensively washed with PBS, the cells were fixed in 3% 

glutaraldehyde in cacodylate (0.1 M). 

4.2.5 Transmission electron microscopy 

Transmission electron microscopy was carried out by following conventional methods 

(Glauert 1975; Bancroft 1990). 

Cells for routine examination and cells that had been immunogold labelled pre-embedding, 

were fixed in situ in 10 ml cold (4°C) 3% glutaraldehyde in cacodylate buffer (O.1M, pH 

7.4) for at least 2 hours at 4°C. After fixation, the cells were detached from the flasks by 

gently scraping with a policeman and decanted into 15 ml centrifuge tubes and were spun 

at 3000 rpm. Spun cells were then washed in cacodylate buffer (O.lM, pH 7.4) twice, 30 

minutes each. The cells were either stored in buffer at 4°C until required or were post 

fixed immediately in 1% osmium tetroxide in cacodylate buffer (O.IM, pH 7.4) for an 

hour. After postfixation, the cells were washed in distilled water 5 times over a period of 

1 hour before being further fixed in 1 % uranyl acetate (VA) (This step was omitted for 

cells that had been immunogold labelled as VA enhances membrane contrast and makes 

it difficult to locate the gold particles). Cells were then rinsed in distilled water and were 

centrifuged at 4,000 g. The cell pellets were embedded in 1% agar. When the agar had 

solidified, the embedded cell pellets were sliced to 1 mm3 and further processed as 

described below in glass Bijou bottles with constant agitation. The salivary gland, nerve 

tissue and gut samples were also fixed as described above. 

The samples were dehydrated through a graded series of methanol at RT for 15 minutes 

each in 25%, 50% and 75% methanol, followed by 2 changes of absolute methanol, 30 

minutes each. Methanol was replaced with propylene oxide for 2 intermediate washes of 

15 minutes each. The samples were then infiltrated with Araldite resin (TAAB Reading) 

for at least 1 hour with continuous agitation at RT and then further infiltrated with fresh 

resin for 30 minutes at 60°C. Several pieces of gut or salivary gland or a single block of 
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cells were then placed into individual BEEM capsules containing fresh resin and were 

polymerised at 60°C for 48 hours. 

Cells for post-embedding immunogold labelling were treated differently since chemical 

fixation adversely affects antigenicity, in particular the use of glutaraldehyde and osmium 

tetroxide. However, to preserve an element of ultrastructural integrity of the cells, it is 

necessary to incorporate some glutaraldehyde into the fixation schedule. To establish an 

acceptable compromise between preservation of tissue structure and preservation of 

antigenicity, fixatives containing both glutaraldehyde and paraformaldehyde were used. 

Different concentrations of fixatives were tried for different lengths of time .. 

Cells were fixed in a mixture of either 2% paraformaldehyde and 0.5% glutaraldehyde in 

phosphate buffer (O.IM, pH 7.4» or 2% paraformaldehyde and 0.1 % glutaraldehyde in 

phosphate buffer (O.IM, pH 7.4) for either 10 minutes, 20 minutes or 2 hours. The cells 

were then washed twice in phosphate buffer (O.1M, pH 7.4), 1 hour each wash. 

Occasionally the cells were washed overnight (it is important to remove all traces of 

glutaraldehyde to avoid non-specific staining). The cells were dehydrated through a series 

of graded ethanol as described above when using methanol. Pelleted cells were then 

transferred directly from absolute ethanol into London Resin White Resin (LR White) and 

kept overnight at 4°C with continuous agitation. The samples were transferred to fresh 

resin in gelatin capsules and polymerised at 60°C for 22 hours. 

Ultrathin sections of all the embedded blocks were cut at a thickness of approximately 80 

run on a Reichert Ultracut E ultramicrotome. Sections were collected on nickel grids with 

a 300 mesh (3.05 mm in diameter). The mounted sections for routine examination were 

stained with 2% UA in 50% ethanol for 10 minutes followed by freshly prepared lead 

citrate solution (0.04g lead citrate dissolved in 1 ml 1 N NaOH and made up to 10 ml with 

distilled water) for a further 10 minutes. The sections that had been embedded in LR 

White resin were stained after immunogold labelling with 1 % UA for 1 minute followed 

by the lead citrate solution also for 1 minute. All grids were washed with 30% ethanol and 

then with fresh distilled water, and were air dried at RT. The specimens were viewed 

under a Phillips 300 transmission electron microscope at an accelerating voltage of 80 kV. 
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4.2.6 Immunogold labelling of ultrathin sections 

The whole process was carried out at RT (Bancroft 1990). Firstly, the sections were 

blocked in 5% normal goat serum in 0.1 M phosphate buffer (pH 7.4) for 15 minutes 

before being incubated with the antibodies detailed above (undiluted) respectively for 2 

hours. After being jet washed with phosphate buffer for 1 minute, the sections were then 

labelled with the relevant immunogold conjugates, either GAR or GAM (l :30 in phosphate 

buffer) for 15 minutes. Finally they were jet washed with phosphate buffer for 1 minute, 

rinsed with distilled water and then air dried. The sections were stained with 1% uranyl 

acetate (in distilled water) and lead citrate as mentioned above before being viewed under 

a Phillips 300 TEM. 

4.3 RESULTS 

4.3.1 Characteristics of BTV replication in BIIK-21 cells 

In infected BHK-21 cells, virus inclusion body (VI B) matrices were observed in the 

cytoplasm at 6-24 hours pi (Fig.4.1 and 4.2). VIBs, without limiting membranes, were 

randomly distributed in the cytoplasm and their sizes varied from 500x340 nm to 600x480 

nm (length x width). VIBs contained numerous newly synthesised nascent core particles 

and nascent virus-like particles, while double-shelled virus particles were only seen in the 

cytoplasm beyond the VIBs. The diameter of nascent core particles within the VIB 

matrices ranged from 27 to 39 nm (mean±SEM=35.8±0.38, n=98) and the nascent virus­

like particles at the periphery of VIBs were from 46 to 60 nm in diameter 

(mean±SEM=57.2±O.33, n=117). The more mature the virus particles were, the further 

they were away from the middle of VIB matrix. The sizes of the double-shelled virus 

particles in the cytoplasm were from 62 to 67 nm in diameter (mean±SEM=65.6±0.14, 

n=115). 

Two types of virus release, involving only double-shelled, mature virus particles, were 

observed from BTV infected cells. These particles were released either by membrane 

budding or by extrusion from the cell surface (Fig. 4.3, 4.4, 4.5 and 4.6). Viruses released 
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via budding were b rved t acqUire an 'enve lope' fr m the ell membrane. Viru 

particle exiting thr ugh the ell membrane did n t appear t acquire an envel pe. 

Howeyer th s iru particle we r SUIT und d by cell surface debri after be ing released. 

Th cell membrane was n t bviou Iy damaged after virus release (Fig 4 .3 and 4.5). Viru 

particles w re rele dither individually or in aggregates by both budding and extrusion. 

The fo rmation of large amounts of micr tubu les from 58 to 65 run 10 width, in the 

cytoplasm. was a characteristic phenomenon of the in~ cted BHK-2 l cells (Fig. 4 .2, 4.4 , 

and 4 .7) . These tubules were noticeably co- located with mature viru particles. Double­

shelled irus particles were observed lining up on the tubules and the di stances between 

the particles was remarkab ly regular (Fig 4.2 and 4.7). Furthermore, the width of the 

Fig. 4. 1 Elemon micrograph of BTY infection of BHK-2 1 ce lls (20 hours pi ). VIB: virus inclusion body' 

V: progeny \ irus particles ; bar = 500 nm 
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tubule w imil r t the diamet r the mature virus particles. Tht; tubul '5 als 5C 'ITIed 

as ' i tcd ith the and u uall urred in th ir i init ,. 

Rcin~ ti n f HK- _I ell wa. al e n and uptake f pr en) \ ir parti les thr ugh 

nd infe t d cJ) particle reinG cting ell 

ere d uble- hell d and th 11 urfa e in th reinG eti n it wcr I an and m th, 

with n 11 d bri ar und them; the parti Ie rinD ting 11 w r ther fore easil 

di tingui habl fr m iru bing reI a ing fr m the 11 urea e. nd s me c ntaining 

iru -like parti I and sicl c ntaining unc at d 1ru particles w re al een in the 

the urfa f the infected cell ( ig. 4. ). Many \'e icles D rmed near 

th ell urface (Fig. 4.8). 

Fig. 4.2 Electron micrograph of STV infection of SHK-21 cells (20 hours pi). \ 18: irus inclusion bod, ; 

V: progen irus particles; T: tubules' bar = 500 nm 
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Fig. -L ~ Electron micrograph of STV release b: 'budding' from an infected SHK-21 cell (20 hours pi). 

arro\\s: relea -e of ST particle associated with cell plasma membrane: b r=500 nm 
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.. '-3.2 BT\' replication in K cell ' 

K cell inf cted v,ith BT \\ ere b 'cr\l:u u ing T , \1 at . _0, .+ 8 h urs and _I un) , pI. 

The characteristic f BTY replication in K CI.:I\ \\ er bvi ush dllTl.!rcnt fr m th l; 

in BHK-21 cells and ar summarized in Table 4,1. I B ' \\ cre nl y ob 'c rvcd in the 

cyt pia m of 1"'. -% (_7/200) of K ce ll in persi tcntl~ infectcd cultures un lik.c BIIK-2 1 

cel l culture \\here appr . imately 700
0 of cells 'ho\\co the 'c structures 20 hours pi. 

Furthenn re when IB w re een in KC cc ll , nascent c re partick ' • no nascent \ iru -

like particle were ab ent from 41 % (11 !:?7) of them ( ig 4.9a). Mature virus particles 

\\iere seen infrequentl in infected K cell culture. nly 8% (16/_00) r K c 1\ in 

inf cted culture p d VI s containinc nas ent c re particles and viru -like partick 

(-9~0. 1 ~ ) and the e \-..-ere at a much I \\'er den it\ than th c in in!'t: ted BIIK-::! I cell 

Fig. 4.4 Release of BTV from BHK-21 cells by 'budding' (20 hours pi) . arrow: irus 'budding' from cell 

surface: \' : double-shelled irus particles; T: tubules: bar=S OO nm 
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Fig. -L) Release of BTV from BHK-21 cells (20 hours pi) b: e'trusion \\ ithout acquiring an en elope rrom 

the cell plasma membrane. ~ double-shelled virus particles: ~ cell debris : ba - 500 nm 
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Fig. 4.6 BT infection of BHK-_I cells (20 h ur pi) . arro\\ : progeny virll en cl pcd \ ilh ell plasma 

membrane: V: lInenv loped progeny irll particle: bar 500 nm 
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Fig, -1 ,- BT\' infection ofBHK-21 cells (20 hours pi) , T: tubule, V double-shelled progeny viru particles : 

bar-SOO nm 
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Fig . -1 .8 Pre-embedding immunogold staining of infected BHI--:.-21 cells (20 hours pi) incubated with 

polyclonal antibody against BTV I . ~ virus particle labelled \\ ilh gold conJugote being released from 

cell: E: endosome containing a BTV particle reinfecting the cell: ~ a BTV cont3lning endosome fu IIlg 

\\ith I~sosomes: bar=~OO nm . 
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(Fig. 4.9b). Mature virus particles were also seen in the cytoplasm close to VIDs in these 

KC cells (Fig. 4.1 Oa, 4.1 Ob and 4.11). The sizes of VIDs in newly infected KC cells (6 

hours pi) were similar to those in DHK-21 cells (Fig. 4.12), about 500x400 nm (length 

x width), while the VIBs in persistently infected KC cells wcre much bigger than those 

in DHK-21 cells, ranging from I,S70xl,4S0 to 1,7S0xl,600 nm (length x width)(Fig. 

4.10a, 4.10b and 4.11). Most of the VID matrices were not uniform but were highly 

characteristic in appearance with distinctive fractures (Fig. 4.10.a and 4.11). The release 

of progeny virus particles was observed only by membrane budding from newly infected 

KC cells (6 hours pi)(Fig 4.12). Virus release was not seen from persistently infected KC 

cells. Large amounts of tubules were also seen in the cytoplasm of infected cells (Fig. 

4.13a, 4.13b, 4.13c). The tubules were often seen to be associated with mature progeny 

virus particles in cytoplasm of infected KC cells (Fig. 4.13b, 4. 13c). Reinfection of 

infected KC cells occurred as evidenced by the the presence of uncoated virus particles 

in Iysosomes in some persistently infected KC cells (Fig.4.1 Ob). Fig 4.14 shows the 

ultrastructure of uninfected KC cells. 

Table 4.1 Ultrastructural observation of persistent infection 
of KC cells with DTV ISA (3 weeks pi) 

Characteristics of 
BTV infection 

v + VIBs 
T 
VIB 
V+T 
V + VIBs + T 
VIBs + T 
None 

Total 

V: progeny virus particles 
VIBs: Viral inclusion bodies 
T: Tubules 

No. of cells % 

15 7.5 
15 7.5 
10 5.0 
3 1.5 
1 0.5 
1 0.5 
155 77.5 

200 100 
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Fig . -I .9a 8T\' infection of KC cells (21 da~s pi) . 18 : \irus Inclu ion b d~ . ba - 500 nm 
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Fig. -I .9b BT in fection of KC cells (21 da: s pi . Y I B: tru inc lusion bod:: :"1 . nuc leus : i\ 1. m ito hondria: 

bar=-aO nm 
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Fig. -1.1 On BT \ · infe lion of K cell (~I da) pi) . I B: \ iru IllcluslOn bod~. \" double- helled pr gCf1) 

irus particle -: bar=-OO nm 
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Fig. 4. 1 Db BTV infection of KC cell (2 1 day pi) . V I S: virus inclusion bod:-: arro\\ : endos me containing 

an uncoated \'irus particle: V: progen:- virus particles: bar-SOD nm 
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Fi2.. 4. 11 STV infection of KC cells (21 da\s pi . V I S: yiru inclu ion b d: : ba r=SOO nm - . 
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Fig. 4. 12 BT infection of KC cells (6 hours pi). 18: irus inclusion body; arrow: a BT 

released within an extension of the cell plasma membrane ; ba - 500 nm 

79 

partl Ie beina 



Fig. 4 . l3a Tubules in STY infected KC cells (2 1 days pi). T : tubules ' M: mitichondria; bar-SOO nm 
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Fig. 4.13b Tubules in BTY infected KC cells (21 days pi). T : tubules: V: nascent progen irus particles, 

IB: virus inclusion body; ~ nucleus · M: mitochondria : bar=-OO nm 
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Fig. 4 .13c Tubules in STY infected KC cells (21 days pi) . T : tubules: V: nascent progeny virus particles ; 

~ nucleus ; M : mitochondria; bar=500 nm 
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Fig. 4.14 Ultrastructure of uninfected KC cells. bar=2~m 
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4.3.3 Infection of the salivary glands of Clllicoides 

To ensure a high frequency of infection, only salivary glands from IT infected midges 

were analyzed by TEM. The salivary glands in Culicoides are composed of two clusters 

of lobes arranged bilaterally. Each cluster consists of a major lobe and 2·3 minor lobes. 

Each lobe contains a single layer of acinar cells surrounding the secretory tubes, the ducts. 

Because of the difficulties of dissection, only the major lobe was sampled for virus 

detection with TEM. The salivary glands from 11 insects were examined. BTV infection 

in the salivary glands of Culicoides occurred typically in the sequence of virus movement 

from the basement membrane ~ acinar cell ~ lumen of the ducts (Fig 4.15). In infected 

salivary glands, virus replication was similar in some ways to that seen in BHK·21 cells 

and VIB matrices were observed in the cytoplasm of most of the serous acinar cells (Fig. 

4.16 and 4.17). However, in general, the sizes of these VIBs were much bigger [from 

3,065x1,925 to 5,893x3,214 nm (length x width)] than those seen in infected BHK·21 

cells and KC cells. Most of the VIBs were irregular in shape with distinctive fractures 

within the matrices as seen in KC cells (Fig 4.16 and 4.17). The cytoplasm, sometimes 

contained tubules and double-shelled virus particles, and was frequently observed intruding 

between different parts of the VIB matrix (Fig. 4.16 and 4.17). Nascent cores and virus· 

like particles were observed in VI.Bs, while double-shelled virus particles were only seen 

in the cytoplasm (Fig. 4.16). The mature progeny virus particles were released into the 

terminal serous alveoli (acini), only by membrane budding (FigA.18 and 4.19). No virus 

release was observed by extrusion through the cell membrane (without acquiring an 

envelope), which sometimes occurred in infected BHK cells. Virus release was not 

observed through the basement membrane of the salivary glands back into the haemocoel. 

Once in the acini, it is likely that the virus particles are transported via intermediate ducts 

into the lumen of the major secretory ducts where they accumulate (Fig. 4.20). 

Large numbers of microtubules formed and were widely located in the cytoplasm of 

infected serous acinar cells, including the areas around the VIBs (Fig. 4.16). These 

tubules, as in infected BHK-21 cells, seemed to be associated with the mature progeny 

virus particles. The width of the tubules (58-65 nm) as in infected BHK-21 cells were 

similar to the diameter of mature virus particles. 
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"'g . .j 15 Cross section 01 BTV 1I1kcted ,alivar~ gland Irom II Illoculated C mrlll" 'IIII/\ (10 dOl) I'll 

VIB in 3n acinar cdl. :L virus relea~e into acini . 3 and'" aCCUlllulatlon of BTV In a duel. har l ~11l1 
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Fig. 4.16 BTV infection in an acinar cell of the salivary gland of I"Orilpenms (J 0 da pI) lB . Inl 

inclusion body with fracture· V: double-shelled BTY particles; T : tubules; M : milO hondria: bar- 500 nl11 
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Fig. -1 . 17 BT infection in an acinar cell of the salivary giant! ofC \ 'tJrtJP",J1I71S (10 da}s pi) IB \lrus 

inclusion body; V: vinJs particle; T : tubules; M: miloch ndria ; ba - 500 nm 
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Fig. -1 . 18 Release of STV from an acinar cell of a Culicoides sali ary gland (10 days pi). : acinar cell: 

: acini : arrows: virus particles released from acinar cell into acini by membrane 'budding' : ba -500 nm 
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Fig. 4 . 19 STY infection of a sali ary gland of . variipennis (10 da s pi) . A : acinar cells; : a Inl ; 

Y: irus particles; Arrow: STV release by membrane ' budding'; ba - 500 nm 
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Fig. -1 .20 BT accumulation in the major secretory duct of the salivary gland ofC. mriipennis (10 day pi) . 

V: virus particles: bar=SOO nm 
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Fig .. 1.21 Continuous STY infection ofa Culicoldes salivary gland (10 days pi) from the haemocoel through 

the basement membrane .. ~basemenr surface of salivary gland: .. Iy Osome containing uncoated STY 

particles: V. progeny iru particles: T: tubules: bar=SOO nm 
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Infection of the salivary gland cells through the basement surface of the glands seemed 

to be a continuous process. Uptake of virus particles from the basement membrane 

surface, even late in infection, was clearly observed and the fusion of endosomes with 

Iysosomes containing uncoated virus was also seen (Fig. 4.21). No virus re-entry into the 

acinar cells from acini was observed . 

.... 3.4 Detection of BTV infection of the gut of C. lJariipellllis 

Thirty three gut samples of orally infected C. varUpennis (7 and 10 days pi) were 

examined. The ultrastructural morphology ofthes.e guts seemed normal in comparison with 

those of negative control samples from uninfected midges. Fig. 4.22 shows the 

ultrastructure of the midgut of an uninfected midge. The microvilli, cell membranes and 

subcellular structures are clear. A characteristic of the midgut structure is that large 

numbers of vesicles are distributed in the cytoplasm of the gut cells. No obvious evidence 

was observed to show BTV replication in the gut cells of midges fed with an infectious 

blood meal. VIBs, tubules and virus particles were not found in any gut cells of infected 

midges . 

.... 3.5 BTV infection of nervous tissues of Clllicoides 

Only two thoracic ganglia tissue samples were obtained as an incidental product when the 

salivary glands were dissected from all the IT inoculated C. variipennis at 10 days pi. The 

nervous tissue was heavily infected (Fig. 4.23) and typical BTV replication was observed 

in nerve cells and axons. VIB matrices were frequently seen in the cytoplasm of nerve 

cells and axons (Fig. 4.24, 4.25, 4.26, 4.27). The sizes of VIBs (6 VIBs measured) varied 

from 1,153x557 nm to 2,576xl,548 nm (length x width) and were bigger than those in 

infected BHK-21 cells (from 500x340 to 600x480 nm, length x width, see page 72). 

Nascent cores and virus-like particles were observed in these VIBs (Fig 4.24, 4.25, 4.26) 

but the numerous double-shelled virus particles were only seen in the cytoplasm close to 

VIBs (Fig. 4.24, 4.25). No virus release from the infected nerve cells and axons was 

observed. 
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Fig . ..t 21 Electron micrograph of normal midgut or C l'UWPCl1ntS L. lumen; arrQ\ : microvilli; ba - 2 f1m 

Large amounts of tubules formed in BTY in~ ct d nerve cells and a-xon (Fig. 4.2 . 4.24. 

-+ 25 ... L:26. -+ 27) . These tubules were distributed in the c toplasm of infected cell and 

a:\ons and \\'ere often seen in the vicinity of VIB (Fig. 4.24, 4.25, 4.26). s in BITK-_l 

cells and in the acinar cell of the salivary gland, tubule se med to be clo ely as ciated 

with double- helled progeny virus particles (Fig. 4.24.4.2-). The \\idth of the tubule 

ranged from 58 to 6 - nm . 

. 10 ob\ i u pathological changes \\ere ob en'ed in the nenous tissue. The ultra tructure 

of the mitochodria remained clear and normal. 
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Fio . ..J .23 STY infection of thoracic ganglia of C. variipennis (10 da,s pi) . ~ nerve cell: : ax n: 
'" 

I . nucleus: T : tubules ; bar-500 nm 
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Fig. 4._4 STY infection of a nerve cell in a thoracic ganglion of C. \'oriipennis (10 da pi). 18: iral 

inc lusion body: irus particles ; T: tubules ' M: mitochondria; ba - -00 nm 
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Fig. -12- BTV infection of a nerve cell in a thoracic ganglion of C. \'oriipennis (10 days pi). VJB : iral 

inclUSIOn body: T : tubules: M : mitochondria; bar=SOO nm 
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Fig. 4.16 STV infec ti on of an axon in a thoracic ganglion of C. variipennis (10 days pi). VIS: viral 

inclusion bod. : T: tubules; M: mitochondria; bar=SOO nm 
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Fig. 4.27 BT infection of an axon in a thoracic ganglion of C. variipennis (10 days pi). VIB: viral 

inclusIOn bod~: T: tubules; M: mitochondria ; V: virus particles; bar=SOO nm 
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tcetion of BTV inf ction in BIIK-21 and K c II by Immunogold T M 

... I Pre-embedding taining 

n1 .. r viral antigens, in the proce of being released at the cell 

ur 3 c. will be a aibble to b labelled with immun g Id conjugates when using the pre­

rnb cJcJin 1 assa . In infc ted BI IK-21 ell, non-envel pcd double-shelled virus particles, 

nt the cell urfa e , were d tee ted by using b th the PAb V and the MAbA3, 

nd the urface of the e viru particle were onsequently labelled with gold particles 

fIg. "l Pre-embedding immunogold staining of BTV infected BHK-2l cell (20 hours pi). ~ virus 

part icle labelled \\ ith gold conjugate (incubated \ ith PAbV); ~An enveloped virus particle is not 

labdled : bar 200 nm 
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Fi:. 4.29 Pre-embedding immunogold staining of STV infected SHK-21 cell (20 days pi) . arrow: gold 

la clled IruS particles (incubated with PAbV); bar=200 nm 
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FIg ~ 30 Pre-embedding immunogold staining of BTY infected BHK-21 cell (20 hours pi). arrow: gold 

labelled VIruS panicle (incubated with MAbA3); V: virus particles; T : tubules; bar=200 nm 
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fjo .. L 3 l Pre-embedding immunogold staining of BTY infected BHK-21 cell (20 hours pi). ~ membrane­

II e structure labelled with gold conjugate (incubated with PAbIOC); +- virus particle; bar-200 nm 
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when either of these antibodies was applied as the first antibody (Fig. 4.8, 4.28, 4.29 nnd 

4.30). Enveloped virus particles, which were released by budding, were not labelled with 

gold particles (Fig. 4.28). The polyclonal antibody against the viral non-structural protein 

NS3 polypeptide 10C (PAblOC) did not label any virus particles but did bind to the 

membrane structures extruding from the cell surface close to where virus particles were 

budding (Fig. 4.31). No endogenous virus was seen in uninfccted DIIK-2 J cells. 

Similar work was carried out with infected KC cells. However, no positive labelling was 

obtained possibly because so few infected KC cells seem to contain developing virus 

particles (see Section 4.3.2). 

4.3.6.2 Post-embedding staining 

post-embedding immunogold labelling was carried out on the ultrathin sections of both 

infected BHK-21 and KC cells. However, no BTV-related structures were observed to be 

labelled with gold particles when using this technique. 

4.4 DISCUSSION 

Ultrastructural studies of BTV infected cells have shown that there is 3 series of events 

from initiation of virus replication to the production of progeny virions (Do\\ne and 

Jochim 1967; Lecatsas 1968; Eaton et al 1990; Brookes et al 1993; Gould and Hyatt 

1994). The major events in BTV replication are: adsorption and endocytosis; uncoating; 

formation of VIBs and tubules; and release of progeny virus particles from the cell 

surface. After adsorption, endocytosis and uncoating of the infecting virus particles, VIDs 

fonn in which progeny virus particles are produced. Previous studies have provcd that 

VIBs contain three populations of virus particles: sub-cores, cores and virus-like particles, 

in addition to structural and nonstructunil viral proteins (VP2, VP3, VPS, VP6, VP7. NS 1 

and NS2) (Eaton et a11987; Gould et al 1988; Eaton et al 1988; Eaton and Hyatt 1989; 

Thomas et a11990; Hyatt et a11991a; Brookes et a11993; Gould and Hyatt 1994). 

The results of this study support the premise that VIBs are virus factories of DTV in both 
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mammalian cells and Culicoides salivary gland cells although these structures nrc bigger 

in persistently infected KC cells and Culicoides salivary gland cells than in BIIK-21 cells. 

VIBs were shown to contain immature virus particles at different stages of development. 

including nascent core particles and virus-like particles with the more mature particles 

being towards the periphery, while double-shelled virus particles were only secn outside 

these structures. This suggests that the production ofBTV was in process in VIBs nnd that 

progeny virus particles seem to move towards the periphery of the VIBs as they nrc 

assembling. Gould el al (1988) reported that the outer coat proteins VP2 and VI'S arc 

added at the periphery of VIBs. 

The present study confirms the observation of Hyatt cl al (1989) that progeny virus 

particles are released through the cell membrane of infected BIlK cells either by 

membrane budding as enveloped particles, or by extruding without acquiring an envelope. 

As BTY is a non-enveloped virus, the cell membrane envelope surrounding virus particles 

released by budding is presumably discarded sometime after this event. The virus particles. 

released by extrusion, were associated with cell surface debris. These two types of virus 

release are clearly different and may involve different mechanisms. It is also of 

significance to note that progeny virus particles were released from infected KC cells and 

salivary gland cells of Culicoides only by membrane budding. The non-enveloped 

extrUSion that occurred in BHK cells has not been seen in Culicoidcs cells. The reason for 

the difference and whether this affects the characteristics of the subsequent stages ofBTV 

infection for each cell type is unknown. It has been reported that the release of virus is 

mediated by the BTV non-structural protein NS3 (Hyatt el al 1991a; Hyatt cl al 1993; 

Gould and Hyatt 1994). In this context it was also observed in the present study that NS3 

is associated with virus release from mammalian cells. The results of immunogold 

labelling in my work have shown that NS3 is released along \\;th membrane-like 

structures, from the surface of infected BHK-21 cells adjacent to where the virus particles 

are released by budding and by extrusion. Similar work was also done \\;th KC cells but 

no positive results were obtained because of the characteristically low proportion of cells 

persistently infected with BTV in infected KC cell culture. 
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Tubules have long been known to be characteristic structures in cells infected with BTV. 

Tubules have also been purified (Huismans and Els 1979; Mertens et a11987) from llTV. 

infected cells and shown to consist predominantly of the nonstructural protein NS I. 

Furthermore, probing of cytoskeletons ofBTV -infected cells using monoclonal antibodies. 

against specific virus proteins, has confirmed that tubules contain NS 1 (Eaton ct al t 988; 

Hyatt and Eaton 1988, Eaton et at 1990; Gould and Hyatt 1994). The function(s) of the 

tubules and NS 1, which forms the tubular structure, are unknown and virus has not been 

reported to be associated with these structures (Gould and Hyatt 1994) although NS 1 

antigen has been reported in BTV particles (Eaton et al 1988). In the prescnt study, 

ultrastructural results showed that large amounts of tubules formed in both mammalian 

and Culicoides cells infected with BTV. These tubules seemed to be associated with VIDs 

since they were found in the cytoplasm surrounding the VIB matrices. Previous ill sitll 

hybridisation results have also shown that VIBs contain NS 1 mRNA (Gould and Hyatt 

1994). These results indicate that NSI is produced in and is released from VIDs. The 

results of the present study also suggest that tubules may be related to the double-shelled 

virus particles since they were frequently co-located with these double-shelled virus 

particles, but not with sub cores, cores or subviral particles. Mature virus particles were 

frequently seen attaching to tubules and sometimes a number of virus particles lined up 

on tubules with an identical distance in between. The function (s) of these tubules and the 

relationship between them and mature virus particles are unclear. However, studies of 

kinesin, the main protein constituent of microtubule-based molecular motors (Spudich 

1994), may suggest a mode of action. This molecular motor works to transport molecules 

in cells, single molecules moving along a microtubule track for many seconds before 

dissociating. It is possible that the tubules in BTV -infected cells playa similar role in 

facilitating the intracellular transport of progeny virus particles. 

The present study has shown that the characteristics of BTV replication in a ClIlicoidcs 

cell line, KC cells, are different from those in BHK-21 cells and are also different in some 

aspects from replication in Cu~icoides salivary glands and ClIlicoides nervous tissues. VIBs 

were only seen in a small proportion (27/200) of KC cells in an infected culture, whereas 

1110st cells in infected BHK-21 cell cultures contained these structures, and this was also 

the case in infected Culicoides salivary glands. A low rate of infection of KC cells in 
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infected cultures (about 50%) was also observed by using immunohistochemistry (sec 

Chapter 2, Fig 2.3). This may be because the KC cell line was originally derived from 

larval Culicoides tissues and still shows a mixed cell population (Fig. 4.14). It is likely 

that different cell types vary in their susceptibility to BTV. 

Large amounts of tubules were always present in the cytoplasm near VIBs. The sizes of 

the VIBs in persistently infected KC cells, salivary gland cells and nerve cells werc much 

bigger than those in BHK-21 cells and newly infected KC cells (6 hours pi). This suggests 

that VIBs may be built up during persistent infection. Most of the VIB matrices in the 

insect systems were irregular and were highly characteristic in appearance with distinctivc 

'fractures' within their structures. No similar observation has been reported previously. 

The origin of these 'fractures' is uncertain but it is probably an artifact produced during 

the processing of the samples for TEM. 

Unlike BHK-21 cells, Culicoides salivary gland cells and Culicoides nerve cells, almost 

half of the VIBs in KC cells did not contain any obvious viral structures. Nascent core 

particles and virus-like particles were only observed in 59% of the VIBs in the infected 

KC cells and these were at a much lower density than those in infected BHK-21 cells and 

Cu/icoides salivary gland and nerve cells. Progeny virus particles were also seen at low 

frequency (19/200, Table 4.1) in the cytoplasm of KC cells whereas they were frequently 

seen in BHK-21 cells (about 70%, Section 4.3.2) and 100% of Culicoides salivary gland 

and nervous tissue samples. Virus particles were rarely seen being released from newly 

infected KC cells and when they were seen, release was only by membrane budding (Fig. 

4.12). However, in BHK-21 cells, virus particles are released either by membrane budding 

or by extrusion without acquiring an envelope. Virus release was not detected at all from 

persistently infected KC cells. The nature of these differences is unkno\\TI. No similar 

observations on BTV infection in insect cells have yet been published. However, the 

results of this study (see Chapter 2) also showed that BTV grew rapidly in KC cells to n 

level of about 10s.0 TCIDsJml (in media) by 24 hours pi and then increased slowly to 

reach a peak of 106.5 TC1DsJml by 48 hours pi. The infection of KC cells was persistent 

and could last for months at a level around 10
6

.
0 

TC1DsJml if the cells were passaged 

regularly and well maintained. Therefore, there is no doubt that BTV replication is n 
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continuous and productive process in infected KC cells. A similar phenomenon. 

concerning an apparent paucity of virus particles, also occurs in mosquito cells infected 

with Semliki Forest virus and dengue virus (Lehane and Leake 1982). The ability of insect 

cell lines to produce high titres of virus over extended periods of time, as detected by 

titration, apparently in the virtual absence of virus particles in infected cells, as detected 

by electron microscopy seems to be a paradox. It may be related to the low proportion of 

cells infected at anyone time, or to a low level of virus production per infected insect 

cell. It may also be because replication and release of DTV by insect cells involves 

mechanisms which are totally different from those in DHK-21 (mammalian) cells. Clearly. 

the mechanisms controlling or modulating virus production in insect cells arc still poorly 

understood and remain to be elucidated. 

The results of the in vitro transmission work in Chapter 3 showed that the salivary glands 

of C. variipennis do not present either salivary gland infection or escape barriers to DTV. 

Based on those results, the salivary glands ofIT infected C. variipennis were studied using 

tranSmission EM. BTV infection of the salivary glands was found to follow a pattern of 

the virus movement through the basement membrane ~ acinar cells ~ the lumen of the 

ducts (Fig. 4.15). Virus enters the acinar cells from the haemocoel passing through the 

basement membrane of the salivary glands by endocytosis. DTV then localises and 

replicates in VIBs in the cytoplasm of serous acinar cells. Mature double-shelled progeny 

virus particles leave the VIBs to enter the cytoplasm of the cells and are then released into 

the serous alveoli (acini) that are located on the opposite side of the acinar cells from the 

basement membrane. The virus particles are then transported through intermediate ducts 

and accumulate in crystalline arrays in the lumen of the major secretory ducts. No \'irus 

is released back to the haemocoel through the basement membrane. In addition, no virus 

re-enters acinar cells from the acini. This polarised nature of BTV infection in the salivary 

glands of C. variipennis accounts for the accumulation of progeny virus particles in the 

secretory ducts. This mechanism makes the transmission of BTV through the saliva morc 

likely by ensuring that the maximum number of virus particles is available for 

transmission during biting. 
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Thirty three gut samples of C. variipennis orally infected with BTV were examincd but 

no evidence has been observed to show BTV replication in the gut cells. Neither havc 

VIBs, tubules or virus particles been found in these gut preparations. The ultrastructural 

morphology of the guts from orally infected Culicoides seemed no difference from those 

of negative control samples from uninfected midges. This negative result may be duc to 

the relatively low infection rate exhibited by our Culicoides colony so that no infected 

samples were actually examined. However, it may also due to the nature of the gut 

infection. The results of virus titration (see Chapters 2 and 3) show that BTV replicatcs 

only to very low levels in most midges following an infectious blood meal. Additionally, 

immunohistochemistry shows that positive virus antigen reactions are qualitatively much 

weaker in the gut tissues than in other infected tissues/organs such as ganglia, haemococl 

and salivary glands, even in individuals with fully disseminated infections (sec Section 

2.4). The combination of low infection rate and low level of observed BTV replication by 

titration or by IHC inevitably causes considerable difficulties in detecting evidence of 

virus particles in gut cells. Previous ultrastructural studies of BTV infection of the midgut 

of C. variipennis (Sieburth et al 1991) described the presence of virus in blood meals and 

in the peri trophic membrane in the gut lumen but did not show convincing evidence of 

virus replication in gut cells. These workers concluded that there was no virus 

accumulation in the gut cells. In view of these facts it will be necessary for very large 

numbers of gut samples to be screened before the nature of BTV infection in the gut cells 

of Culicoides can be elucidated and the mechanisms involved can be fully understood. 

The nervous tissues of C. variipennis, particularly the thoracic and cephalic ganglia, arc 

some of the most susceptible tissues to BTV as has been shown by IHC and by TEM in 

the present study. These tissues were always heavily infected in those C. l'ariipCllllis that 

exhibited fully disseminated BTV infections. Furthermore clear evidence of typical BTV 

replication was seen in nerve cells and axons. Nascent cores and virus-like particles were 

observed in VIBs in Culicoides nerve cells and axons, and large numbers of apparently 

mature double-shelled virus particles were also widely distributed in the c)10plasm of 

these cells and axons. Though not previously reported in Culicoides, the involvement of 

nerve tissues in arbovirus infection has been recorded in mosquitoes by several authors 

including Leake and Johnson (1987) and Romoser e/ al (1992). In the present study 
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although no obvious pathological changes were observed in infected nerve tissues it is 

Possible that the presence of large amounts of replicating virus in these tissues could alter 

the behaviour of the individuals involved. In addition, the thoracic and cephalic ganglia 

are located immediately adjacent to the salivary glands which raises the possibility ofthcsc 

tissues being a direct source of salivary gland infection. Furthermore, large amounts of 

progeny virus particles released into the haemocoel from infected nerve tissues would also 

tend to increase the chance of salivary gland infection. Further study on BTV infection 

of the nervous system of Culicoides may help to determine the importance of the role 

played by these tissues in BTV infection and transmission. 
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CHAPTERS 
ANALYSIS OF BLUETONGUE VIRUS PROTEINS WIIlcn BIND TO 
THE CELL SURFACE 

5.1 INTRODUCTION 

A key factor in BTV -infection of cells is the initial binding of BTV to the cell surface. 

In the present study, radiolabelled BTV lSA lysates were used in adsorption tests to detcct 

viral proteins that bind specifically to the cell surface of BHK-21 and KC cells by using 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS.PAGE). The major 

purpose of this work was to identify the BTV virus protein(s) which bind to the cell 

surfaces of mammalian and Culicoides host cells and to further investigate the significance 

of specific virus-insect interactions in determining the susceptibility of C. l'ariipCl1llis to 

BTY. 

5.2l\IATERIALS AND METHODS 

5.2.1 Virus, cells and antibodies 

BTY 1 SA, BHK-21 cells and KC cells used in this study were as described in Chapter 2. 

A polyclonal antibody against BTV 1 SA (P Ab V) and a monoclonal antibody against the 

BTY major core protein VP7 (MAbA3) were provided by Dr. J. Anderson and Mrs J. 

Thevasagayam at the IAH Pirbright. Polyc1onal antibodies against VP2 (PAbVP2), VP5 

(PAbVP5), NS2 (PAbNS2) and a monoclonal antibody against NSI (MAbNSl) were 

provided by Dr. A Wade-Evans also at Pirbright. 

5.2.2 Preparation of the radiolabelled BTV infected cell Iysates 

BTY viral proteins were labelled with 35S-express by using a method modified from those 

of Lee e/ al (1981), Greenberg ef al (1983) and Bass ef al (1990). BHK-21 cells were 

gro\\'1l in petri dishes (100 cm) and the cell monolayers were infected \\ith 10 TCID.so 
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virus particles per cell of BTV 1 SA in serum-free Eagle's medium. After adsorption for 

an hour at 37°C, the monolayers were washed three times (5 minutes each) and thcn rcred 

with Eagle's medium containing 2 mM glutamine and antibiotics (100 U/ml penicillin and 

0.1 mg/ml streptomycin). The cells were then incubated at 37°C for 6-8 hours before being 

washed three times (5 minutes each) and refed with Eagle's medium minus methionine 

and cysteine. After 45 minute incubation at 37°C, the cells were again washed once (5 

minutes), refed with Eagle's medium minus methionine and cysteine and were then 

incubated at 37°C. Forty five minutes later, [35S]-express (Du Pont NEN) (20 ).lCi/ml) Was 

added to the medium and the radio labelling was carried out at 37°C for 3 hours. 

Alternatively, the infected cells were radio labelled for 2-3 h at 20 h pi. The cells were 

washed three times (1 minute each) with PBS (pH 7.3), and were frozen (-70°C) and 

thawed (room temperature, RT) three times. Finally, the cells were lysed with Nonidet p_ 

40 lysis buffer [120 mM NaCl, 50 mM Tris (pH 8.0) and 1% Nonidet P-40] or with 

Triton X-I00 lysis buffer [1% Triton X-I00, 0.8 M KCI, 10 mM Tris (pH 7.8)]. PMSF 

(Phenylmethylsulfonyl Fluoride, 100 ).lg/ml), TLCK (Na-p-Tosyl-I-Lysine Chloromethyl 

Ketone, 50 ).lg/ml) and TPCK (N-Tonsyl-I-Phenylalanine Chloromethyl Ketone, 1 00 ~tglml 

were added to the lysis buffer to inhibit the activity of cellular proteases. The lysate was 

incubated for 30 minutes at 4°C and then centrifuged for 5 minutes at 6,000 g. TIle 

supernatant was collected in a screw capped Eppendorf tube and stored at -70°C. )'S­

labelled lysate from uninfected BHK cells was used as a negative control. 

5.2.3 Radiolabelled VP5 and NSI expressed from eDNA recombinants 

3?S-methionine labelled BTV structural protein VP5 and nonstructural protein NS 1 were 

both provided by Dr. A. Wade-Evans. They were expressed from cDNA clones using a 

'coupled transcription-translation system in rabbit reticulocyte lysate according to the 

manufacture's instructions (Promega). 

5.2.4 Adsorption assay 

Ten millilitres of cold radio labelled lysate, diluted 1 :30-50 in PBS (pH 7.3), was added 

t~ a petri dish (100 cm) containing either a BHK-21 monolayer or a KC cell monolayer. 
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Adsorption was carried out with gentle rocking on a shaker for 2-3 hours at 4°C. The cells 

were gently suspended by pipette and centrifuged at 4,000 g for 5 minutes. The cell pellets 

were washed at least three times with cold PBS and were then lysed with 1 ml Laemmli 

sample buffer for analysis on SDS polyacrylamide gels. The cells were lysed with 1 ml 

1 % Nonidet P-40 in PBS for 30 minutes at 4DC and then centrifuged at 6,000 g for 5 

minutes. The supernatant was used for immunoprecipitation. 

5.2.5 Immunoprecipitation 

The immunoprecipitation assays were carried out using the method described by Bass cl 

of (1990). Radiolabelled BTV infected cell lysate and the cell lysate after adsorption were 

diluted 1 :20 with PBS (1 ml) and were incubated overnight at 4DC with the different 

antibodies (as detailed above) separately. Thirty J-ll of Sepharose CL-4 protein A beads 

(Sigma Chemical Co.) were then added to each reaction. After being incubated at RT for 

30-60 minutes, the beads were washed three times with washing buffer (50 mM NaCl, 10 

roM Tris, 0.1 % Nonidet P-40) and were then washed once with 50 mM Tris buffer (pH 

6.8). Laemmii sample buffer was added and the samples were boiled for 10 minutes 

before the supernatants were loaded onto 10% SDS polyacrylamide gels. Radiolabelled 

uninfeeted celllysates before and after adsorption were used as negative controls. Infected 

cell Iysates were used as positive controls. 

5.2.6 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

10% SDS-PAGE gel with a 1 % stacking gel was prepared by following the conventional 

method (Sambrook et al 1989). Twenty J-ll of each infected cell lysate and 80 ~ll of each 

lysate of cells after the adsorption test were loaded onto the gel. Electrophoresis was 

carried out under a constant voltage, 50V, overnight. The gels were fixed in 10% acetic 

acid-30% methanol overnight, then dried for two hours at 80DC and exposed to X-ray film 

for 2-7 days at RT. The concentration of protein was not measured since the amounts of 

protein in the different samples loaded onto the gels were not directly comparable (see 

footnote on page 123). 
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5.3 RESULTS 

Fig. 5.1, provided through the courtesy of Dr. A Wade-Evans, is used as the reference for 

the migration ofBTV ISA viral proteins. It shows the SDS-PAGE (10%) profile ofDTV 

ISA viral proteins (except VPI) expressed in vitro from eDNA recombinants. 

BHK-21 cells and KC cells were incubated with radiolabelled BTV infected celllysatcs 

at 4°C, washed extensively and then subjected to SDS-PAGE. 1% Nonidet P-40 lysis 

buffer or 1% Triton X-IOO lysis buffer were used. Work carried out at the beginning of 

this study showed that Triton X-IOO lysis buffer was not able to disrupt BTV particles. 

Therefore a profile of whole virus binding to BHK-21 was consistently observed on SDS 

PAGE gel when using Triton X-IOO lysis buffer (Fig. 5.2). However, BTV virus particles 

were disrupted when the Nonidet P-40 lysis buffer was applied as shown by the fact that 

most of viral protein bands disappeared after the adsorption test. Therefore Nonidet P-40 

lysis buffer was used for further work throughout this study. Fig.5.2 compares the activity 

ofNonidet P-40 lysis buffer and Triton X-IOO buffer for disrupting BTV, by adsorption 

experiments on BHK-21 cells. A similar profile of whole virus binding, using viral 

proteins prepared with Triton X-IOO lysis buffer, was also observed for KC cells (results 

not shown). Viral proteins were identified by their migration on SDS-PAGE gels relative 

to marker proteins of known molecular weight. 

The results showed (Fig.5.2 5.3) that five viral proteins adsorbed to cell surfaces. A 60-kD 

viral protein, migrating to a position close to both VPS and NS1, bound to both BHK-21 

and KC cells. However it is difficult to identify precisely which protein this band was 

without further experiments since VP5 (predicted molecular weight 59.4kD)(A.\Vade­

Evans, personal communication) and NS 1 (predicted molecular weight 64.3kD) migrated 

very closely to each other in the gel. In addition, a second viral protein of 48kD, co-

. migrating with NS2 (predicted molecular weight 40.7kD), adsorbed to BHK-21 cells but 

ot to KC cells. A viral protein of 39.6kD, which bound to KC cells but not to BHK-21 n . 
c~ll~, co-migrated with VP7 (predicted molecular weight 38.6 kD). A viral protein, co-

migrating with the minor inner capsid protein VP6, was seen to bind to BHK-21 cells but 

not to KC cells (Fig. 5.2, 5.3). Another viral protein, co-migrating with the major inner 
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capsid protein VP3, was also observed in the binding products to both BIIK·21 nnd KC 

cells (Fig. 5.2, 5.3). No labelled protein from uninfccted negative control ccll Iysates 

adhered to either DHK-21 or KC cells. No attachment was detected of n labelled protein 

which migrated with VP2 (predicted molecular weight t 12 kD) to either BIIK·21 cells or 

KC cells. 

To further investigate the nature of the 60-kD protein which bound to both BIIK·21 cells 

and KC cells, binding tests involving VPS and NSI (expressed ill \'Urc) from cDNA clones 

in the coupled express system in rabbit reticulocyte lysates). were done in this study (Fig. 

5.4). However, the results of these binding experiments using expressed VPS. NS I and 

VPS+NS 1 were negative. Three in \·itro expressed lysates with VPS. NS 1 or VPS+NS t 

showed the same protein profiles after being incubated with cells while no band 

corresponding to VP5 or NS 1 was observed to bind to the cclls. It is therefore likely that 

the protein bands which were detected adhering to the cclls in this experiment originated 

from the rabbit reticulocyte and hence this work should be repeated. 

5.4 DISCUSSION 

It is believed that BTV initiates infection in both mammalian cells and insect cclls by 

binding to specific receptor(s) on the cell surface (Eaton cl Cli t 990; Gould and Ilyatt 

1994). This is kno\\11 to be a specific interaction between the cell reccptor(s) nnd nrv 

viral protein(s). However, no result has been published so far to describe the nature of 

either the cellular receptors or the viral binding protein(s). However. analysis of llrV­

erythrocyte interaction has indicated that the virus binds to specific sialic acid-containing, 

serine-linked oligosaccharides in ~e glycophorins of human and a number of animal 

erythrocytes (Eaton and Grarneri 1989). The outer coat protein VP2 is the principal 

serotype-specific antigen of DTV and induces neutralizing antibodies (lluismans and 

Erasmus 1981, Kahlon el aI1983). VP2 is commonly believed to mediate virus binding 

to cells (Eaton el al 1990) since DTV -10 particles lacking VP2 but containing VP5 wcre 

unable to bind to BHK-21 cells in suspension (Huismans cl a/1983) and the ability of 

DTV to agglutinate erythrocytes correlates to the presence of VP2 (Cowley and Gonllall 

1987). 
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Mertens et al (1987, 1993, 1995) have produced infectious subvirus particles (ISVP) and 

cores of BTV by cleaving VP2 with trypsin and chymotrypsin and by uncoating either 

ISVPs or intact virus particles respectively. They have shown that changes on the surface 

of BTV particles can influence the infectivity of the virus for host cells (mammalian and 

insect cells) and for a vector species of Culicoides (c. variipennis). ISVPs appear to be 

much more infectious for mammalian cells, insect cells and vector Clllicoidcs than do 

intact virus particles and core particles. Cores have very limited infectivity for mammalian 

cells but have a similar infectivity to intact virus particles for vector Culicoidcs. The 

results of this study (see Chapter 2) also show that ISVPs initiate DTV replication earlier 

than do intact virus particles in both mammalian cells and Clllicoidcs cells. However. 

cores, at a dose equivalent to 103 TC1DsJml, cannot induce infection in mammalian cells 

but are as infective as intact virus particles for Culicoides cells. This information suggests 

that the initial stage of BTV core-insect cell interaction and entry involves different cell 

receptors, different viral binding proteins or different mechanisms to those involving 

ISVPs or intact virus particles. It is also suggested that there is a viral protein-receptor 

interaction or mechanism in Culicoides cells, which does not exist in mammalian cells. 

It has been previously reported that the host cell translation in mammalian cells is "shut 

off' during the late stages of BTV infection (Mertens et al 1984). Using BTV 1 SA at a 

multiplicity of infection dose of 1 plaque forming unit (PFU) per BHK-21 cell, shut off 

is effectively complete by 10 hours pi (Mertens et al 1984). The proteins labelled after 

shut off, were also found in in vitro translation products from total denatured viral genome 

RNA and are thought to represent virus encoded proteins (Mertens et al 1984). In the 

present study, the major protein bands which were labelled in infected BHK-21 cells at 

a late time point (9-11 h pi) and at a higher multiplicity of infection dose 10 TC1DsJcell 

(equivalent to approximately 6 PFU/cell) are therefore all believed to be viral proteins 

(PPC Mertens personal communication). Labelling of BTV proteins at 20 h pi at a 

multiplicity of infection equivalent to 6 PFU/l 04cells was also carried out in this study and 

showed the same profile of labelled proteins compared with the early labelling. 

The results of the present study are very preliminary but they do suggest some tentative 

conclusions concerning the binding of BTV proteins to cells. Three viral proteins were 
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bound to BHK-21 or KC cells. One of them, a 60-kD viral protein was bound to both 

mammalian cells and Culicoides cells. The 60-kD viral protein may correspond to eithcr 

the outer coat protein VP5 or the non structural protein NS 1 but it is difficult to be specific 

because the bands ofVP5 and NSI migrate very closely to each other during SOS-PAGE 

Further studies would be needed to confirm the identity of this protein band, but this 

results could indicate some role of VP5, which is an outer capsid protein, in binding of 

the virus particles to both mammalian or insect cells. NS 1 is not thought to be a likely 

participant in cell attachment by BTV particles since it is exclusively non-structural.To 

confirm any role on cell attachment and the identity of the protein concerned further 

studies are required, including immunoprecipitation and western blotting of viral binding 

proteins and also competition assays using single viral proteins and the different nTV 

particle types. 

A 48-kD viral protein, corresponding to the nonstructural protein NS2, and a 40-kD viral 

protein co-migrating with NS2A, both bind to mammalian cells but not to Clilicoidcs cells. 

Small amounts of NS2 have been reported to be associated with the outer capsid layer of 

the purified BTV particle (Mertens et at 1987). In addition, Mertens et al (1987) showcd 

that BTV ISVPs do not possess haemaglutinating (HA) activity, suggesting that the 

cleavage of VP2, or loss of NS2 which both occur during conversion of the intact virus 

particles to ISVP reduces the HA activity of the virus. These authors also found that the 

highest level ofHA occurred with incompletely purified virus wh'ile fully purified material 

had a much lower HA titre. The virus protein which correlated best, in terms of relative 

concentration, with HA titre was NS2 (PPC Mertens personal communication). It is 

therefore possible that NS2 may be involved in haemaglutination and virus binding to 

mammalian cells. A previous study on rotavirus infection showed that a nonstructural 

protein (NS35) may be involved in attachment to target cells (Bass et aI1990). My results 

Suggest that the binding ofBTV to the cell receptor(s) of mammalian cells is a mechanism 

which may involve both the 60-kD protein and NS2. NS2 is a phosphorylated protein and 

its migration on SOS-PAGE gels varies (Roy 1992). However its position in the order of 

BTV protein migration on SOS-PAGE gels is constant. 

A 39.6-kD viral protein, which adheres to Culicoides cells but not to mammalian cells, 

120 



co-migrated with the major core protein VP7. This result may explain why core particles 

of BTV can infect Culicoides cells and vector species Culicoides but are relatively much 

less infectious for mammalian cells. It also suggests that Culicoides cells present receptors 

on their surface that recognises VP7, which may not exist on the surface of mammalian 

cells. This factor may be especially important in the natural, oral infection of vector 

Culicoides because the secretion of digestive enzymes into the midgut in midges, such as 

occurs in mosquitoes, tsetse flies, tabanids and sandflies (Champlain and Fisk 1956; Akov 

1972; Gooding 1972; Spiro-Kern and Chen 1972; Briegel and Lea 1975; Thomas and 

Gooding 1976; Houseman 1980; McFarlane 1985; Clements 1992) may modify intact 

virus particles to produce ISVPs or cores. During this process VP7 is likely to become 

more exposed on the surface of the virus particles as they are digested or modified in the 

lumen of the gut. Therefore, ISVP (produced naturally in the gut) would be expected to 

be more infectious than intact virus particles and even if the virus were completely 

uncoated during digestion, cores, by virtue of the exposed VP7 would still be infectious 

for the gut cells. 

In the present study no viral binding protein has been shown that co-migrates with intact 

VP2. This may mean that VP2 was not presenting the correct confirmation in the cell 

lysate and did not adsorb to cell receptors at the initial stage of BTV infection or even that 

there is no VP2-specific receptor on the surfaces of either mammalian or Culicoides cells. 

However it cannot yet be confirmed that the binding proteins observed in this study arc 

not degradation products of VP2 as suggested by Huismans et al (1983), Cowley and 

Gorman (1987) and Eaton et al (1990), or that VP2 is not degraded during any cell 

binding and uptake mechanism as might be expected if it is taken up by 

endosomes/lysosomes. In this context, it is possible that the 60-kD viral protein which 

binds to both mammalian and Culicoides cells, could be a degraded VP2 which does not 

co-migrate with the intact protein. A previous study (Mertens et al 1987) has already 

shown that two cleavage products from VP2, VP2a and VP2b, remain associated with the 

ISVP. One of them, VP2b migrates to a position very close to VP5 in SDS-PAGE gels. 

In the light of this information, future work is clearly necessary to identify the origin of 

the 60-kD viral binding protein and establish its relationship, if any, with VP2 and other 

viral proteins. 
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A viral protein, co-migrating with VP3, was also consistently observed to bind to both 

BHK-21 and KC cells and a viral protein, co-migrating with VP6, was seen to adhere to 

BHK-21 cells but not to KC cells. VP3 and VP6 are inner core proteins, are not exposed 

on the surface of the BTV particle and are therefore thought unlikely to be involved in 

the binding of the virus to cell surfaces. The binding of these proteins may be "real" in 

the context of these experiments but is probably of limited significance in the natural 

situation. 

In an attempt to confirm the origin of the 60-kD viral binding protein, preliminary 

adsorption tests have already been done in the present study using VP5, NS 1 and 

VPS+NS 1 expressed from cDNA recombinants in rabbit reticulocyte lysates. However 

neither VPS nor NS 1 were observed to bind to mammalian cells. It is possible that these 

proteins when expressed in vitro may have a conformation which is different from that of 

natural proteins. It may also be that the binding of the 60-kD viral protein to a cell 

receptor requires the presence of other viral protein(s) such as NS2 or VP7, i.e. the 

binding domain of the virus may involve more than one protein. It is also possible that 

the 60-kD protein is neither VP5 nor NS 1 but an entirely different protein, such as a 

degraded VP2, as has already been suggested. These questions all need to be resolved. 

Immunoprecipitation tests have also been carried out in this study to attempt to identify 

the viral binding proteins but have not yet been successful although the method has been 

shown to be efficient in a previous study on rotavirus binding proteins (Bass et af 1990). 

The lack of success in the present study is probably related to the ratio of viral binding 

protein-cell lysates, to the antibodies. This is difficult to adjust but an optimum ratio of 

antigen.to antibody is very important in order to maximise the amount of viral protein 

being trapped by Protein A. Too much or too little antibody can produce false negative 

results. In addition, the characteristics or concentration of the detergent in the cell lysates 

may also affect the antigen-antibody reaction. 

In summary, these preliminary results suggest that three BTV viral proteins were sho\\TI 

to be involved in binding to host cell surfaces. A 60-kD viral protein which adheres to 

both mammalian cells and Culicoides cells. A 44-kD viral protein, co-migrat!ng with NS2, 
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adsorbed to mammalian cells but not to Culicoides cells, and a 39.6·kD protein, co­

migrating with VP7, which adheres to Culicoides cells but not to mammalian cells. 

However more work needs to be done to confirm and further characterise these DTV 

proteins and their significance in cell attachment. 

... Twenty 1-11 of BTV infected cell lysate and 80 1-11 of each binding product were loaded on the gels for 

50S-PAGE. The amounts of protein in the samples were not measured because: 1) the amounts of viral 

proteins are not comparable in different samples, since most of the proteins in the samples were cellular; 

2) there was a lot of cell debris in the infected celllysates, which would make the measurement of soluble 

proteins inaccurate; 3) the binding products were lysed directly with a relatively small volume of SOS. 

PAGE sample buffer, in order to maintain a high concentration and to obtain as strong a signal as possible. 

The purpose of this study was to detect the presence of viral binding proteins but not to detennine the 

amount of each protein bound. The amounts of viral proteins binding to the cell surfaces is unknown but 

is thought to be very small; 4) Since the losses of proteins, due to dilution and washing during the 

adsorption tests, could not be effectively analysed in these assays, the results obtained must be regarded as 

qualitative. No attempt at quantisation of binding protein was made. 
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CHAPTER 6 
GENERAL DISCUSSION 

During the course of this work particular emphasis was placed on the use of several 

established techniques and the development of new techniques to study virus infected midges. 

This has produced a large body of complementary qualitative and quantitative data. Very 

large numbers of insects were used in many parts of the study to ensure consistency. 

Study of BTV replication in cells in vitro and in whole midges utilised a combination of 

techniques involving defined viral and subviral particles, virus titration, immunochemical 

localisation using monoclonal antibodies, ultrastructural and immunoelectron microscopy, and 

analysis of viral binding proteins. The results have confirmed and expanded our understanding 

of events taking place during BTV replication in vitro in both mammalian and midge cells 

but have also been extended to investigating BTV replication in various tissues and organs 

from intact midges, which has not previously been reported. 

Ultrastructurally, VIBs have been confirmed as virus factories of BTV in both mammalian 

(BHK-21) cells, Culicoides (KC) cells, the cells of Cu/icoides salivary glands and nervous 

tissues (see Chapter 4). The VIBs in infected KC cells, salivary gland cells and nervous 

tissues were much bigger that those in BHK-21 cells possibly as a result ofVIBs being built 

up during the persistent infection which is a characteristic in insect cells. Most of the VIB 

matrices in KC cells, salivary gland cells and nervous tissues were irregular and had a 

characteristic structure containing distinct fractures. The VIBs were usually seen to contain 

immature virus particles at different stages of development with nascent cores and virus-like 

particles. The more mature particles were located towards the periphery of the VIBs but 

double shelled virus particles were only seen outside these structures. However a characteristic 

of BTV infected KC cells was that 40.7% of VIBs did not contain any recognisable nascent 

cores and virus-like particles. This suggests that BTV replication in at least some KC cells 

may be non-productive. A possible reason for this is that the KC cell line originated from 
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macerated first instar larval Culicoides tissues. Therefore the KC cell line consists of mixed 

cell types, some of which may be unable to support BTV replication. 

Tubules are characteristic structures in cells infected with BTV and consist predominantly of 

the nonstructural protein NSI (Hyatt and Eaton 1988; Eaton et al 1990; Gould and Hyatt 

1994) but the function(s) of tubules and NS 1 are unknown and virus particles have not 

previously been reported to be associated with these structures. However, in this study it was 

striking that large amounts of tubules were observed in both mammalian and Clilicoicics cells, 

including the cells of the salivary glands of C. variipennis, infected with BTV. These tubules 

were clearly associated with VIBs usually being found in the cytoplasm surrounding the vln 
matrix. Mature virus particles were frequently observed attaching to tubules sometimes with 

a number of virus particles lined up on tubules with an identical distance in between each 

particle. This strongly suggests a functional association and studies of kinesin. the main 

protein constituent of microtubule-based molecular motors (Spudich 1994). may suggest a 

mode of action. Molecular motors work to processively transport molecules in cells, with 

single molecules moving along a microtubule track for many seconds before dissociating. It 

is therefore possible that the tubules in BTV -infected cells playa similar role in facilitating 

the intracellular transport of progeny virus particles. 

The data in the present study confirm a single earlier observation (Hyatt et al 1988) that 

progeny virus particles are released through the cell membrane of infected BHK-21 cells 

either by membrane budding, as "enveloped" particles, or by extrusion without acquiring an 

envelope. These two types of virus release are clearly different and may involve different 

mechanisms. As BTV is a non-enveloped virus, the cell membrane "envelope" surrounding 

virus particles released by budding is presumably discarded shortly after being released. Virus 

particles, released by extrusion, were always associated with cell surface debris which may 

represent this discarded material. It is also significant to note that progeny virus particles were 

released from infected salivary gland cells of C. variipennis and a C. variipennis cell line (KC 

cells) at an early stage (6 hours postinfection) and only by membrane budding. The non-
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enveloped extrusion that occurs in BHK-21 cells has not been seen in either Culico/c/es 

salivary glands or KC cells. No virus release has been observed from persistently infected KC 

cells probably because the typical signs of BTV replication were only observed in a minority 

of these cells. However persistent infection can last for months with a relatively high level 

of virus production (about 106
.
oTCIDsolml) in the absence of any cytopathology which 

Suggests that the virus-cell interaction is well-balanced. 

This is the first report of immmunohistochemical localisation of viral antigen in infected 

midges. Prior to the present work there have been few published studies on dipterans and 

these have dealt with mosquitoes infected with arboviruses. Previous work has focused on 

wax embedding techniques at relatively high temperatures followed by standard sectioning 

followed by immunochemical staining. Whilst this has been a pioneering technique problems 

have been experienced with a loss of detectable antigenicity probably due to heating during 

the wax-embedding process. The method was used originally because considerable difficulty 

was experienced in cutting cryostat sections of infected mosquitoes. Indeed this was also 

experienced initially with midges in my study. The principal problems were that at standard 

cryostat temperatures (-20°C) both mosquitoes and midges were dislodged from the 

embedding medium by the cryostat knife with only occasional clean sections being cut. In this 

study it was found that lowering the cryostat temperature to -24°C resulted in excellent cutting 

haracteristics enabling serial sections to be cut and also ensuring that minimal antigenic c . 
losses were encountered due to temperature effects. This allowed the use of a monoclonal 

antibody in the histochemical assay and yet still provided adequate signal to be achieved. The 

technique should now be explored in other virus-vector combinations. 

Using this localisation method extensive studies backed up by comprehensive conventional 

feeding, injection and titration studies quantified in detail virus kinetics in midges. It was 

remarkable that the data revealed a pattern of viral replication and dissemination very similar 

to that recorded for many unrelated arboviruses in mosquitoes. 
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In oral infection experiments a high proportion of individuals from both susceptible and 

refractory colonies could not be infected although the whole gut epithelium, including both 

the anterior midgut and the foregut-midgut junction, and the posterior midgut were exposed 

to high levels of the virus. This reflects the presence of a midgut infection barrier (MID). It 

is significant that preliminary binding experiments in vitro have indicated for the first time 

the possible involvement of several binding proteins. Although much more detailed studies 

will be necessary to confirm these preliminary data interesting differences were noted between 

the proteins binding to mammalian and midge cells in vitro. 

In midges successfully infected via the oral route, it was confirmed that the anterior midgut 

epithelium and the cells at the foregut-midgut junction of C. variipennis were infected as 

frequently and as early as the posterior midgut with the main barrier to dissemination and 

transmission of BTV resulting from a mesenteron escape barrier (MEB). Despite feeding 

midges blood with levels of virus that were considerably higher than might be encountered 

naturally only 35.4% of the susceptible and 31.3% of the refractory colonies of C. 

variipennis showed evidence of initial infection of the midgut characterised by imunochemical 

staining as; 1) A virus positive reaction in gut cells ranging from very low to higher levels 

and spreading throughout the cytoplasm. 2) A virus positive reaction restricted to endosome­

like structures in the cytoplasm of infected gut cells. 

In infected susceptible individuals virus dissemination from the gut showed the following 

patterns of replication: 1) virus was detected only in a few sporadic fat body cells beyond the 

gut; 2) virus disseminates from the gut cells into the haemocoel and replicates in secondary 

organs/tissues but at low levels; 3) virus disseminates from the gut cells into the haemocoel 

and replicates in secondary target organs/tissues at high level. Patterns 1 and 2 suggest that 

factors in the haemocoel may be able to stop the dissemination of the virus which enters the 

haemocoel from the gut cells by trapping small amounts of BTV in fat body cells. The same 

phenomenon of 'virus trapping' by fat body cells did not occur in IT inoculated midges 

probably because IT inoculation results in relatively large amounts of virus being introduced 

directly into the haemocoel. Therefore in circumstances when only small amounts of virus 
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enter the haemocoel, the fat body cells may operate as a 'self-clearing mechanism' acting as 

part of a Culicoides 'immune system'. This could prevent infection of the salivary glands and 

thereby preclude transmission. If the virus enters the haemocoel at a level above the threshold 

at which the 'immune system' is able to inactivate it, the barrier is 'swamped', infection of 

the salivary glands proceeds normally and transmission can occur. In this respect, it is knO\\11 

that insects have an efficient cellular and humoral 'immune system' which defends the host 

against bacteria and parasites (Lackie 1988; Hultmark 1993; Tanada and Kaya 1993). 

Haemocytes, usually circulating within the haemolymph, have phagocytosis and encapsulation 

functions which comprise aspects of the cellular immunity of insects. Insects can also produce 

certain 'low molecular weight' peptides or proteins which may playa role against invading 

pathogens similar to that of antibodies in mammalian systems. However, there is only very 

limited information on antiviral activity in insects infected with arboviruses (Chadwick and 

Dunphy 1986). Nevertheless Luo and Brown (1993) have reported that Sindbis virus can 

induce the production of an antiviral peptide during infection of mosquito cells. Such a study 

has yet to be carried out on any species of Culicoides. 

In totally susceptible individuals (replication pattern 3) a fully disseminated infection was 

observed with virus replicating to high levels in secondary target organs/tissues. The gut cells 

(including the anterior, and posterior midgut epithelium, and the cells of the foregut-midgut 

junction), the fat body, cephalic and thoracic ganglia, salivary glands and ommatidia of the 

compound eyes are commonly infec~ed organs/tissues. However, the hindgut cells, muscles, 

Malpighian tubules and oocytes/nurse cells of the ovaries are not susceptible to DTV 

infection. 

Using the salivation induction and transmission techniques it was possible to obtain the first 

detailed report of virus transmission in midge saliva. No evidence was obtained for the 

presence of salivary gland infection or escape barriers (SGIB, SGEB) as 100% of BTV 

intrathoracically (IT) inoculated C. variipennis, whether from a susceptible or a refractory 

I ny 
were able to develop a persistent and fully disseminated infection and to transmit the 

CO 0 , 

virus through their saliva. No individuals from the refractory colony of C. variipennis were 

128 



able to transmit BTV subsequent to oral infection, and only 12.12% of persistently infected 

susceptible colony midges transmitted the virus although the infection rates of these two 

colonies were similar after ingestion an infectious blood meal. However this situation is 

related to the presence of a MEB and/or a dissemination barrier in the haemococl but not to 

SOIB or SGEB 

So far, little has been published to describe the characteristics of BTV infection in the 

salivary glands of vector Culicoides (Foster and Jones 1981). In the present study. by using 

electron microscopy, BTV infection of the salivary glands of C. variipennis was described in 

detail for the first time. Development was typically polarised following a pattern of virus 

movement from the haemocoel through the basement lamina ~ acinar cells ~ acini 4-

intermediate ducts ~ the lumen of the secretory ducts ~ host animals. Virus enters the 

acinar cells from the haemocoel passing through the basement membrane of the salivary 

glands by endocytosis. BTV then localises and replicates in viral inclusion bodies (VIB) in 

the cytoplasm of serous acinar cells. Mature progeny virus particles are then released into 

serous alveoli (acini) that are located on the opposite side of the acinar cells to the basement 

membrane. The virus particles are then transported through intermediate ducts and accumulate 

in crystalline arrays in the lumen of the major secretory ducts. No virus appears to be released 

back into the haemocoel through the basement membrane although the infection and 

reinfection of the salivary glands through the basement surface of the glands is a continuous 

process. Neither has virus been seen to re-enter acinar cells from the acini. This polarised 

nature of BTV infection in the salivary glands of C. variipennis accounts for the massive 

accumulation of progeny virus particles in the secretory ducts and means that transmission 

of BTV through the saliva during biting is assured . 

. Both laboratory and field studies dealing with Culicoides-BTV have indicated that vertical 

transmission does not appear to occur. In C. variipennis BTV has not been detected in the 

. progeny of parental midges infected with the virus (Jones and Foster 1971 b; Nunamaker el 

(11 1990; PS Mellor personal communication). In the present study, oocyteslnurse cells have 
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never been found to become infected with BTV in either IT inoculated or orally infected C. 

variipennis, even in the individuals with fully disseminated infections. This strongly supports 

the assertion that vertical transmission of BTV does not occur in C. variipcnnis because of 

the presence of a transovarial transmission barrier which prevent access of the virus to the egg 

cells. No insight was obtained into the nature of this barrier however. 

Nervous tissues of C. variipennis were proven in this study to be heavily infected in 

individuals with a fully disseminated BTV infection, using both IHC and transmission 

electron microscopy. Ultrastructural results showed typical and active virus replication in 

nerve cells and axons. The influence of nervous tissue infection on virus dissemination and 

on insect behaviour needs to be elucidated in the future. 

In conclusion, the transmission barriers presented by C. variipennis to BTV are: mesenteron 

infection barrier, mesenteron escape barrier, fat body mediated dissemination barrier in the 

haemocoel and transovarial transmission barrier. The salivary glands of C. variipcnnis present 

neither a salivary gland infection barrier nor a salivary gland escape barrier. Further work 

should noW be directed at elucidating the mechanisms upon which these barriers are based. 

This work should focus on the MIB and MEB because my work has shown that these are the 

principal barriers in this BTV vector species of midge. 
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APPENDICES 

Appendix 1 Replication of BTV in BHK-21 cells infcctcd with IVP, ISVP 
and CP of BTVISA 

Time pi 
(hour) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
48 

-

Mean 10gIO 
TCIDsolml 
[IVP] 

3.75 
0.00 
0.00 
0.00 
1.50 (1.25-1.75) 
2.50 
2.25 
2.33 (2.25-2.50) 
3.00 (2.75-3.25) 
2.75 
3.25 
3.25 
3.50 
4.00 (3.75-4.25) 
5.50 
7.00 
6.50 
7.00 
8.00 (7.75-8.25) 
7.00 
8.50 
7.50 (7.25-7.75) 

IVP: intact v.irus parti~les . 
ISVP: infectious subvIral partIcles 
CP: core particles 
pi: postinfection 
SEM: standard error of mean 

SEM 

0.00 
0.00 
0.00 
0.00 
0.14 
0.00 
0.00 
0.08 
0.14 
0.00 
0.00 
0.00 
0.00 
0.14 
0.00 
0.00 
0.00 
0.00 
0.14 
0.00 
0.00 
0.14 

Mean 10gIO 
TC1Dsolml 
[ISVP] 

3.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.50 
2.00 (1.75-2.25) 
2.00 
2.00 
3.00 
2.83 (2.75-3.00) 
3.00 
4.00 
4.00 
5.00 
6.50 
7.08 (7.00-7.25) 
6.00 
7.00 

SEM 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.14 
0.00 
0.00 
0.00 
0.08 
0.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.00 
0.00 

BTV titration resul~s in ~HK-21 cells infect~d with IVP, ISVP and CP of BTV ISA at 
different times post.mfectlOn from three. ex~enments .(see Chapter ~). The data in brackets 

. . hoW the range of tltres from the three titratIon expenments, otherwIse the data of the three 
.; :eplicates were the same. CP were not infectious for BHK-21 cells and therefore no data are 

shown in this table. 
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APpendix 2 Replication of BTV in KC cells infected with IVP, ISVP and ell 

Time pi Mean loglo SEM Mean loglo SEM Mean loglo ~1 

(hour) TCIDsJml TCIDsJml TC1DsJml 
(rvp) (rSVP) (CP) 

0 3.75 0.00 3.00 0.00 0.00 0.00 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 0.00 

6 2.00 0.00 0.00 0.00 0.00 0.00 

7 2.25 0.00 0.00 0.00 0.00 0.00 

8 3.25* 0.14* 1.75* 0.14* 2.25 0.00 

9 2.50 0.00 2.25 0.00 2.25 0.00 

10 4.75 0.00 3.00 0.00 2.25* 014* 

12 4.83** 0.08** 3.00* 0.14* 3.00 0.00 

14 4.75 0.00 3.00 0.00 2.75 0.00 

16 5.00 0.00 3.50 0.00 3.00 0.00 

18 4.50 0.00 3.75 0.00 2.75 0.00 

20 4.75 0.00 3.50 0.00 3.58** ~ 

22 4.25 0.00 3.83** 0.08** 4.00* 014* 

24 4.25 0.00 4.00 0.00 4.00 0.00 

26 5.00* 0.14* 5.00 0.00 4.50 0.00 

28 4.83** 0.08** 5.00 0.00 5.00· 014* 

48 6.50* 0.14* 6.75 0.00 6.00 0.00 

-
IVP: intact virus parti~les . 
ISVP; infectious subVIral partIcles 
CP: core particles 

i: postinfection 
~EM: standard error of mean 

. }:3'fV titration results of KC cells infe~ted with IVP, ISVP and CP of BTV lSA at different 

. times post infection from t~ree expe~lments. (see. Chapter 2). The d~ta marked with '.' are 
eans and SEM of the tltres whIch vaned In the three expenments (in a range of 

TOO,STcrDsJml), the data marked with '**' are means and SEM of the titres which also varied 
. the three experiments (in a range of 10o.2sTCIDsJml), otherwise the data of the three 
10 

'. replicates were the same. 
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APpendix 3 Replication of BTV lSA in IT inoculated ClIlicoides l'ariipellllis 

Time pi 
days hours 

< 1 
1 
2 
4 
8 
12 
16 
20 

1 24 

2 
3 
4 
5 
6 
7 
8 
9 
10 
14 

-
Total 

-
pi: postinfectio.n 

.. ' IT: intrathoracIc 
SEM: standard error of mean 

No. midges 
(BTV+) 

10 
10 
10 
10 
10 
10 
10 
10 
20 
18 
24 
21 
21 
19 
20 
18 
19 
22 

282 

Mean IOglO 
TC1Dsolmidge 

3.50 (3.00-3.75) 
3.51 (3.00-3.75) 
3.48 (3.25-3.75) 
3.75 (3.50-4.00) 
3.73 (3.25-4.00) 
3.50 (3.25-4.00) 
3.79 (3.20-4.50) 
4.00 (3.50-4.50) 
4.25 (3.75-5.00) 
4.65 (4.00-5.50) 
4.50 (3.75-5.50) 
4.77 (3.50-5.25) 
5.04 (4.25-5.50) 
4.75 (3.75-5.25) 
5.08 (3.25-5.50) 
4.50 (3.50-5.25) 
5.21 (4.00-5.50) 
4.96 (4,25-5.50) 

SEM 

0.08 
0.08 
0.09 
0.09 
0.11 
0.11 
0.13 
0.17 
0.13 
0.14 
0.12 
0.13 
0.12 
0.15 
0.17 
0.19 
0.18 
0.17 

BTV titration result~ of 282 IT inoculated.C. variipe~nis at dif;~rent times postinfection (see 
'. Chapter 2). Each midge was mocu.lated with ?pproxlmately I? . T~IDso of BTV suspension. 

The mean titres and SEM of the htres per mldge are shown m thiS table. The ranges of the 

'tres of BTV per midge are shown in brackets. 
·u 
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Appendix 4 Titration of BTV lSA from orally infected Clllicoides l'ariipellllis 

Time pi 
days hours 

< 1 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
14 .--
-

Total 

1 
2 
4 
8 
12 
16 
20 
24 
28 
32 

. i. post infection 
~EM: standard error of mean 

No. midges 
(BTV+) 

20 
20 
62 
67 
63 
66 
68 
59 
69 
30 
29 
26 
27 
23 
19 
54 
31 
36 
29 
35 
20 
46 

899 

Mean loglo 
TC1DsJmidge 

3.14 (2.50-3.50) 
2.96 (2.50-3.50) 
3.06 (1.50-3.50) 
2.81 (1.50-3.50) 
1.96 (1.50-2.75) 
2.82 (1.50-3.25) 
2.98 (1.00-3.00) 
1.35 (0.75-2.75) 
1.84 (-0.25-4.50) 
2.75 (-0.50-3.75) 
2.78 (-0.25-3.75) 
3.49 (-0.25-4.75) 
3.35 (-0.25-5.00) 
3.44 (-0.25-4.50) 
3.50 (-0.25-5.00) 
3.31 (-0.50-4.50) 
3.05 (-0.25-5.25) 
3.35 (-0.25-5.00) 
3.30 (-0.25-4.75) 
3.05 (-0.25-5.25) 
3.01 (-0.25-5.00) 
2.97 (-0.25-5.50) 

SEM 

0.08 
0.08 
0.09 
0.09 
0.11 
0.11 
0.13 
0.17 
0.17 
0.17 
0.22 
0.21 
0.24 
0.23 
0.26 
0.22 
0.26 
0.25 
0.27 
0.25 
0.23 
0.28 

· :a
TV 

titration results of C. variipennis after being fed on a suspension of BTV in sheep blood, 
· taining 106-7TCIDsJml of the virus, at different times postinfection (see Chapter 2). A total 
· c~~ 675 midges were tested. The mean titres and SEM of 899 BTV positive midges are shO\\n 
? this table. The ranges of the titres of BTV per midge are shown in brackets. 
111 
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