Analysis of G-

Quadruplex Formation

in mRNA Transcripts of

Phospholemman/ FXYD1

by

Hansraj DHAYAN

Submitted in partial fulfilment of the requirements of the University of Hertfordshire for the degree of Master of Science by Research

Title of sponsoring department: School of Life Sciences
Name of company/institution:
Date:
University of Hertfordshire
$27^{\text {th }}$ November 2013

UNIVERSITY OF HERTFORDSHIRE

Research Degrees Board

Name of Candidate: HANSRAJ DHAYAN

Award of the degree of: MSc by Research in Molecular Biology, Biophysics and Biochemistry

DECLARATION REGARDING FINAL SUBMISSION

My submission for examination was temporarily bound.
I confirm that the contents of my final, approved submission are identical with the version submitted for examination, except where amendments have been made to meet the requirements of the examiners.

Signed:

Date: $\quad 10^{\text {th }}$ June 2014

Abstract

G-quadruplexes are higher-order nucleic acid structures formed by tetrads of guanine bases (G-tetrads) through non-canonical base interactions. Two G-tetrads are stabilised by a potassium-ion sandwiched between the tetrads. It has emerged from recent studies that Gquadruplexes occur widely throughout the human genome and have significant biological roles. In this study the FXYD1 pre-mRNA encoding the protein Phospholemman (PLM) is investigated. PLM is highly expressed in cardiomyocytes and forms a third subunit of the $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump (NKA). PLM is a major phosphorylation target and thus regulates NKA activity. FXYD1 pre-mRNA was investigated for its ability to form G-quadruplexes. By computational analysis, it was found that FXYD1 can fold into G-quadruplex and multiple sequence alignment of ortholog FXYD1 sequences indicated that G-quadruplex-forming potential is conserved in evolution, hinting at a potential regulatory mechanism of FXYD1 expression. Comparative analysis confirmed that FXYD1-009, a variant of $F X Y D 1$, is a product of alternative splicing of FXYD1's pre-mRNA. G-quadruplex formation in human and bovine FXYD1-derived oligonucleotides was detected experimentally by non-denaturing poly acrylamide gel electrophoresis that showed an increased mobility rate of G-quadruplexes in contrast to controls. Further analysis by fluorescence emission spectroscopy confirmed Gquadruplex formation in the human and bovine FXYD1-oligonucleotides that was triggered by the presence of K^{+}ions. The results provided clear evidence of G-quadruplex formation in vitro and together with evolutionary conservation point to potential role in regulating expression of FXYD1 possibly through alternative splicing and thus regulate indirectly the

activity of $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase. Further in-vivo works should address whether alternative splicing of FXYD1 to FXYD1-009 is associated with G-quadruplex formation.

Acknowledgements: Dr Andreas Kukol for giving me the opportunity to work on this project, Prof Anwar Baydoun for being the second supervisor, Prof Mire Zloh for his assistance, Jamie Stone \& Deepika Saikrishnan for their support, 2G165 lab personnel, Chemistry Department for providing the fluorimeter

TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION 1
1.1 G-quadruplex Overview 1
1.2 G-quadruplex folding motif and prediction tools 3
1.3 Existence and significance of G-quadruplexes 6
1.4 Prevalence of G-quadruplex in RNA 8
1.5 FXYD1/phospholemman 11
1.5.1 The phospholemman protein 12
1.5.2 PLM primary, secondary and tertiary structure 13
1.6 Techniques for G-quadruplex detection 16
1.7 Aims and objective 19
2. MATERIALS \& METHODS 20
2.1 MATERIALS 20
2.1.1 Software, databases, web-servers 20
2.1.2 Sample preparation 21
2.1.3 NATIVE PAGE 22
2.1.4 Fluorescence and UV-vis spectroscopy 23
2.1.5 Data processing 23
2.2 METHODS 24
2.2.1 In-sillico analysis 24
2.2.2 G-quadruplex preparation 28
2.2.3 Native PAGE preparation 28
2.2.4 Detection of G-quadruplex by Native PAGE 29
2.2.5 Detection of G-quadruplex by fluorescence spectroscopy 30
3. RESULTS 32
3.1 In-sillico analysis 32
3.1.1 QGRS mapper and Quadbase findings 32
3.1.2 Stability calculations of secondary/tertiary structures 43
3.1.3 Multiple Sequence Alignment GQS against orthologous 50 FXYD1 sequences
3.1.4 Alternative splicing 54
3.2 G-quadruplex detection by Native PAGE 59
3.3 Detection of G-quadruplexes by Fluorescence spectroscopy 64
4. DISCUSSION 67
4.1 Computational sequence Analysis 67
4.2 Stability calculations of secondary/tertiary structures 69
4.3 Evolutionary conservation of G-rich sequences in FXYD1 pre-mRNA 70
4.4 Alternative splicing 70
4.5 Laboratory experimental results support G-quadruplex formation 71
4.6 Limitations and further work 75
5. REFERENCES 78
APPENDIX I: GQS mapping from Table 2 and conserved sequence from Table 84 6 in the FXYD1 pre-mRNA of each ortholog
Mus musculus FXYD1 pre-mRNA sequence 84
Canis lupus familiaris FXYD1 pre-mRNA sequence 86
Pan troglodyte FXYD1 pre-mRNA sequence 88
Bos taurus FXYD1 pre-mRNA sequence 90
Rattus norvegicus FXYD1 pre-mRNA sequence 92
Monodelphis domestica FXYD1 pre-mRNA sequence 94
Felis catus FXYD1 pre-mRNA sequence 96
Otolemur garnetti FXYD1 pre-mRNA sequence 97
Tursiops truncatus FXYD1 pre-mRNA sequence 98
Equus caballus FXYD1 pre-mRNA sequence 100
Ailuropoda melanoleuca FXYD1 pre-mRNA sequence 102
Pongo abelii FXYD1 pre-mRNA sequence 103
Oryctolagus cuniculus pre-mRNA sequence 105
Gorilla gorilla gorilla pre-mRNA sequence 106
Sus scrofa FXYD1 pre-mRNA sequence 108
Ovis aries FXYD1 pre-mRNA sequence 110
APPENDIX II: FXYD1 variant 009 pre mRNA sequence 112

List of Tables

Table Title Page
1 G-scores for H. sapiens' FXYD1 pre-mRNA 34
2 Highest scoring GQS from FXYD1 orthologs 37
3 GQS located in UTR regions of orthologues FXYD1 pre-mRNA 40
4 GQS predicted for H. sapiens' FXYD1 mRNA 42
5 MFE structure generated by RNAfold and other secondary structures for 43 oligonucleotide considered for laboratory work
6 Genomic location and G-scores of the conserved sequences with respect to 51 the highest scoring GQS of H. sapiens
7 Consensus sequence obtained after aligning each GQS from Table 2 52
8 MFE and secondary structures of the variant FXYD1-009 sequence 57
$9 \quad$ Student 2-tailed-t-test of \mathbf{R}_{f} values for samples in the presence of K^{+} 62 containing buffer against samples in K^{+}free buffer
10 Student 2-tailed-t-test of \mathbf{R}_{f} values for samples incubated in different 62 concentration of K^{+}containing buffer

List of Figures

Figure Title Page
Schematic representation of G-quartet and G-quadruplex 2
Intramolecular RNA G-quadruplex 4
Proposed roles of G-quadruplexes associated with UTR regions of RNA 8
Genomic location and gene structure of FXYD1 11
Primary and tertiary structure of PLM 13
3-D cartoon graphic of the anti-parallel intramolecular G-quadruplex 17 formed by 2KM3H. sapiens' FXYD1 pre-mRNA sequence in the QGRS mapper analyzer box24
H. sapiens' FASTA FXYD1 pre-mRNA to be analysed by Quadbase 25
MFE structures for controls and Bovine_PLM sequence 46
3 lowest energy state structures for Human_PLM sequence 47
Human_PLM sequence aligned against remaining orthologs 50
Comparison of FXYD1 andFXYD1-009 pre-mRNA sequences that map the 56 Human_PLM sequence
Native 30\% PAGE of samples in the presence and absence of K^{+} 59
Barchart comparing \mathbf{R}_{f} for samples under different $\mathrm{K}+$ conditions 61
Emission spectrum of samples in the presence and absence of K^{+} 64
Emission spectra of Quinine in the absence or presence of K^{+} 66
Schematic illustration of the intermolecular G-quadruplex formed by - 73 VE_A

List of abbreviations

Acronym

PLM

GQS

+ VE
-VE_A
-VE_B

MFE

QGRS

MSA

TrisOAc

KCl

KOAc

NKA

PAGE

DNA

RNA
mRNA

UTR

ETDA

Definition

Phospholemman

G-quadruplex forming sequences

Positive control

Negative control A

Negative control B

Minimum Free Energy

Quadruplex forming G-Rich Sequences

Multiple Sequence Alignment

Tris Acetate buffer

Potassium Chloride

Potassium acetate

Sodium Potassium pump/ $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase

Poly Acrylamide Gel Electrophoresis

Deoxyribonucleic Acid

Ribonucleic Acid
messenger Ribonucleic acid

Untranslated region

Ethylenediaminetetraacetic acid

1. INTRODUCTION

1.1 G-quadruplex overview

If there is something in particular that intrigues scientists about Guanine rich (G-rich) nucleic acid sequences, it is their ability to form higher order secondary structures called Gquadruplexes (Phong Lan Thao, Mergny, \& Alberti, 2011; Stegle, Payet, Mergny, MacKay, \& Huppert, 2009; Tluckova et al., 2013; Yuan et al., 2013; Zhang, Liu, Zheng, Hao, \& Tan, 2013). G-rich nucleic acid sequences form G-quadruplexes when in the presence of cations, which help stabilizing the structures. G-tetrads, being the tetrahedral arrangement of four guanines residues linked via hydrogen bonds, are the building blocks of G-quadruplexes (Lech, Heddi, \& Anh Tuan, 2013; Wu \& Brosh, 2010). The role of cations is to stabilize the Gtetrads by sitting in their core (Figure 1A). Stacks of G-tetrads are called G-quadruplexes and a minimum of two G-tetrads are required to form a stable G-quadruplex. Structural polymorphisms in G-quadruplexes have been previously reported and some of the variants are shown in Figure 1B (Musetti, Krapcho, Palumbo, \& Sissi, 2013; Palacky, Vorlickova, Kejnovska, \& Mojzes, 2013; Xu, Xu, Shang, Feng, \& Zhou, 2012).
A

Tetrameric

Intermolecular
Dimeric

Intramolecular Monomeric

Figure 1: (A) Schematic representation of a G-quartet. Four guanines are linked together via hydrogen bonds (dotted lines) and the quartet is stabilised by a cation, K^{+}. (B) G-quartets stack to form G-quadruplexes. Three different types of G-quadruplex are shown here. Intermolecular tetrameric G-quadruplex involves 4 separate strands of nucleic acid with the participation of one guanine residue from each strand in the G-quartets. Dimeric Gquadruplex involves participation of two separate strands with two guanines (Anti and Syn) from each strand participating in the G-quartets. Intramolecular monomeric G-quadruplex involves only one strand. Anti-guanines are coloured cyan and Syn guanines are coloured orange. Adapted from Moon \& Jarstfer (2007).

1.2 G-quadruplex folding motif and prediction tools

In order for any nucleic acid to fold into G-quadruplex, the sequence of the latter should be rich in guanine residues and the arrangement of guanines within the nucleic acid should comply with particular motifs. Many algorithms have been developed to identify nucleic acid sequences rich in guanines with the appropriate motifs, and allow easy prediction of intramolecular G-quadruplex formation. Algorithms such as Quadruplex forming G-Rich sequences (QGRS) mapper (Kikin O, D'Antonio \& Bagga, 2006), Quadfinder (Scaria, Hariharan, Arora \&Maiti, 2006), QuadPredict (Wong, Stegle, Rodgers \& Huppert, 2010), GRich sequence Database (GRSD), G-Rich Sequences UTR DataBase (GRS UTRdb), non-B DNA Motif Search Tool (nBMST), Quadbase and others are readily available on the internet (Kostadinov, Malhotra, Viotti, Shine, D'Antonio \& Bagga, 2006). The most common folding motif was devised by Kikin et al. (2006) and is as follows: $G_{x} N_{y 1} G_{x} N_{y 2} G_{x} N_{y 3} G_{x}$. G stands for guanine and N stands for any other nucleotide residue, subscripts denote the number of occurrences of these nucleotides. According to the folding rule, x should be at least two as a minimum of two quartets is required to stack on top of each other to form a G-quadruplex. N is representative of the other bases involved in the loops of the G-quadruplex, N can be any base including guanine. $\mathrm{Y} 1, \mathrm{Y} 2 \& \mathrm{Y} 3$ is the number of the different residues that participate in the three different loops, and can vary.

Figure 2: Intramolecular G-quadruplex formed by a RNA molecule with the sequence: 5'-UGGGCAGGGCUGGGUGGGA-3'. This particular intramolecular RNA (5'-UGGGCAGGGCU GGGUGGGA-3') G-quadruplex corresponds to the motif $\mathrm{G}_{3} \mathrm{~N}_{2} \mathrm{G}_{3} \mathrm{~N}_{2} \mathrm{G}_{\mathrm{x}} \mathrm{N}_{1} \mathrm{G}_{\mathrm{x}}$. Note that the first base $5^{\prime}-\mathrm{U}$ and last base $\mathrm{A}-3^{\prime}$ did not participate in the G-quadruplex structure. (Adapted and edited from GRS UTRdb Database, 2007)

Lorenz et al. (2011) stated that most of the putative G-quadruplex forming sequences in RNA are more likely to form secondary structures based on conventional base pairing rather than G-quadruplexes. The Vienna RNA package developed by Lorenz et al. (2013) provides a suitable platform for detecting secondary structures in sequences based on thermodynamic parameters and properties; it also allows users to predict the formation of G-quadruplexes alongside other possible competing secondary structures. The three main types of computational structural predictions are based on (i) Zuker \& Stiegler's (1981) Minimum Free Enegery (MFE) algorithm, which will predict a single structure for a particular sequence based on its MFE requirement (ii) McCaskill's (1990) Partition Function algorithm, providing
statistical insights about the base parining probabilties in RNA emsembles allowing the prediction of more than one secondary structures within the same species of RNA (iii) Suboptimal Folding algorithm (Wuchty, Fontana, Hofacker, \& Schuster, 1999) that computes structures within a given range of optimal energy, hence allowing users to screen for competing secondary structures with respect to G-quadruplex in RNA molecules. All of the three prediction methods are implemented in the Vienna RNA package, mostly independent of each other such as predicting MFE structure of a particular sequence or sometimes combined when for instance predicting structures in a particular sequence over a range of optimal energy. The webserver of the Vienna RNA package provides a suitable platform for users to predict structures in desired RNA sequences and is available at http://rna.tbi.univie.ac.at/.

1.3 Existence and significance of G-quadruplexes

There have been reports in the past about the existence of G-quadruplexes occurring invitro (Yuan, Tian, Chen, Yan, Xing, Zhang, Zhai, Xu, Wang, Weng, Yuan, Feng \& Zhou, 2013; Biffi, Tannahill, McCafferty \& Balasubramanian, 2013; Xu, Suzuki, Ito \& Komiyama, 2010). Insillico analysis of the human genome has revealed many potential sequences that can fold into G-quadruplex, with quite a large fraction falling into gene promoter regions of DNA and UTR, exon, intron and exon-intron boundary regions of pre-mRNAs (Beaudoin et al., 2010; Johnson et al., 2010; Onyshchenko et al., 2009). The biological significance of these Gquadruplexes has been discussed in literatures. Controversies have revolved around Gquadruplex as being a potential down-regulator of gene expression. These structures may have a specific role like the hairpin-stem loops that form within palindromic sequences and aid terminating translation in prokaryotes (Wilson et al., 1995). Many roles have been associated to G-quadruplexes. Some of the proposed functions associated with Gquadruplex formation include: G-quadruplexes can up-regulate genes by keeping promoter or upstream regions of genes in a more open structure, therefore enabling easy access for transcriptional factors to bind (Du, Zhao, \& Li, 2008). With the recent advances in molecular techniques and latest technological assets, G-quadruplexes' existence within cells and elucidation of the roles of some G-quadruplexes have been characterised. The formation of a G-quadruplex structure within a promoter region has been reported to sterically hinder access to negative regulators and enhance gene expression following the work led by Gu, Lin, Xu, Yu, Du, Zhang, Yuan \& Gao in 2012. Their work led to the proposition that the formation of a G-quadruplex in the rat relaxin-1 (RLN1) gene promoter restricts access to the transcriptional activator STAT3. STAT3 is known to negatively regulate the expression of
relaxin-1 and Gu et al., (2012) hypothesized that G-quadruplex formation in the RLN1 promoter region led to enhanced expression of relaxin-1. Down regulation of genes has also been reported to be associated with G-quadruplexes, for example in case of the oncogene c myc (Ou et al., 2007). Ou and colleagues (2007) reported that the stabilisation of a Gquadruplex within the $c-m y c$ gene promoter lead to its down regulation. G-quadruplexes are largely unexploited in the cancer therapeutics field. Reports have confirmed the fact that telomeric ends of Homo sapiens chromosomes are guanine rich and have the potential to fold into G-quadruplexes (Zhu, Xiao \& Liang, 2013; Long, Parks, Bagshaw \& Stone, 2013). The survival of cancer cells depends on the enzymatic action of telomerase on telomeric ends of chromosomes (Shay, Zhou, Hiyama \& Wright, 2001). Telomerase is known to elongate ends of telomeres and helping cancer cells to survive. Stabilized G-quadruplexes in telomeres will inhibit telomerase and eventually stops telomeric elongation that will prove difficult for the cancer cells to survive (Li, Xiang, Zhang \& Tang, 2012). It was the report published by Siddiqui-Jain, Grand, Bearss \& Hurley in 2002 that drew major attention to considering Gquadruplexes as potential target for anti-canceral drugs. The former group successfully stabilised a G-quadruplex entity upstream the promoter of the pro-oncogene c-myc, using the ligand porphyrin TMPyP4. The stable G-quadruplex suppressed the expression of c-myc significantly, and their work was the first direct evidence of ligand mediated G-quadruplex stabilisation in the c-myc promoter region.

1.4 Prevalence of G-quadruplex in RNA

RNA G-quadruplexes have been reported in the past and the high occurrence of Gquadruplex in UTR regions of RNA has lead to hypothesizing on their role as translational regulators (Huppert et al., 2008, Bugaut \& Balasubramanian, 2012). Huppert, Bugaut, Kumari \& Balasubramanian (2008), proposed that G-quadruplex in 5'-UTRs of RNA can down regulate translation by caging the 5'-cap end or by disrupting small ribosome subunits (Figure 3A). Alternatively, Huppert et al. (2008) proposed that G-quadruplexes in the 3'-UTR region of template DNA can effectively allow mRNA processing, by supporting the cleavage of pre-mRNA at the poly adenylation site (Figure 3B).

Figure 3: Proposed roles of G-quadruplexes associated with UTR regions of RNA. (A) Gquadruplex formation within the 5^{\prime}-UTR region of an mRNA molecule. Cap-dependent initiation of translation is compromised in this instance, by the presence of the Gquadruplex that restricts the initiation complex to scan along the mRNA for the start codon.

Abstract

Translation is prevented in this instance. (B) Formation of a G-quadruplex in the 3' region of the template DNA strand, just after the polyadenylation site. The presence of the Gquadruplex pauses RNA polymerase complex and allows effective termination of transcription. Adapted and Edited from Huppert et al., (2008)

As previously stated, some G-quadruplexes and their in-vivo roles have been characterised in the past. Kumari, Bugaut, Huppert \& Balasubramanian (2007) reported that G-quadruplex within the 5^{\prime}-UTR of the NRAS oncogene reduces expression of the latter. Another group of researchers proposed that G-quadruplexes in RNA leads to alternative splicing. Marcel et al. (2011) reported that the formation of a G-quadruplex in the pre-mRNA of tumour suppressor protein, P53, leads to alternative splicing. Eventually this has an impact on the type of P53 that is formed. The usual form of p53 is FSP53, which is a fully processed mRNA, while P5312 is the alternative form that is derived from a partially unspliced pre-mRNA. The P5312 form retains its intron two, which is not spliced. The finding from Marcel \& colleagues' work led to the suggestion that G-quadruplex formation in intron three of the pre-mRNA has an impact on the splicing frequency of intron two. The more G-quadruplex that was stabilized in intron three, the more FSP53 was made. Another group of researchers have also demonstrated that G-quadruplex formation led to alternative splicing patterns in hTERT intron 6, which caused down regulation of the activity of telomerase in A549 carcinoma cells (Gomez et al., 2004). Bugaut et al.(2012) reported that a significantly large number of clinically important genes have been analysed and shown to have sequences that can form G-quadruplexes, especially post transcriptional. Previous reports supported the fact that conformational changes within mRNA molecules have the potential of regulating protein formation (Gray \& Hentze, 1994; Van der velden \& Thomas, 1999). Van der velden
et al. (1999) reported that the 5^{\prime}-UTR of most mRNA is an important site where ribosomes will bind to initiate protein synthesis and any structural changes, G-quadruplexes in this instance, will affect this process. Many of the genes proposed by Bugaut et al.,(2012) fall into the oncogene family and the study and elucidation of G-quadruplexes in these genes is of clinical importance.

1.5 FXYD1/phospholemman

One clinically important gene, highly expressed in cardiomyocytes is the FXYD1 gene. FXYD1 codes for the protein phospholemman (PLM) and is part of the FXYD family, which are involved mainly in regulating the $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase in different tissues (Teriete, Franzin, Choi, \& Marassi, 2007; Cheung, 2010). FXYD1 is located on chromosome 19 in Homo sapiens (Figure 4).
A.

B.

Figure 4: Genomic location of FXYD1 in Chromosome 19 of Homo sapiens and the structure of the FXYD1 gene. A. Chromosome 19 of Homo sapiens showing the genomic location (red rectangle) of the FXYD1 gene on the q arm of chromosome 19 (Adapted and edited from Ensembl 2013). B. Gene structure of the H. sapiens FXYD1 gene located in the region chr19: $35,138,789-35,143,055$. The FXYD1 gene is represented by the green line and green rectangles. The coding regions are represented by the red rectangles from the red line,
which translate to phospholemman. Introns are represented by the solid horizontal black lines at the bottom, while exons are located between the introns boundaries, red vertical lines at the top. The coding exons are exons 2 to 8. (Adapted and edited from NCBI 2014).

1.5.1 The phospholemman protein

Phospholemman (PLM) is 72 residues long and a single-span transmembrane protein. Characterised by Larry Jones in 1985, PLM is an important phosphorylation target of protein kinase A/C (PKA/PKC) (Crambert, Füzesi, Garty, Karlish \& Geering, 2002). PLM is part of the $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase (NKA) ion pump and contributes to the proper functioning of NKA (Fuller et al, 2004; Silverman et al, 2005). PLM is therefore considered as a key physiological regulator of cardiomyocytes and poses as a potential target site for cardiac therapeutics (Shattock, 2009). The 72 -residue single-span transmembrane protein forms alpha helical tetramers in vitro (Beevers \& Kukol, 2006) and in vivo (Bossuyt, Despa, Martin, \& Bers, 2006; Song, Pallikkuth, Bossuyt, Bers, \& Robia, 2011).

1.5.2 PLM primary, secondary and tertiary structure

A

B

Figure 5: (A) Primary and tertiary structure of PLM showing the 72 amino acid residues. (B) The cartoon 3-D structure of the PLM monomer obtained by NMR spectroscopy in detergent micelles. The polypeptide chain is made up of one long transmembrane alpha helix and
three shorter helices that are connected by turns. Adapted from RCSB Protein Data Bank (2013).

The transmembrane domain of PLM was shown to form tetramers in lipid bilayers (Beevers \& Kukol, 2006). Using site specific infrared dichroism combined with molecular modelling (reviewed in Kukol, 2005) an atomic model of the tetramer was obtained that revealed the potential to interact with NKA, which was proposed to lead to a subsequent dissociation of the tetramer (Beevers \& Kukol 2007). Further in vivo studies have shown that a tetramer exists in vivo and that there is a delicate balance between monomer and tetramer, which also depends on the phosphorylation of PLM (Song et al., 2011). X-ray crystallography studies of the sodium-pump (NKA) in other tissues and species have shown that monomeric FXYD1 (PLM) homologs, such as FXYD2 in porcine renal tissue (Morth et al., 2007) and FXYD10 in the shark rectal gland (Shinoda, Ogawa, Cornelius, \& Toyoshima, 2009) act as a third subunit of NKA. NKA exchanges three Na^{+}ions against two K^{+}ions that are pumped back into the cell and ensures the resting electrical membrane potential of cells is maintained. When not phosphorylated, PLM reduces the NKA pump's affinity for intracellular Na^{+}. This will cause an overload of intracellular Na^{+}and create an ionic imbalance, eventually causing accumulation of Ca^{2+} ions. Contrary to when PLM is phosphorylated, this intracellular accumulation of Na^{+}ions is reduced as affinity of the NKA pump for sodium ions is restored. Protein kinase A activation reduces K_{M} of $N K A$ for Na^{+}, while protein kinase C activation increases $v_{\max }(H a n$, Bossuyt, Despa, Tucker, \& Bers, 2006). The transmembrane domain of PLM on its own is responsible for changes in the sodium affinity (Lifshitz, Lindzen, Garty, \& Karlish, 2006). As previously stated, an imbalance of Na^{+} will lead to accumulation of Ca^{2+}, which is reported to lead to arrhythmia (Parham,

Mehdirad, Biermann, \& Fredman, 2006; Thandroyen et al., 1991). Any factors that cause an increase in intracellular Na^{+}ions will cause a build-up of Ca^{2+} inside cells. Previous papers have reported that G-quadruplex formation is positively correlated with the concentration of cations, especially K^{+}ions (Kan et al., 2006; Samatanga et al., 2013), which have been proposed to be the best stabilizers of G-quartets, eventually G-quadruplexes, when compared to other cations such as $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Li}^{+}$etc (Sun et al., 2013; Nguyen Thuan, Haselsberger, Michel-Beyerle, \& Anh Tuan, 2011).

1.6 Techniques for G-quadruplex detection

Detection of G-quadruplex ensembles within nucleic acid species made use of biophysical, biochemical and molecular assays as well as bioinformatics-based predictions. As previously stated, the prediction of G-quadruplex in nucleic acid sequences can be done by computational techniques (Kikin et al., 2006; Lorenz et al., 2011). Biophysical assays exploit the different physical properties of G-quadruplexes compared to normal DNA/RNA. Such assays include circular dichroism spectroscopy (Paramasivan, Rujan, \& Bolton, 2007; Randazzo, Spada, \& da Silva, 2013) and light absorption (UV/VIS) spectroscopy (Goncalves, Ladame, Balasubramanian, \& Sanders, 2006; Rubis et al., 2009) that investigated the interactions of different ligand with G-quadruplex forming sequences. UV melting (Liu et al., 2012; Mergny \& Lacroix, 2009) experiments were aimed at measuring the folding and unfolding of G-quadruplexes under different cations concentration over a range of temperatures. Nuclear Magnetic Resonance (NRM) spectroscopy (Adrian, Heddi, \& Anh Tuan, 2012; da Silva, 2007), can be used to detect the presence of G-quadruplexes due to characteristic resonances in the 1-dimensional spectrum. Upon the formation of Gquadruplexes, the imino guanine protons become trapped within the G-quadruplex entity and cannot be exchanged with the $\mathrm{H}_{2} \mathrm{O}$ present in the buffer. This signal can be detected within the chemical shift range of 10-12 ppm, by a proton 1-D NMR spectrum. 2-D NMR techniques have been used to determine the three-dimensional structure of an anti-parallel intramolecular G-quadruplex (PDB-ID: 2KM3, fig. 6) derived from human telomeric ends (Lim, Alberti, Guedin, Lacroix, Riou, Royle, Mergny \& Phan, 2009). The 2KM3 sequence was used as positive control in this work.

Figure 6: Cartoon representations of 3D structure of an anti-parallel intramolecular Gquadruplex formed from DNA viewed in two orientations (left and right part) (adapted and edited from RCSB PDB, 2013).

Other techniques used included surface plasmon resonance (Redman, 2007), isothermal titration calorimetry (Musetti et al., 2013), mass Spectrometry (G. Yuan, Zhang, Zhou, \& Li, 2011) and others. One of the most widely employed techniques used in the detection of Gquadruplex is fluorescence spectroscopy (Hong et al., 2008; Tseng et al., 2013; Vummidi, Alzeer, \& Luedtke, 2013). The most commonly used fluorescence technique is based on the Förster resonance energy transfer (FRET) technique. A donor and an acceptor fluorophore are attached on either the 5^{\prime} or the 3^{\prime} ends of nucleic acids. In the G-quadruplex the 5^{\prime} and 3^{\prime} ends of the nucleic acid come into close proximity that allows FRET to occur. In one of the few in vivo studies, Xu et al (2010) investigated whether G-quadruplex can be formed in vivo by Telomeric Repeat-containing RNA (TERRA). A modified TERRA oligonucleotide containing
a pyrene monomer on each end was used and G-quadruplex formation will bring the monomers close together to form a pyrene dimer that emits light at wavelength $480 \mathrm{~nm} . \mathrm{Xu}$ et al have found that TERRA can form G-quadruplex in vivo. Another approach utilises intrinsic fluorescence of nucleic acids, which has the advantage that it does not require labelling. G-quadruplexes are known to have increased fluorescence intensities. Nguyen Thuan et al. (2011) reported increased intrinsic fluorescence emission of previously characterised G-quadruplex structures.

Biochemical and molecular techniques include assays such as Polymerase Chain Reaction (PCR) stop assay (Ou et al., 2007; Yan et al., 2010), nuclease assays (Zhou et al., 2013), Gel electrophoresis (Lin et al., 2010; Moon \& Jarstfer, 2010; Viglasky, Bauer, Tluckova, \& Javorsky, 2010), antibody engineering (Biffi et al., 2013) etc. The PCR stop assay gives information about ligand that can stabilize G-quadruplexes. PCR products are screened and any disturbance of the enzymatic activity of polymerase in guanine rich regions are attributed to stabilized G-quadruplexes by the ligand in that specific region. Nuclease assays enables detection by using restriction endonucleases to cut nucleic acid at specific sites. Gquadruplexes can restrict endonucleases and running the products on gels will generate a distinct band in nucleic acids that formed G-quadruplex, while nucleic acid that did not form G-quadruplex will produce more bands. Antibodies that selectively bind G-quadruplexes have been engineered and allowed easy detection of G-quadruplexes. The method is however very expensive. The basic principle resembles that of Enzyme Linked Immunosorbent Assay (ELISA). The engineered antibody will bind the G-quadruplex DNA, and usually the antibody is conjugated with a molecule that will allow visual detection. In early 2013, Biffi et al., have reported the development of a specific antibody that has high
selectivity for DNA G-Quadruplexes. This labelled antibody allowed the visual detection of DNA G-quadruplexes inside human cancer cells. Gel electrophoresis is by far the easiest way to detect G-quadruplex formation within nucleic acid. Cheap and reliable, this simple method exploits the electrophoretic migration properties of compact vs. linear species in gels. G-quadruplex species have been reported to migrate faster on Poly Acrylamide Gel (PAGE) than non-G-quadruplex species. PAGE is preferred to other gels mainly because the nucleic acid sequences used for G-quadruplex assays are relatively short and PAGE gives better resolution.

1.7 Aim

The aim of this work was to investigate whether or not FXYD1 pre-mRNA can form Gquadruplexes. This work took into account the ability of the FXYD1 gene to form Gquadruplex and various techniques used to detect G-quadruplex formation. The initial stages involved in-sillico analysis of FXYD1 pre-mRNA and ortholog sequences using QGRS mapper, Quadbase and the Vienna RNA Package. Later stages involved the detection of Gquadruplexes in synthetic oligonucleotides by native PAGE and intrinsic fluorescence spectroscopy.

2. MATERIALS \& METHODS

2.1 MATERIALS

2.1.1 Software, databases, web-servers

Algorithms and software used for G-quadruplex prediction:

1. G-quadruplex online prediction algorithm; QGRS mapper
(http://bioinformatics.ramapo.edu/QGRS/analyze.php) (Kikin et al.,
2006)\&Quadbase ($\underline{\text { http://quadbase.igib.res.in/proquad/quad input.jsp) (Yadav et }}$
al., 2008)
2. Vienna RNA Package version 2.1.2 (Lorrenz et al., 2011)

FXYD1 pre-mRNA sequences and control sequence database:

1. FXYD1 pre-mRNA sequence accession numbers for H. sapiens (ENST00000351325),
M. musculus(ENSMUSG00000036570),
C. familiaris(ENSCAFT00000011368), P. troglodytes(ENSPTRT00000020057), B. taurus(ENSBTAG00000017816), R. norvegicus(ENSRNOG00000021079), M. domestica(ENSMODT00000033163), F. catus(ENSFCAG00000008890), O. garnettii(ENSOGAG00000014401), E. caballus(ENSECAG00000014815), A. melanoleuca(ENSAMEG00000000212), P. abelii(ENSPPYG00000009851), O. cuniculus(ENSOCUG00000022123), G. gorilla(ENSGGOT00000026217), S. scrofa(ENSSSCT00000027321), 0. aries(ENSOARG00000004709), T. truncates(ENSTTRG00000001446)
2. FXDY1 variant pre-mRNA sequence: FXYD1-009 (ENST00000589121)
3. Positive control DNA sequence, PDB ID: 2 KM 3 , sequence from RSCB PDB

Web servers for sequence conversion, genome comparison and sequence alignment:

1. DNA<>RNA converting tool (http://www.attotron.com/cybertory/analysis/trans.htm)
2. DNA/Protein sequence randomizer software (http://www.cellbiol.com/python.html)
3. Multiple Sequence Alignment of orthologous FXYD1 sequences using the MAFFT web based alignment tool Version 7 available at (http://mafft.cbrc.jp/alignment/server/)
4. Pre-mRNA comparison of FXYD1 and variant-009 using the 1000 genomes transcript comparison available at (http://browser.1000genomes.org/Homo_sapiens/Gene/TranscriptComparison?db= core;g=ENSG00000266964;r=19:35629712-

35634013;t=ENST00000589121;t1=ENST00000589121;time=1396457246372.372)

2.1.2 Sample preparation

Oligonucleotides used for laboratory analysis:

1. Oligonucleotides purchased from EurogentecLtd.(Southampton, UK) and used without further modification;

- Positive (+VE) control DNA (AGG-GCT-AGG-GCT-AGG-GCT-AGG-G)purified by Reverse-phase cartridge purification (RP-Cartridge)
- Negative control_A (-VE_A) DNA (CGT-GGG-GAG-ATT-GGG-GAG-CGC-A) purified by RP-Cartridge
- Negative control_B (-VE_B) DNA (GGT-GTG-CGT-GTG-CGA-GCG-AGA-GAG-

AGU-GG) purified by RP-Cartridge

- H. sapiensFXYD1 (Human_PLM) RNA (GGG-AGA-CUG-CGG-GUA-UUC-UGG-GGA-GAG-GG) purified by Reversed Phase High Performance Liquid Chromatography (RP-HPLC)
- B. Taurus FXYD1 (Bovine_PLM) RNA (GGG-CGC-GGG-GGG-UCG-GGG-AUCGGG) purified by RP-HPLC

Solutions used for preparing G-quadruplex samples:

1. 10 ml of 1 M Potassium Chloride (KCl) solution
2. 20 ml of RNAase free $\mathrm{H}_{2} \mathrm{O}$
3. 500 ml of 1 M Tris-Acetate Buffer (TrisOAc) pH 7.5
4. 100 ml of 1 M Potassium Acetate (KOAc)

NOTE: All solutions were autoclaved and kept at room temperature prior to use.

2.1.3 NATIVE PAGE

Solutions for preparing Native PAGE and staining:

1. $100 \mathrm{ml} 40 \%$ acrylamide solution
2. $10 \times$ TBE Buffer solution
3. 100 ml of $0.05 \mathrm{M} \& 1 \mathrm{M} \mathrm{KCl} / \mathrm{KOAc}$ solution, sterile distilled water
4. Ammonium persulfate (APS) at $10 \%(w / v)$ in water
5. $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TEMED)
6. Mini gel stop mix; $1 \times$ TBE $+20 \%(w / v)$ sucrose $+10 \%(w / v)$ Ficoll +10 mM EDTA and
$0.25 \%(w / v)$ bromophenol blue
7. $1 \times$ TBE gel running buffer
8. SYBR Green IS32717\& SYBR Green II Nucleic Acid Stain S9430

2.1.4 Fluorescence and UV-vis spectroscopy

Equipments used for fluorescence spectroscopy:

1. Fluor cuvette Type C quartz glass with 10 mm light path
2. Perkin Elmer LS 55 fluorimeter
3. UV/VIS CARY 100 dual-beam spectrophotometer (Varian Inc.)
4. Quinine solution at 24 ppm

2.1.5 Data processing

Software used to process raw data from Native PAGE and Fluorescence spectroscopy:

1. Gene Tool Syngene (Copyright © 2009-2011 Syngene, A Division of Synoptics Ltd)
2. PerkinElmer UV WinLab Data Processor and Viewer Version1.00.00
3. Microsoft ${ }^{\oplus}$ Excel ${ }^{\oplus} 2010$ Version 14.0 .7109 .5000

2.2.1 In-sillico analysis

G-quadruplex prediction using QGRS mapper and Quadbase

The raw FASTA pre-mRNA sequences of the FXYD1 orthologs were analysed online using

QGRS mapper (Figure 7) and Quadbase prediction software (Figure 8).

Analyze nucleotide sequence in raw or FASTA format. Supported symbols: G,C,A,T,U,N (ex: GGGGATCCGGGATAGGATTCGGAGGCCCTGGGCCCTGGGCCCCGG):
AAAGUGCUCAGCCCCCGGGGCACAGCAGGACGUUUGGGGGCCUUCUUUCAGCAGGGGACAGCCCGAUUGGGGUGAGCGUCCCCCACUCCUUCCCUCCAGGCCU CACCCCUGGUCUGGCUGGGCCGCCUAUUUUGGGAGCAGGAGUGGCCAGCCCGAGGCUUCCCAGGCAGGCCAACCCAAGAGGGAGGGAGUGUGGUUGAGGCAGU GGGUUCUGCAGGGUGGGAUGUGGGUGACUCCUCCCUGCCCUGCUGGUGCGUGUGCACCCUGGCAGGGUGUGGAGUUGGGACACACACGUGUGUAGGGCUGGUU GCGUCACUGCGUGGGGGCACCGGAGGCCCAGAGGAGGAGUAUUGGAUGCCUGACGGUGUUUACACCCCACGUCCUGCUCCAACCAGCAGUUUGGGGAGAGGUU GUUGUUCAUGUCCAUUCCGGCCCCACUGUAUCCCUGCCCCAGCAUGUGUUUUCUAUCUCUAAGGC CCACUGGGCUGGGCCUCAUGUCACUUGCCUGACAUCCGAUUGUGAAAGAUGUCACCCAGAGGCGGGCAGAGGGGCUGUCUUUUCCUUUUCUCGUUGCUGCCCA GGGAGGAGACGGGGUGACCUUUCCCACAGGGGCAGCCUGUGGCGAUGUGGCAGCUGGGCCUCACCCCGGCAGGGCUGUGCGUGACCCCCUGAGUGGGGGAAGG CAGGCUGUUGCCAUGGUGGCCUGAGCGAGCAGAAUUCCUCCAGGGUGAAGUGGGAGAUAUUUAUACCCGGGGUCAGGCCGCGAGCGGGCGGGCGGAGAGGGCA GGGAGCUGGGAUUUCGCGGGGCACAGUGAGGCCGGGCAUGUAGGCAGGUGGGACUUGGGCGUGCCCUGCUGUCUCCUGCUCUGUGUUUGUGUGAGGCAGCGCC UCCUCUGCCCUGCCAGGGUAGGUCUGGGAAUCGGGGGCCUGCUGCGGGAGGUGGAGGCCCAAGGGAGGCCCCCCGGGGACUGUGUGUCUCACCCCCGUCCCUG CUACGUUGUGUUGUUGUGUGAUCCCAUCGUGGAGGUUGUUUUGGUGACACUGUGUCCCCACGAAGCUGGGGAUACCCGUUUCUCUAGCUUGGAGCCACCAAGA UAGAGGACAAACACUUCUGUGAUUCAGUCCCCAGACUGUCUCUGACUUAAUCCCUUGGGUUCAAGCCCUAUGUGGGAGAGCAAGGGCACACACUGCCUAAUCC GUGGUGUCCCCCCCAGGACAAUGGCGUCUCUUGGCCACAUCUUGGUUUUCUGUGUGGGUCUCCUCACCAUGGCCAAGGCAGGUGAGUGCAGGGGAGGCUGCCC GCUACCCACCUCAGCCCCAGGGGUGGCGGUGGGGACCGAAGAACCAAGUUGGAGACCCCAACCUAGACUAAGUCGGCUGGGGUACCAAGAAGUUUGGGGGUCU CCACGUGGGGUCCAGUCACAGGCUGGUAUUUGGGGGAGGGGAGAGGAAGCCCCAGAUCAGGCAAAGAUGGGGUGGGAUGGGGCUGAAUCCCCGAUGGGAUAAC UGGGUCACAGACAGCCUGCCGUGAGUCAGGGAGCUGGGGCAGUUAGGUGCCACCUGCCCCAUCUGGGACAGUGCAGAGGGGGCAGCUGGGACCCAGAGAGUGU GGGCAGCCUGCCCAGACACCCUCAGACUCUAAGCCCAGCAAGGCAGAGCCUCCAGUGGUCUCCUCAUGCCCCUCCCUGCCAGGACCCCAGGAAGCAUUCAACC CCUGAUUUCUCUCUCUUUCCAGAAAGUCCAAAGGAACACGACCCGUUCACUUACGGUGAGCGGGGGGUCUAAUUUUGAGUCCUGGGGGAGAGCCUGGCUUUGC UGGUCCUUUGAUUCCCCCUCGCCCUCCCCCAGAGUCCCAGUAUUGAUAUCUCUGUCAUUCUCCUUCCCUCUAUUUUGUCCUUCCUCUCUGAUUCCACCUGUCU GCAUCUUUUCCUGUCUGUGUCUAUCUGUGUCACUGUCUAUGUGAUACCUCUCUGGUUCUCUUUCUCUUGCCUGCGUCUGUCUCAGCAUCUCGUGGCCCAUCCU CUGCUUCUUCCCGUCUUCUCUCCCCCCUGUCCUCCUCCUCCCUGUCCCCUCCCUCCCUUUCCUAUACACCCCUUUCCUCUCCCUGGUACCCCACUUUCCUCCU CCCAUAUCUGCUCCCCCUUAAUUAUCUUACUUCCCCCCUUCUGCCUGCUGGUCCUUUCUCCCUGUUCCCUCCUUCCCAAUUUACCCCUCUCCUAUUCUCCCUC CUGUCUUCCCUGCCCUCACCUUCCCUGCUCUGCUGCUCACAGACUACCAGUCCCUGCAGAUCGGAGGCCUCGUCAUCGCCGGGAUCCUCUUCAUCCUGGGCAU CCUCAUCGUGCUGAGUGAGUGCCCCUAGCUCCCGCCCUCUACCCCGCCUCUCCCUGGCCCCACCUCUCUCUGGCCCCGCCUCUCCCUGGCCCCGCCUCUCCCU AGCCCCCCUCUCCCUGGCCCCGCUUCUCCCUGGUCCCGCCCCUCCCUGGCCCCGCCCCGCCCCAACCCCUCCCAGGCCUUGCCCCGCCUACCCUGCCUUGGUU CCCCGGCCCCCGGUCUCGCCUCUAGCCCCGCCCCGUCCCCCAAGCCCCGCCCCUCGCGAGGGCGAGCUGGAGCUACAGCGCCGCUUGGCGCCCGCCGGGAGGG AGCCUCAGCUUCUCCUACCUCUCCACGCCCACAGGCAGAAGAUGCCGGUGCAAGUUCAACCAGCAGCAGAGGUAAGACGCCCCUCCCCGCCCUCCUUCGCCCG CUCCUGCUCUGGAGGGCGCCGCGGGUGAGGCGGGGAGUACCCCUGACCCGCAGCCCGAUCCCCGUCAGCGACUAUGUAUUAAGCACCUACUAUGUGCCAUGGC CCAAGCCUGGCCCUGGGACCAAGCGAGGAAAAAACCUCCCGCCCUUCCUGGCCGAGCUCCCAGCCUAGUGGAGGCGGUGGCCGUGGGUUCCAACAGCCCCACA GAUAGAAAAAUCACAAAGCGUGAUAACACAAAGUGCAGGAAAGAAGAAACGGCGGUGAAAUGAGAUCAUCUCACACGCGGCCCAGUUUAGCUUAGAGUCUUGU UCCUAGCUCUUUGAUUCCUCUUCGAAUAAAAUGUUAAAGCAUGGACAAUGUAUGAAUAUGUUAGAACAAUUAUAGAUAUUAUCAUAAGUAGUAGCUAAUAUUU ACUGGGUGUGUACCACGUGUUAGAUACGGUUUCACUUCCUCUGGGAGGGAGGUGCUGUUAUUAACCCCAUUUGACAGAUGAGGAAACUAAGGCACAGGGAGGU AAAGUCACUUUGUUCAAGAUCACUCAAGUGGAAGAUGGGGGGUUCUGGGUUUCCAACCCAGGCCAUCUCAUGGCAGUCUGCCAAGUCCCCAUGACUAUCCCUC CCCCACCAACUUCACAUCCCUGCCCCCAAAUCCGCGGAGGUACUCACUGUUAACCAGCUUAGAAGCCCCCUGCCAGCACAUAAGCUGCUCCUGGGUGCUCCUC AUUUCUGGCGGACCCCGAGCCUGCUCUUCGUCCAUAUCUGGGCCUAGUUACACCAAUCUGGGAAAGGAGGCUUGUACUGGGGGGUUCCUAGAAGGGCAGCCUC UCCCCCUUUCCAUCCCGAAAUCCCUCUGCCUCUGUCUUCCCAGGACUGGGGAACCCGAUGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCGUGAGUCUGG GGAGACUGCGGGUAUUCUGGGGAGAGGGCUGGUUCCAAGGACCGCUUUUCCCGGCCCUCCCUGGCUGCGUAGAGGGAAGGGCUGGAUCUGAAAGCGGAGGGCG GGGAGUUGCCCCGCCGCGGGCCCCACCUGCCCAGGAGCUGGGGAUGCCUCUCCAGAAUGACCCCCGAUCUCCGUGUUCCCCCCAGGUCUGUCCACCCGCAGGC GGUAGAAACACCUGGAGCGAUGGAAUCCGGCCAGGUGCUGCAGCUCUGACACGGCGGUGGGAGGGAAGGAGGGAGGAAGGAAAGGCGGGAGAGGGAGGGGGCC AAGUGCCAGAGUUGAAGGGCGGCGAGGGGUGGGGCUGGACGUCCCCCCUCGCCUCUCACCCUUUUCACCCUCACAGGACUCCCCUGGCACCUGACAUCUCCCA CGCUCCACCUGCGCGCCCACCGCCCCCUCCGCCGCCCCUUCCCCAGCCCUGCCCCCGCAGACUCCCCCUGCCGCCAAGACUUCCAAUAAAACGUGCGUUCCUC UCGACAGCACUUUGUCGGUCUCGGUCCCUCAGCGCGAAACGCCAGCGCCACUGGGCCCCAGCA
forming sequences set at 30 bases. The minimum G-group was set at 2 , which is the minimum number of G-tetrads and finally the loop length was set between the range of 0 36 bases. Clicking on the "Analyze" button in the bottom right corner initiates screening of the sequence and search for putative G-quadruplex forming sequences (GQS). All the other
orthologous FXYD1 pre-mRNA sequences were analysed using the same settings as H.

sapiens.

AAAGUGCUCAGCCCCCGGGGCACAGCAGGACGUUUGGGGGCCUUCUUUCAGCAGGGGACAGCCCGAUUGGGGUGAGCGUCCCCCACUCCUUCCCUCC AGGCCUCACCCCUGGUCUGGCUGGGCCGCCUAUUUUGGGAGCAGGAGUGGCCAGCCCGAGGCUUCCCAGGCAGGCCAACCCAAGAGGGAGGGAGUGU GgUUGAGGCAGUGGGUUCUGCAGGGUGGGAUGUGGGUGACUCCUCCCUGCCCUGCUGGUGCGUGUGCACCCUGGCAGGGUGUGGAGUUGGGACACAC ACGUGUGUAGGGCUGGUUGCGUCACUGCGUGGGGGCACCGGAGGCCCAGAGGAGGAGUAUUGGAUGCCUGACGGUGUUUACACCCCACGUCCUGCUC CAACCAGCAGUUUGGGGAGAGGUUGUUGUUCAUGUCCAUUCCGGCCCCACUGUAUCCCU GCCCCAGCAUGUGUUUUCUAUCUCUAAGGCCCACUGGGCUGGGCCUCAUGUCACUUGCCUGACAUCCGAUUGUGAAAGAUGUCACCCAGAGGCGGGC AGAGGGGCUGUCUUUUCCUUUUCUCGUUGCUGCCCAGGGAGGAGACGGGGUGACCUUUCCCACAGGGGCAGCCUGUGGCGAUGUGGCAGCUGGGCCU CACCCCGGCAGGGCUGUGCGUGACCCCCUGAGUGGGGGAAGGCAGGCUGUUGCCAUGGUGGCCUGAGCGAGCAGAAUUCCUCCAGGGUGA.AGUGGGA GAUAUUUAUACCCGGGGUCAGGCCGCGAGCGGGCGGGCGGAGAGGGCAGGGAGCUGGGAUUUCGCGGGGCACAGUGAGGCCGGGCAUGUAGGCAGGU GGGACUUGGGCGUGCCCUGCUGUCUCCUGCUCUGUGUUUGUGUGAGGCAGCGCCUCCUCUGCCCUGCCAGGGUAGGUCUGGGAAUCGGGGGCCUGCU GCGGGAGGUGGAGGCCCAAGGGAGGCCCCCCGGGGACUGUGUGUCUCACCCCCGUCCCUGCUACGUUGUGUUGUUGUGUGAUCCCAUCGUGGAGGUU GUUUUGGUGACACUGUGUCCCCACGAAGCUGGGGAUACCCGUUUCUCUAGCUUGGAGCCACCAAGAUAGAGGACAAACACUUCUGUGAUUCAGUCCC CAGACUGUCUCUGACUUAAUCCCUUGGGUUCAAGCCCUAUGUGGGAGAGCAAGGGCACACACUGCCUAAUCCGUGGUGUCCCCCCCAGGACAAUGGC GUCUCUUGGCCACAUCUUGGUUUUCUGUGUGGGUCUCCUCACCAUGGCCAAGGCAGGUGAGUGCAGGGGAGGCUGCCCGCUACCCACCUCAGCCCCA GGGGUGGCGGUGGGGACCGAAGAACCAAGUUGGAGACCCCAACCUAGACUAAGUCGGCUGGGGUACCAAGAAGUUUGGGGGUCUCCACGUGGGGUCC AGUCACAGGCUGGUAUUUGGGGGAGGGGAGAGGAAGCCCCAGAUCAGGCAAAGAUGGGGUGGGAUGGGGCUGAAUCCCCGAUGGGAUAACUGGGUCA CAGACAGCCUGCCGUGAGUCAGGGAGCUGGGGCAGUUAGGUGCCACCUGCCCCAUCUGGGACAGUGCAGAGGGGGCAGCUGGGACCCAGAGAGUGUG GGCAGCCUGCCCAGACACCCUCAGACUCUAAGCCCAGCAAGGCAGAGCCUCCAGUGGUCUCCUCAUGCCCCUCCCUGCCAGGACCCCAGGAAGCAUU CAACCCCUGAUUUCUCUCUCUUUCCAGAAAGUCCAAAGGAACACGACCCGUUCACUUACGGUGAGCGGGGGGUCUAAUUUUGAGUCCUGGGGGAGAG CCUGGCUUUGCUGGUCCUUUGAUUCCCCCUCGCCCUCCCCCAGAGUCCCAGUAUUGAUAUCUCUGUCAUUCUCCUUCCCUCUAUUUUGUCCUUCCUC UCUGAUUCCACCUGUCUGCAUCUUUUCCUGUCUGUGUCUAUCUGUGUCACUGUCUAUGUGAUACCUCUCUGGUUCUCUUUCUCUUGCCUGCGUCUGU CUCAGCAUCUCGUGGCCCAUCCUCUGCUUCUUCCCGUCUUCUCUCCCCCCUGUCCUCCUCCUCCCUGUCCCCUCCCUCCCUUUCCUAUACACCCCUU UCCUCUCCCUGGUACCCCACUUUCCUCCUCCCAUAUCUGCUCCCCCUUAAUUAUCUUACUUCCCCCCCUUCUGCCUGCUGGUCCUUUCUCCCUGUUCC CUCCUUCCCAAUUUACCCCUCUCCUAUUCUCCCUCCUGUCUUCCCUGCCCUCACCUUCCCUGCUCUGCUGCUCACAGACUACCAGUCCCUGCAGAUC GGAGGCCUCGUCAUCGCCGGGAUCCUCUUCAUCCUGGGCAUCCUCAUCGUGCUGAGUGAGUGCCCCUAGCUCCCGCCCUCUACCCCGCCUCUCCCUG GCCCCACCUCUCUCUGGCCCCGCCUCUCCCUGGCCCCCGCCUCUCCCUAGCCCCCCUCUCCCUGGCCCCGCUUCUCCCUGGUCCCGCCCCUCCCUGGC CCCGCCCCGCCCCAACCCCUCCCAGGCCUUGCCCCGCCUACCCUGCCUUGGUUCCCCGGCCCCCGGUCUCGCCUCUAGCCCCGCCCCGUCCCCCAAG CCCCGCCCCUUCGCGAGGGCGAGCUGGAGCUACAGCGCCGCUUGGCGCCCGCCGGGAGGGAGCCUCAGCUUCUCCUACCUCUCCACGCCCACAGGCAG AAGAUGCCGGUGCAAGUUCAACCAGCAGCAGAGGUAAGACGCCCCUCCCCGCCCUCCUUCGCCCGCUCCUGCUCUGGAGGGCGCCGCGGGUGAGGCG GGGAGUACCCCUGACCCGCAGCCCGAUCCCCGUCAGCGACUAUGUAUUAAGCACCUACUAUGUGCCAUGGCCCAAGCCUGGCCCUGGGACCAAGCGA GGAAAAAACCUCCCGCCCUUCCUGGCCGAGCUCCCAGCCUAGUGGAGGCGGUGGCCGUGGGUUCCAACAGCCCCACAGAUAGAAAAAUCACAAAGCG UGAUAACACAARGUGCAGGA.A.AGAAGAA.ACGGCGGUGAAAUGAGAUCAUCUCACACGCGGCCCAGUUUAGCUUAGAGUCUUGUUCCUAGCUCUUUGA UUCCUCUUCGAAUAAAAMUGUUAAAGCAUGGACAAUGUAUGAAUAUGUUAGAACAAUUAUAGAUAUUAUCAUAAGUAGUAGCUAAUAUUUACUGGGUG UGUACCACGUGUUAGAUACGGUUUCACUUCCUCUGGGAGGGAGGUGCUGUUAUUAACCCCAUUUGACAGAUGAGGAAACUAAGGCACAGGGAGGUAA AGUCACUUUGUUCAAGAUCACUCARGUGGAAGAUGGGGGGUUCUGGGUUUCCAACCCAGGCCAUCUCAUGGCAGUCUGCCAAGUCCCCAUGACUAUC CCUCCCCCACCAACUUCACAUCCCUGCCCCCAAAUCCGCGGAGGUACUCACUGUUAACCAGCUUAGAAGCCCCCUGCCAGCACAUAAGCUGCUCCUG GGUGCUCCUCAUUUCUGGCGGACCCCGAGCCUGCUCUUCGUCCAUAUCUGGGCCUAGUUACACCAAUCUGGGAAAGGAGGCUUGUACUGGGGGGUUC CUAGAAGGGCAGCCUCUCCCCCUUUCCAUCCCGAAAUCCCUCUGCCUCUGUCUUCCCAGGACUGGGGAACCCGAUGAAGAGGAGGGAACUUUCCGCA GCUCCAUCCGCCGUGAGUCUGGGGAGACUGCGGGUAUUCUGGGGAGAGGGCUGGUUCCAAGGACCGCUUUUCCCGGCCCUCCCUGGCUGCGUAGAGG GAAGGGCUGGAUCUGAAAGCGGAGGGCGGGGAGUUGCCCCGCCGCGGGCCCCACCUGCCCAGGAGCUGGGGAUGCCUCUCCAGAAUGACCCCCGAUC UCCGUGUUCCCCCCAGGUCUGUCCACCCGCAGGCGGUAGAAACACCUGGAGCGAUGGAAUCCGGCCAGGUGCUGCAGCUCUGACACGGCGGUGGGAG GGAAGGAGGGAGGAAGGAAAGGCGGGAGAGGGAGGGGGCCAAGUGCCAGAGUUGAAGGGCGGCGAGGGGUGGGGCUGGACGUCCCCCCUCGCCUCUC ACCCUUUUCACCCUCACAGGACUCCCCUGGCACCUGACAUCUCCCACGCUCCACCUGCGCGCCCACCGCCCCCUCCGCCGCCCCUUCCCCAGCCCUG CCCCCGCAGACUCCCCCUGCCGCCAAGACUUCCAAUAAAAACGUGCGUUCCUCUCGACAGCACUUUGUCGGUCUCGGUCCCUCAGCGCGAAACGCCAG CGCCACUGGGCCCCAGCA

Submit
Reset

Figure 8: H. sapiens' FASTA FXYD1 pre-mRNA (4286 bp) in the Pattern finder search box of

Quadbase that screens nucleic sequences for patterns that can form G-quadruplex.

The parameters were those of the default settings, which was between two and five guanines for the G-tetrads. The loop sizes were set between 1 and 7, 1 being the minimum and 7the maximum integer available.

Prior to analysis by QGRS mapper and Quadbase the raw FASTA sequences were converted to RNA using the DNA<>RNA converter tool. The sequence of a +VE control DNA previously known to form a G-quadruplex was obtained from the RSCB Protein Database (NDB-ID: 2KM3) and was also analysed in QGRS mapper and Quadbase. A DNA/Protein randomiser tool was used to shuffle the sequence of the +VE control and generate possible sequences of a -VE control, -VE_A, which were of the same length as the +VE control and had the same base composition as the +VE control. Following analysis by QGRS mapper and Quadbase, a second -VE control, -VE_B, was also generated using the DNA/Protein randomiser based on the H. sapiens' highest scoring sequence generated by QGRS mapper.

G-quadruplex and secondary structures prediction using the Vienna RNA package

The Vienna RNA package was used to predict G-quadruplex and other secondary structures that are likely to compete against G-quadruplex formation. The +VE control, -VE_A, -VE_B, Human_PLM and Bovine_PLM were analysed using the RNAfold, RNAsubopt and RNAeval algorithms from the package. RNAplot option was used to produce graphical display of the proposed structures by RNAfold and RNAsubopt for all sequences.

The following command lines were used in the Command Prompt (Microsoft©) for the Human_PLM sequence:

1) C:\Users> rnafold -g < Human_PLM.txt
2) C:\Users> rnaeval -g < RNA_struct.txt
3) C:\Users> rnasubopt -e3 < Human PLM.txt
4) C:\Users> rnaplot -o ps <RNA_struct.txt

The first commands predict the minimum free energy (MFE) structure of the sequence contained in the text file taking into account G-quadruplex formation (-g option) The second command calculates the energies of given secondary structures, taking into account Gquadruplex formation. The third command determines other secondary structures within $3 \mathrm{kcal} / \mathrm{mol}$ above the MFE structure. The same command lines were executed for the +VE, VE_A, -VE_B and Bovine_PLM sequences. The last command line produces graphical display of secondary structures predicted by RNAfold and RNAsubopt in post script format (-o ps option).

Multiple sequence alignment by MAFFT web server version 7.0

The MAFFT web server was used to align all orthologous FXYD1 pre-mRNA sequences. All parameters were the default settings. The slow iterative refinement method was used.

Pre-mRNA comparison of FXYD1 and FXYD1-009

The mRNA and pre-mRNA sequences of H. sapiens' FXYD1 and FXYD1-009 were compared against each other to look for alternative splicing. Using the 1000 Genomes Transcript Comparison option, mutations were screened in potential G-quadruplex forming sequences from the pre-mRNA sequences of FXYD1 and variant 009.

2.2.2 G-quadruplex preparation

G-quadruplex was induced by incubating the oligonucleotides in K^{+}containing and K^{+}free buffers (as controls). The G-quadruplex folding buffer contained K^{+}(mixture of KCl and KOAc) at 0.1 or 0.05 M and 0.02 M TrisOAc pH 7.5 . Controls were prepared in K^{+}free buffer that contained 0.02 M TrisOAc pH 7.5 only. The samples were prepared in sterile microfuge tubes. The mixtures were heated at $90^{\circ} \mathrm{C}$ for 10 minutes to disrupt any intramolecular interactions. After heating, the -VE_A and -VE_B samples in K^{+}containing buffer and all control samples were cooled to $4^{\circ} \mathrm{C}$ by keeping the tubes on ice, to disfavour formation of G-quadruplex. The +VE, Human_PLM and Bovine_PLM samples in K^{+}containing buffer were allowed to cool down to $25^{\circ} \mathrm{C}$ over 2.5 hours by removing the heating block from the heating source. Once the samples reach the annealing temperature, the tubes were then stored at $0^{\circ} \mathrm{C}$ to preserve the G-quadruplex structures for later use.

All plastic wares were heated at $230^{\circ} \mathrm{C}$, including pipette tips, to inactivate any RNAase.

2.2.3 Native PAGE preparation

30% polyacrylamidegels were used to run the samples. Samples incubated in K^{+}containing buffer were ran on separate gels from samples incubated in K^{+}free buffer, to keep experimental conditions constant. Gels prepared for K^{+}containing samples was made by adding 9.375 ml of 40% acrylamide solution +1.250 ml of $10 \times$ TBE supplemented with KCl \& KOAc to match the concentration of K^{+}of the folding buffers, e.g. for samples incubated in $0.1 \mathrm{M} \mathrm{K}^{+}, 10 \times \mathrm{TBE}+0.1 \mathrm{M} \mathrm{K}^{+}$mixture was used for preparation of the gel. This was followed
by the addition of 1.875 ml of sterile distilled water and $150 \mu \mathrm{l}$ of 10% APS. This mixture was degassed under vacuum to remove any molecular oxygen that would inhibit the polymerisation process. Degassing was followed by the addition of $15 \mu \mathrm{l}$ of TEMED. Gels used for K^{+}free samples were made in the same way as previously described for K^{+} containing samples, except that the $10 \times$ TBE was used without K^{+}.

2.2.4 Detection of G-quadruplex by Native PAGE

Samples for electrophoresis were thawed at room temperature and $8 \mu \mathrm{l}$ of mini gel stop mix $(1 \times$ TBE $+20 \%(w / v)$ sucrose $+10 \%(w / v)$ Ficoll +10 mM EDTA and $0.25 \%(w / v)$ bromophenol blue) was added to each tube. The final oligonucleotide concentration of each species was $3 \mu \mathrm{M}$. After thoroughly mixing the samples with the dye, $10 \mu \mathrm{~g}$ of each sample was loaded onto the gels. The gels were run in different tanks and the buffer used for non-G-quadruplex gels was $1 \times$ TBE buffer, while G-quadruplex gels were ran using $1 \times$ TBE containing either KCl and KOAc at a final concentration of 0.1 M or 0.05 M . The buffers were pre-chilled at $4^{\circ} \mathrm{C}$ to minimize overheating of the tanks. Electrophoresis was performed at 140 V and the run time was on average 3-4 hours. Following electrophoresis each gel was removed and cut at the upper right hand corner to track orientation. The gels were stained using SYBR Green I RNA stain S9430 and SYBR Green I nucleic S32717 exposed at 254 nm for 15.5s.

The ratio of the distance migrated by each samples relative to the distance migrated by the tracking dye, R_{f} value, was calculated using the software Gene Tool Syngene (Copyright 2009-2011 Syngene, A Division of Synoptics Ltd). Student 2-tailed-t-test was carried out for the samples under different incubation conditions.

2.2.5 Detection of G-quadruplex by fluorescence spectroscopy

G-quadruplex induced and uninduced samples were prepared at a final oligonucleotide concentration of $1.5 \mu \mathrm{M}$ for RNA species and $5.0 \mu \mathrm{M}$ for DNA species. The reason behind the choice of these concentrations was that these are the minimum detectable concentrations for either RNA or DNA by the Perkin Elmer LS 55 fluorimeter. Buffers for non G-quadruplex samples was 0.02 M TrisOAC only and that of G-quadruplex samples was 0.02 M TrisOAC $+0.1 \mathrm{M} \mathrm{K}^{+}$. Samples prepared overnight were allowed to thaw and attain room temperature, $20^{\circ} \mathrm{C}$, before readings were taken. Emission spectra were recorded over the wavelength range of 300-500 nm using a Perkin Elmer LS 55 in a Type C Fluor micro cuvette with a 10 mm light pathway. Samples were excited at a wavelength of 260 nm and both excitation and emission slit widths were set at 5 nm . The scan rate was $150 \mathrm{~nm} / \mathrm{min}$. Emission spectra of buffers were also recorded. UV-VIS spectra of each sample were recorded using a UV-VIS CARY 100 dual-beam spectrophotometer between the range of 200-400 nm with the appropriate buffer placed into the second beam.

The fluorescent compound quinine was used to test the fluorimeter by recording the emission spectra in the presence of either 0.02 M TrisOAc or $0.1 \mathrm{M} \mathrm{K}^{+}$and 0.02 M TriOAc. The spectra were recorded by exciting Quinine at a final concentration of 0.6 ppm at
wavelength of 250 and 350 nm independently over the range 335-485 and 355-505 nm respectively. The scan speed was $150 \mathrm{~nm} / \mathrm{min}$ and both excitation and emission slits were set at 5 nm each.

The data generated by the fluorimeter were processed with PerkinElmer UV WinLab Data Processor and Viewer Version 1.00.00 into graphical display. The original spectra were processed using Microsoft Excel 2010 Version 14.0.7109.5000 to obtain smooth curves. Trendline with moving average of 30 data points per period was produced for each emission spectrum.

3. RESULTS

3.1 In-sillico analysis

3.1.1 QGRS mapper and Quadbase findings

Analysis of orthologous FXYD1 pre-mRNA sequences by QGRS mapper revealed several G-

Quadruplex forming Sequences (GQS) for most organisms. The whole pre-mRNA sequence

of H. sapiens FXYD1 contains 41 GQS as seen in the FASTA sequence below:

AAAGUGCUCAGCCCCCGGGGCACAGCAGGACGUUUGGGGGCCUUCUUUCAGCAGGGGACAGC CCGAUUGGGgugagcgucccccacuccuucccuccaggccucacccouggucuggcugggcc gccuauuuugggagcaggaguggccagcccgaggcuucccaggcaggccaacccaagaggga gggagugugguugaggcaguggguucugcagggugggaugugggugacuccucccugccoug cuggugcgugugcacccuggcaggguguggagungggacacacacguguguagggcugguug cgucacugcgugggggcaccggaggcccagaggaggaguauuggaugccugacgguguunac accccacguccugcuccaaccagcaguuuggggagagguuguuguncauguccauuccggcc ccacuguauccougccccagcaug uguuuncuaucucuaaggcccacugggcugggccucaugucacuugccugacauccgaungu gaaagaugucacccagaggcgggcagaggggcugucuuuuccuumucucguugcugcccagg gaggagacggggugaccuuucccacaggggcagccuguggcgauguggcagcugggccucac cccggcagggcugugcgugacccccugagugggggaaggcaggcuguugccaugguggcoug agcgagcagaauuccuccagggugaagugggagauauuuauacccggggucaggccgcgagc gggcgggcggagagggcagggagcugggauuucgcggggcacagugaggccgggcauguagg caggugggacuugggcgugcccugcugucuccugcucuguguungugugaggcagcgccucc ucugcccugccaggguaggucugggaaucgggggccugcugcgggagguggaggcccaaggg aggccccccggggacugugugucucacccccgucccugcuacgungugungungugugaucc caucguggagguuguuuuggugacacuguguccccacgaagcuggggauacccguuncucua gcuuggagccaccaagauagaggacaaacacuucugugauucaguccccagacugucucuga cuuaaucccuuggguucaagcccuaugugggagagcaagggcacacacugccuaauccgugg ugucccecccagGACAAUGGCGUCUCUUGGCCACAUCUUGGUUUUCUGUGUGGGUCUCCUCA CCAUGGCCAAGGCAGgugagugcaggggaggcugcccgcuacccaccucagcccoaggggug gcgguggggaccgaagaaccaaguuggagaccccaaccuagacuaagucggcugggguacca agaaguungggggucuccacgugggguccagucacaggcugguauuugggggaggggagagg aagccccagaucaggcaaagauggggugggauggggcugaauccccgaugggauaacugggu cacagacagccugccgugagucagggagcuggggcaguuaggugccaccugccccaucuggg acagugcagagggggcagcugggacccagagagugugggcagccugcccagacacccucaga cucuaagcccagcaaggcagagccuccaguggucuccucaugccccuccougccaggacccc aggaagcauucaaccccugauuucucucucuuuccagAAAGUCCAAAGGAACACGACCCGUU CACUUACGgugagcggggggucuaauuuugaguccugggggagagcouggcuungcuggucc uungauucccccucgcccucccccagagucccaguauugauaucucugucauncuccuuccc
ucuauuunguccuuccucucugaunccaccugucugcaucuuunccugucugugucuaucug ugucacugucuaugugauaccucucugguucucuuucucuugccugcgucugucucagcauc ucguggcccauccucugcuucuucccgucuucucuccccccuguccuccuccucccuguccc cucccucccuuuccuauacaccccuuuccucucccugguaccссасиuиссиссисссаuau cugcucccccuuaauuaucuuacuuccccccuucugccugcugguccuuucucccuguuccc uccuucccaauuuaccccucuccuauucucccuccugucuucccugcccucaccuucccugc ucugcugcucacagACUACCAGUCCCUGCAGAUCGGAGGCCUCGUCAUCGCCGGGAUCCUCU UCAUCCUGGGCAUCCUCAUCGUGCUGAgugagugccccuagcucccgcccucuaccccgccu cucccuggccccaccucucucuggccccgccucucccuggccccgccucucccuagcccccc ucucccuggccccgcuucucccuggucccgccccucccuggccccgccccgccccaaccccu cccaggccuugccccgccuacccugccuugguuccccggcccccggucucgccucuagcccc gccccgucccccaagccccgccccucgcgagggcgagcuggagcuacagcgccgcuuggcgc ccgccgggagggagccucagcuucuccuaccucuccacgcccacagGCAGAAGAUGCCGGUG CAAGUUCAACCAGCAGCAGAGguaagacgccccuccccgcccuccuucgcccgcuccugcuc uggagggcgccgcgggugaggcggggaguaccccugacccgcagcccgauccccgucagcga cuauguauuaagcaccuacuaugugccauggcccaagccuggcccugggaccaagcgaggaa aaaaccucccgcccuuccuggccgagcucccagccuaguggaggcgguggccguggguucca acagccccacagauagaaaaaucacaaagcgugauaacacaaagugcaggaaagaagaaacg gcggugaaaugagaucaucucacacgcggcccaguuuagcuuagagucuuguuccuagcucu uugauuccucuucgaauaaaauguuaaagcauggacaauguaugaauauguuagaacaauua uagauauuaucauaaguaguagcuaauauuuacuggguguguaccacguguuagauacgguu ucacuuccucugggagggaggugcuguuauuaaccccauuugacagaugaggaaacuaaggc acagggagguaaagucacuuuguucaagaucacucaaguggaagaugggggguucuggguuu ccaacccaggccaucucauggcagucugccaaguccccaugacuaucccucccccaccaacu ucacaucccugcccccaaauccgcggagguacucacuguuaaccagcuuagaagcccccugc cagcacauaagcugcuccugggugcuccucauuucuggcggaccccgagccugcucuucguc cauaucugggccuaguuacaccaaucugggaaaggaggcuuguacugggggguuccuagaag ggcagccucucccccuuuccaucccgaaaucccucugccucugucuucccagGACUGGGGAA CCCGAUGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCgugagucuggggagacugcggg uauucuggggagagggcugguuccaaggaccgcuuuucccggcccucccuggcugcguagag ggaagggcuggaucugaaagcggagggcggggaguugccccgccgcgggccccaccugccca ggagcuggggaugccucuccagaaugacccccgaucuccguguuccccccagGUCUGUCCAC CCGCAGGCGGUAGAAACACCUGGAGCGAUGGAAUCCGGCCAGgugcugcagcucugacacgg cggugggagggaaggagggaggaaggaaaggcgggagagggagggggccaagugccagaguu gaagggcggcgagggguggggcuggacguccccccucgccucucacccuuuucacccucaca gGACUCCCCUGGCACCUGACAUCUCCCACGCUCCACCUGCGCGCCCACCGCCCCCUCCGCCG CCCCUUCCCCAGCCCUGCCCCCGCAGACUCCCCCUGCCGCCAAGACUUCCAAUAAAACGUGC GUUCCUCUCGACAGCACUUUGUCGGUCUCGGUCCCUCAGCGCGAAACGCCAGCGCCACUGGG CCCCAGCA

Key: UTR region
Intronic sequence
Exonic translated sequence

In the above FASTA sequence, alternate exons are in uppercase and introns are in lowercase
blue characters respectively. Purple uppercase characters represent UTR regions of the gene
and black uppercase characters represent translated region of the gene. Lowercase blue characters represent intron sequences of the gene. The predicted GQSs by QGRS mapper have been mapped and are underlined in the gene and have different G-scores as shown in Table 1. The most stable G-quadruplex in the gene is located in the intron between exon 6 and 7, highlighted yellow. Each GQS has different G-scores; influenced by several factors such as loop sizes, number of guanine residues taking part in G-quartet formation

The 41 GQSs obtained upon analysis of the pre-mRNA of H. sapiens' FXYD1 sequence and their respective G-scores are listed in Table 1.

Table 1: List of all 41 GQSs and the G-scores for H. sapiens' FXYD1 pre-mRNA predicted by QGRS mapper (Kikin et al., 2006).

Length	GQS	G-Score
29	$\underline{\text { GGGAGACUGCGGGUAUUCUGGGGAGAGGG }}$	39
24	$\underline{\text { GGGCGGAGAGGGCAGGGAGCUGGG }}$	38
24	$\underline{\text { GGGUUCUGCAGGGUGGGAUGUGGG }}$	38
30	$\underline{\text { GGGGUGGGAUGGGGCUGAAUCCCCGAUGGG }}$	36
30	$\underline{\text { GGGAGGAAGGAAAGGCGGGAGAGGGAGGGG }}$	31
11	$\underline{G G A G G U G G A G G}$	31
11	$\underline{G G U G G C G G U G G}$	21
11	$\underline{G G A G G C G G U G G}$	21
14	$\underline{G G U G G G A G G G A A G G}$	21
18	$\underline{\text { GGCAGGGUGUGGAGUUGG}}$	21

13 GGGGGAAGGCAGG 20

25 GGCAUGUAGGCAGGUGGGACUUGGG 20
$19 \underline{\text { GGGUAGGUCUGGGAAUCGG }} 20$
$10 \underline{\text { GGGGGAGGGG}} 20$
$16 \underline{\text { GGGCGGCGAGGGGUGG}} \underline{20}$
$20 \underline{\text { GGGAGGGAGUGUGGUUGAGG }} 19$
$28 \underline{\text { GGCAGCCUGUGGCGAUGUGGCAGCUGGG }} 19$
11 GGAGGGCGGGG 19
30 GGCACCGGAGGCCCAGAGGAGGAGUAUUGG 18
$21 \underline{\text { GGCGCCGCGGGUGAGGCGGGG}} \underline{18}$
$19 \underline{\text { GGAAGAUGGGGGGUUCUGG }} 18$
$22 \underline{\text { GGAGCGAUGGAAUCCGGCCAGG }} 18$

14 GGCGGGCAGAGGGG 17
13 GGAGGAGACGGGG 17

30 GGACAAUGGCGUCUCUUGGCCACAUCUUGG 17
27 GGCCAAGGCAGGUGAGUGCAGGGGAGG 16
$21 \underline{\text { GGAAACUAAGGCACAGGGAGG }} 16$
$29 \underline{\text { GGCCCUCCCUGGCUGCGUAGAGGGAAGGG }} 16$
22 GGCACAGCAGGACGUUUGGGGG 15
25 GGGAGCAGGAGUGGCCAGCCCGAGG 15
$16 \underline{\text { GGGAGGCCCCCCGGGG }}$
$19 \underline{\text { GGGAGCUGGGGCAGUUAGG }} 15$
23 GGGGGAGAGCCUGGCUUUGCUGG 15

24	$\underline{\text { GGAAAGGAGGCUUGUACUGGGGGG }}$	15
24	$\underline{\text { GGCCUCACCCCUGGUCUGGCUGGG }}$	14
19	$\underline{\text { GGGGUCAGGCCGCGAGCGG }}$	13
18	$\underline{\text { GGGGGUCUCCACGUGGGG }}$	13
25	$\underline{\text { GGACAGUGCAGAGGGGGCAGCUGGG}}$	12
25	$\underline{\text { GGUUUCACUUCCUCUGGGAGGGAGG}}$	12
28	$\underline{G G A C U G G \underline{G G A C C C G A U G A A G A G G A G G G}}$	10
25	$\underline{\text { GGCCCCACCUGCCCAGGAGCUGGGG}}$	10

The GQS listed in Table 1 are sorted in the order of highest to lowest G-scoring. The underlined guanines are those taking part in G-tetrad formation to form G-quadruplexes. The highest scoring GQS from H. sapiens pre-mRNA is 29 bases long and has a G-score of 39 . The G-quadruplex structure formed by the latter is comprised of 3 G-tetrads. The guanines are connected by loops of length 7, 6 and 4 bases in length.

The highest scoring GQS from each ortholog are listed in Table 2 alongside the controls used in this work.

Table 2: The highest scoring predicted GQS from FXYD1 orthologs and their location within the gene. The analysis was performed with QGRS mapper (Kikin et al., 2006).

Organism	Sequence of highest scoring GQS	G-	Genomic
		score	location ${ }^{1}$
Homo sapiens	GGGAGACUGCGGGUAUUCUGGGGAGAGGG	39	Intronic (6:7)
Mus musculus	GGGAGGAAGGAGGGAGAGGGGUUUGGAGGG	38	Intronic (7:8)
Canis lupus	GGGGGCGAAGGGUGGGCUGGGAUGGCCGGG	42	3'-UTR
Pan	GGGAGACUGCGGGUAUUUUGGGGAGAGGG	39	Intronic (6:7)
troglodytes	GGGUUGAAGGGCGGCGAGGGGUGGGG	39	Intronic (7:8)
Bos taurus	GGGCGCGGGGGGUCGGGGAUCGGG	42	Intronic (6:7)
	GGGCAGGUGAGGCUGGG	21	Intronic (1:2)
	GGAUGGAAGGUAGG	21	Intronic (2:3)
Rattus	GGCGGUGGGGG	21	Intronic (5:6)
norvegicus	GGCACGGGGAGGUAAGG	21	Intronic (5:6)
	GGGAGGAAGGAGGG	21	Intronic (7:8)
	GGCGGGUUGGAGGG	21	Intronic (7:8)
Felis catus	GGGAGACUUUGGGGGUUUGGGGGUGAGGG	40	Intronic (5:6)
	$\underline{\text { GGGCGCAGGGUGGGGUGGGUGAGGCGGG }}$	40	Intronic (4:5)
garnettii			
Tursiops	GGGAGUUAGGGGGUGCUGGGCUGGG	38	Intronic (2:3)
truncatus			
Equus caballus	GGGAGUUGGGGAGUGGGGUUUGGG	42	Intronic (3:4)
Ailuropoda	GGGAGACUUCGGGUGUUUGGGGGUGAGGG	40	Intronic (5:6)

melanoleuca			
	GGGAGACUGCGGGUAUUUUGGGGAGAGGG	39	Intronic (5:6)
Pongo abelii	GGGUUGAAGGGCGGCGAGGGGUGGGG	39	Intronic (6:7)
Oryctolagus cuniculus	GGGAGAGUGGGUGGGGGUCCUGGG	40	Intronic (5:6)
Gorilla gorilla gorilla	GGUGGCGGUGG	21	Intronic (1:2)
Sus scrofa	GGGGGUGGGGGUGGGGGUGGGGG	83	Intronic (2:3)
Ovis aries	GGGCUGGGGCAAAGGGGGAGGG	41	Intronic (1:2)
Monodelphis domestica	GGGGGUGGGGAGGAGGGAUGGG GGGAGAUGGGGGGGGGUAGGUGGG	40 40	5'-UTR Intronic (2:3)
positive control ${ }^{2}$	AGGGCTAGGGCTAGGGCTAGGG	42	N/A
negative control_A ${ }^{3}$	CGTGGGGAGATTGGGGAGCGCA	0	N/A
negative control_B	GGTGTGCGTGTGCGAGCGAGAGAGAGTGG	0	N/A
${ }^{1}$ The genomic location specifies the intron between the numbered exons			
${ }^{2}$ The G-quadruplex structure of this DNA sequence was determined by nuclear magnetic			
${ }^{3}$ All controls were DNA. The negative control_A is a randomised sequence with the same			
base compositio composition as	as the positive control. The negative contro Homo sapiens GQS.	the	e base

In Table 2, the sequences that had highest scores within the whole pre-mRNA of respective organism are listed. The G-scores obtained from QGRS mapper for most organisms are comparable to that of the +VE control, with the exception of R. norvegicus and G. gorilla. The -VE controls have G-score of 0 as they cannot fold into G-quadruplex. Underlined are the guanine residues participating in the G-quartets. The genomic location of the GQSs is also listed in Table 2, with the majority of them being intronic. For instance the M. musculus' highest GQS is Intronic (7:8), which is indicative of the intron located between exon 7 \& 8. R. norvegicus has 6 GQSs with G-scores of 21 each and are at different locations in the gene. M. domestica has its highest GQS occurring in the 5' UTR region while C. Lupus has its highest scoring GQS located in its $3^{\prime}-$ UTR. P. troglodyte, P. abelii and M. domestica have 2 GQSs with highest G-score from different locations. S. scrofa possesses a GQS that has a score of 83 , indicative of a very stable G-quadruplex. Quadbase does not have a scoring system unlike QGRS mapper; however the putative sequences predicted by Quadbase correlated with the highest scorers from QGRS mapper.

The QGS listed in Table 2 have been mapped for respective organisms (Appendix I).

With the exception of F. catus, O. garnettii, T. truncatus, A. melanoleuca, O. cuniculus, G. gorilla and O. aries, which lack UTR regions, every other orthologs that possess UTR regions in their FXYD1 gene have GQS located in their UTR regions. However, given the low scores, it does not seem likely that these UTR GQS form stable G-quadruplexes when compared to the +VE control's G-score. The UTR GQSs from each ortholog are shown in Table 3.

Table 3: GQS located in UTR regions from the orthologs, revealed by QGRS mapper and Quadbase.

Organism	UTR GQS	UTR QGRS
		G-Score
H. sapiens	GGCACAGCAGGACGUUUGGGGG*	15
	GGAGCGAUGGAAUCCGGCCAGG**	18
M. musculus	$\underline{\text { GGGUGGAGCAUCCAGUUCUGGGCCAGGG*}}$	10
	GGUGCACAGCUGGACAUUUGGGGG*	13
	GGAGGGAAAGAGAGCAGGGCAGAGG*	13
C. lupus	GGCGGCGCAGGACCAGCUCUGGAACAGGGG*	18
	GGCACAGCCGGACGUUUGGGGG*	15
	GGCGGUAGAGACACCUGGCGCGAUGG**	11
	$\underline{\text { GGGCUAGGCUGGGGGGCGGGGGG**}}$	35
	GGGGGCGAAGGGUGGGCUGGGAUGGCCGGG**	42
P. troglodytes	GGCACAGCAGGACGUUUGGGGG*	15
	$\underline{\text { GGAGCGAUGGAAUCCGGCCAGG** }}$	18
B. taurus	GGCAGCGCAGCCAGCUCUGGGCCAGGGGG*	6
	GGCCCCGGGGCACAGCCGGACGUUUGGG*	20
	GGCCUUCUUUCGGCAGGGG*	19
	$\underline{\text { GGCGGUAGAGACACCUGGCGCGAUGGG**}}$	11
	$\underline{\text { GGCUGGGGGAGGGAGGAUAGAGG** }}$	21
	GGGCAAAGGGCUGGGUAGCGGG**	40
R. norvegicus	GGCGGUAGAACCUCCACCUGGCUCCAGG**	8
Felis catus	N/A	N/A

Otolemur garnettii	N/A	N/A
Tursiops truncatus	N/A	N/A
Equus caballus	GGCCCCUGGGCACAGCCGGACGUUGGGG*	20
Ailuropoda melanoleuca	N/A	N/A
	GGAGUGGCCAGCCCGAGGCUUCCCAGG*	15
Pongo abelii	GGGAGGGAGUGUGGUUGAGG*	19
	GGGUUCUGCAGGGUGGGAUGUGGG*	36
	GGCAGGGUGUGGAGUUUGG*	19
	GGCACCGGAGGCCCAGAGGAGGAGUACUGG*	18
	$\underline{\text { GGGACGACGGUGGUGGGCGGGGGGCGGGGG}}{ }^{*}$	34
Oryctolagus cuniculus	N/A	N/A
Gorilla gorilla gorilla	N/A	N/A
Sus scrofa	GGGGAGGGGUGGGGUGGGG*	63
	GGGAGGGGACACCGCUGAGGGCGG*	13
	GGGCCAGGGGGUCCAGCCGGCCGUUUGGG*	21
Ovis aries	N/A	N/A
M. domestica	GGGUGGGGAGGAGGGAUGGG*	40
* represents GQS from 5'UTR regions		

Most orthologs have more than one GQS in their UTR regions that can fold into a Gquadruplex, but are relatively unstable in comparison to the GQS from Table 2. It is seen here that 5 organisms, namely (i) C. lupus (ii) B. taurus (iii) M. domestica (iv) S. scrofa \& (v) P. abelii have GQS of G-scores comparable to the positive control in their UTR regions, indicative of the formation of highly stable G-quadruplexes.

Analysis of fully processed FXYD1 human and ortholog mRNA did not contain high scoring GQS in comparison to the +VE control. The results for the mRNA of H. sapiens are shown in Table 4.

Table 4: GQS predicted by QGRS mapper for H. sapiens' fully processed mRNA

Length	GQS	G-Score
26	$\underline{\text { GGCAGCUGGGCCUCACCCCGGCAGGG }}$	15
13	$\underline{\text { GGGGGAAGGCAGG}}$	20
30	$\underline{\text { GGACAAUGGCGUCUCUUGGCCACAUCUUGG}}$	17
28	$\underline{\text { GGACUGGGGAACCCGAUGAAGAGGAGGG}}$	10
22	$\underline{\text { GGAGCGAUGGAAUCCGGCCAGG}}$	18

Five potential GQS were predicted, but they have relatively low scores and the highest scoring one has a G-score of 20, which is about half of the score obtained for the +VE control's G-quadruplex. Also the GQSs have only 2 quartets (underlined guanines), making the G-quadruplexes less stable.

3.1.2 Stability calculations of secondary/tertiary structures

The calculations executed by RNAfold, RNAeval and RNAsubopt on the controls, Human_PLM and Bovine_PLM sequences confirmed the potential of the +VE control, Human_PLM and Bovine_PLM sequences to form G-quadruplexes. The calculated and proposed structure based Minimum Free Energy (MFE) calculation is listed in Table 5.

Table 5: Analysis of the oligonucleotide sequences considered for laboratory work by the Vienna RNA Package. The proposed dot bracket notation of the MFE structure generated by RNAfold and other secondary structures by RNAeval and RNAsubopt are shown.

Name	Dot bracket annotation ${ }^{1}$	Free	Diversity of	Frequency
		Energy	MFE structure ${ }^{2}$	of MFE
		(kcal/mol)		structure
+VE	.+++...+++ . . $+++\ldots$. ${ }^{+++}$	-12.65	0.00	1.001
	$\ldots(()$	-3.80		
	$\ldots((()))).) \ldots$	-2.80		
	$\ldots((1)).) \ldots$	-2.10		
	$\ldots((\ldots(() \ldots)$.$)))$)	-2.00		
-VE_A	. ((.))) .	-0.30	4.10	0.259
		0.00		
	$\ldots((.1).)$.	0.30		
	((............$))$) .	0.30		

	(.(.((....)).).).....	0.30		
-VE_B	. (.$(((\ldots))))$.	-2.70	4.68	0.385
	. ($. .((\ldots .)) ..).)$.	-2.20		
((.....$))$)	-1.80		
((.......$))$)	-1.60		
	$\ldots($.........) $)$	-1.30		
Human((.(().....))).)).....	-4.30	1.69	0.476
_PLM	$\ldots \ldots($ (. ((\ldots. .)))) .))	-4.10		
	+++.......+++...... ${ }^{+++} . . .{ }^{+++}$	-3.51	0.01*	0.504**
	$\ldots(\ldots($ ($\ldots((\ldots .))).).) \ldots) \ldots$	-2.90		
	$\ldots(\ldots($ (. ((\ldots (..)))) .)) ..)...	-2.70		
Bovine	+++...+++.....+++ . . . +++	-8.37	0.00	0.125
_PLM	$\ldots(.(() . .))).).$.	-3.20		
	$((.(.(() .)))..) \ldots)) \ldots$	-2.50		
	$\ldots(.((\ldots .))..) \ldots$	-2.30		
	. ((. (...).)))	-2.20		

[^0]The data presented in Table 5 lists the MFE structures and other secondary structures according to their free energies. The results indicate that the +VE control forms a highly stable G-quadruplex, with a structural diversity of $d=0.00$. The intramolecular G-quadruplex formed is the minimum energy requiring structure for the +VE control at $-12.65 \mathrm{kcal} / \mathrm{mol}$. For the Human_PLM sequence, G-quadruplex was the $3^{\text {rd }}$ energy favourable entity, giving -3.51 kcal/mol. The highly stable G-quadruplex formed by Bovine_PLM, with diversity of $d=0.0$, was its MFE structure, at $-8.37 \mathrm{kcal} / \mathrm{mol}$. The structures proposed for $-V E _A$ and VE_B are quite unstable, with high free energies. The frequencies of the MFE structures vary for the different species. The G-quadruplex for the +VE control is expected to be the only structure present with a frequency of 1.00 . The MFE structure proposed for the remaining species will be in equilibrium with other structures as indicated by frequencies <0.5. All Gquadruplex entities have $d=0.00$, which indicate highly stable G-quadruplexes from the +VE, Human_PLM and Bovine_PLM sequences.

The proposed MFE structure for the +VE, -VE_A, -VE_B and Bovine_PLM sequences was obtained by RNAplot and are shown below.
A.

C.

Figure 9: MFE structures generated by RNAplot as calculated by RNAfold and RNAsubopt. A. +VE control's intramolecular G-quadruplex at $-12.00 \mathrm{kcal} / \mathrm{mol}$. B. -VE_A MFE structure at $0.30 \mathrm{kcal} / \mathrm{mol}$. C. Proposed -VE_B MFE ensemble at $-2.70 \mathrm{kcal} / \mathrm{mol}$. D. Intramolecular Gquadruplex entity formed by the Bovine_PLM sequence at - $8.37 \mathrm{kcal} / \mathrm{mol}$.

Graphical plots of the 3 lowest energy state structures for Human_PLM sequence were produced by RNAplot and are shown below.
A.
B.
C.

Figure 10: Graphical plot by RNAplot for the proposed secondary and G-quadruplex structures for Human_PLM sequence predicted by RNAfold and RNAsubopt. (A) MFE structure at $-4.30 \mathrm{kcal} / \mathrm{mol}(B)$ second lowest energy state structure at $-4.10 \mathrm{kcal} / \mathrm{mol}(\mathbf{C}) \mathrm{G}$ quadruplex structure of Human_PLM at -3.51 kcal/mol.

In comparison to the G-quadruplex structure proposed for Human_PLM, the MFE and structure at $-4.10 \mathrm{kcal} / \mathrm{mol}$ are relatively broader and longer in size. The G-quadruplex is compacter.

These MFE values were used to estimate the relative amount of secondary structure in equilibrium with G-quadruplex structure for Human_PLM, assuming that the MFE values correspond approximately to the free enthalpy of folding ΔG.

$$
\Delta G=-R T \ln K
$$

,where ΔG is the Gibbs free energy, R is the gas constant and T is temperature $(R=1.987 \times$ $10^{-3} \mathrm{kcal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=298 \mathrm{~K}$) and K is the equilibrium constant.

$$
\begin{array}{r}
K 1=\frac{[G 4 \text { emsemble }]}{[\text { Non }- \text { folded }]} \\
K 2=\frac{\left[2^{\circ} \text { emsemble }\right]}{[\text { Non }- \text { folded }]} \\
\frac{K 1}{K 2}=\frac{[G 4 \text { ensemble }]}{\left[2^{\circ} \text { emsemble }\right]} \\
K=e\left(\frac{-\Delta G}{R T}\right) \\
K 1=e\left(\frac{\left.-3.51 \frac{\mathrm{kcal}}{\mathrm{~mol}}\right)}{1.987 E-3 \frac{\mathrm{kcal}}{\mathrm{kmol}} \times 298 \mathrm{~K}}\right) \equiv 375.33 \\
K 2=e\left(\frac{-\left(-4.30 \frac{\mathrm{kcal}}{\mathrm{~mol}}\right)}{1.987 E-3 \frac{\mathrm{kcal}}{\mathrm{kmol}} \times 298 \mathrm{~K}}\right) \equiv 1425.06 \\
\left(\frac{1}{2}\right)
\end{array}
$$

$$
\frac{375.33}{1425.06}=\frac{G 4 \text { ensemble }}{2^{\circ} \text { emsemble }}
$$

$$
\begin{aligned}
2^{\circ} \text { emsemble } & =(3.80) G 4 \text { emsemble with } \Delta G-4.30 \mathrm{kcal} / \mathrm{mol} \\
\text { Or } \quad 2^{\circ} \text { emsemble } & =(2.71) G 4 \text { emsemble with } \Delta G-4.10 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

The calculation revealed that the other two lower energy secondary structures exist at about a fourfold higher concentration than G-quadruplex for Human_PLM. Or in other words, the concentration of the G-quadruplex species takes approximately 25% of the concentration of all molecular species. The two secondary structures are likely to compete against G-quadruplex formation in Human_PLM.

3.1.3 Multiple Sequence Alignment of GQS from Table 2 against orthologous FXYD1 premRNA sequences

The MSA carried out using the MAFFT server shows G-rich regions that are conserved across the genome of the orthologs, having the ability to fold into G-quadruplexes. H. sapiens' GQS from Table 2 was aligned alongside the pre-mRNA sequence of the remaining orthologs (Figure 11).

Homo_sapiens_ENSTOOOOO351325
Pan_troglodytes_ENSPTRTO0000020057
Gorilla_gorilla_gorilla_ENSGGOTOOOOOO26217
Pongo_abelii_ENSPPYG00000009851 Otolemur_garnettii_ENSOGAG00000014401
Canis_lupus_familiaris_ENSCAFTOOOOOO11368
Ailuropoda_melanoleuca_ENSAMEGOOOOOOOO212
Felis_catus_ENSFCAG00000008890
Bos_taurus_ENSBTAG00000017816
Ovis_aries_ENSOARGOOOOOOO4709
Tursiops_truncatus_ENSTTRG00000001446
Equus_caballus_ENSECAG00000014815
Sus_scrofa_ENSSSCTOOOOOO27321
Oryctolagus_cuniculus_ENSOCUGOOOOOO22123
Mus_musculus_ENSMUSGOOOOOO36570
Rattus_norvegicus_ENSRNOG00000021079
Monodelphis_domestica_ENSMODTOOOOOO33163

Figure 11: Highest scoring GQS for H. sapiens aligned with the remaining orthologs by MAFFT Version 7. Accession numbers are listed next to respective organism's name. Alignment of the H. sapiens GQS from Table 2 has indicated conserved sequences within most orthologs that can form G-quadruplexes. The consensus sequence was GGGAGACUGCGGGUGUUUCGGGGGUGAGGG and can form a G-quadruplex with a G-score of 40 .

The conserved sequences from each ortholog from Figure 11 have been mapped (Appendix
I) onto the FXYD1 gene of the respective organism and are listed in Table 6.

Table 6: Genomic location and G-scores of the conserved sequences with respect to the highest scoring GQS of H. sapiens

Organism	Conserved sequence after aligning H. sapiens highest scoring GQS	Genomic location	G- score
P. troglodytes	GGGAGACUGCGGGUAUUUUGGGGAGAGGG	Intronic (6:7)	39
G. gorilla	GGGAGACUGCGGGUAUUUUGGGGAGACGG	Intronic (5:6)	20
P. abelii	GGGAGACUGCGGGUAUUUUGGGGAGAGGG	Intronic (6:7)	39
O. garnettii	GGGAGACUGUGGGUAUUUGGGGAAGAAGG	Intronic (5:6)	20
C. lupus	GGGAGAUUUCGAGUGUUUGGGGCGGGGGUGAG	Intronic (6:7)	20
A. melanoleuca	GGGAGACUUCGGGUGUUUGGGGGUGAGGG	Intronic (5:6)	40
F. catus	GGGAGACUUUGGGGGUUUGGGGGUGAGGG	Intronic (5:6)	40
B. Taurus	GGGAGACUUAGGGUGCUUGGGAAUGCGAG	Intronic (6:7)	0
O. aries	GGGAGACUUCGGGUGUUUGGGAAUGCGAG	Intronic (5:6)	0
T. truncates	GGGAGACUUCGGGUGUUUGGGGAUGCAAG	Intronic (5:6)	14
E. caballus	GGGAGACGUCGGGUGUUUGGGGGUGAGGG	Intronic (5:6)	40
S. scrofa	N/A	N/A	N/A
O. cuniculus	GGACGGGCGCGGAAGCCUAGGGCUGAGGG	Intronic (6:7)	19
M. musculus	GGGAUACUGCGGGGUUUGUGGGGCAG	Intronic (6:7)	14
R. norvegicus	GGGAUACUGCGGGGGUUUGUGGGGCAG	Intronic (6:7)	16
M. domestica	N/A	N/A	N/A

From Table 6, the conserved sequences for almost every ortholog have the potential to form G-quadruplex and all the sequences are located in introns. The conserved sequences from B. taurus and O. aries are the only sequences that do not fold in G-quadruplex.

The consensus sequences obtained after aligning each GQS from Table 2 with the premRNA of other orthologs are listed in Table 7.

Table 7: Consensus sequence obtained after aligning each sequence from Table 2 by MAFFT Version 7.0

GQS aligned with	Consensus Sequence	G-score
pre-mRNA of other		
orthologs		
H. sapiens	GGGAGACUGCGGGUGUUUCGGGGGUGAGGG	40
P. troglodytes $1^{\text {st }}$	$\underline{\text { GGGAGACUGCGGGUGUUUCGGGGGUGAGGG }}$	40
P. troglodytes $2^{\text {nd }}$	GGGUUGGAGGGCGGCGAGGGGUGGGG	39
G. gorilla	$\underline{G G U G G C A A G G G U+G}$	19
P. abelii ${ }^{\text {st }}$	GGGAGACUGCGGGUGUUUCGGGGGUGAGGG	40
P. abelii $2^{\text {nd }}$	$\underline{\text { GGGUUGGAGGGCGGCGAGGGGUGGGG}}$	39
O. garnettii	GGGCGCUGUGGGGGUGAGGC+GG	19
C. lupus	GGAGGAAGGCGGGAGAGGCA+GGGGCCAAGUGCCAGG	$20^{1}, 14^{2}$
	GUUGGA	
A. melanoleuca	GGGAGACUGCGGGUGUUUCGGGGGUGAGGG	40
F. catus	GGGAGACUGCGGGUGUUUCGGGGGUGAGGG	40
B. taurus	GGGCGCGGGGGGUUGGAGGGAGGG	37
O. aries	AGGUCAGGCAAAGGUGGGGGG	20
T. truncatus	GGGAG+UGGGAGGGGGGAGGGCCUGGG	41
E. caballus	GGGAG+UGGGAGGGGGGAGGGCCUGGG	41

S. scrofa	-------------------GGGG	0
O. cuniculus	ACUGGAAGAUGGAGGGUUCUGGG	18
M. musculus	ACUAGGCUGGGGGAGGGAGGGAGGGGGGGG	42
R. norvegicus 1 ${ }^{\text {st }}$	GCAGGUGGG+CCUUGGG	17
R. norvegicus 2 ${ }^{\text {nd }}$	GGAUGGAGGCCGGC	20
R. norvegicus 3 ${ }^{\text {rd }}$	GGCGCUGUGGGGG	0
R. norvegicus $4^{\text {th }}$	GGCAC+GGGAGGUGAAG	0
R. norvegicus $5^{\text {th }}$	ACUAGGCUGGGGGA	18
R. norvegicus $6^{\text {th }}$	GGGGGGGAGGA	0
M. domestica 1 ${ }^{\text {st }}$	CCUGGC+GGGUGUGGGGUUUGG	20
M. domestica 2 ${ }^{\text {nd }}$	GCAAGGGU+GGGGGAAACCCUGCAAGAGAA	20

[^1]Besides S. scrofa, the consensus sequences obtained after aligning the highest scoring QGS from Table 2 for every ortholog, have the ability to form G-quadruplexes as seen in Table 6. Two out of the six GQSs from R. norvegicus gave consensus sequences that cannot form Gquadruplexes and one out of the two highest scoring GQS from M. domestica gave a consensus sequence that does not fold into a G-quadruplex.

3.1.4 Alternative splicing

The comparison between H. sapiens' FXYD1 and the variant FXYD1-009 mRNA and premRNA sequences suggests that alternative splicing takes place.

- FXYD1 mRNA FASTA sequence:

guggcagcugggccucaccccggcagggcugugcgugacccccugagugggggaaggcag gcuguugccaugguggccugagcgagcagaauuccuccaggGACAAUGGCGUCUCUUGGC CACAUCUUGGUUUUCUGUGUGGGUCUCCUCACCAUGGCCAAGGCAGaaaguccaaaggaa cacgacccguucacuuacgACUACCAGUCCCUGCAGAUCGGAGGCCUCGUCAUCGCCGGG AUCCUCUUCAUCCUGGGCAUCCUCAUCGUGCUGAgcagaagaugccggugcaaguucaac cagcagcagagGACUGGGGAACCCGAUGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGC CgucuguccacccgcaggcgguagaaacaccuggagcgauggaauccggccagGACUCCC CUGGCACCUGACAUCUCCCACGCUCCACCUGCGCGCCCACCGCCCCCUCCGCCGCCCCUU CCCCAGCCCUGCCCCCGCAGACUCCCCCUGCCGCCAAGACUUCCAAUAAAACGUGCGUUC CUCUCGA

FXYD1 amino acid sequence:

MASLGHILVFCVGLLTMAKAESPKEHDPFTYDYQSLQIGGLVIAGILFILGILIVLSRRCRCKFNQQQRT GEPDEEEGTFRSSIRRLSTRRR

- FXYD1-009 mRNA FASTA sequence:
uuuucugugugggucuccucaccauggccaaggcagAAAGUCCAAAGGAACACGACCCGU UCACUUACGacuaccagucccugcagaucggaggccucgucaucgccgggauccucuuca uccugggcauccucaucgugcugaCCCCGCCCCUCGCGAGGGCGAGCUGGAGCUACAGCG CCGCUUGGCGCCCGCCGGGAGGGAGCCUCAGCUUCUCCUACCUCUCCACGCCCACAGGCA GAAGAUGCCGGUGCAAGUUCAACCAGCAGCAGAGgacuggggaacccgaugaagaggagg gaacuuuccgcagcuccauccgccGUCUGUCCACCCGCAGGCGGUAGAAACACCUGGAGC GAUGGAAUCCGGCCAGgacuccccuggcaccugacaucucccacgcuccaccugcgcgcc caccgcccccuccgccgccccuuccccagcccugcccccgcagacucccccugccgccaa gacuuccaauaaaacgugcguuccucucgaca

FXYD1-009 amino acid sequence:

XFCVGLLTMAKAESPKEHDPFTYDYQSLQIGGLVIAGILFILGILIVLTPPLARASWSYSAAWRPPGGSL SFSYLSTPTGRRCRCKFNQQQRTGEPDEEEGTFRSSIRRLSTRRR

In the mRNA sequences (FXYD1 \& FXYD1-009), alternate exons are shown in lower and uppercase. FXYD1 and FXYD1-009 have similar mRNA stretches, highlighted in blue and green. Likewise the amino acids derived from the blue highlighted stretch of bases are highlighted blue, and green highlighted bases code for amino acids highlighted green. The UTR regions are not highlighted. The underlined bases in FXYD1-009 mRNA are located in exon 4 of the transcript, which also occur in the intronic region between exons 4 and 5 of FXYD1 pre-mRNA as shown on the following page.

The FASTA sequence below is that of exon 4-intron4-exon5 of H . sapiens' pre-FXYD1 mRNA. Exon 4 is highlighted pink and exon 5 is highlighted blue. The intronic bases that are bold and underlined are the extra bases that occur in FXYD1-009's exon 4, and the strikethrough ones are bases that are spliced.

[^2]The consensus di-nucleotide bases to which sub units U1 and U2 from spliceosome complexes bind at the 5^{\prime} and 3^{\prime} ends of introns in order to establish splicing sites have been highlighted green and red or yellow respectively. It has been reported that the highly conserved and invariant di-nucleotide bases GU is the 5^{\prime} binding site of subunit U 1 and AG is the 3^{\prime} binding site for sub unit U2 (Rogers \& Wall, 1980; Shapiro \& Senapathy, 1987). The binding of spliceosome sub units U1 at $5^{\prime}-\mathrm{GU}$ and U2 at 3^{\prime}-AG will result in a fully spliced
intron 4 from the FXYD1 pre-mRNA, producing FXYD1. Alternatively, the binding of the sub units at $5^{\prime}-\mathrm{GU}$ and $3^{\prime}-\mathrm{AG}$ will result in a partially spliced intron 4 of the FXYD1-pre mRNA, producing FXYD1-009. Hence FXYD1-009 is a consequence of alternative splicing of the intron 4 of FXYD1 pre-mRNA.

A comparison of the pre-mRNA of FXYD1 and FXYD1-009 was performed by 1000 Genomes Transcript comparison option. H. sapiens' highest scoring GQS, GGGAGACUGCGGGUAUUCUGGGGAGAGGG, was compared in the two pre-mRNA transcripts for mutations. The result is shown in Figure 12.

EXYD1	3721	CTGGGGAGACTGCGGGTATTCTGGGGAGAGGGCTGGTTCC.	
EXYD1-009	3721	CTGGGGAGACTGCGGGTATTCTGGGGAGAGGGCTGGTTCC.	
			Variation: rs201764718
		Position	$19: 35633462$
		Alleles	G/A
		Types	Intron variant

Figure 12: Part of the pre-mRNA comparison of FXYD1 (intron6) and FXYD1-009 (intron5) that maps the highest scoring GQS of H. sapiens. The highest scoring GQS of H. sapiens' premRNA is highlighted blue.

The GQS is present in both FXYD1 and FXYD1-009. However, two variations within the sequence of FXYD1-009 are present. Base A in the second loop that was a A/G variant and base G from the fourth quartet, which was a G/A variant as seen in Figure 12. The G/A variant is more likely to affect the G-quadruplex structure than the A / G variant as the A / G is a loop base instead of G/A from a quartet. The sequence of the variant-009 after $G \rightarrow A$ substitution is GGGAGACUGCGGGUAUUCUGGGGAGAGAG.

Analysis of the variant sequence by QGRS mapper revealed a GQS (GGAGACUGCGGGUAUUCUGGGG) with a G-score of 14, which is very low in stability. Further analysis by the Vienna RNA Package did not predict G-quadruplex formation by the variant sequence from FXYD1-009 pre mRNA. The results obtained after analysis by RNAfold and RNAsubopt are shown in Table 8.

Table 8: Dot bracket annotations of the MFE and secondary structures of the variant FXYD1009 sequence (GGGAGACUGCGGGUAUUCUGGGGAGAGAG) by RNAfold and RNAsubopt.

Dot bracket annotation	Free energy $(\mathrm{kcal} / \mathrm{mol})$	Frequency of MFE	Diversity

The data presented in Table 8 indicate that RNAfold did not predict G-quadruplex formation for the variant sequence, even though the -g option was used in the command lines. GQS that were predicted to form low stability G-quadruplex with low G-scores from the H. sapiens' pre-mRNA were also predicted not to form G-quadruplex by the Vienna RNA Package Data not shown). The MFE structure has free energy of $-4.30 \mathrm{kcal} / \mathrm{mol}$ and structural diversity of 2.00 , indicative of high instability.

The data obtained from the comparative analysis suggest the likelihood of the intronic Gquadruplex between exon 6 and 7 of H. sapiens FXYD1 to play a major role in the splicing of the intron occurring between exons 4 and 5, impacting on the formation of FXYD1-009

3.2 G-quadruplex detection by Native PAGE

Comparison of R_{f} values of samples in the presence and absence of K^{+}supports conformational changes in the +VE, Human_PLM and Bovine_PLM sequences (Figure 13). 30% Native PAGE gels were run at 140 mV with oligonucleotides of final concentration $3 \mu \mathrm{M}$. The results obtained after exposure in the presence of SYBR Green I RNA stain S9430 and SYBR Green I nucleic S32717 are shown in Figure 13A-C.

Figure 13: Native 30\% PAGE of GQS oligos (Table 5) in absence and presence of K+. Lanes1: +VE; 2:-VE_A; 3:-VE_B; 4:Human_PLM; 5:Bovine_PLM. A.30\% PAGE loaded with samples incubated in 0.02 M TrisOAc buffer solution only. B. 30% PAGE loaded with samples incubated in 0.02 M TrisOAc and $0.05 \mathrm{M} \mathrm{K}^{+}$buffer solution on two separate gels, duplicates. C. Two separate 30% PAGE, duplicates, loaded with samples incubated in 0.02 M TrisOAc and $0.10 \mathrm{M} \mathrm{K}^{+}$buffer solution. Arrows in B \& C point putative G-quadruplexes. The control samples in lanes 1,2 and 3 under K^{+}free conditions and samples in lanes $2 \& 3$ in the presence of K^{+}acted as markers.

Under K+ free condition, the +VE and -VE_A controls migrated at the same rate on the gel. VE_B migrated less than other controls but faster than Human_PLM and Bovine_PLM. Human_PLM was the slowest migrating sample. In the presence of $0.05 \mathrm{M} \mathrm{K}^{+}$, the +VE
control was the fastest migrating sample followed by the Bovine_PLM that migrated faster than -VE_B. In the order of fastest to slowest migrating sample: +VE > -VE_A > Bovine_PLM > -VE_B > Human_PLM is observed for samples in $0.05 \mathrm{M} \mathrm{K}^{+}$. Samples incubated in $0.1 \mathrm{M} \mathrm{K}^{+}$ migrated with a similar trend as samples incubated in $0.05 \mathrm{M} \mathrm{K}^{+}$. The tracking dye is at the bottom of the gels in A-C. The DNA species under K^{+}free conditions (Fig 13A) produced a distinct single band as well as Bovine_PLM, except for Human_PLM that produces 3 bands. In K^{+}containing buffer, the +VE and -VE_B controls produced single bands on the gels (Fig 13B \& 13C), while -VE_A produced several bands and Bovine_PLM and Human_PLM produced smears.

The ratio of the distance migrated by each sample with respect to that of the tracking dye (R_{f} value) on the gel is represented graphically for 5 separate experiments.

Figure 14: Comparison of the relative migration distance, R_{f}, obtained from native PAGE experiments for samples treated in K^{+}free and K^{+}containing buffer. The error bars show the standard error ($\mathrm{n}=5$ experiments).

The +VE control, Human_PLM and Bovine_PLM samples migrated significantly faster when in the presence of K^{+}than when in K^{+}free buffer. At higher K^{+}concentration the +VE , Human_PLM and Bovine_PLM samples migrated even faster. -VE_A and -VE_B samples in K^{+}buffer migrated by the same rate in comparison to their respective counterparts in K^{+} free buffer.

Table 9: Student 2-tailed-t-test of R_{f} values for samples in the presence of K^{+}containing buffer against samples in K^{+}free buffer($\mathrm{n}=5$)

Sample	+VE	-VE_A	-VE_B	Human_PLM	Bovine_PLM
Op-value for	$4.18 \mathrm{E}-05$	0.74044	0.45537	$3.34 \mathrm{E}-06$	$1.97 \mathrm{E}-07$
$\mathbf{0 . 0 5} \mathbf{~ M ~ K +}$					
p-value for $4.23 \mathrm{E}-07$	0.72447	0.34053	$3.09 \mathrm{E}-07$	$5.33 \mathrm{E}-11$	
$\mathbf{0 . 1 0 ~ M ~ K +}$					

Table 10: Student 2-tailed-t-test of R_{f} values for samples incubated in different concentration of K^{+}containing buffer($\mathrm{n}=5$)

Sample	+VE	-VE_A	-VE_B	Human_PLM	Bovine_PLM
p-value	0.00153	0.60751	0.67254	0.00032	$3.83 \mathrm{E}-07$

At a confidence level of 5%, the difference in migration for the +VE Control, Human_PLM and Bovine_PLM in the presence of K^{+}compared to their respective K^{+}free incubated counterparts are statistically significant as they support p values $<5 \%$ as seen in Table 9. VE_A and -VE_B have p values $>5 \%$, ruling out the fact that the differences in migration of these samples in the presence or absence of K^{+}are significant. This significant difference in migration supports G-quadruplex formation in the +VE control, Human_PLM and Bovine_PLM samples. Comparison between similar samples at different K^{+}concentrations (Table 10) supported p values < 5% for the +VE control, Human_PLM and Bovine_PLM suggesting G-quadruplex formation depends on availability of K^{+}ions.

The slow migrating band of $-V E _A$ can be interpreted as intermolecular G-quadruplex formation between four strands of oligonucleotides; this is also supported by the fluorescence data shown in Figure 15.

3.3 Detection of G-quadruplexes by Fluorescence spectroscopy

The recorded spectrum of the controls, Human_PLM and Bovine_PLM sequences in the presence and absence of K^{+}ions are shown below.

Figure 15: Emission spectra of samples recorded over the range $300-500 \mathrm{~nm}$, excited at 260 nm . The oligonucleotide concentrations were $5.0 \mu \mathrm{M}$ for positive and negative control DNA samples $1.5 \mu \mathrm{M}$ for RNA samples.

The fluorescence intensity of -VE_A shows an unexpected increase upon addition of 0.1 M K^{+}. This indicates the possibility that -VE_A can form G-quadruplex structures. As detailed in the discussion, the formation of an intermolecular G-quadruplex formed from four strands of DNA is possible with -VE_A. The fluorescence spectra of -VE_B (Fig. 15B) in the presence or absence of K^{+}do not show significant differences. This is indicative that -VE_B cannot fold into a G-quadruplex as it was predicted by the in-sillico studies. The emission spectra of the +VE control shows an increased fluorescence intensity in the presence of K^{+}(Fig. 15C). This increase is most likely caused by intramolecular anti-paralell G-quadruplex structures formed by the +VE control. The increase of the peak maximum of the +VE control in K^{+} buffer is ≈ 2.0 relative intensity units. The emission spectrum of Human_PLM over the range 300-500 nm (Fig. 15D) shows an increase of the fluorescence emission intensity upon addition of K^{+}containing buffer. Notably, in the absence of K^{+}, the Human_PLM RNA has a higher fluorescence emission intensity than other samples with a peak maximum of ≈ 4.0, albeit there is a clear difference in K^{+}buffer conditions with a maximum of ≈ 7.5. Possibly canonical base-pairing due to secondary structure formation contributes to the higher fluorescence intensity in the absence of K^{+}. The Bovine_PLM RNA sample in $0.1 \mathrm{M} \mathrm{K}^{+}$buffer shows a clear increase of fluorescence from 2.0 in K^{+}-free conditions to ≈ 6.1 in K^{+}buffer. The spectra of the buffers were also recorded and had a relatively low fluorescence emission compared to the oligonucleotides.

In order to assess potential fluorescence quenching effects of KCl on the fluorescence, emission spectra of quinine were measured with and without potassium ions in the buffer and at two different excitation wavelengths (250 and 350 nm).

Figure 16: Emission spectra of Quinine at 0.6 ppm in the presence of 0.02 M TrisOAc buffer only (Red curve) or 0.02 M TrisOAC $+0.1 \mathrm{M} \mathrm{K}^{+}$buffer(Blue curve). (A) $\lambda_{\mathrm{ex}}=250 \mathrm{~nm}$, (B) $\lambda_{\mathrm{ex}}=$ 350 nm .

The spectra shown in figure 16 A and B indicate a small reduction of fluorescence due to the presence of 0.1 M KCl . It should be noted that this reduction effect is opposite to the fluorescence enhancement seen in the G-quadruplex fluorescence experiments.

4. DISCUSSION

4.1 Computational sequence Analysis

Computational analysis by QGRS mapper and Quadbase on FXYD1 and orthologous premRNA has revealed sequences that can fold into G-quadruplex. The G-scores generated by QGRS mapper for FXYD1 and ortholog sequence GQS shown in Table 2 are comparable to that of the +VE control, indicative of a stable G-quadruplex, except for R. norvegicus and G. gorilla with G-scores of 21. Looking back at Kikin's folding motif, it can be seen that all the ortholog FXYD1 GQS, excluding those of R. norvegicus, G. gorilla and the -VE controls, have three successive guanines. This indicates the existence of three stacks of G-quartets in the G-quadruplex of these ortholog GQSs as seen in the +VE control DNA. G. gorilla's highest scoring GQS was GGUGGCGGUGG, with a G-score of 21 and as per Kikin's folding motif this particular sequence has only two stacks of G-quartets. Similarly, R. norvergicus has 6 GQS of G-score 21 and each GQS has only 2 stacks of G-quartets participating in G-quadruplex formation as seen in Table 2, hence accounting for low stability G-quadruplex from R. norvegicus. Stability of G-quadruplexes is enhanced by more G-quartets (Kikin et al., 2006), while loop size has a smaller effect. GQSs having at least three guanine tetrads and loops of equal length connecting them, will be highly stable and have high G-scores (Kikin et al., 2006). The GQS obtained for S. scrofa, GGGGGUGGGGGUGGGGGUGGGGG, has a G-score of 83 , which makes its G-quadruplex twice as stable as that of the +VE control. S. scrofa has 5 G-quartets that stack on top of each other to form a G-quadruplex that has loops of equal length of 1 base each. This makes the G-quadruplex from S. scrofa highly stable. On the
other hand, both -VE_A and -VE_B have G-scores of 0 and this means that these sequences were not predicted to form any intramolecular G-quadruplexes.

Additionally, there were putative GQSs within the untranslated (UTR) regions of all the orthologs from the FXYD1pre-mRNA that have the potential to fold into G-quadruplexes but the G-scores for the majority of these GQS as seen in Table 3 do not compare well with the +VE control, resulting in G-quadruplexes that have low stability. As previously reported, the high occurrence of G-quadruplex in UTR regions leads to hypothesizing on their role as translational regulators (Huppert et al., 2008, Bugaut et al., 2012), the FXYD1 gene in this instance. G-quadruplexes of low stability could support a rapid folding and unfolding of Gquadruplex ensembles and thus support the conformational heterogeneity within the UTR regions. Instead of inhibiting translation, this could support translation of the FXYD1 gene. The 5'-UTR region contains the ribosomal binding site and low stability G-quadruplexes at that site can ensure that translation is not perturbed, as it would have been if highly stable G-quadruplexes or secondary structures are formed within that region. Alternatively, under stress conditions such as cell growth, mitosis etc., where cap-dependent translation is compromised at the 5'UTR, G-quadruplex formation can assist initiation of translation of the FXYD1 gene via cap-independent translation (Bugaut et al., 2012).

4.2 Stability calculations of secondary/tertiary structures

The +VE and Bovine_PLM GQS were both predicted to form highly stable G-quadruplexes by minimum free energy calculations using the Vienna RNA package. Bovine_PLM's Gquadruplex is the minimum free energy (MFE) structure, which is the most stable structure with a free energy of $-8.37 \mathrm{kcal} / \mathrm{mol}$ in comparison to other secondary structures predicted. The +VE control was predicted to form a very stable G-quadruplex ($-12.65 \mathrm{kcal} / \mathrm{mol}$) with a frequency of 1.00 in the structural ensemble. This indicates that the +VE control was a suitable positive control for further studies. Two lower energy state secondary structures were predicted to compete against G-quadruplex formation for Human_PLM. The equilibrium constant of the G-quadruplex formed by the Human_PLM with respect to the two competing structures indicates a significant proportion of G-quadruplex structure present, which may increase upon increasing potassium concentration. Note that the energy model of the Vienna RNA package for G-quadruplex structures did not take the potassium ion concentration into account (Lorenz et al., 2012). The data obtained from minimum free energy calculations suggest that Human_PLM will form a mixture of secondary and Gquadruplex structures.

4.3 Evolutionary conservation of G-rich sequences in FXYD1 pre-mRNA

The evolutionary trait of G-rich sequences in the FXYD1 gene was confirmed by the MSA experiment. The alignment of the H. sapiens GQS from Table 2, was found conserved among all orthologs except in M. Domestica \& S. scrofa and the consensus sequence obtained has the ability to fold into G-quadruplex. Consensus sequences obtained from Table 7, with the exception of S. scrofa can form G-quadruplexes, indicating that G-rich sequences among the orthologs are conserved. The existence of evolutionary conserved GQS based on a pairwise alignment of two sequences has been proposed as a method of validation and emphasis of their functional significance (Menendez, Frees \& Bagga, 2012). The presence of G-rich sequences in orthologs points to an evolutionary conservation of that feature, which supports the hypothesis that G-quadruplex formation is a control mechanism of FXYD1 premRNA processing.

4.4 Alternative splicing

G-quadruplexes have been reported to regulate gene expression in-vivo at the translational level via alternative splicing (Gomez et al., 2004; Marcel et al., 2011). The comparative analysis suggests that the G-quadruplex formed in intron 6 of the H. sapiens' pre-mRNA could be affecting the splicing pattern of intron 4 in the FXYD1 pre-mRNA. The analysis suggests that the presence of a G-quadruplex in intron 6 is promoting the full splicing of intron 4. On the other hand the absence or presence of a G-quadruplex of low stability is causing partial splicing of intron 4, which will lead to the production of the variant FXYD1-
009. As reviewed by Clancy in 2008, the consensus $5^{\prime}-\mathrm{GU}$ and 3^{\prime} - AG are the binding sites for spliceosome sub units, which determine splicing points in introns. The downstream Gquadruplex in intron 6 ensures that the sub unit U2 from the spliceosome complex binds to the most $3^{\prime}-\mathrm{AG}$ in intron 4 and ensures the latter is fully spliced. The absence or a lowly stable G-quadruplex in intron 6 causes the sub unit U2 to bind to an alternate 3^{\prime}-AG, rather than the most 3^{\prime}-AG, resulting in a longer transcript, FXYD1-009.

4.5 Laboratory experimental results support G-quadruplex formation

G-quadruplex formation in the +VE, Human_PLM and Bovine_PLM GQS were successfully detected by 30% native PAGE. Under K^{+}free condition (Figure 13 A), the +VE control and -VE_A samples migrated almost a similar distance on the gels as they are both 22 bases long. The -VE_B, which is 29 bases long migrates slower than the +VE and -VE_A control sample under K^{+}free condition. Under similar conditions, the 29 bases long Human_PLM and 24 bases long Bovine_PLM samples migrated slower than the control samples. The Bovine_PLM sample was expected to migrate faster than the -VE_B sample. Under the nondenaturing conditions used here, samples not only migrate according to their size but also according to their shape. RNA under normal physiological conditions form loops that makes RNA behave like longer molecules on gels in comparison to DNA molecules of same size (Rio, Ares, Hannon \& Nilsen, 2010). In lane 3 from Figure 13 A, Human_PLM produced three distinct bands that moved at different rates on the K^{+}free gel. It is proposed that the three bands are due to linear RNA and the two secondary structures predicted by minimum free energy calculations. Addition of K^{+}(Figures $13 \mathrm{~B} \& \mathrm{C}$) altered the migration properties of the +VE, Human_PLM and Bovine_PLM. The +VE control migrated fastest, while under K^{+}free
condition it has the same mobility as -VE_A. Bovine_PLM also migrated faster than -VE_B, which would seem opposite under K^{+}free conditions. Comparing the R_{f} of similar species under K^{+}free and K^{+}conditions from Figure 14 supports the fact that the -VE controls did not change structures and rather stayed in their linear conformations. Intra-molecular Gquadruplexes are compact in shape and confer high mobility rates in gels in comparison to linear species and inter-molecular G-quadruplexes (Williamson, Raghuraman \& Cech, 1989; Bryan\&Baumann, 2011). The dependence of R_{f} on the K^{+}concentration strongly supports that intramolecular G-quadruplex formed by the +VE control, Human_PLM and Bovine_PLM sequences. The -VE_A sample (lanes 2 in Figure 13) showed in addition to the expected fast migrating band a slow migrating band at high molecular mass in presence of potassium. This can be attributed to the formation of intermolecular G-quadruplexes, which is possible in -VE_A. The two stretches of four consecutive guanines in the sequence of -VE_A (CGTGGGGAGATTGGGGAGCGCA) can participate in the formation of intermolecular Gquadruplexes (Figure 17). At a final oligonucleotide concentration of $3 \mu \mathrm{M}$, Moon et al.(2007) reported that intermolecular G-quadruplex formation is favoured.

5' GTGGGGAGATTGGGGAG G A 3'

Figure 17: schematic illustration of the intermolecular G-quadruplex formed by -VE_A. A. single -VE_A species present in high amount, $3 \mu \mathrm{M}$ for the Native PAGE experiments, associate to form intermolecular G-quadruplex in the presence of K^{+}. Circles represent unpaired bases and are colour coded according to -VE_A's sequence. B. Two sets of four consecutive guanines from four separate strands of -VE_A arrange into G-quartets (blue rectangles) to form a tetrameric parallel intermolecular G-quadruplex.

The proposed intermolecular G-quadruplex by -VE_A makes it difficult for the ensemble to move along the gel, resulting in slow migrating bands. In the K^{+}containing gel, the smeared bands of Human_PLM in lanes 4 (Figure 13 B \& C) may be explained by the formation of other secondary structures due to Watson-Crick base pairing. The intramolecular Gquadruplex formed by Human_PLM is the fastest migrating structure in comparison to the other structures, as the G-quadruplex is compacter than the other structures proposed in Table 5. Similarly, the smear pattern by Bovine_PLM in the presence of potassium could be due to the formation of secondary structures predicted in Table 5.

Further confirmation of G-quadruplex formation was achieved by exploiting the intrinsic fluorescent properties of nucleic acid. The emission intensities of the +VE, Human_PLM and Bovine_PLM samples in the presence of $0.1 \mathrm{M} \mathrm{K}^{+}$was significantly higher compared to K^{+} free buffer (Figures $15 \mathrm{~A}-\mathrm{E}$). This was due to the formation of G-quadruplexes in these species. G-quadruplex entities have been reported to have increased intrinsic fluorescence emission in contrast to non-G-quadruplex complexes due to the stacking of G-tetrads (Nguyen Thuan et al., 2011; Kwok, Sherlock, \& Bevilacqua, 2013). The higher fluorescence intensity of Human_PLM in K^{+}free buffer could be due to the presence of other secondary structures as computed by the Vienna RNA package. Nonetheless, the fluorescence intensity in the presence of K^{+}was clearly increased, which confirms the formation of Gquadruplexes. The -VE_A sequence showed higher fluorescence intensity in K^{+}containing buffer compared to K^{+}free buffer most likely due to the formation of intermolecular Gquadruplex (Figure 17), as was seen earlier in the native PAGE experiment. The presence of eight potential tetrads supports the high fluorescence intensity of the intermolecular Gquadruplex of -VE_A. Measuring the fluorescence emission spectrum of quinine in the same buffers, indicated that the K^{+}containing buffer had a weak quenching effect on fluorescence. Hence, RNA samples in K^{+}containing buffer were expected to show slightly less fluorescence than their respective counterparts incubated in K^{+}free buffer, if they would assume the same structure. This was observed for the -VE_B control sample, which in the presence of K^{+}had slightly reduced fluorescence intensity (Figure 15B).

In conclusion, using a computational scan of the FXYD1 pre-mRNA potential G-quadruplex forming sequences (GQS) were identified in Homo sapiens, Bos taurus and other orthologs. Through energy calculations it was established that the G-quadruplex was either the most stable structure or existent in a significant proportion next to secondary structures. The stability of these G-quadruplex structures is likely higher in vivo considering the intracellular K^{+}concentration of $120-150 \mathrm{mM}$. Using native PAGE and fluorescence emission spectroscopy the theoretical calculations were confirmed and the existence of G-quadruplex structures established. Multiple sequence alignment of ortholog GQS indicated that the Gquadruplex forming potential may be conserved in evolution, rendering it possible that it may occur in vivo as a mechanism to control phospholemman expression levels and ultimately the activity of the cardiac sodium-potassium ATPase.

4.6 Limitations and further work

Overall, the Native PAGE experiments were challenging due to the low molecular mass samples and electrophoresis in the presence of ionic species, which caused heating of the gel due to increased conduction. A high percentage acrylamide gel was used, as lower percentage gels would cause the +VE control's G-quadruplex to migrate faster than the tracking dye. This was observed in 20% and 25% acrylamide gels (data not shown). The heat generated during electrophoresis, mostly in the K^{+}containing buffers may interfere with the electrophoresis and affect the migration of the samples. Often the heat caused the glass plate used to encase the gels to break and the gels were discarded. Heat also caused the voltage of the power supply to fluctuate, which also affected the process of electrophoresis.

The heat issue was addressed by using buffers pre-chilled at $4^{\circ} \mathrm{C}$, which required a longer running time for the gels.

Apart from technical challenges and limitations, a more fundamental limitation is the relevance of the results obtained on short oligonucleotides for the longer pre-mRNA transcript in vitro and ultimately the existence of G-quadruplexes of FXYD1 pre-mRNA in vivo. Once the existence of G-quadruplex structures in vivo has been established, the functional consequences on phospholemman expression need to be investigated. Therefore, the present study provides the basis for extensive further work in this area.

Further work should investigate the formation of G-quadruplex structures in longer oligonucleotides using gel electrophoresis, NMR, intrinsic fluorescence and fluorescence resonance energy transfer (FRET). The formation of G-quadruplex should be investigated invivo as previously described (Xu et al., 2010). Single-molecule FRET can also be used to establish the dynamics and stability of the G-quadruplex, as for example in the work by (Okumus \& Ha, 2010; Ying, Green, Li, Klenerman, \& Balasubramanian, 2003). A modified construct of the Human_PLM sequence containing an acceptor molecule at one of its end can be used, alongside a complementary strand that will be covalently linked to a glass surface and also modified to contain a donor molecule. Hybridisation of the Human_PLM oligo to the complementary oligo, followed by the formation of a G-quadruplex will allow energy exchange between the donor and acceptor molecule and this can be detected by using Total Internal Reflection Microscopy (TIRM).

Alternative splicing of intron 4 of FXYD1 has been linked to FXYD1-009 formation. Gquadruplexes have been reported in the past to influence splicing (Marcel et al., 2011, Gomez et al., 2004). Could G-quadruplex formation be the influential factor behind variant 009? Further work, similar to Marcel et al., (2011), should address the consequences of Gquadruplex structure on the splicing of pre-mRNA. This can be addressed with constructs using the reporter gene Green Fluorescence Protein (GFP). A suitable construct would include encode an FXYD1-GFP fusion protein, while a stop codon is included in the particular intron under investigation. Alternatively the expression levels of mature mRNA species could be measured with quantitative PCR techniques.

5. REFERENCES

Adrian, M., Heddi, B., \& Anh Tuan, P. (2012). NMR spectroscopy of G-quadruplexes. Methods, 57(1), 11-24.
Beaudoin, J. D., \& Perreault, J. P. (2010). 5'-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Research, 38(20), 7022-7036.
Beevers, A. J., \& Kukol, A. (2006). Secondary structure, orientation, and oligomerization of phospholemman, a cardiac transmembrane protein. Protein Science, 15(5), 11271132.

Beevers, A. J., \& Kukol, A. (2007). Phospholemman transmembrane structure reveals potential interactions with $\mathrm{Na}+/ \mathrm{K}+-A T P a s e . ~ J o u r n a l ~ o f ~ B i o l o g i c a l ~ C h e m i s t r y, ~ 282(45), ~$ 32742-32748.
Biffi, G., Tannahill, D., McCafferty, J., \& Balasubramanian, S. (2013). Quantitative visualization of DNA G-quadruplex structures in human cells. Nature Chemistry, 5(3), 182-186.
Bossuyt, J., Despa, S., Martin, J. L., \& Bers, D. M. (2006). Phospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na / K-ATPase pump. Journal of Biological Chemistry, 281(43), 32765-32773.
Bryan, T. M., \& Baumann, P. (2011). G-Quadruplexes: From Guanine Gels to Chemotherapeutics. Molecular Biotechnology, 49(2), 198-208.
Bugaut, A., \& Balasubramanian, S. (2012). 5 '-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Research, 40(11), 4727-4741.
Chang, T.-C., \& Chang, C.-C. (2010). Detection of G-quadruplexes in cells and investigation of G-quadruplex structure of d(T2AG3)4 in K+ solution by a carbazole derivative: BMVC. Methods in molecular biology (Clifton, N.J.), 608, 183-206.
Clancy, S. (2008) RNA splicing: introns, exons and spliceosome. Nature Education 1(1):31
Crambert, G., Fuzesi, M., Garty, H., Karlish, S., \& Geering, K. (2002). Phospholemman (FXYD1) associates with Na, K-ATPase and regulates its transport properties. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11476-11481.
da Silva, M. W. (2007). NMR methods for studying quadruplex nucleic acids. Methods, 43(4), 264-277.
Daehnel, K., Harris, R., Maddera, L., \& Silverman, P. (2005). Fluorescence assays for F-pill and their application. Microbiology-Sgm, 151, 3541-3548.
Du, Z., Zhao, Y. Q., \& Li, N. (2008). Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Research, 18(2), 233-241.
Emsembl.(2012).Chromosome 19:35,629,728-35,634,013.Retrieved November 38, 2012, fromhttp://www.ensembl.org/Homo_sapiens/Location/View?g=ENSG00000221857; r=19:35629728-35634013
Ensembl.(2012). FXYD1. Retrieved Novmber 26 2012, from http://www.ensembl.org/Multi/Search/Results?q=FXYD1;y=0;site=ensembl_all;x=0; page=1;fall_species=1\#
Fuller, W., Howie, J., McLatchie, L. M., Weber, R. J., Hastie, C. J., Burness, K., . . . Shattock, M. J. (2009). FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. American Journal of Physiology-Cell Physiology, 296(6), C1346-C1355.

Gomez, D., Lemarteleur, T., Lacroix, L., Mailliet, P., Mergny, J. L., \& Riou, J. F. (2004). Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Research, 32(1), 371379.

Goncalves, D. P. N., Ladame, S., Balasubramanian, S., \& Sanders, J. K. M. (2006). Synthesis and G-quadruplex binding studies of new 4-N-methylpyridinium porphyrins. Organic \& Biomolecular Chemistry, 4(17), 3337-3342.
Gray, N.K., \& Hentze, M. W. (1994). Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs.EMBO J, 13, 38823891
Gu, H.-P., Lin, S., Xu, M., Yu, H.-Y., Du, X.-J., Zhang, Y.-Y., . . . Gao, W. (2012). Up-Regulating Relaxin Expression by G-Quadruplex Interactive Ligand to Achieve Antifibrotic Action. Endocrinology, 153(8), 3692-3700.
Han, F., Bossuyt, J., Despa, S., Tucker, A. L., \& Bers, D. M. (2006). Phospholemman phosphorylation mediates the protein kinase C-dependent effects on $\mathrm{Na+} / \mathrm{K}+$ pump function in cardiac myocytes. Circulation Research, 99(12), 1376-1383.
Hong, Y., Haeussler, M., Lam, J. W. Y., Li, Z., Sin, K. K., Dong, Y., . . . Tang, B. Z. (2008). Labelfree fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry-a European Journal, 14(21), 6428-6437.
Huppert, J. L., Bugaut, A., Kumari, S., \& Balasubramanian, S. (2008). G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Research, 36(19).
Johnson, J. E., Cao, K., Ryvkin, P., Wang, L.-S., \& Johnson, F. B. (2010). Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Research, 38(4).
Kan, Z. Y., Yao, Y. A., Wang, P., Li, X. H., Hao, Y. H., \& Tan, Z. (2006). Molecular crowding induces telomere G-quadruplex formation under salt-dericient conditions and enhances its competition with duplex formation. Angewandte Chemie-International Edition, 45(10), 1629-1632.
Kikin, O., D'Antonio, L., \& Bagga, P. S. (2006). QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Research, 34, W676-W682.
Kostadinov, R., Malhotra, N., Viotti, M., Shine, R., D'Antonio, L., \& Bagga, P. (2006). GRSDB: a database of quadruplex forming G-rich sequences in alternatively processed mammalian pre-mRNA sequences. Nucleic Acids Research, 34, D119-D124.
Kumari, S., Bugaut, A., Huppert, J. L., \& Balasubramanian, S. (2007). An RNA G-quadruplex in the 5 ' UTR of the NRAS proto-oncogene modulates translation. Nature Chemical Biology, 3(4), 218-221.
Kwok, C. K., Sherlock, M. E., \& Bevilacqua, P. C. (2013). Effect of Loop Sequence and Loop Length on the Intrinsic Fluorescence of G-Quadruplexes. Biochemistry, 52(18), 30193021.

Lech, C. J., Heddi, B., \& Anh Tuan, P. (2013). Guanine base stacking in G-quadruplex nucleic acids. Nucleic Acids Research, 41(3), 2034-2046.
Li, Q., Xiang, J.-F., Zhang, H., \& Tang, Y.-L. (2012). Searching Drug-Like Anti-cancer Compound(s) Based on G-Quadruplex Ligands. Current Pharmaceutical Design, 18(14), 1973-1983.

Lim, K. W., Alberti, P., Guedin, A., Lacroix, L., Riou, J.-F., Royle, N. J., . . . Phan, A. T. (2009). Sequence variant (CTAGGG)(n) in the human telomere favors a G-quadruplex structure containing a G center dot C center dot G center dot C tetrad. Nucleic Acids Research, 37(18), 6239-6248.
Lin, J., Yan, Y. Y., Ou, T. M., Tan, J. H., Huang, S. L., Li, D., . . . Gu, L. Q. (2010). Effective Detection and Separation Method for G-Quadruplex DNA Based on Its Specific Precipitation with Mg2+. Biomacromolecules, 11(12), 3384-3389.
Liu, W., Zhu, H., Zheng, B., Cheng, S., Fu, Y., Li, W., . . . Liang, H. (2012). Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb2+. Nucleic Acids Research, 40(9), 4229-4236.
Long, X., Parks, J. W., Bagshaw, C. R., \& Stone, M. D. (2013). Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Research, 41(4), 2746-2755.
Lorenz, R., Bernhart, S. H., Siederdissen, C. H. Z., Tafer, H., Flamm, C., Stadler, P. F., \& Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6.
Marcel, V., Tran, P. L. T., Sagne, C., Martel-Planche, G., Vaslin, L., Teulade-Fichou, M.-P., . . . Van Dyck, E. (2011). G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis, 32(3).
McCaskill, J. S. (1990). The equilibrium partition-function and base pair binding probabilities for rna secondary structure. Biopolymers, 29(6-7), 1105-1119.
Menendez, C., Frees, S., \& Bagga, P. S. (2012). QGRS-H Predictor: a web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences. Nucleic Acids Research, 40(W1), W96-W103.
Mergny, J.-L., \& Lacroix, L. (2009). UV Melting of G-Quadruplexes. Current protocols in nucleic acid chemistry / edited by Serge L. Beaucage ... [et al.], Chapter 17, Unit 17.11-Unit 17.11.

Moon, I. K., \& Jarstfer, M. B. (2007). The human telomere and its relationship to human disease, therapy, and tissue engineering. Frontiers in Bioscience, 12. doi: 10.2741/2412

Moon, I. K., \& Jarstfer, M. B. (2010). Preparation of G-quartet structures and detection by native gel electrophoresis. Methods in molecular biology (Clifton, N.J.), 608, 51-63.
Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen, T. L. M., Petersen, J., Andersen, J. P., . . . Nissen, P. (2007). Crystal structure of the sodium-potassium pump. Nature, 450(7172), 1043-U1046.
Musetti, C., Krapcho, A. P., Palumbo, M., \& Sissi, C. (2013). Effect of G-Quadruplex Polymorphism on the Recognition of Telomeric DNA by a Metal Complex. Plos One, 8(3).
National Center for Biotechnology Information.(2014). Homo sapiens chromosome 19, GRCh38 Primary Assembly. Retrieved April 142014 from http://www.ncbi.nlm.nih.gov/projects/sviewer
Nguyen Thuan, D., Haselsberger, R., Michel-Beyerle, M.-E., \& Anh Tuan, P. (2011). Following G-quadruplex formation by its intrinsic fluorescence. Febs Letters, 585(24), 39693977.

Okumus, B., \& Ha, T. (2010). Real-time observation of G-quadruplex dynamics using singlemolecule FRET microscopy. Methods in molecular biology (Clifton, N.J.), 608, 81-96.

Onyshchenko, M. I., Gaynutdinov, T. I., Englund, E. A., Appella, D. H., Neumann, R. D., \& Panyutin, I. G. (2009). Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs. Nucleic Acids Research, 37(22).
Ou, T.-M., Lu, Y.-J., Zhang, C., Huang, Z.-S., Wang, X.-D., Tan, J.-H., . . . Gu, L.-Q. (2007). Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. Journal of Medicinal Chemistry, 50(7), 1465-1474.
Palacky, J., Vorlickova, M., Kejnovska, I., \& Mojzes, P. (2013). Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Research, 41(2), 1005-1016.
Pandey, S., Agarwala, P., \& Maiti, S. (2013). Effect of Loops and G-Quartets on the Stability of RNA G-Quadruplexes. Journal of Physical Chemistry B, 117(23), 6896-6905.
Paramasivan, S., Rujan, I., \& Bolton, P. H. (2007). Circular dichroism of quadruplex DNAs: Applications to structure, cation effects and ligand binding. Methods, 43(4), 324-331.
Parham, W. A., Mehdirad, A. A., Biermann, K. M., \& Fredman, C. S. (2006). Hyperkalemia revisited. Texas Heart Institute Journal, 33(1), 40-47.
Phong Lan Thao, T., Mergny, J.-L., \& Alberti, P. (2011). Stability of telomeric G-quadruplexes. Nucleic Acids Research, 39(8), 3282-3294.
Presti, C. F., Jones, L. R., \& Lindemann, J. P. (1985). Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. Journal of Biological Chemistry, 260(6), 3860-3867.
Randazzo, A., Spada, G. P., \& da Silva, M. W. (2013). Circular Dichroism of Quadruplex Structures. Quadruplex Nucleic Acids, 330, 67-86.
Redman, J. E. (2007). Surface plasmon resonance for probing quadruplex folding and interactions with proteins and small molecules. Methods, 43(4), 302-312.
Rio, D. C., Ares, M., Jr., Hannon, G. J., \& Nilsen, T. W. (2010). Nondenaturing agarose gel electrophoresis of RNA. Cold Spring Harbor protocols, 2010(6), pdb.prot5445pdb.prot5445.
Rogers, J., \& Wall, R. (1980). A mechanism for rna splicing. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 77(4), 18771879
RSCB PDB. (2012). Structure of an intramolecular G-quadruplex containing a G.C.G.C tetrad formed by human telomeric variant CTAGGG repeats. Retrieved November 28, 2012, from http://www.rcsb.org/pdb/explore/explore.do?structureld=2km3
RSCB PDB. (2012). Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Retrieved November 30, 2012, from http://www.rcsb.org/pdb/explore/explore.do?structureld=2JO1
Rubis, B., Kaczmarek, M., Szymanowska, N., Galezowska, E., Czyrski, A., Juskowiak, B., . . . Rybczynska, M. (2009). The biological activity of G-quadruplex DNA binding papaverine-derived ligand in breast cancer cells. Investigational New Drugs, 27(4), 289-296.
Samatanga, B., Dominguez, C., Jelesarov, I., \& Allain, F.H.-T. (2013). The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Research, 41(4), 2505-2516
Scaria, V., Hariharan, M., Arora, A., \& Maiti, S. (2006). Quadfinder: server for identification and analysis of quadruplex-forming motifs in nucleotide sequences. Nucleic Acids Research, 34, W683-W685.

Shay, J. W., Zou, Y., Hiyama, E., \& Wright, W. E. (2001). Telomerase and cancer. Human Molecular Genetics, 10(7), 677-685.
Shapiro, M. B., \& Senapathy, P. (1987). Rna splice junctions of different classes of eukaryotes - sequence statistics and functional implications in gene-expression. Nucleic Acids Research, 15(17), 7155-7174
Shinoda, T., Ogawa, H., Cornelius, F., \& Toyoshima, C. (2009). Crystal structure of the sodium-potassium pump at 2.4 angstrom resolution. Nature, 459(7245), 446-U167.
Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., \& Hurley, L. H. (2002). Direct evidence for a Gquadruplex in a promoter region and its targeting with a small molecule to repress cMYC transcription. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11593-11598.
Song, Q., Pallikkuth, S., Bossuyt, J., Bers, D. M., \& Robia, S. L. (2011). Phosphomimetic Mutations Enhance Oligomerization of Phospholemman and Modulate Its Interaction with the Na/K-ATPase. Journal of Biological Chemistry, 286(11), 91209126.

Stegle, O., Payet, L., Mergny, J.-L., MacKay, D. J. C., \& Huppert, J. L. (2009). Predicting and understanding the stability of G-quadruplexes. Bioinformatics, 25(12), I374-I382.
Sun, H., Li, X., Li, Y., Fan, L., \& Kraatz, H.-B. (2013). A novel colorimetric potassium sensor based on the substitution of lead from G-quadruplex. Analyst, 138(3), 856-862.
Teriete, P., Franzin, C. M., Choi, J., \& Marassi, F. M. (2007). Structure of the Na,K-ATPase regulatory protein FXYD1 in Micelles. Biochemistry, 46(23), 6774-6783.
Thandroyen, F. T., Morris, A. C., Hagler, H. K., Ziman, B., Pai, L., Willerson, J. T., \& Buja, L. M. (1991). Intracellular calcium transients and arrhythmia in isolated heart-cells. Circulation Research, 69(3), 810-819.
Tluckova, K., Marusic, M., Tothova, P., Bauer, L., Sket, P., Plavec, J., \& Viglasky, V. (2013). Human papillomavirus g-quadruplexes. Biochemistry, 52(41), 7207-7216.
Tseng, T.-Y., Chien, C.-H., Chu, J.-F., Huang, W.-C., Lin, M.-Y., Chang, C.-C., \& Chang, T.-C. (2013). Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy. Journal of biomedical optics, 18(10), 101309-101309.
van der Velden, A. W., \& Thomas, A. A. M. (1999). The role of the 5 ' untranslated region of an mRNA in translation regulation during development. International Journal of Biochemistry \& Cell Biology, 31(1), 87-106.
Viglasky, V., Bauer, L., Tluckova, K., \& Javorsky, P. (2010). Evaluation of human telomeric gquadruplexes: the influence of overhanging sequences on quadruplex stability and folding. Journal of nucleic acids, 2010.
Vummidi, B. R., Alzeer, J., \& Luedtke, N. W. (2013). Fluorescent Probes for G-Quadruplex Structures. Chembiochem, 14(5), 540-558.
Williamson, J. R., Raghuraman, M. K., \& Cech, T. R. (1989). Mono-valent cation induced structure of telomeric dna - the g-quartet model. Cell, 59(5), 871-880.
Wilson, K. S., \& Vonhippel, P. H. (1995). Transcription termination at intrinsic terminators the role of the rna hairpin. Proceedings of the National Academy of Sciences of the United States of America, 92(19).
Wong, H. M., Payet, L., \& Huppert, J. L. (2009). Function and targeting of G-quadruplexes. Current Opinion in Molecular Therapeutics, 11(2), 146-155.
Wong, H. M., Stegle, O., Rodgers, S., \& Huppert, J. L. (2010). A toolbox for predicting gquadruplex formation and stability. Journal of nucleic acids, 2010.

Wong, W. C., Zhuang, J. Y., Ng, S. L. L., New, L. L. L., Hiew, S., Guo, J. J., . . . Li, T. H. (2010). Conformational organizations of G-quadruplexes composed of $\mathrm{d}(\mathrm{G}(4) \mathrm{T}(\mathrm{n}))(3) \mathrm{G}(4)$. Bioorganic \& Medicinal Chemistry Letters, 20(15), 4689-4692.
Wu, Y., \& Brosh, R. M., Jr. (2010). G-quadruplex nucleic acids and human disease. Febs Journal, 277(17), 3470-3488.
Wuchty, S., Fontana, W., Hofacker, I. L., \& Schuster, P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49(2), 145-165.
Xu, L., Xu, Z., Shang, Y., Feng, S., \& Zhou, X. (2012). Structural polymorphism of human telomere G-quadruplex induced by a pyridyl carboxamide molecule. Bioorganic \& Medicinal Chemistry Letters, 22(8), 2988-2992.
Xu, Y., Suzuki, Y., Ito, K., \& Komiyama, M. (2010). Telomeric repeat-containing RNA structure in living cells. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14579-14584.
Yan, Y.-Y., Lin, J., Ou, T.-M., Tan, J.-H., Li, D., Gu, L.-Q., \& Huang, Z.-S. (2010). Selective recognition of oncogene promoter G-quadruplexes by $\mathrm{Mg} 2+$. Biochemical and Biophysical Research Communications, 402(4), 614-618.
Ying, L. M., Green, J. J., Li, H. T., Klenerman, D., \& Balasubramanian, S. (2003). Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 14629-14634.
Yuan, G., Zhang, Q., Zhou, J., \& Li, H. (2011). Mass Spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. Mass Spectrometry Reviews, 30(6), 1121-1142.
Yuan, L., Tian, T., Chen, Y., Yan, S., Xing, X., Zhang, Z., . . . Zhou, X. (2013). Existence of Gquadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy. Scientific Reports, 3.
Zhang, C., Liu, H.-h., Zheng, K.-w., Hao, Y.-h., \& Tan, Z. (2013). DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Research, 41(14), 7144-7152.
Zhou, Z., Zhu, J., Zhang, L., Du, Y., Dong, S., \& Wang, E. (2013). G-quadruplex-Based Fluorescent Assay of S1 Nuclease Activity and K+. Analytical Chemistry, 85(4), 24312435.

Zhu, H., Xiao, S., \& Liang, H. (2013). Structural Dynamics of Human Telomeric G-Quadruplex Loops Studied by Molecular Dynamics Simulations. Plos One, 8(8).
Zuker, M., \& Stiegler, P. (1981). Optimal computer folding of large rna sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 9(1), 133-148.

APPENDIX I

GQS mapping from Table 2 and conserved sequence from Table 6 in the FXYD1 pre-mRNA of each ortholog

Alternate exon sequences are represented in uppercase characters, where purple characters are UTR sequence bases and black characters represent translated sequence. Intron sequences are denoted by lowercase blue characters. The highest scoring GQS from Table 2 are underlined, while conserved sequences from Table 6 are highlighted yellow to map their position in the gene for each organism.

```
Key: UTR region
    Intronic sequence
    Exonic translated sequence
```


Mus musculus

GGGUGGAGCAUCCAGUUCUGGGCCAGGGGGUCCAAAGUGCUUAGCUCCUAGGGUGCACAGCU GGACAUUUGGGGGUCUUCUGUCAACAGGGGACAGCGUGAAUGGGgugagcgucccccagccc ucccuccgggccccucagcuccccuagcugggaggccuauuuugggaacaagaguggccagc cuguggcuucucaggcaggccugacccaagagggaggagagaguguggggacagggguugca caggggcgggagaguuagagacuccucccuuuuucagcggccacugcgagaccccuggcagg gggugaggcucagauacucauuuguauaggucuguuucugucucuguunggggggcacagaa ggcccagagcgagagaaugugcuuaugucuaaacccugcgcucucuaaucaacaguuugggg agaggguguuguuugcuccuguuccagcuacacccacucuguguguguguguguaccuguac auaaaugugucugugcccguaugugugucccugaaacaacaucugacuucucucaggcaugg gссgccugucacucacuggccuaaagucuuguugugaaagaugucacccagagguggacaaa gagagggauguucccccuuuucucacagcuucaagaaaaggagaugggguggccuguaggga uguggcuccuggcugggccucaccccagcaguguuauacaggacccccugagucuunggggg gggagcuguugccaugguggcccgugugcagcaaauuccucccgggugaagugggagauauu uauacccagggucagggagagagcgggcaggcggccgagggcaggagagcugggacggccug gguacagagagaccacugguugagguguguaggggcagguggggcugggcauguccugcugu augucgccuaguguucccaccuauguccagaggcagcuugcuucccuuacaaggguagguuu ugagacucugggaccagcuaacggaugggaguagccugugggagccaccccauccccccagg acucugccucuccccaucugucuugcugcuguguaugcuguggucuccuggucccuaumauu gaguuguunuagggacaugguunugggugaagcaagggagccauucaacuugaauggcugac acuuaaguccuuaggccguccuugacuuaaccccacggguucagAUCCUCUUUAGGAGGGAA AGAGAGCAGGGCAGAGGACAUUUCUUGACCCUGGCUGACUCCCUAGGGCAAUGGCAUCUCCC

GGCCACAUCCUGGCUCUGUGUGUGUGUCUCCUCUCCAUGGCCAGUGCAGgugaguccaaagg aggugcucagcaucucagccauguggguggcagagguagggaaaagccccccaagaaaaccc agugagagaccccaaacuagacacuauguaacaggaaaucaggggucuccuaggcaacagcg gggguggauggaagguggauucccggggugacggaaacaugaacaaucugcaagauaucagg gugccggaccagugcuggagguuccaggacgcagagcaggcuggcagccugccaguggcuca guagcaccuaaacucccaguccaagaagaucaguggugccccugaagggcucccuuauacuu uccccuguuacagaccccaggagcuacucuaacgcugcucuuuauuucucuuucuagAAGCU CCACAGGAACCGGAUCCAUUCACCUACGgugaggggaagcuacugugggguuuggagagagg gссиgcguguuucuauucccucucucugucucucugucacugucucugucucugucugucuc ucucucucauacacacacaccacauccuccacucucuccugcucuaguugucuuagaccccc uugccuguunguuugaccccccccccgucucauuugaacugguuuaucaguaucagguaccu caaccucuacgacccccacuuucagcagcauccuccucuccauccuuucccucuuccuacca ccuccucccugccuccuuccucuaaccuguccucuccuccccucucacaucuguccuuuccc cuucucucuccuccuccuugagcugcauacuauacucuuccccgcuggucacccuccuccgg ggcuguccacagAUUACCACACCCUGCGGAUCGGCGGCCUCACUAUCGCUGGGAUCCUCUUC AUCUUGGGCAUCCUUAUCAUCCUUAgugagugucugcaccugucuucuccaucccgccucca gссиucccuccccaaaccccacucccagcaacacaugcagccugugcgcuauucacgcccaa cacaggcucagucuccaaccacuucucuuaggucccacccugacuccaaccucucaccgcac agaccccacccccaccucaaaccacgccccucaccucccacccagaccacgcccccacaccc uacccuucuucagccgcgccucaggccccacccccugcggccuccccaguuuggaggagagc cuagggaugcgggagcgagagggaagcucagccuauacccucccacuccacagGCAAGAGAU GUCGAUGCAAAUUCAACCAACAGCAGAGgugaguggucccucugggccucccucgcuccuuc cgcaguggagaggcgguuggggcgaggcagcaagugcacccauccugcagugaacauguauu aagcgcuuaguguguguuaaacccuaagacaggcuccugggccggagcgauggucaagcucc cucucugccuggccuagcgcccagccagugggggcgcugggcucccaccagccccgcagaug gaaacucaagcguggugaggcgaagcugggcagaagcagccgcgcugaaaugagaucaccuc acagggcggcccaguuuagcuccagucccgauccucgcgcaggauuccucucgaaauaaacc uuuaaagcgcagaaaacguaggcaugccuucugcgugcuaagaugaucacagaugccuccau gccgacccucuggcaugcuugagugcgcacuacgcgccaggugcccgauuccuucucuauua uguacuccuuaccccacccggaugaggugcgcuccaucaucaaucccauuuugcauaugagg aaacugaggcacggggcgguaaggugacuuagggucacucacuggacccaagucccaagucu cccaagacgcugugaccgucccucucccaacaaagucaaguaccuuccccaauaucccggag gccuucacccgugacaggcugggagcaccuccugccgcaccccgaaacagcagccgggcgcu cuuguuucugacggaccgcguucauaucaaguccacggugggggucgggaaauaaggccugc auuagggggcuucucggaagcggcugccucuccugguccauccgaauuccucuaucuguucc uuuuuagAACUGGGGAACCCGACGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCgugag uucggggauacugcogqguuuquggggcagcuguuuucaagagcccccucuucuuggacuca gaauggguuuggcggagaguuagcccugguugcagacucccccuuaccccagaacucucugc gucccucucagGUCUGUCAUCCCGCAGGCGGUAGAACCUCCACCUGACUCCAGGAAACUCAG CCAGguucugcaguugaugggaggaaggagggagagggguuuggagggagggaggcaagggg cccagugccagggugggauaguggcgagagcuugccacuuacucuuuucacccccgcagAGC CCCCUUAGCACCUGACACCUCUCCCCACCCAGAUGCUCGCCUGUGACCACCCCCAGCGUUCC CUGCAUCAGCCCUGCCUUUCGGACACCCCUUGCUGCUCAGACCUCUAAUAAAACUCGGUUUU CCUUCUUG

Canis lupus familiaris

GGGAGGGGAGACCGCUGAGGGCGGCGCAGGACCAGCUCUGGAACAGGGGGUCCAAAGUGCUC ACCCCCGGCACAGCCGGACGUUUGGGGGCCUUCUUUCAGCAGGGGACAGCCUGACUGGGgug agcguccccugcccucccccccaggccucaccccuggccuggccacgccaccuauuuuggga gcaggaguggccagcccguggcuucccaggcaggccagacccaagaggaagggagugugguu gggacggccgugggguuccccaggagccgagugugggugcgacucccccuccccugcugcug cgugugcaggcugggguggguuuugagcacugauguguguaggucggguggcgucacuuuug gggggcacuggaggcucagaugaagaguaucguuuuagugacugugucuccaccccaugucu ugcucaaaccagagguuuggggaguaggcguugucuccauuccagccccauugcguaugugu gugugucugugugucugugugucugugugugucccuggcccuggcaucugucuuccgucucu cagccccgcugcucugggccucaugccacucgccuggugguguccgccugugagagauguca cccagaggcaggcggaggggauguuuauccuuguucucaacauuuccagaagagaagggggu ggccuuucccccaggggcagccuguagcgauguggcagccgggccucaccccggcagaguug ugcgugacccccgagugggggaaggaaggcuguugccaugguggccugugugaggcaaauuc cuccagggugaagugggagauauuuauacccggggucaggagagagccggccagcggccgag gccaggggagccgggauauuacacggacacagcgaggcccugugugugggcagguggcccuu gggcgugucuugggcugcagugucgcucaccccucacggcgugcgucugucuccccaccugg uggggugagccauccugcucuucccacgggguaggugugggaaccuggggcccgcugucagg aggcccaggccuugggcgaccccggugggcugugugugucucaccccugcccucgcugugug ucguaccacccccacggugguuuguuuuggggacaccguguccacaugaagcaguggccaag cuggaugaugggugcuuuuggaauuaagccccuggacucugauuuaaccccuuggguucaag ccccaauggugagggagacgaggaacacauuucuugacccuugcugccucccagGACGAUGG CACCUCUCCACCACAUCUUGGUUCUCUGUGUGGGUUUCCUCACCAUGGCCACCGCAGgugag ucuagggcggguagcccacaacccaccucagccccaagggaggccagggaggggaaagcccu ucaagagaaccaacuuggagacuccaaccuccacccagucaguugggguaccaggaaacugg ggacuucgcgugggcccaaacaccagcuaguauuuggggcaggggagcggaugcaaggucag gcaaaggcggauggugggauggaggccucuaaccucaaaugacagaaucauugacaacaggg gauaagacaggaagcgggggcaguuaggagcccccugccccacccagcacagggcagaugag gcggcuaaggcccagggagggugggcagccugcucagggcccagcgguccgcagacucucag cccacgggaguaaagcccccagagggucucuuuacgcccuucccugugcagagucccaggaa gcagccaaccucugacuuccuucucuuuccagAAGCGCCACAGGAACACGACCCGUUCACCU ACGgugagggagggagaggcaucuacuggggagccgggagggcgcauggccuaggugugccc guccuguccucauuaccucucuucuccuuguccaccugucucucgggcucgguguuuguauc ucggucacucuccggucucucgcgucucucagagaucuggcucucugacucccuguuuugau cugcccuugucugugucucugugugucugucuacuuggucccucucugagucucuuncuccu gucaccucugcguacuucauggcucauccucugcugugccucccucucuccccucugcgguc cccucacccucuccaccauccuccucuacuuccuuguuuccugccuccuccccgccugcccu gсссассuccucccucuccuucgcaccccgcuugaucucccucccugaucccgcucccacuu ccuccuuucaccguucuccucuccccucccggguccuccucgcccccuccuccuccccuucc uccuccccucccugcccucacccuccucccugccgcccacagACUACCAAUCCCUGCGGAUC GGAGGCCUCAUCAUCGCCGGGAUCCUCUUCAUCCUCGGUAUCCUCAUCGUCCUGAgugagua cccccagccccugccuccagcccccgcgggugccguggugugcgugcccgccucgccgcggg ucuccgccccgccccgcccucgccccgcccccgccgccuuagccecgcccacgucccgcccc ugccgccucgccccaccccugccaccccagccccgccccuccgccucgccccgcccacgccc ccugccgccccgcccuagcccegccouccgccccgcccuagccccgccouccgccccgcceu ccgccccgccccgccccuccgccucgccccgccccuaccccugcggcuccgcccouccecag ccccaggcggcucaccagcgccgcuccgugcccgcccggagcugaaucccggccuccuccua cccccacccgcagGCAGAAGGUGCCGGUGCAAAUUCAACCAGCAGCAGAGguaagaggcccc uccgggcucucacucaccuacuuucgcucuagaggggcgcugcgggggugaggcagggcauc caccagacccgcagccggagcccuuuccgcaaaaauguauuaagccccuacuaugugugcca
agceccaagccaagcccuggggaccagugaauaaauaaacugcccucccugccuggcugagc ucccagcccagugggggeggcggccgugggcuccaacagccccacaaauauaaaaucacaaa gcgugauaagugcugugaaagagccacggcgaaaugagaucaccgcgcuuggcggcccaguu uagcucagaguccuguuccuagcucuuugauucaucuuuaaauaaaaauuuaaggcaacgua ugaacaccuucuccauguugaaacagucauggaugucauumuaaauaauagcuaauauuuag cgccacgcgccagauaccguuuuauugccuuaucugcuccccacaccccuaguaggagguag gugcuguuauuaaccucauuuugcuggugaggaaaccggcgcacagggaggcgaagccacuu gсссаagaucgcucaacgaggagaugaggguucuggguuuuucuaaccuaggcugucgccag gccggccgcgcucaggccccucggcgccccucccccaccaacuuccagucucuuccccugcg cuccgggaggcacugggagcagcacccccuggcacacguuuaagccgcuccugggugcgccc gauuuccuggcggceccegagcougcuccucgccoaucuccagcccucagcgcaggggacug ugaagugagggcugccouggcggagggagggguccagggggcggcugccucucuccguuuuc auccссаauuccuucugccagGACUGGGGAACCUGAUGAAGAGGAGGGAACUUUCCGCAGCU CCAUCCGCCgugagucuggggagauuucgaguguuuggggcgggggugagggcggguuccaa gaaccccuuuccuggcccucccggggugcgaggugggaggggcuggcuuugaaacccgaggu cccegaguccccougcugcuuccegcuccgcaggagcuagggugccccuccugacgcccgga cucuccguguuccсссucagGUCUGUCCACCCGCAGGCGGUAGAGACACCUGGCGCGAUGGA ACCCAGCCAGGUCCUGCAGCUCGGGCUAGGCUGGGGGGCGGGGGGAGGAGAAGGGGGCGAAG GGUGGGCUGGGAUGGCCGGGGGGCUCUCUUGCCUCUCACCUUUGUCACCCCCACAGGAUUCC CCUGGCGCCUGAUGCCUCCCACCCACCACCUGUGCGCCCACCGCCACCUGGACUGCCCUCUU CCCCAGCCCUGCCCCCGCAGGCUCCUCUCUGCCGCCCAGACUUCAAUAAAACGUGCUUUUCU CUCUUGA

Pan troglodytes

AAAGUGCUCAGCCCCCGGGGCACAGCAGGACGUUUGGGGGCCUUCUUUCAGCAGGGGACAGC CCGAUUGGGgugagcgucccccacuccuucccuccaggcoucacccouggucuggcugggcc gccuauuuugggagcaggaguggccagcccgaggcuucccaggcaggccaacccaagaggga gggagugugguugaggcaguggguucugcagggugggaugugggugacuccucccugccoug cuggugcgugugcacccuggcaggguguggaguugggacacacacguguguagggcugguug cgucacugcgugggggcaccggaggcccagaggaggaguacuggaugccugacgguguunac accccacguccugcuccaaccagaaguuuggggagaggungunguucauguccauuccggcc ccacuguguguguguguguguguguguguguguguguguguaucccugccccagcauguguu uucuaucucuaaggcccacugggcugggccucaugucacuugccugacauccgauugugaaa gaugucacccagaggcgggcagaggggcugucuuuuccuuuucucgungcugcccagggagg agacgggguggccuuucccacaggggcagccuguggcgauguggcagcugggccucaccccg gcagggcugugcgugacccccugagugggggaaggcaggcuguugccaugguggccugagcg agcagaauuccuccagggugaagugggagauauuuauacccggggucaggccgcgagcgggc gggcggagagggcagggagcugggauuucgcggggcacagugaggccgggcauguaggcagg ugggacuugggcuugcccugcugucuccugcuccguguuugugugaggcagcgccuccucug cccugccaggguaggucugggaaucgggggccugcugcgggagguggaggcccaagggaggc cccccggggacugugugucucacccccgucccugcuacguugugguguugugugaucccauc guggagguuguuuuggugacacuguguccccacgaagcuggggauacccguuncucuagcuu ggagccaccaagauagaggacgaacacuucugugauucaguccccagacugucucugacuua aucccuuggguucaagcccuaugugggagagcaagggcacacacugccuaauccgugguguc ccccccagGACAAUGGCGUCUCUUGGCCACAUCUUGGUUUUCUGUGUGGGUCUCCUCACCAU GGCCAAGGCAGgugagugcaggggaggcugcccgcuacccaccucagccccagggguggcgg uggggaccgaagaaccaaguuggagaccccaaccuagacuaagucggcugggguaccaagaa guuugggggucuccacgugggguccagucacaggcugguauuugggggaggggagaggaagc cccagaucaggcaaagauggggugggauggggcugaauccccgaugggauaacugggucaca gacagccugccgugagucagggagcuggggcaguuaggugccaccugccccaucugggacag ugcagagggggcagcugggacccagagagugugggcagccugcccagacacccucagacucu aagcccagcaaggcagagccuccaguggucuccucaugccccucccugccaggaccccagga agcauucaaccccugauuucucucucuuuccagAAAGUCCAAAGGAACACGACCCGUUCACU UACGggagcgggggucuaaugaaunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

 nnnuacauuguggu ggauucuauugaaucucugucauucuccuunccucuauuuugucuuuccucucugaunccac cugucugcaucuuunccugucugugucuaucugugucacugucuaugugauaccucucuggu ucucuuncucuugccugcgucugucucagcaucucguggcccauccucugcuucuucccauc uucucucccccouguccuccuccucccugucccccuccucccuunccuauacaccccuunce ucucccugguaccecacuunccuccucccauaucugcucccccunaaunaucunaunucccc ccuucugccugcugguccuuncucccuguncccuccuucccaaumanccccucuccuauncu cccuccucuccucccugcccucaccuuccougcucugcugcucacagACUACCAGUCCCUGC AGAUCGGAGGCCUCGUCAUCGCCGGGAUCCUCUUCAUCCUGGGCAUCCUCAUCGUGCUGAgu gagugccccuagcccccgccoucuaccccgccucuccouggccocgccucuccouggccocg ccucucccuggcccogccucucccuggccccgcuucucccuggucccgccccuccouggcce cgccccgccccaaccccucccaggccuugccccgccuaccougccuugguuccccggcсссс ggucucgccucuagccccgccccgucccccaagccccgccccucgcgagggcgagcuggagc uacagcgccgcuuggcgcccgccgggagggagccucagcuucuccuaccucuccaugcccac agGCAGAAGAUGCCGGUGCAAGUUCAACCAGCAGCAGAGguaagacgccccuccccgcccuc cuucgcccgcuccugcucuggagggcgccgcgggugaggcggggaguaccccugaccogcag
cccgauccccaucagcgacuauguauuaagcaccuacuaugugccauggcccaagccuggcc cugggaccaagcgaggaaaaaaccucccgcccuuccuggccgagcucccagccuaguggagg cgguggccguggguuccaacagccccacagauagaaaaaucacaaagcgugauaacacaaag ugcaggaaagaagaaacggcggugaaaugagaucaucucacacgcggcccaguuuagcuuag agucuuguuccuagcucuuugauuccucuucgaauaaaauguuaaagcauggacaauguaug aauauguuagaacaauuauagauauuaucauaaguaguagcuaauauuuacuggguguguac cacgugucagauacgguuucacuuccucugggagggaggugcuguuauuaaccccauuugac agaugaggaaacuaaggcacagggagguaaagucacuuuguucaagaucacucaaguagaag augggggguucuggguuuccaacccaggccaucucauggcagucugccaaguccccaugacu aucccuccccuaccaacuucacaucccugcccccaaauccgcggagguacucacuguuaacc agcucagaagcccccugccagcacagaagcugcuccugggugcuccucauuucuagcggacc ccgagccugcucuucguccauaucugggccuaguuacaccaaucugggaaaggaggcuugua cugggggguuccuagaagggcagccucucccccuuuccaucccgaaaucccucugccucugu cuucccagGACUGGGGAACCCGACGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCguga gucuggggagacugcogquauuunggggagaggqcuggunccaaggaccccuunuccuggcc cucccuggcugcguagagggaagggcuggaucugaaagcggagggcggggaguugccccgcc gcgggccccaccugcccaggaacuggggaugccucuccagaaugacccccgaucuccguguu ccccccagGUCUGUCCACCCGCAGGCGGUAGAAACACCUGGAGCGAUGGAAUCCGGCCAGgu gcugcagcucugacacggcggugggagggaaggagggaggaaggaaaggcgggagagggagg gggccaagugccaggquugaagggcogcoagggquggggcuggacguccccccucgccucuc acccuuuucacccucacagGACUCCCCUGGCACCUGACAUCUCCCACGCUCCACCUGCGCGC CCACCGCCCCCUCCGCCGCCCCUUCCCCAGCCCUGCCCCUGCAGACUCCCCCUGCCGCCCAG ACUUCCAAUAAAACGUGCGUUCCUCUCGACAGCACUUUGUCGGUCUCGGUCCCUCAGCGCGA AAGCCCAGCGCCACUGGGCCCCAGCA

Bos taurus

GGAGACCGCUGAGGGCAGCGCAGCCAGCUCUGGGCCAGGGGGUGCAAAGUGCUCGGCCCCGG GGCACAGCCGGACGUUUGGGGGCCUUCUUUCGGCAGGGGACAGUCUGACUGGGgugagcguc ccccgccccuccccuccagggccucaccccugnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
 nnnnmnnnnnnnnnnnmnnnnnnnnnnmnnnnnnnnnnnnnnnnnnnnnnmnnnnnnnnnnn

 nnnnnnnnnaaagaugucacccagaggcaggccaggggauguuuucccuguucucacugcuu ccagaagaggagaagggguggccuuucccacgggggcagcugguggcaguguggcagcccag ccucaccccgggcaggguugugcaugacccccaaguggggggaggaaggcuguugccauggu ggccugugcgaggcaaauuccuccagggugaagugggagauauuuauacccagggucaggca gagagcgggccagcggccgagggcaggagagccgggcuauuacggacacagcaaggccgugg ugugugggcagguggcccuugggcguuuccuggcugucucgucccuggcagugucugucucu ccaccuggguggggugaggcaucugcucuccccugccaggguaggugcggggaaccuggggc cuacagugagggaggccccggccugcgggagauccuugugggcugugugugccucaccccgu ccuugcugcugggugacccucuunguguggguuguuuuggugacgcuguuuccugaugaagc agggggcgccucuguuucucagggugaccaagccggaugauagaugcuuuuggaauuaaguc ccuggacugucucugacuuaaccgcuuggguucaggccccaguggugggagacugagggcac gcauuuccugaccuuugguauuccccagGACAAUGGCAUCUCUCAGCCACAUCUUGGUUCUU UGUGUGGGUCUCCUUGCCAUGGUCAACGCAGgugagucugggggaggcagcccacuaccacc ucagccccaggggugguaaggguagaggaaaauucugcaagagaaacaagcuggagccucca gucugaacugagucucaguggggucucaugugggguccagucacaggcugguaucuggggga ggggagaggaugccccaggucgggcaaagggggagggugggauggaggccggcuucccguga augauggaaucacagacaaccuggaaugagauggagagcugaggcugucaggugccuccugc cccauuccggacagugcagagaggcagccaagacccagagagggugggcagccuacucagag uccaacaguccccagacuccugccccgagacuguaaaacucccacagggucucgugaugccg cucucuguccagggucccaggaagcauccaacccugauuucuucuucucuuuccagAAGCAC CACAGGAACACGACCCAUUCACCUACGgugagggaggggcaucuuucucugggugcugggcu ugguuagccugcccuaucucucucuguuucugucuccaucauncucuagccucucgguguuu acaucuunggcauucucauncuuuaucucuugauunggcucucugacucuuncggucucgau cucccuungucccugucucucugagucucugucucucuauungugucccucucugucucucu gauucauucuccuuuuaccucuuaguaucccacggccucuccucuguugccaccugccuuuc uccucucccugccccccuuucccucuccaucauccuuccuuacucgauugcuuccucccucc ucuugcccuguccaccuccuaccuuuucucccugaucccccuucucccacaucgcucccucc uccucgcacugauguccuuucccuccucuuccccauccuuccucuuugccccuuccucccca uucugccccuuuccuauccuuccuccuccucucccugcauucacccuccuccgugcauucac ccgccucccugcugcccacagACUACCAAUCCCUGCGGAUCGGAGGCCUUAUAAUCGCCGGG AUUCUCUUCAUCCUGGGCAUACUCAUCGUCUUAAgugagucccccuauccugccuucagucg cuuccggugucugccccagccccgcccaaccucccgcuccgccuucaaccccgccccaucug ugcccuuggccccgccuuuguuucuguccaccccacuuuccucccugggccuugcaccuguu cugccccugcccucagccacgucccaguuucugcccuucccccauucccgccuccggccccg cccgguccuuauccugccugcccucgggcucgccccgccucuauccccgccccggccccgcc cccacuuauauccccgcuucuggccccgccccguuuccuauccccgccccggacacgccccc cauuucuauccccgcccucggccccgccccugccccugccccacccuuauccucagacacgc cagcccgggcaagcgagaucuguggcucgcugugcgcugugcggcuuagaggggaaucucag cacacuccucuccacgcccccacccacagGCAGAAGAUGCCGGUGCAAAUUCAACCAGCAGC AGAGguaagaagccucucuggacccucaucuccucccgcucuaaaggagcguugggggugag accagaaguccacucaauccacagccagauccuucggcaaauauguauuaaacaccuacuac gugcccagccccaagccaggccuuggcaccaagccacgaguuaacugcccucucugucugag
cuuccaaccaagugggggcgguggccauggguuccaacagacccacaaauauaaaaccacaa agcgugauaagugcugugaaagagucgcggcgaaaugagaucaccuuacuuggcggcccagu uuagcucagaguccuguuccuagcucuuugauuuaucguuaaauaaaauuuuaaagcccaag caacguaugaauaucuucuuccuauuaagauacuuauagauauuauuauaaauaaagguagu auuuuaungugucccauguacaagaugcuauuucauuauguguuauunaccccucacaccau cucuauaaaguaggcgcuguuauuaaccucauuuuacagaugaggaaacugagacaugggaa aguguucacaugccccagaucauucaacuggaagaugagggcucuggguuucucaccuaggc ugucuccaggcaaucugcccucaagucgcuuuggcuauauaccuccucuuccauauncuagu uccuuccucaacacucugggagguacucgcuguuaucggcuuggagcaccuccugccaaaca cuuaaacugcuccuggguugcacuggauuuncuggcggcuccaaucugcuccuugcccaucu gugggucucaguggauuggucugugaaauggggcgggcaunggggucuuccgaguguagcug ucucucuccuuuuuccaccссссаauucuugaugcaucuccuuucccagGACUGGGGAACCU GAUGAAGAGGAGGGAACUUUCCGCAGUUCAAUCCGCCgugaguuuggggagacuuagggugc ungggaaugcgaguugguuccaagaagcccuungcuggcccucccugggcgcggggggucgg ggaucggggcuugaucugcccugccgugcucccaucuuucagaggagcuggggugccccucu ugacuuccggauucucugucuucccccucagGUCUGUCCACCCGCCGGCGGUAGAGACACCU GGCGCGAUGGGCCCCAGCCAGGUCCCGCAGCUCUAACUAGGCUGGGGGAGGGAGGAUAGAGG AGGAGGAGAGGGCAAAGGGCUGGGUAGCGGGCCUGGAGGGCUCUCCUGCCCUUCACCCUUUU CACCCCCACAGGAUUCCCCUGGCACUUGACGCUUCCACCCACCUUCUGCACGCCCACCACCA CCUGGACUGCCCUCUUCCCUAGCCCUGCCCCCACAGACUCUGACGCUCAGAUUUCCAAUAAA ACGUGCUUUUCUCUCUUG

Rattus norvegicus

GAGAACUGGGACUGCCUGAGUACGGAGAGACCACUGGCUGAGguguguaggggcagqugagq cugggcauguccuguuugucucacagcaunccaccuguguccggagauagcuugcuucccuu ucaaggguagguuuggggacucugggaccaccugucuguuggggguagccugugggaagccc cugaggagucugcccuccccaccucugccucaauauucuguaugcuguguagucuccugccc ccauuauggacuuguuuuagacuugguuuggggugaagcaggggagcuagucaaguugaaug gcugacaguuaaguccuuaggccgcccuugacuuaacccccauggguucaggcccuuuauag aaggggaagagagcagagcagaggacauuuuuugacccuggaugacuccuuagGGCAAUGGC AUCUCCCGGCCACAUCCUGAUUGUCUGUGUGUGUCUCCUCUCCAUGGCCAGUGCAGgugagu ccaaaggagguacccagcaucucagccagguggguggcagaggcagggaaaagccccccaag aagaccaagugggagaccccaaacuagaucccaugugacaggagaucaggggucuccacaua ggcucugaucauggcuggcaucuaggggagaggggaagaugccugagugagguaaaaguggg aguggauggaagquagqucucugggugacagaaauaugaacaaccugcaaggugucagggug ccgggccagugccggagguuccagggugcagaauaggcuggaaaccugccgacggcucagua gcacccaaacuccgggcucaagaagauaggcagagccccucauaccuuucccugccacagac cccaggagcuacucuaauucggaucuuuauuuuucuuucuagAAGCUCCGCAGGAACCAGAU CCAUUCACCUACGgugaggguuucgagagggggucuggguguucuauucucuccucuccucu сисасасасасаса cacacacacacacacacucaggcacacucuuccuccacucucuccugcucuaguugucugag acucccuugccugucuauungaccucucugucucacugggacugcacugunggggagauggg ugccccauccccuacggaguggccauccucgccauuccuucccccuuuccaccaccuccucc cucccuccuuccucuacccuguccucuccuccccucacacaucugcucuuиссссиucccuc uccuccuccuggcccugcaaacuauacccuuccccauuggucacccuccuccggggcugccc acagAUUACCACACCCUGCGGAUCGGCGGCCUCACUAUCGCUGGGAUCCUCUUCAUCUUGGG CAUCCUUAUCAUCCUUAgugagugucugcaccugucuucuccaccccgccuccagccuuccc uccccaagccccacucccagcaacacacacagccugugcacuauacacgcccaacacaggcu cagucuccaaacacuucucccacaucccacccugacuccaaccucgcaacacacagacccca cccccaccucaaaccacgccccucaacucccacccagaccacgcccccacauccuacccuuc cuccagcccugccccaggucccacccccugcggccuccccaguuuggaggagagccuaggga ugcuggagcaagagggaaucucagccuauacccucccacuccacagGCAAAAGAUGCCGGUG CAAAUUCAACCAACAGCAGAGgugaguggucccucuggaccucccucgcuccucccgcagug gagaggcgquggggqcgaggcggcaaaugcacccauucugcagucgaacacguauuaagcgc uuaguguguguuaaacccuaagccaggcuccugggucggagcgauggucaagcucccucucu gccuggcucagcgcccagccagugggggcgcugggcucccaccagccccgcagauggaaacu caagcguggugaggcgaagcugggcagaagcagccgcgcugaaaugagaucaccucacaggg cggcccaguuuagcuccaguccggauccucgcgcaggauuccucucgaaauaaaccuuuaaa gcacaggcaacguaggcaugccuucugcgugcuaagacgaucacagaugccuucccaccgac ccucuagcaugguugagugcgcaccacgagccaggcgccguuuucuauuauguaucccuuac cccacccgggugaggugcgcuccaucauccaucccguuugugcauaugaggaaacugaggca cяgqgagquaagqugacuuagggucacucacuggacccaagucccaaaucucccaagacccu gugaccgucccucuccccaacaaugucaagugccuuccccaacaccccggaggccuccaccg cgcaggcugggagcaccuccugccgcacccugaaacagcagcgggaagcuucuguuucugac ggaccgcgucuaugucaaguccacggugggggucuggaaauaaggccugcacuggggcuucu
cagaagcggcuaccucuccugguccauccgaauuccucugucuguuccuucccagAACUGGG GAACCCGACGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCgugaguucggggauacugc ggggguuuguggggcagcuguuuuuaagagccccucuucuugggcuuagaauggguuuggcg gagaguuaucccugguugcagacucccccugaccccagaacucucugcaucccucucagGUC UGUCCACCCGCAGGCGGUAGAACCUCCACCUGGCUCCAGGAAACUCAGCCAGguccugcagu ugaugggaggaaggaggqagagagguuggcqgquuggaggqaggcaaggggcaaagugccag ugugggagcguggcgaggagagcuugccacucacucucuucacccccgcagAGCCCCCUUGG CACCUGACACCUCUCCCCACCCAGCUGCUCGCCUGUGACCACCUCCAGCGUCCCCUGCAUCA GCCCUGCUUCUCGGACACCCCUUGCUGCUCAGACCUCCAAUAAAACUCGGUUUUCCUUCUUG

Monodelphis domestica

NNNGUUUU UGUUCAGCGCUGACAGCCCUUGCCAAAGUGCAGCUGUGUUCCCGGGGGUGGGGAGGAGGGAU GGGCUGGAGGGUUUCUGACUGCCUGGCUCCCCCUGACCAGUCACUGCAUCCCCCUCCGAGGG GGUGCUUGGGCGUCCCUCUGGGAGUCAAAGGGAAGGAAUGGGUGCAGUUGCCAUGGCUACAC AGGGAGGCAAAUUCCUCUGGGGUGAUGCUGGGGAUAUUUAUACCCGUGAGUGCCAGGCCUGA GGGGCAGGCAGGAUGCCAAGGGCAUUACAGUGACAGAGAGUGGACAGGAGCGGAGUGUGUGA CCUUGUGUGUGUGCGCGCCUGCCUCAACUCUUCAUUCCAUGGGGAUCUAUCUGUGCGCCCCU UUGGGGGGGCGCUCUCUCUCUCUCUCUCUCUCACACCCUCCGGGGGAGCUGCAGGUUCCCAU GUGGAGgugaggcugggcccccucaacucugccucccugaugcccauccuguguugcugggc uguuncccaggcucucuguncuggcucugaaucccaccссасссcaggagggcucucuungu aucucagggcgaccaagcggcccagauggcucuggccggauuaggucuugggcccggcacag acuuaacccuuggggaucgggucagaccugguaguggggguugguggugguagaaaaaugua gagaaggaggaggacuuggggggaccuaacuggguccacuguaucccacagGACAAUGGAGC CCCUUGCCCAACUCCUGCUCCUCUGCAUAGCCCUGAUCUCGGCAGCCAAGGCCGgugagucu agagauuggagaguuuggccucuaauucccagauuuccagagcuggggagaugggggggggu aqguqgqugcagcaguacaacuucuggccaaacucccagcucagcugccauagcguuaggca aaacauuagacacuggccagugugggcugaccagaagacacgggcagccucaggcuucaagc uuacacauaccugaaaauugucugugcacccagaaucuccgaagagaagccagccuccccca gggugagaaccccuuguaacauccagucacaccaagccuaacagggacggggagcgaaucua gggcaaaagacuagccacguggccaucccaggcagaagcagggcugcaaccaucagaaguau caacagcucauuucuagaacacuauagucuugugaggccaccagggcagggaunaccagccu ccuuuuaucccuggggaaacugaggcccagagaggaacaacaucuugcuuagguucccauag ugagugugagauuggcagaccuuggauuagaacucaugccucccaacucccacugagacagg aagggacaagggguuaugccccauccucuaaacuaucacuggggaggcugggaaccugaaag guccaauggcuuunguggggggacauagugacuuauaguagaaaucaggcuggagcuuucau uccugaacaaggaugcccuuagcaucccccagucuaucucccuaacucuaaauccuugucuu uccagAAGCUCCGAAGGAAAGAGACCCAUUCACAUAUGgugagaucagacucacgugcaugu cgguguuncaaugucuguccccaacccuuauccuggaucucugacucugurucuguccuucc cugccucugccucucccacucucccuccaucccuuccuuucucucucuccuucuccgucccc ugacccuucauaccouguucucuccccuuucucagACUACCAGUCCCUGAGGAUUGGAGGGC UAGUUUUUGCUGGCAUCCUCUUCAUCCUUGGCAUCCUCAUCAUUCUCAguaagucuuccucc cuaccoaugggacacccuggggauggaggaacuggagugggggagguauguggaggaaugau uисисасgсаса cacacaccugugaaggcauuugcccaccuugcagggacauuccuungcauaccuguagucuc cccagauagaacauaagcuccucggaggcagggccugcuuccuuungucuungcugucccau ugccuggcacaugguagacacuuaaauacacacugaaugauugaungauuncccccagGCCG AAGAUGUCGCUGCAAAUUCAACCAACAGCAGAAgugaguaaugcccucuguguccccucugc ucuccccuugucucuguacccaucuungucuccaugucucauccccaucucucucuccaucu aucuungacccuunccauunguauguunaacuucaungcugacumunuaucuucuuccaccu cougaunguuncucuungucucucacuaguncucauauncacссссиucuncaucuncauuu ccaacuaucungucaucuccaccucuaanagucuungucgggccaucucugccuuncccenc cugucucugaccccaauuucacucuuaacacuuggucucugacucuumunaaaaugumcuuu ucuuuauuaugaacucauaugacacaugacauuguacugcauacaaaggaaagaaaggaugu auaugaaacuaugaacuuuggugauguauuuuuuuacuuugucagccucuuucucuccaucu cugcuucugcuucuucauuucucaccucuuuucuguaumuaaunguauuuncuucuguuncu ccacuuuugauucccuuucucucucuucaugucucccuucuuuumucucuguacauuugagc aucuungcuucagucucuccauuncugccuucuccaucucuaauncuaucccucugumunca ucucuaacucuuncuunguaucuuuncaucuuncuccauccuggacacacacacucacacac auauagucucucccucuuccuccuucccucuccccucucuccuucccucuccccucucuccu

исссисиссссисиииссиисссисиссссисисиссиисссисиссссисиииссииссси ссссссисисиссиисссисиссссисиииссиисссиссссасисисисисисссисссис ccucccucccacucuccucuccccaccccguuucuuuccaugcucccccaugguuccuuuug ucuuccucuuccaccccccaggACUGGGGAAACCUGAUGAAGAAAAGGGUACUUUCCGCAGU UCCAUCCGCCGU

Felis catus

AUGGCAUCUCUCCACCACAUCUUGGUACUCUGUGUGGGUUUCCUCGCCAUGGCCAACGCAGg ugagucugggguagguagcccgcuacccaccucagccccgagggaggggagggaagccuuuc aagagaaccaaguuggagacuccaacuuaaacagagucagugggguaccaggaaguuggagg uuucacgugggggaggggaggggaggaugcccagggcagacaaagguggagggugggaugga gссссucuucccgcacaggacagaaucaaggacaacacgggaugaggcgggaagcuguagca guuaagugaccaccugcccccccccccaggacagugcagaugaggcagcuaagagccagaga gggguggacagccuguucaggguccaauaguccccagacucucagcccaggacaggaaagcc cccaaaaggucucuuuaugccccuuccugcccagggccccaggaagcauccaacccuugacu ucuuucucuuuccagAGGCUCCACAGGAACACGAUCCAUUCACCUAUGgugagggagggagg ggcauuuaugcuugggaguugggaggguggguggccuggguuugccgguccuguucccacuc cuccucgucucucucuuccuuaaucucugacucaguaumuauaucucugucagucuccuucu cucucuuncucuugucucucagaaggcucucugacuccuucuuguuuuuaucuccccuuguc ugugucucugugucuccgugugucuauungaccccucccugucucucugauncucuuncucc uuuuaccucucaaugucuuacggcucauccucugcggccaucucccuuucuccccucuguuc cccuccuccucuccaucauccuccccuacuuucuuguuuccucccuccucccugcccugccu accucuиссиuuиссиисссасссссиссисиссссаисссисиucucuиссисссасаиси guuuccuccucucaungaucucucugcucuccucccugauccuccuugccссиuccuccсса uncugccccucuccuguccuuccuccuccccucccuguucucacucuccuccougccgccca cagACUACAAAACCCUGCGGAUCGGAGGCCUUAUCAUCGCCGGGAUCCUCUUCAUCCUGGGU AUCCUCAUCGUCCUGAGUGAGUACCCCCACCCUGCUACCUCCAGCCCCCGCAGGUGCCGUGU UUCGUCCCcgnnnnnnnnnnnnnnnnnnnNCAACCAGCAGCAGAGguaagaggccccucggg gcucucacucuccuccuuccgcucuagaagggcgcugggagugaggcagggaguccacucga cccacagccagagacccuucggcaaauacguauuaagcaccuacuacgugccaagccgcaag ccaggcccuggggaccaaacggcgaauaacugaacugcccucccugccuggcugagcuccca gcccagugggggcggcggccguggguucccgcagccccacaaauauaaaaucacaaagcgug auaagugcugucaaagaaggagccacggcgaaaugagaucaccgcgcuuggcggcccaguuu agcucagaguccuguucccagcucuuugacucaucucuaaauaaaaauguaaagcacuguau gaaucccuucuccgugugaaaacaauucuaaauguuauuuuacagaauagcuaauguuuagu cccacgugcuaaaagguauuguuuuaucguguauuacguuauugacuccucacaccccuugc augagacugucguuaacagccucguuuuaucgaggaggaaaccgaggcgcagggaggugaag ucacuugcccgagaucacucuagaagaugaggguucuggguuucuaaccuaggcugucucca ggccgucuguccucaagcccuucggccaucccucccccaccaacuuccagucucuuccccag cacuccgggaggcacuuggagcgcguccugccacacgcuuaaacugcuccugggugcgcccg auuuucucguuucuggcggcccccgagccugcuccucgccggucucuggcccucaguacggg ggucugugaaaugagggcuguacugggggguuccugggagcaucugccucucuuuuucauc cccacguccuucugccucuccuuucccagGACUGGGGAACCGGAUGAAGAGGAGGGAACUUU CCGCAGCUCCAUCCGCCgugagucugggggagacuuuggqgquuuggggqugaggqcugguu ccaagaaccccuuuccugguccucucugggcgugcggagggagggacuugacccgacagcga agguccgggaguuccccugucgcuccccccuccgcgggagcuggggugccccuccugacacc cgaacucuccguguucccccucagGUCUGUCCACCCGCAGGCGGUAG

Otolemur garnettii

AUGGCGUCCCUUGGCCACAUCUUGGUUCUCUGUGUGGGUCUUCUUGCCACAGCUGAUGCAGg ugagucuaggggaggcagcccacuaugcaccucaacuccaaggaugacagggguagggagac cucaugaaggaacccaacccacacuguuggggucaguugggguaccaggaaauugaggggcu ccacauggcagggauuuaagggucuggccacaggcagggauuuaggggaggggagaugucag gcaaaguugggggugggaugaagucuucccaacuggacaauggaaucagacagccugcaguu agagagcuggggcaguuaggggcccccugcccaccccaccccccgcccugaaagugccucug gggcaggauggauccacagagggugggcagcauaccuagacagcccccaaacucagcccagg aaagcagagcccuggaagaauguuuuaugccccucccugcccagggccccaggaagcauuug accccugauuucucucucuuuccagAAAAUCCAAAGAAGGAACAUGACCCAUUCACCUAUGg ugaggggcgucuggggaggguuugggucugacugcccuucccuauuucuucccucuuucucc сасисисисисиuuuисисисиссассссисассаиииаиисисиgисаиисиссиисиси cucuugcugucucucacugugucuagucuguuncucuccuucucucacucccugucucucug guugagcccucauggguucucucugucuuucccugggaucucucaguaucucagggcccauc cucccugggcuccugucuuuucuccccuccucaucucccuucuccuccccacacuccacccc ugcucccugcccagcucccuucucuccucgcuuuccugggcauccuucuccucccugugguc cuccuccccuuuagguuucucugaguauguaugguuucuccucucauaucugcugccccuca ucuucuuccuucccuccuccucccugccccucugcucccaunguaccссисиссисиссисс cuacccucacccugcuuccugccguccgcagACUACCGCUCCCUGCGCAUCGGAGGCCUCAC CAUCGCUGGGAUCCUCUUCAUCCUGGGCAUCCUUAUCGUGCUCAgugagugcccccacccgg cccccggccccgccccggcuacgcccagccacgccccccgcgaggcgugcuggagcgagagc gccccgcagcgccagccgguggagucucagccuuucucuccucgcccacagGCAAAAGAUGC CGGUGCAAAUUCAACCAGCAGCAGAAguaagaggccuuucuccgccuugggugccuacuaag cucuagaagggcqcaggquggqguggqugaggcggqaaguccaccccauccucggucagauc cccugcagcgaaucuguauuaagcaccuacugugugccaaggcccacagucccauggucccu ugggaccaagcgaugaaaacaacucccacccucccuggccgagcucccaguccagugggggc gguggccguggguucugacagcuccacagauagaaaaucacaaagcgugauaacacaaagug ccggaaagaaagggccgcggugaaaugagaucaccucacacuggcggcccaguuuagcuugg aguccuguuccuggcgcuuugauucagcuuuaaauaaaaauuuaaaagcacagcaguguaug gauaccuucgccaugcuaaagaaguacagauauuauaaguaacagcuaauauuuauugagug uguaccacgugucacacacuguuucaucauguguuaggucucugugagggaggugcuguuau uaaccccauuuuacaguugaggaaacugaggcacggggagguaaagucgcuuugcccaagau cacucaacuggaagaugggaguucuggguuucccaccccgucaucugguggcagccugccag auuccuuugauccucccuccccccaacuucaggucccaucccccaccucggcggagguacuc acuguucaccugcugcgcauuuaaacugucccugggugcuccucauuuccgacccugagccu gcuccucccacaccggucugggaaaugaggccuguauaggguguuuccuggaagggccgccu cuccccuuuuccauccccaauucccucugccucugccuucccagGACUGGGGAACCUGAUGA AGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCgugaguuuggggagacuguggguauuuggg gaagaaggcuaguuccaaggacuccuuuccuggcccgccccggacacguugagggaggggcu ugaucugggaguugccccgccgcgguccucccuccgugggagcggaggaugccccuucugac acccgaucucuuugugugccccucagGUCUGUCCAGCCGCAGGCGGUAG

Tursiops truncatus

UGGCAUCUCUCAGCCACAUCUUGGUUCUUUGUGUGGGUCUCCUCGCCAUGGUCAACGCAGgu gaguccggggaaggcagcccacuacccacuucagccccaaggguggcaaggguaggggaaac ccugcaagagaaacaaguuggagacuccaaucugaacugagucaguugaggcaccaggaaau uggggucucacgugggguucaguuacaggcugguaucugggggaggggagaggaugccccag gucaggcaaagguggagcgcgggauggaggccugugaaugacggaaucagagacaaccugua augagacggagagcugaggcaguuaggugccugcuguuccacccaggacagugcagcggggc agcuaagacccagagaggguaggcagccugcucaggguccagcaguccccagacucucggcc caggaaugugaaacccccaaaaggucucguuaugccccuccuuguccaggaucccaggaagc auccgacccugauuucuuucucucuuuccagAAGCGCCACAGGAACACGACCCAUUCACCUA UGgugagggagggaggggcaccuuucuuugggaguuagggggugcugggcuggguucgccug uccucuccucauuccucccсиссссссассисисисиguиucugucuccaucuaucucuaga cucaguguuaaugucucugucauucucauucucucucuuncucuugaucuggcucucugacu cuuncugucuugaucucccucugucucugucucucugunggucucugucuauuncaucccuc ucuguaucucugaaucuuncuccuuuuaccucuuaguaucuuauggcucauccucugcugcc accugccuuucuccucucccugauccucaccaucauccuuccccacucccuugucuccuccc uccuccuugccuugcccaccuccuccccucccuuuucuunacauccucucuucucccugauc ccccuucucccacaucucucccuccuccucucaungaumuccuuиccucuuccccauccuuc cuccuugccccuuccuccccauucugccccucuaccauccuuccuccuccccucccugcauu cacgcuccuccuugcugcccacagACUACCAAUCCCUGCGGAUCGGAGGCCUCAUCAUCGCC GGGAUCCUUUUCAUCCUGGGCAUACUCAUCAUCUUGAgugaguaccccuacccagacuccag ccgcgaaucugcgggugucugucccaaccccguccaguccccgcuccgccuccaaccccgcc ccuaucagagcccuuggccccgcccuuauuucugcccaccccggccucacgcccucggcccc gccccuguuuaugccccuccccaucgcugcucuaggccccgccccuucuacuccgcccucgg ccccgcucccgcuucuaucaccgcccccgggcccgccccguuuacggccccgcccucggccc cgccccuguuucugccccuccccuuucccugcccuaggcuccgcccugccccuucuacuccu cccucgggccagccgcgucucuauugcaggcccagcaccccccugucccugccccacccuua ucccccccgccgcuccagcccuggcgagcgcgagcucuggcgagcgcgagcucuggcucgcu gugccgcguagagcguaaucucagcgcacuccuccccacgcccccacccacagGCAGAAGAU GCCGGUGCAAAUUCAACCAGCAGCAGAGguaagaagccucucugggcucucacucaucuacu cccgcucugaaggagcacugggggcgaggccggaaguccacucaauccagagccagagagac cccucggcaaauauguaucaagcaccuacuacguguccagccccaagccaggccuugggacc aagccacgaauuaacugcccucccugccuggcugagcguccggcccagugggggcgguggcg augggcuccaacagacccacaaauauaaaaucacgaagcgccguaagugcugugaaagaaag agccgcggcgaaaugagaucaccucacuuggcggcccaguuuagcucggaguccuguuucua gcucucugauucauccuuaaauaaaaauguaaagcccaggcaaugugugaauaccuugucgg uauuaagauacuuguagauguuauuauaaauaaagguaguauuuauugggugugucccacgu gcaggaugcuguuucaugauguguuauuuaucccucacaccauaucuauaaggcaggugcuu uuauuaaccucauuuuacagaugaggaaaccaaggcacgggaagguggucacacgccccaaa ucgcucaacugcaaggugaaggcucuagguuucuaaccuaggccgucuccaggcaaucugcc cucaagucgcuunggcuauaccuccuuugcaaauucuaguuccuucuccagcauucggggag guacucucuguuaccggccuggagcgccuccugccaaacacuuaaacugcuccugggugcac uggauuuucuggcggcccggagccugcuccucgcccaucucugggucucaguacacaagucu
gugaaaugggggcugcacugggguuucccggguguagcugccucucuccuuuuccaucccca auuccuucugcaucucuuuucucagGACUGGGGAACCUGAUGAAGAGGAGGGAACUUUCCGC AGCUCAAUCCGCCgugaguungggagacuucggguguuuggggaugcaagcugguuccaag aaccccuuuccugguccuccgugggcgcguggagcggggggcuugaucugaaacccgagguc ggggaguugcccugcugugcucccaccuuccagaggagcuggggugccccuccugcuauccg aacucuauguguucccccuuagGUCUGUCCACCCGCAGGCGGUAG

Equus caballus

GGACGUUGGGGGCCUUCUUUCCGCAGGCGACAGCCUGAUUGGGgugagcgucccccgcccuc cccuccaggccucccccugcgccuggcugggccgccuauuuugggagcaggaguggccagcc uguggcuucccaggcaggccagacccaagaggaagggaguguggugggaaguugggguuccc ccaaaggugggagugugggugccgcuccuuccuucccugcggcuccgugugcaccccggcug gguguggguuuuggacacucacguguguagggccgguugcgugacugugugggggcaccaga ggcccagaugacgaguaaugugugccugugucuccacccuacguccugcuccaaccagaagu ugggggagugggcguugucuccauucuaaccccacugcgugugugugacuguguguccgucc cugccccuggcaucugucuucugucucucagccgcaccggccugggccuccugucacccgcc cuguggugucugcucgggaaagaugucacccagagccgggcggaggagcuguuuuucccuuc ucccauugcuuccaagagagcagcaaggguggccuuucccacggggacagccuguggcacug uggcagccgggccucaccccgcagggcugggcaugacccccgagugggggaaggaaggcugu ugccaugguggccugugcgaggcaaauuccuccagggugaagugggagauauuuuuaccccg ggggcaggcagagagcgggccggcgccgagggcaggagagcggggauaucgcagacacaaug aggcugcggugugcgugcaggugggcccuugggcguguccuggccgugucaucccucacggg gugucugucucuccaccgugggguguggcaccuugcuuuccccacuagggcagcugugggaa uucuggggccugcugcggggaggccccguggacgguguaugucucaccccuguccuugcugu caugugacacccaucauguggguuguuuuagugacacuguguucccaugaagcagaggguac cccuguuucuugggguggccaagcuggaugacagaggcuuunggaauuaaguccuucuacug ucucugacuuaaccccuuggguucaggccccagugguggagggacgaggguacaaauuuccu gaccuuugguguucccagGACAAUGGCAUCUCUUGGACACCUCUUGGUUCUCUGUGUGGGUC UCCUCAGCAUGGCCAACGCAGgugagucuuggggagggagcccaccacccaccucaccccca aggguggcaggggugagggaaaccuugcaagagaacugaguuggggacuucaaccuaaacug aguuaguugaggcaccaggaaacuggggcucccacaugcaguccagucacaggcugguauuu gggggaggggaucaggcaaaggugggcgacgggaugguggccagcuucccaugaaggaugga aucuuagccuguaauaagaaggggagcuggggcagucaggugccccuugucccucucgggac agugcagaggguccagguaagagccagagagggugggccgccugcucaggguccagucaccc ccaaacucucagcccaggaagguaaagccccaagacggucacuuuaugccccucccugucca ggaucccaggaucccaggaagcauccugaucucucucucucuuuccagAAGCUCCACAGGAA CAUGAUCCAUUCACCUAUGgugagggaggggcauccaucuuugggaquuggggagugggguu uggquungccuguccuguccucauucacucucucuuucuuucucccucucuccaugucucug acccccagcguuuauaucucugucacucuccuucucucucuuncccuugaucuggcucucug acucugncuugaucuccccuugncugucugcuucucucugucucuuncugngugncugccuc cuuauugancucucccugucucucugauncuuncucuuncuccuuunaccucucaguancu caungcccauccucugcugccuucugcccuuucucuccucccuguuccccucauccucucca ucaccccccuuacucccuguuuccucucugcccugcccagcuucuccccucccuuucccuuc сасссисиссисисисиaaucucccuucucccuccucccauaucugcuccauccucucaung acuuccuuccuccuuccccuccuccccauucugccccucuccgauccuuccuccuccccucc cugcccucacuguccuccuuguugcccguagACUACCAAUCACUGCGGAUCGGAGGCCUCAU CAUCGCCGGGAUCCUCUUCAUCCUGGGCAUCCUCAUCGUCCUGAgugaguacccccgacccc accgccuccagccccucugcggguuuccgccccagcuccgcccuguucccgccccgcuucca accucgccgguauccacucggccucgccucuguucccgccccgcccccgucucccucggcce cgccccuguucccguccugccucaucucccuagaccccgccccuauucccgccccgcccuau
cuccauaggeccegccegcggccccgccucuaccccgeggccccgagucucgcaagcuccag cuggagcacgagcgcegcgcegcgccegccgggagccgacgcucagcccgguccuccccuuc сссссасаgGCAGAAAGUGCCGGUGCAAAUUCAACCAGCAGCAGAGguaggaggcccuccgg сссgсасucaccuacucccgcuccagaggggcgcugggggugagccagagcccegugcgcaa aucugcauuaagcgccuacuaugugccuggcccogaggcgggcgcugggacccagccgcgcc uucacegcegceggccuggcugagcucccagcccagcgegggcgggggccguggguuccaac aассссасgaauguaaaaucacaaagcgugguaagcgcugcaaaggaaggagccgggcgaaa ugagaucaccucacuugcuggcccaguuuagcucggaguccuauuccuagcucuuugauuca ucuuuaaauaaaaauuuaaagcccaggcggaguaugaauaccuucuccaaguuaaagcaauu agagauguuuuuauaaauaauagcuaduacugguuggguguguccuccgugccagauacugu cugacuguguguuaucuuagugaccccucccgccacgucuaugagguaggugcugcucucag ссucauuuuacagaugaggaaaccgaggcacgggaggugaagucacuagcccaggaucacuc ggcuagaagacgaggauucuggguuucuaaccuaggccgucccugggcagggugcccccaag ucccuuuggucaucccucccccgccagcucccagucccuuccccccggcacucggcacucgg gagaugcucccugucaccgcguggagcgccuccogccacgcccugaaccugcuccuggggge gссgсcuccucgcccaccgcugggccucgggacacgggucuaugaaaugaggcugcceuggg cauucggggagcogccgccucucuccuuuuuccauccccaauuccuucugccucuccuuuccc a gGACUGGGGAACCUGAUGAAGAGGAGGGAACUCUCCGCAGCUCCAUCCGCCgugaguuugg ggagacgucggguguuugggggugagggacguuuccgagaaccccuuuccuggcccuccuug gcugcguggagggaagggcuuggucugaaacccgaaggeggggaguucccccgcugcccacu ccacagcagcggugugacucccugacacccgaacucucuguguccccccagGUCUGUCCACC CGCAGGCGGUAGAAACAGCUGGCGCGAUGAACCCCAGCCAGguccugaacucugacugggcu gcgggagcgagugagggggaggagggggcggugggcugggggcugggggguggcugggaggg cucuccugccucucacccguuucacccccauagGAUCCCCUGGCACAUGACGCCUCCCACCC AGCCCCGAGCGCCCACCGCCACCAGGACUGUCAUCUUCCCGAGCCCUGCCCCCACAGACUCG UCUCUGCCGCCCAGACUUCCAAUAAAACGUGCUUUCUCUCCUG

Ailuropoda melanoleuca

AUGGCGCCUCUCUACCGCAUCUUGGUUCUCUGUGUGGGUUUUCUCACCACGGCCAACGCAGg ugagucugggguacuuagcccccacccaccccagccccaagggaggcaaggggugagggaag cccuucaagagaaccaaguuggagacuccaaccuaaaugagucaguugggguaccaggaaau uggggguuucacauggggcccacucacaagcuaguauuugggguagaggagcggaugcaagc ucaggcgaagguggacggugggauggaggcccacuucccucagaugacagaaucacugacaa cacgggguaagacaggauuugggggcaguuaggugcccccugccccacccaagauggugcag augaggcagcuaagacccagacaggguggggagccugcucagggcccaacagucgccagacu cucagcccaggagaguaaagcccccagaaguucucuuuauguccuucucuauccagaguccc aggaagcauccaaccccugacuucuuucucuuuccagAAGCUCCACAGGAACACGACCCAUU CACCUAUGgugaggcaggaagaggugucuauccgcgggaggugggagggcgccuggccuggg uuugcccauccuguccucauuacuccucuucucuuисиссаucucucuuucugacucagugu cucucucucucucucucucagaucucugacuccuuguuungaucuccccuugucugucucuc ugugcgccugucuacuugaucccucucugucucucugagucuccuucuccuunaaccucuca guaucuuauggcucauccucugcucugccucccuuucuccccucucuguuccccucauccuc uccaccauccuucacuucuuccuuguuuccucucuccucccugcccugcccaccuccucceu uиссиucccacccucuucucucccugaucccucuccuccuuccucccuuaucuucuucuucc ccugacugaucuccucuacccccuccuccucccugguccuccuugcccacuccuccccauuc ugccccucuccuauccuccccccuccccucccugcccucacucuccucccugccguccacag ACUACCAAUCCCUGCGGAUCGGAGGCCUCAUCAUCGCCGGGAUCCUCUUCAUCCUGGGUAUU CUCAUCGUCCUGAgugaguacccccaccccgcuaccuccagcccccgcaaccucgcgagcaa gagccggcgcacgagcgccacucggugcccgccuagagcugaaucucagccucguccuccuc cuacccccacccacagGCAGAAGGUGCCGGUGCAAAUUCAACCAGCAGCAGAGguaagaggc cccuccgggcucucacucaccuacuuucgcucuagaggggcgcagggagugaggcggggagu ccacccgccccgcagccagagacccuucagcaacuauguauuaagcaccuacuacguuccaa accccaagccaggcccuggggaccaaauggugaauagauaaacugcccucccugccuggcug agcucccagccccgugggggcggcggccguggguuccaacagccccacaaauauaaaaucac aaagcgugauaagugcugugagagaaagagccacggcgaaaugagaucaccgcacuuggcgg cccaguuuagcucagcguccuguuccuagcucuuugauucaucuuuaaauaaaaauuuaaag caauguaugaauaccuucuccauguuaaaacaauuauagacaugcuuuuaaauaauagcuaa uauuuagucccaaaugccagauacuguuuuauuguguauuaucuuauuuacuccucacaccc cuuguaugaggucggugcuguuguuaaccucauuuuacugaugaggaaaccgaggcacaggg aggugaagucacuugcccaagaucacucaacuaggagauaaggguucuggguuucuagccua ggcugucuccaggccggcugcccucaaguccuucagcaccccucccccaccaacuucccggc ucuuccccaacccuccgggaggcacuuggagcaccuccugccacaagcuuaaaccgcuccug ggugcgccugauuaucuagcggaccccgcgccugcuccucgcccaucucuggcccucaguac agggggugugugaaaugagggcugcacuggggcauucagggggcggcugccucucuccuuuu ucaucccuaauucuuucugccagGACUGGGGAACCUGAUGAAGAGGAGGGAACUUUCCGCAG CUCCAUCCGCCgugaguuuggggagacuucggququuuggggqugaggqcagguuccaagaa ccccuuuucuggcccggacaggggcgcggagggaggggcuugaucugaaaccagaggucugg gaguuccccugcuguuccccgcuccgcaggaacuggggugccccuccugacacccgaacucu cuguguucccccucagGUCUGUCCACCCGCAGGCGGUAG

Pongo abelii

AGGCUUCCCAGGCAGGCCAACCCAAGAGGGAGGGAGUGUGGUUGAGGCAGUGGGUUCUGCAG GGUGGGAUGUGGGCGACUCCUCCCUGCCCUGCUGGUGCGUGUGCACCCUGGCAGGGUGUGGA GUUUGGACACACACGUGUGUAGGGCUGGUUGCGUCACUGCGUGGGGGCACCGGAGGCCCAGA GGAGGAGUACUGGAUGCCUGACGGUGUUUACACCCCACGUCCUGCUCCAACCAGAAGUUUGG GGAGAGguuguuguccauguccauuccggccccacuguguguguguguguguguguguaucc cugccccagcauguguuuucuaucucucaggcccacugggcugggccucaugucacuugccu gacauccgauugugaaagaugucacccagaggcgggcagaggggcugucuuuuncuuuncuu guugcugcccagggaggagaugggguggacuuucccacaggggcagccuguggcgauguggc agcugggccucaccccggcagggcugugcgugacccccugagugggggaaggcaggcuguug ccaugguggccugagcgagcagaauuccuccagggugaagugggagauaumuauaccccggg ucaggccgggagcgggcgggcggagagggcagggagcugggauuucgcggggcauagugagg ccgggcauguaggcaggugggacuugggcgugcccugcugucuccugcuccguguuugugug aggcagcgccuccucugcccugccaggguaggucugggaaucgggggccugcugcgggaggu ggaggccuaagggaggcccccagggacugugugucucaccccugucccugcuacgunguguu guugugugaccccaucguggagguuguuuuggugacacuguguccccacgaagcuggggaua cccguuucucuagcuuggagccaccaagcuagaggacgaacgcuucugugauucggucccca gacugucucugacuuaaucccuuggguucaagcccugugugggagagcaagggcacacacug ccuaauccguggugucccccccagGACAAUGGCAUCUCUUGGCCACAUCUUGGUUUUCUGUG UGGGUCUCCUCACCAUGGCCAAGGCAGgugagugcaggggaggcugcccgcuacceaccuca gccccagggauggcggcggggaccgaagaaccaaguuggagaccccaaccuagacugagucg gcugggguaccaagaaguuugggggucgccacaugggguccagucacaggcugguauunggg ggaggggagaggaagccccagaucaggcaaagauggggugggaugggggcugaauuccuggu gggauaacugggucacagacagccugccgugagucagggagcuggggcaguuaggugccgcc ugccccuucugggacagugcaaaggaggcagcugggacccagagagggugggcagccugccu agacacccucagacucucagcccagcacggcagagcccccaguggucuccuuaugccccucu cugccaggaccccaggaagcauucaaccccugauuucucucucuunccagAAAGUCCAAAGG AACACGACCCGUUCACUUAUGgugagcggggggucuaauuuugagucuugggggagagccug gcuuugcuggucguuugauucccccucgcccuccсссаgagucccaguauugauaucuguca uucuccuucccucuaumunguccuuccucucugaunccaccugucugcaucuucuccugucu gugucuaucugugucgcugucugugugauaccucucugguugucuuncucuugccugggucu gucucagccucucguggcccauccucugcuucuucccaucuucucuccccgcuguccuccuc cucccugccecgucccucccuunccuauacaccccucuccucuccouggucceccacuunce uccuuccauaucugcucccccuuaauuaucuuauuuccecccuucugccugcugguccuunc ucccuguucccuccuccccaauuuaccccucuccuauucucccuccucuccuccougcccuc accuucccugcucugcugcucacagACUACCAGUCCCUGCAGAUAGGAGGCCUCGUCAUCGC CGGGAUCCUCUUCAUCCUGGGCAUCCUCAUCGUGCUGAgugagugccccuagcccccgcccu cuaccccgccucucccuggccccgccucucccuagccccgcccoucccgccccaaccccucc caggccuugccccgccuaccougccuuggcucccuggcceccggucucgccucuagccecgc cccgucccccaagccccgccccccgcgcgggcgagcuggagcgacagcgccgcuuggugccc gccaggagggagccucagccucuccuaccucuccacgcccacagGCAGAAGAUGCCGGUGCA AGUUCAACCAGCAGCAGAGguaagacgcccauccacgcccuccuucgcccgcuccugcucua gagggggccgcgggugaggcggggaguaccccugacccgcagcccgauccccaucagcgacu auguauuaagcaccuacuaugugccauggcccaagccuggccougggaucaagcgaggaaaa
a accucccgcccuuccuggccgagcucccagccuaguggaggegguggccguggguuccaac agссссасаgauagaaaaaucacaaagcgugauaacacaaaaugcaggaaagaagaaacggc ggugaaaugagaucaucucacacgcggcccaguuuagcuuagaguccuguuccuagcucuuu gauuccucuuugaauaaaauguuaaagcauggacaauguaugaauauguuagaacaauuaua gauauuaucauaaguaguagcuaauauuuauuggguguguaccacgugucagauacgguuuc acuuccucugggagggaggugcuguuauuaaccccauuugacagaugaggaadcugaggcac agggagguuaaagucacuuuguucaagaucacucaaguggaauauggggaauucuggguuuc caacceaggccaucucauggcagucugccaaguccccacgacuauccouccccuaccaacuu cacaucccugcccccaaauccgaggagguacucaccguuaaccagcuuagadgcccccuguc agcacuuaagcugcuccugggugcuccucauuucuagcggaccccgagcccgcucuucgucc auaucugggccuaguuacaccaaucugggaaaggaggcuuguacugggggguuccuagaagg gсagcoucucccccuuuccaucccgaaducccucugccucugucuucccagGACuGGGGAAC CCGAUGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCgugagucuggqgagacugcogqu auuuugggoagaggocugguuccaaggaacccuuuuccuggcccucccuggcugcguagagg gaggggcuggaucugaaagcugaggguggggaguugccccgccgcgggccccaccugcccag gagcuggggaugccucucaugaaugacccccgaucuccguguuccccccagGUCUGUCCACC CGCAGGCGGUAGAAACACCUGGCGCGAUGCAAUCCGGCCAGgugcugcagcucugacacggc ggugggagggaaggagggaggaaggaaaggcgggagagggagggggccaagugceagoguug a aggocgocogaggoguggogcuggacguccccccucgccucucacccuuuuuccccucacag GACUCCCCUGGCACCUGACGUCUCCCACGCUCCACCUGCGCGCCCACCGCCCCCUCCGCCGC CCCUUCCCCAGCCCUGCCCCCGCAGACUCCCCCUGCAGCCCAGAAUUCCAAUAAAACGUGCG UUCCUCUCGACUGCACUUUGUCGGUCUCGGUCCCUCAGCGCGAAAGCCCAGCGCCCCUGGAC CCCAGCAGGGGGCGCCCCACCCUAGAGGAUUGUGCGGGGACGACGGUGGUGGGCGGGGGCGG GGGNNNNNNNNNNNNNN

Oryctolagus cuniculus

cgcgggugggcggaggcacacccuugcugagcacgcuguccccacaggacAUGGCCUAUCUC CAUCACACCUUGCUUGUCUGCAUGGGUCUCCUCGCCAUGGCCAAUGCAGgugagucgcgggg cggcacggggaggagaaaccccaugagaaccacaucggagacccccaaccucgagcuggggu auaagcuggggugcuaaacugaggacccccacaugaggcugagcugcaggcgaggggaggcc aagguagggggagggaugcuggcagaggcaccugccacgagucagagugcugggacccagag aaggugggcggcccacccaggaagguggagccccauagggucuucagagggucgcccucucu gagacgcgaccccgaugccucucuuuccagAAGCGCCGCAGGAGCAGGAUCCAUUCACCUAC Ggugagcagggucccucugungggggaguggaggggagggacuggacuugcccgucuagucu caugccgcccgcaccccuguccucgcucucuccugcugggggucucucccucucagcaucuc ggggcucauggucagcugcuuccaaggccgcucccguucccguacaccuucuccugcgugcu cccccccccucccccgcccagggaucuuucuccccuucuccugccaccucuunccuccccgc cacccacagACUACCAGUCCCUGCGGAUCGGAGGCCUCAUCAUCGCCGGGAUCCUCUUCAUC CUGGGCAUCCUCAUCAUCCUCAgugagagcccgcccggucgcgcccccugcccagccugugu cccagccacccccacccccgccucgcccugucccacccccaccuccgcguccugacuccagc ccugcceguguucuacccgcccuacgaccacccaccccgugcoucgccugccucggcceccu cuuccggacaccaguucugccccgccuccugccccgcccuaguuaagucccgccccugcecu cgcucugcccugcuannn

 GAGAGGGGCGUGGGgugaggccggcaguccgcagccccgcggccagaauccuucggcgaacg ugcgugacgcaccugcugugugccaagcccccggcccgggguggcgcgcgguggcagcggcg cccgccugggaggucaccccggcgaggacacgcagcggcagggggccacgcggggucgcucg gcggccugguuuagceccgaguccuguucagAGCGCUUUGACACAGCGCGAAGgaaagcgac accugcgcgcgcucacagguguucuuacggcgggagccagagcugccggggcgcgcgccacg ugcgagaccccgcugcauugcaugcggucuuacugaugccucacaccgcccgcacuaggcag gccgccacgcggggagauggaggcaccugcccgagaucaugccgggagaguggguggggguc cuggqucuacgacucgagucccugcggagggacucgccgcuccugucacccgcucuccugcc cgggccgggaggcugcuccucgcgcgcccugggccucccgauaccggcuugggaaacggggu uccgcggggcuuuccuggaagcaguugccucuccacccccaacucccugcgccucucccuuc cagGACCGGGGAGCCCGACGAAGAGGAGGGGACUUUCCGCAGCUCCAUCCGCCgugaguccg gggacgggcgcggaagccuagggcugagggcuggacccggaaucccuuccccggcgcuugcc gggcgcccggggggaggggcuugaucugaaaugggguugcggggaguagcccgcagccgccg cgggccccuccugacgccagaacucuccgugugcccucagGUCUGUCCACUCGCAGGCGGUA A

Gorilla gorilla gorilla

AUGGCGUCUCUUGGCCACAUCUUGGUUUUCUGUGUGGGUCUCCUCACCAUGGCCAAGGCAGg ugagugcaggggaggcugcccgcuacccaccucagccccagggguggcoguggggaccgaag aaccaaguuggagaccccaaccuagacuaagucggcugggguaccaagaaguuugggggucu ccacgugggguccagucacaggcugguauuugggggaggggagaggaagccccagaucaggc aaagauggggugggagggggcugaauccccgaugugauaacugggucacagacagccugccg ugagucagggagcuggggcaguuaggugccaccugacccaucugggacagugcagagggggc agcugggacccagagagugugggcagccugccuagacacccucagacucuaagcccagcaag gcagagcccccaguggucuccuuaugccccucccugccaggaccccaggaagcauccaaccc cucauuucucucuuuccagAAAGUCCAAAGGAACACGACCCGUUCACUUACGgugagcgggg ggggucuaauuuugaguccugggggagagccuggcuuugcugguccuuugauucccccucgc ccucccccagagucccaguauugauaucucugucauucuccuucccucuauuunguccuucg ucucugauuccaccugucugcaucuuuuccugucugugucuaucugugucacugucuaugug auaccucucugguucucuuncucuugccugcgucugucucagcaucucauggcccauccucu gcuucuucccaucuucucuccccccguccuccuccucccuguccccuccuucccuuuccuau acaccccuuuccucucccugguaccccacuuuccuccucccauaucugcucccccuuaauua ucuuauuuccccccuucugccugcugguccuuucucccuuccuccuucccaauuaaccccuc uccuauucucccuccucuccucccugcccucaccuucccugcucugcugcucacagACUACC AGUCCCUGCAGAUCGGAGGCCUCGUCAUCGCCGGGAUCCUCUUCAUCCUGGGCAUCCUCAUC GUGCUGAgugagugccccuagcccccgcccucuaccccgccucucccuggccecgccucucc cnnn

 nnnnnnnnnnnnnnnnnnnnnnnnnnnnngguggccguggguuccaacagccccacagAUAG AAAAAUCACAAAGCGUGAUAACACAAAGUGCAGgaaagaagaaaccgcggugaaaugagauc aucucacacgcggcccaguuuagcuuagagucuuguuccuagcucuuugauuccucuucgaa uaaaauguuaaagcauggacaauguaugaauauguuagaacaauuauagauauuaucauaag uaguagcuaauauuuacuggguguguaccacgugucagauacgguuucacuuccucugggag ggaggugcuguuauuaaccccauuugacagaugaggaaacuaaggcacagggagguaaaguc acuuuguucaagaucacucaaguggaagaugggggguucuggguuuccaacccaggccaucu cauggcagucugccaaguccccaugacuaucccuccccuaccaacuucacaucccugccccc aaauccgcggagguacucacuguuaaccagcuuagaagcccccugccagcacauaagcugcu ccugggugcuccucauuucuagcggaccccgagccugcucuucguccauaucugggccuagu uacaccagucugggaaaggaggcuuguacugggggguuccuagaagggcagccucucccccu uuccaucccgaaaucccucugccucugucuucccagGACUGGGGAACCCGAUGAAGAGGAGG GAACUUUCCGCAGCUCCAUCCGCCgugagucuggggagacugcggguauuuuggggagacgg cugguuccaaggaccccuuuuccuggcccucccuggcugcguagagggaagggcuggaucug
aaagcggagggcggggaguugccccgccgcgggccccaccugcccaggagcuggggaugccu cuccagaaugacccccgaucuccguguuccccccagGUCUGUCCACCCGCAGGCGGUAG

Sus scrofa

GAGGGGUGGGGUGGGGCUGGGAGGGGACACCGCUGAGGGCGGCGCGUCCAGCUCAGGGCCAG GGGGUCCAGCCGGCCGUUUGGGGGCCUUCUUCCAGCAGGGGACAGCCUGACUGGGgugagcg ucceccccuccccuccaggccucaccccuggccuggccgggagccuauuungggagcagaag uggcgcccaggcaggccagacccaagaggaaggguguguguungggucgunggggcuccccc aggggugggagugugggugcagcuccuccuuucgccuguggcugcgugugcacccuggcugg gugugcgguunggacacucacguguguagcucgggcugcguccuuguungggggcccoggga ggcccagaugaggaguacugugugccuguggcuccacccugagucuugcuccaaccagaagu unggggaguggguguugucuccacuccagccccacugugcgcgcgugcauguaugcgugagu gcgccccggccccaggcaucugccuugggucucucagccougcuggccugggccuccuguca cucgccugguguuguccacugungaaagaugucacccagagacaggcaaaggggaumumuuu ccccguucuccucacuuccaggagaggagaagagguggccuuucccacgggggcagccugug gcguuguggcagccaggccucaccccggcaaugacccccgaggcaggaggggggguaggaaa gcuguugccaugguggccugugcgaggcaaauuccuccagggugaagugggagauaumuaua cccagggucaggcagagagugggccaguggccgagggcaggagagcugggaucuuncagaca cagcgaggcaguuuugugcaagcagguggguccuuggguguguccuggcugucugggcucug gcaggcuggccgucucucugccaggguggggugaggcaccuccaccaccggaguaggugugg ggaaucuggggccugcugugggggaagcccgggccuucgggaggucccuguggaumuugugu guccccccugccugguccuuguccuugcugccauaugaccccccccccaungggugggaugu uugggugagacuguguccuggugaagcagggggugccuuguuncccagggcgaccaagcuag auggaugcuunuggaaunaagucucuggacuguaucuuaacccounggguncaggccccagu gguaggggaacaaggguacacacuuccugacccuuggugcuccccagGACAAUGGCAUCUCU CAGCCACAUCUUGGUUCUCUGGGUCGGGAUCCUCACCGUGGUCAACGCAGgugagucugcgg gaggcagcccaccacucaccucagccccaaggguggcaagcguagggggaaagccugcgaga gaacuaaguuggagacucggucuacucuaaguccgungaggagccaggaaauugggggucuc acaugggguccagucacaggcuggugugugggggaggggagaagaugccccaggucaggcaa aaauggagggugggauggaggcgggcuuccgugaacgauggagucagucgauggacaaccug uaaugagaugggagcugaggcaguuacauggcccugcccugcccugcccaggacagugcaga gggguggcugggacccagagccggggguggggquggggquggggqggcgcggccugcucaga guccaacaguccccagacucucagcccagaaaugcgaacccccaaaaggaccucguuacgcc ccucccuguccaggaucccagggagcauccaccucugaugucuuncucucuunccagAAGCU CCACAGGAACACGACCCAUUCACCUAUGgugagggagggaggggccucuuncuuggggagcu ggcugguggggguggggggcugggcugagunagccuguccucuccucccccaucucucucug uuncugucuccaccugucucuagacucucagugumuancccucugucauncucauncucucu cuuncucaugaucuggcucuaucuugaucucuunggcuguuncucucugucucucagugagu cccugucucucugucucucugauncucuuncuccuuuccccucucaguaucccauggcceag ccuccacuuccuccuggcuuncuccucuuccugccecccucauccuunccaucaccoucccc
 auccucuuuncuucccaucuccugucucucgucucucccuccuccucuuaungaucuccuuu cuccucuuccoggauccuuccuccuggccccuuccucccuauncugcuccucuccuggcuun ccuccuccccucccugcauucaccguccucccugcuguccacagACUACCAAUCCCUUCGGA UCGGAGGCCUCAUCAUCGCCGGAAUCCUCUUCAUCCUGGGCAUACUCAUCGUCUUGAguggg uacceccacacugccuccagccaugcuucugcgcgugucugcuccagceccgcccugucccc
gccccgccuccaaccccgccucuaucccagcccuuggccccgcccuuguuucugcccugcac cuguucugcccugggccccgucucugucucgccuucggacccgcccucgccccuuccuaucc ccgcccucggccccgccccuguuccugccccacccuuauccccgccccccagccucuucugc ccuggcucgcgcgcgagcucuggcuggcugugcggcacugagcagaauaucagcgcgcucuu ccucacaccccacccacagGCAGAAGAUGCCGGUGCAAGUUCAACCAGCAGCAGAGguaaga ggccucuguggacccucacuccccuacuccggcucuaaaggggagcugggggugaggccgga aguccacucaauccacagccagagacaccggcaaauauguacuaagcaccugcuaugugccc agccccgagguagccugggaccaagccacgaaauaaguaaacuccuugccuggcugagcucc cagcccagugggggcgguggcaguggguuccaagagacccacaaauauaaaaucacaaagcg ugauaagugcugugaaagagCCUCGGCAAAAUGAGAUCACCUCACUUGGCGGCCCAGUUUAG CUCGGAGUCCUGU

Ovis aries

AUGGCAUCUCUCAGCCACAUCUUGGUUCUUUGUGUGGGUCUCCUUGCCAUGGUCAACGCAGg ugagucugggggaggcagcccacuaccaccucagccacagggguggcaaggguaggggaaaa uucugcaagagaaccaagcuggagccuccagucugaacugagucucaguggggucucacgug gggucuagucacaggcggggagcgggggaaggggagaggaugcccagggcuggggcaaaggq ggaggqugggauggaggccggcuucccgugaacgauggaaucauagacaaccuggaaugaga uggagagcugaggcagucaggugccuccugcccuacuccggacaguacagagaggcagccaa gacccagagagggugcgcagccuacucagaguccaacaguccccagacuccugccccgagaa uguaaaacucccacagggucucgugaugcugcucucuguccagggucccaggaagcauccaa cccugauuucuucuucucuuuccagAAGCACCACAGGAACACGACCCAUUCACCUACGguga gggaggggcaucuuucucugggugcuaggugguuagccugcccucuucucauuccuccccuc ucccuaccucucucuguuucugucuccaucauncucuagacucucgguguunauaucuungu cauncucauncuuncucucuugauunggcucucugacucuuncugucucgaucucccuungu cucugucucucuguggugugagucucugucucuccauguggucccucucugucucucugauu cuuucucuucuuaccucuuaguaucccacggcccauccucuguugccaccugccuuucuccu cucccugacccccuuucccucuccaucauucuuccuuacucgaungcuuccucccuccuccu ugcccuguccaccuccucccuuuucucccugaucccccuucucccacaucgcucccuccucc ucucacugauguccuuucucuccucuuccccauccucccgcuungccccuuccuccccauuc ugccccuuuccuauccuuccuccuccccucccugcauucacccuccucccugcauucacccg ccucccugcugcccacagACUACCAAUCCCUGCGGAUCGGAGGCCUUAUAAUCGCCGGAAUU CUCUUCAUCCUGGGCAUACUCAUCGUCUUGAgugagucccccuauccugccuucagucgcuu ccggugucugccccagcccugcccaaccucccgcuccgccuucaaccccgccccuucugugc ccuuggccccgccuuuguuucuguccacccaacuuuccgcccucagccucgcaccuguucuu ccccugcccucagccacgucccaguuucugcccuucccccauucccgccuccggccccgccc cguccuuauccugccugcccucgggcccgccccgccucgaunnnnnnnnnnnnnnnnnnnn nn
 nnnnnnnnnnnnnnnnnnnnnnngggaaucucagcgcacuccucuccaugcccccaccca cagGCAGAAGAUGCCGGUGCAAAUUCAACCAGCAGCAGAGguaagaagccucucuggacccu caucuucucucgcucuaaaggagcguugggggugaggccagaaguccacuugauccacagac ccgucggcaaauauguauuaaacaccuacuacgugcccagccccaagccaggccuuggcacc aagccacgaguuaacugcccucucuguaugucugagcuuccagccaagugggggcgguggcc auggguuccaacagacccacaaauauaaaaccacaaagcaugauaagugcugugaaagaguc ggggugaaaugagaucaccucacuuggcggcccaguuuagcucagagcccuguuccuagcuc uungauuuaucgunaaauaaaauuunaaagcccaagcaacauaugaauaucuucuucccauu aagauacuuguagauguuauuauaaauaaagguaguauuuuauugugucccucguucaagau gcuauuncauuauguguuauunaccucucacaccaucucuauaaaguaggugcuguuauuaa ccucauuuuacagaugaggaaaccgagacaugggaagguguucacacgccccagaucauuca acuggaagaugagggcucuagguuucuaaccuaggcugucuccaggcaaucugcccucaagu ugcuuuggcuguauaccuccucuuccaaauucuaguuccuuccucagcacugugggagguac ucgcuguuaucggcuuggagcgccuccugccaaacacuuaaacugcuccuggguugcacugg aukuruggcggcuccaaccugcuccuugcccaucugugggucucaguggaunggucuguga aauggggccggcauuggggucuuccgaguguagcugucucucuccuuuuccaccccccaauu
ccugauacaucuccuuucccagGACUGGGGAACCUGAUGAAGAGGAGGGAACUUUCCGCAGU UCAAUCCGCCgugagucuggggagacuucggguguuugggaaugcgaguugauuccaagaag cccuuugcgggcccucccugggcgaggggggucgcggggaggggcuugaucugcccugccgu gccccgaccuuucagaggagcuggggugccccucuugacuuccggauucucugucuuccucc ucagGUCUGUCCACCCGCCGGCGGUAG

APPENDIX II

FXYD1 variant 009 pre mRNA sequence ENSEMBL Transcript ID: ENST00000589121

Key: UTR region
Intronic sequence
Exonic translated sequence

UUUUCUGUGUGGGUCUCCUCACCAUGGCCAAGGCAGgugagugcaggggaggcugcccgcua cccaccucagccccagggguggcgguggggaccgaagaaccaaguluggagaccccaaccuag acuaagucggcugggguaccaagaaguuugggggucuccacgugggguccagucacaggcug guauuugggggaggggagaggaagccccagaucaggcaaagauggggugggauggggcugaa ucccogaugggauaacugggucacagacagccugccgugagucagggagcuggggcaguuag gugccaccugccccaucugggacagugcagagggggcagcugggacccagagagugugggca gccugcccagacacccucagacucuaagcccagcaaggcagagccuccaguggucuccucau gcccouccougccaggaccecaggaagcauucaaccccugauuucucucucuuuccagAAAG UCCAAAGGAACACGACCCGUUCACUUACGgugagcggggggucuaauuuugaguccuggggg agagcouggcuuugcugguccuuugauucccccucgcccucccocagagucccaguauugau aucucugucauucuccuucccucuauuuuguccuuccucucugauuccaccugucugcaucu uuuccugucugugucuaucugugucacugucuaugugauaccucucugguucucuuucucuu gccugcgucugucucagcaucucguggcccauccucugcuucuucccgucuucucucccccc uguccuccuccucceugucсссисссисссиuuccuauacaccocuuuccucuccougguac сссасиuиссиссисссаuaucugcuсссссиua aumaucuuacuucccoccuucugccugc ugguccuuucucccuguucccuccuucccaauuuaccccucuccuauucucccuccugucuu ccougcecucaccuuccougcucugcugcucacagACUACCAGUCCCUGCAGAUCGGAGGCC UCGUCAUCGCCGGGAUCCUCUUCAUCCUGGGCAUCCUCAUCGUGCUGAgugagugcccouag cuccigccoucuaccocgcoucuccouggccccaccucucucuggccocgccucuccouggc cccgccucucccuagccccccucucccuggccccgcuucucccuggucccgccccucccugg ccccgcccegccccaaccccucccaggccuugccccgccuaccougcoulugguuccecggcc cecggucucgccucuagceccgссссgucceccaagCCCCGCCCCUCGCGAGGGCGAGCUGG AGCUACAGCGCCGCUUGGCGCCCGCCGGGAGGGAGCCUCAGCUUCUCCUACCUCUCCACGCC CACAGGCAGAAGAUGCCGGUGCAAGUUCAACCAGCAGCAGAGgua agacgccccuccccgcc cuccuucgcccgcuccugcucuggagggcgcogcgggugaggcggggaguaccccugacccg cagccigaucccogucagcgacuauguauuaagcaccuacuaugugccauggcccaagccug gccougggaccaagcgaggaaa a accucccgcccuuccuggccgagcucccagccuagugg aggcgguggccguggguuccaacagccccacagauagaaaaaucacaaagcgugauaacaca aagugcaggaaagaagaaacggcggugaaaugagaucaucucacacgcggcccaguuuagcu uagagucuuguuccuagcucuungauuccucuucgaauaaaauguuaaagcauggacaaugu augaauauguuagaacaauuauagauauuaucauaaguaguagcuaauauuuacugggugug uaccacguguuagauacgguuucacuuccucugggagggaggugcuguuauuaaccccauuu gacagaugaggaaacuaaggcacagggagguaaagucacuuuguucaagaucacucaagugg a agaugggggguucuggguuuccaacccaggccaucucauggcagucugccaaguccccaug acuaucccucccccaccaacuucacaucccugcccccaaauccgcggagguacucacuguua accagcuuagaagcccccugccagcacauaagcugcuccugggugcuccucauuucuggcgg
accccgagccugcucuucguccauaucugggccuaguuacaccaaucugggaaaggaggcuu guacugggggguuccuagaagggcagccucucccccuuuccaucccgaaaucccucugccuc ugucuucccagGACUGGGGAACCCGAUGAAGAGGAGGGAACUUUCCGCAGCUCCAUCCGCCg ugagucuggggagacugcggguauucuggggagagggcugguuccaaggaccgcuuuucccg gcccucccuggcugcguagagggaagggcuggaucugaaagcggagggcggggaguugcccc gccgcgggccccaccugcccaggagcuggggaugccucuccagaaugacccccgaucuccgu guuccccccagGUCUGUCCACCCGCAGGCGGUAGAAACACCUGGAGCGAUGGAAUCCGGCCA Ggugcugcagcucugacacggcggugggagggaaggagggaggaaggaaaggcgggagaggg agggggccaagugccagaguugaagggcggcgagggguggggcuggacguccccccucgccu cucacccuuuucacccucacagGACUCCCCUGGCACCUGACAUCUCCCACGCUCCACCUGCG CGCCCACCGCCCCCUCCGCCGCCCCUUCCCCAGCCCUGCCCCCGCAGACUCCCCCUGCCGCC AAGACUUCCAAUAAAACGUGCGUUCCUCUCGACA

[^0]: ${ }^{1}$ The symbols '(' and ')' represent canonical base pairs, '+' represents guanine bases taking part in G-tetrad formation, '.' represents unpaired bases.
 ${ }^{2}=$ diversity of the proposed structure, the average distance separating bases involved in pairing of the structure

 * diversity of the $3^{\text {rd }}$ structure with respect to its MFE for Human_PLM sequence
 ** frequency of Human_PLM's $3^{\text {rd }}$ structure after its MFE structure

[^1]: ${ }^{1}$ The G-score obtained for the consensus sequence after aligning the highest scoring GQS of C. lupus is 20 after substituting the + with the base G .
 ${ }^{2}$ The consensus sequence after aligning C. lupus' highest scoring GQS has a G-score of 14 after substituting the + with the base A .

[^2]: ACUACCAGUCCCUGCAGAUCGGAGGCCUCGUCAUCGCCGGGAUCCUCUUCAUCCUGGGCAUC CUCAUCGUGCUGAgugagugceccuagcuccegcceucuaceccgceucucceuggececac eucucucuggeccegceucucceuggceccgceucucceuagceccecucucceuggececя euucucceuggucecgecceucceuggeccegceccgccecaaccecucccaggecuugece egceuacceugceuugguuccecggcececggucucgceucuagececgececgucececal
 fcccqccccucqcqaqqqcqaqcuqqaqcuacaqcqccqcuuqqcqcccqccqqqaqqgaq ccucaqcuucuccuaccucuccacqcccacaq

 GUA

