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Abstract. The Poisson algebra of the Lax matrix associated with the Pohlmeyer reduction of
the AdS5 × S5 superstring is computed from first principles. The resulting non-ultralocality is
mild, which enables to write down a corresponding lattice Poisson algebra.

1 Introduction

We recently showed in [1] that the Poisson algebra of the Lax matrix associated with symmetric
space sine-Gordon models, defined through a gauged Wess-Zumino-Witten action with an inte-
grable potential [2], admits an integrable lattice discretization. In the present letter we compute
the r/s-matrix structure [3] associated with the Pohlmeyer reduction of AdS5 × S5 superstring
theory [4, 5] directly from its representation in terms of a fermionic extension of a gauged WZW
action with an integrable potential. We similarly find that it is precisely of the type which, after
regularization as in [6], admits an integrable lattice discretization of the general form identified in
[7, 8].

2 Canonical analysis and Hamiltonian

To begin with we briefly recall some usual notations. We refer the reader to [4] for more details
concerning this setup. The superalgebra f = psu(2, 2|4) admits a Z4-grading, f = f(0)⊕f(1)⊕f(2)⊕f(3)

where g = f(0) = so(4, 1) ⊕ so(5). Let G denote the corresponding Lie group. The supertrace is
compatible with the Z4-grading, in the sense that Str(A(m)B(n)) = 0 for m + n 6= 0 mod 4. The
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reduced theory relies on the element T = i
2
diag(1, 1,−1,−1, 1, 1,−1,−1) ∈ f(2). It defines a Z2-

grading of f with f[0] = Ker(AdT ) and f[1] = Im(AdT ). Elements of f[0] commute with T while those
of f[1] anti-commute with T and we have Str(A[0]B[1]) = 0. Finally, projectors on f[0] and f[1] are
given respectively by P [0] = −[T, [T, · ]+]+ and P [1] = −[T, [T, · ]]. Let h = g[0] be the subalgebra
in g of elements commuting with T . The corresponding Lie group H is [SU(2)]4.

Our starting point is the field theory introduced in [4]. It corresponds to a fermionic extension
of a G/H gauged WZW with a potential term. The action we start with is, taking ǫτσξ = 1,

S = 1
2

∫

dτdσ Str(g−1∂+gg
−1∂−g) +

1
3

∫

dτdσdξǫαβγ Str(g−1∂αgg
−1∂βgg

−1∂γg)

−
∫

dτdσ Str(A+∂−gg
−1 − A−g

−1∂+g + g−1A+gA− − A+A−)

+ 1
2

∫

dτdσ Str(ψL[T,D+ψL] + ψR[T,D−ψR])

+

∫

dτdσ
(

µ2 Str(g−1TgT ) + µ Str(g−1ψLgψR)
)

.

The fields g, ψR, ψL and the gauge fields A± respectively take values in G, f(1)[1], f(3)[1] and in h.
The covariant derivatives are D± = ∂± − [A±, ] with ∂± = ∂τ ± ∂σ.

Generalizing the analysis of [9] to the case considered here, one finds that the phase space is
spanned by the fields (g,JL, A±, P±, ψL, ψR). The field JL corresponds to the left-invariant WZW
current. Alternatively, one can use instead the right-invariant current JR, related to JL by

JR = −2∂σgg
−1 + gJLg

−1.

The fields P± are the canonical momenta of A±. The non-vanishing Poisson brackets are

{JL1(σ),JL2(σ
′)} = [C

(00)
12

,JL2]δσσ′ + 2C
(00)
12

∂σδσσ′ ,

{JR1(σ),JR2(σ
′)} = −[C

(00)
12

,JR2]δσσ′ − 2C
(00)
12

∂σδσσ′ ,

{JL1(σ), g2(σ
′)} = −g2C(00)

12
δσσ′

{JR1(σ), g2(σ
′)} = −C(00)

12
g2δσσ′

{A±1(σ), P±2(σ
′)} = C

(00)[00]
12

δσσ′ ,

{ψR1(σ), ψR2(σ
′)} =

[

T2, C
(13)
12

]

δσσ′ ,

{ψL1(σ), ψL2(σ
′)} =

[

T2, C
(31)
12

]

δσσ′ .

In these expressions C
(ij)
12

∈ f(i) ⊗ f(j) are the components of the tensor Casimir (see [10] for its

properties) in the decomposition C12 = C
(00)
12

+C
(13)
12

+C
(22)
12

+C
(31)
12

with respect to the Z4-grading.

The component C
(00)[00]
12

is defined in a similar way relative to the Z2-grading.
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The standard analysis shows that there is a total of four constraints,

χ1 = P+, χ2 = P−, (2.2a)

χ3 = J [0]
R + A+ − A− − 1

2 [ψL, [T, ψL]], χ4 = J [0]
L + A+ − A− + 1

2 [ψR, [T, ψR]]. (2.2b)

The extended Hamiltonian, which has weakly vanishing Poisson brackets with the constraints (2.2),
is

H =

∫

dσ
(

1
4 Str

(

JL
2 + JR

2
)

+ Str
(

J [0]
R A+ − J [0]

L A−

)

+ 1
2 Str

[

(A+ − A−)
2
]

− 1
2 Str

(

ψL[T, ∂σψL − [A+, ψL]]
)

− 1
2 Str

(

ψR[T,−∂σψR − [A−, ψR]]
)

(2.3)

− µ2 Str(g−1TgT )− µ Str(g−1ψLgψR) + v+P+ + v−P− + λ(χ3 − χ4)
)

with v+ − v− = ∂σ(A+ +A−)− [A+, A−]. The combination χ3 − χ4 of the constraints generates a
gauge invariance.

3 Continuum and lattice Poisson algebras

Up to a gauge transformation, the equations of motion for the fields (JL, g, ψL, ψR) under the
Hamiltonian (2.3) are equivalent to the zero curvature equation {L, H} = ∂σM + [M,L] for the
following Lax connection [4]

L(z) = −1
2JL − 1

2z
√
µψR − 1

2z
2µT + 1

2z
−1√µg−1ψLg +

1
2z

−2µg−1Tg, (3.1a)

M(z) = −1
2JL + A− − 1

2z
√
µψR − 1

2z
2µT − 1

2z
−1√µg−1ψLg − 1

2z
−2µg−1Tg. (3.1b)

The field A+ entering the equations appears as an arbitrary element of h. We now have all the
ingredients needed to compute the Poisson bracket of the Lax matrix (3.1a). The result reads

4{L1(z1),L2(z2)} = [r12(z1, z2),L1(z1) + L2(z2)]δσσ′

+ [s12(z1, z2),L1(z1)− L2(z2)]δσσ′ + 2s12(z1, z2)∂σδσσ′ , (3.2)

where the kernels of the r/s-matrices are given by

r12(z1, z2) =
z42 + z41
z42 − z41

C
(00)
12

+
2z1z

3
2

z42 − z41
C

(13)
12

+
2z21z

2
2

z42 − z41
C

(22)
12

+
2z31z2
z42 − z41

C
(31)
12

, (3.3a)

s12(z1, z2) = C
(00)
12

. (3.3b)

One can check explicitly that the kernels (3.3) coincide exactly with the ones that would be
obtained from the generalization of the alleviation procedure proposed in [1] to semi-symmetric
space σ-models. This is simply a matter of replacing the twisted inner product on the twisted loop
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algebra considered in [11] by the trigonometric one and to compute the corresponding kernels as
explained in [1].

An important property of the above r/s-matrix structure is that s is simply the projection onto
the subalgebra g. In this case, the corresponding Poisson algebra (3.2) can be discretized following
[6] by introducing a skew-symmetric solution α ∈ End g of the modified classical Yang-Baxter
equation on g. Then the matrices

a12 = (r + α)12, b12 = (−s− α)12, c12 = (−s+ α)12, d12 = (r − α)12,

satisfy all the requirements of [7, 8] in order to define the following consistent lattice algebra,

4{Ln
1
,Lm

2
} = a12Ln

1
Lm

2
δmn −Ln

1
Lm

2
d12δmn + Ln

1
b12Lm

2
δm+1,n −Lm

2
c12Ln

1
δm,n+1.

This algebra reduces to (3.2) in the continuum limit (see [1]). The corresponding algebra for the
monodromy may be found in [1].

4 Conclusion

We have constructed a quadratic lattice Poisson algebra associated with the fermionic extension of
the (SO(4, 1)× SO(5))/[SU(2)]4 gauged WZW model with an integrable potential. The fact that
one is able to write down such a lattice algebra is quite appealing and in sharp contrast with what
happens for the canonical Poisson structure of the AdS5 × S5 superstring [10]. Indeed, it brings
hope of being able to construct a lattice quantum algebra related to the Pohlmeyer reduction of the
AdS5×S5 superstring. The precise link of this Pohlmeyer reduction with the alleviation procedure
presented in [1] is under study.
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EPSRC grant EP/H000054/1.
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