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Abstract

The problem of optimal arrangement of nodes of a random weighted graph is

studied in this thesis. The nodes of graphs under study are fixed, but their edges

are random and established according to the so called edge-probability function.

This function is assumed to depend on the weights attributed to the pairs of graph

nodes (or distances between them) and a statistical parameter. It is the purpose

of experimentation to make inference on the statistical parameter and thus to

extract as much information about it as possible. We also distinguish between two

different experimentation scenarios: progressive and instructive designs.

We adopt a utility-based Bayesian framework to tackle the optimal design

problem for random graphs of this kind. Simulation based optimisation meth-

ods, mainly Monte Carlo and Markov Chain Monte Carlo, are used to obtain

the solution. We study optimal design problem for the inference based on partial

observations of random graphs by employing data augmentation technique.

We prove that the infinitely growing or diminishing node configurations asymp-

totically represent the worst node arrangements. We also obtain the exact solution

to the optimal design problem for proximity graphs (geometric graphs) and numer-

ical solution for graphs with threshold edge-probability functions.

We consider inference and optimal design problems for finite clusters from bond

percolation on the integer lattice Z
d and derive a range of both numerical and

analytical results for these graphs. We introduce inner-outer plots by deleting

some of the lattice nodes and show that the ‘mostly populated’ designs are not

necessarily optimal in the case of incomplete observations under both progressive

and instructive design scenarios.

Finally, we formulate a problem of approximating finite point sets with lattice

nodes and describe a solution to this problem.

i



To my grandparents.

ii



Statement of Authorship

Some parts of this thesis have been published or submitted for publication in

refereed journals, presented at conferences and used in teaching materials. Listed

below is the information pertaining to these preliminary presentations of results.

1. Bejan, A. Iu. (2009) Inference and optimal design for percolation and random

graph models. Computer Laboratory Opera Group Seminars. The University

of Cambridge.

2. Bejan, A. Iu. (2009) Large clusters as rare events, their simulation and con-

nection to critical percolation. Networks (Operations Research) Seminar

Series. The University of Cambridge.

3. Bejan, A. Iu. (2008) Grid approximation of a finite set of points. Conference

Mathematics & IT: Research and Education 2008, Chişinău, October 1-4.

4. Bejan, A. Iu., Gibson, G. J., Zachary, S. (2008) Inference and experimental

design for some random graph models. Workshop Designed Experiments:

Recent Advances in Methods and Applications (DEMA2008), Isaac Newton

Institute for Mathematical Sciences, Cambridge, UK, 11-15 August 2008.

5. Bejan, A. (2008) Lecture notes “MCMC in modern applied mathematics”.

Center for Education and Research in Mathematics and Computer Science,

Department of Mathematics and Computer Science, State University of Moldova.

http://www.cl.cam.ac.uk/~aib29/CECMI/MCMC/notes.pdf

6. Cook, A. R., Gibson, G. J., Gilligan, C. A. (2008) Optimal observation times

in experimental epidemic processes. Biometrics, 64(3), pp. 860-868.

iii



with Web Appendices at

http://www.biometrics.tibs.org/datasets/070104.pdf

Except where explicit reference is made in the text of the thesis, this thesis

contains no material published elsewhere or extracted in whole or in part from a

thesis by which I have qualified for or been awarded another degree or diploma. No

other person’s work has been relied upon or used without due acknowledgement

in the main text and bibliography of the thesis.

iv



Acknowledgements

I was suggested to undertake this study by Professor Gavin Gibson in reply to my

proposal for pursuing PhD research at Heriot–Watt University in 2005. Gavin’s

suggestion was to consider an abstract problem of identifying spatial locations

of nodes of a random graph that make observation of the edge structure most

informative about the statistical model underlying the formation of the graph and

to look at the applications, particularly in plant epidemiology, where observations

often tend to be a filtering of the above graph. Dr Stan Zachary, Heriot–Watt

University, joined the supervising team with interests and expertise in probability

theory and stochastic network analysis.

I would like to express my sincere gratitude in the first place to my supervisors

for the enormous amount of time and support they have given to me. I would also

like to thank my examiners, Professor Frank Ball, The University of Nottingham,

and Dr George Streftaris, Heriot-Watt University for useful comments and critical

observations which undoubtedly resulted in the improvement of the thesis.

I thank Professor Chris Gilligan, The University of Cambridge, for his hospi-

tality in February 2007 and for permission to reproduce Figure 1.3 from Bailey,

Otten and Gilligan (2000).

I thank Dr. Alex Cook (Heriot-Watt University, University of Cambridge, Na-

tional University of Singapore) for permanent discussions on the topic and also for

the plants he was so generous to give me. The plants are in good health and I can

say that many people enjoy them!

My thanks and appreciation are also extended to the following people who have

supported me in undertaking this research programme: Dr. Arkadii Semenţul,

State University of Moldova, and Professor Gheorghe Mişcoi, Academy of Sciences

v



of Moldova.

These people made my social life in Scotland enjoyable: John Phillips, Michael

Reidman, Jafar Fazilov, Wenny Chen, Eyad Al’Okke, Cornelius Schmidt-Colinet

and Ben Hart. Edinburgh is a truly great city and can hardly be compared to any

other city in the world! I thank all its tourists, especially those who leave the city

at the end of August each year, letting it get back to normal life!

Perhaps one should agree with William Somerset Maugham, who said that

“Money is like a sixth sense without which you cannot make a complete use of

the other five”. PhD students need this sixth sense indeed to fully concentrate on

their studies. The Overseas Research Student Awards Scheme (ORSAS) and James

Watt scholarship provided me with financial help and I acknowledge this support.

The British Government should be thanked for running the former, whereas the

School of Mathematical and Computer Sciences of Heriot–Watt University should

be thanked for providing me with the latter.

I am thankful to the organisers of the workshop Design of Experiments 2008

and to the Isaac Newton Institute for Mathematical Sciences for their hospitality

while attending the event. I am also thankful to EURANDOM (European Institute

for Statistics, Probability, Stochastic Operations Research and its Applications)

for organising the series of workshops Young European Probabilists, two of which

I had the chance to attend.

Finally, I am deeply indebted to my family. I owe my persistence to my grand-

parents, Ivan Nikolaevich Bejan and Ol’ga Leont’evna Bodnar’. My parents, Li-

ubov’ and Yurii, and my brother, Serguei, should be thanked for their encouraging

understanding and support. My wife, Kitty, deserves thanks for tolerating the

combination of almost incompatible things—scientific research and family life.

Andrei Bejan

Cambridge, May 2010

vi



This page is so the Research Thesis Submission Form can have the page number

before the Contents page number.

vii



Contents

Abstract i

Authorship iii

Acknowledgements v

1 Introduction 1

1.1 Why inference and optimal design on random graphs? . . . . . . . . 1

1.2 General model description and further motivation . . . . . . . . . . 4

1.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Motivation: theoretical positions and practical aspects . . . 6

1.3 Related work on inference and experimental design problems for

stochastic interaction and spatial response models . . . . . . . . . . 11

1.3.1 Spatial response models . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Stochastic interaction models . . . . . . . . . . . . . . . . . 13

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Tools and methodology 16

2.1 Basic notions from the graph theory . . . . . . . . . . . . . . . . . . 16

2.2 Likelihood and Bayesian statistical inference . . . . . . . . . . . . . 22

2.2.1 Data, likelihood and Fisher information . . . . . . . . . . . . 23

2.2.2 Bayesian concept . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Monte Carlo methods and Markov Chain Monte Carlo . . . . . . . 31

2.3.1 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . 33

viii



3 Utility-Based Optimal Designs within the Bayesian Framework 41

3.1 Introduction: from locally D-optimum to utility-based Bayesian de-

signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Toy examples: three and four nodes . . . . . . . . . . . . . . 41

3.1.2 Utility-based Bayesian optimal designs . . . . . . . . . . . . 47

3.2 Shannon entropy, Lindley information measure and Kullback–Leibler

divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Bits of history . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Lindley information . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Comparing informativeness of experiments: expected Kullback–

Leibler divergence and expected Lindley information gain as

expected utility and their properties . . . . . . . . . . . . . . 53

3.3 Progressive and Instructive Designs . . . . . . . . . . . . . . . . . . 60

3.3.1 Progressive designs . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Instructive designs . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Simulation-based evaluation of the expected utility . . . . . . . . . 62

3.5 Second formulation of the problem . . . . . . . . . . . . . . . . . . 65

3.5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 n-node optimal design problem for random graphs . . . . . . 66

3.5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Optimal Designs for Basic Random Graph Models 70

4.1 Worst case scenarios: indefinitely growing or diminishing vertex

configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Optimal designs for basic random graphs . . . . . . . . . . . . . . . 73

4.2.1 Two-node design and prior entropy asymptote of the ex-

pected utility . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Progressive and instructive designs: two-node ‘black box’

design example . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Three-node star design with two independent edges . . . . . 80

4.2.4 Proximity graphs . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.5 Step-like (threshold) probability decay . . . . . . . . . . . . 88

ix



4.2.6 Non-preservation of optimal designs under replication . . . . 91

5 Lattice-based Optimal Designs 95

5.1 Inference and Optimal Design for Percolation Models . . . . . . . . 96

5.1.1 Nearest-neighbour interaction model and percolation . . . . 96

5.1.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 101

5.1.3 Bayesian optimal designs and inner-outer plots . . . . . . . . 120

5.1.4 Implementation of progressive and instructive designs based

on inner-outer plots . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Lattice designs for inference on random graphs with long-range con-

nections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1 Generalising results from the previous section . . . . . . . . 134

5.2.2 Square lattice and its deformations . . . . . . . . . . . . . . 135

6 Grid Approximation of a Finite Set of Points 142

6.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 Basic examples . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.2 Formulation of the problem and motivation . . . . . . . . . 145

6.2 Finding ǫ-optimal approximation grids . . . . . . . . . . . . . . . . 147

6.2.1 Brucker–Meyer approximation in R and R
n . . . . . . . . . . 147

6.2.2 Approximation by grid nodes . . . . . . . . . . . . . . . . . 154

6.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusions 161

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography 170

A Solving abx+c = dx+ e and maximising x2/ (ex − 1) 185

A.1 Equation abx+c = dx+ e . . . . . . . . . . . . . . . . . . . . . . . . 185

A.2 Maximisation of x2/
(
eθx − 1

)
. . . . . . . . . . . . . . . . . . . . . 186

x



B Dirac delta function 187

C Integration of polylogarithms 189

D Realisation of 6 distances in R
3 192

E Gamma distribution, infectious times and site percolation 194

xi



List of Figures

1.1 Examples of different types of regular discrete graph topologies. . . 3

1.2 Arrangement of n objects within the set D: there is a link between

each pair (u, v) of them with probability p(r(u, v), θ), θ ∈ Θ ⊆ R
k.

In (a) D is a bounded region in R
2, in (b) D ⊆ Z

2, and in (c) D is

a subset of nodes of a hexagonal grid—only neighbouring nodes can

be connected realising the so called nearest-neighbour interaction. . 5

1.3 The growth of the mycelial colonies as a percolation process studied

by Bailey and Gilligan (1997) and Bailey et al (2000). The edge-

probability decay may be ‘combined’ from simpler decays: e.g. the

progress of disease in a population of radish plants exposed to pri-

mary infection by R. solani in the presense/absence of T. viride

was studied in Bailey and Gilligan (1997) using the following form

for the probability of infection: p(r, θ) = (θ1 + θ2r)e
−θ3r. . . . . . . . 9

2.1 Oriented (left) and unoriented (right) multigraph on the same set

of vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 A subgraph induced by the vertices of the graph from left of degrees

distinct from 4 is a cycle from right. . . . . . . . . . . . . . . . . . . 19

2.3 Example of a graph G and its complement Ḡ. . . . . . . . . . . . . 20
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value”. The expected value of X is denoted by E [X ] and its variance by

varX.
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able (object) X is denoted by suppX.

5. It is followed the very convenient, albeit theoretically incorrect practice of
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xfX(x).

6. The entropy of a distribution with density (or probability mass function)

fX(x) is denoted by Ent{fX(x)}:

Ent{fX(x)} := −
∫

suppX

fX(x) log fX(x)dx.
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7. The following notation is used for the indicator function:

1l{A} =




1, if the event A takes place,

0, otherwise.

8. The use of vertical bars, | · |, when applied to a discrete set, indicates the
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9. Notation argmax
x

f(x) is used to denote the set {x| f(y) ≤ f(x) ∀y}, that is
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10. The ‘big Oh’ notation is used in this thesis to describe the efficiency of the

algorithms. For example, the writing O(n2) means that the time complexity
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∃M ∈ R+ ∃N ∈ N : T (n) ≤ Mn2 ∀n > N.

O-notation is an upper bound asymptotic order notation and is not to be

abused by assuming that it gives an exact order of growth: a running time

O(n2) does not imply that the running time is not also O(n) (Graham, Knuth

and Patashnik (1990, p. 429–229)).

11. The sign ‘:=’ is used to denote “is defined as” or “equal by definition”.

12. It is used the standard notation e to refer to the base of natural logarithms:

e := lim
n→∞

(
1 +

1

n

)n

,

and the following notation for binomial coefficients:
(
n

k

)
:=

n!

k!(n− k)!
.

13. Natural logarithms are denoted by ‘log x’:

log e = 1;

14. The diagonal of an n-ary relation Xn := X ×X × . . .×X (n times) on a set

X is denoted by diagXn:

diagXn := {(x1, x2, . . . , xn) ∈ Xn| xi = xj , 1 ≤ i < j ≤ n}.
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Chapter 1

Introduction

Waiho i te toipoto, kaua i te toiroa.

(Māori proverb)

Let us keep close together, not far apart.

1.1 Why inference and optimal design on random

graphs?

A graph is a mathematical structure which is used to model pairwise relations

within a set of objects, often of the same nature. Describing the structure of

the interconnection pattern of a network of interacting objects, graphs represent

convenient mathematical objects allowing one to capture, analyse, and interpret

such interactions and their development.

Graphs are convenient because they are abstract—one can study them regard-

less of the nature of the set of the interacting objects. However, depending on what

these objects actually represent, the corresponding graphs, or their dynamics, may

reflect development of the processes observed by biologists, epidemiologists, physi-

cists, engineers, sociologists and ecologists, who often see the same interesting

features and phenomena in the network structures that appear in their interdis-

ciplinary studies. Discovery of small-world networks and the parallels between

the spread of an infectious disease in plant epidemiology or forest fires on the one

hand, and percolation processes on discrete and continuum structures on the other
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hand, are just two of the numerous possible examples. Not surprisingly, the inter-

est in network science that arose in the early 1990’s, and has increased ever since,

produced interesting applications in mathematical epidemiology, social networks

and computer networks theory1.

A graph that is generated by some random process is called a random graph.

Strictly speaking, a random graph as a mathematical object can be regarded as

a random element on a certain probability space taking values in a set of graphs,

but there may be, and indeed this is often the case, a rule according to which

a realisation of such random element can be obtained. In some situations it is

reasonable to assume that the vertices of the considered random graph are fixed,

while edges occur randomly and the probability that an edge is present between a

given pair of vertices obeys a parametric law that depends on the degree to which

the corresponding objects are susceptible to an interaction.

A fairly realistic example is the following: a researcher dealing with a phe-

nomenon of signal propagation establishes that the strength of the signal, and

hence the chances for its successful reception, decays according to a power law

with distance regardless of the physical characteristics2 of the medium in which

the signal propagation evolves. However, there is a correspondence between phys-

ical conditions and the exponent of the power law describing the signal strength

decay, and the researcher wants to know this correspondence. Taking measure-

ments of the signal strength in a particular medium will give information on the

scaling exponent. However, if the researcher is only equipped with signal detectors

that can measure the signal’s presence or absence with some uncertainty related

to the signal’s strength and the number of such detectors is fixed, some of their al-

locations will be more informative and some will be less informative. What choice

of the detectors’ positions is the most optimal?

Generally speaking, there are three key factors that influence the answer to this

1In the author’s opinion, the postponement of widespread progress on the dynamics of large-

scale networks until the 1990’s was, to some extent, due to the lack of sufficient computing power

to simulate the behaviour of large complex networks prior to that time.
2The fundamental law that the researcher establishes might only hold within some range of

values of the medium’s characteristics.
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Figure 1.1: Examples of different types of regular discrete graph topologies.

question:

1. the form of the decay function and the probabilistic nature of the signal

detection;

2. the local topology of the space within which the signal propagates;

3. the way in which the information derived from the detectors is quantified.

The form of the decay function affects the optimal choice in an obvious way:

the higher the chances are for the signal to travel longer distances—the lower

the chances are that a clever experimenter will put all the detectors close to the

emitter(s) of the signal. The local topology of the space within which the signal

propagates describes all permitted directions of the travelling signal to propagate

along once it is sent by the emitters; this information should be described for any

possible position of an emitter within the considered space. We will refer to this

information as the topology of interactions or contact network. The topology of

interactions can be represented by a graph, either discrete or continuum. Figure 1.1

depicts basic examples of different types of regular discrete graph topologies.

Finally, different measures of quantifying information delivered by the detectors

will lead to different optimal arrangements of them. Generally, the value of the

information carried by data depends on what exactly one intends to do with the

data when they are collected.
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In the next section we give a general description of the model and problem

under study as well as provide further motivation details.

1.2 General model description and further motiva-

tion

1.2.1 Model

Consider an arrangement of n objects x1, x2, . . . , xn within a subset D of some

larger set X, possibly a metric space. There is an unoriented link between each

pair xi and xj , independently of the positions of the other objects and links between

them, with some probability pij = pji which depends on the non-negative weight

rij attributed to (xi, xj) (in the case of a metric structure these weights will be

distances between objects), i.e.

pij := P(xi and xj are connected) = p(rij , θ), (1.1)

where θ is an unknown parameter, θ ∈ Θ ⊆ R
k, and function p(·, ·) acts as follows:

p : R+ ×Θ → [0, 1]. (1.2)

One may additionally require the following two assumptions to hold, particu-

larly when rij are distances:

Assumption 1.2.1. The function p(r, θ) is non-increasing in r for each value

of θ.

Assumption 1.2.2. The function p(r, θ) tends to zero as r tends to infinity, and

it tends to unity as r tends to zero for each value of θ:

lim
r→∞

p(r, θ) = 0, (1.3)

lim
r→0

p(r, θ) = 1. (1.4)
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(a) (b) (c)

Figure 1.2: Arrangement of n objects within the set D: there is a link between each

pair (u, v) of them with probability p(r(u, v),θ), θ ∈ Θ ⊆ R
k. In (a) D is

a bounded region in R
2, in (b) D ⊆ Z

2, and in (c) D is a subset of nodes

of a hexagonal grid—only neighbouring nodes can be connected realising

the so called nearest-neighbour interaction.

Depending on the context the following names are commonly used to refer to

the function p(r, θ):

• edge-probability function or edge-probability profile;

• connectivity kernel or connection kernel.

The described procedure of establishing connections between a finite number

of objects taken in the set D results in a finite random graph on these objects

as nodes. Some examples of different types of the set D are shown in Figure 1.2,

where long-range connections are possible within D in (a) and (b), and only con-

nections between adjacent nodes of the hexagonal lattice are allowed in (c) leading

to nearest-neighbour interaction.

The statistical interest in considering the described model is to make infer-

ence on its parameter θ. This should be done after observing a random graph on

n nodes, formation of which is governed by the edge-probability function p(r, θ).

The optimal design problem consists in finding an optimal arrangement of

these n nodes in order to extract as much information about θ as possible—this

should be done before looking at an observation of the random graph, but certainly

taking into account all possible outcomes. Information provided by each of these

outcomes for a given arrangement should be carefully quantified, so that different

arrangements can be compared in terms of their usefulness for solving the problem

of parameter estimation.
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1.2.2 Motivation: theoretical positions and practical aspects

Theoretical aspects

The random graph model described in § 1.2.1 can be viewed as an extension of

the Erdős–Rényi random graph in which each pair of vertices is connected by an

edge with probability p. More formally, the Erdős–Rényi random graph Gn,p is

constructed in the following way. Let V = {1, 2, . . . , n}, and let (Xij : 1 ≤ i <

j ≤ n) be independent Bernoulli random variables with parameter p. For each

pair i < j an undirected edge (i, j) is placed between vertices i and j if and only

if Xij = 1. The resulting graph is named after the two prominent Hungarian

mathematicians Paul Erdős and Alfréd Rényi (1959, 1960), although historically

it appears to have been introduced first by Edgar N. Gilbert (1959).

Being a truly elegant model, the Erdős–Rényi random graph model was initially

introduced and studied in order to understand the properties of ‘typical’ graphs.

The random graph Gn,p has received an enormous deal of attention, predominantly

within the community working on probabilistic combinatorics (Grimmett (2008)).

The Erdős–Rényi random graph on n vertices can be seen as a bond percolation

model on the complete graph Kn with the bond percolation probability p (in this

percolation model the random graph is obtained by deleting edges of Kn, each with

probability p and independently of each other). On the one hand, as noticed by

Grimmett (2008), “the parallel with percolation is weak in the sense that the theory

of Gn,p is largely combinatorial rather than geometrical”. On the other hand, we

find it useful to indicate an underlying graph on which percolation is considered,

and thus to identify the topology of interactions (in the case of the Erdős–Rényi

model it is the complete graph Kn since any two nodes can be connected with

probability p). This view is formally represented in the next chapter. Some of the

results obtained in this thesis refer to classical percolation on Z
d. We believe that

these results can further be generalised to percolation models on other lattices or,

even more generally, irregular infinite (but locally finite) graphs.

The two fundamental assumptions of the classical Gn,p model are that (i)

edges are independent of each other, and (ii) edges are equiprobable. Clearly,

either of these assumptions may often be inappropriate for modelling real-life
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phenomena. While preserving the former assumption, the model introduced in

§ 1.2.1 improves upon the latter one. For other alternatives see the popular Watts

and Strogatz model, which produces graphs that are homogeneous in degree (see

Milgram (1967), Travers and Milgram (1969), Watts and Strogatz (1998) and

Watts (2003)) and the Barabási-Albert model of preferential attachment (see Al-

bert and Barabási (2002)), which produces graphs with scale-free degree distribu-

tion.

Practical aspects and the problem of incomplete observations

Many real-world phenomena can be modelled by random graphs, or more generally,

by dynamically changing random graphs. Specifically, host-pathogen biological

systems that may combine primary and nearest-neighbour or long-range secondary

infection processes can be efficiently described by spatio-temporal models based

on random graphs evolving in time (Gibson et al (2006)).

Although a continuous observation of an epidemic is not always possible, a spa-

tial ‘snapshot’ may provide one with some, albeit highly incomplete, knowledge

about the epidemic. In terms of the model this knowledge results in a random

graph realised in some metric space. Moreover, under certain experimental cir-

cumstances it is not possible to observe some or even all of the edges of such a

random graph—all one would know then are the vertices which correspond to the

infected sites, that is to those sites which interacted as a result of the evolution of

the process under consideration.

One particular application refers to the colonisation of susceptible sites, such

as seeds or plants grown on a lattice, by virus, fungal, or bacterial pathogens with

limited dispersal abilities. A typical example is the spread of infections through

populations of seedlings by the fungal pathogen, Rhizoctonia solani Kühn. This

economically-important pathogen is wide spread with a remarkably wide host range

(Chase (1998)). In addition to its intrinsic economic importance, it has been ex-

tensively used as an experimental model system to test epidemiological hypotheses

in replicated microcosms (Gibson et al (2004) and Otten et al (2004)) and to study

biological control of pathozone behaviour by an antagonistic fungus and disease
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dynamics (Bailey and Gilligan (1997)). Transmission of infection between plants

occurs by mycelial growth from an infected host, with preferential spread along

soil surfaces—hence the missing information about the structure of interactions.

The spread of infections with limited dispersal abilities among plants can be

viewed as a spatial SIR epidemic with nearest-neighbour secondary infections and

removals, and can be related to percolation processes on regular lattices. An illus-

trative example, classical now (Grimmett (1999), Trapman (2006)), of a problem

arising in botanical epidemiology which can be related to percolation is that of an

orchard with trees planted at regular distances in such a way that their positions

can be seen as vertices of the square lattice. Assume that one of the trees (the

central tree, for instance) is infected by a disease. The infection process is such

that exactly one time unit after being infected a tree will die3. After becoming in-

fected a tree becomes infectious and remains so until its death. While infectious it

spreads infectious material to its nearest neighbours, each of which might become

infected (if they were not already so) with some probability p. It is also assumed

that all infections occur independently of each other.

Bayesian estimation for percolation models of disease spread in plant popula-

tions in the context of the spread of Rhizoctonia solani has been presented by

Gibson et al (2006). Bailey et al (2000) studied the spread of this soil-borne fun-

gal plant pathogen among discrete sites of nutrient resource using simple concepts

of percolation theory; a distinction was made between invasive and non-invasive

saprotrophic spread (see Figure 1.3). The authors of these papers formulated

statistical methods for fitting and testing percolation-based spatio-temporal mod-

els that are generally applicable to biological or physical processes that evolve in

time in spatially structured populations. Estimation of spatial parameters from a

single snapshot of an epidemic evolving on a discretised grid under the assump-

tion that fundamental spatial statistics are near equilibrium was studied in Keel-

ing et al (2004).

The difficulties in performing inference for these models in the presence of ob-

3Of course, this is a highly idealised assumption, but we often have to make simplifications

in model assumptions and quite often the analysis based on such simplifications rewards us with

a valuable insight into the problem under study!
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Figure 1.3: The growth of the mycelial colonies as a percolation process studied by

Bailey and Gilligan (1997) and Bailey et al (2000). The edge-probability

decay may be ‘combined’ from simpler decays: e.g. the progress of disease

in a population of radish plants exposed to primary infection by R. solani in

the presense/absence of T. viride was studied in Bailey and Gilligan (1997)

using the following form for the probability of infection: p(r, θ) = (θ1 +

θ2r)e
−θ3r.
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servational uncertainty or incomplete observations can be overcome to an extent by

employing a Bayesian approach and modern powerful computational techniques—

mainly Markov Chain Monte Carlo (for instance, see Gibson (1997)). Markov

Chain Monte Carlo methods often offer important advantages over existing meth-

ods of analysis. In particular, they allow a much greater degree of modelling

flexibility, although the implementation of these methods can be problematic be-

cause of convergence and mixing difficulties which arise due to the amount and

nature of missing data.

An aspect which has received little attention in the context of the described

models is that of experimental design. Statisticians have investigated the question

of experimental design in the Bayesian framework (see Chaloner and Verdinelli (1995)

for a review). The work of Müller and others (e.g. Müller (1999), Verdinelli (1992))

examined the ways of identifying designs that maximise the expectation of a utility

function.

In this thesis we study the problem of optimal design for random graph models

within the utility-based Bayesian framework and discuss generic issues that arise

in this context. Realisations of random graph can be seen as a final snapshot of

nearest-neighbour or long-range disease spread spatio-temporal dynamics or as a

result of the percolation process on a node network (see Read and Keeling (2003)

and Bailey et al (2000)).

The purpose of the ‘optimal design’, as presented in this thesis, is not as much

relevant to epidemics in large human populations where one employ mean-field

considerations, as to networks with more distinctive topological structure. On the

other hand, disease evolution on networks and plant epidemiology are not the only

possible practical contexts within which the problem of optimal design for random

graphs can be studied. The following are just some examples of areas within

which random graph and network models have recently been rapidly developed,

and which keep creating a demand and open new opportunities for studying non-

linear experimental design problems in the context of random graphs:

• radio networks, e.g. random mobile graphs introduced in Tyrakowski and

Palka (2005) for analysis of distributed algorithms requiring synchronous
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communication in radio networks;

• geophysics: determining locations of seismometers to locate earthquakes with

minimum uncertainty, locating receivers optimally within a well to locate in-

duced microseismicity during production, designing source/receiver geome-

tries for acoustic tomography that optimally detects underwater velocity

anomalies; see Curtis (2004 a,b) and references therein;

• general temporal stochastic ageing and fatigue processes, e.g. Ryan (2003);

• psychological experiments, e.g. Kueck et al (2009) and neurophysiological

experiments, e.g. Paninski (2005).

We conclude this section by listing a few examples of edge-probability decays

for the model introduced in § 1.2.1:

threshold decay: p(r, θ) = 1l{r≤θ} + α1l{r>θ}, α ∈ [0, 1), θ ∈ Θ ≡ R+;

exponential law decay: p(r, θ) = e−θr, θ ∈ Θ ≡ R+;

power-law decay: p(r, θ) = (1 + θ1r)
−θ2, θ = (θ1, θ2) ∈ Θ ≡ R

2
+;

Cauchy decay: p(r, θ) = (1 + θr2)−1, θ ∈ Θ ≡ R+;

logistic function: p(r, θ) = θ1/ exp{θ2(r − θ3)}, θ = (θ1, θ2, θ3) ∈ Θ ≡ R+ × R+.

1.3 Related work on inference and experimental

design problems for stochastic interaction and

spatial response models

In spatial response models (e.g. image analysis or geostatistics) and stochastic

interaction models (e.g. epidemic models) one studies responses as functions on

either spatial locations or their interactions as well as possibly time. We give a

brief review of existing related work on inference and design problems for stochastic
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interaction and spatial response models in this section. This review is inevitably

selective and ultimately incomplete.

1.3.1 Spatial response models

Müller (2007) is an excellent account on applications of experimental design the-

ory to spatial statistical response models. The monograph discusses exploratory

designs, designs for spatial trend estimation and multipurpose designs for these

models and contains many useful references in the field.

Fuentes et al (2007) develop a fully Bayesian spatial statistical methodology

to design air pollution monitoring network with good predictive capabilities and

minimised costs of monitoring. In order to estimate the associate model parameters

the authors use the technique of Reversible Jump Markov Chain Monte Carlo.

The design problem was solved using a specific utility function which also took

into account monitoring costs.

A different approach is taken by Papadimitriou et al (2005). These authors solve

the problem of optimising the location and number of sensors for the purpose

of most accurately predicting the response of randomly vibrating structures at

unmeasured locations by minimising the errors in the response predictions obtained

by the kriging method at unmeasured locations.

Gatrell et al (1996) give a review of a number of methods for the exploration

and modelling of spatial point patterns with particular reference to geographical

epidemiology (geographical incidence of dicease). Gaudard et al (1999) present a

complete Bayesian methodology for analysing spatial data and estimating struc-

tural covariance parameters modelling the spatial covariance structure assuming

Gaussian random fields.

Besag and Green (1993) present a thorough review on Baysian computation

in spatial statistics, tracing the early development of Markov Chain Monte Carlo

methods in Bayesian inference for statistical physics and making a particular em-

phasis on the Bayesian analysis of agricultural experiments.
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1.3.2 Stochastic interaction models

Epidemic models represent a very good example of stochastic interaction models.

A discussion on the nature of infectious disease data, its modelling aspects as well

as an extended review on previous work on epidemic modelling (including statisti-

cal analysis of epidemics in homogeneous and structured populations) is presented

in the PhD thesis of Demiris (2004) together with an extended bibliographical

review on the topics mentioned. Using the Bayesian paradigm the author devel-

ops suitably tailored Markov Chain Monte Carlo algorithms in order to perform

statistical inference for an epidemic model with two levels of mixing as well as a

generalised SIR stochastic epidemic with an underlying contact structure using

random graphs given the final size(s) of the epidemic outcome.

Keeling (1999) addresses the effects of local spatial structure on epidemiolog-

ical invasions and determines invasions thresholds by modelling the behaviour of

individuals in a fixed network and the spread of a disease through a structured

network. The role and implications of network structure for epidemic dynamics

are studied in Parham and Ferguson (2006) and Keeling (2005). Estimation of

important dispersal and spatial parameters of a spatial epidemic from a single

snapshot is presented in Keeling et al (2004).

Neal (2003) considers a generalized stochastic epidemic on a Bernoulli random

graph. By constructing the epidemic and graph in unison, the epidemic is shown to

be a randomized Reed-Frost epidemic. Exact final-size distribution and extensive

asymptotic results are also derived. Ball and Neal (2008) study SIR epidemics on

social networks involving two levels of mixing: one is due to the network structure

and another is independent of it representing casual contacts. The authors derive

a deterministic model that approximates the spread of an epidemic that becomes

established in a large population.

Glickman and Jensen (2005) study the problem of paired comparison experi-

ments and formalise it as a Bayesian optimal design problem. The authors develop

a pairing method that maximises the expected gain in the Kullback–Leibler diver-

gence from the prior to the posterior of the individual’s strengths. By changing

the utility function Glickman (2008) derives Bayesian locally-optimal design of
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knockout (paired comparison) tournaments when the goal is to identify the overall

best player.

Curtis (2004 a,b) and references therein represent an account on the theory

and practice of experimental design in geophysical problems: locating receivers or

sensors optimally in a heterogeneous environment in order to collect data most

efficiently is the main topic of this area of research in optimal experimental design

theory. Sensor placement applications and the problem of finding optimal sensor

locations is the main motivation of the recent paper of Ren et al (2008) in which an

adaptive evolutionary Monte Carlo algorithm is used in order to optimise certain

complicated “black-box” objective function.

Analysis of the dynamics of spatiotemporal epidemics from time-series data has

been done by Filipe et al (2003) and Gibson et al (2006) via semi-spatial modelling

and moment-closure approximation approach. This work has seen further devel-

opment in Cook et al (2008) where the authors studied the problem of optimal

observation times in experimental epidemic processes distinguishing between the

so called progressive and pedagogic design scenarios.

1.4 Outline of the thesis

This thesis is organised as follows. Chapter 2 contains a review of the standard

mathematical notions, tools and techniques that are used throughout the thesis.

By recalling basic notions from the graph theory, the techniques of Bayesian sta-

tistical inference and Monte Carlo and Markov Chain Monte Carlo methods we

set up a framework for further development.

Chapter 3 argues for the choice of utility-based Bayesian optimal experimen-

tation as a criterial framework of our further considerations. We give a rigor-

ous review of the Shannon entropy, the Lindley information measure and the

Kullback–Leibler divergence as measures of informativeness of experiments and

discuss simulation-based methods of evaluation of the expected utility and thus

identifying optimal designs. We also introduce two different experimental scenarios

in this chapter: progressive and instructive designs. Using graphs as an underlying
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interaction topology as well as model objects and utility-based Bayesian framework

we give a second, more specific formulation of the model and design problem (n-

node optimal arrangement problem for random graphs), concluding the chapter

with some examples.

Chapter 4 contains theoretic results for some basic random graph models. We

first prove a general worst case scenario result for indefinitely growing or dimin-

ishing configurations. We then study two-node and three-node designs through a

number of examples which identify important features of expected utility surfaces.

We continue with studying proximity (geometric) graphs and graphs with thresh-

old edge-probability decay and obtain an explicit solution to the optimal design

problem for proximity graphs on star interaction topologies considered in metric

spaces. We also show that the case of a threshold edge-probability decay can be

treated numerically. The chapter is concluded by a discussion on how the obtained

theoretic result for proximity graphs can be used to easily show non-preservation

of optimal designs under replication (in non-linear models).

Chapter 5 concerns inference and experimental design problems for finite clus-

ters from percolation on the integer lattice Z
d, d ∈ N. We introduce inner-outer

plots as a design class and show that in presence of incomplete observations for

percolation models the most populated design is not necessarily the most opti-

mal design. This chapter contains both theoretical and practical results for such

nearest-neighbour interaction models under both progressive and instructive design

scenarios. The chapter concludes with a discussion on what the generalisations of

the obtained results and methods might look like for long-range interaction mod-

els. We also discuss the potential of deformations of the square lattice as a way

towards identifying a whole class of lattice designs that keep the dimensionality

and cardinality of the design space low.

Chapter 6 can be regarded as independent of the rest of the thesis. This chapter

deals with a problem of grid approximation of a finite set of points—a design

problem in its own way. The last chapter, Chapter 7 concludes the thesis by

identifying contributions of the thesis and potential directions for future work.
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Chapter 2

Tools and methodology

The standard tools and techniques that are used in the rest of the thesis are

reviewed in this chapter. These tools include basic notions from the graph theory,

the techniques of Bayesian statistical inference and Monte Carlo methods.

2.1 Basic notions from the graph theory

Loosely speaking, a graph consists of vertices connected by edges. Generally, there

may be more than one edge connecting the same pair of (not necessarily distinct)

vertices and the direction of their connection may also be important. To proceed

with formal definitions let us agree on the following notation: define the set of all

subsets of two elements of a given set V by V ⊗ V , that is1

V ⊗ V := {{u, v} : u, v ∈ V, u 6= v}. (2.1)

As traditionally, the Cartesian product of the set V with itself is denoted by

V × V ≡ V 2.

An oriented (unoriented) multigraph G = (V,E, ψ) consists of a set of vertices,

1Although, conventionally, the sign ⊗ is used to denote the tensor product, it is used in this

thesis only to denote the set of all two-element subsets of a given set. This should not cause any

confusion, since we are far from any context involving tensors.
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V , the set of edges E, and a map

ψ : E → V × V (2.2)

(ψ : E → V ⊗ V ∪ {{u} : u ∈ V }) (2.3)

that assigns a pair of vertices to each edge e ∈ E :

ψ(e) = (u, v) ∈ V 2, u, v ∈ V

(ψ(e) ∈ V ⊗ V ∪ {{u} : u ∈ V }).

Figure 2.1 shows an example of an oriented and unoriented multigraph on the

same vertex set V = {u1, u2, u3, u4}. Although the edge sets of both graphs coin-

cide: E = {e1, e2, e3, e4, e5}, the maps ψ are different:

ψ(e1) = (u1, u1), ψ(e2) = (u1, u2), ψ(e3) = (u3, u2), ψ(e4) = (u2, u3), ψ(e5) = (u4, u4),

for the oriented graph (Figure 2.1, left), and

ψ(e1) = {u1}, ψ(e2) = {u1, u2}, ψ(e3) = {u2, u3}, ψ(e4) = {u2, u3}, ψ(e5) = {u4},

for the unoriented graph (Figure 2.1, right).

u1

e1

e2

e3

e4

e5

u2

u3

u4

u1

e1

e2

e3

e4

e5

u2

u3

u4

Figure 2.1: Oriented (left) and unoriented (right) multigraph on the same set of ver-

tices.

Vertices of a multigraph are also called nodes. The order of a multigraph G is

the cardinality of its vertex set |V |. The size of a multigraph is the cardinality of

its edge set |E|. Directed multigraphs are also called oriented multigraphs—the

orientation of at least some of their edges may be important2.

2In graph theory literature the oriented graphs are often abbreviated as orgraphs.
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A simple graph is a multigraph which has no loops3 and no multiple edges

(these connect the same vertices). Thus, a multigraph G = (V,E, ψ) (oriented or

unoriented) is simple if and only if the map ψ is injective, that is

ψ(e1) = ψ(e2) ⇒ e1 = e2 ∀e1, e2 ∈ E,

and the image ψ(E) of the map ψ defined either by (2.2) or (2.3), depending on

whether G is oriented or unoriented, is a subset of the following set:

ψ(E) ⊆




V × V \ diag V, if the multigraph G = (V,E, ψ) is oriented

V ⊗ V, otherwise.

If a multigraph G is simple then the map ψ can be considered to be a simple

inclusion and depending on whether G is oriented or unoriented it is enough to

assume that E is a subset of V 2 \diag V or V ⊗V , correspondingly, to fully define

G. In what follows, unless stated otherwise, the term graph refers to a simple

graph. Moreover, let us refer to the elements of the edge set E of a simple graph

G = (V,E) as pairs (u, v) regardless of whether G is oriented or not, keeping in

mind that a pair (u, v) ∈ E is an oriented pair, should G be oriented, and that it

is an unoriented pair otherwise.

Every vertex u of an oriented graph has an out-degree and an in-degree, the

former being the number of edges that originate at u, and the latter being the

number of edges that have u as a second end vertex. Denoting the in-degree of a

vertex u by degin(u) and its out-degree by degout(u), one can formally write:

degin(u) := |{v ∈ V | (v, u) ∈ E}| ,

degout(u) := |{v ∈ V | (u, v) ∈ E}| .

The notions of in-degree and out-degree are no longer applicable in the case of an

unoriented graph. Instead, one considers the number of all neighbours of a vertex:

the degree of a vertex u of an unoriented graph is denoted by deg(u) and it is (by

definition) equal to the cardinality of its neighbourhood N(u) := {v ∈ V | (u, v) ∈
E}. If this is finite for each vertex, we call the graph locally finite. Edges of an

undirected graph are also called links.

3A loop is an edge connecting a vertex to itself.
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A graph G′ = (V ′, E ′) is a subgraph of a graph G = (V,E) if and only if

1. V ′ ⊆ V ,

2. E ′ ⊆ E and (u, v) ∈ E ′ ⇒ u, v ∈ V ′.

In general, a subgraph need not have all possible edges. If a subgraph inherits

every edge with end points belonging to V ′ from the original graph G, it is a node-

induced subgraph. In contrast, an edge-induced subgraph is a subset of the edges of

a graph G together with any vertices that are their endpoints. Any node-induced

subgraph will be referred to simply as an induced subgraph. An example of a graph

and its induced subgraph is given in Figure 2.2.

Figure 2.2: A subgraph induced by the vertices of the graph from left of degrees distinct

from 4 is a cycle from right.

A path of a graph is a sequence of some of its vertices u0, u1, . . . , um+1, . . ., such

that (ui−1, ui) ∈ E. A simple path is a path in which no vertex occurs more than

once. A finite path u0, . . . , um is closed if u0 = um. A finite closed path is called

a cycle. A finite closed simple path is called a simple cycle. A graph is called

connected, if there exists a path between any two of its vertices. The set of vertices

of any graph naturally splits into subsets of vertices which are connected to each

other. Graphs induced by these subsets are called connected components. A graph

is connected if and only if it consists of a single connected component.

The complement Ḡ of an undirected graph G = (V,E) is a graph (V, V ⊗V \E).
A complete graph Kn of order n is a graph with n vertices in which every vertex

is adjacent to every other4. An example of a graph and its complement is shown

in Figure 2.3. The graph G has the only cycle consisting of the vertices u2, u3,

and u4; the vertex u1 is connected to this cycle. The vertex u5 is an isolated

4For example, the top-left graph in Figure 1.1 is a complete graph K8.
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vertex, and therefore G has two connected components. Its complement Ḡ has

exactly three cycles and represents a single connected component. By the union

of two graphs G1 = (V1, E1) and G2 = (V2, E2) we will understand the graph

G1 ∪ G2 := (V1 ∪ V2, E1 ∪ E2). The union of the graph G and its complement Ḡ

from Figure 2.3 is a complete graph K5.

u1

u2

u3

u4

u5

u1

u2

u3

u4

u5

G G

Figure 2.3: Example of a graph G and its complement Ḡ.

A convenient way to represent a graph is to indicate its adjacency structure.

When V is finite this can be done in the form of a matrix. If the cardinality of

the vertex set V is nV , then the adjacency matrix A = (aij) of this graph is an

nV × nV matrix in which entry aij is equal to 1 if and only if (i, j) ∈ E, and is

equal to 0 otherwise. Conventionally, the adjacency matrix of an undirected graph

is always symmetric. The adjacency matrices of the graph G and its complement

Ḡ from Figure 2.3 are given below:

AG =




0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 0

0 0 0 0 0




, AḠ =




0 0 1 1 1

0 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 0




.

Often, it is useful to distinguish between a strong and weak connection between

vertices of a graph. This naturally leads to a notion of weighted graphs in which

each edge (u, v) ∈ E receives a weight r(u, v). Weights are usually non-negative

real numbers: r(u, v) ∈ R+ ∀u, v ∈ V . One can extend the 0 − 1 graph’s adja-

cency representation of weighted graphs by allowing the ijth entry of the adjacency

matrix A to take the value of the weight of the edge connecting the ith and the
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jth vertices of the graph G. If V is uncountable then a matrix representation of

the adjacency structure is not possible, but one can still consider a non-negative

weight function r(·, ·) defined on E:

r : E → R+.

For convenience we extend this function to V 2 as follows:

WF.1 r(u, u) = 0 ∀u ∈ V ,

WF.2 r(u, v) = r(v, u) ∀u, v ∈ V ,

WF.3 r(u, v) < +∞ ∀(u, v) ∈ E,

WF.4 r(u, v) = +∞ ∀(u, v) ∈ V 2 \ E \ diag V 2.

Possessing the properties WF.1-4, the weight function r(·, ·) contains complete

information about the adjacency structure of a simple weighted graph. Let us agree

therefore to refer to r(·, ·) as R, regardless whether V is countable or uncountable5,

and write G = (V,R) to denote a simple weighted graph with the vertex set V

and weight structure R.

The notion of an induced graph can also be naturally generalised to weighted

graphs.

Example 2.1.1. Let us consider the graph G from Figure 2.3 and assume that

the edge weights are equal to Euclidean distances between corresponding nodes (in

some conditional units of distance measurements). Denote the adjacency matrix

representing the corresponding weighted graph by R. Then R is as follows (in some

units of length measurement):

R =
(
r(ui, uj)

)
1≤i,j≤5

=




0 13.914 +∞ +∞ +∞
13.914 0 10.637 19.316 +∞
+∞ 10.637 0 10.986 +∞
+∞ 19.316 10.986 0 +∞
+∞ +∞ +∞ +∞ 0




.

5Whenever V is countable R will denote the weight matrix R = (r(i, j))i,j∈V .
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Example 2.1.2. Let G = (V,R) be a weighted graph, where V = R × R and R

represents Euclidean distances between each two points of the plane R
2. Let N be

a natural number and let V ′ be defined as follows:

V ′ = {(x, y) ∈ V | max{x, y} ≤ N} ∩ Z
2.

The induced graph G′ = (V ′, R|V ′×V ′) is then a complete graph representing a

(2N + 1) × (2N + 1) square consisting of the nodes of the integer lattice Z
2 with

the origin as a central node. The weight of the edge between any two nodes of this

graph is equal to the Euclidean distance between them. Here by R|V ′×V ′ we denoted

the weight structure of G′ coinciding with R on the vertex set V ′, that is to say the

restriction of R to V ′ × V ′.

Example 2.1.3. Let G = (Z2, R) be a weighted graph, where R is defined as

follows:

r (u(x1, y1), v(x2, y2)) :=




1 if ‖u− v‖1 := |x2 − x1|+ |y2 − y1| = 1,

+∞ otherwise,

∀u, v ∈ Z
2.

Let N = 3 and V ′ be defined as in Example 2.1.2. Then the graph G′ = (V ′, R|V ′×V ′)

induced by V ′ can be graphically represented as the left graph in Figure 2.2. Each

depicted edge of this induced subgraph has weight 1. As in the previous example

R|V ′×V ′ is a weight structure which agrees with R on V ′.

2.2 Likelihood and Bayesian statistical inference

The fundamental problem of statistical science is that of inference. In order to de-

sign as effective an experiment as possible for making inference from consequently

observed data, we need to describe the methodology within which inference and

experimental design will be made. In this section the fundamental aspects of the

likelihood-based statistical inference and inference made within a Bayesian frame-

work are reviewed. A discussion on the measures of informativeness of experiments,

when the purpose is inference on the model parameter(s), within each of these two

choices is presented in Chapter 3.
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2.2.1 Data, likelihood and Fisher information

Data and the likelihood function

Once the model for a studied process is formulated and, typically, parameterised,

we need to determine the parameter values in order to be able to use the model

and characterise the data obtained. The classical way to do this is via the the

likelihood function.

Let Y1, . . . , Yn be n independent random variables with probability density func-

tions f1(y1; θ), . . . , fn(yn; θ) depending on a statistical parameter θ taking values

from some set Θ, possibly a subset of Rp. In the case when Yi is a discrete random

variable fi(yi; θ) is a function defining the probabilities for Yi to take value yi:

fi(yi; θ) = P(Yi = yi | θ).

The joint density of n independent observations y = (y1, . . . , yn) of the random

vector Y = (Y1, . . . , Yn) is

f(y; θ) =
n∏

i=1

fi(yi; θ).

The likelihood function of θ, associated with a vector of random variables Y is

defined up to a positive factor of proportionality as

L(θ;y) ∝ f(y; θ) (2.4)

The factor of proportionality in (2.4) may depend on y but not on θ. Thus, the

likelihood function is obtained from the joint density f(y; θ) by viewing it as a

function of the unknown parameter θ, for fixed data y. Let us write simply L(θ)
for the likelihood of θ whenever the context makes clear what data y is assumed

to be available.

In this setting the random variables Y1, . . . , Yn represent a formalisation of

the phenomenon which is studied. Their distributions f1, . . . , fn, representing

parametrised families of distributions, constitute the model which, as we believe,

adequately describes the process. A particular value of the parameter further spec-

ifies the model. Finding the value θ̂∗(y1, . . . , yn) of the parameter θ that maximises

the probability of observing the actual data (y1, . . . , yn) given the model and the
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parameters forms the basis of the maximum likelihood approach (Edwards (1972)).

The value θ̂∗(y1, . . . , yn) is seen as a realisation of the following statistic

θ̂ := argmax
θ∈Θ

L(θ;Y),

widely known as the maximum likelihood estimator.

The maximum likelihood approach was first considered, but not named as we

know it now, by Fisher (1921)6. This approach is based on the likelihood principle,

which asserts that all information about the parameter in a sample is contained

in the likelihood function, and on the intuitive reasoning that a θ1 for which

f(y | θ1) is larger than f(y | θ2) for some θ2 is more ‘likely’ to be the true value of

the parameter θ.

Persuasive arguments and theoretical development of this approach, including

axiomatic construction, were given consequently by Allan Birnbaum (1962). Birn-

baum proved that the likelihood principle follows from two simpler and seemingly

reasonable principles, the conditionality principle and the sufficiency principle. To

describe these briefly, recall that the following statements are equivalent definitions

of the notion of a sufficient statistic7 T (Y) for θ:

1 f(y | T (y) = t, θ) = f(y | T (Y) = t) ∀θ ∈ Θ ∀t ∈ suppT .

2 f(θ |y, T (y) = t) = f(θ | T (y) = t) ∀t ∈ supp T (this definition, however,

requires a Bayesian framework which is introduced in § 2.2.2).

3 f(y; θ) = h(y)g(T (y), θ), i.e. the density of Y can be factorised into a

product of a function depending on y only and a function depending on θ

and y only through T (y) (Fisher–Neyman factorisation theorem).

The conditionality principle says that if an experiment is chosen by a random

process independent of the true value of θ, then only the experiment actually

performed is relevant to inferences about θ.

6The historical account on the concept of likelihood is given in Edwards (1974). See also

Lauritzen (1999) for earlier insights on the concept of likelihood in work of the Danish astronomer,

actuary, and mathematician T. N. Thiele.
7A sufficient statistic can be a vector valued statistic.
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The sufficiency principle says that if T (Y) is a sufficient statistic for θ, and if

in two experiments with outcomes y1 and y2 we have T (y1) = T (y2), then the

evidence about θ given by the two experiments is the same.

Example 2.2.1. Let Y1, . . . , Yn be independent Bernoulli random variables with

parameter p ∈ [0, 1], i.e.

P (Yi = 1) = 1− P (Yi = 0) = p, i = 1, . . . , n.

By the Fisher–Neyman factorisation theorem the random variable T (Y) = 1
n

n∑
i=1

Yi

is sufficient for p:

f(y; p) =
∏

1≤i≤n

pyi(1− p)1−yi = pT (y)(1− p)n−T (y), y ∈ {0, 1}n.

The statistic T (Y) is no longer sufficient if at least two distributions among

those of Y1, . . . , Yn have different parameters.

Obtaining the likelihood function can be complicated when the observations of

data are incomplete, i.e. when one observes a possibly vector-valued data summary

T (y1, . . . , yn) of the actual data, and T (Y1, . . . , Yn) is not a sufficient statistic.

The Fisher information

Consider a parametric family of distributions with densities f(y; θ), where θ ∈ Θ ⊆
R. Let θ̂ be an unbiased estimator for θ. The result known as the Cramér–Rao

lower bound gives us the minimum variance that can be expected from θ̂, that is

to say the maximum precision on estimating θ when using θ̂:

var θ̂ ≥ 1/I(θ),

where

I(θ) = E

[(
d

dθ
log f(Y; θ)

)2
∣∣∣∣∣ θ
]

(2.5)

is the so called Fisher information function. The corresponding theorem, in a

more general form, was first proven by Fréchet (1943) and then by Rao (1945) and

Cramér (1946). An informal derivation of the Fisher information function can be

found in Frieden (2004).
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Example 2.2.2. Let Y ∼ Bin(n, e−θr), where n and r are known and fixed, and

0 < θ < 1. Introducing p = e−θr and considering Y ∼ Bin(n, p) results in the

following:

f(y; p) =

(
n

y

)
py(1− p)n−y

∂

∂θ
log f(y; p) =

y

p
− n− y

1− p
, 0 < θ < 1.

The Fisher information (the amount of information on p) is as follows8:

I(p) = E

[
Y

p
− n− Y

1− p

]
=

n

p(1− p)
.

The amount of information on θ can be obtained by dividing I(p) by
(

dθ
dp

)2
, where

θ = − 1
y
log p:

I(θ) = ny2
e−θy

1− e−θy
.

Generally, certain regularity conditions should be met in order to define the

Fisher information function (Zacks (1981, pp. 103, 237)). Particularly, if the fol-

lowing regularity condition is met

∫
d

dθ
f(y; θ) dy = 0,

then the Fisher information (2.5) may also be written as follows:

I(θ) = −E

[
d2

dθ2
log f(Y; θ)

∣∣∣∣ θ
]
. (2.6)

Thus, being the expected value of the second derivative of the log-likelihood func-

tion log f , the Fisher information may be seen as a measure of the ‘sharpness’ of

this (random!) function at a given point θ.

The Fisher information is additive: the information yielded by two indepen-

dent experiments X and Y is the sum of the information from each experiment

separately:

IX,Y(θ) = IX(θ) + IY(θ). (2.7)

8Notice also that I(p) = 1/Var [Y/n].
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When the model parameter is a vector θ = (θ1, . . . , θm) ∈ R
m, then the Fisher

information takes the form of an m×m matrix I(θ) with the ij-element being

Iij(θ) = E

[
∂2

∂θi∂θj
log f(Y; θ)

∣∣∣∣ θ
]
. (2.8)

2.2.2 Bayesian concept

In a Bayesian framework we quantify our beliefs about relative likelihood of dif-

ferent parameter values using a prior probability distribution on the parameter

space. The data, and specifically the likelihood function, are then used to update

the prior distribution to a posterior distribution using the Bayes theorem.

The Bayesian method can be briefly represented as comprising the following

principal steps (O’Hagan (1994)):

1 Likelihood. Obtain the likelihood function L(θ;y). This step describes the

process giving rise to the data y in terms of the unknown parameter θ.

2 Prior. Formulate the prior density π(θ). The prior distribution expresses

what is known or believed to be known about θ prior to observing the new

data y.

3 Posterior. Apply Bayes’ theorem to derive the posterior density π(θ |y).
This will now express what is known about the model parameter θ after

observing the data y.

4 Inference. Derive appropriate inference statements from the posterior dis-

tribution. These statements may include specific inferences such as point

estimates, interval estimates, probability of hypotheses or assessment of how

different the posterior distribution is from the prior distribution.

Bayes’ Theorem

Inference concerning θ is based on its posterior distribution, given by Bayes’ The-

orem:

π(θ |y) = L(θ;y)π(θ)∫
Θ

L(y; θ)π(θ) dθ ∝ L(θ;y)π(θ). (2.9)
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The integral in the denominator

Φ(y) :=

∫

Θ

L(y; θ)π(θ) dθ (2.10)

is the marginal distribution of y derived from the joint distribution of θ and

y. This distribution is called the prior predictive distribution for y (Leonard and

Hsu (1999)), but is also known as the evidence or marginal likelihood (Zacks (1981))

in cases when the likelihood is integrated over some of the model parameters:

Φ(y | δ) =
∫

Θ

L(θ, δ;y)π(θ | δ) dθ.

The right-hand side of (2.9) indicates that Φ(y) is essentially a normalising con-

stant in evaluating π(θ |y). It is the calculation of this function that traditionally

represents a severe obstacle while performing the Bayesian analysis. However, the

calculation of the normalising constant can be often avoided using Markov Chain

Monte Carlo (MCMC) methods which permit sampling from the posterior without

evaluating this marginal distribution (Section 2.3).

Notice also that if the family of distributions from which L(θ;y) stems admits

a sufficient statistic T (Y) then for any prior distribution π(θ), the posterior dis-

tribution is a function of T (Y), and can be determined from the distribution of

T (Y) under θ. Indeed, if T (Y) is sufficient for θ under the model L(θ;y) then by

the Neyman–Fisher factorisation theorem L(θ;y) = h(y)g(T (y), θ), so that the

posterior density

π(θ |y) = g(T (y), θ)π(θ)∫
Θ

g(T (y), θ)π(θ) dθ

is a function of T (Y). It follows that the conditional density of θ given {T (Y) = t}
coincides with π(θ |y) on the sets {y : T (y) = t} for all t ∈ supp T .

Bayes’ Theorem can be applied sequentially, providing the basis for a Bayesian

analysis under sequential experimentation. For instance, suppose that we have

28



observed two independent data samples y1 and y2. Then

π(θ |y1,y2) ∝ f(y1,y2 | θ)π(θ)

= L(θ;y2)L(θ;y1)π(θ)

∝ L(θ;y2)π(θ |y1),

that is, in order to obtain the posterior for the full data set (y1,y2), one can first

evaluate π(θ |y1) and then use it as the prior for y2. This forms a natural setting

for performing a sequential Bayesian analysis. If the data are incomplete, this

will only reflect on evaluation of the likelihood, and the whole construction will be

similar.

Prior distribution

The prior distribution is absent from classical methods, but it is an integral part

of Bayesian statistics. It represents the knowledge of an investigator about the

model parameter θ before seeing the data. This knowledge, however, takes into

account previous experience the investigator might have had, applying the model

for another data set or, when no reliable prior concerning the model parameter

exists, results in specifying a non-informative prior for θ.

Non-informative priors

In the case when the parameter space Θ is of finite measure (length, area, vol-

ume), one might take a uniform distribution over Θ to serve as a ‘non-informative’

prior—such distribution will contain no information about θ except its range of

values in the sense that it does not favour one value of θ to another.

For unbounded parameter spaces things are not that straightforward. For in-

stance, when Θ ≡ R+ a distribution π(θ) = c ∈ R+ is clearly improper (it is not

a probability distribution). However, Bayesian analysis is still possible whenever

the prior predictive distribution is proper, i.e. if
∫
Θ

L(θ;y) dθ <∞.

The problem with uniform distributions as ‘non-informative’ priors is that a

uniform prior is not invariant under reparametrisation of the model, that is to say
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a uniform prior will be converted to a non-uniform one, and hence informative, by

reparametrising the model in hand. One approach that overcomes this difficulty is

the so called Jeffreys prior : Jeffreys (1961) justified the use of the following prior

π(θ) ∝
∣∣∣ I(θ)1/2

∣∣∣

on grounds of its invariance properties. Here I(θ) is the Fisher information and

the prior π(θ) is such that if ω = φ(θ) is a one-to-one transformation, then

π(θ |y) = π(ω |y) for every y. This prior is often improper, since the square

root of |I(θ)| is not always an integrable function. Lindley (1961) showed that

π(θ) ∝
∣∣I(θ)1/2

∣∣ leads to the maximum expected information gain using entropy-

based measure—this being the very reason why the Jeffreys prior is called non-

informative and why uniform priors are better to refer to simply as flat priors

(see Irony and Singpurwalla (1997) for an interesting discussion with J. Bernardo

on the topic and Berger, Bernardo and Mendoza (1989) for mathematical founda-

tion of deriving non-informative priors for Bayesian inference via maximisation of

information measures).

Undoubtedly, the choice of a prior distribution is a critical step of Bayesian

procedures. However, the difficulty in selecting the prior distribution is not only

in choosing the way in which it represents the prior knowledge on the model

parameter(s), but also in the fact that when choosing it one might also need to

find a balance between an improvement in the subsequent analytical treatment of

the problem and the subjective determination of the prior distribution (and hence

to ignore part of the prior information). The reader is referred to Robert (2007,

Chapter 3) for a further discussion on the choice of prior distributions.

Inference from posterior

Having obtained the posterior distribution, one can use the following standard

tools in order to summarise the results:

1 plot of the density function: this will visualise the current state of our knowl-

edge;
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2 numerical summaries of the posterior and point estimation: mean, median,

mode and variance; in the case of a flat prior the mode of the posterior

distribution will coincide with the maximum likelihood estimate;

3 interval estimation: this involves determination of various sorts of credibility

intervals or sets.

For an excellent recent review of the methodology of Bayesian statistics the

reader is invited to refer to Bernardo (2003). A range of arguments for Bayesian

implementation and use of the likelihood function through Bayesian analysis is

presented in Berger and Wolpert (1988, Chapter 3, § 5.3).

2.3 Monte Carlo methods and Markov Chain Monte

Carlo

Monte Carlo methods have become standard techniques and an integral part of

the arsenal of researchers and practitioners whose interests belong to many differ-

ent areas of study. Applications of Monte Carlo methods can be found in vari-

ous fields: operational research (including queueing and network systems analysis

and numerical analysis), reliability theory, statistics, finance, to name just a few

mathematical areas. Allowing one to model complex nondeterministic time-space

evolution, epidemics and social phenomena, these methods have also found wide

applications in biological and social sciences.

2.3.1 Monte Carlo methods

Monte Carlo methods are experimental modelling methods. Madras (2002) cate-

gorised Monte Carlo experiments into the following two broad classes:

1 direct simulation of a naturally random system or object;

2 addition of artificial randomness to a system of study, followed by simulation

of the new system.
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Monte Carlo methods are used in this thesis for purposes falling into each of

these groups. Estimation of parametric integrals of the form

I(d) =

∫
u(x, d)p(x) dx, (2.11)

where p(x) is a probability distribution, will be made by sampling from this dis-

tribution and approximating the integral by the corresponding ergodic average:

I(M)(d) :=
1

M

M∑

i=1

u(xi, d), xi ∼ p(x). (2.12)

The estimator that gives birth to this point estimate of I(d) is unbiased and almost

surely converges to I(d), as M → ∞, by the strong law of large numbers.

By the Central Limit Theorem, an approximate 95% confidence interval for

I(d) (for any fixed d) is
[
I(M)(d)− 1.96

σ√
M
, I(M)(d) + 1.96

σ√
M

]
,

where σ is the standard deviation of the random variable u(X, d) with X having

the density p. The standard deviation σ is often unknown or difficult to calculate,

but it can be approximated by the sample standard deviation:

sM =

√√√√ 1

M − 1

M∑

i=1

(
u(xi, d)− I(M)(d)

)2
.

It is due to the Central Limit Theorem that the accuracy of estimates calcu-

lated by Monte Carlo simulation is proportional to M−1/2, where M is the size

of the sample used. In general, it is true for all Monte Carlo methods that the

absolute error of the calculation is inversely proportional to the square root of the

computational effort spent. This means, that in order to increase the precision

of calculations by a factor of 10, one needs to increase the computational effort

(sample size) by a factor of 100. This, in turn, means that Monte Carlo is perhaps

not the best choice when one wants to achieve high precision of estimation. It

might, however, be one of a very few working methods to tackle the problem in

hand, if not the only one. This is particularly true for high-dimensional problems.

Finally, Monte Carlo simulation is also used in this thesis in order to obtain

realisations of random graphs. The simulation technique takes its simplest form
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in this context: for example, in order to obtain a realisation G = (D, E) of an

unoriented random graph on the fixed set D of n given nodes x1, . . . , xn with an

edge-probability function p(r, θ), as defined in § 1.2.1 by (1.1-1.2), one obtains first

the realisations {Ũij}1≤i<j≤n of n(n− 1)/2 independent standard uniform random

variables. The edge set E is formed then by all such unoriented pairs (xi, xj) for

which it is true that Ũij ≤ p(r(xi, xj), θ), 1 ≤ i < j ≤ n. Note that the value of

θ is assumed to be fixed prior to obtaining any realisation(s) of such a random

graph.

2.3.2 Markov Chain Monte Carlo

The main idea behind Markov Chain Monte Carlo method is to construct a Markov

chain, whose unique limiting distribution will coincide with the distribution of

interest. If one succeeds in doing so, one can run the corresponding Markov chain

for a sufficiently long period of time and then take a sequence of its consequent

states, this being an approximate sample from the target distribution, which can

be a very complex distribution. Constructing Markov chains is particularly helpful

while performing a Bayesian analysis, in which case the target distribution is the

posterior density.

Discrete time irreducible and aperiodic Markov chains

Markov chains are discrete-time stochastic processes with the Markov property :

given the present state, the future and past states are independent. Let us consider

first a Markov chainX0, X1, X2, . . ., where each Xi takes values in a countable state

space S. The k-step transition probabilities are

p
(k)
i,j = P (Xt+k = j |Xt = i) (i, j ∈ S, k = 0, 1, 2, . . . .)

The transition probability matrix is P = (pij ≡ p
(1)
ij ); it is a basic fact that p(k)ij is

the ijth entry of P k.

Two states i and j are said to be communicating if there exists n such that

p
(n)
ij > 0. Thus, the state space S of a Markov chain splits into subsets (communi-

cating classes) that contain communicating states. A Markov chain is said to be
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irreducible if the chain can eventually get from each state to every other state, i.e.,

for every i, j ∈ S there exists kij ≥ 0 such that p(kij)ij > 0. The state space S of an

irreducible Markov chain is a single communicating class.

A state i has period Di if any return to the state i occurs in a multiple of Di

time steps:

Di := gcd{n : p
(n)
ii > 0}.

If Di = 1, then the state i is said to be aperiodic. Otherwise, the state i is said to

be periodic with period Di. It can be shown that every state in a communicating

class has the same period.

An irreducible chain is said to be aperiodic if the period of one of its states

(equivalently, all of its states) is unity.

Limiting behaviour of Markov chains with countable state spaces

By one of the fundamental theorems about the long-run behaviour of Markov

chains, an aperiodic irreducible Markov chain exhibits stochastically predictable

limiting behaviour, which does not depend on the initial state of the chain (Madras (2002,

p. 54)). In order to be more precise let us formulate the corresponding well-known

theorem.

Theorem 2.3.1. (Theorem 4.2 in Madras (2002)) Consider an aperiodic irre-

ducible Markov chain with state space S. For every i, j ∈ S, the limit πj :=

lim
k→∞

p
(k)
i,j exists and is independent of i. Furthermore:

1 If S is finite, then

∑

j∈S
πj = 1 and

∑

i∈S
πipi,j = πj

for every j ∈ S. That is, if we write π to denote the row vector whose entries

are πi, then πP = π. Moreover, the only solution of the following system of

equations 



vP = v

∑
i∈S

vi = 1

vi ≥ 0, i ∈ S

(2.13)
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is v = π.

2 If S is countably infinite, then there are two possibilities: either (i) πj = 0

for every j and (2.13) has no solutions or (ii) π satisfies (2.13) and it is the

only solution of (2.13).

Thus, with the exception that is described by the case 2(i) of this theorem,

there exists such a distribution π that, provided the initial chain state X0 has

distribution π, the distribution of Xk is exactly π for every time step k = 1, 2, . . ..

Moreover, the following interpretations can be attributed to π:

• πi ≈ P (Xk = i) for large k, independent of the distribution of X0.

• πi is the long-run fraction of time the system spends in state i:

P

(
πi = lim

k→∞
#{n : Xn = i, n = 1, . . . , k}/k

)
= 1.

The limiting distribution π of a Markov chain is referred to as the equilibrium or

invariant or steady-state or stationary distribution.

Among Markov chains exhibiting stationary behaviour there is an important

class of chains that show the so called time-reversibility: a stationary Markov

chain is said to be reversible if its transition matrix P = (pij) and stationary

distribution π = (π1, π2, . . . , ) satisfy the detailed balance equations:

πipi,j = πjpj,i, ∀i, j ∈ S. (2.14)

Conversely, it is easy to check that any irreducible Markov chain satisfying the

detailed balance equations for some π = (π1, π2, . . .), that proves to be a probabil-

ity distribution over S, is stationary and the equilibrium of such Markov chain is

described by π.

Markov chains with continuous state spaces

In the case when a Markov chain has a continuous state space X , its transitions

from a current state Xn to a new state Xn+1, both from X , are described by using a

transition density K(X |Xn) that is only dependent upon Xn. Density K, uniquely
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describing the dynamics of the chain given its initial state, is also referred to as

the transition kernel of the chain.

Under conditions that are fairly similar to those for Markov chains with discrete

state spaces, aperiodic and irreducible Markov chains with continuous state spaces

exhibit convergence to a stationary distribution π(·):

P (Xn ∈ A) →
∫

A

π(x)dx ∀A ∈ X , as n→ ∞.

The stationary distribution is unique when the entire state space can be reasonably

explored, that is to say, when any set of states can be reached from any other set

of states within a finite number of transitions.

When we wish to construct a Markov chain with a given stationary distribution

π∗(·), known may be only up to a constant, one way to achieve it is to find a

transition kernel that would satisfy the detailed balance equations with respect to

π∗(·):
π∗(X)K(X ′ |X) = π∗(X ′)K(X |X ′), ∀X,X ′ ∈ X . (2.15)

The two, perhaps most famous and common methods of constructing time

reversible Markov chains whose stationary distributions match the target distri-

bution are described here: these are the Metropolis–Hastings algorithm and the

Gibbs sampler.

The Metropolis–Hastings algorithm

This algorithm, described first in a special case by Metropolis et al (1953) and

generalised later by Hastings (1970), generates approximate samples from a prob-

ability density g(x) known up to a constant. Given a conditional density q(· | x)
the algorithm generates a Markov chain (Xn)

∞
n=0 with an arbitrary initial state

X0 and stationary distribution coinciding with g(x) by updating the current state

from Xn to Xn+1 (n = 1, 2, . . .) via the following steps:

1 Generate ξ ∼ q(ξ |Xn).

2 Evaluate α(Xn → ξ) = min
{
1, g(ξ)

g(Xn)
q(Xn | ξ)
q(ξ |Xn)

}
.
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3 Set

Xn+1 =




ξ with probability α(Xn → ξ),

Xn with probability1− α(Xn → ξ).

Here the target distribution is g(x), the quantity α is called the acceptance proba-

bility or acceptance ratio, whereas the distribution q(· | x), which is used to propose

updates of the chain’s state, is called the proposal distribution. When the support

of the proposal distribution q(· | ·) includes the chain’s state space X , the transition

kernel is as follows:

K(X |Xn) = α(Xn → X)q(X |Xn) + [1− ζ(Xn)]δ(X −Xn), (2.16)

where ζ(Xn) :=
∫
X
α(Xn → x)q(x |Xn) dx is the expected probability of accepting

a new point while being in the state Xn, and δ(X−Xn) is the Dirac delta function

that assigns a unit mass to the state Xn (see Appendix B).

The described algorithm ensures the correct stationary distribution for the cor-

responding Markov chain as long as this chain is irreducible and aperiodic: it is

straightforward to check that the chain (2.16) satisfies the detailed balance equa-

tions with respect to g(x).

The rate of convergence of the chain to its stationary distribution depends on

the choice of the proposal distribution. Among the most basic, but somewhat

‘universal’ types of proposals, there are the following two types:

1 independent proposals

This family consists of the proposal distributions q(x̃ | x) which do not depend

on x: q(x̃ | x) = f(x̃).

2 symmetric random walk proposals

This family comprises the proposal distributions q(x̃ | x) which are symmetric

about θ: q(x̃ | x) = f(|x̃−x|). For such proposals the acceptance probability

simply becomes

α(Xn → ξ) = min

{
1,

g(ξ)

g(Xn)

}
,

and, clearly, the corresponding Markov chain will tend to remain longer in

the points with higher values of the target distribution, while the points with
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lower probability will be visited less often. Markov chains with a symmetric

proposal are known as Metropolis random walks.

Those authors who believe that main ideas deserve short names refer to Metropolis–

Hastings algorithm simply as Metropolis algorithm (e.g. MacKay (2003, p. 366)).

The Gibbs Sampler

The Gibbs sampler is a special case of the Metropolis–Hastings algorithm when

every proposing state is always accepted (α ≡ 1). It originated in the seminal

work of Geman and Geman (1984). The idea behind this sampling method is in

updating the states of the chain in an element-wise way, when the states are some

multidimensional objects X0,X1, . . ., i.e.

Xi = (X
(i)
1 , . . . , X

(i)
k ).

Thus, if one needs to sample from a multivariate distribution gX(x1, . . . , xk), one

can use the corresponding one-dimensional full conditional distributions

g1(x1 | ·), g2(x2 | ·), . . . , gk(xk | ·)

as follows: given the current state of the chain Xn = (X
(n)
1 , . . . , X

(n)
k ) the next

state of the chain is simulated by sampling

X
(n+1)
i ∼ gi(xi) ≡ g(xi |X(n)

1 , X
(n)
2 , . . . , X

(n)
i−1, X

(n)
i+1, . . . , X

(n)
k ), i = 1, . . . , k,

and letting Xn+1 := (X
(n)
1 , X

(n)
2 , . . . , X

(n)
i−1, X

(n+1)
i , X

(n)
i+1, . . . , X

(n)
k ).

There are variations of the Gibbs sampler in which the order of the components’

updates is either systematic or random. Moreover, the full conditional distribu-

tions need not be one-dimensional and some updates in the Gibbs sampler can be

replaced by Metropolis–Hastings steps.

A comprehensive up-to-date review on the topic of Monte Carlo and MCMC

methods is provided by Murray (2007). A brief discussion on practical issues

related to the output of a chain and its statistical analysis follows.
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Implementation

A correctly constructed Markov chain will have as its limiting (stationary) distri-

bution the desired target distribution. However, one should bear in mind that the

method is based on asymptotic results, in general the target distribution being

achieved only in the limit. The output of a chain should be dealt with carefully

therefore. The following are important questions to be asked about the behaviour

of a stationary Markov chain:

1 Starting from which step of the chain states’ updates may one consider the

subsequent updates to form an approximate sample from the target distribu-

tion? In other words, how many initial observations shall we discard before

starting the sampling itself? The answer to this question obviously relates

to the rate of convergence of a particular chain.

2 What to do when the output of a sampler has a complicated dependence

structure, and particularly when adjacent steps are highly correlated?

The former question naturally gave rise to the notion of burn-in period9, this

being the number of steps one should discard before obtaining an approximate

sample from the target distribution. The most simple recipe for the latter ques-

tion is to keep one sample of chain out of t iterations, and thus ‘thinning’ the

output of the chain10. Not surprisingly, these qualitative solutions are based on

empirical evidence: the burn-in period can be estimated from the plot of the sam-

pled values for each variable in the chain versus the number of iterations (trace

plot), and t for thinning depends on the dependence structure and level of cor-

relation in assessment of which, for example, a covariogram or correlogram may

be helpful. Finally, in making decisions on how to tackle these problems in a

particular situation, the cost of sampling should also be taken into account.

The reader is referred to Levin, Peres and Wilmer (2009) for the most recent and

comprehensive account on the subject: the authors of this textbook develop the

9Or warm-up period, or mixing time.
10The correlation between adjacent steps should be assessed, since an unnecessary thinning

might only make the variance of the output worse (see Murray (2007) and Geyer (1992)).
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results on the rate of convergence of a Markov chain to the stationary distribution

as a function of the size and geometry of the state space.
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Chapter 3

Utility-Based Optimal Designs

within the Bayesian Framework

3.1 Introduction: from locally D-optimum to utility-

based Bayesian designs

3.1.1 Toy examples: three and four nodes

Consider a graph on three vertices with edges of non-negative weights r1, r2 and

r3 as in Figure 3.1 and form a random graph on these vertices in which each of the

edges is present independently of any other edge with probability p(rk, θ) = e−θrk ,

θ ∈ R+, k = 1, 2, 3. The larger the weights r1, r2, r3 are, the larger the chances

are to observe no edges at all in a realisation of this random graph. Likewise, the

smaller these weights are, the larger the chances are to see all three edges present

in a realisation of the random graph. Suppose θ is unknown, and we want to make

inference on this model parameter. What are the optimal values for r1, r2 and r3

then?

One approach would be to maximise the Fisher information function (see Ex-

ample 2.2.2)

I(θ; r) =

3∑

k=1

r2k
e−θrk

1− e−θrk
(3.1)

with respect to r = (r1, r2, r3) ∈ R
3
+, since it is the Fisher information that, in a
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r1

r3

r2

Figure 3.1: A graph on three nodes with edges of weights r1, r2, r3.

sense, is measuring the amount of information that our three-node random graph

carries about the model parameter θ upon which the likelihood function depends

(in the sense discussed in § 2.2.1). Maximising (3.1) we find1 that the optimal

choice of the weights is as follows:

r∗1 = r∗2 = r∗3 ≈ 1.6/θ. (3.2)

Indeed, each of the three terms in (3.1) is independent of the two others, and is

maximised at the point equal approximately to 1.6/θ (see Appendix A for details).

Hence, any other triple of values of r1, r2 and r3 than r∗ = (r∗1, r
∗
2, r

∗
3) will only

decrease the Fisher information.

This situation can be easily generalised for the case of n independent pairs of

vertices or star topology. Consider the following example.

Example 3.1.1. (based on Example 3.11 in Zacks (1981)) Suppose that n systems

S1, . . . , Sn operate in parallel and independently. The lifetime Ti of the system Si is

exponentially distributed, Ti ∼ Exp(θ), and assume that T1, . . . , Tn are independent

random variables. We can check the status of the system Si at the time instance ri,

i = 1, . . . , n. What is the optimal set of times r1, . . . , rn at which the systems should

be approached and examined in order to maximise the amount of information on

the ‘ageing rate’ θ? Modelling the status (‘operating’ or ‘broken’) of the system Si

at the time ri by a Bernoulli random variable with parameter e−θri, and maximising

the Fisher information for this model

I(θ; r) =
n∑

k=1

r2k
e−θrk

1− e−θrk
, (3.3)

by maximising its summands separately we find that the optimal set of observation

1See Appendix A.2
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times is r∗ = (r∗1, . . . , r
∗
n), where

r∗1 = . . . = r∗n ≈ 1.6/θ.

Thus, using the Fisher information function as an information measure and al-

lowing for observation times to be chosen individually for each of the considered

systems (Figure 3.2), we found that the optimal times should all be equal and no

different from the optimal time for the case when a single observation is only al-

lowed and the number of the broken devices is observed (Example 2.2.2).

timetime origin observation times

...

Figure 3.2: Observation times diagram: solid line is the time axis, and the dotted lines

are possible edges of the graph.

Notice also that the corresponding random graph presented in Figure 3.2 is

topologically equivalent to the star configuration (Figure 1.1, star), with the central

node corresponding to the time origin.

If the vertices of the three-node graph are considered to be elements of a metric

space, and hence r1, r2, and r3 are distances, then ‘the optimal arrangement’ is

equilateral and it coincides with the one given by (3.2). Indeed, when r1, r2, and

r3 are distances, the maximisation of I(θ; r), r = (r1, r2, r3) ∈ R
3
+, should be made

in conjunction with the triangle inequality constraints:




r1 ≤ r2 + r3,

r2 ≤ r1 + r3,

r3 ≤ r1 + r2.

(3.4)

However, since the solution r∗ of the corresponding optimisation problem without

the triangle constraints satisfies them, it is also the solution of the optimisation

problem under the constraints (3.4).

The optimality based on the maximisation of the Fisher information function

I(θ; r), or, more generally, of the determinant of the Fisher information matrix2

2whose elements are defined by (2.8), p. 27.
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det I(θ; r) is widely known as D-optimality. D-optimality is a particular case of a

more general optimality criterion based on the maximisation of a suitable scalar

functional Ψ(I(θ; r)) of the Fisher information matrix that in particular permits

to arrive at a complete ordering of candidate designs. (For D-optimal designs the

functional Ψ is a logarithmic transformation: Ψ(I(θ; r)) = log det I(θ; r)). The

choice of the functional Ψ gives a great variety of design criteria distinguishing

within an alphabetical nomenclature (e.g. A-, D-, E-, G, I-, L-optimality) that

originated in work of Kiefer (1959) followed by an important paper of Kiefer and

Wolfowitz (1960) containing the first equivalence theorem (more on this in Atkin-

son and Donev (1992) and Ryan (2007)).

The classical interpretation of D-optimum designs is simple: they minimise the

volume of the confidence ellipsoid (or the length of the confidence interval in the

case of a univariate parameter), and hence are relevant to the inference problem.

However, D-optimal designs have serious drawbacks which have been intensively

discussed in the literature. The toy examples considered above clearly exhibit

some of them causing the following concerns:

1 The design is a function of the model parameter estimate.

Indeed, the optimal edge weights (3.2) depend on the true value of the model

parameter. Although estimates of the parameter(s) can be obtained, it is still

difficult to accept the fact that the design that has to be chosen prior to per-

forming an experiment in order to make inference on the model parameter(s)

is strongly dependent upon the knowledge (or a good guess!) of its true value.

Müller (2007) refers to this problem as a ‘circular problem’: “the information

matrix (function) depends upon the true values of the model parameter and

not only upon the design variable, which evidently leads to a circular prob-

lem: for finding a design that estimates the model parameter efficiently it is

required to know its value in advance”. Khuri (1984) attributes the following

words of irony to William G. Cochran:

“You tell me the value of θ and I promise to design the best exper-

iment for estimating θ”.

44



It is difficult therefore to adopt the D-optimal design as a bona fide practical

design for the purpose of making inference—what such a design would tell

us, for instance, in the context of the toy three-node weighted random graph

example, is that were we to set the edge weights too different from 1.6/θ∗,

where θ∗ is the true value of θ, we would lose a considerable amount of

information.

2 Symmetry in the optimal design.

The solutions to both constrained (planarity conditions) and unconstrained

three-node optimal random graph problems considered above suggest that

all the edges should be of equal weights. It is not clear, however, why this

should be the case: one might intuitively expect the optimal weights to be

different as long as one has such a freedom in choosing the edge weights of

the random graph in order to maximally increase the information gain on

the model parameter (note that this observation is not specific to the choice

of the edge function in the considered examples).

r1

r2

r3

r4

r5

r6
≈ 1.4

θ

Figure 3.3: Left: A random graph on four nodes with edges of weights

r1, r2, r3, r4, r5, r6. Right: The optimal random graph on four nodes in

plane is a square.

In the case of four nodes the optimal weights are all equal for the uncon-

strained problem (Example 3.1.1), and among all planar configurations, as

in Figure 3.3 (left), the optimal design is an arrangement of vertices of a

square with the side’s length approximately equal 1.4/θ, as in Figure 3.3

(right). The author does not have analytical proof for the latter result: the

claim is based on the numerical maximisation of the corresponding Fisher

information function. This function was evaluated on the set of four vertex
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configurations, with one vertex fixed and three other vertices placed at the

nodes of a square grid of small spacing.

3 D-optimal designs are not invariant under reparametrisation of the

model parameter Although scale invariant, D-optimal designs are not in-

variant under general model reparametrisation. This has always been con-

sidered as one of the most serious drawbacks of D-optimality (e.g. Firth and

Hinde (1997b)).

4 Is there place for using a prior knowledge? The D-optimum designs

rely on a single prior point estimate of the parameter. Can, however, the

Bayesian approach be integrated into the mentioned alphabetical optimal

design hierarchy? The answer is yes, and an alternative that involves a prior

knowledge to the optimality based on I(θ; r), is simply to maximise the

average of a monotone function of a determinant of the Fisher matrix with

respect to the prior distribution:

r∗ = argmax
r

∫

Θ

Ψ(I(θ; r))π(θ) dθ. (3.5)

(Atkinson and Donev (1992), Atkinson et al (1993), Chaloner and Verdinelli (1995)).

Such an approach can also solve two more problems already mentioned above:

(i) whatever the choice of Ψ, the optimal design is independent on the model

parameter, and (ii) if Ψ(·) = log det ·, then the optimal design is ‘parameter

neutral’, that is reparametrisation invariant.

A similar, though prior-free approach is considered by Firth and Hinde (1997a,

1997b) who suggested to maximise

J(r) =

∫

Θ

(det I(θ; r))1/2 dθ, (3.6)

and thus to avoid dependence on θ and also to achieve invariance to the

choice of parametrisation used to represent the model. These authors also

noticed that designs maximising (3.6) are actually ‘pseudo-Bayesian’ since

the information quantity used does not involve a proper prior.

Thus, we have listed enough reasons to turn to a more suitable utility-based

Bayesian experimentation paradigm.
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3.1.2 Utility-based Bayesian optimal designs

The experimental design problem can be conveniently approached within the

Bayesian framework (Chaloner and Verdinelli (1995)). Suppose we study a stochas-

tic process for which we formulate a model M , characterised by a model parameter

θ (a variable or a vector). The model M is described by a probability distribution

f(y | θ, d) of the outcome y of the studied process under experimental conditions

described by the design parameter d given the value of the model parameter θ.

Our knowledge about θ is described by a prior distribution π(θ). Whenever the

choice of d is under our control there appears a question of choosing the optimal

d under which one should observe the stochastic process. Such prescribed experi-

mental conditions are referred to as a design, and the optimal design is found under

optimality criteria which are specifically formulated depending on the context and

the purpose of the experiment.

By employing a utility function u(d, y, θ) one can specify the purpose of the

experiment and measure the value of its outcome y accordingly. The methodology

of posing and solving utility-based optimal design problems within the Bayesian

paradigm has become somewhat standard (Müller (1999), Cook et al (2008)). The

design has to be chosen before performing an experiment and one may choose to

maximise the expectation of the utility function u(d, y, θ) with respect to θ and y

(Müller (1999)):

dmax = argmax
d∈D

U(d), (3.7)

where

U(d) =

∫

Θ

∫

Y

u(d, y, θ)f(y | θ, d)π(θ) dθ dy. (3.8)

Here D is the set of possible designs. The set of possible outcomes y of the

experiment is denoted by Y . The experiment is defined by a model f(y | θ, d), that

is to say by the distribution of y conditional on θ for a given design d.

The utility function u(d, y, θ) is one of the key elements in this methodology.

As its choice reflects the very purpose of experimentation, the utility function may

well be contextually specific. For instance, in the context of random graph models

(y is a realisation of a random graph) the utility function u might be linked to a
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particular property of the resulting graphs, for example, counting the total number

of edges or the total number of triangles in the graph.

This, however, should not always be the case: contextually different experi-

ments may still be designed using the same ‘context-free’ utility functions, espe-

cially when the purpose of the experimentation is to make inference on the model

parameter θ. Examples include, but are not limited to, the following most common

utility functions :

• the negative squared error loss:

u(d, y, θ) = −{θ − E [θ |y, d]}2; (3.9)

• the inverse of the posterior variance:

u(d, y, θ) = [V(θ | y, d)]−1 (3.10)

(this quantity can be regarded as the precision in the Bayesian sense);

• logarithmic ratio of the posterior distribution to the prior distribution:

u(d, y, θ) = log
π(θ | y, d)
π(θ)

. (3.11)

The mathematical expressions for the negative squared error loss and the in-

verse of the posterior variance are self-explanatory. Although simple, designed to

decrease the posterior uncertainty about the parameter θ these utility functions

have serious drawbacks. The utility function u(d, y, θ) from (3.11) overcomes the

following two most important of them: (i) its expected value U(d) defined by (3.8)

represents the average gain in information about θ rather than decreases the pos-

terior uncertainty about this parameter while performing the experiment under

design d, and (ii) U(d) is invariant under a change of parameter, that is to say

under the model reparametrisation. These two features are discussed in greater

detail in the next section.

It is worth mentioning that a utility function can also take forms that describe

more than a single purpose while designing an experiment. For example, the cost

of the experimental units used might also be taken into account whilst trying to

48



achieve the primary goal(s) of the experiment. In such cases context-free and

context-specific utility functions can be combined to obtain a more complicated

compound utility measure incorporating more than one design criterion. The

reader is referred to the monograph of Müller (2007, Chapter 7) references therein

for more information on multipurpose designs, and to Parmigiani and Berry (1994),

Müller (1999), Chaloner and Verdinelli (1995), Clyde (2004), Fuentes et al (2007)

for examples of use of utility functions related to prediction, hypothesis testing,

model discrimination, and for applications of compound utility functions involving

costs.

When the sole purpose of experimentation is to increase the knowledge about

the model parameter there are strong arguments for using the logarithmic ratio

log π(θ | y,d)
π(θ)

of the posterior to prior as a utility function. The corresponding optimi-

sation problem (3.7-3.8) is directly related to the well-known Lindley information

measure and the Kullback–Leibler divergence in this case. We explore these infor-

mation measures in detail in the next section.

3.2 Shannon entropy, Lindley information measure

and Kullback–Leibler divergence

3.2.1 Bits of history

Lindley (1956) in his seminal paper has mentioned that it was Claude Shannon

who introduced the following two important ideas into the theory of information

in communications engineering:

1 information is a statistical concept—the statistical frequency distribution of

the symbols that a message consists of must be considered before the notion

can be discussed adequately;

2 there is essentially a unique function of the symbol frequency distribution

which measures the amount of the information.

Kullback and Leibler (1951) and subsequently Kullback (1952, 1954) applied the

former of these ideas to statistical theory. Lindley (1956) further developed the
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theory applying these two ideas and discussing the notion of information carried

by an experiment in a general context, rather than specific to communication

engineering.

As well as papers of Kullback and Leibler3, there were works of further authors

preceding the paper of Dennis Lindley (1956) (and, indeed, acknowledged by him)

discussing and applying similar ideas in various contexts: McMillan (1953) gave the

interpretation of Shannon’s ideas in the statistical theory; Cronbach (1953) applied

Shannon’s theory in psychometric problems and essentially gave a definition of the

average amount of information provided by an experiment. Methods of comparing

experiments (as sampling procedures) involving the decision-theoretic paradigm

and consideration of losses have been suggested by Bohnenblust, Shapley and

Sherman (in private communication to Blackwell) and by Blackwell (1951).

Subsequently, DeGroot (1962) is concerned with a general experimental method-

ology when the purpose is to decrease uncertainty in knowledge about the model

parameter (or “. . . about the true state of nature”) within the Bayesian context.

From a more general position the prior and the posterior knowledge are viewed as

uncertainties, and, assuming that these uncertainties can be measured4, the infor-

mation in an experiment Y is defined as the difference between the uncertainty

in θ prior to observing Y and the expected uncertainty after having observed Y .

In the later paper DeGroot (1984) studies the relationship between information

measures that are based on both the prior knowledge for θ and the utility function

of the experimenter, and measures that are based only on the experimenters prior

belief about θ.

The reader is referred to Ginebra (2007), and references therein, as an excellent

account on the topic of how to measure information in a statistical experiment. The

author focused on a characterisation of the measure of the information in an exper-

3As pointed out by MacKay (2003), the diphtong ‘ei’ in ‘Leibler’ should be pronounced the

same as in the word ‘heist’, that is according to German language pronunciation rules.
4Essentially, by introducing a functional on the space of all possible prior distributions; the

Shannon entropy taken with the negative sign would then be just one of many other possible

choices (see Venegas-Martínez (2004) for an account on a general family of information functionals

in the context of producing informative and non-informative priors).
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iment that encompasses as special cases the measures of information considered by

Lindley (1956), Kiefer (1959), Raiffa and Schlaiffer (1961), DeGroot (1962, 1984),

Csiszár (1967).

3.2.2 Lindley information

Suggesting a measure of information provided by an experiment whose objective

is not to reach decisions but rather to gain knowledge about the model parameter

θ, Lindley (1956) exploited Shannon’s information measure. Following Dennis

Lindley, but slightly reducing the level of rigour (the fact that we will be dealing

with random graphs on finite vertex sets allows us to do so), we start with the

general definition of an experiment.

Definition 3.2.1. An experiment E is the ordered triple E = (Y ,Θ,Υ), where

Υ = {f(· | θ)}θ∈Θ is a parametrised family of probability densities (probability mass

functions) describing a random object Y ∈ Y.

The following is the definition of the Lindley information measure given for a

prior distribution π.

Definition 3.2.2. For a prior distribution π(·) of θ, the amount of information

I0 contained in this distribution is defined to be minus the Shannon entropy:

I0 := −Ent{π(θ)} =

∫

Θ

π(θ) log π(θ) dθ =: Eθ[log π(θ)]. (3.12)

Taking into account that x log x → 0, as x → 0, define π(θ) log π(θ) := 0 for any

θ such that π(θ) = 0.

The more the function π is concentrated on a single value of θ, the greater the

amount of information I0 is. On the other hand, the more this function is spread

over Θ, the smaller this information measure is. Notice, however, that I0 is not

invariant under reparametrisations.

After the experiment has been performed and the observation y of Y obtained,

the posterior distribution of θ is π(· | y), given by (2.9). Thus the amount of

information associated with π(· | y) is as follows (by analogy with Definition 3.2.2):

I1(y) :=

∫
π(θ | y) logπ(θ | y) dθ. (3.13)
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The increase in information provided by the experiment E when the observation

y was obtained can be expressed as the difference between I1(y) and I0:

I(E, π, y) := I1(y)− I0.

Clearly, some observations are more informative than others (for a given prior

information π). Lindley (1956) defined the average amount of information provided

by the experiment E by averaging the increase in information provided by the

experiment E over all its possible outcomes.

Definition 3.2.3. The average amount of information provided by the experiment

E, with prior knowledge π(θ), is

I(E, π) := EY [I(E, π, y)] =
∫

Y

(I1(y)− I0)Φ(y) dy, (3.14)

where Φ(y) is the marginal likelihood:

Φ(y) =

∫

Θ

f(y | θ)π(θ) dθ.

Since ∫

Y

I1(y)Φ(y) dy =

∫

Θ

∫

Y

log π(θ | y)f(y | θ)π(θ) dθdy

and ∫

Y

I0Φ(y) dy = I0 =

∫

Θ

∫

Y

log π(θ)f(y | θ)π(θ) dθdy,

it follows immediately from Definition 3.2.3 that

I(E, π) = EθEY | θ

[
log

π(θ | y)
π(θ)

]
= EY Eθ | Y

[
log

π(θ | y)
π(θ)

]
, (3.15)

and from the Bayes theorem that

I(E, π) = EθEY | θ

[
log

f(y | θ)
Φ(y)

]
= EY Eθ | Y

[
log

f(y | θ)
Φ(y)

]
. (3.16)

The two representations (3.15) and (3.16) suggest the symmetry between θ and

y, and indeed, the third alternative form for I(E, π), that best expresses this

symmetry, can also be easily derived:
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I(E, π) =
∫

Θ

∫

Y

p(y, θ) log
p(y, θ)

Φ(y)π(θ)
dθdy, (3.17)

where Φ(·) is, as before, the prior predictive distribution of Y , and p(y, θ) is the

joint distribution of Y and θ.

One should notice that in contrast to I0, I1(y), and I(E, π, y), the expected

gain in information I(E, π) prior to performing the experiment E is invariant

under one-to-one transformations of the parameter space Θ.

The informativeness of experiments can be measured using the expected Lindley

information gain: if E1 and E2 are two experiments such that

I(E1, π(θ)) ≤ I(E2, π(θ)),

then we are saying that E2 is not less informative than E1.

3.2.3 Comparing informativeness of experiments: expected

Kullback–Leibler divergence and expected Lindley in-

formation gain as expected utility and their properties

The average amount of information that will be obtained after performing an ex-

periment (and calculated prior to performing it) is directly related to the Kullback–

Leibler divergence—a well-known functional that measures the difference between

two probability distributions.

Kullback–Leibler divergence and its basic properties

Definition 3.2.4. The Kullback–Leibler divergence of the probability density g(t)

from the probability density h(t) is defined as

DKL{h(t) ‖ g(t)} :=

∫

R

h(t) log
h(t)

g(t)
dt.

Here the probability densities become probability mass functions whenever the sup-

ports of the distributions involved are countable sets—integration should be replaced

by summation then.
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This measure of difference between two distributions was originally introduced

by Kullback and Leibler (1951) and considered as a “directed divergence”. The

Kullback–Leibler (KL) divergence cannot be considered a true distance, as, al-

though it is a positive quantity, it is not symmetric. Neither does this divergence

measure satisfy the triangle inequality.

The basic properties of the Kullback–Leibler divergence follow.

KL.1 (positiveness) DKL{h(t) ‖ g(t)} ≥ 0, for any distributions h and g, with

equality if, and only if, h(t) = g(t) almost everywhere on R.

Proof. To verify this we recall that the logarithm log(·) is a concave function

and by the Jensen inequality
∞∫

−∞

log r(x)f(x) dx ≤ log

∞∫

−∞

r(x)f(x) dx

for any real-valued measurable function r and density f with equality when

r(x) is a constant almost everywhere. Hence,

−DKL{h(t) ‖ g(t)} =

∫

Θ

log
g(t)

h(t)
h(t) dθ ≤ log

∫

Θ

g(t)

h(t)
h(t) dθ ≡ 0,

and equality holds if, and only if, r(x) := g(t)/h(t) ≡ const, which is only

possible when g(t) = h(t), since these two functions are probability densities.

KL.2 (asymmetry) There exist probability densities h and g such that

DKL{h(t) ‖ g(t)} 6= DKL{g(t) ‖ h(t)}.

KL.3 (triangle inequality breakdown) There exist such probability densities f , h,

and g, that

DKL{h ‖ f}+DKL{f ‖ g} < DKL{h ‖ g}.

KL.4 The expected Lindley information gain prior to performing an experiment E

with a prior distribution π(θ) coincides with the expected KL divergence of

π(θ) from the corresponding posterior π(θ | y):

I(E, π) = EY [DKL{π(θ | y) ‖ π(θ)}].
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Proof. The proof follows immediately from the definition of the Kullback–

Leibler divergence and the form (3.15) for the expected Lindley information

gain I(E, π).

The Kullback–Leibler divergence can be viewed as a particular case of a more

general measure of divergence between two distribution—the α-divergence (see Pa-

quet (2008), Amari (1985, 2005), Minka (2005). This viewpoint is especially impor-

tant from the position of information geometry (see Amari and Nagaoka (2000)).

Comparing informativeness of experiments

Often experiments can be controlled, and then they can be distinguished by differ-

ent values of the control variables. Generalising Definition 3.2.1 consider a family

of experiments Ed = (Yd,Θd,Υd) that are labelled by some control variable d, so

that Υd = {f(· | θ, d)}θ∈Θd
for d ∈ D. This is a fairly general set up. However, it

is natural to assume that the parameter spaces Θd do not depend on the control

variable d: Θd ≡ Θ ∀d ∈ D. In view of the design problem discussed in § 3.1.2,

we relate to the control variable d as a design. We also consider that the prior

knowledge π(θ) does not depend on d.

Since the expected KL divergence of the prior π(θ) from the posterior π(θ | y)
coincides with the expected Lindley information gain (by KL.4), and the latter

coincides with the expected utility U(d) defined by (3.8) with the utility function

u(d, y, θ) = log π(θ | y,d)
π(θ)

, one can write the following:

UKL(d) := Ey,θ

[
log

π(θ | y, d)
π(θ)

]
≡ Ey [DKL{π(θ | y, d) ‖ π(θ)}] ≡ I(Ed, π), (3.18)

denoting the expected utility based on the Kullback–Leibler divergence5 by UKL(d).

This combines together the notions of the Lindley information gain and the KL

divergence, and fits them into the utility based Bayesian framework presented in

§ 3.1.2.

We list (without proofs) the most important properties of the expected Lindley

information measure with a view of comparing experiments. More properties are

5or on the utility (3.11).
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given in Lindley (1956) with proofs. We omit writing π(θ) as long as it remains

unchanged while comparing different experiments with the design parameter d:

I(Ed, π) = I(Ed).

By a sum of two experiments Ed1 = (Yd1 ,Θ,Υd1) and Ed2 = (Yd2 ,Θ,Υd2) we

understand an experiment Ed1,d2 which consists in observing an unordered pair

(yd1 , yd2), d1, d2 ∈ D.

LIG.1 Any experiment is informative on the average, unless the density of Y does

not depend on θ. That is,

I(Ed) ≥ 0,

with equality if, and only if, f(y | θ) does not depend on θ, except possibly

on a set of zero Lebesgue measure.

LIG.2 The sum of two experiments is conditionally additive:

I(Ed1,d2) = I(Ed1) + I(Ed2 |Ed1),

where I(Ed2 |Ed1) is the average Lindley information gain prior to performing

the experiment Ed2 with the prior knowledge π(θ | yd1).

LIG.3 If yd1 is sufficient for yd1,d2 = (yd1 , yd2) in the Neyman–Fisher sense (p. 24),

then

I(Ed1,d2) = I(Ed1).

LIG.4 If two experiments Ed1 and Ed2 are independent, that is to say if

f(yd1 , yd2 | θ) = f(yd1 | θ)f(yd2 | θ) ∀θ ∈ Θ,

then

I(Ed2 |Ed1) ≤ I(Ed2),

with equality if, and only if, yd1 and yd2 are independent (their joint prior

predictive distribution factorises into its marginals).
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LIG.5 The Lindley information gain is subadditive: if Ed1 and Ed2 are independent

experiments, then

I(Ed1) + I(Ed2) ≥ I(Ed1,d2),

with equality if, and only if, yd1 and yd2 are (unconditionally) independent.

Note that the unconditional independence here means the same as in LIG.4,

and thus LIG.5 is implied by the properties LIG.2 and LIG.4.

An alternative form for the expected KL divergence and first-order

conditions for the expected utility

The following useful representation appears in Lindley (1956) without a proof.

This representation complements the ones presented in (3.15-3.17). We use this

representation to derive first-order conditions for the expected utility based on the

KL divergence (Theorem 3.2.7) and to prove the worst case scenario result for

indefinitely growing or diminishing vertex configurations (Theorem 4.1.1).

Lemma 3.2.5. The expected utility UKL(d) can be represented in the following

form:

UKL(d) = Ent{Φ(y | d)} − Eθ [Ent{f(y | θ, d)}] , (3.19)

where Φ(y | d) is the marginal of the joint distribution of y and θ, i.e. the prior

predictive distribution

Φ(y | d) :=
∫

Θ

f(y | θ, d)π(θ) dθ.

Proof. If f(y | θ, d) is the model distribution and π(θ) is the prior distribution for

θ, then, as follows from Bayes’ theorem,

π(θ | y, d)
π(θ)

=
f(y | θ, d)
Φ(y | d) . (3.20)
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Therefore

UKL(d) =

∫

Θ

∫

Y

log
f(y | θ, d)
Φ(y | d) f(y | θ, d)π(θ) dθdy

=

∫

Θ

∫

Y

log f(y | θ, d)f(y | θ, d) dy π(θ) dθ −
∫

Θ

∫

Y

log Φ(y | d)f(y | θ, d)π(θ) dθ dy

= −
∫

Θ

Ent{f(y | θ, d)}π(θ) dθ −
∫

Y

log Φ(y | d)
∫

Θ

f(y | θ, d)π(θ) dθ dy

= −
∫

Θ

Ent{f(y | θ, d)}π(θ) dθ −
∫

Y

log Φ(y | d)Φ(y | d) dy

= Ent{Φ(y | d)} −
∫

Θ

Ent{f(y | θ, d)}π(θ) dθ,

and the lemma is proven.

Lemma 3.2.6. Let {f(x | t), x ∈ R}t∈T ⊆R be a parametrised family of univari-

ate probability density functions (or probability mass functions) with parameter t.

Then
d

dt
Ent{f(x | t)} = −

∫

R

∂f(x | t)
∂t

log f(x | t) dx, (3.21)

provided the function f(x | t) is such that differentiation and integration are inter-

changeable.

Proof. Differentiation of the entropy of f(x | t) can be done using the Leibniz

integration rule when f(x | t) is a density provided that this function is continuous

with respect to x and its partial derivative with respect to t exists and is also

continuous within the interval of differentiation:

d

dt
Ent{f(x | t)} = − d

dt

∫

R

f(x | t) log f(x | t) dx = −
∫

R

∂

∂t
(f(x | t) log f(x | t)) dx.

(3.22)

Since
∂

∂t
(f(x | t) log f(x | t)) = ∂

∂t
f(x | t) +

(
∂

∂t
f(x | t)

)
log f(x | t)
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and
∫
R

∂
∂t
f(x | t) dx = 0, as a derivative of unity, we obtain

d

dt
Ent{f(x | t)} = −

∫

R

∂f(x | t)
∂t

log f(x | t) dx.

If f(x | t) is a probability mass function of a random variable X taking values

in a finite set, then the differentiation can be directly applied to the corresponding

finite sum, providing f(x | t) is differentiable in t for each x ∈ suppX. If X takes

values in an infinite countable set, then a sufficient condition for (3.21) to hold

would be uniform convergence of the sum of partial derivatives of f(x | t) with

respect to t over x ∈ suppX.

The following first-order conditions result was first established by Parmigiani

and Berry (1994). Our proof is based on Lemmas 3.2.5 and 3.2.6.

Theorem 3.2.7. (First-order conditions) The derivative of the expected utility

UKL(d) with respect to a continuous design variable d ∈ D ⊆ R can be calculated

as follows:

U ′
KL(d) =

∫

Θ

∫

Y

log
π(θ | y, d)
π(θ)

f ′
d(y | θ, d)π(θ) dθdy, (3.23)

provided the functions f(· | ·, ·), π(·) are such that differentiation of UKL(d) and the

corresponding integration are interchangeable.

Proof. Taking UKL in the form (3.19) derived in Lemma 3.2.5 and applying Lemma 3.2.6

we obtain

U ′
KL(d) =


Ent{Φ(y | d)} −

∫

Θ

Ent{f(y | θ, d)}π(θ) dθ




′

d

(3.24)

= −
∫

Y

[Φ(y | d)]′d log Φ(y | d) dy +
∫

Θ

∫

Y

f ′
d(y | θ, d) log f(y | θ, d)π(θ) dy dθ.

(3.25)

On the other hand, denoting the right-hand side of the hypothetical identity

(3.23) by J(d) and using (3.20), we obtain
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J(d) =

∫

Θ

∫

Y

log
f(y | θ, d)
Φ(y | d) f

′
d(y | θ, d)π(θ) dθ dy =

∫

Θ

∫

Y

log f(y | θ, d)f ′
d(y | θ, d)π(θ) dθ dy

−
∫

Θ

∫

Y

log Φ(y | d)f ′
d(y | θ, d)π(θ) dθ dy,

so that

U ′
KL(d)−J(d) =

∫

Θ

∫

Y

log Φ(y | d)f ′
d(y | θ, d)π(θ) dθ dy−

∫

Y

[Φ(y | d)]′d log Φ(y | d) dy.

Differentiation of (3.20) with respect to d produces

f ′
d(y | θ, d) =

1

π(θ)

[
π′
d(θ | y, d)Φ(y | d) + Φ′

d(y | d)π(θ | y, d)
]
,

consequently resulting in the following:

∫

Θ

∫

Y

log Φ(y | d)f ′
d(y | θ, d)π(θ) dθ dy =

∫

Y

log Φ(y | d)Φ(y | d)
∫

Θ

π′
d(θ | y, d) dθ dy

+

∫

Y

log Φ(y | d)Φ′
d(y | d)

∫

Θ

π(θ | y, d) dθ dy.

Since
∫
Θ

π(θ | y, d) dθ ≡ 1 and
∫
Θ

π′
d(θ | y, d) dθ ≡ 0, d ∈ D, it follows that

U ′
KL(d)− J(d) ≡ 0, d ∈ D.

The proof is complete.

3.3 Progressive and Instructive Designs

When the experimental motivation consists in increasing one’s knowledge about

the model parameter the expected KL divergence of prior from posterior coincides

with the expected utility U(d) (see (3.8)) based on u(d, y, θ) = log π(θ | y,d)
π(θ)

(recall

that we denoted such expected utility by UKL(d)). If, however, the purpose of

the experiment is to instruct someone holding the prior π(θ) using one’s superior
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knowledge π∗(θ) of the system under study, then the expected KL divergence

should be calculated in the form

U∗
KL(d) = Ey [DKL{π(θ | y, d) ‖ π(θ)}] , (3.26)

where the integration over the space of observables Y is to be carried out using one’s

superior knowledge π∗(θ). We refer to these two different experimental motivations

as to progressive design and instructive design6, correspondingly, and discuss them

next in more detail.

3.3.1 Progressive designs

In this setting there is an experimenter A who holds a prior knowledge about the

model parameter in the form of its prior distribution π(θ) (which could have been

obtained on earlier stages of analysing the process or experimenting with it) and

whose goal is to design an optimal experiment in order to increase this knowledge.

With the KL divergence as an information gain measure in hand, this experimenter

maximises the expected KL divergence (3.26):

UKL(d) = EY EΘ

[
log

π(θ | y, d)
π(θ)

∣∣∣∣ y
]
=

∫

Θ

∫

Y

log
π(θ | y, d)
π(θ)

f(y, θ | d) dθdy,

where f(y, θ | d) is the joint density of y and θ. Thus, as discussed in § 3.2.3,

UKL(d) coincides with (3.8) where u(d, y, θ) = log π(θ | y)
π(θ)

. Notice, also, that since

the prior distribution π(θ) does not depend on the chosen design d, the expected

information gain UKL(d) can be written as follows:

UKL(d) =

∫

Y

∫

Θ

log π(θ | y, d)f(y | θ, d)π(θ) dθdy + Ent{π(θ)}, (3.27)

with the second term being independent of d, so that it suffices to maximise the

first term only.

6In Cook et al (2008) these experimental scenarios are called progressive and pedagogic designs.
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3.3.2 Instructive designs

In contrast to the progressive design scenario, in the instructive case there is an

experimenter A, holding a prior π(θ), and a better informed trainer 7 B whose

knowledge about the model parameter is summarised in a distribution π∗(θ). The

purpose here is to help maximising the change in experimenter’s information from

π(θ) to π(θ | y) by designing an experiment using the existing superior knowledge

π∗(θ).

By analogy with (3.7-3.8) such an optimisation problem can be formulated in

the following way:

d∗max = argmax
d∈D

U∗
KL(d), (3.28)

U∗
KL(d) =

∫

Y

DKL{π(θ | y, d) ‖ π(θ)}Φ∗(y) dy, (3.29)

where, as before, π(θ | y) is the posterior of the experimenter A, and Φ∗(y) is the

model as it is understood (known) by the instructor B :

Φ∗(y) =

∫

Θ

f(y | θ, d)π∗(θ) dθ,

that is to say, Φ∗(y) is the prior predictive distribution of y under the prior π∗(θ).

In particular, if the instructor B knows the exact value of θ, θ∗, and hence π∗(θ)

is the Dirac function δ(θ− θ∗) (see Appendix B), then Φ∗(y) = f(y | θ∗, d), so that

U∗
KL(d) =

∫

Y

DKL{π(θ | y, d) ‖ π(θ)}f(y | θ∗, d) dy.

3.4 Simulation-based evaluation of the expected

utility

Generally, the solution to the optimal design problems (3.7-3.8) and (3.28-3.29)

cannot be obtained analytically. This is mainly due to the following three reasons.

First, the design space D may be complicated, with many design variables, some

of them having a continuum range of values. Second, even if the design space has a

7instructor or tutor
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simple structure, the utility function may not be easy to evaluate, and the expected

utility U(d) cannot be obtained explicitly. Finally, for incomplete observations of

highly non-linear stochastic processes such as epidemic models, the likelihood is

not usually available in a closed form, and this results in computationally intensive

evaluations or high cost sampling procedures.

A review of analytical and approximate numerical solutions to Bayesian optimal

design problems for the traditional experimental design involving linear and non-

linear models can be found in Verdinelli (1992) and Chaloner and Verdinelli (1995).

Müller (1999) reviews simulation-based methods for optimal design problems

where the expected utility U(d) is evaluated by Monte-Carlo simulation. In its

simplest form an estimate Û of U for any given design d in the progressive case is

as follows (§ 2.3.1):

Û(d) =
1

M

M∑

i=1

u(d, θi, yi), (3.30)

where {(θi, yi), i = 1, . . . ,M} is a Monte-Carlo sample generated values:

θi ∼ π(θ), yi ∼ f(y | θ, d). (3.31)

The expected utility U may, in particular, be based on the KL divergence.

Analogously, the expected utility U∗
KL under instructive scenario, when the in-

structor knows the true value of the model parameter, θ∗, can be evaluated using

the following scheme:

Û∗
KL(d) =

1

M

M∑

i=1

K̂L(y∗i , d), (3.32)

where y∗i ∼ f(y | θ∗, d), i = 1, . . . ,M , and K̂L(yi, d) is an estimate of the KL

divergence DKL{π(θ | y∗, d) ‖ π(θ)} that can be obtained via numerical integration

of log π(θ | y,d)
π(θ)

with respect to the posterior π(θ | y, d). The former function, in turn,

may need to be evaluated through simulation methods—perhaps using an MCMC

scheme.

Evaluation of a continuous expected utility surface U(d) by (3.30) or (3.32)

can be done by computing its values on a discretised grid of points and further

smoothing of the obtained set of values in order to approximate the expected utility
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landscape. This, however, may be problematic when d ∈ D is a multidimensional

design parameter. An alternative to this method might be the augmented probabil-

ity simulation approach which is studied in Clyde, Müller and Parmigiani (1995),

Bielza, Müller and Rios-Insua (1999), and reviewed in Müller (1999).

The augmented probability simulation approach assumes that u(d, θ, y) is a non-

negative bounded function. (This condition, although not always automatically

satisfied, can be easily achieved by correspondingly modifying the utility function.)

An artificial distribution, proportional to u(d, θ, y)f(y | θ, d)π(θ) can be defined

then on d, θ, y (Müller (1999)):

h(d, θ, y) ∝ u(d, θ, y)f(y | θ, d)π(θ), (3.33)

so that its marginal in d is proportional to the expected utility U(d). Sampling

from h(·, ·, ·) can be used to obtain a sample from its marginal using the following

Metropolis–Hastings MCMC scheme described by Müller (1999):

1 Start with a design d(0). Simulate (θ(0), y(0)) ∼ f(y | θ, d(0))π(θ). Evaluate

u(0) = u(d(0), θ(0), y(0)).

2 Set k := 1.

3 Generate a ‘candidate’ d̃ from a probing distribution g(d̃ | d(k−1)).

4 Simulate (θ̃, ỹ) ∼ f(ỹ | θ̃, d̃)π(θ̃). Evaluate ũ = u(d̃, θ̃, ỹ).

5 Compute the acceptance probability

α = min

{
1,

h(d̃, θ̃, ỹ)

h(d(k−1), θ(k−1), y(k−1))

g(d(k−1) | d̃)
g(d̃ | d(k−1))

f(θ(k−1) | y(k−1), d(k−1))

f(θ̃ | ỹ, d̃)

}

= min

{
1,

ũg(d(k−1) | d̃)
u(k−1)g(d̃ | d(k−1))

}
.

6 Set (d(k), u(k)) :=




(d̃, ũ) with probability α,

(d(k−1), u(k−1)) with probability 1− α.

7 Set k := k+1 and repeat steps 3 through 6 until the chain is judged to have

practically converged (see discussion at the end of § 2.3.2).
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When using the augmented probability modelling approach one approximates

the optimal design by an empirical mode of the marginal of the artificial distri-

bution h, that is by the mode of the first component of the obtained sample (i.e.

taking the mode of {(d(k), u(k))} and discarding the values u(1), u(2) . . .). Notice

that the evaluation of u(d, θ, y) at each step may generally involve MCMC sam-

pling from the posterior π(θ | y, d).
Finally, we would like to mention the work of Paquet (2008) which examined

both deterministic and stochastic methods of treating integrals that involve in-

tractable posterior distributions, in particular for the models where the parameter

space can be extended with additional latent variables in order to obtain distri-

butions that are easier to handle algorithmically. Ryan (2003) discussed some

properties of estimators of the Kullback–Leibler expected information based on

Laplace approximation of the prior predictive distribution in the context of opti-

mal design problems with application to the random fatigue-limit model.

3.5 Second formulation of the problem

The weighted random graph model and the optimal random graph problem were in-

troduced in § 1.2.1. The purpose of designing an experiment using that model was

to make inference on the model parameter(s). Here we describe our weighted ran-

dom graph model using the notion of a node-induced weighted random subgraph

(Section 2.1), p.19, and formulate the optimal design problem for such graphs using

the utility based Bayesian methodology discussed in § 3.1.2 and Sections 3.2-3.4.

3.5.1 The model

Let G = (V,R) be a simple weighted graph with a possibly uncountable vertex

set V and a weight structure R. That is, R represents a non-negative symmetric

function r(·, ·) that can take value +∞, and it defines completely the adjacency

structure of the graph G (see properties WF.1-4 on p. 21).

For any given fixed θ, an edge-probability function p(r, θ) defined by (1.2) and

satisfying Assumptions 1.2.1-1.2.2, and a subset V ′ ⊆ V , we define a random
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graph GV ′ := (V ′, R|V ′×V ′ , p(r, θ)) by deleting each edge (u, v) of the node-induced

subgraph G′ = (V ′, R|V ′×V ′) of the graph G with probability 1 − p(r(u, v), θ)

independently of the status of other edges.

Let us call any countable subset V ′ of the vertex set V a node arrangement

design. A set of subsets, D, of the vertex set V , D := {V ′ : V ′ ⊆ V }, is called a

node arrangement design space. Any finite node arrangement design containing n

nodes is called to be an n-node configuration design. For any given vertex set V

denote the set of all n-node configuration designs by D(n):

D(n) := {V ′ ⊆ V : |V ′| = n}.

Any realisation of the described random graph GV ′ defines a 0 − 1 map y on

V ′ × V ′ as follows:

y : V ′ × V ′ → {0, 1}, (3.34)

y(u, v) =




0 if the edge (u, v) was deleted,

1 otherwise.
(3.35)

If θ is unknown and assumed to be random, given a realisation y of a random

graph GV ′ the likelihood function for θ is as follows:

LV ′(θ; y) = f(y | θ, V ′) =
∏

{u,v}∈V ′⊗V ′

[p(r(u, v), θ)]y(u,v) [1− p(r(u, v), θ)]1−y(u,v) ,

(3.36)

where V ′ ⊗ V ′ is the set of all two element subsets of V ′, as in (2.1).

Finally, denote the set of all possible observations y by Y .

3.5.2 n-node optimal design problem for random graphs

The notations of the previous paragraph make it possible to directly translate

formulation of the optimal design problem to weighted random graphs. In the

Bayesian context, the n-node optimal design problem consists in finding an n-

node configuration design that maximises the expected Kullback–Leibler diver-

gence (§ 3.3). A utility u(y, θ, d) corresponding to an observation y ∈ Y , parameter

θ ∈ Θ, and design d ∈ D(n) can be other than log π(θ | y,d)
π(θ)

; in this case the whole
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construction of § 3.1.2 remains the same but the choice of the utility function u.

The notions of the progressive and instructive designs from § 3.3, can also be anal-

ogously formulated for utilities other than the logarithmic ratio of the posterior to

prior distribution (corresponding to the KL divergence).

3.5.3 Examples

Example 3.5.1. Let G = (V,R), where V = R+ and

R : r(u, v) =





v, u = 0,

u, v = 0,

+∞, otherwise.

Whatever the optimality condition and the edge-probability function are chosen, the

optimal design d∗ = V ′ ∈ D(n) will clearly contain the origin as a vertex, otherwise

all vertices of the resulting random graph will be isolated. It is reasonable to assume

that n ≥ 2.

In this example a design can be interpreted as a set of observation moments in

time (Example 3.1.1, Figure 3.2), that is to say is topologically equivalent to a star

(Figure 1.1, star).

Example 3.5.2. Let G = (V,R), where V = R
m and R is the Euclidean metric,

that is (V,R) is an m-dimensional Euclidean space (it is the Euclidean plane when

m = 2).

A design d ∈ D(n) consists of n points chosen in the space R
m. Notice, however,

that since translations and rotations do not change the edge structure of the cor-

responding random graph, all n-point configurations with a given set of n(n− 1)/2

edge lengths will be equally informative. Thus, there is an ‘equivalent’ analogue for

D(n), and namely:

D̃(n) = {r =(r12, r13, . . . , rn−1,n) ∈ R
n(n−1)/2 : there exists a planar graph

on n nodes and edge lengths from r}.

Of course, any permutation of the components of a design r ∈ D̃(n) will be

a design of the same informativeness, so that the corresponding expected utility
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θ/2

Figure 3.4: Example of a geometric (proximity) graph on eight nodes with a threshold

parameter θ ∈ Θ = R+.

function U(r) is a symmetric function. It might, however, be of interest to ask

whether U(r) is unimodal or multimodal for any given choice of the edge-probability

function p, the utility function u, the number of nodes n, and the dimension of

space, m.

Example 3.5.3. Let G = (V,R), where V = R
2 and R is the Euclidean metric,

that is (V,R) is the Euclidean plane. Let the edge-probability function p(·, ·) be a

step function as follows:

p(r, θ) =




1, r ≤ θ,

0, otherwise.

Thus, the model parameter θ can be interpreted as a threshold—there is an edge

between two nodes if, and only if, the distance between the nodes does not exceed

θ (or, equivalently, if and only if the intersection of the two discs of of the radius

θ/2 with centres in these nodes is not empty).

The described graphs are known as geometric graphs or proximity graphs (see

Penrose (2003)). An example of a geometric graph in plane is presented in Fig-

ure 3.4.

Example 3.5.4. Let G = (V,R), where V ≡ Z
2 and R, as in Example 2.1.3, is
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(a) (b) (c) (d)

(e)

Figure 3.5: Five of many more possible arrangements of 17 vertices on the two-

dimensional integer grid Z
2.

the Euclidean metric restricted to a four-neighbourhood as follows:

r (u(x1, y1), v(x2, y2)) :=




1 if ‖u− v‖1 = |x2 − x1|+ |y2 − y1| = 1,

+∞ otherwise,

∀u, v ∈ V.

Figure 3.5 depicts examples of five possible node arrangement designs when n = 17.

It is easy to see that since any two edges of the considered random graph are

present in its realisation independently of each other, an optimal n-node config-

uration design based on the KL divergence (or, equivalently, on the Lindley in-

formation measure) is the one that has the greatest possible number of potential

edges8. For instance, the node arrangement (c) in Figure 3.5 will lead to at most

25 edges in a realisation of the corresponding random graph on this nodes, whereas

the node arrangement (e), Figure 3.5, may not give more than 16 edges. The node

configurations from (a) and (b), both in Figure 3.5, inducing a graph with the same

number of possible edges (twenty edges), are equally informative.

The problem is not that trivial when there is missing information in observa-

tions. For example, one might only be able to see the endpoints of the present edges

in a realisation of the random graph under consideration, but not the edges them-

selves. It is not straightforward to answer the question whether the most ‘packed’

configuration of nodes is the most informative then. In fact, this is not the case,

as we shall learn in §§ 5.1.3, 5.1.4, Chapter 5 after introducing inner-outer design

plots for percolation model.

8This is due to the property LIG.5 of the expected Lindley information gain, p.57.
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Chapter 4

Optimal Designs for Basic Random

Graph Models

4.1 Worst case scenarios: indefinitely growing or

diminishing vertex configurations

When the purpose of experimentation is to make inference on the model parameter

and the edge-probability function decreases with the edge weight, an experiment

when all the edges of an experimental random graph have very large or very small

weights is intuitively fairly uninformative. Here we give the exact meaning to this

assertion using the expected Kullback–Leibler divergence.

Let G = (V,R) be a simple weighted graph with a possibly uncountable vertex

set V and the weight structure R. Let V ′ be a finite-order node arrangement

design, that is V ′ ⊆ V and |V ′| < ∞. Let δ(V ′) be the smallest edge weight

among the weights of the corresponding node induced graph (V ′, R|V ′×V ′) and

∆(V ′) be its largest edge weight:

δ(V ′) := min{r(u, v) | (u, v) ∈ V ′ × V ′},

∆(V ′) := max{r(u, v) | (u, v) ∈ V ′ × V ′}.

Let us assume, as we did before, that the edge-probability function p(·, ·) satis-
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fies Assumptions 1.2.1-1.2.2. That is

p(r, θ) → 0, as r → ∞ for any fixed θ ∈ Θ, (4.1)

p(r, θ) → 1, as r → 0 for any fixed θ ∈ Θ. (4.2)

As previously, the set of all n-node configuration designs is denoted by D(n).

Theorem 4.1.1. If a sequence of random graph designs dk = Vk ∈ D(nk), k =

1, 2, . . ., is such that (i) the sequence {nk ∈ N}∞k=1 is bounded, and (ii) either

δ(Vk) → ∞ or ∆(Vk) → 0 when k → ∞, then UKL(dk) → 0 (for any proper prior

distribution for θ on Θ).

Proof. We will first prove the theorem for the case when {nk}∞k=1 is a constant

sequence, that is when nk ≡ n for all k ∈ N.

The joint edge distribution corresponding to the design dk = Vk is as follows:

f(y | θ, dk) =
∏

{u,v}∈Vk⊗Vk

[p(r(u, v), θ)]y(u,v) [1− p(r(u, v), θ)]1−y(u,v) , (4.3)

where y is as defined by (3.34) and (3.35), and the product is taken over all un-

ordered pairs of vertices from Vk. Under condition (ii) this distribution converges,

due to (4.1) and (4.2), to a one-point mass distribution. Moreover,

• if δ(Vk) → ∞, then the limiting one-point distribution is concentrated at

yδ = (0, 0, . . . , 0) ∈ R
n(n+1)/2 (all n(n + 1)/2 edges are absent);

• if ∆(Vk) → 0, then the limiting one-point mass is concentrated at y∆ =

(1, 1, . . . , 1) ∈ R
n(n+1)/2 (all n(n+ 1)/2 edges are present).

Thus, under condition (ii) the sequence {f(y | θ, dk)}∞k=1 converges to a one-point

distribution, and hence the sequence of corresponding entropies converges to zero:

Ent{f(y | θ, dk)} → 0, k → ∞ ∀θ ∈ Θ.

Analogously, it is due to (3.34) and (3.35) that the sequence of prior predic-

tive distributions (marginal distributions of y), {Φ(y | dk)}∞k=1, corresponding to

{f(y | θ, dk)}∞k=1 (under any prior distribution π(θ)) converges to a one-point mass
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distribution (concentrated at yδ if δ(dk) → ∞ or at y∆ if ∆(dk) → 0). Conse-

quently, the sequence of the entropies of the prior predictive distributions vanishes

when k grows:

Ent{Φ(y | dk)} → 0, k → ∞.

One can apply now Lemma 3.2.5 (representation (3.19) of the expected utility

based on the KL divergence) to deduce that UKL(dk) → 0 as follows:

lim
k→∞

UKL(dk) = lim
k→∞

(Ent{Φ(y | dk)} − Eθ [Ent{f(y | θ, dk)}]) = 0− 0 = 0.

We consider now the case when the sequence of designs dk = Vk is such that

the sequence of their orders, {nk}∞k=1, is bounded:

∃n ∈ N : |nk| ≤ n ∀k ∈ N.

We construct a new sequence of designs d̃k = {Ṽk} and ‘modify’ correspondingly

the weight function r as follows:

Ṽk := Vk ∪ {u(1)k , u
(2)
k , . . . , u

(n−nk)
k },

where the added nodes u(1)k , u
(2)
k , . . . , u

(n−nk)
k are some formal ‘fictitious’ nodes such

that

• r(u
(i)
k , u) = +∞, i = 1, . . . , n− nk ∀u ∈ Vk ∀k ∈ N, if δ(Vk) → ∞;

• r(u
(i)
k , u) = 0, i = 1, . . . , n− nk ∀u ∈ Vk ∀k ∈ N, if ∆(Vk) → 0.

It is clear that all the designs in the sequence d̃k = Ṽk have the same order,

n, and that UKL(d̃k) = UKL(dk) for any k ∈ N. Applying the proved result to

the sequence of same order designs d̃k we complete the proof of the theorem in

its general form (that is when {nk} is an arbitrary bounded sequence of design

orders):

UKL(dk) = UKL(d̃k) → 0, k → ∞.

Alternatively, one can consider all infinite index sequences {ki(m)} charac-

terised as follows:

nki(m) = m, i = 1, . . .∞, m ∈ {1, . . . , n}.
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By the first part of the theorem

UKL(dki(m)) → 0, i→ ∞,

for each of these index sequences, and hence the same is true for the parent se-

quence {nk}:
UKL(dk) → 0, k → ∞.

The proof is complete.

Since the Kullback–Leibler divergence, and hence its expectation, is a non-

negative information quantity, the two scenarios under which the size of the design

graph is either indefinitely growing or diminishing in the limit are in a certain sense

the worst case design scenarios.

Corollary 4.1.2. The function W (d) = UKL(d) − Ent{π(θ)} has an asymptote

W = −Ent{π(θ)} when either δ(d) → ∞ or ∆(d) → 0.

4.2 Optimal designs for basic random graphs

The purpose of this section is to illustrate some aspects and main difficulties related

to the evaluation of the expected utility. In addition, we investigate the simplest

models of random graphs for which it is possible to solve the utility based optimal

design problem either analytically/numerically, or by combining both analytical

and numerical techniques.

4.2.1 Two-node design and prior entropy asymptote of the

expected utility

Let us consider two points u and v taken in the Euclidean plane R
2 and form a

random graph on these points as nodes as follows: there is a link between the nodes

u and v with probability e−θd(u,v), where d(u, v) is the distance between them and

θ ∈ R+ is the rate of the exponential edge-probability decay.

Given a prior distribution π(θ) the optimal design problem, namely to find such

points u∗ and v∗ that the expected KL divergence between the posterior and the
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Figure 4.1: Function Wα(d) defined in (4.5) when α = 1. This function attains its

maximum at the point d ≈ 2.52.

prior is maximised, can be posed using the formalism presented in §§ 3.5.1, 3.5.2

and the model discussed in Example 3.5.1 (when n = 2). We identify one of the

vertices of our random graph, say u, with the origin and allow the other, v, to be

chosen on R+. Consequently, the optimal progressive design d∗ in this case is the

distance d of v from the origin at which the corresponding expected KL divergence

UKL(d) =

∫

R+

log
π(θ | d, y = 1)

π(θ)
e−θdπ(θ) dθ +

∫

R+

log
π(θ | d, y = 0)

π(θ)
[1− e−θd]π(θ) dθ

is maximised.

It is due to the identity (3.27) that

UKL(d)− Ent{π(θ)} =

∫

R+

log π(θ | d, y = 1)e−θdπ(θ) dθ

+

∫

R+

log π(θ | d, y = 0)[1− e−θd]π(θ) dθ. (4.4)

Let us assume that the prior distribution of θ is exponential with parameter

α > 0: π ∼ Exp(α). After introducing the following notation

Wα(d) := UKL(d;α)− Ent{Exp(α)} (4.5)
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it is straightforward to obtain the following identity:

1

α
Wα(d) =

1

α+ d
log(α+ d)− 1

α + d
+
d

α

1

α + d
[logα + log(1 +

α

d
)]+

+

∞∫

0

log[1− e−θd](1− e−θd)e−αθdθ − d

α

d+ 2α

(α + d)2
. (4.6)

It is also easy to verify that

Wtα(td) = Wα(d) + log t, (4.7)

and therefore

argmax
d≥0

Wtα(d) = t · argmax
d≥0

Wα(d). (4.8)

Thus, it suffices to maximise W1(d) in order to find maximum of Wα for any α > 0.

The integral in (4.6) can be calculated analytically when α/d ∈ N as an integral

of polylogarithms and it can be further reduced to the digamma function for any

non-negative α and d (see Appendix C). The numerical evaluation of this integral

suggests that W1(d) is maximised at d ≈ 2.51895 (see Figure 4.1). One can

also notice that the graph of Wα, depicted in Figure 4.1, closely approaches the

horizontal line at the level −Ent{Exp(1)} = −1 when d increases—a fact that

is indeed expected in view of Corollary 4.1.2. This kind of verification can be

suggested as a validation tool of checking whether numerical evaluation of involved

integrals has been implemented correctly.

The particular model we have just considered represents an example combining

a very simple random graph design model and a simple prior distribution—and

yet, one should acknowledge, the fully analytical evaluation of the expected utility

was not a very elementary task. It is clear that in more general models with more

complex prior distributions and edge-probability functions the analytical treatment

of the expected utility would generally not be possible.

Finally notice that for any given α the expected utility UKL(d;α) is a unimodal

function for the function Wα(d) is so. It is interesting to ask in this regard whether

there exist examples of multimodal expected utilities when d is a one-dimensional

(multidimensional) design parameter? If yes, can it be derived a characterisation

of cases when the expected utility is a globally unimodal function? The advan-

tage of such characterisation in the multidimensional case, for example, would be
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Figure 4.2: Two-node random multigraph (with no loops) in a black box: n multiple

edges connect two sites u and v, each being open with probability p inde-

pendently of the status of any other edge; it can be only observed whether

the nodes are connected or not but not the total number of open edges.

obvious—since the expected utility is a symmetric function with respect to any

permutation of its arguments (elements of the design parameter d = (d1, . . . , d|D|)),

unimodality will imply that all the components of the optimal design d∗ should be

taken equal: d∗1 = . . . = d∗|D|. This property could greatly simplify the search for

the optimal design.

4.2.2 Progressive and instructive designs: two-node ‘black

box’ design example

In order to illustrate the concepts of the progressive and instructive designs in-

troduced in Section 3.3 we consider a multigraph on two nodes without loops.

Assume that there are n edges between two vertices u and v and each edge is open

with probability p independently of the status of any other edge. The vertices

are considered to be connected if, and only if, there is at least one open edge

connecting them. The number of open edges, however, cannot be observed, thus

representing a kind of a black box (Figure 4.2). That is, all that can be observed

for a given (and known!) n is whether u and v are connected or not.

Suppose that there is an experimenter A whose prior knowledge about p is

expressed in a prior distribution π(p). The experimenter A, however, wishes to

find the optimal number of links, n, to equip the black box with in order to

maximise the increase in his or her knowledge about p after observing whether u

and v are connected or not. Thus, in this example n is the design parameter and p
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is the model parameter that the experimenter A would like to make inference on.

Clearly, the sites u and v are connected with probability 1 − (1 − p)n, so that,

in line with the settings of § 3.3.1, the experimenter maximises the corresponding

expected utility:

UKL(n) =

1∫

0

log
π(p | y = 1, n)

π(p)
[1− (1− p)n]π(p) dp

+

1∫

0

log
π(p | y = 0, n)

π(p)
(1− p)nπ(p) dp

=

1∫

0

log π(p | y = 1, n)[1− (1− p)n]π(p) dp (4.9)

+

1∫

0

log π(p | y = 0, n)(1− p)nπ(p) dp+ Ent{π(p)}. (4.10)

where

y =




1, if u and v are connected,

0, otherwise.

Assume that the prior π(p) is modelled by a beta distribution: π(p) ∼ Beta(α, β).

In this case its entropy can be calculated as follows:

Ent{π(p)} = logB(α, β)− (α− 1)ψ(α)− (β − 1)ψ(β) + (α + β − 2)ψ(α+ β),

where ψ is the digamma function, ψ(z) = Γ′(z)/Γ(z), and the integration in (4.9-

4.10) with respect to the prior distribution can be performed numerically.

Figure 4.3 depicts plots of the function UKL(n) − Ent{π(p)} when π(p) ∼
Beta(α, α), α = 1, 2, 3, 4. It is important to note that the plots were produced

after numerically evaluating the integrals in (4.9-4.10) and that the horizontal

asymptotic behaviour, when n → ∞, is the expected behaviour which can be

validated by plotting the horizontal line that corresponds to Ent{π(p)}. This

observation suggests the value of plotting the result of integration and expected

prior entropy asymptote as a basic tool for checking whether the integration was

carried out correctly or not whenever the prior entropy can be easily calculated.
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Figure 4.3: Expected utility (expected KL divergence) of the experimenter A holding

a beta prior for p, Beta(α,α), minus the entropy of the prior distribution.
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Figure 4.4: (a) Expected utility (expected KL divergence) of the experimenter A hold-

ing a beta prior for p, Beta(α, β) (various sets of values for α and β), minus

the entropy of the prior distribution; (b) Expected utility plots for the prior

distributions considered in the left plot.
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Figure 4.5: Optimal values of n, n∗, derived by maximising the expected KL divergence

calculated by B (who knows the exact value of the parameter p, p∗) for the

experimenter A holding a uniform prior for p.

However, one should interpret these plots with care. Such combined plots for dif-

ferent prior distributions allow one to read the optimal design parameter’s values

and compare them for the same prior distribution. However, it is not feasible to

compare different designs corresponding to different prior distributions using such

plots. Such a comparison can be done by plotting graphs of the expected utility

UKL(n) corresponding to the prior distributions of interest. Examples provided in

Figure 4.4 illustrate this idea.

Now let us assume that there is an instructor B who knows the exact value of p,

p∗. Acting in accordance with (3.28-3.29), the instructor, in order to find the best

‘convincing’ design for the experimenter A, should maximise the expected utility

U∗
KL(n) = [1− (1− p∗)n]

1∫

0

log
π(p | y = 1, n)

π(p)
π(p | y = 1, n) dp

+ (1− p∗)n
1∫

0

log
π(p | y = 0, n)

π(p)
π(p | y = 0, n) dp.

Figure 4.5 shows the dependence of the optimal number of edges, n, on the true

value of p known to B when the experimenter A is ignorant about p and chooses
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to represent this using a uniform prior (and thus π(p) is a uniform distribution).

Finally notice that the discussed experiment can be easily modelled using sim-

ple weighted graphs within the formalisation framework presented in § 3.5.1.

For instance, if V ≡ Z, R = (r(i, j))i,j∈V is such that r(i, j) := |i − j|, and

p(r(i, j), θ) := (1 − θ)r(i,j), θ ∈ Θ ≡ [0, 1], then the solution to the optimal design

problem with two-node configuration design space D(2), d∗ = (i∗, j∗), relates to the

optimal number of edges from the black box, n∗, as follows: n∗ = |i∗ − j∗|.

4.2.3 Three-node star design with two independent edges

0 1 2 3 4 50

2

4

6−0.96

−0.94

−0.92

−0.9

−0.88

−0.86

Figure 4.6: Expected utility minus prior entropy surface for the Cauchy edge-

probability function (see § 1.2.2); here θ is assumed to take values 1,

2, and 5 with probabilities 0.1, 0.5, and 0.4, respectively. Note that

−Ent{π(θ)} = 0.1 log 0.1 + 0.5 log 0.5 + 0.4 log 0.4 ≈ −0.94, and this is

in agreement with the plot (which in turn reflects the statement of Corol-

lary 4.1.2). Horizontal axes correspond to the lengths of the edges, d1 and

d2.

So far we encountered only unimodal expected utilities: in particular, the ex-

pected utility function in the univariate design problem considered in § 4.2.1 was

unimodal. Figure 4.6 shows the landscape of the expected utility for the prob-

lem with two independent random edges of lengths d1 and d2 (three nodes and a
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star interaction topology) and the Cauchy edge-probability function—the expected

utility surface is again unimodal.

Are there multimodal expected utilities? Here we answer positively this ques-

tion by providing simple examples of two-dimensional expected utility surfaces

which are multimodal (not only for a utility function based on KL divergence). In

fact the character of the multimodality can be quite diverse. Figure 4.7 depicts

plots of two-dimensional expected utility surfaces (as functions of d1 and d2) as

well as projections of isolines onto the design space for various prior distributions

and edge-probability functions.

Figure 4.7(a) shows a unimodal expected utility surface corresponding to a

power-law edge-probability decay and an exponential prior distribution for θ. The

plot is similar to that shown in Figure 4.6 and, indeed, our experience is that

expected utility landscapes for exponential and Cauchy decays have similar shapes.

The plot of the expected negative squared error loss (p. 48) under logistic decay

(p. 11) presented in Figure 4.7(b) exhibits a global mode as well as two local

maxima. In addition, and it is easily noticeable, the surface is fairly flat around

the modes. This is also often the case with expected Kullback–Leibler divergence

surfaces. The plot of the expected KL divergence from Figure 4.7(c) is not as flat

around its mode as that of Figure 4.7(b) but similar otherwise; it corresponds to

the logistic decay (p. 11).

The plot of the expected KL divergence under a ‘linear’ edge-probability decay

p(r, θ) = (1− θr)1l{r≤1/θ}

and a discrete prior for θ presented in Figure 4.7(d) suggests that there are just

two modes in total. As a consequence of this (and the fact that the function of

interest is symmetric) the modes are global and any designs on the line d1 = d2

are far from being ‘good’ in this case. This is not the case in Figure 4.7(e) which

depicts a plot of the expected KL divergence with the edge-probability decay

p(r, θ) = 1−
(
1 + e(10−r)/θ

)−1

and discrete prior distribution for θ—there are four equally significant modes in

this case and two of them are achieved at points from the line d1 = d2.
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Figure 4.7: Expected utility minus prior entropy plots for two independent random

edges and (a) KL divergence and power-law decay (exponential and Cauchy

decays give similar unimodal surfaces); (b) negative squared error loss util-

ity and logistic decay; (c) KL divergence and logistic decay, (d) KL di-

vergence and a ‘linear’ decay p(r, θ) = (1− θr)1l{r≤θ−1} with a discrete

distribution for θ over a finite set of points; (e) KL divergence and

p(r, θ) = 1 −
(
1 + e(10−r)/θ

)−1
with a discrete distribution for θ over a

finite set; (f) KL divergence and p(r, θ) = 1−
(
1 + e(10θ−r)/0.3

)−1
with the

same prior for θ as in (e). 82



Finally, the plot from Figure 4.7(f) corresponding to the expected KL divergence

for the edge-probability decay

p(r, θ) = 1−
(
1 + e(10θ−r)/0.3

)−1

and the same discrete prior as in previous example differs dramatically from its

counterpart in Figure 4.7(e). The ‘hills’ containing the two global maxima (at

points different from any pairs d1 = d2) are very thin in one direction and very flat

along another direction (these directions are different, of course, for each of these

modes).

The examples considered above show wide versatility in the shapes of the ex-

pected utility surface as well as the geometry of its maxima. With increasing

number of the experimental graph vertices the complexity of the optimisation

problem will only grow: potential analytical intractability suggests that numerical

or simulation techniques of the expected utility evaluation may be of greater use;

however considerable ‘flatness’ of the expected utility function (in high dimen-

sions) may diminish the power of these techniques. Reducing the design space by

decreasing its dimensionality is one solution to overcome this difficulty. Deferring

a more detailed discussion on this until next chapter we move next to the study of

proximity random graph models and closely related models, for which the expected

utility has multiple global modes but is analytically tractable—hence no reduction

in dimensionality is needed.

4.2.4 Proximity graphs

Proximity graphs or geometric graphs are graphs consisting of nodes placed in n-

dimensional metric space, with edges connecting only those pairs of nodes which

are in some sense close to each other (Penrose (2003)). Given a finite subset V of

a metric space X with a metric r and a distance threshold θ, the unoriented graph

with vertex set V and undirected edges connecting those pairs {u, v} ⊆ V for

which it is true that d(u, v) ≤ θ is a geometric graph. The set V may in particular

be a subset of Rm. When m = 1 the resulting graphs are related to what is known

as interval graphs (Golumbic (2004)); when m = 2 proximity graphs are known
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as disk graphs (Penrose (2003)). Since proximity graphs are essentially defined by

looking at intersections of neighbourhoods of their vertices, these graphs can be

seen as a particular case of set intersection graphs (Fulkerson and Gross (1965)).

Let us consider an optimal design problem for graphs with star topology (as in

Example 3.5.1) and the 0-1 step edge-probability function:

p(d(u, v), θ) = 1l{d(u,v)≤θ}, θ ∈ Θ ⊆ R+, (4.11)

where d(u, v) is a weight attributed to the pair {u, v}. Here, as before, the function

p(d, θ) denotes the probability for any pair of two vertices with weight d to be

connected given the value of the model parameter θ:

p(d(u, v), θ) := P(u and v are connected | θ).

Note that for a fixed value of θ the resulting graph is not random.

Recall that the optimal arrangement d∗ ∈ D(n) for the n-node optimal design

problem in the case of a star topology always contains the origin as one of the

nodes (Example 3.5.1), that is we may assume that the design parameter d is as

follows:

d = {0, d1, . . . , dn−1}, di ∈ R+ ∀i = 1, . . . , n− 1.

Let yi be a binary variable which takes value 1 whenever there is an edge between

a node ui placed at the distance di from the origin (as a centre of the star), and it

takes value 0 otherwise. The likelihood function of the model parameter θ given

an (essential) observation y = (y1, . . . , yn−1) is as follows then:

f(y | θ, d) =
n−1∏

i=1

(
yi1l{di≤θ} + (1− yi)1l{di>θ}

)
. (4.12)

Example 4.2.1. Let n = 3 and let us assume that the prior for θ is exponential

distribution with parameter λ:

π(θ) = λ1l{θ≥0}e
−λθ.

In this case

W (d1, d2) = UKL(d1, d2)− Ent{π(θ)} =
∑

y∈{0,1}2: y 6=(0,1)

∫

Θy

log
π(θ)∫

Θy

π(φ) dφ
π(θ) dθ,

(4.13)
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where

Θy =





[0, d1), if y = (0, 0),

[d1, d2), if y = (1, 0),

[d2,∞), if y = (1, 1),

and d1 ≤ d2. Notice that the outcome y = (0, 1) is an impossible event.

Thus,

W (d1, d2) = log{1−e−λd1}[e−λd1 −1]+log{e−λd1 −e−λd2}[e−λd2 −e−λd1 ]+λd2e
−λd2 ,

and the partial derivatives of W are as follows:

∂

∂d1
W = λe−λd1 log

e−λd1 − e−λd2

1− e−λd1

∂

∂d2
W = −λe−λd2 [log{e−λd1 − e−λd2}+ λd2], (4.14)

so that the stationary point is dst =
(

log 3/2
λ

, log 3
λ

)
. This is the point of maximum

of W , and hence of the expected utility UKL.

Recall that by a quantile of order p, p ∈ (0, 1), of a random variable X with

distribution function FX(x) one understands any number qp such that FX(qp) ≤ p

and FX(qp+) ≥ p. One can easily recognise quantiles of the orders 1/3 and 2/3

of the exponential distribution with parameter λ in the values of the optimal

distances found in Example 4.2.1. As the following theorem shows this fact is not

a coincidence.

Let us assume that the prior distribution of θ is given by a probability density

function π(θ), and that θ has a non-negative support supp θ = Θ ⊆ R+.

Theorem 4.2.2. Solution to the n-node optimal design problem for a proximity

graph under star topology is given by n−1 quantiles of the prior π(θ) dividing this

distribution into n even parts.

Proof. Without loss of generality we assume that the distances are ordered as

follows:

d0 := 0 ≤ d1 ≤ d2 . . . ≤ dn−1 ≤ dn := +∞.
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The design vector d naturally defines the following discrete probability distribution

Pd | π := {p1, . . . , pn}:

pi := P(di−1 ≤ θ < di) =

di∫

di−1

π(θ) dθ, i = 1, . . . , n,

where some pi’s are possibly zeros (this will happen if some di’s lie outside Θ).

The space of observables Y can be described as the following set of n zero-one

(n− 1)-tuples:

Y = {(0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0, . . . , 0) . . . , (1, . . . , 1)}.

Denoting by ∆y the interval [di−1, di], where i is the place of the first zero in y ∈ Y ,

one obtains:

π(θ | y) = 1l{θ∈∆y}π(θ)/pi, i = 1, . . . , n,

so that

UKL(d) =
∑

y∈Y

∫

∆y

log
π(θ | y)
π(θ)

π(θ) dθ =
n∑

i=1

di∫

di−1

log p−1
i π(θ) dθ = Ent{Pd | π}. (4.15)

The entropy of the discrete distribution Pd |π := {p1, . . . , pn} is maximised when

p1 = . . . = pn. This means that the points d1, . . . , dn−1 divide π(θ) into n even

parts, that is d1, . . . , dn−1 are quantiles of the prior distribution π of the orders

1/n, . . . , (n− 1)/n respectively. The theorem is proved.

This theorem gives a clear recipe for solving the problem of n-node optimal

arrangement design in the case of underlying star topology (or, equivalently, in the

case of n independent pair of vertices). In the case when the design space assumes,

for example, embedding in a metric space, one can be suggested to maximise

the function Ent{Pd |π} under triangle inequalities imposed on correspondingly

related distances, that is to solve the following optimisation problem with linear
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constraints1:

Maximise Ent{Pd |π},

subject to 0 ≤ dij ≤ dik + dkj,

1 ≤ i, j ≤ n, k = 1, . . . , n& k 6= i 6= j 6= k.

Example 4.2.3. Let n = 4 and π ∼ Γ(3.4, 0.5). The solution to the following

optimisation problem

Maximise Ent{Pd |π},

subject to 0 ≤ dij ≤ dik + dkj,

1 ≤ i, j ≤ 4, k = 1, 2, 3, 4& k 6= i 6= j 6= k,

obtained using the MATLAB function fmincon (Optimization Toolbox) is as fol-

lows:

d∗ = (d∗34, d
∗
24, d

∗
23, d

∗
14, d

∗
13, d

∗
12) ≈ (0.99, 1.47, 1.86, 2.40, 2.85, 3.87).

For comparison, the vector of quantiles, and hence the solution to the optimal

design problem with star topology and n = 7, of orders 1/7, 2/7, . . . , 6/7 for the

gamma distribution with parameters 3.4 and 0.5 is as follows

q = (q1/7, q2/7, q3/7, q4/7, q5/7, q6/7) ≈ (1.095, 1.384, 1.696, 2.080, 2.656).

These values were also obtained numerically. Figure 4.8 shows the plot of the prior

density function π(θ) and the solutions obtained.

In Example 4.2.3 the solution d∗ satisfying the metric inequalities is such that

d∗14 + d∗24 = d∗12.

Basic geometric considerations show that there is no four-vertex configuration

in R
3 with lengths from d∗. A simple procedure of detecting whether six non-

negative numbers d12, d13, d14, d23, d24, d34 can be pairwise distances between some

four points U1, U2, U3 and U4 in the Euclidean space R3 is described in Appendix D.
1There will be 3

(
n

3

)
triangle inequalities and

(
n

2

)
non-negativeness inequalities—in total n(n−

1)2/2 linear constraints.
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Figure 4.8: Solution to the optimal design problem for proximity graph with and with-

out metric constrains (six edges, see Example 4.2.3).

Further investigation is generally needed to decide whether the obtained solu-

tion (represented by a set of pairwise distances) corresponds to any realisable point

configuration in case when the metric space of interest is also Euclidean space.

Some advanced methods and techniques can be used in answering questions simi-

lar to finding the dimension of the Euclidean space in which the obtained design

is realisable (e.g. see Vempala (2006)) or, when the distances cannot be preserved

exactly, finding an embedding which would preserve distances as much as possible

minimising the distortion (a measure of preserving distances by a transformation)

of the embedding (see Shavitt and Tankel (2004), Gupta (1999) and references

therein).

4.2.5 Step-like (threshold) probability decay

Undoubtedly, the geometric graph model considered above can be generalised in a

number of various ways. One of them is particularly interesting: it is simple and

it permits, similarly to geometric graph case, analytical treatment of the optimal

design problem combined with numerical optimisation techniques.

Let α be a non-negative real number which is less than unity: 0 ≤ α < 1.
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Consider the following generalisation of a 0− 1 edge-probability function:

p(d, θ) = 1l{d≤θ} + α1l{d>θ}, θ ∈ Θ ⊆ R+. (4.16)

Notice, that in contrast with proximity graphs, graphs whose links are declared

present or absent in accordance with (4.16) with at least one link of length exceed-

ing θ are random per se2.

Because of the invariance of the expected Kullback–Leibler divergence under

the change of the model parameter (see p. 53), one can assume that θ ∼ U[0,1].

Given n nodes and a star interaction topology, that is n−1 independent random

edges, we order their lengths, just as we did before, adding two fictitious elements:

0 =: d0 ≤ d1 ≤ d2 ≤ . . . ≤ dn−1 ≤ dn := 1.

What we observe is an (n−1)-tuple y of zeros and ones. In addition, we introduce

into consideration the following statistic:

I(y) =




k, where k is the place of the first zero in y,

n, if there are no zeros in y.

The statistic I is well defined (in the sense that it is assigned a value for any

possible outcome of y) and sufficient for θ. Note also that the support of the

posterior distribution of θ is located to the left of dk if I = k. The posterior

distribution remains equivalent to the prior distribution if I = n (the observation

‘all edges are present’ is a non-informative one).

Let pi := di − di−1, i = 1, ..., n. The posterior distribution of θ is constant in

any interval ∆i = (di−1, di]. Therefore, one is interested in the following posterior

probabilities:

π(θ ∈ ∆s | I = k) =
P(I = k | θ ∈ ∆s)ps

1∫
0

P(I = k | θ)dθ

=
P(I = k | θ ∈ ∆s)ps
k∑

i=1

P(I = k | θ ∈ ∆i)pi

, s = 1, ..., k, k = 1, . . . , n,

2For a fixed threshold θ proximity graphs are not random—all the randomness in the design

problem comes from the assumption that θ is unknown and distributed according to experi-

menter’s prior belief!
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Figure 4.9: Optimal designs as functions of α in the model with threshold edge-

probability function: (a) one edge and (b) two independent edges.

where P(I = k | θ ∈ ∆s) = αk−s(1− α).

Since I is a sufficient statistic for θ, one can express the utility function based

on the Kullback–Leibler divergence as follows (LIG.3, p. 56):

UKL =
n∑

k=1

1∫

0

log
π(θ | I = k)

π(θ)
P(I = k | θ)π(θ)dθ

=

n∑

k=1

k∑

s=1

log
P(I = k | θ ∈ ∆s)

k∑
i=1

P(I = k | θ ∈ ∆i)pi

P(I = k | θ ∈ ∆s)ps.

Finally, one obtains:

UKL(d) = UKL(p1, p2, . . . , pn) =(1− α)

n−1∑

k=1

k∑

s=1

αk−sps log
αk−s

k∑
i=1

αk−ipi

+
n∑

j=1

αn−jpj log
αn−j

n∑
i=1

αn−ipi

. (4.17)

In particular, when n = 2 (a pair of vertices) then

UKL(d) = (α− 1)d log d+ α lnα− [1 + (α− 1)d] ln(1 + (α− 1)d). (4.18)

Under restriction d ∈ [0, 1] the expected utility UKL(d) is maximised at

d∗(α) =
α

α
1−α

1− (α− 1)α
α

1−α

. (4.19)
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Figure 4.9(a) shows the plot of d∗(α). Interestingly enough to notice that

lim
α→1

d∗(α) = 1/e. (4.20)

For general n and α the problem of optimal design for the model with thresh-

old edge-probability function can be solved by numerically solving the following

optimisation problem:

Maximise UKL(p1, p2, . . . , pn), (4.21)

subject to
n∑

i=1

pi = 1, (4.22)

pi ≥ 0, i = 1, . . . , n, (4.23)

where UKL(p1, p2, . . . , pn) is taken in the form (4.17).

When n = 3 there are two independent edges of lengths d1 and d2. Figure 4.9(b)

represents 2-edge optimal designs d∗1 and d∗2 as functions of α.

Table 4.1 contains optimal designs which correspond to different values of α

from the interval [0,1) in the case of 3 independent edges (n=4). Notably, the

optimal designs seem to be planar for any α in this case (but one should keep

in mind that θ was taken to be uniformly distributed, and if we reparametrise

the model by accordingly transforming θ and its support, the optimal design can

be obtained as corresponding quantiles of the new prior distribution of θ and the

planarity may be easily ‘violated’ by such procedure.).

Figure 4.9 and Table 4.1 were obtained by solving numerically the optimisation

problem (4.21) with linear constraints (4.22) and (4.23).

Finally notice that it looks very convincing from Figure 4.9 and Table 4.1 that

optimal edge lengths d∗i (α), i = 1, . . . , n, tend to 1/e ≈ 0.368 each, as α goes to 1.

We currently do not have analytic proof of this for general values of n.

4.2.6 Non-preservation of optimal designs under replication

Although optimal designs are often maintained under replication in the case of

linear (or linearisable) models with normal errors, the following trivial example

91



α d1 d2 d3

0.0 0.25 0.5 0.75

0.1 0.2499 0.4759 0.7132

0.2 0.2481 0.4526 0.6872

0.3 0.2435 0.4278 0.6604

0.4 0.2378 0.4040 0.6298

0.5 0.2344 0.3840 0.5967

0.6 0.2365 0.3702 0.5615

0.7 0.2468 0.3633 0.5238

0.8 0.2691 0.3625 0.4819

0.9 0.3077 0.3654 0.4319

Table 4.1: Optimal designs for the model with threshold edge-probability function as

functions of the threshold α when n = 4.

shows that this is not generally true. A related point that this example shows is

that the sequential optimal design of replicated experiments need not be the same

as the optimal design of simultaneous replicated experiments.

The following elementary proof is given in Cook et al. (2008) and appeared in

discussion with Alex Cook. It uses the results for optimal designs for geometric

random graphs discussed in § 4.2.4.

Imagine the following situation. There are two replicate populations of n in-

dividuals each. Individuals pass from state S to state I after a constant period

of time µ. Replicate A is observed once at time τA and replicate B once at time

τB. Without loss of generality, τA ≤ τB. Let Ii(t) be the number of individuals

in replicate i in the state I at time t. Clearly, Ii(t) = 0 if t < µ and Ii(t) = n if

t ≥ µ.

Assume that the prior knowledge for µ is vague and expressed via the following

prior distribution:

π(µ) = 1l{µ∈(0,1)}.

Let us restrict our attention to the designs such that τi ∈ [0, 1], since any other

design would yield no more information.
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The uniform prior π(µ) translates to the following priors for {IA(τA), IB(τB)}:

P ({IA(τA), IB(τB)} = (0, 0)) = 1− τB (4.24)

P ({IA(τA), IB(τB)} = (n, 0)) = τB − τA (4.25)

P ({IA(τA), IB(τB)} = (n, n)) = τA, (4.26)

with the outcome in (4.25) having probability 0 if an identical choice of design in

the two replicates is made, i.e. if τA = τB.

It follows that the posterior for µ is:

π(µ | {IA(τA), IB(τB)} = (0, 0)) =
1

1− τB
1l{µ∈(τB ,1)} (4.27)

π(µ | {IA(τA), IB(τB)} = (n, 0)) =
1

τB − τA
1l{µ∈(τA ,τB)} (4.28)

π(µ | {IA(τA), IB(τB)} = (n, n)) =
1

τB − τA
1l{µ∈(τ0,τA)}. (4.29)

If τA < τB, the expected utility, based on the Kullback–Leibler divergence, is

E [U(τA, τB)] = (1− τB) log
1

1− τB
+ (τB − τA) log

1

τB − τA
+ τA log τ−1

A , (4.30)

which is maximised (Theorem 4.2.2) by (τA, τB) = (1/3, 2/3), with the expected

information yield U(1/3, 2/3) = log 3.

If, on the other hand, τA = τB = τ, the expected utility becomes

E [U(τ, τ)] = (1− τ) log
1

1− τ
− τ log τ, (4.31)

which is maximised by τ = 1/2, giving utility U(1/2, 1/2) = log 2 < U(1/3, 2/3).

In fact, it can readily be seen that taking the same design in both replicates

yields no more information than having a single replicate with that design. It can

also be seen that replicates containing a single individual yield the same infor-

mation as those containing more than one individual. It seems to be intuitively

obvious that if the lifetimes are random and their variance is much smaller than

the variance of the prior for the mean, a similar result will hold.
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A related point that this example shows is that the sequential optimal design of

replicated experiments need not be the same as the optimal design of simultaneous

replicated experiments. If we ran the above experiment simultaneously, the best

design, as found above, is τA = 1/3 and τB = 2/3 with the utility equal log 3.

If, however, we allowed the inference which results from replicate A to be used

for designing an experiment B at some later time, an argument similar to that

above shows that the optimal design is to take τA = 1/2, followed by τ = 1/4 if

IA(1/2) = n, and τB = 3/4 if IA(1/2) = 0. This sequential design has utility log 4

and thus is more informative than the simultaneous design.
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Chapter 5

Lattice-based Optimal Designs

In the first section of this chapter we study inference and optimal design problems

for finite clusters from percolation on the integer lattice Z
d or, equivalently, for

SIR epidemics evolving on a bounded subset of Zd with constant infectious times.

The corresponding percolation probability p is considered to be unknown, possibly

depending, through the experimental design, on other parameters. We consider

inference under each of the following two scenarios:

(i) The observations consist of the set of sites which are ever infected, so that

the routes by which infections travel are not observed (in terms of the bond

percolation process, this corresponds to a knowledge of the connected com-

ponent containing the initially infected site—the location of this site within

the component not being relevant to inference for p).

(ii) All that is observed is the size of the set of sites which are ever infected. By

the set size we mean cardinality here.

We discuss practical aspects of Bayesian utility-based optimal designs for the

former scenario and prove that the sequence of maximum likelihood estimates for p

converges to the critical percolation probability pc under the latter scenario (when

the size of the finite cluster grows infinitely).

In the second section we outline how the results for nearest-neighbour graph

models can be generalised to the case of long-range connections.
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5.1 Inference and Optimal Design for Percolation

Models

5.1.1 Nearest-neighbour interaction model and percolation

Brief historical account on percolation

The concept of percolation has received enormous interest among physicists since

it was introduced by Broadbent and Hammersley (1957). One reason for that,

perhaps, is that it provides a clear and intuitively appealing model of the geom-

etry which appears in disordered systems. Percolation has been used to model

and analyse the spreading of oil in water and transport phenomena in porous me-

dia and materials (Yanuka (1992), Stauffer and Aharony (1992), de Gennes and

Guyon (1978), Larson et al (1981), Sahimi (1994), Odagaki and Toyufuku (1998),

Tobochnik (1999), De Bondt et al (1992), Bunde et al (1995), Bentz and Gar-

boczi (1992), Machta (1991), Moon and Girvin (1995)), to model the spread of in-

fections and forest fires via nearest and finite range percolation (Zhang (1993), Cox

and Durrett (1988), Gibson et al (2006)) and via continuum percolation (Meester

and Roy (1996)). It has also been used in studying failures of electronic de-

vices and integrated circuits (Gingl et al (1996)), in modelling random resistor

networks (Pennetta et al (2002)), and in studying transport and electrical prop-

erties of percolating networks (Adam and Delsanti (1989)). Percolation models

have also been used outside physics to model ecological disturbances (With and

Crist (1992)), robustness of the Internet and other networks (Cohen et al (2000),

Callaway et al (2000)), biological evolution (Ray and Jan (1994)), and social in-

fluence (Solomon et al (2000)). Percolation is one of the simplest models which

exhibits phase transition, and the occurrence of critical phenomena is central to

the appeal of percolation. The reader is referred to Chapter 1 of Grimmett (1999)

for further details on modelling a random medium using percolation models.
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Classical SIR epidemic model and percolation

Disease spread as a result of (typically) short-range contact between, for example,

plants can be modelled as a transmission process on an undirected graph. Nodes,

or vertices, of the graph correspond to possible locations of plants, and edges of

the graph link locations which are considered to be neighbours. In a classical SIR

model each node, or vertex, of the graph is in one of three states: either it is

occupied by a healthy, but susceptible, plant (state S ), or it is occupied by an

infected and infectious plant (state I ), or finally it is empty, any plant at that

location having died and thus being considered removed (state R). A plant at

node i, once infected (or from time 0 if initially infected), remains in the infected

(and infectious) state I for some random time τi after which it dies, so that node

i then remains in the empty state R ever thereafter. During its infectious time

the plant at node i sends further infections to each of its neighbouring nodes j as

a Poisson process with rate λij (so that the probability that an infection travels

from i to j in any small time interval of length h is λijh + o(h) as h → 0 while

the probability that two or more infections travel in the same interval is o(h) as

h → 0); any infection arriving at node j changes the state of any healthy plant

there to infected, and otherwise has no effect. All infectious periods and infection

processes are considered to be independent of each other. The initial state of the

system is typically defined by one or more nodes being occupied by infected plants,

the remaining nodes being occupied by healthy plants. The epidemic may die out

at some finite time at which the set of infected nodes first becomes empty, or, on

an infinite graph only, it is possible that it may continue forever.

Thus, for any infected node i, the event Eij that any neighbouring node j re-

ceives at least one infection from node i has probability pij = 1 − E[exp(−λijτi)]
(here, as previously, E denotes expectation). Note that, for any given node i, even

though the infection processes are independent, the events Eij are themselves in-

dependent if and only if the random infectious period τi is a constant. We now

suppose that this is the case and that furthermore, for all ordered pairs (i, j) of

neighbours, we have pij = p for some probability p. Suppose further that it is

possible to observe neither the time evolution of the epidemic nor the edges of
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the graph by which infections travel, but only the initially infected set of nodes

and the set of nodes which are at some time infected and thus ultimately in the

empty state R. It is then not difficult to see, and is indeed well known (e.g. Ku-

ulasmaa and Zachary (1984)), that the epidemic may be probabilistically realised

as an unoriented bond percolation process on the graph in which each edge is in-

dependently open with probability p, and in which the set of nodes which are

ever infected consists of those nodes reachable along open paths (chains of open

edges) from those initially infected. (Note that the ability to use an unoriented

bond percolation process requires both the assumptions that the above events Eij

are independent and that pij = pji for all i, j; in the absence of either of these

assumptions one would in general need to consider an oriented process with the

appropriate dependence structure 1.)

Further we consider the epidemic to take place on some subset Π of the two-

dimensional integer lattice Z
d, where we allow Π = Z

d as a possibility. Two sites

(nodes) are considered neighbours if and only if they are distance 1 apart. Thus

in the case Π = Z
2 each node has 4 neighbours. This may be considered as a

model for nearest-neighbour interaction. We assume furthermore that initially

there is a single infected site, and that all other sites in Π are occupied by healthy

individuals.

Bond percolation in graph-theoretic terms

We now establish the basic definitions and notation for bond and site perco-

lation on the integer lattice. As usual, we write Z
d for the set of all vectors

x = (x1, x2, . . . , xd) with integer coordinates. The norm ‖ · ‖1 defines a distance

between each two elements of Zd, x and y, as follows:

δ(x, y) :=‖ x− y ‖1=
d∑

i=1

|xi − yi|.

1Non-constant infectious period distributions τi can similarly lead to other interesting per-

colation processes. For example, site percolation may be approximated arbitrarily closely by

an infectious period distribution which with some sufficiently small probability takes some suffi-

ciently large value, and which otherwise takes the value zero (see Appendix E).
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The set Z
d may be turned into a graph using the ‘4-neighbourhood relationship’

as follows: two elements x and y are declared to be neighbours (or adjacent) if

and only if δ(x, y) = 1. If x and y are adjacent, then we write x ∼ y. The set of

edges obtained in this way is denoted by E
d and the corresponding graph (Zd,Ed)

is called the d-dimensional cubic lattice (Grimmett (1999)). We denote this lattice

by L
d and the origin of Zd by 0.

The following describes the percolation process on L
d. Let p be a real number

between zero and one: 0 ≤ p ≤ 1. We declare each edge of the lattice L
d to be

open with probability p and closed otherwise, independently of the status of any

other edge. The random subgraph of Ld formed in this way contains the vertex set

Z
d and the open edges only. The connected components of this graph are called

open clusters. The open cluster containing the vertex x is denoted by C(x). It

is clear that the distribution of C(x) is independent of the choice of x. The open

cluster C := C(0) containing the origin is typical in this sense. Figure 5.1 depicts

examples of open clusters of a percolation process on L
2 (for different values of p)

restricted to the bounding box [−31, 31]× [−31, 31].

A central quantity of interest in percolation theory is that of percolation prob-

ability θ(p), this being the probability that the origin (or any other given vertex)

belongs to an infinite open cluster:

θ(p) := Pp(|C = ∞|) = 1−
∞∑

n=1

Pp(|C| = n).

The following critical phenomenon results are of fundamental importance in per-

colation theory (Grimmett (1999)):

• The function θ is a non-decreasing function of p:

0 = θ(0) ≤ θ(p′) ≤ θ(p′′), ∀p′, p′′ : 0 ≤ p′ ≤ p′′ ≤ 1.

• There exists a critical value pc(d) of p such that θ(p) = 0 for any p < pc(d) and

θ(p) > 0 for any p > pc(d). The value pc(d) is called the critical probability

and can formally be defined as follows:

pc(d) := sup{p : θ(p) = 0}.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Open clusters emerged as a result of bond percolation on L
2 for different

values of p: (a) p = 0.2, (b) p = 0.4, (c) p = 0.5, (d) p = 0.6, (e) p = 0.75,

and (f) p = 0.9. The origin of Z2 is denoted by a circle in the centre of

each plot. 100



• The critical probability is unity in the one-dimensional case: pc(1) = 1.

• The critical probability exists and is strictly between zero and one on the

lattice L
d, d ≥ 2:

0 < pc(d) < 1, for any d ≥ 2.

• The critical probability is a monotonically decreasing function in d:

pc(d+ 1) < pc(d), for d ≥ 1.

Incomplete observations

The probability p introduced above is considered to be unknown, but may depend

on other parameters. For instance, this probability may depend on the distance

between plants (lattice vertices) or, if Π = Z
2 and the Poisson process of emitting

germs by infectious plants is isotropic, it may be related to its intensity λ = 4λij

(each site has four neighbours in L
2). In the latter case p may be taken to be of

the form p = 1 − e−λ/4 and it is λ that would be an object of interest for plant

epidemiologists.

We consider inference under each of the following two scenarios:

(i) the observations consist of the set of sites which are ever infected, so that the

routes by which infections travel are not observed; note that, in terms of the

bond percolation process, this corresponds to knowledge of the connected

component containing the initially infected site—the location of this site

within the component not being relevant to inference for p (see below);

(ii) all that is observed is the size of the set of sites which are ever infected.

We denote and refer further to the former of these two scenarios as S1 and to

the latter scenario as S2.

5.1.2 Parameter estimation

Distribution of ever-infected sites

Consider our SIR constant infectious period epidemic on a locally finite graph in

which the probability that any individual i sends at least one infection to any given
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neighbour j is p. By the definition of the epidemic these events are independent.

The following basic result is well-known. However, the author was unable to

find a reference to the formulated and rigorously proven result—this theorem can

be well regarded as a part of mathematical folklore of the sort “It is easy to see

that...” (e.g., see Grassberger (1983)).

Theorem 5.1.1. For any given set of initially infected sites, the distribution of

the set of ever-infected sites is the same as for the corresponding unoriented bond

percolation process (with the same initial set).

Proof. Given the realisation of the epidemic we construct a realisation of the unori-

ented bond percolation process as follows. For each unordered pair of neighbours

{i, j}, if i, say, becomes infected before j then we construct an open link between

i and j if and only if, in the epidemic, i sends at least one infection to j; if either

i and j are both initially infected or i and j are both never infected, then we

construct an open link between i and j with probability p independent of all else.

Since the probability for two vertices to become infected at exactly the same time

is 0, it is clear from consideration of the temporal evolution of the epidemic that

all edges are open with probability p independently of each other. Furthermore,

the set of ever-infected sites in the epidemic is the same as the set of ‘wetted’

sites (sites linked by open edges to the initial wet set) in the bond percolation

process.

It follows that, for inference, if all that is observed is the set of ever-infected

sites, then we may calculate the likelihood function using the unoriented bond

percolation model. However, one cannot think of any scenario in which we also

obtain any information about the links used to spread the epidemic for which a

similar conclusion holds. Here are two possible scenarios with counter-examples.

• For at least some unordered pairs {i, j} of neighbours, we observe whether or

not an infection passed between i and j (even if both were already infected).

Consider the graph with 2 vertices and one edge, and suppose we observe

the edge to have been used; then the likelihood for the epidemic model is

2p− p2, while that for the unoriented bond percolation model is p.
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Figure 5.2: An open cluster (black solid dots) containing the origin (a black dot in a

circle) as a result of percolation simulation on L
2. Here the bond perco-

lation probability p was taken to be 0.478; the solid bonds represent open

bonds. The open cluster can be seen as a finite outbreak of an epidemic

with constant infectious periods and infection intensity spread rate λ ≈ 2.6

evolving on Π = Z
2 (since 0.478 = 1 − e−2.6/4). The dotted lines depict

directions along which infection did not spread (from black to grey dots);

thus, grey dots depict individuals which remain healthy and the dotted lines

represent those bonds that must be absent given knowledge of the cluster

set.

• For at least some ordered pairs (i, j) of neighbours, we observe whether or

not an infection passed from i to j (even if j was already infected). Consider

the graph with 3 vertices and 3 edges, and suppose (with vertex 1 initially

infected) we observe infections to have passed from 1 to 2 and from 1 to 3

and also that no other infections have passed; then the likelihood for the

epidemic model is p2(1− p)4, while that for the unoriented bond percolation

model is p2(1− p).

In the first of the above scenarios, if we made the observation for every unordered

pair of neighbours, then, for inference, we could pass to the unoriented bond

percolation model with parameter p′ = 2p− p2.

The result proved in Theorem 5.1.1 means that a final snapshot of an SIR epi-

demic with nearest-neighbour interaction and constant infectious periods evolving

on Z
2 can be seen as an open cluster of the corresponding percolation process on

L
2 = (Z2,E2), had the infection process started with a single initially inoculated
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site (placed at the origin of the lattice, for example). Figure 5.2 shows an open

cluster obtained by simulation of percolation process on the integer lattice in plane

when p = 0.478. This connected component containing the origin can be seen as a

final (and finite) outbreak of an SIR epidemic process of the kind discussed above.

The origin (or, indeed, any other vertex of the open cluster) may be considered to

be the site where the initially inoculated individual has been placed. Clearly, the

realised bond structure is not the only possible way resulting in the site configu-

ration seen in Figure 5.2. However, the distribution of this site configuration as

an extinct SIR epidemic coincides with that of the corresponding unoriented bond

percolation process.

Scenario S1: hidden bond structure

Let Π be a (proper or improper) subgraph of Ld = (Zd,Ed) containing the origin

and let C be an open cluster of a percolation process on the graph Π containing

the origin. The set of nodes C represents a snapshot of an extinct outbreak of our

spatial SIR epidemic evolving on Π ⊆ L
2.

Let us introduce some additional notions. Let G = (V,E) be a locally finite

graph and let G′ = (V ′, E ′) be a subgraph of G. By the saturation of the graph

G′ with respect to G we understand the graph G̃ = (Ṽ , Ẽ) such that

Ṽ = V ′ and Ẽ = {(x, y) | x, y ∈ V ′ & (x, y) ∈ E}.

Thus, in order to obtain the saturation of a subgraph G′ of a given graph G one

needs to add to G′ all possible edges from G with endpoints from G′, and hence

‘saturate’ it.

We denote the saturation of G′ with respect to G by SaturGG
′ or, in cases when

it is clear from the context with respect to what graph the saturation takes place,

by SaturG′. A graph G′ whose saturation (with respect to some graph G) coin-

cides with itself is called a fully saturated graph. For example, the fully saturated

graph (with respect to L
2) is obtained from the graph depicted in Figure 5.2 by

connecting all pairs of neighbouring black sites (according to the 4-neighbourhood

relationship). Note that the operation of saturation may also be applied solely to

a subset of vertices of the original graph, since it does not make use of the edges
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of the subgraph-operand (alternatively, one may think about the subset of the

original graph vertex set as a subgraph with an empty edge set).

In order to distinguish between the boundary points of a graph and their neigh-

bours, which are not in the graph, we introduce the notions of the surface and the

frontier of the graph (again, with respect to another graph). Let us denote by ∂G

the surface of G in Π, G ⊆ Π, that is to say the set

∂G := {x ∈ G : ∃y ∈ Π\G such that x and y are neighbours in Π},

and by ΓG the frontier of G in Π, i.e. the set ∂(Π\G).
In order to identify the likelihood function we introduce the set G(C) of all con-

nected subgraphs of Π with C as a vertex set. Note that the set G(C) is necessarily

nonempty. For each G ∈ G(C) the number of edges between the vertices of the

graph G and the elements of its frontier ΓG is the same—we denote it by wC.

Finally, we denote the total number of edges present in G by e(G).

The probability that C represents the set of ever-infected sites and that the

edges of G correspond to those routes along which the infection travelled is

Pp(G) = pe(G)(1− p)e(Satur C)−e(G)+wC ,

and the likelihood function associated with the observed set C of ever-infected sites

is given by

L(p) = Pp(C) =
∑

G∈G(C)
Pp(G).

Hence, under assumption of a uniform prior for p, its posterior distribution

π(p | C) is a mixture of beta distributions:

π(p | C) ∝
∑

k

r(k)Beta (k + 1, e(Satur C)− k + wC + 1) ,

where

r(k) := #{G ∈ G(C) | e(G) = k}.

It is not feasible to calculate π(p | C) in the above form for reasons of difficulty

in calculating efficiently the coefficients r(k), since it is hard to enumerate all

corresponding graphs. We describe therefore an MCMC algorithm that allows
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Figure 5.3: Solid line corresponds to the likelihood function evaluated for the complete

information (both the site and edge configurations are known) on the cluster

C from Figure 5.2. The histogram is based on a sample drawn from the

MCMC applied to the site configuration C (nodes only).

one to sample from the distribution π(p | C) under the uniform prior on p, that is,

effectively, to evaluate the likelihood function of p.

Our Markov chain explores the joint space of values for p and graphs from G(C),
that is to say the set [0, 1]× G(C). The stationary distribution of the chain is the

joint posterior distribution of p and G ∈ G(C). The description of the chain is

given in Algorithm 1. This Markov chain explores the set of all connected graphs

G(C) by simply deleting or adding an edge from the current graph preserving the

connectivity of the given site configuration C.

The proposed MCMC is irreducible by construction: there is a positive proba-

bility for the chain to switch between any two connected graphs from G(C) since

any two such graphs have the same vertex set and differ by a finite number of

edges only.

Example 5.1.2. We apply Algorithm 1 to the site configuration C from Figure 5.2

(black dots only). This open cluster at the origin was obtained by simulating the

percolation process in Z
2 using the value of the percolation parameter p = 0.478.
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Algorithm 1 Markov Chain Monte Carlo: scenario S1
Require: an open cluster C;

1: take an initial value p0 arbitrary from (0, 1);

2: t := 0 Xt := (pt, Satur C);
3: repeat

4: Gibbs sampler steps:

5: p2t+1 ∼ Beta (e(G2t) + 1, e(Satur C)− e(G2t) + wC + 1);

6: X2t+1 := (p2t+1, G2t);

7: Metropolis–Hastings sampler steps:

8: choose an edge e uniformly at random from Satur C;

9: if e ∈ G2t then

10: U ∼ Uniform[0, 1];

11: if U ≤ min(1, 1−p2t+1

p2t+1
1l{G2t+1\{e} is connected}) then

12: X2t+2 := (p2t+1, G2t+1 \ {e});
13: else

14: X2t+2 := (p2t+1, G2t+1);

15: else

16: U ∼ Uniform[0, 1];

17: if U ≤ min(1, p2t+1

1−p2t+1
) then

18: X2t+2 := (p2t+1, G2t+1 ∪ {e});
19: else

20: X2t+2 := (p2t+1, G2t+1);

21: t := t + 2;

22: until we judge that the chain has converged and a sample of sufficient size is

recorded
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Figure 5.4: Trace plot for MCMC sampling resulted in the histogram from Figure 5.3

for the cluster C from Figure 5.2. The trace plot indicates that the mixing

properties of the chain are rather satisfactory. It took 28 seconds on Intel(R)

Core(TM)2 Duo CPU 2.26GHz to obtain a series of chain updates of the

length 104. This time could be further reduced by using dynamic graph

update algorithms, see the footnote on the p. 129.

Figure 5.3 shows the likelihood function of the model parameter for the complete

observation (i.e. nodes and edges of the cluster) and a histogram of a sample from

the posterior distribution π(p | C) obtained by running the MCMC described in Al-

gorithm 1 when the prior distribution is uniform on the interval (0, 1).

An animated example of using Algorithm 1 can be found at the WEB address

http://www.cl.cam.ac.uk/~aib29/HWThesis/Video/. We defer the discussion

on the mixing properties of the suggested chain until § 5.1.4.

Scenario S2: unknown site configuration

Under this scenario only the size n of the outbreak of our SIR epidemic evolving

on Π = L
d is given.

Let Gn be the set of all possible connected graphs on n vertices including the

origin. These graphs represent the outbreaks of the size n and we distinguish all

isomorphic graphs which have different orientation.
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We denote the number of edges of Π between the vertices of the graph G ∈ Gn

and the vertices of its frontier ΓG by w(G).

Given the epidemic of size n, the inference on p involves evaluation of the

likelihood function Ln(p) := Pp(|C| = n) which can be represented as follows:

Ln(p) =
∑

G∈Gn

Pp(G).

As previously, under assumption of a uniform prior for p its posterior distribution

π(p | |C| = n) is a mixture of beta distributions:

π(p | |C| = n) ∝
∑

s,k,l

q(s, k, l)Beta (k + 1, s− k + l + 1) , (5.1)

where

q(s, k, l) := #{G ∈ Gn | e(SaturG) = s, e(G) = k, w(G) = l}.

This, again, represents a hard enumeration problem. However, inference on p

can be made using the MCMC technique. Algorithm 2 contains a description of a

Markov chain which serves the purpose of sampling from the posterior distribution

π(p | |C| = n), given the prior distribution of p is uniform on [0,1]. The chain

explores the joint space of all possible connected graphs on n nodes and possible

values for the percolation parameter p by deleting a vertex from the current graph

and adding a vertex from its frontier.

The presented Markov Chain Monte Carlo algorithm, similarly to the one sug-

gested for the previously considered scenario S1, is a combination of Gibbs and

Metropolis–Hastings steps. The marginal of the chain limiting distribution f(p,G)

in p coincides with the posterior distribution π(p | |C| = n).

We give now explicit expressions for the proposal probabilities used in the

Metropolis–Hastings part of this algorithm. Assume that the current graph within

the Metropolis–Hastings step is G and a graph G̃ is proposed, the latter being ob-

tained from the former by deleting a vertex u with all edges adjoining it and

inserting a vertex v with every possible edge, each independently with probability

p, which was determined by the preceding Gibbs step. We assume that at least

one such edge is inserted and denote the number of deleted and added edges by
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Algorithm 2 Markov Chain Monte Carlo: scenario S2
Require: the value of n.

1: take a value p0 arbitrary from (0, 1) and a graph G0 arbitrary from Gn;

2: t := 0 Xt := (pt, Gt);

3: repeat

4: move_on:=1;

5: Gibbs sampler steps:

6: p2t+1 ∼ Beta (e(G2t) + 1, e(SaturG2t − e(G2t) + w(G2t) + 1));

7: X2t+1 := (p2t + 1, G2t);

8: Metropolis–Hastings sampler steps:

9: choose a vertex u uniformly at random from G2t+1 and choose a vertex v

uniformly at random from ΓG2t+1. Derive a graph G̃ from G2t+1 by deleting

all edges which adjoin u (in G2t+1) and adding the edges that connect v with

vertices of the graph G2t+1 \ {u} in Π, each independently with probability

p2t+1 (conditioning on the event that at least one edge is added).

10: if G̃ is disconnected then

11: X2t+2 := (p2t+1, G2t+1); move_on:=0

12: if move_on then

13: U ∼ Uniform(0, 1);

14: d̃(v) := #{e | e = (v, z) ∃z ∈ G2t+1 \ {u}};
15: d̃(u) := #{e | e = (u, z) ∃z ∈ G̃ \ {v}};
16: ν(u) := #{x | x ∈ ΓG2t+1 & (u, x) ∈ Π};
17: ν(v) := #{x | x ∈ ΓG̃ & (v, x) ∈ Π};
18: κ := d̃(u)− d̃(v) + ν(v)− ν(u); U ∼ Uniform(0, 1);

19: if U ≤ min
(
1,

|ΓG2t+1
|

|ΓG̃|
1−(1−p2t+1)d̃(v)

1−(1−p2t+1)d̃(u)
(1− p2t+1)

κ
)

then

20: X2t+2 := (p2t+1, G̃);

21: else

22: X2t+2 := (p2t+1, G2t+1);

23: t := t + 2;

24: until we judge that the chain has converged and a sample of sufficient size is

recorded
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d(u) and d(v) respectively. Then,

q(G, G̃) =
1

n

1

|ΓG|
pd(v)(1− p)d̃(v)−d(v)

1− (1− p)d̃(v)
1l{G̃ is connected}, (5.2)

and similarly,

q(G̃, G) =
1

n

1

|ΓG̃|
pd(u)(1− p)d̃(u)−d(u)

1− (1− p)d̃(u)
1l{G is connected}. (5.3)

Clearly,

Pp(G) ∝ pd(u)(1− p)d̃(v)(1− p)d̃(u)−d(u)+ν(u)

Pp(G̃) ∝ pd(v)(1− p)d̃(v)(1− p)d̃(v)−d(v)+ν(v) ,

so that the acceptance probability at the Metropolis–Hastings step, α, is as follows:

α = min

(
1,
q(G̃, G)

q(G, G̃)

Pp(G̃)

Pp(G)

)

= min

(
1,

|ΓG|
|ΓG̃|

(1− p)d̃(u)+ν(v)

(1− p)d̃(v)+ν(u)

1− (1− p)d̃(v)

1− (1− p)d̃(u)

)

= min,

(
1,

|ΓG|
|ΓG̃|

1− (1− p)d̃(v)

1− (1− p)d̃(u)
(1− p)κ

)
,

where, as it was introduced in the description of Algorithm 2,

κ := d̃(u)− d̃(v) + ν(v)− ν(u).

We claim that the constructed chain is irreducible, that is to say this chain can

get from each state to any other state. In graph theory notions this means that the

chain can get from each connected graph on n vertices including the origin to any

other connected graph on n vertices (also including the origin) on the considered

lattice. We show the irreducibility of the proposed MCMC by constructing a

sequence of steps in which any graph of Gn is transformed to a so called line-

skeleton graph on n vertices. By such a graph we mean any tree (a graph with

no cycles) containing the origin of the lattice and having n vertices so that only

two of these vertices have degree one. Choose and fix one of such line-skeletons

denoting it by S.
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Consider a graph G from Gn and denote the length of the shortest path from

x ∈ G to S by δ(x, S) (δ here is the distance introduced in § 5.1.1). Each vertex x

from G receives a well defined finite weight δ(x, S), since the graph G is connected

and finite. By using the description of our Markov chain we can delete any vertex

from our current graph for which δ(x, S) is maximal and add to this graph a

vertex from the chosen line skeleton S without making the graph disconnected

or containing cycles until the maximum value of d(x, S) is zero—in this case all

vertices are forming the line skeleton. Since this procedure can be reversed it

follows that Gn in the described Markov chain is indeed a communicating class,

and hence the chain is irreducible.

An animated example of using Algorithm 2 when n = 25 can be found at the

WEB address http://www.cl.cam.ac.uk/~aib29/HWThesis/Video/. Figure 5.5

shows histograms of samples from the distribution π(p | |C| = n) obtained using the

proposed MCMC for the scenario S2 for the cluster size values p = 10, 35, 50, 70

and corresponding trace plots.

In realisations of either of the described algorithms (Algorithm 1 and Al-

gorithm 2) we used the MATLAB library MatlabBGL (http://www.stanford.

edu/~dgleich/programs/matlab_bgl/) for checking connectivity of the proposal

graphs.

Convergence of inferences for S2 with increasing cluster size

Percolation exhibits a phenomenon of criticality, this being central in the percola-

tion theory: as p increases, the sizes of open clusters (connected components) also

increase, and there is a critical value of pc at which there appears a cluster which

dominates the rest of the pattern. Loosely speaking, as more and more edges

are assigned to be open, there comes a moment when large-scale connections are

formed across the lattice. If p < pc, then with probability one all open clusters

are finite, but there is a single infinite open cluster when p > pc almost surely.

The bond percolation on the square lattice seems to be most studied to date of

all percolation processes. The critical probability pc in the case of a square lattice

is 1
2
. What follows, however, holds for any lattice Z

d, d ≥ 2.
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Figure 5.5: Inference on the percolation parameter using MCMC described in Algo-

rithm 2: histograms of obtained samples and trace plots for (a,b) n = 10;

(c,d) n = 35; (e,f) n = 50; (g,h) n = 70.
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As before, denote by C(x) the open cluster (connected component) which con-

tains the vertex x. Let us write χ(p) = Ep|C| for the mean number of vertices

in the open cluster C := C(0) at the origin. Using the translation invariance of

the process on Z
d, we have χ(p) = Ep|C(x)| for all vertices x. The percolation

theory tells us that if p < pc, then χ(p) < ∞ (Grimmett (1999, p. 20)). When

p > pc, then χ(p) = ∞ and the function χ is not of a much interest in this case.

Instead, one studies the function χf(p) = Ep[|C| : |C| < ∞]. The function χ(p)

(χf (p)) monotonically increases as p ↑ pc (p ↓ pc), having p = pc as its asymptote.

It is known that there is no infinite open cluster when p = pc for percolation on

the square lattice. How likely it is to observe an open cluster of size n when n is

very large? What value of p should one suggest if one happened to observe a large

epidemic of size n?

It is intuitively unlikely that if p is much smaller than pc (p ≪ pc) or much

larger than this value (p≫ pc) that, having attained a sufficiently large size n, the

epidemic would have burned out. Intuition suggests therefore that the likelihood

function for p, given that the size n of the connected component containing the

origin is increasing, should be increasingly concentrated around pc.

Let Pp(|C| = n) be the probability that an open cluster is of size n in per-

colation with the edge density p. Assume that we observe a spread of infection

on Z
d through nearest-neighbour interactions and assume that its final size is n.

The likelihood function Ln(p) for the percolation probability p is nothing but the

probability Pp(|C| = n) considered as a function of p:

Ln(p) = Pp(|C| = n).

Let p̂n be the maximum likelihood estimate for p derived from Ln(p). Then the

following theorem holds.

Theorem 5.1.3. The sequence of maximum likelihood estimates p̂n for p converges

to the critical probability pc.

Note that in the formulation of the theorem pc stands for pc(d). The proof of

the theorem is based on the following lemma.
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Lemma 5.1.4. For any p ∈ (0, 1) different from pc the following holds:

L = lim
n→∞

Ln(p)

Ln(pc)
= 0.

Moreover, this convergence is uniform for any closed interval which does not con-

tain pc.

Proof. (Lemma 5.1.4) Since the mean number χ(p) of vertices in the open cluster

at the origin is infinite when p = pc, the cluster size distribution Ppc(|C| = n)

cannot decay faster than any sub-exponential function. (It is strongly believed

that Ppc(|C| = n) ≈ n−1−1/δ, where “≈” is a logarithmic equivalence, that is

lim
n→∞

− logPpc

(1+1/δ) logn
= 1, but no rigorous proof of this is known, see Chapter 9 in

Grimmett (1999)).

We shall further distinguish two cases:

1 Subcritical case p < pc. In this case the cluster size distribution decays

exponentially (Grimmett (1999, p. 132)), i.e.

∃λ(p) > 0 : Pp(|C| = n) ≤ e−nλ(p) ∀n ≥ 1.

Therefore,

L ≤ lim
n→∞

(
e−nλ(p)/Ppc(|C| = n)

)
= 0. (5.4)

2 Supercritical case p > pc. In this case the decay is sub-exponential (Grim-

mett (1999, p. 216)):

∃ η(p) > 0 : Pp(|C| = n) ≤ e−η(p)n(d−1)/d ∀n ≥ 1,

and therefore

L ≤ lim
n→∞

(
e−n(d−1)/dη(p)/Ppc(|C| = n)

)
= 0. (5.5)

Since L is non-negative, it follows from (5.4) and (5.5) that L = 0, p 6= pc.

In fact, the convergence here is uniform, as both λ(p) and η(p) can be separated

from zero uniformly for all values of p from any interval ∆ of the following form:

∆ = [α, pc − γ] ∪ [pc + γ, β] ⊂ (0, 1).
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Thus, if

Ln(p) :=
Ln(p)

Ln(pc)
,

then

Ln(p) → 1l{p=pc} =




0 p 6= pc

1 p = pc

,

pointwise for all p ∈ (0, 1), and the convergence

Ln(p) → 0

is uniform on any interval

∆ = [α, pc − γ] ∪ [pc + γ, β], ∆ ⊂ (0, 1).

We continue with the proof of Theorem 5.1.3.

Proof. (Theorem 5.1.3) Consider the likelihood function Ln(p). The result of

Lemma 5.1.4 being reformulated in ε-terms would mean that ∀ε > 0 ∃N(ε, γ) > 0,

such that

Ln(p) < εLn(pc), ∀n > N(ε, γ) ∀p ∈ ∆ = [α, pc − γ] ∪ [pc + γ, β), (5.6)

for any α and β, such that ∆ ⊂ (0, 1).

The quantity p̂n being the maximum likelihood estimate for p is the mode of

Ln(p):

p̂n := arg max
p∈(0,1)

Ln(p),

i.e.

Ln(p̂n) ≥ Ln(p) ∀p ∈ (0, 1). (5.7)

Consider the sequence of maximum likelihood estimates {p̂n}∞n=1. We will prove

now that this sequence converges to pc. Suppose, conversely, this is not the case.

That would in particular mean that

∃ ζ ∈ (0, 1) : ∀M > 0 ∃n > M : |p̂n − pc| > ζ.
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Figure 5.6: Likelihood functions Ln(p) (n = 25, 50, 70) obtained using the MCMC from

Algorithm 2 and MCMC sample histogram of Ln(p) for n = 70.

Take M(ζ) = N(ζ, ζ/2), then ∃n > M(ζ) : |p̂n − pc| > ζ , i.e. pc 6= p̂n. At the

same time (when ε = ζ) the following holds by (5.6):

Ln(p̂n) < ζLn(pc) < Ln(pc),

which is in contradiction with (5.7). Hence, p̂n → pc, n→ ∞.

Figure 5.6 depicts the plots of likelihood function Ln when n = 25, 50, 70. These

plots were obtained by smoothing the histograms of samples generated by the

MCMC described in Algorithm 2. It is noticeable, and indeed intuitively expected,

that the maximums of L25(p), L50(p) and L70(p) are increasing. This observation,

together with intuitive expectation, gives rise to the following conjecture.

Conjecture 5.1.5. The sequence {p̂n} converges to pc monotonically from the left.

Recall that the posterior distribution π(p |n) := π(p | |C| = n) is a density

function proportional to both the likelihood and the prior distribution π(p):

π(p |n) ∝ Ln(p)π(p).
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We use the following heuristical argument to formulate a conjecture regarding

the asymptotic form of the posterior function. If n is very large, then it is both

very unlikely that the true value of p is either less or greater than pc. We believe

therefore that the likelihood function is increasingly concentrated around p = pc in

such a way that it has certain implications on the posterior distribution of p, should

pc be not ignored by the prior π(p). We formulate the corresponding conjecture

using the notion of a delta sequence (see Appendix B).

Conjecture 5.1.6. Provided p ∈ suppπ(·) the functional sequence {π(p |n)}∞n=1

is a delta sequence which generates the delta function δ(p− pc).

Thus, we believe that the limiting posterior distribution of the percolation pa-

rameter is a one-point mass distribution at p = pc, or the Dirac delta function

δ(p− pc) (Appendix B).

Theorem 5.1.3 and Conjectures 5.1.5, 5.1.6 together with MCMC described in

Algorithm 2 give a tool of approximate estimation of pc. It follows from Theo-

rem 5.1.3 that maximums of the likelihoods tend to pc as the size n of the cluster

C increases, and this convergence, if Conjecture 5.1.6 is true, is monotonic. These

maximums, however, can be approximated by MCMC sampling using Algorithm 2

and taking the uniform prior for p. By virtue of Conjecture 5.1.6—should this

conjecture hold—the error of such approximation should diminish as n increases.

Knowledge of the rate at which this error is (hypothetically) decreasing could help

to better understand the limits of this method of estimation of pc; this in particu-

lar includes scenarios of other sorts of lattices (perhaps, locally finite lattices) for

which the exact values of pc are unknown, but results similar to Theorem 5.1.3

and Conjectures 5.1.5, 5.1.6 hold true.

Combinatorial characterisation of large percolation clusters on L
d

The theoretical results obtained and conjectured previously for inference under

scenario S2 can be used to derive their combinatorial analogues regarding the

relative number of realisations of the process with the cluster size n. Under scenario

S2 the posterior distribution π(p | |C| = n) can be seen as a mixture of beta

distributions, as in (5.1). Conjecture 5.1.6 implies that the number q(s, k, l) of
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graphs G corresponding to open clusters C which could emerge as a result of the

percolation process with parameter pc and for which it holds that

k + 1

s+ l + 2
≈ pc, (5.8)

where k is the number of edges in G, s is the number of edges in the saturation of

G, and l is the number of edges of Π between the surface and the frontier of G, is

far greater than the number of all other graphs. This is so, since the sequence of

beta distributions Beta(αn, βn) is a delta sequence generating the delta function

at pc if and only if αn/(αn + βn) → pc.

Thus, in percolation processes on L
d the number of finite graphs corresponding

to open clusters of size n (where n is a very large number) that satisfy the condition

e(G) + 1

e(SaturG) + w(G) + 2
≈ pc (5.9)

largely exceeds the number of all other connected components on n nodes. In

other words, a typical graph corresponding to an open cluster of a large size in

percolation process on L
2 is such a graph for which (5.9) holds. In particular,

when d = 2:

e(G)− w(G) ≈ e(SaturG)− e(G); (5.10)

that is the number of present edges in G approximately equates to the total number

of ‘absent’ edges2 and edges between G and its frontier.

Large percolation clusters as rare events

When n is large, the appearance of finite open clusters of size n is highly unlikely:

the distribution of the cluster size (hypothetically) decays as n−1−1/δ, δ > 0, when

p = pc, and the decay is exponential (sub-exponential) when p < pc (p > pc).

Large finite percolation clusters can therefore be viewed as rare events. Since the

state space of the MCMC proposed for inference on the percolation parameter p

under scenario S2 and described in Algorithm 2 involves the set of all open clusters

on n nodes, this algorithm can be readily used in order to obtain realisations of

these rare events.
2By ‘absent’ edges of G we mean edges of Π with both endpoints from G.
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5.1.3 Bayesian optimal designs and inner-outer plots

In § 5.1.2 we introduced two scenarios of incomplete observations for percolation

processes on the square lattices and considered the problem of inference on p under

each of those scenarios. We turn to the question of optimal experimentation within

the utility-based Bayesian framework in the context of percolation model now.

We would like to make a few observations before moving on. First, we would like

to mention that the percolation model that we consider in this section can be seen

as a particular case of the pairwise interaction model introduced earlier in § 1.2.1

and further specified in graph-theoretic terms in § 3.5.1 (see Examples 2.1.3, 3.5.4).

Secondly, as it was noted in Example 3.5.4, the most ‘packed’ node configuration

(given the configuration’s size is fixed) is the most optimal design for random

graph with nearest-neighbour links when one has access to complete information

about graph realisations. Our final comment relates therefore to the problem of

n-node optimal design for random graphs which was formulated in § 3.5.2. In this

problem the design space was restricted to consist of sets of nodes of a fixed size

(cardinality). In what follows we are going to relax this restriction.

We now adopt a Bayesian approach to design optimal experiments for our par-

ticular percolation model with incomplete observations of the kind described by

scenario S1 by identifying a class of designs (node configurations) which we call

‘inner-outer’ plots. These plots of limited size are obtained by removing some sites

from mostly ‘packed’ configurations, or, equivalently, by removing some nodes of

the underlying grid. We refer to this process as ‘sparsification of the grid’. A

typical example of an inner-outer plot is given in Figure 5.7. We will focus our

attention on inner-outer designs which we now formally describe.

Let us assume that m is an odd positive integer and r ∈ N∪{0}. An inner-outer

(m, r)-plot Π
(d)
0 (m, r) in L

d with centre at the origin is a d-dimensional box B
(d)
N

with side-length N = m+ 4r and some vertices removed as follows:

Π0(m, r) :=





B
(d)
N , r = 0

B
(d)
N \ {x ∈ B

(d)
N : ‖ x ‖∞= m+ 2j + 1, j = 0, . . . , r − 1&

& ‖ x ‖1≡ 0 mod 2}, r > 0,

(5.11)
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where ‖ x ‖∞= max(|x1|, . . . , |xd|) and ‖ x ‖1=
d∑

i=1

|xi| for any x = (x1, . . . , xd) ∈

Z
2 and the box B(d)

N is defined as follows3:

B
(d)
N := [−(N − 1)/2, (N − 1)/2]d = {x ∈ Z

d : ‖ x ‖∞≤ (N − 1)/2}.

We call any plot that can be obtained by shifting the plot Π
(d)
0 (m, r) in L

d an

inner-outer (m, r)-plot, or simply an inner-outer plot, and denote it by Π(d)(m, r).

The total number of nodes contained in an (m, r)-plot can be calculated by

subtracting the total number of ‘sparsifying’ (removed) nodes from the outer plot

(as prescribed by (5.11)) as follows:

T = N(m, r)2 − 4

r∑

i=1

(
m− 1

2
+ 2i− 1

)

= N(m, r)2 − 2mr − 4r(r + 1) + 6r

= N(m, r)2 − 2r(m+ 2r − 1), (5.12)

where

N(m, r) = m+ 4r. (5.13)

The inner-outer (m, r)-plot presented in Figure 5.7 is from L
2. In this example

the size of the inner plot is m × m, where m = 9, and there are r = 3 ‘circles’

(with respect to the metric ‖ · ‖∞) in the outer plot from which every second site

is removed. The size of the bounding box is N × N , where N = m + 4r = 21.

The total number T of nodes that this configuration contains is 357 (according to

(5.12)).

Table 5.1 contains some values for m and r (up to 25 for m and 5 for r) as

well as corresponding values of N and T . The possible values of r are located

in the first row of the table, whereas the possible values of m are to be found in

the second column of it (these values also coincide with N since they correspond

to r = 0). The values of N can be found at the intersection of a row and a

column corresponding to the values of m and r. The total number of nodes in an

(m, r)-plot can be found to the right of the value of N(m, r) in the same row.

3Note that N is a positive integer number since m is odd.
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r = 0 0 1 1 2 2 3 3 4 4 5 5

N T N T N T N T N T N T

m = 3 9 7 41 11 97 15 177 19 281 23 409

5 25 9 69 13 137 17 229 21 345 25 485

7 49 11 105 15 185 19 289 23 417 27 569

9 81 13 149 17 241 21 357 25 497 29 661

11 121 15 201 19 305 23 433 27 585 31 761

13 169 17 261 21 377 25 517 29 681 33 869

15 225 19 329 23 457 27 609 31 785 35 985

17 289 21 405 25 545 29 709 33 897 37 1109

19 361 23 489 27 641 31 817 35 1017 39 1241

21 441 25 581 29 745 33 933 37 1145 41 1381

23 529 27 681 31 857 35 1057 39 1281 43 1529

25 625 29 789 33 977 37 1189 41 1425 45 1685

Table 5.1: Table comprising some values of m and r (up to 25 for m and 5 for r) as well

as corresponding values of N and T . The possible values of r (italicised)

are located in the first row of the table, whereas the possible values of m

(italicised) are to be found in the second column of it (these values also

coincide with N since they correspond to r = 0). The values of N can be

found at the intersection of a row and a column corresponding to the values

of m and r. The total number of nodes T in an (m, r)-plot can be found

to the right of the value of N(m, r) in the same row (these numbers are

in bold). The values of N and T were calculated using (5.13) and (5.12)

respectively.
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Figure 5.7: Example of an inner-outer (m, r)-plot in L
2: here m = 9 and r = 3. The

plot is bounded by an N ×N square, where N , according to (5.13), equals

21.

Optimal design problem: the model and design space

The model that we consider now is that of an SIR epidemic with constant infectious

periods taking off from the central site of an inner-outer plot in L
d and evolving on

that plot according to nearest-neighbour interaction rule. This model is equivalent

to the model discussed in § 5.1.1 when Π is an inner-outer plot Π(d)(m, r). We

consider this model in the context of scenario S1, that is when the only information

available about the outcome of the epidemic is its site configuration.

Since our model is essentially the same percolation model considered previously,

all the terminology from § 5.1.2 remains the same. Figure 5.8 depicts a simulated

connected component (from left) emerged as a result of the percolation process

with parameter p = 0.52 on the inner-outer (9, 2) plot in L
2. This connected

component contains the central node (denoted by a circle) of the underlying inner-

outer plot. The plot from right in the same figure depicts the saturation graph

of the site configuration from left with respect to the underlying inner-outer plot.

Similarly, Figure 5.9 shows a simulated connected component on an inner-outer

plot of the larger size (m = 23, r = 4) and higher value of the percolation parame-
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Figure 5.8: Left: An open cluster C simulated on the inner-outer plot Π(2)(9, 2) in L
2

with p = 0.52; the central node (an initially inoculated site) is denoted by

a circle. Right: The fully saturated graph derived from C with respect to

the vertex set Π(2)(9, 2) and nearest-neighbour interaction.

ter, p = 0.86 as well as the fully saturated graph induced by this site configuration,

the underlying inner-outer plot Π(2)(23, 4) and edge set E
2.

The optimal design problem which we formulate for percolation processes evolv-

ing on inner-outer plots is based entirely on the Bayesian approach (involving a

utility function) presented in §3.1.2. Since our ultimate goal in designing and per-

forming an experiment is to learn as much information about the model parameter

(percolation probability parameter p in this case) as possible, the utility function

u(d, y, p) is the logarithmic ratio of the posterior distribution π(p | y, d) and the

prior distribution π(p) of p given a realisation y of the percolation process on an

inner outer plot d: u(d, y, p) = log π(p | y,d)
π(p)

. Thus, the design space D is a set of

inner-outer plots of certain type (which is to be further specified) and the object

of interest is the expected utility

U(d) =

1∫

0

∫

Y

log
π(p | y, d)
π(p)

f(y | p, d)π(θ) dp dy (5.14)

which has to be maximised in order to find the optimal inner-outer plot d =

Π(n)(m, r) ∈ D, n = 2, 3, . . .. Here Y denotes the set of all connected components

on d containing the central node. We use the methods discussed in §§ 3.3, 3.4 in

order to solve the optimal design problem in hand. This will be done for both the

progressive and instructive design scenarios.
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Figure 5.9: (a) An open cluster C simulated on the inner-outer plot Π(2)(23, 4) in L
2

with p = 0.86; the central node (an initially inoculated site) is denoted by

a circle. (b) The fully saturated graph derived from C with respect to the

vertex set Π(2)(23, 4) and nearest-neighbour interaction.
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The choice of the design space D can be made in a number of ways, possibly

reflecting such restrictions as a limited number of experimental units or limited size

of the experimental plot. In the context of inner-outer plots the former restriction

would mean that T from (5.12) is bounded from above, whereas the latter condition

is equivalent to bounding the quantity N(m, r). A combination of these conditions

or some other information can be also taken into account when identifying the

design space.

In our further practical examples we will assume that the design space is of the

form

D = {d | d = Π(2)(m, r) & m+ 4r = N}

given the side length N of the experimental plot (N should be an odd number).

For example, if N = 19 then, as it can easily be read from Table 5.1

D = {Π(2)(19, 0),Π(2)(15, 1),Π(2)(11, 2),Π(2)(7, 3),Π(2)(3, 4)}.

Inference for percolation process on inner-outer plots

Finding the optimal design under both the ‘progressive’ and ‘instructive’ exper-

imentation scenarios involves evaluation of the likelihood function of the model

parameter for incomplete observations (under scenario S1). The likelihood can be

evaluated using the MCMC presented in § 5.1.2 and described in Algorithm 1.

Let us consider a few examples with different choice of the inner-outer plot and

values of the percolation parameter.

Figure 5.10 depicts a histogram of a sample from the posterior distribution

(assuming a uniform prior U(0, 1)) obtained using the MCMC from Algorithm 1

for the site configuration from Figure 5.8 on the (9, 2)-plot embedded in the lattice

L
2 and the corresponding trace plot for the first 15 · 103 steps of the chain.

Figure 5.11 contains plots of a simulated open cluster obtained on the inner-

outer plot Π(2)(23, 4) using p = 0.86 (left plot) and the likelihood sample histogram

obtained after running our Markov chain from Algorithm 1 with this open cluster

as the input data. Figure 5.12 shows the same kind of plots for a realisation of the

percolation process on Π(2)(13, 2) when the parameter p was taken to be equal to

0.9.
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Figure 5.10: Inference on the percolation parameter for the configuration from the left

plot in Figure 5.8. Left: Sample histogram obtained by running MCMC

for this configuration. Right: MCMC trace plot of updates for p. The

value of p for which the configuration in Figure 5.8 was obtained is 0.52.
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Figure 5.11: Left: open cluster from Figure 5.9(a) obtained on the inner-outer (23, 4)-

plot using p = 0.86. Right: MCMC sample histogram for p assuming the

uniform prior U(0, 1) for this parameter.
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Figure 5.12: Left: simulated open cluster obtained on the inner-outer (13, 2)-plot using

p = 0.9. Right: MCMC sample histogram for p assuming the uniform

prior U(0, 1) for this parameter.
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Figure 5.13: Left: MCMC trace plot of updates in p for the site configuration from

Figure 5.12. Right: part of the burn-in period of the MCMC trace plot of

updates in p for the site configuration from Figure 5.11; this part of the

update trace was not used in producing the histogram in Figure 5.11.
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Figure 5.10 (right) and Figure 5.13 display early stages of updates in p (trace

plots) for three different site configurations. These figures show that the mixing

time of the chain may vary considerably depending on the size of the site config-

uration and its connectivity properties. In practice, it never takes too long to see

the chain described by Algorithm 1 converging: both the connected component

updates and the percolation parameter updates can be efficiently realised4, allow-

ing one to perform the sampling from the posterior distribution π(p | C) reasonably

fast. However, it is important to note that Figure 5.10 and Figure 5.13 suggest that

chains from Algorithm 1 corresponding to larger site configurations have rather

poor mixing properties. This is in contrast to trace plots from Figures 5.4 and 5.10

which correspond to smaller configurations. One solution to this problem would

be to update p not as often as the connected component is updated. This certainly

requires further experimentation and exploration in order to find recipes of better

chain mixing.

5.1.4 Implementation of progressive and instructive designs

based on inner-outer plots

Given a finite design space D it is fairly straightforward to solve the optimal design

problem for percolation model on inner-outer plots using the tools we developed

previously. Let us make a few comments about solving the problem under each of

the two design scenarios.

Progressive design: expected utility evaluation through augmented mod-

elling

Since D is finite we choose to identify the design that maximises the expected

utility function in the ‘progressive’ case using augmented modelling which was

described in Section 3.4. Recall that this is based on an artificial distribution

h(d, p, y) ∝ u(d, p, y)f(y | p, d)π(p) from which samples are taken via a Metropolis–

4Updates of the connected component, that is deletion and insertion of edges while preserv-

ing the connectedness of the underlying graph, can be greatly improved using dynamic graph

algorithms (e.g. see Zaroliagis (2002)).
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Hastings sampler. The optimal design d∗ is identified then as a value of d at which

the marginal of h is maximised.

Instructive design: Monte Carlo evaluation of the expected utility

We treat the ‘instructive’ case differently from that of the ‘progressive’ one because

of the form of the expected utility under this scenario. Recall that in the ‘instruc-

tive’ case whenever the ‘instructor’ knows the true value p∗ of the model parameter

p one can write the expected utility based on the Kullback–Leibler divergence as

follows:

U∗
KL(d) =

∫

Y

1∫

0

log
π(p | y, d)
π(p)

π(p | y, d) dp f(y | p∗, d) dy,

where f(y | p∗, d) is the likelihood function evaluated at the true value of the model

parameter p∗ given the open cluster y and design d.

One can see that if we choose to evaluate the expected utility U∗
KL(d) via stan-

dard Monte Carlo simulation, then a Markov chain has to be run each time we sam-

ple a new observation (an open cluster) y and also the potentially time-consuming

integration has to be done with respect to the model parameter p. This integration

can be implemented in the following way. Since we can sample from the posterior

π(p | y, d) via MCMC technique (Algorithm 1) for any given open cluster y, we do

so and then fit the beta distribution (or some other distribution) to the MCMC

sample obtained in order to perform integration numerically in a more efficient

way.

Thus, the expected utility evaluation scheme for inner-outer plots in the ‘in-

structive’ case and scenario S1 can be described as follows.

For each inner-outer plot d ∈ D do the following:

1 generate a random sample of M independent connected clusters {yi}Mi=1 on

Π(2)(m, r): yi ∼ f(y | p∗, d);

2 perform M MCMC’s in order to obtain M independent samples for the

posterior distribution π(p | y, d);

3 fit beta distribution to each of the obtained samples; refer to the fitted

distributions as π(p | yi, d);
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A B C

Figure 5.14: Inner-outer design plots A, B, and C form the design space D = {A,B,C}.

4 evaluate numerically the integrals Ii :=
∫ 1

0
log π(p | yi,d)

π(p)
π(p | yi, d) dp;

5 evaluate the expected utility: ŪM = 1
M

M∑
i=1

Ii.

One may wonder how well the true posteriors can be fitted by the Beta distri-

bution family (step 3 of the above scheme). The author’s experience suggests that

such a fit never affects the outcome of the analysis on the qualitative level unless

the prior distribution has more than one local mode or its support is smaller than

the entire interval (0, 1). Recall that the purpose of this step is to make evaluation

of the integrals Ii easier and faster, and hence the family of beta distributions is

only one of possible choices. For instance, if the prior distribution π(p) is uniform

on (0, 1), then the integrals Ii represent the entropies of the fitted distributions.

In the case when the fitting is done by beta distributions, each of these integrals

can be quickly calculated using the following analytical formula for the entropy of

the beta distribution Beta(α, β):

Ent{Beta(α, β)} = logB(α, β)− (α−1)ψ(α)− (β−1)ψ(β)+ (α+β−2)ψ(α+β),

where ψ is the digamma function, ψ(z) = Γ′(z)/Γ(z). Other forms of the prior

distribution may condition the choice of the family of fitting distributions when

trying to facilitate the calculation of the integrals Ii, i = 1, . . . ,M ; methodolog-

ically, discretising both the prior and posterior is also an option for this stage of

the solution to the optimisation problem.

Example 5.1.7. In our example we consider all inner-outer plots in L
2 whose

sizes do not exceed N = 11. There are only three such plots: Π(2)(3, 2), Π(2)(7, 1),
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Figure 5.15: Left: sample histogram for the marginal of h(d, p, y) in d, d ∈ {A,B,C},
under progressive design and π(p) ∼ U(0, 1). Right: evaluated expected

utility under instructive design with π∗(p) ≡ δ(p−0.9) and 95% credibility

intervals (M = 1500) for the plots A, B, and C, under instructive design.

and Π(2)(11, 0). For ease of reference we mark them A, B, and C respectively (as

depicted in Figure 5.14). Thus, the design space D = {A,B,C} consists of three

designs, among which A is the mostly sparsified plot whereas no nodes are removed

from C at all.

Figure 5.15 represents graphically the results of the comparison of designs from

D under both ‘progressive’ and ‘instructive’ case when the prior distribution π(p) is

uniform on the interval (0, 1). The left panel of the figure corresponds to the former

scenario and depicts a histogram of a sample corresponding to the marginal of the

artificial augmenting distribution h(d, p, y) ∝ u(d, p, y)f(y | p, d)π(p) in d ∈ D.

The right panel corresponds to the latter scenario and shows the Monte Carlo

estimated values of the expected utilities and 95% credibility intervals for each of the

three considered designs (M = 1500, see (3.30) in Section 3.4) assuming that the

instructor’s knowledge π∗(p) about the model parameter is exact, π∗(p) = δ(p−0.9).

The plots from Figure 5.15 indicate that the solutions to the optimal design

problem under the two scenarios are different from each other. The ‘moderately

sparsified’ plot B maximises the expected utility in the progressive case, that is

in the case when there is just a single experimenter designing an experiment for

himself. If, however, it is the instructor who knows the true value of the model

parameter (p = 0.9) and wants to choose the best convincing inner-outer plot from
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the set D for the experimenter to use it (instructive scenario), then the optimal

plot is the ‘mostly sparsified’ inner-outer plot A. Notably, the ‘mostly dense’ plot

C would be the worst choice in the instructive case, whereas it outperforms the

‘mostly sparsified’ plot A in the progressive case, but is worse than the ‘moderately

sparsified’ plot B.

Although the inner-outer design plots introduced above represent a limited

range of designs which can be defined using a lattice structure, the advantage of

their use is that the dimension of the design space is reduced to one (recall that the

design space is completely determined by the value of the inner-outer plot’s side

length N). Low dimensionality of the design space and its more complex structure

and richness can still be achieved by considering less restrictive sparsification of

the lattice-based plots—for example, by considering all connected components

containing the origin within a set of nodes contained in a square or rectangle

of a fixed size to be designs. The optimisation techniques employing MCMC

sampling based on exploration of the connected components induced by these

designs and augmented modelling remain, however, the same. These, together

with more detailed study of dependence of optimal designs on the experimenter’s

prior pi(p) and instructor’s prior knowledge π∗(p), will be investigated in future

studies.

5.2 Lattice designs for inference on random graphs

with long-range connections

Throughout the whole previous section it was assumed that we deal with a square

lattice-based random graph model with nearest-neighbour connections. In this

section we briefly discuss the potential and possibilities of working with greater

variety of lattices, while keeping the dimension of the design space low, and also

allowing long-range connections between graph nodes.
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Figure 5.16: Updating connected component: graphical representation of Metropolis-

Hastings step of Algorithm 2 for long-range interaction locally finite graph

models.

5.2.1 Generalising results from the previous section

The results presented in the previous section with regard to making inference under

scenarios S1 and S2 and looking for optimal node arrangements under scenario S1
can be easily extended to the case of long-range connections. In fact, Algorithms 1

and 2 are already described in such a way that they can immediately be used for

any locally finite graph as an underlying interaction topology. We will illustrate

this using a schematic description of the main procedures that the mentioned

algorithms involve: insertion and deletion of vertices and edges.

For example, in Algorithm 2 at each step of updating the current connected

component G a vertex u is deleted at random from G and a vertex v, taken from

the frontier ΓG of the graph G, is added to G, thus forming a proposal graph G̃.

Figure 5.16 graphically depicts this process: the vertex u is chosen randomly from

G and will be deleted from G with all the edges which contain this vertex. The

vertex v is chosen randomly from the frontier of G, ΓG, and is added to the graph

G with every possible edge, each independently with corresponding probability

(see Algorithm 2).
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The number of vertices of the resulting proposal graph G̃ remains unchanged,

whereas the number of present and absent edges as well as the number of edges

between G̃ and its frontier ΓG̃ may be changed as a result of these operations, but

can easily be maintained. Then the acceptance probability is calculated after it

is detected that G̃ is connected. The latter check can be efficiently done using

the classical depth-first or breadth-first search algorithms (see Gibbons (1985)), by

starting traversing the graph from a single node and counting all nodes reached.

Since every node and every edge will be explored in the worst case, (undirected)

graph connectivity can be diagnosed inO
(
n+ e(G̃)

)
steps5, where n is the number

of nodes in the graphs G and G̃ and e(G̃) is the number of edges in the proposal

graph G̃.

In Theorem 5.1.3 it was shown that under Scenario S2 the sequence of maxi-

mum likelihood estimates for the percolation parameter p converges to the critical

percolation probability pc(d) of the square integer lattice L
(d), d ≥ 2. The author

of this thesis conjectures that a similar result holds for any long-range percolation

model on infinite locally finite graphs.

5.2.2 Square lattice and its deformations

In Section 3.5 we formulated the n-node optimal design problem for random

graphs. This problem consists in finding an n-node configuration design that max-

imises the expected utility function (the expected Kullback–Leibler divergence).

The design parameters in this problem are either locations of the nodes or dis-

tances between them (or weights defined on the node binary relationship). If the

design n nodes are to be taken from a region of cardinality of the continuum, then

the cardinality of the design space would also become continuum. This would

make the search for the optimal design excessively time-consuming. Identification

of the optimum would also be difficult, since potential symmetries in the node

arrangements would inevitably necessitate complex shaped constraints.

For example, consider three nodes arranged at the points d1, d2 and d3 in R
3.

Clearly, the design d = (d1, d2, d3) has the same expected utility as any translation,

5That is in O
(
n2
)

steps in the worst case, when all or ‘almost all’ egdes are present.
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Figure 5.17: Modification of the planar square lattice. The modification parameters

are as follows: dx, the spacing between nodes in the horizontal direction;

dy, the spacing in the vertical direction; and δx, a displacement of every

second row in the horizontal direction. All nodes of every second row are

shifted to the right if δx > 0, and to the left if δx < 0.

rotation or reflection of it, and so the optimal design as well as any other design has

an infinite number of superficial variants. Searching for the optimum requires (i)

imposing constraints on the design space and, even if that is done, (ii) exploration

of arrangements from a continuum design space.

The approach one might wish to take (and it is partly what we did in the

previous section) is to impose a lattice structure on the points, thereby simplifying

the design space and reducing its size considerably. More specifically, for planar

designs we consider deformations of a square lattice with three design parameters

that control the spacing and structure of the lattice: dx, the spacing between

nodes in the horizontal direction; dy, the spacing in the vertical direction; and δx,

a displacement of every second row in the horizontal direction. By varying these

distances one can obtain the following lattices among others:

• square lattices (dx = dy, δx = 0 or dy = δx = dx/2), as in Figure 5.17 (a,c);

• rectangular lattices (δx = 0);
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Figure 5.18: Examples of modified planar square lattices: (a) unchanged square lattice

(dx = dy, δx = 0); (b) hexagonal lattice (dy =
√
3dx/2); (c) square lattice

(dy = δx = dx/2). The number of nodes is the same in all three plots.
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Figure 5.19: Left: long-range connections with exponential decay p = e−θd (θ = 1.9)

on a triangular 13 × 13 lattice plot (dx = dy = 1) with displacement

δx = 1/2. Right: the connected component of the graph from the left

panel which contains the central node (in circle).

• hexagonal lattices (dy =
√
3dx/2, δx = dx/2), as in Figure 5.17 (b); note that

this terminology may seem to be slightly ambiguous—the lattice for which it

holds that dy =
√
3dx/2 and from which every second node of every second

row is removed could also be justly called hexagonal ;

• triangular lattices (e.g. dx = dy = 2δx, as in Figure 5.19).

Not only the described lattices represent the underlying interaction topologies

on which random graphs are considered, but they can also represent designs. For

instance, when the size n × m of the design lattice-based plot is fixed, one can

identify the design space by discretising one or more lattice parameters (dx, dy,

δx). For example, if N is a fixed natural number, ε is a non-negative real number,

ε ∈ R+, and Hε denotes the set {hε | h = 1, . . . , N }, the design space D may be

defined as a set of

• square lattices of the size n×m with dx ∈ Hε;

• rectangular lattices of the size n×m with (dx, dy) ∈ Hε ×Hε;

• hexagonal lattices of the size n×m with dx ∈ Hε.

The design space D can also contain lattices of different types. This may be

useful when one wants to compare them and choose the type of the most optimal

lattice in the random graph design problem.
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Example 5.2.1. In this example the model is a long-range percolation on a lattice

with origin. For example, consider a triangular 13 × 13 lattice (dx = dy = 2δx).

The left plot in Figure 5.19 depicts a realisation of a long-range percolation process

on such lattice when the connections are made according to exponential probability

decay p(d) = e−θd with θ = 1.9. The right plot in Figure 5.19 depicts the connected

component containing the origin (the central node in a circle) only. We compare

three different lattice types and two edge-probability decays when the graph is the

connected component of the long-range percolation process at the origin.

Let us consider lattices of the size 5× 5 nodes. In order to keep the dimension

of the design space low we consider the triangular, square and hexagonal lattices

for which the horizontal and vertical spacings are parametrised identically, that is

we allow dx to take values from a finite set of non-negative reals, and

• in the case of the triangular or square lattice we set dy = dx;

• in the case of the hexagonal lattice we set dy =
√
3dx/2;

the shift δx is varied in the same way for each of these lattices: δx = dx/2.

Figure 5.20 and Figure 5.21 show the result of the expected utility evaluation

(the expected utility minus the prior distribution entropy) for each of the lattices

mentioned above and the two edge-probability functions: exponential, p(d) = e−θd,

and Cauchy, p(d) = (1 + θd2)−1, respectively. The expected utility was evaluated

on a finite set of values for the model parameter dx via standard Monte Carlo sam-

pling and averaging. Cubic spline interpolation, least squares spline approximation

and smoothing spline of order 4 were used to represent the expected utility as a

continuous curve. One can see the plots of the first derivative of the fitted least

squares spline (or smoothing spline) in the right panels of these figures. The prior

knowledge about the model parameter θ was taken to be Γ(10, 0.2) in each of these

two models.

It is clear from the plots that the type of the lattice used did not affect essentially

the solution of the optimal design problem in either of the these two models—the

expected utility is maximised at roughly the same values of the lattice size parameter

dx.
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Figure 5.20: Spline approximation of the expected utility (minus entropy of the prior

distribution) for the long-range percolation model with exponential edge-

probability function and the following 5 × 5 lattices: (a) triangular

(dy = dx, δx = dx/2), (c) square (dy = dx, δx = 0), and (e) hexago-

nal (dy =
√
3dx/2). The plots (b), (d), (f) in the right panel depict the

first derivative of the corresponding approximation spline. The edge pro-

file decay is of the form p(d) = e−θd and the prior distribution for θ was

taken to be Gamma(10, 0.2).
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Figure 5.21: Spline approximation of the expected utility (minus entropy of the prior

distribution) for the long-range percolation model with Cauchy edge-

probability function and the following 5 × 5 lattices: (a) triangular

(dy = dx, δx = dx/2), (c) square (dy = dx, δx = 0), and (e) hexago-

nal (dy =
√
3dx/2). The plots (b), (d), (f) in the right panel depict the

first derivative of the corresponding approximation spline. The edge pro-

file decay is of the form p(d) = (1 + θd2)−1 and the prior distribution for

θ was taken to be Gamma(10, 0.2).
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Chapter 6

Grid Approximation of a Finite Set

of Points

6.1 Formulation of the problem

6.1.1 Basic examples

Consider a set of points X on the real line R. Let dmax be the maximum of

distances from each point of X to the nearest point of a uniform grid of points

from the same axis. For each spacing of such a grid there exists an optimal shift

of it which minimises dmax. A typical plot showing the dependence of the minimal

dmax on the grid spacing in the case when X contains 3 or 4 points is shown in

Figure 6.1. The more elements X contains, the less the plot is cluttered and the

more points of the plot lie closer to the straight line with the slope 1/2 and the

null intercept1.

If each point of X is approximated by the closest node of a grid of a certain

spacing2, then there is a certain flexibility in choosing the spacing of the grid: for

example, if the minimal dmax should not exceed 0.25, then the grid spacing 2 is

as good as 0.5 or any smaller value, or if dmax should not exceed 1, then the grid

1No points can lie above this line since the distance from any data point from X to the nearest

node of the grid does not exceed half of the grid spacing.
2This operation consisting in replacing each point of X by the nearest grid point is sometimes

called ‘rounding’ or ‘snapping’ in computational geometry.
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Figure 6.1: Typical dependence of minimal dmax on the spacing of the grid for a

set X from R containing 3 or 4 points. In this particular example

X = {11.8998, 34.0386, 49.8364, 95.9744}. Notice, that what is shown is

a single graph of such a dependence; this graph exhibits discontinuities at

many values of the grid spacing.
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spacings from the range (7.62,7.71) will be as good as any spacing less than 2

(Figure 6.1). In some applications it might be necessary to minimise the number

of the grid nodes that fall within the approximation region3 while satisfying the

approximation error, or to minimise the total number of approximating grid nodes

(which may well be less than the number of points in X).

Consider another example. Take the following planar configuration of 6 points

defined by their Cartesian coordinates

X = {(−0.1553, 6.3511), (−1.4809, 7.9482), (1.2534, 6.2070)

(0.7213, 8.4480), (0.8821, 9.8563), (4.1944, 7.4268)}.

These points can be approximated by vertices of the coordinate grid Z
2 in

which their coordinates are given, for example, by rounding their coordinates to

the nearest integer (see Figure 6.2). Such approximation can be characterised by

the largest among all deviations of the configuration points from the nearest nodes

of the grid. For instance, in the considered example such distance is equal 0.5276.

This approximation error may be too large for certain needs and one may want

to consider approximations by more refined grids by simply rescaling the initial

coordinate grid, i.e. considering the grid hZ2, h < 1, or even hZ× lZ, h, l < 1. For

instance, the largest among all deviations of the configuration points from X from

the nearest nodes of the grid 0.2Z is 0.1074, Figure 6.3. Clearly, the approximation

error cannot exceed 1
2

√
h2 + l2 when a grid hZ × lZ is used, and one can always

decrease h and l so that this quantity does not exceed the ‘target’ approximation

error.

This is not the best strategy for looking for good approximation grids, especially

when there should be a trade-off between the spacing of the grid and approximation

error: the latter is often desired to be as small as possible, whereas the former

may be required to be not too small—to reduce the number of nodes within the

approximation area and to obtain therefore not too dense grid, for example.

Figure 6.4 shows the configuration X placed in the new coordinate system, ob-

3i.e., to maximise the grid spacing
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Figure 6.2: Initial configuration X of six points in plane and its approximation by the

vertices of the coordinate grid Z
2. The largest ‘approximating’ distance is

0.5276. Arrows indicate the vertices of the grid which approximate elements

of X.

tained after rotating the initial coordinate axes at the angle 0.7. If we approximate

the points from X by the nodes of the new grid with (with the unity spacing!)

the approximation error becomes 0.0737, and it is smaller than the approximation

error resulting from the use of the square grid with the spacing 0.2, coordinated

with the axes in which the coordinates of the points from X are initially given.

6.1.2 Formulation of the problem and motivation

We consider the problem of approximating a finite set of points X ⊂ R
n by a

uniform grid

G(α,E) = {
n∑

i=1

αziei | (z1, . . . , zn) ∈ Z
n}, (6.1)

where E = {ei}ni=1 is an orthonormal basis of Rn and α ∈ R. Each point of X

is approximated by the nearest node of G(α,E). Let the (Euclidean) distance

between xk ∈ X and its nearest node be δk(G), k = 1, . . . , |X|, and define the

‘distance’ from X to G to be

δ(X,G) = max
i=1,...,m

δi(G). (6.2)

For clarity we will call δ(X,G) δ-deviance.
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Figure 6.3: Configuration X of six points in plane from Figure 6.2: the square grid

spacing h is 0.2. The largest ‘approximating’ distance by this grid is 0.1074.
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Figure 6.4: Configuration X from Figure 6.2 in new axes after rotating the coordi-

nate system clockwise at the angle θ = 0.7. The maximal approximating

distance is 0.0737.
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For any given ǫ > 0 and basis E let Aǫ(E) be the set of all α such that

δ(X,G(α,E)) < ǫ. (6.3)

The ǫ-optimal approximation grid Gǫ(α
∗, E∗) is such a grid that

α∗ = max
E

max
α

Aǫ(E) (6.4)

and

E∗ = argmax
E

max
α

Aǫ(E). (6.5)

In this problem E is the orientation of the grid and α is its spacing. The moti-

vation behind the considered problem is in obtaining approximation grids which

are not too dense—once such a grid is obtained a more dense grid can always be

constructed, for instance, by consequently halving the spacing of the grid.

In the next section we will review and use the optimisation results of Brucker

and Meyer (1987) to provide a numerical recipe of finding a good candidate for

the ǫ-optimal approximation grid Gǫ(α
∗, E∗). Furthermore, the approximation of

Brucker and Meyer is adapted to solve the problem of approximation of a finite

set of points in R
n by the nodes of a truly rectangular grid

G(α, E) = {
n∑

i=1

αiziei | (z1, . . . , zn) ∈ Z
n}, (6.6)

where α = (α1, . . . , αn) ∈ R
n. The complexities of the suggested procedures are

also discussed.

6.2 Finding ǫ-optimal approximation grids

6.2.1 Brucker–Meyer approximation in R and R
n

Brucker–Meyer n-dimensional approximation problem

Brucker and Meyer (1987) in a short communication note proposed a procedure

for translating a rectangular grid in such a way that a finite set of points in R
n

is approximated as well as possible by points of translated grid. The closeness

between a grid and a set of points in Brucker and Meyer’s approximation was
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measured by the maximal deviation to the grid lines from the configuration points.

Let us review their main results starting with preliminary definitions.

Let E = {e1, . . . , en} be an orthonormal basis in R
n and α1, . . . , αn positive

real numbers. Consider the following rectangular grid

G(α, E) = {
n∑

i=1

αiziei | (z1, . . . , zn) ∈ Z
n}. (6.7)

The set G(α, E) + β is obtained by adding a vector β ∈ R
n to all points of the

grid G and is called a translation of G.

For an arbitrary x = (x1, . . . , xn) ∈ R
n let

di(x, G) = min{‖xi − αiz‖ | z ∈ Z} (6.8)

and

d(x, G) = max
i=1,...,n

di(x, G). (6.9)

For a finite set of points X ⊂ R
n define

d(X,G) = max{d(x,G) |x ∈ X}, (6.10)

and call this quantity d-deviance of X from G (compare to the notion of δ-deviance

defined by (6.2) in § 6.1.2).

The following problem was considered by Brucker and Meyer (1987): Given

a finite set X ⊂ R
n and a grid G(α, E) ⊂ R

n, find a translation G∗ of G such

that the d-deviance d(X,G∗) is minimal. We will refer to this problem as the

Brucker–Meyer approximation problem.

Brucker–Meyer algorithm for the one-dimensional problem

Since the multidimensional Brucker–Meyer problem can be reduced to the one-

dimensional case let us first consider the solution of this approximation problem

in R suggested by Brucker and Meyer (1987).

Without loss of generality one can consider that all points of X are non-negative

and that 0 ∈ X. Let U be the smallest number in the one-dimensional grid

G = {αz | z ∈ Z} which is greater or equal to all x ∈ X. Then the optimisation

problem on the line R can be reduced to an optimisation problem on a circle of
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Figure 6.5: Representation of X and G on a circle in the Brucker–Meyer univariate ap-

proximation problem and translation of the grid (polygon with solid edges)

realised via translation of the points from X (polygons with dotted edges).

circumference U . Consider such a circle C and represent the grid G by the vertices

of a regular polygon A with k = U
α

vertices w1, . . . , wn on the circle line. The set

X will be represented by a (generally irregular) polygon B with m := |X| vertices

v1, . . . , vm on the circle. A translation of the grid will correspond then with a

movement of the polygon A relative to the polygon B. If we choose a clockwise

rotation then a translation can be described by the clockwise distance t from w1

to v1 along C. For a fixed t let di(t) to be the distance between vi and its nearest

neighbour wj on the circle line. Then the problem is equivalent to finding such t

that

f(t) = max
i=1,...,m

di(t) (6.11)

is minimised. Figure 6.5 depicts an example of the described construction.

The advantage of this construction is in the following obvious property of f(t):

it is a periodic function with period α. Therefore it suffices to minimise f(t) on

the interval [0, α] only.

The idea of Brucker and Meyer for solving this particular problem was in par-

titioning [0, α] into 2m intervals I1 = [0, t1], I2 = [t1, t2],. . ., I2m = [t2m−1, α] such
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that the minimum of f(t) in Ij (j = 1, . . . , 2m) can be calculated easily. Specifi-

cally, the interval Ij is chosen so that within this interval no B-vertex passes any

A-vertex or the midpoint of two A-vertices wj and wj+1—clearly, such construc-

tion is always possible. The solution of the problem is obtained then by taking the

minimum of f(t) on each of these subintervals.

The values t1, . . . , t2m−1 defining the intervals I1, . . . , I2m can be calculated it-

eratively. To present the corresponding construction Brucker and Meyer used the

following notation.

For a fixed t define the following sets

R(t) = {i | di(t) is a BA-distance},

L(t) = {i | di(t) is a AB-distance},

that is if while going clockwise around the circle line the distances di(t), i ∈ R(t)

(i ∈ L(t)) are distances from B-vertices (A-vertices) to A-vertices (B-vertices).

If, however, vi is a midpoint of an arc with two A-vertices wj and wj+1 as its

endpoints, it will be assumed that i is in R(t). Finally, let

r(t) := max{di(t) | i ∈ R(t)},

l(t) := max{di(t) | i ∈ L(t)}.

To calculate the tj values we start with t = 0 and let

∆1t := min{di(t) | i ∈ R(t)},

∆2t := min{α/2− di(t) | i ∈ L(t)} = α/2− l(t),

∆t : = min{∆1t,∆2t}..

Then set t̃ := t+∆t. Replacing t by t̃ this process is repeated yielding a sequence

of the endpoints of the intervals I1, . . . , I2m.

To calculate the minimum f(t∗) of f(·) in [t, t + ∆] we have to consider two

cases.
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[r(t) + l(t)]/2

l(t)

t +∆tt

f(·)

Figure 6.6: Function f(·) on the interval [t, t+∆t] when ∆t > [r(t)− l(t)]/2.

1 r(t) < l(t)

Then f(t) is strictly increasing in [t, t +∆t]. Thus, t∗ = t and f(t∗) = l(t).

2 l(t) ≤ r(t)

If ∆t > [r(t) − l(t)]/2 then the graph of f(·) in [t, t + ∆t] is as shown in

Figure 6.6. Thus, t∗ = t + [r(t) − l(t)]/2. If, however, ∆ ≤ [r(t) − l(t)]/2

then t∗ = t +∆t. In both cases f(t∗) = r(t∗).

When a B-vertex vi is passing an A-vertex wj or the midpoint between two

A-vertices wj and wj+1, we have to change the index sets R(t) and L(t). If vi

passes an A-vertex we have to eliminate the index i from R(t) and to insert i into

L(t). If vi passes the midpoint of two A-vertices we have to eliminate the index i

from L(t) and to insert i into R(t).

Algorithm 3 is a slightly corrected and working version of the one suggested

by Brucker and Meyer (1987) which finds the solution for the one-dimensional

grid approximation problem. The correction has been made in the while-loop to

check whether the index set R(t) is non-empty so that the original Brucker–Meyer

algorithm avoids endless loops and terminates correctly. The algorithm requires

the set of deviations d1(0), . . . , dm(0) of the data points from the initial grid, and

finds

topt := argmax f(t),
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Algorithm 3 Brucker–Meyer algorithm

Require: d1(0), . . . , dm(0).

Ensure: topt, fopt.

1: t := 0; fopt := ∞; topt := 0;

2: for i := 1 to m do

3: di := di(0);

4: R:=R(0); L:=L(0);

5: while t ≤ α AND R 6= ∅ do

6: r := max{di | i ∈ R}; l := max{di | i ∈ L};
7: ∆1 := min{di | i ∈ R}; ∆2 := α/2− l; ∆ := min{∆1,∆2};
8: if r < l then

9: t∗ := t; f(t∗) := l;

10: else

11: if ∆ > (r − l/2) then

12: θ := (r − l)/2

13: else

14: θ := ∆; t∗ := t+ θ; f(t∗) := r − θ

15: if f(t∗) < fopt then

16: topt := t∗; fopt := f(t∗);

17: for all i ∈ L do

18: di := di +∆;

19: for all i ∈ R do

20: di := di −∆;

21: t := t +∆;

22: for all i ∈ L do

23: if di = α/2 then

24: L := L \ {i}; R := R ∪ {i};
25: for all i ∈ R do

26: if di = 0 then

27: R := R \ {i}; L := L ∪ {i};
28: return topt, fopt
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where f(t) is defined by (6.11), and fopt := f(topt). The complexity of this algo-

rithm is O(m2), where m = |X|. However, as Brucker and Meyer (1987) note, the

complexity can be reduced to O(m logm) by using appropriate data structure that

would permit treatment the sets L and R together with the operations of deletion,

insertion, and finding the maximal and minimal elements as priority queues.

Brucker–Meyer approximation in the multidimensional case

Since the objective function in the Brucker and Meyer n-dimensional approxima-

tion problem can be written as

d(X,G) = max
x∈X

max
i=1,...,n

di(x,G) = max
i=1,...,n

max
x∈X

di(x,G), (6.12)

this d-deviance can be maximised by maximising d-deviances along each dimension

separately and independently (Brucker and Meyer (1987)). For each dimension

i = 1, . . . , n one can solve the problem of finding a one dimension optimal shift t∗i

of the coordinate system as described above. It follows from (6.12) that the shift

given by vector β∗ = (t∗1, . . . , t
∗
n) is optimal for the n-dimensional problem.

Assuming the optimal choice of the data representation the complexity of the

Brucker–Meyer approximation in the multidimensional situation is O(nm logm).

In general, the optimal solution to the Brucker–Meyer approximation problem is

not unique.

Realisation

Algorithm 3 has been implemented by the author in a MATLAB function called

unidimapprox. This function, allowing one to apply the Brucker–Meyer algorithm

in one dimension, has the following syntax:

function [d x3 t_opt]=unidimapprox(x,scale,to_plot)

Here d contains the deviances di(x,G∗) from data points x to the optimal grid G∗

and spacing scale. The optimal grid is described by the coordinates x3 and the

optimal shift t_opt. One should set to_plot to 1 to obtain a graphical output.
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Figure 6.7: Application of the Brucker–Meyer algorithm in the one-dimensional case:

initial and optimal grid with spacing α = 5 for the set X of 5 points drawn

uniformly and independently on [1,100].

Example 6.2.1. Figure 6.7 illustrates application of the Brucker–Meyer algo-

rithm and contains a graphical output as a result of the execution of the following

MATLAB code:

>> x = unifrnd(0,100,1,5);

>> alpha = 5; show_plot = 1;

>> unidimapprox(x,alpha,show_plot);

The function unidimapprox.mat can be found on the WWW [1]

(folder ../BM_approximation).

6.2.2 Approximation by grid nodes

Note that the notions of δ-deviance, introduced in § 6.1.2, and that of d-deviance,

introduced in § 6.2.1, coincide in the one-dimensional case. In the multidimen-

sional case δ-deviance and d-deviance represent different quantities. However, a

generalisation of the Brucker–Meyer algorithm for the multidimensional case can

be used to obtain an approximation to the solution to the ǫ-optimal approximation

grid problem (6.3)-(6.5).

Consider first a uniform grid G(α,E). Since E is an orthonormal basis in R
n,

it can be represented by an angle θ at which a fixed basis4 E0 should be rotated

4For example, it may be the canonical basis E0 = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}, if E and

E0, viewed as coordinate systems, have the same orientation.
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Figure 6.8: Approximation of a finite set of points by the nodes of a square grid with

the spacing α.

in order to obtain E. For a given configuration X and ‘orientation’ θ of the grid

G with spacing α the δ-deviances δi(X,G) are bounded from above as follows

(Figure 6.8):

δi(G) ≤
√
n

2
α, i = 1, . . . , n. (6.13)

It follows that

δ(X,G) = max
i=1,...,n

δi(X,G) ≤
√
n

2
α,

and attributing any non-negative value which does not exceed 2ǫ√
n

to α ensures

that the corresponding grid G(α,E) is an ‘admissible solution‘ to the ǫ-optimal

grid approximation problem.

Algorithm 4 represents a procedure of finding approximations to α∗ and E∗

(through its orientation angle θ∗) for the ǫ-optimal approximation uniform grid

problem (6.3)-(6.5) using the multidimensional Brucker–Meyer algorithm. The

idea behind Algorithm 4 is to consequently apply the Brucker–Meyer algorithm

to a given point configuration when the grid is rotated by a small incremental

angle along a chosen direction and then choose the best grid approximation. The

description of Algorithm 4 can be found on p. 156.

155



Algorithm 4 Approximate solution to the ǫ-optimal approximation grid problem

Require: X (contains m n-dimensional points), ǫ, hα, hθ, αmax.

Ensure: α̃opt, θ̃opt.

1: j := 1; X0 := X; α̃opt := 0;

2: while (j − 1)hθ ≤ π do

3: X := rotate(X0, (j − 1)hθ); % choose a rotation direction and rotate each

element of the initial data matrix at the angle jhθ along the chosen direction

assuming that X has the following form:

X = {(x(1)1 , x
(1)
2 , . . . , x

(1)
n ), . . . , (x

(m)
1 , x

(m)
2 , . . . , x

(m)
n )}.

4: α0 := min(hα, 2ǫ/
√
n); α := α0; i = 1;

5: while α ≤ αmax do

6: for k := 1 to n do

7: [dxk f topt(k)] := unidimapprox((x
(1)
k , . . . , x

(m)
k ), α, 0);

% the MATLAB function unidimapprox implements the Brucker–Meyer al-

gorithm, see Algorithm 3 and the description of this function on p. 153;

% at this moment dxk is a vector ofm d-deviances along the kth coordinate:

dxk = (dx
(1)
k , . . . , dx

(m)
k );

% the next command has the following syntax (MATLAB version):

[a,b]:=max(x), where a is the value of the maximal element in x, and b is

the index of this element (if there is more than one such element, than b is the

smallest index);

8:

[dmax, f ] :=

max

(√(
dx

(1)
1

)2
+ . . .+

(
dx

(1)
n

)2
, . . . ,

√(
dx

(m)
1

)2
+ . . . +

(
dx

(m)
n

)2
)
;

9: if dmax < ǫ AND i > α̃opt/hα then

10: α̃opt := ihα; θ̃opt := jhθ;

11: α := α0 + ihα; i := i+ 1;

12: j := j + 1;

13: return α̃opt, θ̃opt;
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Realisation

Algorithm 4 has been implemented by the author in a MATLAB function called

optimal_plot. This function has the following syntax:

function [theta_optimal dx_optimal dy_optimal ...

scale_optimal d_max txopt tyopt]=...

optimal_grid(points,epsilon,scale_max,...

scale_search_step,theta_search_step)

The correspondence between the arguments of the function optimal_plot and the

input arguments of Algorithm 4 is as in Table 6.1.

arguments of optimal_plot arguments of Algorithm 4

points X

epsilon ǫ

scale_max αmax

scale_search_step hα

theta_search_step hθ

Table 6.1: Arguments of the MATLAB function optimal_plot (p. 157) and the input

arguments of Algorithm 4 (p. 156).

The function optimal_grid can be found on the WWW [1]

(folder ../BM_approximation).

Example 6.2.2. Consider the following configuration of 10 points

X = {(6.9523, 1.0399), (0.6842, 7.5864), (1.1252, 7.5654),

(0.3451, 8.1266), (9.1066, 5.9876), (6.6316, 5.4967),

(1.0285, 6.6941), (2.0599, 6.6352), (6.0404, 7.5027), (4.7034, 8.3053)}

taken at random from the square {(x, y) ∈ R
2 : 0 ≤ x ≤ 10, 0 ≤ y ≤ 10} using the

following MATLAB code:

157



-8 -6 -4 -2 0 2

3

4

5

6

7

8

9

10

11

Figure 6.9: Approximation of a finite set of points X in plane by a uniform grid from

Example 6.2.2.

>> points = zeros(10,2); a = 0; b = 10;

>> points(:,1) = a + (b-a) * rand(10,1);

>> points(:,2) = a + (b-a) * rand(10,1);

Algorithm 4 can be applied to the set X by using the described above MATLAB

function optimal_plot:

>> scale_max = 2; scale_search_step = 0.01; theta_search_step = 0.01;

>> epsilon = 0.2;

>> [theta_optimal dx_optimal dy_optimal scale_optimal d_max] = ...

optimal_grid(points,epsion,scale_max,scale_search_step, ...

theta_search_step)

In the new coordinate system, which is obtained by rotation of the initial axes at

the angle θ̃opt = 1.16, the points of X have the following coordinates (Figure 6.9):
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X = {(1.8229, 6.7891), (−6.6819, 3.6568), (−6.4867, 4.0528),

(−7.3127, 3.5617), (−1.8528, 10.7401), (−2.3912, 8.2749),

(−5.7265, 3.6162), (−5.2606, 4.5383), (−4.4663, 8.5340), (−5.7361, 7.6287)}.

The optimal grid G̃∗ is obtained in this new coordinate system as follows:

G̃∗ = α̃opt(xmin − Z
2)− topt,

where the rescaling coefficient is αopt = 0.51, the optimal shift vector is

topt = (0.0464, 0.4901),

and xmin is calculated as follows:

xmin := (min{x | (x, y) ∈ X},min{y | (x, y) ∈ X}).

In this example the approximation error ǫ was taken to be 0.2 and the realised

δ-deviance is 0.1911.

Additional requirements to the ǫ-optimal grid approximation problem (6.3)-

(6.5) can be added. For instance, one may demand that no more than one point

of the initial point configuration should be approximated by a node of the opti-

mal grid. Algorithm 4 can still be used in this case with corresponding minor

modifications.

It is also straightforward to make corresponding changes in Algorithm 4 in order

to obtain approximate solutions to the problem of approximating point configu-

rations by truly rectangular grids G(α, E) defined by (6.7) (see § 6.1.2). In this

case, the grids that are checked for approximation optimality should be rescaled

independently in each dimension of the vector α.

Our final remarks refer to the complexity of Algorithm 4, its possible modifica-

tions and improvement. Since the complexity of the Brucker-Meyer approximation

algorithm is O(nm logm), it follows from the structure of Algorithm 4 that its

complexity is O(αmax

hα

π
hθ
nm logm). The complexity of Algorithm 4 adapted for the
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search of a rectangular optimal approximation grid is thereforeO
((

αmax

hα

)n
πnm
hθ

logm
)
.

One could slightly improve on the structure and performance of Algorithm 4 for

some particular cases by changing its structure so that the iterations for α for any

given θ run from αmax downwards to α0 and stopping the iterations for θ once a

corresponding δ-deviance does not exceed ǫ. Notice, however, that this does not

generally reduce the complexity of the algorithm.

6.2.3 Applications

Besides natural applications in interpolation and solution methods for partial dif-

ferential equations, when calculations are to be done on a grid and the initial

values have to be approximated by the nodes of a grid, the discussed algorithms

can be used in the analysis of spatial patterns and in optimal design problems

for spatial interaction models. ǫ−optimal approximation grids can also be used in

approximation of optimal space-filling designs by the grid nodes.

The ǫ-optimal approximation grid problem is essentially a computational ge-

ometry problem. An ǫ-optimal grid can be viewed as a core set for the original

point set X. The notion of a core set is a general notion emerged from papers of

Barequet and Har-Peled (2001), Agarwal, Har-Peled and Varadarajan (2003) and

others in high dimensional computation geometry and proved to be helpful in ob-

taining approximations to optimisation problems on point data sets (Chan (2006)).

The core set framework can be described in very general lines as follows: suppose

that a geometric optimisation problem on a set of points X of size m (such as

finding the diameter of a set, for example) is to be solved and no fast algorithm is

known for this. One transforms the set X into a set X ′ in an attempt to achieve

the following: (i) the cardinality of X ′ is small, and (ii) the solution of the same

optimisation problem for X ′ represents a ‘good’ approximation of the solution to

the original problem involving X. If one can find quickly a core set of a small

size, then the approximate solution can be obtained faster than the solution to the

original problem, even though one may have to apply a ‘brute force’ algorithm to

the core set found. The reader is referred to Chan (2006), Agarwal, Har-Peled and

Varadarajan (2005), and Bijay and Vigneron (2005) for further details.
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Chapter 7

Conclusions

The problem of optimal experimental design for random graph models has been

formulated and studied in this thesis. Here we give a summary of our work,

highlight its key contributions, and discuss potential directions for future research.

7.1 Summary

In Chapter 1 we presented motivation behind studying inference and optimal de-

sign problems on random graphs. We gave the description of a general random

graph model in which nodes are fixed but connections between them are random,

establishing according to the so called edge-probability function. This function

depends monotonically on the weight of the possible edge, or, indeed, distance

between two nodes in the case of a metric space. We also assumed that the edge-

probability function is parametrised by a statistical parameter and identified the

statistical interest in considering the described model as a wish to be able to make

inference on the model parameter(s). The optimal design problem consists then in

finding an optimal arrangement of the graph nodes within some predefined region.

The chapter contains a selective and brief review of related work on inference and

optimal experimental design for, mainly non-linear, spatial response and stochastic

interaction models.

Chapter 2 provided a review of some standard mathematical notions from the

graph theory and also main elements of statistical likelihood-based and Bayesian
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inference techniques. Monte Carlo and Markov Chain Monte Carlo methods were

also reviewed in this chapter as the main computational machinery that is subse-

quently used in the thesis.

Chapter 3 began by considering D-optimal designs for the problem of optimal

arrangement of random graph nodes. This was done through some ‘toy’ exam-

ples of graphs with three nodes. We identified the following drawbacks of using

informativeness criteria based on the Fisher information in optimal design prob-

lem for random graphs: (i) the optimal node arrangement is equidistant; (ii) the

design depends on the model parameter’s true value; (iii) optimal designs possess

symmetries which put a question whether the freedom in choosing the positions of

the graph nodes was used efficiently; (iv) the obtained solutions are not invariant

under reparametrisation of the model parameter. We therefore turned to a more

suitable utility-based Bayesian experimentation paradigm. The Shannon entropy,

Kullback–Leibler divergence and Lindley information measure play a particularly

important role in this framework. We identified the expected Kullback–Leiber

divergence and expected Lindley information gain as expected utilities and thor-

oughly studied their properties, thus comparing informativeness of experiments.

In connection with the problem of expected utility maximisation we gave an al-

ternative proof of the first-order conditions first established by Parmigiani and

Berry (1994).

Two different experimental scenarios, progressive design and instructive design,

were introduced in Chapter 3. In the former scenario the experimental motiva-

tion consists in increasing one’s knowledge about the model parameter, whereas in

the latter scenario the purpose of the experiment is to instruct someone pursuing

an optimal design holding a prior for the model parameter using one’s superior

knowledge about it. We reviewed simulation-based methods of evaluation of the

expected utility based on the Kullback–Leibler divergence for each of these two

experimental scenarios in this chapter. Using graphs as an underlying interac-

tion topology as well as model objects and utility-based Bayesian framework we

described the studied model in more specific terms and gave a second, more spe-

cific formulation of the problem—the n node optimal design problem for random
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graphs. The chapter concluded with some illustrative examples.

Chapter 4 delivered theoretic results for some basic random graph models. We

first proved a general worst case scenario result for indefinitely growing or diminish-

ing configurations under the progressive design scenario. This intuitively obvious

but mathematically not straightforward result says that weights (distances) of the

optimal graph edges cannot be all either too large or too small. We were unable

to prove a similar theorem in the instructive case, although we strongly believe

that it holds in this case as well. We then studied two-node and three-node designs

using many examples identifying the following possible crucial features of expected

utility surfaces: (i) flatness around modes, and (ii) multimodality. The chapter

continued with studying proximity (geometric) graphs and graphs with threshold

edge-probability decay. We obtained an explicit solution to the optimal design

problem for proximity graphs considered in metric spaces on star topologies—this

solution can be represented via quantiles of the prior distribution. We also showed

that the case of a threshold edge-probability decay can be relatively easily treated

numerically. We concluded the chapter by showing how the obtained theoretic

result for proximity graphs can be used to easily show non-preservation of optimal

designs under replication (in non-linear models).

Chapter 5 was wholly devoted to inference and experimental design problems

for finite clusters from bond percolation on the integer lattice Z
d, d ∈ N (and also

its modifications), or, equivalently, for SIR epidemics evolving on a bounded or

unbounded subset of Zd with constant life times1. The bond percolation probabil-

ity p was considered to be unknown. We considered inference under each of the

following two scenarios:

• The observations consist of the set of sites which are ever infected, so that

the routes along which infections travel are not observed (in terms of the

bond percolation process, this corresponds to a knowledge of the connected

1Of course, the assumption of constant infectious periods is a very restrictive assumption.

However, it is the assumption which allowed us to draw parallels to the unoriented bond perco-

lation process. Generally, the methods used for making inference on the model parameter(s) can

be further extended to the Markovian SIR model with variable (or even random) infectious times

in the spirit of Demiris (2004) using oriented graphs and connections to oriented percolation
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component containing the initially infected site—the location of this site

within the component not being relevant to inference for p);

• All that is observed is the size of the set of sites which are ever infected.

We presented MCMC algorithms for making inference on the model parameter in

each of these scenarios. We presented a theoretical result stating that the sequence

of maximum likelihood estimates for the bond percolation probability converges to

the critical probability of the lattice in the case of increasing finite size clusters. We

also conjectured that the posterior distribution of the bond percolation parameter

‘converges’ to the point-mass distribution at the critical probability in this case.

These theoretical results have implications of combinatorial nature on the relative

number of realisations of the process with a large cluster size. A corresponding

combinatorial characterisation is given in the case of the square lattice Z
d.

We introduced inner-outer design plots by ‘sparsifying’ the underlying lattice

and showed that in the case of incomplete observations for percolation models the

mostly populated design is not necessarily the most optimal design under either of

considered experimental motivations (progressive and instructive scenarios). This

has been done using the MCMC algorithms mentioned above. Chapter 5 con-

cluded by a discussion how the obtained results could be generalised to long-range

percolation models. We also considered deformations of the square lattice as a way

towards identifying a whole class of lattice designs that keep the dimensionality

and cardinality of the design space low.

A problem of grid approximation of a finite set of points is formulated in Chap-

ter 6. We introduced ǫ-optimal approximation grids and described a solution to

this problem. The practical solution that we suggested here combines fast Brucker–

Meyer approximation technique and slow consequent rotations of the grids of op-

timal scaling. We described the corresponding algorithm and discuss applications

of ǫ-optimal approximation grids.

7.2 Contributions of the thesis

We highlight main contributions of this thesis. In this work we
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1 formulated the problem of n-node optimal design for weighted random graphs

using a utility-based Bayesian statistical framework; the design problem was

considered using two different experimentation motivations which we referred

to as progressive and instructive designs;

2 gave an alternative proof of the first-order conditions for the expected utility

based on the Kullback–Leibler divergence (this result was first proved by

Parmigiani and Berry (1994));

3 showed that indefinitely growing or diminishing vertex configurations are

asymptotically the worst designs when the Kullback–Leibler divergence is

employed as a utility; this was shown for the progressive designs;

4 identified possibility and main features of multimodality of expected utility

surfaces in the optimal design problem for random graphs;

5 derived an explicit solution to the problem of optimal design for star-shaped

proximity graphs and proximity graphs in metric spaces; showed how to

solve the design problem in the case of a threshold edge-probability function

numerically;

6 studied inference and optimal design problems for finite clusters from bond

percolation on the integer lattice Z
2; introduced inner-outer lattice designs

and showed that the mostly populated designs are not necessarily the most

optimal designs in the case of incomplete observations under both progressive

and instructive design scenarios;

7 formulated the problem of finding ǫ-optimal approximation grids and de-

scribed a solution to this problem.

7.3 Directions for future work

We identify lacunae of this research and questions to which final (or definite)

answers have not yet been found. We also indicate additional areas of potential

research on the topic of optimal experimental design for random graphs.
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The author believes that the further study of the following questions and prob-

lems would complement the results presented in this thesis:

1 Characterisation of graphs for which the expected utility is unimodal. It

was shown in § 4.2.3 that the expected utility can be a unimodal function

as well as a multimodal function of the design, including the case when the

global mode (or modes) d∗ = (d∗1, d
∗
2, . . . , d

∗
n) is not of the form d∗1 = d∗2 =

. . . = d∗n. When does the unimodality appear and what does it depend on?

Does the ‘steepness’ of the edge-probability have an effect? Is it possible to

derive a characterisation of graphs (via indicating the type of the probability-

edge function for a given utility chosen) for which, for example, the expected

utility is a unimodal function? For metric structures (or star topologies)

such a result would clearly facilitate the search of optimal designs, as it

would allow one to rule out the corresponding type of the optimal design

before choosing the optimisation strategy.

2 Worst case scenarios for indefinitely growing or diminishing configurations—

instructive designs. It follows from Theorem 4.1.1 that the weights of

edges in the optimal experimental graph cannot be all either too small or too

large. This was proved in the case of progressive designs when the Kullback–

Leibler divergence is employed as experiment information quantifying mea-

sure. We strongly believe that the same result holds in the instructive case

as well.

3 Solution to the problem of optimal design for proximity graphs in Eu-

clidean spaces. Theorem 4.2.2 from Chapter 4 states that the solution to

the n-node optimal design problem for star-shaped proximity (geometric)

graphs is explicitly described by n− 1 quantiles of the prior distribution of

the interaction radius, the threshold θ. If proximity graphs are considered

in metric spaces, then the solution to the problem can be obtained numer-

ically as an optimisation problem with linear constraints (Example 4.2.3 in

§ 4.2.4). Can an efficient algorithm be devised in order to solve the problem

for proximity graphs in Euclidean spaces? The same question should also be
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answered in the case of the random graph model with a more general form of

the edge-probability function. Genetical algorithms in MCMC discussed in

Ruiz et al (2007) together with lattice approximation of the graph nodes can

be used for further development of experimental design for random graph

models in regions of Euclidean spaces.

4 Asymptotic behaviour of maximum likelihood estimates for finite per-

colation clusters on arbitrary locally finite graphs. Theorem 5.1.3, proved

in § 5.1.2, states that for square lattices Ld the sequence of maximum likeli-

hood estimates p̂n of the bond percolation probability p stemmed from finite

clusters of size n converges to the critical probability pc(d). Conjecture 5.1.5

states that this convergence is monotone and no estimate from the sequence

exceeds the critical probability. Conjecture 5.1.6 is a strong assertion about

the corresponding sequence of posterior distributions of the bond percola-

tion probability under the same circumstances—it is stated that the limiting

function of this functional sequence is the Dirac delta function, regardless

the choice of the prior distribution. Furthermore, we conjecture that results

similar to the mentioned ones still hold for percolation on any infinite locally

finite graphs. Can such statements be proved or shown to be wrong?

5 Inner-outer design plots. These symmetric designs were constructed for

inference on the percolation parameter when edges are not observed (sce-

nario S1) by removing some sites from square plots. It was shown that

within a class of inner-outer plots the most dense plot (a square with no

removed nodes) may not generally be the optimal design. Are there even

more ‘sparsified’ configurations that outperform inner-outer plots under this

observation scenario? How could we identify them?

6 ε-Optimal approximation grids. A weak point of the (approximate) so-

lution to this problem presented in this thesis is that the optimal orientation

of the coordinate system (grid or lattice) is chosen by consequently rotating

the grid at small angles and applying Brucker–Meyer approximation. Can

the number of grid rotations be reduced or avoided at all?
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7 Graphs as snapshots and temporal graphs. Although random, the graphs

considered in this thesis are static objects. It would be worthwhile to study

design issues, similar to those discussed in the thesis, with regard to temporal

random graphs, that is with regard to a sequence of graphs, possibly on the

same fixed set of nodes with the edge structure changing over time.

8 Independence in edge formations. In our model we assumed that edges

of the random graph appear at random, each being independent of the status

of the rest. This is not always a sensible assumption. This assumption can

be relaxed using so called Markov graphs for which one assumes conditional

independence between an edge and all edges which are not adjacent to it.

Markov graphs have found further generalisations—for example, in the ex-

ponential random graph family. The probability of a given graph from this

family is an exponential function of a linear combination of some ‘relevant’

graph statistics (this kind of generalisation stemmed from a fundamental re-

sult for Markov graphs—the Hammersley–Clifford theorem; see Chapter 5

in Zager (2008) for more details and references).

9 Random graphs with fixed nodes. In our random graph model the edges

are formed randomly but the nodes are fixed and it is their locations that

are controlled in the experiment. However, if we relax the condition that

the number of experimental sites is fixed or change it by setting an upper

bound and allow the nodes to stem from a certain stochastic point process,

then the dimensionality of the design space may be considerably reduced.

For example, one may ask: “What is the optimal intensity of a homogeneous

Poisson point process in R
d in which each pair of points within distance θ

is independently joined with probability p?”. As before, the purpose of such

an experiment is to make inference on the model parameters (θ and p) while

keeping the number of nodes limited. In order to formulate and solve the

design problem within the utility-based Bayesian framework multipurpose

utilities may have to be used.

10 Model discrimination, model robustness and sequential designs in
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optimal design problems for random graphs. These are the issues which have

not been addressed in this thesis. Our primary goal in considering optimal

design problems for models based on random graphs was to make inference

on the model parameter(s). This was done under assumption that the model

in hand adequately described the phenomenon under study. Clearly, this is

not always a sensible assumption and one may want to design an experiment

to actually check its validity by considering a model discrimination problem.

Model robustness is the degree to which the optimal designs depend on the

prior distribution, that is how sensible the solution to the design problem is to

the supplied prior information on the model parameter(s). (See Chaloner and

Verdinelli (1995) and references therein for more details on designs for model

discrimination and robustness to the prior distribution.) Finally, although

sequential designs were not addressed in this paper, the chosen utility-based

Bayesian framework of solving the problem of optimal node arrangement

is perfectly suited for developing the methods of finding optimal designs

sequentially (e.g. see DeGroot (1962) and Müller et al (2007)).
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Appendix A

Solving abx+c = dx + e and

maximising x2/ (ex − 1)

A.1 Equation abx+c = dx + e

The equation of the form

abx+c = dx+ e (A.1)

is a transcendental equation which can be solved using the Lambert W function

(see Corless et al (1996)). This function W (x) satisfies the equation

W (x)eW (x) = x,

which cannot be solved in elementary functions.

Before solving equation (A.1) we notice that the equation tat = A, a>0, can be

solved in terms of the Lambert function as follows: t = W (A log a)/ log a.

We now solve equation (A.1) using the substitution t = −b (x+ e/d). Under

this transformation the original equation (A.1) becomes

tat = A = − b

d
(ac − e),

and, thus,

−bx− be

d
=
W (A log a)

log a
,

producing the solution

x = −W (− b log a
d
a(c−be/d))

b log a
− e/d.
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Figure A.1: Intersection of the graphs of functions e−x = 1− x/2 and 1− x/2, x > 0.

In particular, if e−x = 1 − x/2, then a = e, b = −1, c = 0, d = −1/2, e = 1,

and the solution is x = W (−2e−2)− 2 ≈ 1.593624.

A.2 Maximisation of x2/
(
eθx − 1

)

We start with the observation that in order to maximise the function

x→ x2/
(
eθx − 1

)
, x > 0, (A.2)

where the value of the parameter θ > 0 is fixed, it is sufficient to maximise the

function f(x) = x2/ (ex − 1), since f(θx) = θ2f(x); this means that the maximum

x∗θ of (A.2) relates to the maximum x∗ of f(x), as follows: x∗θ = x∗/θ. We will find

x∗ now.

The derivative f ′(x) of f(x) is as follows:

f ′(x) =
(2− x)ex − 2

(ex − 1)2
,

and equating this derivative to zero is equivalent to solving the equation e−x =

1 − x/2 when x > 0. This equation has a single root in (0,+∞), as is shown in

Figure A.1; its value x∗ found in Appendix A can be expressed in terms of the

Lambert special function W (x) as follows: x∗ = W (−2e−2) − 2 ≈ 1.593624. It

follows that x∗θ = (W (−2e−2)− 2)/θ ≈ 1.593624/θ.
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Appendix B

Dirac delta function

The delta function was introduced by the English physicist Paul Dirac (1927,

1958) in the context of quantum mechanics. This notion relates to previous work

by G. Kirchhoff and O. Heaviside (see Jammer (1966)). The delta function is a

reflection of Dirac’s idea of constructing a strictly localised function on the real

numbers: δ(x) is zero for any x, except for x = 0, where it is peaked. The following

characteristic property makes this idea more precise:

∞∫

−∞

f(x)δ(x− x0)dx = f(x0)

for any smooth and absolutely integrable function f . This identity is called the

sifting property of the delta function.

The delta Dirac function can be defined as a limit of a sequence of functions.

A delta or Dirac sequence of functions gn(x), n ∈ N, is a sequence of non-negative

strongly peaked functions for which

lim
n→∞

∞∫

∞

gn(x)f(x) dx = f(0)

for any smooth and absolutely integrable function f(x).

Equivalently, a delta sequence {gn}∞n=1 satisfies the following conditions:

1 gn(x) ≥ 0 for all n and all x ∈ R.

2
∞∫
∞
gn(x) dx = 1 for all n.
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3 For every γ > 0 and ǫ > 0 there is N ∈ N, such that for all n > N

∫

R\[−γ,γ]

gn(x) dx < ǫ.

A delta sequence {gn}∞n=1 ‘converges’ to, or generates, the Dirac delta function

δ(x). Shifted delta function δ(x−x0) can be considered by appropriate shifting in

the construction presented above.
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Appendix C

Integration of polylogarithms

We consider the following integral:

Iα(d) :=

∞∫

0

e−αθ(1− e−θd) log(1− e−θd) dθ, α, d > 0.

This integral can be reduced to an integral of a polylogarithm (and hence com-

puted analytically for some particular values of d = d(α)) using the following

change of variables:

x = e−θd, dθ = − 1

xd
dx.

Thus,

Iα(d) = −1

d

0∫

1

xα/d

x
(1− x) log(1− x) dx

=
1

d

1∫

0

yκ−1(1− y) log(1− y) dx

=
1

d




1∫

0

yκ−1 log(1− y) dx−
1∫

0

yκ log(1− y) dx


 , (C.1)

where κ := α/d.

Suppose that κ ∈ N. In this case ((4.2.4) in Devoto and Duke (1984, p.30))

∫ 1

0

xκ log(1− x) dx = − Hκ

κ+ 1
,
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Figure C.1: Plots of the function Iα(α/κ) when α is fixed, κ ∈ [0, 14] (α =

0.5, 0.6, . . . , 3). The plots have been obtain both by using numerical eval-

uation of integrals in (C.1) and representation (C.3).

where Hκ is the κth harmonic number:

Hκ :=

κ∑

i=1

1

i
.

Thus we obtain:

Iα(α/κ) = α−1

(
κ

κ+ 1
Hκ+1 −Hκ

)
, for all κ ∈ N. (C.2)

It is interesting to note that the representation (C.2) can further be generalised

for any κ ∈ R+ providing an alternative to numerical evaluation of integrals par-

ticipating in (C.1). This can be done using the fact that a harmonic number Hκ

can be expressed analytically as follows (Sondow and Weisstein (2009)):

Hκ = γ + ψ(κ+ 1), (C.3)

where γ is the Euler-Mascheroni constant (γ = 0.577215664901 . . .) and ψ is the

digamma function, ψ(z) = Γ′(x)/Γ(z). Thus, it follows that

αIα(d) =
αψ(α/d+ 1)− γd

α + d
− ψ(α/d), (C.4)
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and the right-hand side of (C.4) depends on the ratio α/d only.

Figure C.1 depicts plots of Iα(α/κ) (for some fixed values of α) obtained using

numerical evaluation of the integrals in (C.1) on the one hand, and (C.3) on the

other hand—the plots thus obtained, corresponding to the same values of α, are

practically indistinguishable.
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Appendix D

Realisation of 6 distances in R
3

Let us assume that we are given a set of non-negative numbers d12, d13, d14, d23,

d24, d34 satisfying the triangle inequalities:

dij + djk ≥ dik, i, j, k = 1, 2, 3, 4. (D.1)

Are there such points U1, U2, U3 and U4, all from R
3, that dij equals the distance

between Ui and Uj?

Let us fix any two points from R
3 calling them U1 and U2 such that the length

of the segment U1U2 is d12. Since all our considerations are valid up to an or-

thonormal transformation, we can assume without loss of generality that U1 and

U2 are symmetric with respect to the centre O of the coordinate system Oxyz and

lie on the coordinate axis Ox: U1 = U1(−d12/2, 0) and U2 = U2(d12/2, 0).

Consider the plane Oxy. It is straightforward to find points T1 and T2 in this

plane such that

U1T1 = d13, U2T1 = d23

U1T2 = d14, U2T2 = d24.

Indeed, the point T1 lies on an ellipse E1 with U1 and U2 as its foci, the semi-major

axis a = (d13 + d23)/2, and the semi-minor axis b =
√
a2 − U1U2

2 =
√
a2 − d212.

Analogously, the point T1 lies on an ellipse E2 with U1 and U2 being its foci, the

semi-major axis a = (d13 + d23)/2, and the semi-minor axis b =
√
a2 − U1U2

2 =
√
a2 − d212. Figure D.1 illustrates this construction and all subsequent construc-

tions.
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Figure D.1: Realisation of 6 distances in R
3: a working scheme.

The distance between T1 and T2 will not generally be d34. To achieve this

we consider two circles C1 and C2 contained in the planes which are perpendic-

ular to U1U2: these circles are such that C1 contains T1 and C2 contains T2. If

min(C1, C2) ≤ d34 ≤ max(C1, C2), where min(C1, C2) is the shortest distance be-

tween C1 and C2 and max(C1, C2) is the longest distance between C1 and C2, then

two points U3 and U4 can be identified (in a non-unique way!) on C1 and C2,

respectively, such that the pairwise distances between the points of the configura-

tion U1U2U3U4 equal to the given non-negative numbers d12, d13, d14, d23, d24, d34

satisfying (D.1).
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Appendix E

Gamma distribution, infectious

times and site percolation

Site percolation may be approximated arbitrarily closely by an SIR epidemic model

with infectious time distribution which with some sufficiently small probability

takes some sufficiently large value, and which otherwise takes the value zero. We

first briefly describe site percolation and then construct a sequence of gamma

random variables with the mentioned property.

Site percolation model can be described as follows. One declares each vertex

of the grid L
d open with probability p, independently of the status of the other

vertices. The vertices which were not declared open are declared closed. A path on

lattice is called open if it consists of open vertices. Similarly to bond percolation,

the open cluster C(x) at x is defined as the set of all vertices ‘reachable’ by open

paths from x (if x is closed then C(x) is empty). It is easy to see that our SIR

epidemic model with an improper distribution of infectious times which takes the

value +∞ with probability p and the value 0 with probability q = 1−p corresponds

to site percolation (in the sense that the distributions of site configurations as

epidemic outbreaks and open clusters in percolation coincide).

Consider a sequence of gamma random variables Xn ∼ Γ(κn, θn). Here κn is a

shape parameter of Xn, θn is its scale parameter, and the p.d.f. of Xn is as follows:

fn(x; κn, θn) =
1

θκnΓ(κn)
xκn−1e−x/θn .

Fix some q ∈ (0, 1), and let κn → 0 as n → ∞. Let also θn = q−1/κn, and note
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that both the sequence of means of Xn and of the corresponding variances diverge:

EXn = κnθn = κnq
−1/κn → ∞,

VXn = κnθ
2
n = κnq

−2/κn → ∞.

The sequence of random variables Xn converges in distribution to the following

discrete random variable X with the support consisting of just two points:

P(X = 0) = 1− P(X = +∞) = q.

To show this we take an arbitrary positive number x0 and calculate

lim
n→∞

P (Xn ∈ [0, x0]) = lim
n→∞

x0∫

0

fn(x; κn) dx, (E.1)

where fn(x; κn) =
q

Γ(κn)
xκn−1e−xq1/κn . Note, however, that e−xq1/κn converges uni-

formly to 1 as n→ ∞ on any closed interval [0, x0], and therefore

lim
n→∞

P (Xn ∈ [0, x0]) = lim
n→∞

qxκn
0

Γ(κn + 1)
→ q. (E.2)

Hence the limit (E.1) does not depend on x0. It follows that the limiting cumulative

distribution function corresponds to an improper distribution with the mass q at

x = 0 and mass 1− q at x = +∞.

Alternatively, this result can be proven using the series expansion for the in-

complete gamma function γ(x; κ) =
x∫
0

e−ttκ−1 dt (Bowman and Shenton (1988)):

γ(x; κ) = xκ
(
1

κ
− x

1!(κ+ 1)
+

x2

2!(κ+ 2)
− . . .

)
, (E.3)

so that when κn → 0

P(Xn ≤ x0) =
γ (x0/θn; κn)

Γ(κn)
(E.4)

behaves as follows:

P(Xn ≤ x0) ∼

(
x0

q−1/κn

)κn

Γ(κn)

1

κn
=

qxκn
0

Γ(κn + 1)
→ q, n→ ∞.

The last limit does not depend on the chosen x0 > 0.
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