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Abstract

This thesis presents the modelling and control of a high gearratio robotic manipulator

mounted on a heavier moving base which is subject to base disturbances. The manipulator

motion is assumed not to affect the base motion. The problem of a robotic manipulator on

a non-inertial base can be applied to operation on sea vessels or all-terrain vehicles, where

the base motion is unknown and cannot be used as a feed-forward signal to the model.

A dynamic model is derived for the PA10-6CE manipulator with the assumption of a fixed

base and the model terms are analysed numerically when comparing the simulation and

experimental results. Based on the obtained results a set of model based controllers is

compared to a basic proportional and derivative type controller to evaluate the trajectory

tracking gains and trade-offs.

The dynamic model is extended to the case of a manipulator on amoving base and nu-

merical comparisons of simulation and experimental results are used to verify the model

validity and the significance of the various model terms. From the results of this study

a set of model based controllers is obtained. A novel adaptive scheme is then proposed

for compensation of an unknown and varying gravity acceleration vector acting on the

manipulator base. Controllers based on using an additional sensor output are compared

with static and adaptive gravity controllers and the latterproved to be superior in terms of

trajectory tracking performance.
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Chapter 1

Introduction

1.1 Motivation

The subject of manipulator control has been widely studied over the past three decades

and there is a significant volume of theoretical and experimental results available. An

introduction of a new product to the robotic manipulators market always triggers a num-

ber of researchers to evaluate the available models/controllers with the new device. The

Intelligent Robotic Systems Laboratory at Heriot-Watt university obtained one of the first

PA10-6CE robotic manipulators and it has become an importantarea of study due to the

lack of models/experimental results for this particular device. It allows easy torque con-

trol implementation due to the open controller architecture and presents new challenges

in the modelling field due to its high ratio harmonic drive transmission and the significant

friction contribution in the dynamic model.

With the increasing computational capacity of computers, it has also become a simple

task to derive and evaluate complex non-linear manipulatormodels and model-based con-

trollers. The models become even more complex when the manipulator is mounted on a

moving base and the dynamics of the manipulator can be influenced by this motion. There

are multiple applications of this scenario:

• manipulator mounted on a vessel at sea (disturbed by the waves, [1.1], [1.2], per-

forming tasks on this vessel, such as operation of high loads, or high speed tasks

such as automated ammunition loading of a cannon; the manipulator could also be

used to launch AUVs (autonomous underwater vehicles) or move loads to another

vessel or an oil platform.

• manipulator mounted on a moving vehicle (such as a Mars lander, an all-terrain car

or a tank, [1.3]) performing automated or remote-controlled tasks.

In both these cases two issues arise, the dynamics of the manipulator (and the load) are

disturbed by the base motion and the position of the end-effector in the global (terrain/sea

attached) coordinate system is disturbed. The dynamics disturbance problem can be ap-

plied directly to the task of a manipulator operating objects on a common (moving) base.
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Figure 1.1 presents the lab set-up of the PA10-6CE manipulator mounted on the CueSim

motion platform.

Figure 1.1: Intelligent Robotic Systems Laboratory PA10 andmotion platform set-up.

1.2 Aims and objectives of thesis

This thesis addresses the manipulator dynamics when it is attached to a non-fixed base by

analysing the dynamics of a manipulator on a fixed base and later extending the model to

a moving base. Several control schemes employing the model and external measurements

to improve the joint angle tracking precision are thoroughly assessed. The following can
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be listed as research objectives:

• Derivation of the dynamic model for the PA10-6CE robotic manipulator (with fixed

and moving base). This is representative of a broad range of geared manipulators

with high transmission ratio and significant joint frictiondynamics.

• Analysis of the terms (inertia, Coriolis and centrifugal, gravity, friction) within the

dynamic model based on quantitative comparisons of model simulation and actual

manipulator experiments.

• Experimental comparison of non-model based and model basedcontrol in terms of

angle tracking errors and torque energy dissipation due to high frequency control

signals for the fixed and moving base cases.

• Based on knowledge obtained from analysis of the manipulatormodel and the con-

trollers’ performance a controller is designed which compensates for base motion

without any additional sensor input.

Possibilities for extending the presented solution to the global position disturbance issue

are mentioned in thefuture worksuggestions.

1.3 Thesis organisation

The Thesis is organised in nine chapters:

1. Introduction - briefly explains the motivation and aims of the research presented

and outlines the thesis structure.

2. Background and literature survey - presents a literature survey of the topics pre-

sented in this research. Modelling techniques for friction, harmonic drives and

robotic manipulators are introduced with examples of implementation and discus-

sion of obtained results. Control strategies for robotic manipulators are reviewed

featuring non-model based, model based methods and adaptive schemes. Finally,

examples of research with manipulators on a moving base are presented and a rele-

vant classification of this research is performed.

3. Kinematics and dynamics modelling- presents details about the kinematics and

dynamic modelling of a robotic manipulator. The Denavit-Hartenberg method for

forward kinematics and the Euler-Lagrange approach to determine the explicit ma-

nipulator dynamics are presented. Finally, a review of friction models and their

shortfalls and advantages is presented.

4. Model derivation and estimation of the PA10-6CE manipulator parameters

- presents details about the dynamic model derivation and initial model evalua-

tion results. The derivation of the gravity term from kinetic energy is presented.
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The calculation of geometric link models with a density distribution matching the

manufacturer’s data on mass centres is used to derive the inertial and Coriolis and

Centrifugal terms. Experimental estimation of motor inertias is performed. A non-

parametric friction model is estimated based on constant velocity movements of

each joint.

5. Joint angle control of the PA10-6CE manipulator - presents details on joint

torque control algorithms and compares their performance based on angle tracking

errors and torque energy dissipation due to high frequency signals. A comparison

of the PA10-6CE dynamic model (with friction) is shown by means of joint torque

differences between simulation and experiment for the manipulator commanded

to follow a given trajectory. Furthermore, a comparison of various manipulator

controllers is shown based on experimental results obtained with the PA10-6CE

manipulator.

6. Description of base disturbance- the experimental set-up used to model and mea-

sure the base disturbance is presented along with details ontrajectories used in the

simulations and experiments. Details on available sensor measurements (and their

processing) and platform motion commands are presented.

7. Modelling a robotic manipulator on a moving platform - presents a derivation of

a mathematical model of a robotic manipulator on a moving base for a general case,

with the assumption that the base motion is not affected by the manipulator dynam-

ics and is considered as a parameter (positions, velocitiesand accelerations) of the

model. Similarities and differences from the the fixed base model are highlighted.

Simulation and experimental results for the PA10-6CE on a platform moving in

2-DOF (roll and pitch) are compared quantitatively by meansof joint torque differ-

ences to evaluate the significance of model terms.

8. Control of the PA10-6CE robotic manipulator on a moving base- presents de-

tails on extension of the fixed base controllers to compensate for base motion and

presents adaptive model based control schemes for a roboticmanipulator with a

comparison of fixed-base, sensor based and adaptive schemes. The fixed-base con-

trollers are extended to read the gravity vector from eitheraccelerometer sensors

mounted on the moving base or from roll+pitch inclinometers. Adaptive model

based control is employed to compensate for gravity changesinduced by base mo-

tion. Fixed gravity model based controllers are compared quantitatively with sensor

based and adaptive model based controllers by means of trajectory tracking errors

and torque energy dissipation due to high frequency signals.

9. Conclusions- presents summary remarks on the research, lists the author’s contri-

butions and suggestions for future work.
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Chapter 2

Background and literature survey

2.1 Introduction

The field of robot control can be considered to be an amalgamation of multiple engi-

neering and mathematical disciplines, such as mechanics, electronics and cybernetics1

alowing to design, model and implement a particular system.It requires a combination

of knowledge of the mechanical and electrical constructionof a robot with the ability to

model its behaviour. It further utilises a number of mathematical tools to design a device

able to command a robot to perform desired tasks. Computer programming skills are also

required to accomplish these tasks. Therefore, this inter-disciplinary problem has a broad

knowledge requirement.

This chapter presents the background knowledge for this thesis together with recent and

past attempts at similar problems.

Considering the construction of the robot, two classes can bedistinguished:

• Serial manipulators - consisting of a single chain of links interconnected with joints,

to achieve higher dexterity at the cost of lower accepted loads.

• Parallel robots - consisting of multiple chains of links interconnected with joints, to

handle high loads compromising the dexterity.

This classification is slightly limited, since in practice stacked parallel robots forming

a serial manipulator, or multiple serial manipulators operating a single object forming

a parallel robot can be found. For a general introduction to manipulator modelling and

control, the classical references are Craig [2.15] and Sponget al. [2.63]. Parallel robots

are described in [2.48] and detailed work on two of the most popular types of platform

configurations are presented in [2.24] and [2.64].

The following areas of modelling and control of robotic manipulators and mechanical

systems are considered in more detail (and constitute the structure of this chapter):

• Modelling of manipulators and their mechanical elements.

1Cybernetics is considered by the author to the discipline researching the notion of feedback in systems.
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• Position control of a robotic manipulators with fixed base.

• Modelling and control of a robotic manipulators with non-fixed base.

2.2 Modelling of manipulators

The following areas of modelling of mechanical systems are considered as an overview

of the background material used in this research:

• Friction and harmonic drive models.

• Manipulator models (based on the mechanical construction).

2.2.1 Friction and harmonic drive modelling

The two topics are combined, since the PA10 manipulator usedin this research has har-

monic drive transmission on all joints and the friction present in the dynamic model can

be attributed to this feature.

2.2.1.1 Friction models

The friction models are presented in detail in section 3.4.2. A very broad and detailed

overview of friction effects and models can be found in [2.4]and [2.5]. One of the

most popular recent friction models (the LuGre model, not employed in this research)

is presented in [2.10]. Interesting remarks about simulation of systems with friction (both

classical ’static’ and the dynamic LuGre model) have been presented in [2.17].

2.2.1.2 Modelling harmonic drives

The harmonic drive is a high ratio transmission type and consists of three elements:

• an elliptical wave generator,

• a flex spline,

• a circular spline.

A schematic of a harmonic drive is shown in figure 2.1. The wavegenerator rotates inside

the flex spline and causes its deformation. The difference ofone tooth between the flex

spline and the circular spline leads to the flex spline rotating by one tooth with respect

to the circular spline every half rotation of the wave generator. The harmonic drives are

characterised by2:

• high speed reduction ratio,

2source: www.hds.co.jp
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Figure 2.1: Schematic of a harmonic drive (source: HarmonicDrive Systems website).

• no backlash,

• high precision,

• simple assembly,

• light weight,

• high torque capacity,

• high efficiency,

• quiet operation.

However, there is a tendency for a ’wind-up’ effect (torsional spring rate) and a complex

friction behaviour. This originates from the flexibility ofthe cup-shaped flexspline ele-

ment - when torque is applied to the wave generator and the circular spline is fixed (e.g.

due to stiction), the energy is temporarily stored in the form of material deformation, and

later released creating a torsional spring effect.
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Luh, Fisher and Paul present a controller for harmonic drives with strain gauges mounted

on the flex spline in [2.44]. The frequency response of the controller depending on gains

is considered and it is concluded that turning the gains up above a certain limit causes

disturbances in the transmission and poorer trajectory tracking performance. Tuttle and

Seering look at the dynamics of the harmonic drive transmission in [2.72], [2.73] and

make the following observations:

• the kinematic uncertainties in the transmission cause resonant behaviour and lead

to loss of energy and vibrations,

• the non-uniform friction leads to velocity fluctuation at constant torques,

• the friction dominates the drive dynamics and depends both on velocity and posi-

tion,

• there are hysteresis and compliance properties in the transmission dynamics.

Another approach is taken by Taghirad and Belanger in [2.65] and [2.66]. The authors

install strain gauges on the flex spline and discover that thegear dynamics are dominated

by the tooth friction and the wave generator bearing friction (due to it acting on the high

velocity/low torque port of the transmission). A Kalman filter is suggested to cancel the

torque disturbance in the gear. Kircanski [2.34] looks at the modelling of harmonic drives

in robotic manipulators for both position and force controlsetups.

2.2.2 Manipulator models

In order to model a manipulator, its mechanical properties require analysis. In robotics,

two types of models are distinguished:

• kinematic models - analysing the dimensions of a manipulator and the instanta-

neous relation between the position of any point associatedwith the manipulator

and the joint configuration. The following coordinate sets are typically used in this

framework:

– joint configuration (also called joint coordinates or jointspace),

– base coordinates (also called global or task space),

– end effector coordinates.

The models can also be classified as:

– forward kinematics - takes the joint configuration as input and provides the

position of a given point (rigidly associated with the manipulator) in the global

coordinates,

– inverse kinematics - transforms the position of a point to the joint configura-

tion.
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The latter is usually a more complex task due to solution non-uniqueness.

• dynamic models - considering the masses and inertias of rigid bodies constituting

a manipulator and inferring the system response to a set of input excitations. The

dynamic models require the forward kinematics to relate motion of all joints. There

are two typical approaches to manipulator dynamic modelling:

– explicit - based on Euler-Lagrange or Hamilton equations,

– implicit - based on recursive Newton-Euler equations.

Details of Euler-Lagrange manipulator modelling are presented in chapter 3. The foun-

dations of forward kinematic models have been presented by Devavit and Hartenberg in

[2.16]. A general overview of manipulator modelling can be found in [2.33] or [2.36].

The manipulators can further be classified in two groups based on the type of transmission

• direct drive manipulators - without any gearing/transmission between the actuator

and the joint

• geared manipulators - with additional mechanical elementstransmitting the actuator

force/torque.

It can immediately be identified that the second group may have additional elements in

the dynamic model in comparison to direct drive systems. Themanipulator employed in

the simulation and experimental research in the this project has a power transmission on

all joints and therefore the review focuses on geared manipulators.

2.2.2.1 PUMA 560 models

One of the most popular and widely used manipulators in research labs (including the

Intelligent Robotic Systems Laboratory at Heriot-Watt University) is the PUMA. There

have been several versions of this manipulator originatingfrom different manufacturers.

This popularity can be attributed to the ease of replacing the original controller with one

delivering direct access to the motor torque command. The mechanical modelling results

obtained for the PUMA manipulator can be viewed as a broad base to analyse the dynam-

ics of robotic manipulators. A picture of the PUMA 560 manipulator is shown in figure

2.2.

In the early 80s the computing technology did not allow for automated symbolic deriva-

tions, and therefore many of the first approaches have been hand-derived. Tarn and Be-

jczy [2.68], [2.69] derived by hand the equations of motion for the first three joints of the

manipulator and computed by hand the inertias and mass centres of all the links based on

technical drawings, material density tables, and geometric models. Armstrong and Khatib

[2.3] disassembled the manipulator to measure and weigh itselements. They use a me-

chanical setup to estimate the principal link inertias fromfundamental mode oscillations.

A feedback controller is employed to estimate motor inertias and the model is further
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Figure 2.2: PUMA 560 manipulator (source: www.alaska.edu).

simplified by means of removing insignificant incorporatingelements from the dynamic

equation to reduce the computational load. (It needs to be noted that these authors were

using a 100kFLOP computer and at present one can easily have access to GFLOPS of

computing power). Neuman and Murray [2.53] created a computer program to automate

the derivation of manipulator dynamic equations (with an assumption of diagonal link

inertias) and present a full model for the PUMA manipulator.A review of multiple mod-

els and comparison of obtained results and computational requirements is presented by

Corke and Armstrong-Helouvry in [2.13].

2.2.2.2 PA10 models

The PA10 general purpose manipulators from Mitsubishi Heavy Industries have recently

(in the past 10 years) started gaining popularity due to an open controller architecture

allowing for easy command of joint torques. This is a new manipulator design creating

space for research in dynamic model derivation and identification. There are two versions

of this manipulator, a 6-DOF and a 7-DOF, with a different shape of the shoulder link.

The manufacturer provides a schematic with mass centres foreach link, which can be

used for partial model derivation.
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Jamisola et al. presented the first set of dynamic parametersfor the 7-DOF version in

[2.29], [2.28]. An identification method called ’dominant inertia’ using linear friction

compensation and oscillatory control of each joint was usedto obtain the lumped iner-

tias. A model for static, Coulomb and Viscous friction was also obtained. Olsen and

Petersen present a novel Maximum Likelihood mathematical method for dynamic param-

eter identification and present a set of obtained parametersfor the first two joints of the

7-DOF PA10 in [2.54]. Another interesting approach is presented by Kennedy and Desai

in [2.31], [2.32] for the 7-DOF version. The authors assume low velocity motion and ig-

nore the inertial parameters of the joints. The focus is on the harmonic drive transmission

and an in-depth analysis of velocity and position dependantfriction is performed together

with the model of transmission compliance. The gravity element is also considered. Ham-

ner measured the positioning precision of the PA10 manipulator and verified the harmonic

drive transmission compliance against the technical parameters of the gearing in [2.25].

The author of this work has presented the inertias and nonparametric friction curves for

the 6-DOF version in [2.77]. Sekimoto and Arimoto employ a model of the first six joints

of the 7-DOF PA10 and present the joint and motor inertia parameters and the identified

friction parameters. Bompos, Artemiadis et al. identify thedynamics of the 7-DOF PA10

with Stribeck friction and transmission compliance model in [2.7] and employ a feedback

linearisation controller based on the model.

A different approach is taken in [2.41], where the PA10 manipulator is considered to

have rigid links and flexible joints. However, the full flexible joint 4-th order dynamics

equations have been simplified to a typical 2-nd order systemaugmented by the motor

angles to improve the regressor matrix robustness (the flexibility is considered small,

which created matrix conditioning problems). An identification is performed for each

joint in two steps, first the physical parameters and viscousfriction; the flexibility is

tackled in a separate step. Since the joint angle cannot be measured (only the motor

angle can) an external position measurement system is used and the required quantities

are derived from these measurements.

2.3 Manipulator control

The area of manipulator control has been widely studied overthe past 30 years. There

is ample literature and results covering various strategies and implementations of con-

trollers. Depending on the input type, the following can be distinguished:

• position control - the desired position is used as a reference,

• force control - the desired force (typically expressed in the end-effector coordinate

frame) is used as a reference and compared against a force sensor measurement.

It can be further differentiated by the coordinate system inwhich the desired position/trajectory

is defined:
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• joint control,

• resolved control (in the task or actuator space).

Depending on the type of command, the following groups can beconsidered:

• point-to-point control - with only discrete points given asynchronously,

• continuous path tracking - with desired position for each control cycle.

Considering the mathematical approach taken to control, it can be split into

• model/stability based (also calledhard-control),

• heuristic method based (e.g. neural networks, genetic algorithm – also calledsoft-

control).

A general overview of robot control techniques is presentedin [2.59] and [2.71]. Details

of the force control approach can be found in [2.9]. An overview of neural networks in

robotics is presented in [2.79]. This is not discussed further in the thesis as only hard-

control methods are investigated. The control algorithms used in this thesis are presented

in detail in sections 5.1 (non model based and non-adaptive model based) and 8.2.1 (adap-

tive model based).

2.3.1 Robust control

In the case of robust control the manipulator is generally treated as a black box with-

out any knowledge about its dynamics, only some assumptionsabout the order of the

system can be made based on response types. A simple PD controller combined with

torque sensor measurements on the drive shaft is shown in [2.26] to compensate for all

unknown forces. Qu and Dorsey present the proof of ultimate uniform boundedness on

the tracking error of a PD controller in [2.57]. A linear single-input-single-output (SISO)

approach to joint control is presented in [2.23], where an additional filter is added to the

control loop to compensate for unmodelled disturbances (actual nonlinearities). It is also

shown that in the absence of friction and gravity the step input error converges to zero.

An interesting adaptive gain PD controller is presented in [2.46], however the gain can

only increase, which is not desirable for systems with harmonic drive transmission. An

interesting study of torque disturbances in control of coupled conveyor belts is presented

in [2.27]. The authors compare different tuning strategiesfor the PID controllers and

add additional linear filters on feed-forward and feed-backsignals to improve bandwidth.

The author of this work presented a comparison of robust controllers for the PA10-6CE

manipulator in [2.78]. An interesting implementation of adaptive gravity control without

any model structure, based only on tracking errors is presented in [2.21] allowing algo-

rithm portability to any robotic system. However, limits onthe feedback gains are not

considered.

12



2.3.2 Model based and adaptive control

Model based control of robotic manipulators utilises the knowledge about the mathe-

matical model of the system, to reduce the control gains and the wear and tear of the

actuators/transmission. The parameters of the system are not always known to the con-

trol designer, therefore different techniques are employed to work around this issue. The

parameters can be calculated based on some geometric/design knowledge or can be iden-

tified using statistical methods. They can also be assumed unknown and an adaptive

scheme employed to identify them on-line, based on the system and desired state.

Extending the basic controllers presented in [2.63] and [2.15], Kreutz presents an exact

linearisation for a robotic manipulator performed in the task space in [2.37], where both

the dynamics and kinematics are used to obtain a linear modelin the Cartesian coordi-

nates. Tarn et al. present an extension of the standard second order model adding the

motor dynamics in [2.70]. The manipulator is controlled in the task space and a compar-

ison shows the reduction in tracking error after considering the motor dynamics (which

creates a hybrid slow (mechanical) and fast (electrical) model).

The foundations for multivariate adaptive control for linear systems are laid in [2.8] with

stability proofs. However, more research was required to apply this kind of control to

a robotic manipulator with nonlinear dynamic model. Craig etal. show the first adap-

tive computed torque controller for a robotic manipulator in [2.14] with some strong

assumptions of a non-singular inertia matrix (with adaptedparameters, which may not

represent a valid physical system) and a requirement for joint acceleration measurements.

The convergence of control error is shown even with a condition of boundedness for the

unknown inertial parameters. This in turn requires prior knowledge of suitable bounds.

Middleton and Goodwin take a slightly different approach tothe dynamic equations and

by adding a filter on the torques avoid the requirement of joint acceleration measurements

in [2.49, 2.50]. The authors also present a general proof forthe linear dependence of the

manipulator dynamics equation terms on the unknown parameters. Sadegh and Horovitz

go one step further and deliver an adaptation scheme not requiring the inversion of the

inertia matrix or the measurements of joint accelerations in [2.58]. The adaptation rule

is based on velocity tracking error and the authors mention that the model can be calcu-

lated either along the measured joint positions or along thedesired trajectory (which at

that point was a significant simplification allowing off-line calculation of the feed-forward

terms in the model).

Slotine and Li approach the control of a robotic manipulatorin [2.61, 2.60] by shaping the

energy function and utilise the passivity properties of thedynamic equations to derive an

adaptive controller feeding back the model calculated using the measured positions and

velocities. The new adaptation rule utilises both velocityand and position tracking errors.

Notes are made about the requirement of persistent excitation properties of the trajectory,

to provide enough variability to the adaptation regressor matrix. The adaptation is further

extended by adding an estimate of the unknown parameter prediction error and an adap-
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tation algorithm in the task space (including hybrid position/force control) is presented. It

is also stated that the adaptation gains need to be adjusted if the unknown parameters are

not constant. Convergence is shown for all presented types ofadaptation.

Wen and Bayard present a computed torque algorithm (with model evaluated along the de-

sired trajectory) without exact linearisation in [2.75] and extend it to an adaptive scheme

in [2.6]. The stability properties of various cases are analysed and conditions on feed-

back gains are made depending on the desired trajectory and starting conditions. The

controllers are further extended with adaptive feedback gains, when the trajectory and

start point conditions are unavailable. Spong and Ortega show an alternative way to avoid

the condition of inertia matrix invertibility by applying ageneric model in [2.62] with

estimated constant inertia, Coriolis and centrifugal and gravity terms and add corrections

based on an adaptive scheme.

A review of different robust and model based control schemesfor robotic manipulators

is presented in [2.1]. An interesting comparison of variousadaptive and non-adaptive

controllers is presented in [2.76]. The controllers are applied to two types of manipula-

tors with direct-drive and geared joints, Coulomb and viscous friction is considered. The

authors show that the Wen-Bayard controller performs best inboth fixed-parameter and

adaptive controller groups. It is also shown that for very fast motion, when the ma-

nipulator cannot follow the desired trajectory, the Wen-Bayard controller can lead to

significantly worse performance or even instability (assuming fixed control gains). An

interesting property of geared manipulators is stated and shows that the friction model

dominates the inertial and Coriolis and centrifugal terms inthe manipulator dynamics

equations. Therefore, a PD controller with friction compensation is suggested for such

cases. Moreover, it is stated that when the desired trajectory is changed during the oper-

ation, the adaptive controllers re-tune within seconds. Another comparison of robust and

model based controllers is presented in [2.45] with less elaborate comparisons, but similar

general conclusions about the advantage of adaptive versusfixed-parameter controllers in

the case of incomplete parameter knowledge.

Arimoto combined an adaptive controller updating the parameters in the gravity compen-

sation term with a PID controller and performs task space control in [2.2]. A completely

different approach to adaptive gravity compensation by means of hydraulic design (not

model based) is presented in [2.38].

2.4 Manipulator on a moving base

The majority of manipulator dynamic and kinematic modelling work applies to fixed base

robots, where the manipulator is attached to an inertial coordinate system and no external

forces influence its motion. Such assumption does not alwayshold, consider for example

one of the following:

• manipulator attached to an underwater vehicle (e.g. a remotely operated vehicle or
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a submarine),

• manipulator attached to a space vehicle (e.g. a satellite ora shuttle),

• manipulator attached to a water vessel (e.g. a ship or a floating oil platform),

• manipulator mounted on a vehicle driving on uneven surface.

It can be noticed immediately that in such cases the dynamicsof the manipulator can be

influenced by additional forces. In the case of underwater operation - fluid dynamics drag

effects originating from the vehicle moving and buoyancy/gravity changes from varying

orientation. The case of space vehicles presents differentissues, due to no gravity effects

and a free-floating base. Both devices (the manipulator and the base) influence the system

dynamics. In the case of a manipulator mounted on a water vessel, the motion of the base

comes from the sea state and is often difficult to predict withhigh accuracy and measure-

ments, or special tracking systems are required. The following types of interaction can be

distinguished depending on the relative mass/inertia of the system elements:

• Light manipulator on a heavy base - in this case the motion of the manipulator

would hardly affect the dynamics of the base, and can be considered negligible,

however, the base motion could have a significant effect on the manipulator dynam-

ics.

• Manipulator and base with comparable weights - in this case the base motion influ-

ences the manipulator, and the manipulator motion influences the base.

• The third option of a heavy manipulator and light base is rather unlikely.

These dynamic disturbances create new problems in control.For the heavy base and light

manipulator, the fixed base model does not apply and additional torques appear that can

impact the system performance (e.g. the actuator torques may saturate and large tracking

errors can occur). In the case of comparable weights, the motion of the manipulator can

displace and change the base orientation affecting the kinematics model.

A dynamic model of a 1-DOF robotic manipulator on a 3-DOF moving platform is pre-

sented in [2.30]. The authors assume that the platform follows a random motion pattern

(like a manipulator mounted on a vehicle driving on an unevensurface) and apply a feed-

back linearisation algorithm with PID controller to the linearised system. The integrator

helps deal with the disturbance, but also introduces stability issues. Tanner measures the

base motion disturbance and adds a non-linear compensator to a generic linear controller

in [2.67]. A dynamic model for a 2-DOF manipulator on a 2-DOF (pitch + Z) platform is

derived (for the application of tank cannon munition loading) and the model parameters

are obtained based on cylindrical link shapes. A linear model is estimated along the de-

sired trajectory and used to design SISO and MIMO controllers. These are shown not to

perform well in the presence of base disturbance and readings from four sensors are added

(angle, angular rate, angular acceleration and linear acceleration) and incorporated into a
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nonlinear compensator combined with the SISO and MIMO controllers. This controller

is shown to be superior in the presence of base disturbances,however, due to the lack of

angular acceleration measurements it is removed from the compensator. It is shown that

such a design meets the requirements on positioning error, based on simulations even for

10% parameter inaccuracies. Experiments are performed fora PUMA 250 manipulator

on a 1-DOF (Z-axis translation) platform.

An analysis of cooperating manipulators on a non-fixed base is shown in [2.52]. It is

assumed that the platform is not actuated but is affected by the manipulator dynamics. A

set of dynamic equations for a 6-DOF platform and two 6-DOF manipulators is presented.

Ship heave measurements based on different sensors are presented in [2.22] with the con-

clusion that combining a low sampling rate global measurement (from a GPS device)

with high sampling rate measurements from an inertial navigation system (based on ac-

celerometers and angular rate sensors) delivers best results.

A manipulator model on a compliant base (e.g. a crane) is presented in [2.40]. The authors

use the previous control step moments to estimate the unmodelled dynamics with a high

command frequency of 500 Hz. The combined Coriolis and centrifugal term is ignored

and the Inertia matrix is only approximately estimated. Second derivatives of the joint

coordinates are required for this estimation which introduces noise. It is shown that such

a controller is superior to a simple PD by being able to decouple the manipulator dynamics

from the base and reducing base oscillations. A 2-DOF manipulator on a 3-DOF (X-Y-Z)

platform is considered.

A dynamic model of a robotic manipulator on a mobile base is derived in [2.11] and used

for simulation of a 2-DOF robot on a 3-DOF base. Only a PD controller is applied and no

compensation for base motion in the dynamics is considered.

Duindam and Stramigioli present a new mathematical framework for analysing manipu-

lators on mobile bases with coordinate frames not isomorphic to Rn spaces in [2.19]. It

allows singularities originating from orientation representation to be removed.

2.4.1 Underwater manipulators

Computational methods to simulate a manipulator mounted on an underwater vehicle

were presented in [2.47]. The additional hydro-dynamic elements are analysed and mod-

elled along with the generic manipulator dynamics. The recursive Newton-Euler approach

is used.

Lee and Yuh show an adaptive controller for a manipulator attached to an underwater plat-

form in [2.39]. Hydrodynamic effects are considered but thedynamic model is assumed

unknown. The inertia, Coriolis and centrifugal and gravity terms are estimated by con-

stants and adapted using the error norm. Stability is shown for adaptation with increasing

parameters, however for practical reasons the parameters should be allowed to reduce. In

such case the stability cannot be guaranteed, but the authors present an argument that the

adaptation would switch back to increasing values depending on error magnitude. Since
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the tracking error is used in the denominator of the adaptation formula, another problem

appears - high switching values of the parameters when tracking errors are close to zero,

additional modification is applied with a limit on the denominator below a certain error

level. This in turn breaks the asymptotic stability, and an integrator element is added

to the controller to handle this. A planar 2-DOF manipulatoron a 1-DOF platform is

considered.

2.4.2 Space manipulators

An image of a manipulator in space is shown in figure 2.3. The gravity present on Earth

Figure 2.3: Canadarm space manipulator (source: sm.mdacorporation.com).

is not present in orbit and therefore not considered in the manipulator dynamic models.

Vafa and Dubowsky present a new modelling framework for manipulators in space in

[2.74]. It is based on the fact that the total momentum of the system is preserved and

a Virtual Manipulator can be defined with the base represented as the first joint (spher-

ical) and all manipulator joints having a corresponding virtual joint (with axes parallel

to physical joint axes for rotary joints). The base of the virtual manipulator is attached
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to the centre of mass of the manipulator+base system. This new method simplifies the

kinematic and dynamic modelling of manipulators in space.

Papadopoulos and Dubowsky analyse the dynamics, kinematics and control of space ve-

hicle mounted manipulators in [2.18], [2.55]. The following classification of such systems

is introduced:

• free-flying with an actively controlled base using thrusters,

• free-floating with an uncontrolled base continuously affected by the manipulator

motion.

A dynamic model of a robotic manipulator attached to a space vehicle is derived (friction

is not considered). The motion of the base is generally performed as a separate task from

the manipulator operation, therefore no dynamic influence of the base on the manipulator

is considered. The kinematics is modelled and ’dynamic singularities’ are pointed out

for the free-floating case, where the motion of the robotic arm could change the base

orientation and prevent the end-effector from reaching thedesired position/orientation.

It is remarked that point-to-point control is not feasible as the position depends on the

path used to reach it. A linearisation controller in task space is proposed and a simulation

is performed for the planar case of a 2-DOF manipulator on a 3-DOF (X-Y-orientation)

space-ship. The case of multiple manipulators is presentedin [2.56] and comparisons of

inverse Jacobian and full linearisation in task space are made.

Chen and Canon Jr. apply adaptive control (Wen-Bayard) in the task space to compensate

for load changes of the manipulated object in [2.12]. A system concatenation approach

(combination of dynamic equations of all elements with constraints on forces and motion)

is used to model multiple manipulators on a space ship. Different Jacobians are used (and

switched between during control) to achieve different control tasks (joint, inertial space,

object space). A planar case of a 2-DOF manipulator on a 3-DOF(X-Y-orientation) base

is considered in simulations.

A review of present modelling, control and path planing techniques for space vehicle

mounted manipulators is presented in [2.51].

2.4.3 Manipulators on water vessels

Control of a manipulator attached to a vehicle free-floating on water is presented in [2.35].

It is assumed that the water is still and the manipulator motion affects the base dynamics.

Two control strategies are compared:

• passive base vibration reduction by constraining the manipulator motion,

• simultaneous position and acceleration control.

The control is performed in the task space using feedback linearisation. The first con-

troller is able to track a given trajectory without inducingbase vibration, and the second
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controller can track a trajectory and simultaneously reduce the base vibration. Simulation

is performed for a planar 2-DOF manipulator on a 1-DOF (angle) base.

Love, Jansen and Pin consider a robotic manipulator workingon a ship in [2.42, 2.43].

The dynamic model is derived for a general 6-DOF+6-DOF case,however the actual

formulae to derive the dynamics terms are not presented (only MATLAB code). A com-

parison of sea states and ship motion depending on wave height is presented for different

ship sizes. An adaptive controller tuning to the wave periodis suggested (called’Repeti-

tive Learning Controller’), but it only performs well for single frequency waves, and not

for sea states. In addition a beam forming technique borrowed from signal processing is

used to compensate for the base motion in task space force control. Accelerometers and

inclinometers are combined with a tip mounted force sensor to significantly reduce the

force control error (ten fold compared to no compensation).

From, Duindam, Gravdahl and Sastry suggest in [2.20] to use the base induced torques

in motion planing to reduce joint torques and control energyfor performing tasks (at the

cost of longer task duration). The base trajectory is assumed to be known and is used in

a computed torque feedback controller. The savings in actuator energy for performing a

task planned with the base motion consideration are presented. Friction is not considered

in the model. Simulations are performed for a 1-DOF and 4-DOFmanipulators on a

6-DOF base.
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Chapter 3

Kinematics and dynamics modelling

To model the motion of a robotic manipulator (consisting of achain of bodies), several

assumptions about the nature of admissible degrees of freedom have to be made. The

following assumptions apply here

• each link is a rigid body,

• the joints are fully actuated and have no flexibility,

• the mass of each link is constant.

Therefore, the notion of rigid bodies is required.

3.1 Describing the position of rigid bodies

A compact set of points, whose positions are constant with respect to each other, with a

certain mass distribution, is considered as a rigid body. Todefine the position of such an

entity in the three–dimensional Cartesian space, a particular point has to be chosen. It can

be identified with a vector in the three dimensional Euclidean space (R3) r = (x,y,z)T . (A

translation in the Euclidean space, can also be identified with the vector along which it is

performedT = (x,y,z)T).

A local coordinate system can be attached to the body, and itsorientation can be expressed

in the (global) coordinate system, in which the position of the rigid body was defined, by

means of a rotation matrixR ∈ M3×3 such thatRTR = I (identity matrix) and detR = 1.

By extending the position vector to(rT ,1)T , the position and orientation can be combined

into a matrix (representing a homogeneous transformation). Each transformation matrix

consists ofrotation andtranslation elements

A =

[

R3×3 T3×1

01×3 1

]

, (3.1)

where

R3×3 is a 3-by-3 rotation matrix,
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T3×1 is a translation vector of length 3,

01×3 is a 1×3 zero vector,

Assuming that this transformation describes the local coordinate system in the global

space, a point (r l ) in the local coordinates, can be expressed in the global space as

((Rr l +T)T ,1)T = A(rT
l ,1)

T .

The rotation matrix (although having 9 parameters) belongsto a three dimensional space.

There exist several parametrisations of it, two of them are used here:

• Euler angles (around Z-Y-Z axes),

• Roll–Pitch–Yaw angles.

Define rotations around the axes of the coordinate system

Rot(X,α) =







1 0 0

0 cos(α) −sin(α)
0 sin(α) cos(α)






,

Rot(Y,β) =







cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)






,

Rot(Z,γ) =







cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1






.

(3.2)

With these, the Euler angles representation can be expressed as

REuler(φ,θ,ψ) = Rot(Z,φ)Rot(Y,θ)Rot(Z,ψ)

with the domain

DEuler= {(φ,θ,ψ)|0< φ < 2π,0< θ < π,0< ψ < 2π} ,

and the Roll–Pitch–Yaw representation can be expressed as

RRPY(φ,θ,ψ) = Rot(Z,φ)Rot(Y,θ)Rot(X,ψ)

with the domain

DRPY =
{

(φ,θ,ψ)|0< φ < 2π,−
π
2
< θ <

π
2
,0< ψ < 2π

}

.

The rotation matrix (R) can be interpreted as an element of a special mathematical space

denoted by the symbolSO(3), and the combination of rotation and translation (A) can be

interpreted as an element of another mathematical space denoted by the symbolSE(3).
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3.2 Forward kinematics

The forward kinematics (also shortened to kinematics) of a manipulator is a mapK :

R
n → SE(3) from joint space(also known asconfiguration space) to task space(also

known asglobal coordinates)























x

y

z

ϕ
θ
ψ























= K

























q1

q2
...

qn

























, (3.3)

where:

SE(3) =R3×SO(3) is the special Euclidean group, whereSO(3) is the special group of

rotations,

n number of degrees of freedom,

x, y, z location in global coordinates,

ϕ, θ, ψ orientation in global coordinates,

K the kinematics transformation (consists of trigonometricfunctions and the link pa-

rameters).

qi generalised coordinates representing the state of the robot joint configuration.

Equation (3.3) defines the position of the end-effector in the global coordinate system as

a function of the manipulator joint angles. The forward kinematic transformation is easy

to compute using a widely known and very popular method described by Denavit and

Hartenberg [3.3].

3.2.1 Denavit – Hartenberg notation

The Denavit – Hartenberg (D-H) notation employs the introduced (equation 3.1) 4× 4

homogeneous transformation matrix to describe the relationship between the various joint

coordinate systems. The rotation and translation elementsare calculated for each joint

based on a set of Denavit – Hartenberg parameters (two anglesand two translations):θ,

α, a, andd (a schematic of the physical meaning of the parameters is presented in figure

3.1 and explained in table 3.1). For reference see any of [3.3], [3.6], [3.5], [3.2], [3.4].

i−1A i = Trans(z,di)×Rot(z,θi)×Trans(x,ai)×Rot(x,αi),
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parameter description
θi joint angle (angle between links around joint axis)

αi
link twist (angle between thei-th andi+1-th joint axes
around their mutual perpendicular)

ai link length (along a mutual perpendicular toi-th andi+1-th joint axes)
di link offset (distance along joint axis)

Table 3.1: Description of Denavit – Hartenberg parameters defining forward kinematics
of a manipulator.

i−1A i =













1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1













×













cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1













×













1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1













×













1 0 0 0

0 cosαi −sinαi 0

0 sinαi cosαi 0

0 0 0 1













By superposition of these transformations for successive joints, the coordinate change

between arbitrary coordinate systems in the manipulator can be obtained

kAr =
kAk+1 . . .

r−1Ar (3.4)

assuming 0≤ k < r ≤ n (n - number of degrees of freedom of the manipulator). The

parameters required to fully formulate the kinematics for agiven manipulator can be

arranged in a table.

3.3 Inverse kinematics

To perform tasks in the Cartesian space, the manipulator controller requires the desired

positions and velocities of the joints, based on the given target position and orientation in

the global, or tool coordinates. There are two ways to approach this task:

• instantaneous joint velocities, derived from Cartesian velocities (inverse Jacobian)
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


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





=

(

∂
∂q

K

(

[

q1,q2, . . . ,qn

]T
))−1

·























ẋ

ẏ

ż

ϕ̇
θ̇
ψ̇























, (3.5)

23



Figure 3.1: Schematic of the Denavit-Hartenberg notation parameters (source: [3.2]).

• implicit formulae to transform Cartesian positions into thejoint space
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
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









−K

(

[

q1,q2, . . . ,qn

]T
)

= 0 (3.6)

this equation is solved forqi ’s, with x, y, z, ϕ, θ andψ given.

The first solution is the most popular, although the strict inverse exists only for non-

singular square matrices. However, robust pseudo-inverses are used to deal with singular-

ities, and extra conditions are applied to the Jacobian, forredundant manipulators (which

can be easily used for optimal trajectory generation, e.g. minimising control energy). The

latter solution generates precise positions, assuming that the motion is free from singular-

ities, which implies that only one global configuration of the manipulator can be chosen.

The reachable space is constrained (if no transitions between global configurations are

allowed).
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3.4 Dynamics

The dynamics of a robotic manipulator with non-flexible joints can be expressed by a

second order differential equation (using the Euler – Lagrange formalism) [3.2], [3.5]

Q(q)q̈+C(q, q̇)+g(q) = τ+u, (3.7)

where:

q ∈ R
n is the state vector of generalised coordinates (n - number of degrees of free-

dom),

Q is the inertia matrix,

C is the Coriolis and centrifugal vector,

g is the gravity vector,

u is the vector of inputs (torques), and

τ is a vector of frictions and disturbances.

Assume that

τ =−F+Fe, (3.8)

where

F is the friction force,

Fe are all other external or disturbance forces (un-modelled).

By substituting equation (3.8) into equation (3.7) the modelof a manipulator can be writ-

ten as

Q(q)q̈+C(q, q̇)q̇+g(q)+F = u+Fe. (3.9)

3.4.1 Model derivation procedure

A procedure for deriving the dynamic model for a 6-DOF manipulator with revolute joints

is presented in [3.4]. The dynamic equation (3.9) elements are defined as follows:

• the inertia matrix

Q(q) = [Di j ], with

Di j =











6
∑

k= j
Tr(Uk jJkUT

ki) for i ≤ j, and

D ji , for i > j

,
(3.10)
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where

Ui j =







0A j−i Qd
j−1A i for j ≤ i

0 for j > i
with Qd =













0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0













Ji =






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



−Ixx+Iyy+Izz
2 Ixy Ixz mi x̄i

Ixy
Ixx−Iyy+Izz

2 Iyz mi ȳi

Ixz Iyz
Ixx+Iyy−Izz

2 mi z̄i

mi x̄i mi ȳi mi z̄i mi













with

Ih j =
∫

Vi

[

δh j

(

∑
k

x2
k

)

−xhx j

]

dm. (3.11)

This procedure ignores the motor inertias, which need to be added to the diagonal

of the inertia matrix

D̃ii = Dii +k2Imi , (3.12)

where

k the gear ratio

Imi the motor inertia of thei-th motor

• the Coriolis and centrifugal vector

C(q, q̇) = [q̇TH i,νq̇] with H i,ν = [hi jk ], i, j,k∈ {1, . . . ,6}, (3.13)

where

hi jk =
6

∑
m=max(i, j,k)

Tr(Um jkJmUT
mi)

and

Ui jk =



















0A j−i Qd
j−1Ak−1 Qd

k−1A i i ≥ k≥ j

0Ak−i Qd
k−1A j−1 Qd

j−1A i i ≥ j ≥ k

0 i < j or i < k,

• the gravity vector (based on [3.6])

g(q) =
∂

∂q
V(q), whereV(q) =−

6

∑
i=1

mig
T 0A i(q)Ri (3.14)

with:

mi the mass of thei-th link,
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Ri location ofi-th link mass point expressed in thei-th coordinate system (according

to modified Denavit – Hartenberg notation) andRi = (x̄i , ȳi, z̄i)
T ,

gT = (gx,gy,gz,0) the gravity vector expressed in the global coordinate system,

0A i the (modified) Denavit – Hartenberg transformation from thei-th coordinate system

to the global coordinate system,

Vi the link volume,

V(q) the potential energy of the system,

The integral over the volume, ∫

Vi

()dm

can be simplified to an iterated integral

∫ ∫

Vi

∫
()ρ(x,y,x)dxdydz,

whereρ(x,y,z) is the density at point(x,y,z).

In order to derive the dynamics of a robotic manipulator, it is required to know

• masses of links,

• centres of masses of links,

• inertias of links, which can be derived from

– explicit formulae defining volumes of links,

– densities of links,

• the forward kinematics transformation (parameters for theDenavit - Hartenberg

transformation (table 3.1 and figure 3.1).

This information is not usually provided by the robot manufacturer (or retailer), and re-

quires additional assumptions and analysis.

3.4.2 Modelling friction

In the classical control engineering and robotic literature, friction has often been neglected

or treated as an unobservable disturbance. The main reason for that is its observable

discontinuity. The importance of friction modelling has increased over the recent decades

and Armstrong-Hélouvry [3.1] presents important aspects of friction modelling in the

control of machines.

Friction models have usually been derived from data, based on thorough observations and

simplifying assumptions. There have been attempts to understand friction since Leonardo
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velocity

friction

Figure 3.2: Viscous friction (linear in velocity).

da Vinci, but only in the last century with the widespread useof machines and the need

for optimisation of wear and tear of mechanisms in the field oftribology1 has developed.

Due to the high complexity (especially at low velocities), the friction models are tailored

to particular applications to obtain a balance between simplicity and exactness. Both para-

metric and non-parametric models have been derived and used, with the latter providing

better estimates, at the cost of extra algorithmic complexity and with the loss of analytic

properties (for stability proofs).

In order to achieve precise positioning of a robotic arm, without high gains and signifi-

cant overshoot, a consistent model for friction is required. The most popular models are

presented below:

• Viscous friction - the simplest model (Figure 3.2), describes friction forceas a

linear function of velocity.

F = fc · q̇ (3.15)

This equation can be further refined, by assuming that the proportional coefficient

( fc) can be different for positive and negative velocities (model becomes non-linear

(and not smooth) at zero). This model is very simple (and robust), easy to estimate

and not computationally demanding, but it does not work at low velocities.

• Viscous, kinetic and static friction - a further extension to the previous model

(Figure 3.3). Two additional features are included:

– The amount of static friction (stiction) needed to be overcome, to initiate the

motion.

– The minimum friction level at lowest achievable velocities(kinetic friction).

1from Greek - the study of rubbing
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Figure 3.3: Viscous and static friction (linear in velocityexcept at 0).

F =































f+k + f+c · q̇ for q̇> 0

f+k + f+s for q̇= 0+

f−k + f−s for q̇= 0−

f−k + f−c · q̇ for q̇< 0

(3.16)

where

– f+/−
k kinetic friction for positive/negative velocities

– f+/−
s static friction for positive/negative velocities

– f+/−
c viscous (Coulomb) friction for positive/negative velocities

This model is not continuous at zero. Whilst it addresses the problem of providing

additional force to start the motion, but the profile of friction force at low velocities

is not in line with experimental results and therefore requires a further enhancement.

• Generalised Stribeck model- a further refinement of the friction curve at low

velocities, based on analysis of uneven rubbing surfaces with lubrication (Figure

3.4). The following stages can be distinguished in the model

– Thestatic frictionhas to be overcome, to start the motion.

– At very low velocities there is very little lubrication available, and the friction

level depends mostly on the lubricantboundary lubricationproperties. The

level of friction at that stage is assumed to be constant2.

– Once the rubbing surfaces start moving fast enough to distribute some lu-

bricant, the model passes to thepartial lubrication stage, where friction de-

creases with increasing velocity (as lubrication improves).

2as observed in experiments
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– At sufficiently high velocity, a layer of thin film of the lubricant is created

between the surfaces, and the friction starts increasing proportionally with

velocity. This is the stage offull lubrication.

In a commercial product, the composition of lubricants is a fixed parameter (often

unknown), and cannot be changed, therefore the main focus (of the control engi-

neer) is on the modelling aspects. However, any informationabout such properties

is useful in the model development step. The following models (presented in [3.1])

include all the mentioned stages

F = Fk+
Fs−Fk

1+
(

ẋ
ẋs

)2 +Fvẋ (3.17)

F = Fk+(Fs−Fk)e
−( ẋ

ẋs)
δ
+Fvẋ (3.18)

where

FS is the level of static friction,

Fk is the minimum level of kinetic friction,

ẋs is an empirical velocity scaling parameter,

δ is an empirical parameter,

Fv is the viscous friction.

Another empirical extension of this model is to use a different set of parameters for

negative and positive velocities. This model, although complicated and requiring

nonlinear optimisation to obtain the parameters, is widelyused in control engineer-

ing to compensate friction in simple cases. However, if several elements rub at the

same time, the composite effect, may not be simple enough to be described by this

model. Further improvements have been attempted.

• Non-parametric modelsThe parametric models are easy to formulate and have

certain smoothness properties (away from zero velocity). However, the estimation

of parameters and goodness of fit may not be satisfactory for aparticular applica-

tion, especially for highly complex mechanical systems, where the Stribeck curve

may not fit the data. Due to the increasing availability of memory and processing

power, nonparametric models can be created for the purpose of friction estima-

tion/compensation. These are based on a large number of measurements, which

are averaged and tabulated for precise interpolation. Sucha system requires signif-

icantly more computational power for derivation, and the model may not have any

smoothness properties, but for low velocities, it providesa very powerful estima-

tion/compensation tool. Two main model groups can be distinguished
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friction

Figure 3.4: Nonlinear friction model with Stribeck effect.

– velocity dependent – the following formula presents the simplest look-up table

with a linear interpolation model.

F = Fvi−1

q̇−vi−1

vi −vi−1
+Fvi

vi − q̇
vi −vi−1

for q̇∈ (vi−1,vi) (3.19)

where

Fvi is the friction force estimate at velocityvi.

– position dependent – the following formula presents the simplest look-up table

with a linear interpolation model.

F = Fxi−1

q−xi−1

xi −xi−1
+Fxi

xi −q
xi −xi−1

for q∈ (xi−1,xi) (3.20)

where

Fxi is the friction force estimate at positionxi.

This model is highly dependent on the wear of the system, and may require a

regular re-estimation after the rubbing surfaces have changed significantly.

Both methods can be combined for increased precision (and a significant increase

in estimation complexity), or the position dependent modelcan be added to one of

the parametric models (especially for low velocity feed-forward applications).

Alongside the general models, other important features of the friction phenomenon have

to be considered. Depending on the lubricant composition, thestick-slip effect may oc-

cur. This happens mainly when motion is initiated and at verylow velocities. It can be

modelled using a pin-spring-damper configuration, which exhibits two main properties

• Dwell-time - is the amount of time a rubbing surface remains at a fixed position, al-

though a force is applied to it. The dwell time depends on the time the machine was
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left unused and on the motion velocity. It depends on the stiffness of the system and

the lubricant used. By increasing the system stiffness and choosing an appropriate

composition of lubricant, this effect may be eliminated.

• Frictional lag - is a delay in the response of a system with friction, caused by

internal (surface related) dynamics. At low velocities, a change of velocity is not

instantaneously followed by a change of friction force. Thelatter takes about 3-9

ms to settle at its new level. This effect can generate significant disturbances in the

control system of a machine with friction, requiring very fast response times.
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Chapter 4

Model derivation and estimation of the

PA10-6CE manipulator parameters

Several attempts have been made to deliver a dynamic model ofboth versions of the PA10

manipulator (6-DOF and 7-DOF), these were reviewed in section 2.2.2.2. This chapter

presents an approach with the following contributions:

• geometric models used to derive link inertia with the assumption of setting the link

geometric elements densities to match the centre of mass,

• a non-parametric friction model based on broad velocity range experiments,

• a brief analysis of open-loop control results for the obtained model.

4.1 The mechanical design of the PA10-6CE manipulator

The PA10-6CE is a multi-purpose manipulator from MitsubishiHeavy Industries. It has

six degrees of freedom, which can be related to a human arm as shown in table 4.1 and

figure 4.1. The manipulator is mainly targeted at specialised light payload tasks, with low

repeatability (e.g. clean-room object handling, nuclear power plants or single welding

jobs). Each joint is driven by a separate AC motor coupled viaa harmonic gear. The

transmission of joint W1 also includes a belt. The manipulator is relatively light (37 kg),

which enables it to be mounted on mobile platforms and parallel robots (e.g. to increase

the available work space/dexterity).

The manufacturer provides partial information on the construction of the manipulator.

Distances between axes, masses and centres of masses of particular joint elements are

available. The information from figure 4.2 is summarised in tables 4.21 and 4.3.

1The centre of mass is expressed in the coordinate system attached to the link.
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Joint name Arm motion
S1 shoulder forward/backward swing
S2 shoulder lateral raise
E1 elbow swing
E2 elbow turn
W1 wrist swing
W2 wrist rotate

Table 4.1: PA10 joints identified with human arm movements.

Figure 4.1: Schematic of PA10-6CE manipulator (with joint names).

Joint centre of mass mass
Ri = (rxi, ryi, rzi)[m] mi [kg]

S1 ( 0 , -0.178526, 0 ) 9.29
S2 (-0.321, -0.03 , 0 ) 12.43
E1 ( 0 , 0 , 0.0484568) 4.86
E2 ( 0 , -0.112231, 0 ) 3.08
W1 ( 0 , 0 , -0.042 ) 2.07
W2 ( 0 , 0 , -0.048 ) 1.05
total 32.78+

Table 4.2: Summary of PA10-6CE joints mass points (based on manufacturer data).

4.2 Kinematics

4.2.1 Forward kinematics formulation

Based on the schematic drawing provided by the manufacturer of the PA10 manipulator,

the forward kinematics were obtained. The positive direction of theX axis for the base
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Figure 4.2: Schematic of PA10-6CE manipulator (with joint masses and centres of mass).

joint axes distance [m] D-H symbol
(base)↔(S2) 317

1000 d1

(S2)↔(E1) 9
20 a2

(E1)↔(W1) 12
25 d4

(W1)↔(tool mount) 7
100 d6

Table 4.3: Summary of PA10-6CE inter axes distances.

coordinate system has been chosen in the direction of positive angles of joint S2 with S1

set to zero. The complete set of Denavit–Hartenberg transformations used to define the

forward kinematics is summarised in table 4.4 and the coordinate systems for each link

are presented in figure 4.3.

joint θ α a d
1 (S1) π+q1

π
2 0 d1

2 (S2) π
2 +q2 0 a2 0

3 (E1) π
2 +q3

π
2 0 0

4 (E2) π+q4
π
2 0 d4

5 (W1) π+q5
π
2 0 0

6 (W2) q6 0 0 d6

Table 4.4: Denavit-Hartenberg transformations for PA10-6CE manipulator.

By substituting data from table 4.4 into equation 3.4, joint positions can be transformed

into Cartesian positions and rotation matrices (and furtherangles) expressed in e.g. base,

or tool coordinates. The forward kinematic transformationis also required to compute the

potential energy of the manipulator.
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Figure 4.3: Schematic of the PA10-6CE manipulator kinematics with coordinate systems
for each link.Note: index 0 denotes the manipulator base frame; the gravityacceleration
on fixed base acts along−z0

4.2.2 Inverse kinematics formulation

An inverse transformation of the forward kinematics can be obtained for the PA10-6CE,

which requires additional assumptions on the posture of themanipulator. It is outside the

scope of this thesis to derive this transformation. For practical applications of the ma-

nipulator [4.1], an existing solution has been adopted. Theinverse kinematics algorithm,
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based on decoupling the last three joints as the wrist (→ orientation) from the first three

joints (→ position), has been developed by Torsten Sherer ([4.6]). Itis a local solution to

an implicit equation, separate for each posture (covering the entire workspace).

4.3 Dynamics

To derive the dynamics of a robotic manipulator, detailed information about its construc-

tion is required. In the case of the Mitsubishi PA10-6CE, thatinformation was not fully

provided by the manufacturer, and several assumptions havebeen made based on the

available schematic (figure 4.2). With these assumptions a complete dynamic model has

been derived, and the generalised friction forces have beenestimated using elements of

the dynamic model.

4.3.1 Gravity term

The gravity term of the PA10-6CE dynamics was the most straightforward to derive. All

the required information has been provided by the manufacturer (tables 4.2, 4.3, 4.4).

With the forward kinematic transformation and all the masses and centres of masses, the

following has been obtained from equation 3.4 and equation 3.14.

g(q) =
(

gq1 gq2 gq3 gq4 gq5 gq6

)T
, (4.1)

where

gq1 = 0

gq2 =−g

(

a2sin(q2)
6

∑
i=2

mi +m2(ry2cos(q2)+ rx2sin(q2))

+

(

d4

6

∑
i=4

mi +m4ry4+m3rz3+cos(q5)(m5rz5+m6(d6+ rz6))

)

sin(q2−q3)

+cos(q2−q3)cos(q4)sin(q5)(m5rz5+m6(d6+ rz6))

)

gq3 =−g

((

d4

6

∑
i=4

mi +m4ry4+m3rz3+

(

m5rz5+m6(d6+ rz6)

)

cos(q5)

)

sin(q2−q3)

+cos(q2−q3)cos(q4)sin(q5)

(

m5rz5+m6(d6+ rz6)

))

gq4 = gsin(q2−q3)sin(q4)sin(q5)

(

m5rz5+m6(d6+ rz6)

)

gq5 =−g

(

sin(q2−q3)cos(q4)cos(q5)+cos(q2−q3)sin(q5)

)(

m5rz5+m6(d6+ rz6)

)

gq6 = 0,
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whereg = gz is the vertical (along thez-axis of the base coordinate system) component of

the gravitational acceleration constant2. The gravity vector exhibits the following proper-

ties

• There is no gravitational torque acting on joint 1 (S1) and joint 6 (W2).

• The gravity component of joint 2 (S2) depends on the following joint angle coordi-

nates: (q2, q2−q3, q4, q5).

• The gravity component of joints 3 (E1), 4 (E2) and 5 (W1) only depend on the

following coordinates: (q2−q3, q4, q5).

The gravity vector is used to estimate the friction torque levels.

4.3.2 Friction estimation

The friction model is one of the elements of the dynamics model based on experimental

results (identification). The non-parametric model with a velocity based look-up table has

been chosen (equation 3.19), based on the following observations

• The model has to be exact for the entire range from small (0.05 rad/s) to high (≥ 1

rad/s) joint angle velocities.

• An attempt has been made to perform the parametric estimation presented in [4.2],

but it does not generate a correct (stable) model for the available PA10-6CE manip-

ulator.

• The estimation algorithm employed in [4.5] is mathematically complex and con-

sidering the equation used, it may fail at very low velocities. Moreover, it has only

been presented in two dimensions, and a full 6-DOF estimation may be difficult and

dependant on the goodness of fit of the dynamic model (inertia, Coriolis, centrifu-

gal, gravity).

• The model derived in [4.3, 4.4] was mainly designed for low feed-back gain control

in low velocities, and requires additional experimental identification of transmission

compliance with varying load.

The approach taken was to create a novel nonparametric model, based on measurements

taken from the manipulator while moving single joints at particular constant velocities.

Such experiments allow for a significant simplification in the dynamics equation (3.9)

leading to

g(q)+F = Fe+u. (4.2)

The joints of the PA10-6CE manipulator are driven by AC motorsand the torque is trans-

mitted by harmonic drive gearing. This transmission causesadditional dynamics to the

2For experimental/simulation purposesg=9.81
[

m
s2

]
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drive and may be position dependent. In order to measure and estimate the friction several

assumptions have been made:

• the friction torque is only velocity dependent,

• the compliance of the wave generator (mentioned in [4.4]) isneglected,

• at low velocities the friction torque is more irregular and requires a more dense grid

of measurements,

• the friction is not symmetric – torques for negative velocities are estimated sepa-

rately,

• for velocity equal to zero the friction torque is assumed to be zero (to assure stability

of the model).

• the torque required to initialise motion is estimated usingthe lowest possible veloc-

ity that can be commanded to the manipulator - effectively the joint starts and stops

(which may be accounted for by the stick - slip effect).

The method employed to estimate the friction can be summarised in the following steps:

1. Perform a warm-up session for the selected joint, by commanding it to move along

a sinusoidal trajectory (across its range) for 10 minutes.

2. Measure the torques applied to the joints by the Mitsubishi’s own controller (in

velocity control mode) at certain joint angle velocities3 (over the available4 range

of joint motion angles),

3. Select only the part of motion where velocity was constant(ignore acceleration and

deceleration periods).

4. Check if average velocity measured in the selected region is within 0.05 rad/s of

the commanded velocity, and if not - discard the experiment.This is to eliminate

measurements at higher velocities, for some joints the controller was not able to

drive the arm at joint angle velocities above 1 rad/s.

5. Smooth the obtained torque measurements with a low pass filter (long moving av-

erage)

τ̃i =
i+n

∑
j=i−n

τ j (4.3)

where 2n+ 1 = 1
40N is the filter length andN is the number of samples in the

experiment.

3The torques are measured for the following velocities:+/−[0.01:0.005:0.095 0.10:0.01:0.19
0.20:0.05:0.95] rad/s and[1:00.10:1.50] for joints S1 and S2,[1:00.10:2.40] for joint E1,
[1:00.20:5.60] for joints E2 and W2 and[1:00.20:4.60] for joint W1

4limited due to safety reasons
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6. Discard the first and last 10% of smoothed samples (due to possible boundary ef-

fects of the filter).

7. Subtract the computed gravity torque from the smoothed value (at each sample

point) ˆ̃τi = τ̃i −gi(q),

8. Calculate the average of all residual torque valuesˆ̃τi. This should minimise the

influence of any unmodelled dynamics of the harmonic drives and possible gravity

modelling errors.

9. Assume this torque to be the desired estimate (for velocity equal to the mean of

velocities measured over the whole selected range)F̂v =
1
N̄v

i=N̄v

∑
i=1

ˆ̃τi, whereN̄v is the

final number of measurements used to estimate the friction torque at velocityv.

To obtain a continuous friction estimation function, the measurements are interpolated

within the measured range and extrapolated (based on two subsequent boundary measure-

ments) out with the measured range (Equation 3.19). It is possible to apply some smooth-

ing to the obtained friction estimates, to improve the robustness of the model, however

this has not been found necessary. It has been found that the applied torque (as returned

by the servo controller) carries an additional (unmodelled) dynamics for joints affected

by gravity. The selected method of estimation with averaging of measured torques is ex-

pected to be least affected by this effect. However, it is worth pointing out that, for a more

in-depth analysis, the addition of harmonic gear dynamics (with flex-spline compliance)

may need to be added.

The plots of friction torques for all joints are shown in fig. 4.4. The following observations

can be made:

• The Stribeck effect ofboundary lubricationcan be observed for joints S1, E1, E2

and W1.

• For joints S1 and E1 and E2 the friction decreases up to 0.1 rad/s joint angle veloc-

ity, but for joint W1 this threshold is much lower.

• For joints S2 and W2 the friction is approximately linear in velocity.

• Differences between positive and negative velocity can be observed, highest for

joint W1 – this could be attributed to the presence of an additional transmission

element - a tooth-belt.

• It can be noticed that at low velocities the exact smooth Stribeck curve is not always

followed, which shows the benefits of the non-parametric model.

40



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45
S1 friction torques

absolute angular velocity [rad/s]

ab
so

lu
te

 e
st

im
at

ed
 m

ot
or

 to
rq

ue
 [N

m
]

positive velocity
negative velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
S2 friction torques

absolute angular velocity [rad/s]

ab
so

lu
te

 e
st

im
at

ed
 m

ot
or

 to
rq

ue
 [N

m
]

positive velocity
negative velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
E1 friction torques

absolute angular velocity [rad/s]

ab
so

lu
te

 e
st

im
at

ed
 m

ot
or

 to
rq

ue
 [N

m
]

positive velocity
negative velocity

0 1 2 3 4 5 6
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12
E2 friction torques

absolute angular velocity [rad/s]

ab
so

lu
te

 e
st

im
at

ed
 m

ot
or

 to
rq

ue
 [N

m
]

positive velocity
negative velocity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
W1 friction torques

absolute angular velocity [rad/s]

ab
so

lu
te

 e
st

im
at

ed
 m

ot
or

 to
rq

ue
 [N

m
]

positive velocity
negative velocity

0 1 2 3 4 5 6
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
W2 friction torques

absolute angular velocity [rad/s]

ab
so

lu
te

 e
st

im
at

ed
 m

ot
or

 to
rq

ue
 [N

m
]

positive velocity
negative velocity

Figure 4.4: Friction estimates (negative velocity curves are plotted in absolute torque /
velocity values).

41



4.3.3 Inertial, Coriolis and Centrifugal terms

To obtain a full dynamic model of a robotic manipulator, additional parameters are re-

quired. These were not provided by the manufacturer, therefore certain assumptions are

made, to simplify the calculations and obtain reliable results.

• The motor inertias cannot be obtained analytically and needto be be identified.

• A geometric model for each link has been created, to provide analytic definition of

volume.

• The density of each link is assumed to be constant over analytic regions within a

link. The boundaries of these regions are based on the schematic mass distribution

available from figure 4.2.

• The centre of mass of each link geometric model with density regions has to be

equal to the centre of mass from table 4.2. The densities are derived from this

assumption.

4.3.3.1 Link models

The assumed geometric models of links are presented in figures 4.5 to 4.11 and the pa-

rameter values are given in tables 4.5 and 4.6.

Parameter value Parameter value Parameter value
[m] [m] [m]

b1 0.117 b2 0.05 b3 0.052
b4 0.151 b5 0.07 l1 0.13
l2 0.022 l3 0.17 l4 0.05
l5 0.23 l5a 0.1 l6 0.21
l7 0.18 l8 0.11 l9 0.1
d1 0.04 d2 0.123 d3 0.15
d4 0.03 r1 0.05 r2 0.1
r3 0.05 r3a 0.052 r4 0.035
r5 0.045 r6 0.0125 r7 0.015
h1 0.11 h2 0.095 h3 0.085
h4 0.09

Table 4.5: Summary of PA10-6CE physical parameters used to compute the link inertias.
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Figure 4.5: Geometric link models for PA10-6CE.
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Link volumes (expressed in local coordinate systems - Cartesian or cylindrical for simpler

representation):

S1={(r,φ,y)|r ∈ [0, r1],φ ∈ [−π,π],y∈ [−b1− l1,−b1], density:ρ1}∪

{(r,φ,y)|r ∈ [0, r2],φ ∈ [−π,π],y∈ [−b1,−b1+ l2], density:ρ2a}∪
{

(x,y,z)|x∈

[

−
h1

2
,
h1

2

]

,y∈ [−b1+ l2,−b1+ l2+ l3],

z∈

[

−r2−
d1

2
,−r2+

d1

2

]

, density:ρ2b

}

∪

{

(x,y,z)|x∈

[

−
h1

2
,
h1

2

]

,y∈ [−b1+ l2,−b1+ l2+ l3],

z∈

[

r2−
d1

2
, r2+

d1

2

]

, density:ρ2b

}

S2=

{

(x,y,z)|x∈

[

−l4,−
5
6

l4

]

,

y∈

[

−
h2

2
−h4sin

(

x+ l4
l4

π
)

,
h2

2
−h4sin

(

x+ l4
l4

π
)]

,

z∈

[

−
d2

2
,
d2

2

]

, density:ρ3a

}

∪

{

(x,y,z)|x∈

[

−
5
6

l4,−
1
8

l4

]

,

y∈

[

−
h2

2
−h4sin

(

x+ l4
l4

π
)

,
h2

2
−h4sin

(

x+ l4
l4

π
)]

,

z∈

[

−
d2

2
,
d2

2

]

, density:ρ3b

}

∪

{

(x,y,z)|x∈

[

−
1
8

l4,0

]

,

y∈

[

−
h2

2
−h4sin

(

x+ l4
l4

π
)

,
h2

2
−h4sin

(

x+ l4
l4

π
)]

,

z∈

[

−
d2

2
,
d2

2

]

, density:ρ3c

}
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E1=

{

(r,φ,y)|r ∈ [0, r3a],φ ∈ [−π,π],y∈
[

−
l5a

2
,
l5a

2

]

, density:ρ4a

}

∪

{(r,φ,z)|r ∈ [0, r3],φ ∈ [−π,π],z∈ [b3,b3+ l5− l8], density:ρ4b}∪

{(r,φ,z)|r ∈ [r6, r3],φ ∈ [−π,π],z∈ [b3+ l5− l8,b3+ l5], density:ρ4c}

E2={(r,φ,y)|r ∈ [0, r6],φ ∈ [−π,π],y∈ [−b4− r4− l8,−b5− r4], density:ρ5}∪
{

(x,y,z)|x∈ [−
√

r2
4− (y+b4)2,

√

r2
4− (y+b4)2],

y∈ [−b4− r4,−b4+ r4],z∈

[

−
d3

2
,
d3

2

]

, density:ρ6a

}

∪

{

(x,y,z)|x∈

[

−
h3

2
,
h3

2

]

,y∈ [−b4− r4,−b4− r4+ l6],

z∈

[

−
d3

2
−d4,−

d3

2

]

, density:ρ6b

}

∪

{

(x,y,z)|x∈

[

−
h3

2
,
h3

2

]

,y∈ [−b4− r4,−b4− r4+ l6],

z∈

[

d3

2
,
d3

2
+d4

]

, density:ρ6b

}

W1={(r,φ,z)|r ∈ [0, r5],φ ∈ [−π,π],z∈ [b5− l7,b5− l9] , density:ρ7a}∪

{(r,φ,z)|r ∈ [r7, r5],φ ∈ [−π,π],z∈ [b5− l9,b5], density:ρ7b}

W2={(r,φ,z)|r ∈ [0, r7],φ ∈ [−π,π],z∈ [−l9,0] , density:ρ8}

4.3.3.2 Density distribution

The following equations were used for each link, to obtain a mass distribution, that satis-

fies two requirements5.

• mass of link equal to the one provided on Figure 4.2

• centre of mass of link equal to the one provided in Table 4.2

The following two steps were applied

1. determine the average link density

ρi =
mi

Vi
,

wheremi is the mass of the link, andVi is the volume of the link.

2. Equate the mass

∑
j

∫

Vi j

ρi j dr = mi

5Uniform density has been assumed for links that have a singlemass element, and in such cases the
centre of mass could not be exactly matched.
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whereVi j are sections of volume of thej-th section of thei-th link corresponding

to different densitiesρi j = ci j ρi , ci j being weighting coefficients for the density

distribution.

3. Equate the centre of mass

∑
j

∫

Vi j

rρi j dr = Ri

whereRi is the centre of mass ofi-th link from equation 4.2.

4. The two equations from step 2 and 3 are solved simultaneously for ci j , separately

for each link.

The obtained density distribution (presented in table 4.6)is used to derive the link inertias.

The centres of mass calculated with the obtained density distribution are presented in table

4.7.

Parameter value
[ kg

m3 ]
ρ1 2138.64
ρ2 728.913
ρ3 1412.5
ρ4a 3367.76
ρ4 1204.21
ρ5 935.035
ρ6 1486.48
ρ7 2667.29
ρ8 2219.44

Table 4.6: Summary of PA10-6CE link densities calculated using the link model and
physical parameters.

Joint centre of mass6 mass
Ri = (rxi, ryi, rzi)[m] mi [kg]

S1 ( 0 , -0.15705 , 0 ) 9.29
S2 (-0.321, -0.03 , 0 ) 12.43
E1 ( 0 , 0 , 0.0484568) 4.86
E2 ( 0 , -0.107195, 0 ) 3.08
W1 ( 0 , 0 , -0.042 ) 2.07
W2 ( 0 , 0 , -0.055 ) 1.05

Table 4.7: Mass points obtained from link volumes and density distribution (the link iner-
tias are based on these values, however the gravity model is based on the values provided
by the manufacturer.)
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4.3.3.3 Link inertias

Using the mass distribution and volume, the inertias of links can be derived, from equation

3.11, where the integration over mass can now be computed as an iterated integral. The

obtained numerical results presented in equation 4.4 have been used to derive the Inertia,

Coriolis and Centrifugal terms of the manipulator dynamics.

I1 =







0.329 0 0

0 0.0476 0

0 0 0.313







I2 =







0.0569 −0.115 0

−0.115 1.734 0

0 0 1.738







I3 =







0.0485 0 0

0 0.0471 0

0 0 0.00817







I4 =







0.0692 0 0

0 0.0139 0

0 0 0.05882







I5 =







0.0102 0 0

0 0.0102 0

0 0 0.00281







I6 =







0.00459 0 0

0 0.00459 0

0 0 0.000719







(4.4)

All matrices are expressed inkg·m2.

4.3.3.4 Motor inertias

The motor masses are not provided by the manufacturer, the respective inertias have to be

estimated based on experimental data. The following procedure has been used to obtain

these parameters:

1. Perform an experiment with the PA10 manipulator, where a torque step input is

applied to to a given joint, with all remaining joints stopped. Gather the response

data.7 The equation of motion simplifies to the following form in such a case

(Ĩi +k2Imi)q̈i +gi(qi)+Fi(q̇i) = τi (4.5)

7For joints affected by gravity, the step torque input has been combined with gravity compensation.
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whereĨi is the inertia of the rigid body composed of all locked parts of the manip-

ulator that are actuated by motori, k= 50 for all joints is the transition ratio,Imi is

the motor inertia for jointi. The Coriolis and Centrifugal terms vanish for a single

moving joint. Therefore the following control torque is applied

τi = gi(qi)+ τ1i ·1(t ≥ t0∧ t < t1) (4.6)

whereτ1i is the step torque level presented in table 4.8. This controlcancels out the

gravity element of the dynamics, leaving inertias and friction.

2. Simulate the dynamics of equation 4.5 varying the motor inertia Imi . The motor

inertia can be quickly found, as it characterises the onset/offset rates of the velocity

(any changes in the steady state should not be considered, asthis may be due to

unmodelled dynamics).

3. Tune the motor inertia to obtain closest match between simulation and experiment

results (measured by MISE of angle and velocity).

τ1i [Nm] τsi [Nm] ωi [rad/s]
4.64
10.0 0.55 2π

5
4.64
8.57 0.00 2π

4.5
2.00
8.33 0.00 2π

4
0.29
5.00 0.08 2π

4.2
0.29
2.31 0.00 2π

3
0.29
6.00 0.08 2π

4.1

Table 4.8: Trajectory parameters used in experiments and simulations (the step torque
levels (τ1i ) are expressed as fractions of rated motor torque, with the denominator cho-
sen to assure that the step command does not saturate neitherthe control torque nor the
velocity processed by the servo control unit.)

The joints have been grouped into four classes (S1,S2), (E1), (E2) and (W1,W2) – based

on the manufacturer specified rated torques and available knowledge about the joint de-

sign. The motors/transmission are assumed to be identical within each class, therefore

a single motor inertia has been chosen. The obtained results8 are presented in table 4.9.

From the obtained inertias, the motor masses (mmi ) can be estimated assuming that the

motor is a uniform cylinder of a given radius (rmi ).

It can be noticed, that the motor mass for joint E2 stands out from the rest. Also, the

estimated motor masses are well below the mass of the link element containing the motor,

and therefore can be assumed to be acceptable. The estimatedmotor inertias also include

the inertia of the wave generator of the harmonic drive.

8The motor inertias depend on the exactness of the underlyingdynamic model.
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Joint k2Imi rmi mmi

[kg m2] [m] [kg]
S1 2.5 0.04 0.625
S2 2.5 0.04 0.625
E1 0.8 0.03 0.3556
E2 0.06 0.025 0.0384
W1 0.16 0.025 0.1024
W2 0.16 0.025 0.1024

Table 4.9: Summary of PA10-6CE motor inertias and mass estimates.

Experimental and simulation results of the final step of choosing the motor inertia are

presented in figures 4.12, 4.13, 4.14 and 4.15. Simulation 1 was performed withImi = 0,

and simulation 2 with the presented values of the parameter.TVA stands for (torque [Nm],

velocity [rad/s], angle [rad]), the motor torque is plotted( 1
50 of actual joint torque).

It can be observed that the experimental and simulation graphs do not match exactly. The

motor inertias were selected to match the on-set and off-setperiods in the step response,

however due to modelling uncertainties, there are discrepancies. The following model

deficiencies have been identified:

• lack of transmission flexibility model has a significant effect on joints with non-zero

gravity torques (S2, E1, W1),

• the identified friction coefficients depend on ambient temperature and can be af-

fected by different joint/lubricant temperature,

• there is a possibility of link inertia errors, due to assumedsimplification of uniform

mass distribution.

It can be further noticed on some of the step torque plots (e.g. joint S2 in figure 4.12

around 1s time) that a spike in velocity measurement (green line) is present. This was

caused by a bug in the early version of the manipulator control software, it only affected

the log file and not the controller. It has been fixed in a later version. Moreover, con-

sidering the plots for joints S2 and E1 in figures 4.12 and 4.14, a certain high frequency

sinusoidal component can be noticed. This could be attributed to the higher speed mo-

tor and wave generator being affected by irregular frictioneffects. Furthermore, when

analysing the experimental torque plots (e.g. joint S1 in figure 4.12), it can be seen that

there is a certain level of noise in the level. This torque reading is provided by the servo

control unit and is presumably based on the current measurement in the control amplifier

circuit. The noise can originate form both electrical (power supply noise) and mechanical

(varying friction levels on the high speed port of the harmonic drive) sources.
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Figure 4.12: Torque step experimental and simulations comparisons (used to estimate
motor inertias), joints: S1, S2, E1.
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Figure 4.13: Torque step experimental and simulations comparisons (used to estimate
motor inertias), joints: E2, W1, W2.
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Figure 4.14: Negative torque step experimental and simulations comparisons (used to
estimate motor inertias), joints: S1, S2, E1.
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Figure 4.15: Negative torque step experimental and simulations comparisons (used to
estimate motor inertias), joints: E2, W1, W2.
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4.3.4 Partial verification of the model

Based on the conclusions of thestep torqueexperiments it can be concluded that a quan-

titative evaluation of the model using open-loop control may not deliver entirely satis-

factory results. However, the obtained model can be partially graphically verified by

performing an open-loop control task for joints not affected by gravity. This is a simple

experiment, where the motor is excited using a sinusoidal torque input and the joint po-

sition/velocity is recorded. These can be compared to the results of a Matlab simulation

using the obtained model with an identical input signal. Thefollowing control signals are

applied

u(t) = [τsi sin(ωit)]
6
i=1 , (4.7)

where parametersτsi andωi are defined in table 4.8.

The results of the comparison are presented in figure 4.16.

The following observations can be made:

• The friction model is valid and joints stop when the torque level is below the static

friction.

• Due to the non-symmetric friction model the angles do not necessarily return to

zero and some drift can be observed (although the control torque is symmetric).

• The experimental and simulation graphs are aligned for joints S1 and W2.

• The simulation diverges significantly from experimental results for joint E2. This

can be attributed to friction and inertia modelling errors and lack of transmission

flexibility error.

4.4 Summary

In this chapter a full dynamic model of the PA10 robotic manipulator has been derived.

The gravity term is based on the mass distribution schematicprovided by the manufac-

turer. The friction torque has been identified based on constant velocity experiments and

is used in an interpolated look-up table model. The link inertias have been obtained an-

alytically using geometric approximations of the link shapes and matching these mass

centres to the manufacturer specification. Motor inetrias have been identified using step

torque input. All inertia parameters have been used to derive the inertia and Coriolis +

centrifugal terms. Additionally a simple open loop verification has been performed for the

links not affected by gravity using sinusoidal torque inputand comparing the simulation

and experimental results.

This verification method allows a check of inertia and friction of a single joint. However,

multiple joints need to be excited to verify the full dynamics of the manipulator. The main

disadvantage of this comparison is that, due to the model uncertainties (leading to poor

results repeatability), a quantitative measure of the model effectiveness cannot be made.
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Figure 4.16: Sine torque experimental and simulations comparisons.
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Chapter 5

Joint angle control of the PA10-6CE

manipulator

The notion of a control system originates from the multidisciplinary field of control the-

ory. Technological development over the past decades required someintelligentdevices

that could drive a plant. To accomplish this a device is required which provides signals

(in a form understandable to the plant) that will force it to the desired states. Depending

on the utilisation of data from the plant output, two controller groups can be described

(figures 5.1 and 5.2)

• open loop,

• closed loop.

Figure 5.1: Schematic of an open-loop controller.

Figure 5.2: Schematic of a closed-loop controller.

An open-loop controller sends control signals ’blindly’ without having any information

about the state of the plant. Therefore, such a controller can only be used in ideal situa-

tions, where random disturbances are not present, and the knowledge about the dynamics

of the driven plant is complete or irrelevant. However, in many practical cases the designer

of the control system (even if a complete model is available)cannot always foresee the
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random forces that may affect the plant, and therefore uses the output (or sometimes even

the state of the plant) to improve accuracy, stability and system transient response. The

feedback loop consists of three main elements: the plant, a sensor measuring the output

and a controller processing the difference between the measurement and a given reference

signal to compute and apply a new command to the plant. This isa universal configura-

tion with advantages and drawbacks. The main positive outcome of feeding back the last

measurement is the independence to environmental changes,as the system can simply

modify the command signal to achieve the desired task. The designer has to be aware of

the possible consequences of time delay between the measurement and command. This

often leads to various unwanted outcomes like oscillation or instability. Therefore, the

controller has to be designed with a good consideration of the available signals (measure-

ments) and their time delays. This needs to be balanced against the achievable system

behaviour. Controller design is therefore considered a difficult task especially when driv-

ing cross coupled multivariate non-linear systems.

This chapter presents results of comparisons of PA10 model simulation and manipulator

experiments and the results of applying multiple robust andmodel based controllers to

the PA10 manipulator. The contributions of this chapter constitute:

• the application of the non-parametric friction model in feedback model simulation

and manipulator control of the PA10 manipulator,

• a broad comparison of robust and model based controllers applied to the PA10

manipulator with focus on trajectory tracking and high frequency torque content.

5.1 Introduction to manipulator controllers

Depending on the availability of the model and the knowledgeabout the structure of the

manipulator, different types of controllers can be employed. The typical classification

distinguishes

• robust controllers

• adaptive controllers

• model based controllers

The robust controllers such as a PD (proportional and derivative) controller provide global

asymptotic stability (in the absence of gravity and friction) for step inputs at the cost of

high feedback gains and possible faster actuator wear. The adaptive controllers provide

the quality of a model based controller, requiring only the structure of the model, however

the trade-off is the computational complexity and additional dynamics in the controller.

The model based controllers provide good trajectory tracking properties, although the

model and its parameters have to be known. Two groups of modelbased controllers can

be distinguished: [5.7]
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• computed torque algorithms,

• dissipative algorithms.

5.1.1 Robust control

When no information about the model of the system is available, only the tracking error

can be used. The simplest approach is to feed back the negative output error, as an input

to the plant

u =−(q−qd) (5.1)

whereqd is the desired value, andq is the measured one. This scheme can be further

refined by introducing a constant gain

u =−Ke =−K(q−qd) (5.2)

whereK is the feedback gain, ande= (q−qd) is the control error. The presented setup

is commonly called aproportional controller (P for short). It is the simplest continuous

feedback controller. It is not considered as a valid controller, because it does not guarantee

asymptotic stability of the control error. For a step input,the controller will drive the sys-

tem close to the desired position with a constant error (depending on the controller gain)

for a type zero system. The proportional controller can leadto oscillatory behaviour. To

prevent the oscillations, a derivative of the error can alsobe used as part of the feedback.

5.1.1.1 Proportional and derivative (PD) controller

One of the simplest and most popular robust controllers (when both the state and its

derivative are available (or the latter can be derived/estimated)) is a combination of an

amplified negative control error and its time derivative [5.1].

u =−KPe−KDė (5.3)

whereKP is theproportional gain, KD is thederivative gain, However, this scheme does

not ensure that the steady state error vanishes for a reference input of higher degree than a

step for joints not affected by gravity. Moreover, it does not assure zero steady state error

for step reference input when applied to joints affected by gravity. The control quality is

further compromised by the presence of friction. Therefore, a term needs to be introduced

that can accumulate the error measured over time and use it inthe feedback loop.

5.1.1.2 The proportional, integral and derivative (PID) controller

u(t) =−KP ·e(t)−KD · ė(t)−K I ·

t∫

t0

e(s)ds, (5.4)
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whereK I is theintegral gainandt0 is the start time of the control. The main disadvantage

of this formula is that it can produce overshoots, when the system starts in a position

distant from the desired one. To prevent this, the integration can be reduced only to

instances when the controller output is achievable by the system.

Integrator anti-windup The integral component is modified [5.2]

u(t) =−KP ·e(t)−KD · ė(t)−K I ·
∫

I

e(s)ds, (5.5)

with

I = {s∈ [t0, t]|(ui(s)< ui,max)∧ (q̇i(s)< vi,max), fori ∈ {1, . . .number of joints}} , (5.6)

whereui,max is the maximum torque allowed by the actuator for jointi, and vi,max is

the maximum generalised velocity recommended by the manufacturer for joint i. The

integrator stops the integration process when the joint is driven with the maximum allowed

torque, or when the joint is moving with a maximal allowed velocity. This control scheme

partly prevents overshoot in trackingsteplike trajectories. Both of these methods produce

persistent high feedback gains. Additionally, the integrator captures any non-zero error

and may cause oscillatory behaviour in the presence of static friction.

5.1.1.3 Sliding mode controller

The problem can be approached from a slightly different point of view, by means of

defining asliding surface[5.5, 5.3]

s= ė(t)+ΛΛΛe(t), (5.7)

whereΛΛΛ is a parameter defining the bandwidth of the controller. The feedback loop takes

the form:

u = K sat

(

s
ϕϕϕ

)

, (5.8)

whereK is the gain parameter andϕϕϕ is the boundary layer parameter, and

sat(x) =



















1 if x> 1

x if −1≤ x≤ 1

−1 if x<−1.

This controller can be viewed as a PD controller with saturation. The introduction of

saturation prevents very high feedback gains, but introduces a lack of smoothness, which

can be undesirable in analytical controller analysis.
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5.1.2 Model based control

When the model of the system is available, it can be used to improve the controller [5.6].

There are two main groups of model based controllers:

• computed torquealgorithms require the invertibility of the inertia matrix, and can

be considered as static feedback linearisation.

• dissipative algorithms do not require a linearising feedback, but try todissipate

energy of the system to drive the position and velocity errors asymptotically to

zero.

5.1.2.1 Gravity and friction compensation

Some of the dynamic characteristics of the controlled system can be provided by the

manufacturer. Such was the case for the Mitsubishi PA10-6CE with the mass distribution

diagram. Based on this data the gravity model has been derived. This can be combined in

the feedback loop with a generic PD controller

u = g(q)−KPe−KDė. (5.9)

After obtaining friction estimates, the model can be enriched by this component

u = g(q)+F(q̇)−KPe−KDė. (5.10)

According to the model comparison results in [5.10], the gravity and friction constitute

the majority of the torque being modelled (for the PA10-6CE manipulator). Both of these

controllers can be classified as dissipative, as they are unable to linearise the system, due

to the lack of the inertia matrix.

5.1.2.2 Feedback linearisation.

Once the full model is available, one of the classical model based algorithms can be

applied. The most popular model based control scheme is feedback linearisation (also

referred to as computed torque control). The model is used tolinearise the system and

control the simple linear dynamics. Assuming the model is defined by equation 3.9, the

controller takes the form

u = Q(q)v+C(q, q̇)q̇+g(q), (5.11)

where

v = q̈d −KDė−KPe (5.12)

and the error is defined as

e= q−qd, (5.13)
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whereqd is the desired trajectory. After adding the friction element to equation 5.11

u = Q(q)v+C(q, q̇)q̇+g(q)+F(q̇), (5.14)

a linear control system is obtained

q̈ = q̈d −KDė−KPe. (5.15)

The closed loop system poles can be shaped by means of the two feedback gains. This

controller relies very much on the quality of the model and model discrepancies or envi-

ronmental disturbances have detrimental effects.

5.1.2.3 Wen - Bayard’s algorithm

Another representative of the computed torque group is the algorithm developed by Wen

and Bayard [5.9]. The control torque is computed from the following equation

u = Q(qd)q̈d +C(qd, q̇d)q̇d +g(qd)+Kdė+Kpe, (5.16)

whereKp andKd are the PD gains. Assuming that a model of friction is available, the

following control scheme can be proposed

u = Q(qd)q̈d+C(qd, q̇d)q̇d+g(qd)+F(q̇d)+Kdė+Kpe, (5.17)

The main advantage of this controller is that the model-derived command signal can be

pre-computed off-line. However any control errors compromise the off-line model func-

tionality.

5.1.2.4 Slotine - Li algorithm

In the dissipative algorithms group is a scheme developed bySlotine and Li [5.4]. The

torque is computed from the following equation

u = Q(q)q̈r +C(q, q̇)q̇r +g(q)−KDs, (5.18)

with

q̇r = q̇d−ΛΛΛe (5.19)

and

s= q̇− q̇r = ė+ΛΛΛe (5.20)

This algorithm can also be extended by using the friction compensation element:

u = Q(q)q̈r +C(q, q̇)q̇r +g(q)+F(q̇)−KDs, (5.21)
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In this case the model is computed on-line based on measurements, which can compensate

for tracking errors, but can also amplify any measurement noise.

5.2 Model evaluation

The PA10-6CE model behaviour is compared with the experimental results recorded from

the robotic arm. Feedback control methods are employed to deliver repeatable results.

The following two main groups of experiments/simulations were performed:

• The manipulator and the model (or parts of it) are driven by a PID controller along

a given trajectory and the resulting control torques are compared.

• The manipulator is driven by a a feedback controller (various types from robust to

model based) and the trajectory tracking errors are compared.

The simulation and experimental results are compared qualitatively by plotting the results

on a graph and quantitatively by means of an Integral SquaredError of certain signals

ISE(x,y) =

tF∫

t0

(x(t)−y(t))2dt,

wherex(t) andy(t) are the compared quantities,t0 is the start time andtF is the end time.

All experiments are performed using the PA10 robot control application ([5.8], [5.11])

with the control sampling frequency set to 500 Hz1. The simulations were performed us-

ing MATLAB and a trapezoid based differential equations solver, which employs a func-

tionality to lock joints when the applied torque does not exceed the static joint friction.

The simulation was oversampled at a power of two multiple of the manipulator control

frequency (2n×500 Hz), withn selected each simulation step, to provide sufficient mod-

elling accuracy. Results were stored only at the manipulatorcontroller sampling instances

(500 Hz). Due to the fixed sampling rate used in all experiments and simulations the ISE

measure simplifies to a sum (using the rectangle integrationrule)

ISE(x,y) =
N−1

∑
i=0

((x(i)−y(i))2δt ,

whereδt is the sampling period equal to 2 ms andN is the number of samples in each

experiment (equal to 500× experiment time in seconds).

To compare signals driving different joints simultaneously, it is desired to have no de-

pendence on the signal magnitude or experiment time, therefore a weighted mean ISE

1This is a frequency at which commands are sent from the controller PC to the servo controller box
(which has an internal control routine to communicate with the arm)
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(WMISE) measure was applied to the data

WMISE(x,y) =

N−1
∑

i=0
(x(i)−y(i))2δt

t(N)−t(0)
N−1
∑

i=0
x2(i)δt

t(N)−t(0)

(5.22)

wherex(i) is the reference signal andy(i) is the compared signal.

The measured command torque signals contain high frequencyelements, which is not

present in the MATLAB simulations, and can be viewed ascontrol noisebeing above the

bandwidth of the manipulator mechanical system. It introduces discrepancies between

the control signals even though it is clear that the actual low frequency content is in good

accordance. Therefore the torque signal has been filtered using a 9-th order Butterworth-

IIR low pass filter with pass band[0,15] Hz with 3 dB range and stop band from 30 Hz

with 50 dB attenuation. The characteristics of the designedfilter is plotted in figure 5.3.

0 0.05 0.1 0.15 0.2
−600

−500

−400

−300

−200

−100

0

100

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

0 0.05 0.1 0.15 0.2
−800

−700

−600

−500

−400

−300

−200

−100

0

Frequency (kHz)

P
ha

se
 (

de
gr

ee
s)

Phase  Response

Figure 5.3: Characteristics of filter used for torque signal analysis.

In all comparisons the filter has been applied using MATLAB’s zero-phase filtering com-

mandfiltfilt (applying the same filter in both directions to the time-extended signal).

For the experimental controller evaluation an additional quantity has been computed to

measure the amount ofcontrol noisein the command torque. The following formula has

been used to calculate the weighted mean control noise ratio(WMCNR)

WMCNR(x,y) =

N−1
∑

i=0
(u(i)−uf (i))

2δt

t(N)−t(0)
N−1
∑

i=0
u2

f (i)δt

t(N)−t(0)

(5.23)

whereu(i) is the applied torque read from the controller anduf (i) is the filtered torque

sample.
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Trajectories The following trajectories were used

• sine trajectory tracked by all joints

– synchronised (equal periods) (ssine)

qd(t) = [Ri(cos(ω1t)−1)]6i=1 , (5.24)

– asynchronous (different periods) (sine)

qd(t) = [Ri(cos(ωit)−1)]6i=1 , (5.25)

• step trajectory tracked by all joints

– simultaneous (all joints start moving in the same instance)(sstep)

qd(t) = [Ri1(t −∆1)]
6
i=1 , (5.26)

where

1(t) =







0 for t < 0

1 for t ≥ 0,

– delayed (each joint starts moving at a different moment) (dstep)

qd(t) = [Ri1(t −∆i)]
6
i=1 , (5.27)

• step trajectory followed by one joint, while other joints follow an asynchronous sine

trajectory (asinestep).

qk
d(t) =











Ri1(t −∆i) for i = k

Ri(cos(ωit)−1) for i 6= k





6

i=1

, (5.28)

5.2.1 Comparative PID control

In this experiment the PA10 manipulator and the model in Matlab were controlled in a

closed-loop configuration using aPID controller. The control parameters2 are presented

in table 5.1.

The P andD coefficients have been selected to minimise the trajectory tracking error.

However, a simple tuning rule was not used due to control ’jitter’ being caused in motors

when too much derivative gain was applied (most probably caused by velocity estimation

errors/noise). TheI coefficients have been selected to deliver good tracking accuracy

without any ’torque ringing’ effects. The feedback gain parameters have been fixed for

all experiments throughout this thesis (whether used in model based or simple robust

2The PA10 control application uses motor torque values, and the simulation uses joint torque
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joint KP KI KD

S1 61.30 9.00 7.67
S2 92.00 11.0 9.20
E1 33.00 6.00 2.00
E2 7.780 3.00 0.36
W1 17.50 7.00 0.35
W2 7.875 4.00 0.35

Table 5.1: PID controller parameters used in experiment andsimulation (motor torque
scale).

controllers). It can be noticed that higher values have beenchosen for joints strongly

affected by gravity.

The sliding controllers parameters (presented in table 5.2) have been selected to match

the PD gains (from table 5.1).

joint ΛΛΛ ϕϕϕ K
S1 8.00 0.6 4.60
S2 10.0 0.5 4.60
E1 10.0 0.6 1.98
E2 50.0 1.8 0.28
W1 50.0 0.8 0.28
W2 22.5 0.8 0.28

Table 5.2: Sliding controllers parameters used in experiments and simulations (motor
torque scale).

Table (5.2.1) shows the trajectory parameters used.

torque [Nm] range [rad] ω [s−1] ∆ [s]
U1 0.55 R1 -1.0 ω1

2π
5 ∆1 2.0

U2 0.00 R2 -0.7 ω2
2π
4.5 ∆2 2.1

U3 0.00 R3 0.7 ω3
2π
4 ∆3 2.2

U4 0.08 R4 -1.2 ω4
2π
4.2 ∆4 2.3

U5 0.00 R5 -1.0 ω5
2π
3 ∆5 2.4

U6 0.08 R6 1.2 ω6
2π
4.1 ∆6 2.5

Table 5.3: Trajectory parameters used in experiments and simulations.

Using thesine trajectory the following partial models were compared withthe experi-

mental results (to evaluate the contribution of each element of the model)

• full model,

• full modelwithout friction component,

• full modelwithout gravity component,
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• full modelwithout motor inertia component,

• full modelwithout joint inertia component,

• full modelwithout motor and joint inertia components (unity inertia),

• full modelwithout Coriolis and Centrifugal components.

The weighted mean integral squared errors (WMISE) of the experimental control torques

and the simulation control torques are used to determine theimportance of given dynamic

elements in the overall model for each joint. It is expected that due to the high gear ratio

the joint inertia will will make a fewer contribution to the joint torques than either gravity

or friction (with the effect of the latter actually being amplified by the transmission). It

was also anticipated that the S2 and E1 joints control will have significant contributions

on gravity torque. The results of this comparison should justify the employment of the

manipulator dynamics into a feedback controller.

The actual angle, velocity and motor torque plots were also compared for a visualisation

of the contribution of each model element to the overall control torque.

Figure 5.4: Comparison of simulation and experimental torque differences per joint for
trajectorysine.

The following conclusions can be drawn from the WMISE plot (figure 5.4):

• As expected the S2 and E1 joint control torques are significantly affected by the

presence of gravity terms.
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• The friction is an important term for each joint.

• Motor inertias are more significant for the wrist joints (E2,W1, W2) and joint

inertias for the base joints (S1, S2, E1).

• The replacement of inertia values with a unity matrix mostlyaffects the lighter wrist

joints (with smaller motors).

• Tho Coriolis and Centrifugal term (requiring most computation) has only a minimal

effect on the joint torques for S1 and E1, and could be considered negligible for all

other joints (if computational efficiency were an issue).

The following points can be observed based on theTVAplots (figures 5.5, 5.6 and 5.7)

• For the full model there is a very good agreement between the simulation and fil-

tered experimental results.

• The plot showing a model without gravity gives a good indication of the amount of

joint torque required to counteract the static weight of thelinks.

• Without the friction model the command signal is continuousandsinebased.

• The motor torque magnitudes presented on these plots also provide a good justifi-

cation for using a weighted error measure, due to the torquesbeing almost an order

of magnitude greater for the S2 joint in comparison to the wrist joints.

5.2.2 Model based control of the PA10 manipulator

In the second part of the model evaluation, a set of model based controllers (with partial

and full model) was applied to the PA10 manipulator and compared with standard PD and

PID controllers. The following controller types were used

• PD controller (equation 5.3),

• PID controller (equations 5.5, 5.6),

• PD controller with gravity compensation (equation 5.9),

• PD controller with gravity and friction compensation (equation 5.10),

• Slotine-Li controller (equation 5.21),

• Slotine-Li controller without the Coriolis and centrifugalterm,

• Wen-Bayard controller (equation 5.17),

• Wen-Bayard controller without the Coriolis and centrifugal term,

• feedback linearisation controller (equation 5.14, 5.12),
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Figure 5.5: Comparison of simulation and experimental torques for different model set-
ups, trajectorysine.
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Figure 5.6: Comparison of simulation and experimental torques for different model set-
ups, trajectorysine.
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Figure 5.7: Comparison of simulation and experimental torques for different model set-
ups, trajectorysine.

• feedback linearisation controller without the Coriolis andcentrifugal term,

• the native PA10-6CE velocity controller3.

The feedback linearisation controller PD parameters are shown in table 5.4. The param-

eters were selected manually to minimise the trajectory tracking errors while preventing

the ’ringing’ effect in the joint motors.

joint KP KD poles
S1 500.00 40.0 −20±10i
S2 1600.0 40.0 −20±34.6i
E1 1500.0 35.0 −17.5±34.6i
E2 2000.0 45.0 −22.5±38.6i
W1 3000.0 75.0 −37.5±39.9i
W2 3000.0 75.0 −37.5±39.9i

Table 5.4: PD controller parameters (and poles) used in the feedback linearisation con-
troller.

All controllers were tested with both sine trajectories (sine, ssine, equations 5.25,

5.24) to evaluate the relative per joint control quality. The PID and full linearisation

controllers were applied to track thedstep trajectory (equation 5.27) for a graphical

comparison of control signals and controller ’behaviour’. The asinestep trajectory

(equation 5.28) was used for graphical comparison of control signals during the step event

3The PA10 servo controller allows two control modes, torque command and velocity command. In the
velocity command an internal controller is used.
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and during the stationary period4 (for each joint), and the stationary period was also used

for quantitative control evaluation.

The following conclusions can be drawn for thedstep trajectory based experiments

presented in figures 5.8 to 5.11 comparing the PID and full linearisation controllers for all

joints:

• It can be noticed on all figures that the velocity saturates for joints S1, S2, E1 and

E2 and the servo controller applies additional torque limiting.

• The PID controller (figures 5.8 and 5.9) provides a faster response when the motion

of other joints influences the controller (this may be attributed to a high gain).

• The linearisation controller (figures 5.10 and 5.11) produces more oscillations in

the control signal, which can be attributed to the friction feedback (due to a dis-

continuous friction model around zero velocity, an observableoscillatory boundary

stability effectmay occur).

• The response time is comparable for both controllers, although the full linearisation

produces a greater overshoot in some cases (E1, W2), which canagain be attributed

to the discontinuous friction model.

Conclusions for theasinestep control experiments (figures 5.12 to 5.19) trajectory

were made based on the comparison of control signals for joint E15:

• There is no noticeable difference in the response time for all controllers (marked

with black dashed lines of figures 5.12 to 5.15). This can be partly attributed to the

fact that the velocity saturates during the motion, and the servo controller applies

torque limiting.

• Slotine-Li (figure 5.14) and PD+grav+frict (figure 5.13) controllers show a signifi-

cant amount of high frequency content in the command torque.

• It can be noticed that the control torques generated for the PD+grav+frict (figure

5.13) and linearisation controllers (figures 5.14 and 5.15)have a noticeable amount

of velocity oscillation (due to straight feedback of the discontinuous (around zero)

friction model), which can influence the squared error results.

• From thestationaryperiod plots (figures 5.16 to 5.19) it can be seen that the ve-

locity has smallest variation when the PD+gravity and Wen-Bayard controllers are

applied.

4The termstationary periodis used to denote the time instances after one joint has performed its step
motion, and its trajectory is constant over that period of time - while other joints follow sinusoidal trajecto-
ries.

5this joint was selected as it is exhibits both signifficant gravity and frictional effects, and is well inside
the manipulator kinematic chain to have possibly noticeable Coriolis and centrifugal torques
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Figure 5.8:dstep trajectory followed using a PID controller, joints S1, S2, E1.
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Figure 5.9:dstep trajectory followed using a PID controller, joints E2, W1, W2.
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Figure 5.10:dstep trajectory followed using a full linearisation controller, joints S1, S2,
E1.
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Figure 5.11:dstep trajectory followed using a full linearisation controller, joints E2,
W1, W2.
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Figure 5.12: The step event ofasinestep trajectory followed by joint E1 for various
controllers.
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Figure 5.13: The step event ofasinestep trajectory followed by joint E1 for various
controllers.
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Figure 5.14: The step event ofasinestep trajectory followed by joint E1 for various
controllers.
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Figure 5.15: The step event ofasinestep trajectory followed by joint E1 for different
controllers.

• The controllers without Coriolis and centrifugal term (denoted with no C+C in fig-

ures 5.13 to 5.15 and 5.17 to 5.19) do not differ noticeably from their full model

versions.

• Various levels of torque noise/oscillation can be noticed on the stationary period ex-

periments (figures 5.16 to 5.19). It can be observed that the high frequency oscilla-

tions amplify with the increase of controller terms depending on measured velocity

- such as friction and Coriolis and centrifugal.

• Based on the graphical observations it shows that the linearisation controller is not

best suited for the task of holding a single joint still whileother ones are moving

(figures 5.18 and 5.19).

controller S1 S2 E1 E2 W1 W2
PD 5.13e-6 1.58e-4 1.44e-4 6.42e-6 6.80e-7 5.54e-9
PID 4.85e-6 1.09e-4 1.53e-4 1.21e-6 6.02e-7 4.18e-8
PD+gravity 4.26e-6 2.51e-6 3.39e-6 2.57e-6 2.49e-6 3.04e-9
PD+grav+frict 4.73e-7 1.23e-6 7.72e-6 1.88e-6 1.11e-6 3.91e-8
Wen-Bayard 6.90e-6 5.05e-6 1.98e-6 1.07e-5 1.02e-6 3.52e-8
Wen-B (no C+C) 4.13e-6 3.20e-6 4.21e-6 7.34e-6 1.88e-6 3.88e-8
Slotine-Li 3.53e-7 2.63e-6 1.51e-5 1.27e-7 6.91e-7 7.84e-8
S-Li (no C+C) 7.01e-7 2.07e-6 8.82e-6 1.02e-7 6.67e-7 6.36e-8
linearisation 1.42e-6 6.34e-7 8.70e-6 1.06e-5 1.88e-6 4.97e-7
lin (no C+C) 1.18e-6 3.75e-7 9.42e-6 1.11e-5 1.98e-6 3.03e-7

Table 5.5: Weighted MISE of angle tracking errors, trajectory: asinestep.
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Figure 5.16: The stationary period ofasinestep trajectory followed by joint E1 for
various controllers.
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Figure 5.17: The stationary period ofasinestep trajectory followed by joint E1 for
various controllers.
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Figure 5.18: The stationary period ofasinestep trajectory followed by joint E1 for
various controllers.
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Figure 5.19: The stationary period ofasinestep trajectory followed by joint E1 for
different controllers.

controller S1 S2 E1 E2 W1 W2
PD 0.1425 1.01e-2 5.32e-3 6.59e-2 2.43e-2 2.748
PID 0.3863 9.65e-3 4.70e-3 2.01e-2 1.16e-2 0.1027
PD+gravity 0.2199 7.93e-3 4.45e-3 0.3646 1.53e-2 7.291
PD+grav+frict 0.3287 6.08e-3 2.92e-2 0.1598 0.5078 0.7056
Wen-Bayard 9.12e-2 9.07e-3 3.31e-3 7.21e-3 3.73e-2 0.2496
Wen-B (no C+C) 0.2755 1.08e-2 3.93e-3 9.12e-2 1.94e-2 0.6414
Slotine-Li 0.8195 9.10e-3 4.31e-2 6.391 1.986 2.641
S-Li (no C+C) 0.5528 9.88e-3 4.88e-2 0.9706 1.717 1.531
linearisation 0.2329 1.28e-2 2.38e-2 0.1719 0.1914 1.48e-2
lin (no C+C) 0.2435 9.85e-3 2.51e-2 0.1884 0.1667 2.67e-2

Table 5.6: High to low frequency control power ratio, trajectory: asinestep.

The observations made based on the TVA plots in figures 5.12 to5.19 can now be con-

firmed with the control quality indices from figure 5.20 and tables 5.5, 5.6.

• It can be noticed that the lack of gravity feedback in the controller strongly affects

the joints with significant mass (S2, E1), completely disqualifying the PD and PID

controllers.

• The PD+grav+frict method can be considered to be a well balanced controller de-

livering very good results across most joints (except tracking for E1 and controller

’noise’ for E1 and E2), which could indicate some issues withthe friction model

for these joints.

• The PA10 velocity controller has been excluded from this analysis due to it not

being able to send a step change in position using a velocity command (insufficient

scale).
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Figure 5.20: Control quality measures for the still period ofasinestep trajectory.
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• The controllers without Coriolis and centrifugal term show similar measures to

the full model based controller, however, it can be noticed that in some cases the

WMISE is smaller for the incomplete controller (this may indicate modelling errors

or amplified velocity measurement noise).

• The Wen-Bayard controller shows very good WMCNR for all joints.The lineari-

sation controller has better results only for W2, however it fails to deliver the same

angle tracking quality.

controller S1 S2 E1 E2 W1 W2
PD 1.08e-5 1.46e-4 2.23e-5 1.22e-5 1.61e-5 5.70e-6
PID 1.06e-5 7.23e-5 1.96e-5 9.54e-6 1.22e-5 4.52e-6
PD+gravity 1.05e-5 1.49e-5 2.09e-5 1.12e-5 1.27e-5 4.51e-6
PD+grav+frict 8.64e-6 1.11e-5 1.34e-5 5.02e-6 6.20e-6 5.55e-6
Wen-Bayard 7.87e-6 1.01e-5 1.28e-5 4.91e-6 5.46e-6 5.53e-6
Wen-B (no C+C) 8.04e-6 1.07e-5 1.41e-5 4.88e-6 5.56e-6 5.66e-6
Slotine-Li 8.91e-6 1.28e-5 2.70e-5 3.58e-6 6.14e-6 5.45e-6
S-Li (no C+C) 8.28e-6 1.11e-5 2.69e-5 3.21e-6 6.78e-6 5.50e-6
linearisation 1.46e-5 7.13e-6 1.63e-5 1.09e-5 1.08e-5 4.79e-6
lin (no C+C) 1.45e-5 6.97e-6 1.65e-5 1.04e-5 9.69e-6 4.47e-6
PA10 velocity 1.11e-2 2.40e-5 2.62e-5 1.28e-5 1.29e-5 1.33e-5

Table 5.7: Weighted MISE of angle tracking errors, trajectory: ssine.

controller S1 S2 E1 E2 W1 W2
PD 0.1043 1.83e-2 4.08e-2 3.051 1.82e-2 6.47e-2
PID 7.77e-2 2.24e-2 2.57e-2 2.993 1.08e-2 3.40e-2
PD+gravity 9.59e-2 2.92e-2 3.02e-2 3.184 1.76e-2 4.25e-2
PD+grav+frict 0.1167 2.18e-2 2.26e-2 1.532 7.80e-3 2.36e-2
Wen-Bayard 9.33e-2 2.31e-2 2.53e-2 2.037 8.70e-3 2.59e-2
Wen-B (no C+C) 0.1000 2.38e-2 4.51e-2 3.159 1.00e-2 3.73e-2
Slotine-Li 0.1353 3.43e-2 6.19e-2 10.060 1.85e-2 6.01e-2
S-Li (no C+C) 0.1257 3.59e-2 5.26e-2 10.100 2.43e-2 5.18e-2
linearisation 1.60e-2 1.06e-2 3.14e-2 9.89e-3 5.65e-3 2.31e-2
lin (no C+C) 4.00e-2 8.19e-3 2.96e-2 9.47e-3 4.89e-3 1.41e-2
PA10 velocity 4.13e-2 3.40e-3 2.05e-2 0.1025 4.07e-3 1.96e-2

Table 5.8: High to low frequency control power ratio, trajectory: ssine.

After analysing thessine andsine trajectories (figures 5.21, 5.22 and tables 5.7, 5.8,

5.9 and 5.10) the following can be observed:

• Similar to previous plots, the joints affected by gravity (S2, E1) have very poor

tracking errors for controllers without the gravity feedback.

• The full linearisation controller shows very good WMCNR for all joints for both

trajectories, however it is not best in terms of angle tracking errors.
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• The last joint (W2) shows very similar performance for all controllers, with the PD

and PID controllers having a slight advantage.

• The WMCNR for joint E2 is high for all controllers except the feedback linearisa-

tion controller. This can be attributed to a different velocity feedback level.

• The PA10 velocity controller is unable to track the trajectory for S1 due to internal

velocity limits, which is reflected in the WMISE.

• The PA10 velocity controller shows mixed results for other joints. This can be partly

attributed to the fact that velocity is the input parameter and any initial position error

(before the control starts) will be preserved throughout the duration of the trajectory.

• It is evident, however, that the velocity controller produces very little high fre-

quency torque element, but still not enough to overtake the linearisation controller

measure for joint E2.

• The Wen-Bayard controller shows a very balanced performancefor all joints for

both WMISE and WMCNR.
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controller S1 S2 E1 E2 W1 W2
PD 1.14e-5 2.45e-4 1.37e-4 9.61e-6 1.49e-5 3.87e-6
PID 1.27e-5 2.02e-4 1.43e-4 1.29e-5 1.25e-5 4.13e-6
PD+gravity 1.22e-5 2.51e-5 1.36e-5 9.34e-6 1.29e-5 3.55e-6
PD+grav+frict 8.04e-6 1.21e-5 2.45e-5 5.88e-6 1.58e-5 6.27e-6
Wen-Bayard 7.86e-6 1.32e-5 1.11e-5 5.72e-6 1.39e-5 6.22e-6
Wen-B (no C+C) 5.90e-6 1.25e-5 1.51e-5 6.18e-6 1.48e-5 6.33e-6
Slotine-Li 9.17e-6 1.35e-5 1.85e-5 3.69e-6 1.53e-5 6.20e-6
S-Li (no C+C) 8.07e-6 1.28e-5 2.19e-5 3.21e-6 1.49e-5 6.23e-6
linearisation 1.14e-5 6.24e-6 9.01e-6 1.39e-5 2.05e-5 5.27e-6
lin (no C+C) 1.02e-5 6.01e-6 1.01e-5 1.41e-5 2.17e-5 5.19e-6
PA10 velocity 1.11e-2 3.97e-5 5.32e-5 2.83e-5 8.39e-5 3.19e-5

Table 5.9: Weighted MISE of angle tracking errors, trajectory: sine.

controller S1 S2 E1 E2 W1 W2
PD 0.1181 1.53e-2 9.25e-3 0.8756 6.43e-3 2.59e-2
PID 7.41e-2 1.82e-2 8.05e-3 3.118 8.10e-3 2.22e-2
PD+gravity 7.14e-2 1.18e-2 9.05e-3 1.720 7.83e-3 3.15e-2
PD+grav+frict 7.31e-2 1.02e-2 9.12e-3 2.640 1.42e-2 2.38e-2
Wen-Bayard 8.94e-2 1.21e-2 1.64e-2 2.036 1.26e-2 2.57e-2
Wen-B (no C+C) 0.1303 1.16e-2 1.61e-2 2.616 7.97e-3 2.50e-2
Slotine-Li 0.1262 3.63e-2 2.40e-2 7.245 1.88e-2 4.67e-2
S-Li (no C+C) 0.1554 2.47e-2 2.55e-2 8.162 1.41e-2 4.29e-2
linearisation 1.99e-2 8.77e-3 1.30e-2 6.68e-3 5.59e-3 1.48e-2
lin (no C+C) 2.38e-2 7.71e-3 1.27e-2 7.25e-3 5.18e-3 1.47e-2
PA10 velocity 3.59e-2 3.29e-3 7.63e-3 0.1058 3.19e-3 2.42e-2

Table 5.10: High to low frequency control power ratio, trajectory: sine.

5.3 Summary

In this chapter various manipulator torque control techniques were presented and utilised

to verify the validity of the dynamic model derived in Chapter4. The following observa-

tions can be made based on the obtained results:

• The control experimental results confirm the conclusion from the PID controlled

simulation vs. experiment comparisons about the model terms significance. The

gravity and friction terms play the most important role in decreasing the angle track-

ing errors.

• On the other hand, the experimental results show that the inclusion of additional

terms in the feedback loop can cause controlnoise issues or even poorer angle

tracking results.

• The results confirm the good immunity of the Wen-Bayard to measurement noise.
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• The results show the difficulty of obtaining a good model (andtherefore a good

model based controller). The choice is between computational complexity (and

work required in model derivation), angle tracking performance and generation of

unwanted high frequency control torques depending on the actual task to be per-

formed.

– The gravity term is a minimum requirement for any further control tasks.

– The friction term improves the tracking quality at the cost of additional com-

plexity and possible instability issued due to the discontinuous friction nature

around zero velocity. The requirement of a dead zone is a compromise be-

tween the model exactness and the application feasibility.

– Adding the remaining model terms to the controller can further improve the

angle tracking, however caution is required with feedback gains.

– The PID control comparison task concluded the insignificance of the Coriolis

and Centrifugal term and was fully confirmed by the model basedcontroller

experiments.

– The Coriolis and centrifugal model term in feedback control of the PA10-

6CE can be omitted without significant sacrifice of tracking quality (this can

be attributed to the high gear ratio). This leads to a major reduction in the

numerical complexity of the model.

• The internal PA10 velocity control mode delivers good results, however, it contains

tighter velocity limits, leading to increased task execution time.

In the analysis above the manipulator was mounted on a fixed base, and there was no

disturbance affecting the dynamic model. This is not necessarily the case in real-life

robotic implementations.
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Figure 5.21: Control quality measures forssine trajectory.
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Figure 5.22: Control quality measures forsine trajectory.
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Chapter 6

Description of base disturbance

6.1 Motion platform

To examine the control of a robotic manipulator with its baseattached to a non-inertial

coordinate frame, a motion platform can be used.

The Intelligent Robotic Systems Laboratory at Heriot-Watt university has been equipped

with a 6-DOF CueSim platform [6.2] (figure 6.1). The characteristics of the motion plat-

form are summarised in table 6.1 and figure 6.2.

Parameter Value Parameter Value
Surge range 0.570m Pitch range ±21◦

Sway range 0.520m Roll range ±21◦

Heave range 0.350m Yaw range ±30◦

Peak surge/sway velocity 0.7m/s Peak pitch/roll rate 40◦/s
Peak heave velocity 0.6m/s Peak yaw rate 60◦/s

Table 6.1: MotionBase CueSim 6-DOF motion platform parameters.

A mounting plate has been installed on the frame of the CueSim motion platform, this al-

lows other devices to be mounted on it. The PA10-6CE manipulator has been mounted on

the CueSim platform and this allows the base of the manipulator to be moved (disturbed)

along any achievable 6-DOF trajectory.

The platform can be controlled by sending(x,y,z, roll,pitch,yaw) commands at a rate of

33 Hz (T=0.03 s). The actual platform trajectory can be recorded by receiving the last

measured(x,y,z, roll,pitch,yaw) position (derived from the platform actuator positions by

the CueSim control software). This control frequency is significantly lower than the one

used for the PA10 manipulator. A single platform control cycle lasts 15 (=0.03s/0.002s)

PA10 control cycles. The control application is synchronised with the PA10 resource

manager (manipulator control commands are computed at 500 Hz) and polls the platform

resource manager (every cycle) to send/receive data when itis ready for a new control

cycle. This has been done due to a requirement for jitter-less control of the manipulator

and synchronised data logging. In this way, the platform command trajectory is delivered
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Figure 6.1: Schematic of MotionBase CueSim 6-DOF motion platform.

Figure 6.2: MotionBase CueSim 6-DOF motion platform bandwidth.

to its control board at the required rate. Output queueing (of length 1) is applied between

the resource manager and the client application. The availability of a new read-out packet
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triggers a notify event being passed to the control application, which reads the current

data and writes a new desired position in the next PA10 control cycle. The new position

is passed to the platform controller motion queueing algorithm at the next internal control

cycle.

6.2 Disturbance trajectories

It has been decided that for simplification of the simulationmodel, only roll and pitch (see

section 3.1) motion will be considered. It has been verified in the next chapters, that the

control results hold for all 6-DOF base motion. Furthermore, the available sensors allow

for additional comparisons for such type of trajectories. It needs to be noted that due to

the non-zero distance of the manipulator base from the motion platform reference origin,

the manipulator is also affected by linear accelerations along its Z-axis in roll and pitch

trajectories.

The following types of disturbance are used to evaluate the robustness of the control

algorithms presented in Chapter 5:

• sine trajectory followed by 1-DOF (roll or pitch)

q(t) = Asin

(

2πt
T

+ϕ
)

(6.1)

whereT is the period (T = 2.25 s),A is the amplitude1 (Aroll = 0.291 rad,Apitch =

0.274 rad ) andϕ is the phase (ϕ = 0). These trajectories are referred to asroll sin

andpitch sin.

• sine trajectory followed by 2-DOF (roll and pitch)

– same periods

qi(t) = Ai sin

(

2πt
T

+ϕi

)

for i ∈ {roll,pitch} (6.2)

with the following parametersT = 4.5 s, Aroll = 0.274 rad,Apitch = 0.274

rad andϕroll =
π
2 rad. This trajectory is referred to asroll + pitch sin equal

periods.

– different periods

qi(t) = Ai sin

(

2πt
Ti

+ϕi

)

for i ∈ {roll,pitch} (6.3)

with the following parametersTroll = 4.5 s,Tpitch = 2.25 s,Aroll = 0.219 rad,

Apitch = 0.219 rad,ϕroll =
π
2 rad andϕpitch = 0 (the amplitudes are reduced in

1The amplitudes have been selected to cover the platform range of motion
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comparison to the previous trajectory due to the range envelope shape). This

trajectory is referred to asroll + pitch sin different periods .

• sum of several sine trajectories followed by 2-DOF (roll andpitch)

qi(t) =
M

∑
j=1

Ai, j sin

(

2πt
Ti, j

+ϕi, j

)

for i ∈ {roll,pitch} (6.4)

whereM is the number of combined sine functions. Two trajectories with M =

20 were used, the parameters are presented in tables 6.4, 6.5, 6.6 and 6.7. The

amplitudes presented in these tables are only for magnitudereference, the actual

trajectory has been re-scaled by the platform software not to exceed the physical

limits. The angle ranges for these trajectories are presented in tables 6.2 and 6.3.

These trajectories are referred to assin sum (1)andsin sum (2).

Coordinate Minimum Maximum
roll −0.28831 0.29088
pitch −0.19258 0.24271

Table 6.2: Range of first sum of sines trajectory.

Coordinate Minimum Maximum
roll −0.16596 0.26146
pitch −0.24968 0.29088

Table 6.3: Range of second sum of sines trajectory.

• sea state vessel motion followed by all 6-DOF2. The range for all coordinates is

presented in table 6.8.

A ramp is applied to all trajectories (in a post processing step), to ensure they start and

end at zero. The ramp is multiplied by the first 1.35 s of the trajectory (it is also applied

to the last 1.35 s, but these are not captured in the performed experiments).

All trajectories are presented in figures 6.3 and 6.4. For comparison purposes, the two

manipulator trajectories used in the experiments are presented in figure 6.5.

6.3 Sensors

To provide real actual measurements of the platform motion,a set of sensors is located

at the origin of the mounting plate. This allows the information about the motion of the

platform to be captured. This can be considered to be similarto applications such as

a vessel at sea or a vehicle driving on uneven surface. The sensors provide analogue

2only in controller comparison experiments
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Figure 6.3: Sinusoidal platform trajectories.
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Figure 6.5: Manipulator trajectories used for experiments.
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[s] [rad] [rad]
Troll,1 5.10960 Aroll,1 0.14992 ϕroll,1 0.04750
Troll,2 12.2966 Aroll,2 0.43909 ϕroll,2 0.11265
Troll,3 2.48570 Aroll,3 0.85825 ϕroll,3 2.23936
Troll,4 1.46829 Aroll,4 0.20574 ϕroll,4 0.29782
Troll,5 4.27670 Aroll,5 0.64040 ϕroll,5 2.01292
Troll,6 1.19266 Aroll,6 0.81493 ϕroll,6 1.92990
Troll,7 2.42551 Aroll,7 0.02528 ϕroll,7 2.62159
Troll,8 2.29850 Aroll,8 0.82052 ϕroll,8 1.73207
Troll,9 1.54599 Aroll,9 0.99542 ϕroll,9 2.97713
Troll,10 1.23211 Aroll,10 0.34967 ϕroll,10 2.57449
Troll,11 2.03151 Aroll,11 0.71707 ϕroll,11 2.75603
Troll,12 2.51779 Aroll,12 0.66863 ϕroll,12 2.07108
Troll,13 1.48456 Aroll,13 0.73346 ϕroll,13 1.62976
Troll,14 1.62695 Aroll,14 0.45230 ϕroll,14 1.24746
Troll,15 1.86862 Aroll,15 0.86812 ϕroll,15 2.30703
Troll,16 9.19682 Aroll,16 0.51038 ϕroll,16 2.87362
Troll,17 2.87840 Aroll,17 0.92072 ϕroll,17 2.77878
Troll,18 1.66364 Aroll,18 0.38214 ϕroll,18 0.42488
Troll,19 1.39600 Aroll,19 0.38479 ϕroll,19 0.85540
Troll,20 11.7693 Aroll,20 0.50200 ϕroll,20 0.51906

Table 6.4: Roll sin sum (1) trajectory parameters.

signals, processed in a signal conditioning board and measured using a multi-channel

(multiplexed) 14-bit ADC board (PC ADDA-14 ISA CARD, FPC-011).

The following sensors were used

• 3-axis accelerometer (Crossbow CXL01LF3) [6.3] with an inputrange of (±1 g)

• Gravity referenced servo accelerometer (A223-3001) [6.5]with an input range of

(0 to+2 g)

• AccuStar electronic Clinometer [6.4] with a linear range of±45◦ and a time con-

stant of 0.3 s.

Considering the control cycle of the PA10 manipulator and theADC settling times the

sensor read-out frequency has been fixed at 1000 Hz. It has further been identified that

measurement noise is present in the sensor output. To tacklethis issue, a moving average

filter is applied to a number of subsequent readings, when data is requested from the

sensors’ resource-manager. In comparative experiments, similar to those presented in

the following chapters, it has been established that a filterlength ofnavg = 16 samples

provides a significant reduction of measurement noise without reducing the angle tracking

error.

The sensors (ADC) reading is synchronous (at 1 kHz) and the resource manager can han-

dle asynchronous read requests, delivering the results of averaging the lastnavg samples.

Considering that the manipulator is controlled at 500 Hz the sensor read-out is requested

every 2 ADC read cycles.
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[s] [rad] [rad]
Tpitch,1 4.06324 Apitch,1 0.05143 ϕpitch,1 1.20501
Tpitch,2 31.9297 Apitch,2 0.83521 ϕpitch,2 2.45745
Tpitch,3 2.47580 Apitch,3 0.59460 ϕpitch,3 2.35738
Tpitch,4 2.11221 Apitch,4 0.22074 ϕpitch,4 0.50270
Tpitch,5 4.23019 Apitch,5 0.24897 ϕpitch,5 0.39753
Tpitch,6 10.9562 Apitch,6 0.51418 ϕpitch,6 0.02032
Tpitch,7 2.04871 Apitch,7 0.15186 ϕpitch,7 2.82389
Tpitch,8 1.20223 Apitch,8 0.98722 ϕpitch,8 1.76859
Tpitch,9 7.83144 Apitch,9 0.17220 ϕpitch,9 1.17212
Tpitch,10 2.08393 Apitch,10 0.76602 ϕpitch,10 2.00820
Tpitch,11 5.48586 Apitch,11 0.89256 ϕpitch,11 2.86282
Tpitch,12 1.95369 Apitch,12 0.06998 ϕpitch,12 1.87358
Tpitch,13 4.44325 Apitch,13 0.89580 ϕpitch,13 2.81447
Tpitch,14 1.73124 Apitch,14 0.60024 ϕpitch,14 3.03547
Tpitch,15 168.0892 Apitch,15 0.37096 ϕpitch,15 2.62288
Tpitch,16 101.9356 Apitch,16 0.13585 ϕpitch,16 1.32684
Tpitch,17 1.53199 Apitch,17 0.76568 ϕpitch,17 0.31636
Tpitch,18 11.1925 Apitch,18 0.84744 ϕpitch,18 0.17649
Tpitch,19 1.45150 Apitch,19 0.72274 ϕpitch,19 1.61947
Tpitch,20 1.50850 Apitch,20 0.68556 ϕpitch,20 1.85122

Table 6.5: Pitch sin sum (1) trajectory parameters.

6.4 Experimental remarks

Sensor calibration The sensor readings were calibrated using the following proce-

dures:

• The angle sensor readings have been adjusted using the platform position read-outs

as reference – platform was moved to extreme angle positionsand the values from

ADC board were read. Appropriate constants were chosen to provide matching

measurements.

• The accelerometer readings were adjusted in a similar way. The platform was

moved to its extreme angles (roll and pitch) and the rotated gravity value has been

used as a reference for choosing the calibration constants.

The calibration has been confirmed to match the sensor specification sheets (considering

the applied signal conditioning).

Platform control and read-outs The platform control board applies its ownmotion

queueing([6.1]) algorithm for position control. This results in theactual trajectory lag-

ging the desired one.

New platform position readings from the controller are onlyavailable every 15 cycles of

the manipulator control, therefore they are not used for anycontrol applications.

For the purpose of using the platform position reference in MATLAB simulations, it is

required to have not only the positions but also the velocities and accelerations. Due to
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[s] [rad] [rad]
Troll,1 2.46405 Aroll,1 0.15861 ϕroll,1 5.36716
Troll,2 3.61870 Aroll,2 0.65991 ϕroll,2 4.11499
Troll,3 1.20887 Aroll,3 0.18404 ϕroll,3 5.01785
Troll,4 2.31423 Aroll,4 0.40777 ϕroll,4 6.15066
Troll,5 4.98739 Aroll,5 0.84419 ϕroll,5 5.29788
Troll,6 2.09296 Aroll,6 0.98519 ϕroll,6 6.01578
Troll,7 10.4126 Aroll,7 0.33450 ϕroll,7 5.01947
Troll,8 9.48570 Aroll,8 0.88544 ϕroll,8 4.89229
Troll,9 7.67286 Aroll,9 0.08412 ϕroll,9 0.96777
Troll,10 7.89435 Aroll,10 0.61968 ϕroll,10 5.78139
Troll,11 2.09514 Aroll,11 0.80266 ϕroll,11 3.06933
Troll,12 4.12560 Aroll,12 0.39535 ϕroll,12 6.00942
Troll,13 1.26907 Aroll,13 0.57505 ϕroll,13 5.93053
Troll,14 6.03252 Aroll,14 0.94817 ϕroll,14 1.11766
Troll,15 78.6510 Aroll,15 0.77227 ϕroll,15 1.07431
Troll,16 10.2546 Aroll,16 0.76961 ϕroll,16 4.91236
Troll,17 1.22322 Aroll,17 0.09608 ϕroll,17 4.16012
Troll,18 1.56233 Aroll,18 0.22103 ϕroll,18 3.30442
Troll,19 1.94079 Aroll,19 0.88070 ϕroll,19 2.04050
Troll,20 1.23465 Aroll,20 0.78193 ϕroll,20 1.14348

Table 6.6: Roll sin sum (2) trajectory parameters.

the low communication rate with the platform controller, the data needs to be interpo-

lated and smoothed for a robust measurement. Therefore zero-phase filtering (MATLAB

filtfilt) is applied in post-processing to obtain smooth values for position, velocity

and acceleration at the PA10 control sampling rate. The following steps are performed to

obtain the values:

• Apply moving average filtering of length 20 to the position measurements (denoted

asq̂i).

• Compute˜̇qi =
q̂i+1−q̂i−1

2 and apply moving average filtering of length 80 to obtain

the velocity measurements (denoted asˆ̇qi).

• Compute˜̈qi =
ˆ̇qi+1− ˆ̇qi−1

2 and apply moving average filtering of length 120 to obtain

the acceleration measurements (denoted asˆ̈qi).

A sample of these estimates is presented in figure 6.6.

Angle sensor lag The angle sensors have a time constant of 0.3 s, therefore fora typical

sinusoidal trajectory the angles measured with these sensors are delayed by approximately

0.3 s. This is presented in figure 6.7 with the lags emphasisedusing dashed black lines.

It can be noticed that the controller read-out lags the desired trajectory by approximately

0.4 s and the sensor read out further lags the actual platformorientation.
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[s] [rad] [rad]
Tpitch,1 13.2285 Apitch,1 0.00503 ϕpitch,1 1.41904
Tpitch,2 4.27251 Apitch,2 0.99661 ϕpitch,2 2.98648
Tpitch,3 8.99840 Apitch,3 0.00814 ϕpitch,3 0.32582
Tpitch,4 1.52019 Apitch,4 0.17345 ϕpitch,4 0.74921
Tpitch,5 1.16714 Apitch,5 0.16741 ϕpitch,5 0.55601
Tpitch,6 2.17026 Apitch,6 0.40802 ϕpitch,6 0.78636
Tpitch,7 6.15938 Apitch,7 0.42564 ϕpitch,7 2.85366
Tpitch,8 1.25600 Apitch,8 0.87621 ϕpitch,8 1.57081
Tpitch,9 2.60176 Apitch,9 0.61433 ϕpitch,9 0.52856
Tpitch,10 1.24069 Apitch,10 0.17995 ϕpitch,10 1.50542
Tpitch,11 11.7316 Apitch,11 0.81523 ϕpitch,11 0.17741
Tpitch,12 4.10167 Apitch,12 0.48060 ϕpitch,12 1.16573
Tpitch,13 4.20518 Apitch,13 0.98952 ϕpitch,13 1.86828
Tpitch,14 3.94561 Apitch,14 0.52832 ϕpitch,14 1.40296
Tpitch,15 11.5416 Apitch,15 0.93542 ϕpitch,15 0.98221
Tpitch,16 1.20726 Apitch,16 0.67569 ϕpitch,16 0.94910
Tpitch,17 1.36003 Apitch,17 0.34298 ϕpitch,17 2.87449
Tpitch,18 102.2762 Apitch,18 0.99253 ϕpitch,18 2.66406
Tpitch,19 1.45198 Apitch,19 0.17403 ϕpitch,19 1.94557
Tpitch,20 1.14841 Apitch,20 0.48256 ϕpitch,20 1.85039

Table 6.7: Pitch sin sum (2) trajectory parameters.

Coordinate Minimum Maximum
x [m] −0.0856 0.0844
y [m] −0.0710 0.0618
z [m] −0.1274 0.1360
roll [rad] −0.0607 0.0646
pitch [rad] −0.0511 0.0466
yaw [rad] −0.0236 0.0244

Table 6.8: Range of vessel on sea (6DOF) trajectory.

Sensor read-out noise To address the sensor noise, the following steps have been ap-

plied

• The data cable is shielded and grounded.

• The ADC board measurement times (programmed in the resource-manager) have

been chosen to minimise the measurement noise (resulting from ADC settling times).

• Moving average filtering is applied to the measured values (in post-processing).

This introduces an additional phase lag of 0.016 s (8 samplesat 500 Hz).

An example of accelerometer sensor noise (with moving average filtering of lengths 2 and

16) is presented in figure 6.8. It can be noticed that even witha moving average filter of

length 16, there is a noticeable amount of noise (however it is significantly smaller than

for the 2-samples long filter).
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Figure 6.6: Platform trajectory (position, velocity, acceleration). Data recorded for sum
of sines (1) trajectory.
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Figure 6.7: Platform trajectory sample (desired, controller read-out and sensor read-out).
Data recorded for sum of sines (1) trajectory.
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Figure 6.8: Gravity accelerations computed from platform trajectory read-outs and mea-
sured with the Crossbow CXL01LF3 accelerometer. Left - filtered with moving average
of length 2, right - filtered with moving average of length 16.Data recorded for sum of
sines (1) trajectory.

Sensor zero reference Before each experiment (with the platform levelled) the sensor

values are read over a period of 1 s (1000 sensor samples at 1 kHz) and used as a reference

zero level (or -g for thez-axis accelerometers).

Z-axis accelerometer The A223-3001 gravity referenced servo accelerometer has been

found to provide measurements comparable with the 3 axis Crossbow CXL01LF3 device.

Therefore, its readings will only be recorded for reference/verification.

6.5 Summary

In this chapter the experimental setup for the next two chapters has been presented. An

overview of hardware and implementation has been given withsolutions used for mea-

surement and control issues. Experimental trajectories used to command the base have

been presented with comparison to manipulator trajectories, to visualise the range of mo-

tion and frequency.
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Chapter 7

Modelling a robotic manipulator on a

moving platform

7.1 Introduction

There are numerous situations, where the base of a robotic manipulator is attached to a

non-inertial coordinate system, such as a manipulator mounted on a ship or a floating oil

rig, or a manipulator mounted on a vehicle driving on uneven terrain. Consider for exam-

ple a vessel on the sea with a manipulator attached to it. The vessel would be stabilised,

however it would not be possible to completely dampen the motion induced by the sea

waves. Although this motion would mostly occupy the lower part of the frequency range

of the manipulator motion, it could affect the control quality due to unmodelled dynamics.

Multiple examples of derivation of models of robotic manipulators on non-inertial bases

are presented in section 2.4. In this chapter a full derivation of a generic model of a

robotic manipulator on a moving platform is presented (assuming that the platform is not

affected by the manipulator motion and its trajectory is considered to be a time varying

parameter of the obtained model). An analysis of the model terms is performed by means

of similarities to the static base model. An actual symbolicderivation is performed for

the PA10-6CE manipulator on a 2-DOF base with roll and pitch angles as time varying

parameters of the model and simulation results are presented. The contributions of this

chapter are:

• the consideration of the base motion as a time varying parameter of the manipulator

on a non-inertial base and resulting simplifications in the dynamic equations,

• a broad analysis (using a comparison of model simulations and manipulator exper-

iments) of the obtained model for the PA10-6CE manipulator with various types of

base trajectory by assessing the relative significance of the dynamic model terms

per joint.

In order to describe the dynamics of a robotic manipulator ona moving platform it is

required to derive the equations of motion.

107



7.2 Model derivation

The dynamic model of a manipulator on a mobile platform is derived using the Euler-

Lagrange approach. In order to perform this, the system energies need to be defined.

7.2.1 Assumptions

The following assumptions are made in the derivation of the model of a robotic manipu-

lator on a moving platform:

• the manipulator motion has no influence on the platform (the mass/inertia of the

platform is significantly higher),

• the platform coordinates (and their respective derivatives along a given trajectory)

are considered as parameters of the model (not as generalised coordinates of the

system),

• the harmonic drive flexibility (in the manipulator joints) is not considered,

• motor inertias1 and friction2 are not considered in the model derivation, both terms

are incorporated in the final equation.

7.2.2 Coordinates transformation

The velocity of a point in a rigid body that is an element of a kinematic chain mounted on

a moving base, can be expressed as

0vi =
d
dt
(0r i) =

d
dt
(Ap

0A i
ir i) (7.1)

where0A i is the Denavit-Hartenberg (see section 3.2.1) transformation of the coordinates

from base toi-th link, Ap is a transformation matrix expressing the position of the base

(e.g. platform) in the universal coordinates andir i is a point within thei-th link expressed

in the i-th link coordinates. Considering thati ṙ i = 0 and d
dt(Ap) = Ȧp 6= 0 the following

can be derived
d
dt
(Ap

0A i
ir i) = (Ȧp

0A i +Ap

i

∑
j=1

∂0A i

∂q j
q̇ j)

ir i (7.2)

let Ui j =
∂0A i

∂q j
which can also be expressed as

∂0A i

∂q j
= 0A j−i

∂ j−1A j

∂q j

jA i (7.3)

1to simplify the dynamics model derivation process
2it is not affected by the non-inertial base
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and the differentiation can be expressed with an algebraic operation of multiplication by

the matrixQd
∂0A i

∂q j
= 0A j−i Qd

j−1A j
jA i (7.4)

theQd has a different form for prismatic and revolute joints ([7.1]). Considering that the

PA10 manipulator has only revolute joints, the following isused

Qd =













0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0













(7.5)

The velocity vector (calculated along the trajectory of thebase) can be expressed as

0vi = (Ȧp
0A i +Ap

i

∑
j=1

Ui j q̇ j)
ir i (7.6)

7.2.3 Kinetic energy

The kinetic energy for a single point of mass,m, can be defined as

dKi =
1
2

Tr(0vi(
0vi)

T)dm (7.7)

after substituting 7.6

dKi =
1
2

Tr((Ȧp
0A i +Ap

i

∑
j=1

Ui j q̇ j)
ir i((Ȧp

0A i +Ap

i

∑
j=1

Ui j q̇ j)
ir i)

T)dm (7.8)

after integrating over the link volume

Ki =
1
2

Tr((Ȧp
0A i +Ap

i

∑
j=1

Ui j q̇ j)Ji((Ȧp
0A i +Ap

i

∑
j=1

Ui j q̇ j))
T) (7.9)

whereJi has been defined in section 3.4.1. Expanding the product of sums and simplifying

Ki =
1
2

Tr((Ȧp
0A i Ji

T
0A i ȦT

p)+

+
i

∑
r=1

Tr(Ȧp
0A i JiUT

ir A
T
p)q̇r+

+
1
2

i

∑
r=1

i

∑
s=1

Tr(ApUir JiUT
isA

T
p)q̇r q̇s.

(7.10)
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The total kinetic energy of the system is the sum over all joints

K =
n

∑
i=1

1
2

Tr((Ȧp
0A i Ji

T
0A i ȦT

p)+

+
n

∑
i=1

i

∑
r=1

Tr(Ȧp
0A i JiUT

ir A
T
p)q̇r+

+
1
2

n

∑
i=1

i

∑
r=1

i

∑
s=1

Tr(ApUir JiUT
isA

T
p)q̇r q̇s.

(7.11)

Since only the kinetic energy depends on the generalised velocities

∂K
∂q̇i

=
n

∑
j=i

Tr(Ȧp
0A j J jUT

ji A
T
p)+

+
1
2

n

∑
j=i

j

∑
r=1

Tr(ApU jr J jUT
ji A

T
p)q̇r+

+
1
2

n

∑
j=i

j

∑
s=1

Tr(ApU ji J jUT
jsA

T
p)q̇s

(7.12)

and simplifying

∂K
∂q̇i

=
n

∑
j=i

Tr(Ȧp
0A j J jUT

ji A
T
p)+

+
n

∑
j=i

j

∑
r=1

Tr(ApU jr J jUT
ji A

T
p)q̇r

(7.13)

differentiating over time (along the trajectory of the base)

d
dt
(

∂K
∂q̇i

) =
n

∑
j=i

d
dt
(Tr(Ȧp

0A j J jUT
ji A

T
p))+

+
n

∑
j=i

j

∑
r=1

d
dt
(Tr(ApU jr J jUT

ji A
T
p)q̇r)

(7.14)
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deriving element by element

d
dt
(

∂K
∂q̇i

) =
n

∑
j=i

Tr(Äp
0A j J jUT

ji A
T
p)+

+
n

∑
j=i

j

∑
r=1

Tr(ȦpU jr J jUT
ji A

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

Tr(Ȧp
0A j J jUT

jir AT
p)q̇r+

+
n

∑
j=i

Tr(Ȧp
0A j J jUT

ji Ȧ
T
p)+

+
n

∑
j=i

j

∑
r=1

Tr(ȦpU jr J jUT
ji A

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

j

∑
s=1

Tr(ApU jrsJ jUT
ji A

T
p)q̇r q̇s+

+
n

∑
j=i

j

∑
r=1

j

∑
s=1

Tr(ApU jr J jUT
jisAT

p)q̇r q̇s+

+
n

∑
j=i

j

∑
r=1

Tr(ApU jr J jUT
ji Ȧ

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

Tr(ApU jr J jUT
ji A

T
p)q̈r

(7.15)

and the derivative of the kinetic energy overqi is

∂K
∂qi

=
∂

∂qi
(

n

∑
j=1

1
2

Tr(Ȧp
0A j J j

0A j
T
ȦT

p))+

+
∂

∂qi
(

n

∑
j=1

j

∑
r=1

Tr(Ȧp
0A j J jUT

jr A
T
p)q̇r)+

+
∂

∂qi
(
1
2

n

∑
j=1

j

∑
r=1

j

∑
s=1

Tr(ApU jr J jUT
jsA

T
p)q̇r q̇s)

(7.16)
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expanding element by element

∂K
∂qi

=
n

∑
j=i

Tr(ȦpU ji J j
0A j

T
ȦT

p)+

+
n

∑
j=i

j

∑
r=1

Tr(ȦpU ji J jUT
jr A

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

Tr(Ȧp
0A j J jUT

jri A
T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

j

∑
s=1

Tr(ApU jri J jUT
jsA

T
p)q̇r q̇s

(7.17)

and subtracting the differentialsddt(
∂K
∂q̇i

)− ∂K
∂qi

, using the propertyUi jk = Uik j

d
dt
(

∂K
∂q̇i

)−
∂K
∂qi

=
n

∑
j=i

Tr(Äp
0A j J jUT

ji A
T
p)+

+2
n

∑
j=i

j

∑
r=1

Tr(ȦpU jr J jUT
ji A

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

j

∑
s=1

Tr(ApU jrsJ jUT
ji A

T
p)q̇r q̇s+

+
n

∑
j=i

j

∑
r=1

Tr(ApU jr J jUT
ji A

T
p)q̈r .

(7.18)

7.2.4 Potential energy

Based on the added transformation to the D-H chain

Pj =−mjg(Ap
0A j Rj) (7.19)

the total potential energy is

P=−
n

∑
j=1

mjg(Ap
0A j Rj) (7.20)

and the differential overqi is

∂P
∂qi

=−
n

∑
j=i

mjg(ApU ji Rj). (7.21)

7.2.5 Lagrange-Euler formulation

The full equations of motion for a manipulator mounted on a mobile platform are

ui =
d
dt
(

∂L
∂q̇i

)−
∂L
∂qi

=
d
dt
(

∂K
∂q̇i

)−
∂K
∂qi

+
∂P
∂qi

(7.22)
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substituting equations 7.18 and 7.21 into 7.22

ui =
n

∑
j=i

Tr(Äp
0A j J jUT

ji A
T
p)+

+2
n

∑
j=i

j

∑
r=1

Tr(ȦpU jr J jUT
ji A

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

j

∑
s=1

Tr(ApU jrsJ jUT
ji A

T
p)q̇r q̇s+

+
n

∑
j=i

j

∑
r=1

Tr(ApU jr J jUT
ji A

T
p)q̈r +

n

∑
j=i

mjg(ApU ji Rj).

(7.23)

It can be shown that for any coordinate transformation matrix Ap

Ap =

[

R3×3 T3×1

01×3 1

]

,

whereR(αp) is an arbitrary rotation matrix parametrised by the vectorαp= [αp1,αp2,αp3]

andT = [xp,yp,zp]
T is an arbitrary 3×1 translation vector. For any 4×4 matrixM = [mi, j ]

the following equality holds

Tr(ApMAT
p) =m11+m22+m33+

+ f(αp,xp,yp,zp) · [m14,m24,m34,m41,m42,m43,m44]
T .

Moreover, it can be shown thatU jr J jUT
ji andU jrsJ jUT

ji have zeros in the 4-th row and 4-th

column, due to internal multiplication by thedifferentiatingmatrix Qd (equation 7.5).

Therefore equation 7.23 can be simplified to

ui =
n

∑
j=i

Tr(Äp
0A j J jUT

ji A
T
p)+

+2
n

∑
j=i

j

∑
r=1

Tr(ȦpU jr J jUT
ji A

T
p)q̇r+

+
n

∑
j=i

j

∑
r=1

j

∑
s=1

Tr(U jrsJ jUT
ji )q̇r q̇s+

+
n

∑
j=i

j

∑
r=1

Tr(U jr J jUT
ji )q̈r +

n

∑
j=i

mjg(ApU ji Rj).

(7.24)

It can be noticed that the inertia and Coriolis and centrifugal terms do not depend on the

platform coordinates, and simplify to the case of a manipulator on a fixed (displaced) base

Qi,r(q) =
n

∑
j=i

Tr(U jr J jUT
ji ) (7.25)
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and

Ci,s(q, q̇) =
n

∑
j=i

j

∑
r=1

Tr(U jrsJ jUT
ji )q̇r . (7.26)

Defining the item independent of the manipulator velocitiesas

PFi(qp, q̇p, q̈p) =
n

∑
j=i

Tr(Äp
0A j J jUT

ji A
T
p) (7.27)

the item depending on the manipulator velocities as

PVi,r(qp, q̇p) =
n

∑
j=i

j

∑
r=1

Tr(ȦpU jr J jUT
ji A

T
p) (7.28)

and the new gravity vector as

gpi(q,qp) =
n

∑
j=i

mjg(ApU ji Rj) (7.29)

the dynamic equation of a robotic manipulator on a moving platform can be expressed as

PF(qp, q̇p, q̈p)+PV(qp, q̇p)q̇+Q(q)q̈+C(q, q̇)q̇+gp(q,qp) = u. (7.30)

The following can be noticed from the above equation:

• ForAp = I4×4 andÄp = Ȧp = 0 the equations are equivalent to a manipulator on a

fixed base.

• For a constantAp the termsPF andPV vanish and only the gravity term is affected

(this can again be regarded as a model of a manipulator on a fixed base).

• Using the same reasoning as for showing that the inertia and Coriolis and centrifugal

terms do not depend on the platform variables, the gravity term can be expressed as

gpi(q,qp) = gRp

n

∑
j=i

mj(U ji Rj), (7.31)

whereRp is the rotation element of theAp transformation matrix. This can be

interpreted as a rotation of the gravity vector using the platform angular coordinates.

Incorporating friction and motor inertias To complete the dynamic model for the

PA10 manipulator, friction and motor inertias need to be added to equation 7.30. These

two terms have already been derived in sections 4.3.2 and 4.3.3.4, and can be added

directly to the new model:

PF(qp, q̇p, q̈p)+PV(qp, q̇p)q̇+Q(q)+QMq̈+C(q, q̇)q̇+gp(q,qp)+F(q̇) = u. (7.32)
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The obtained model is used for simulating the dynamics of thePA10 manipulator along a

given platform/base trajectory.

7.3 Implementation

In order to use the analytical formulae defining the dynamic model in numerical simula-

tions the explicit equations for the PA10-6CE manipulator mounted on a platform need to

be derived. The schematic of the PA10-6CE kinematics with thecoordinate systems for

each link and base coordinate system bound to the centre of the platform mounting plate

is presented in figure 7.1.

7.3.1 Platform motion

The above derivation is valid for any coordinate transformation Ap, however only rota-

tion around the X and Y axes are considered. Additionally, since the manipulator is not

mounted at the centre of the base, but is shifted along thex-axis, a constant translation

needs to be applied. The orientation parameters are the roll(α) and pitch (β) angles. The

orientation matrix takes the following form

Rp = Rot(Y,β) ·Rot(X,α)

using explicit matrix notation

Rp =







cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)






·







1 0 0

0 cos(α) −sin(α)
0 sin(α) cos(α)






.

Finally, the complete coordinate transformation matrix is

Ap =

[

Rp3×3 03×1

01×3 1

]

·

[

13×3 rX 3×1

01×3 1

]

,

whererX = [rX ,0,0]T . Therefore

Ap =













cos(β) sin(α)sin(β) cos(α)sin(β) rX cos(β)
0 cos(α) −sin(α) 0

−sin(β) sin(α)cos(β) cos(α)cos(β) −rX sin(β)
0 0 0 1













. (7.33)

It needs to be noted thatrX is a constant parameter, and therefored
dt(rX) = 0.
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Figure 7.1: Schematic of the PA10-6CE manipulator kinematics on the motion platform
with coordinate systems for each link.Note: index ’ref ’ denotes the global/reference
frame index 0 denotes the manipulator base frame.
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The differential of theAp matrix can be obtained as

Ȧp =
d
dt
(Ap) =

∂Ap

∂α
α̇+

∂Ap

∂β
β̇ (7.34)

and similarly the second differential

Äp =
d
dt
(Ȧp) =

d
dt
(
∂Ap

∂α
α̇)+

d
dt
(
∂Ap

∂β
β̇)

=
∂2Ap

∂α2 α̇2+
∂2Ap

∂α∂β
α̇β̇+

∂Ap

∂α
α̈+

∂2Ap

∂α∂β
β̇α̇+

∂2Ap

∂β2 β̇2+
∂Ap

∂β
β̈

=
∂2Ap

∂α2 α̇2+2
∂2Ap

∂α∂β
α̇β̇+

∂2Ap

∂β2 β̇2+
∂Ap

∂α
α̈+

∂Ap

∂β
β̈.

(7.35)

Remark It can be noticed that there are velocity and acceleration dependent terms in

the second differential, this indicates that thePF element of equation 7.32 includes both

inertial-like and Coriolis and centrifugal-like (only those originating purely from the plat-

form velocities) terms. ThePV term includes Coriolis and centrifugal-like terms origi-

nating from the platform-manipulator cross-coupling. ThePF term should also include

acceleration-like terms that have a similar form to the gravity model.

7.3.2 Explicit formulae derivation

The derived analytic formulae describing the platform-induced dynamics terms (equations

7.27, 7.28 and 7.29) and the matrices describing the platform motion (Ap, Ȧp and Äp)

have been used to create Mathematica code to generate the Matlab form of the dynamics

equation terms.

7.4 Model evaluation

Due to the high complexity of the platform related dynamics elements, the model cannot

be verified by hand. Therefore to quantitatively assess the model, a similar procedure to

the one described in section 5.2 has been employed. The PA10-6CE manipulator installed

on a moving platform, is controlled with a PID controller, and all the manipulator control

variables and the platform trajectory are recorded. The derived equations of the PA10-

6CE dynamics on a moving platform (using only roll and pitch angles) have been used in

a Matlab simulation (using the same solver as described in section 5.2). The simulation

results have been compared to filtered (figure 5.3) experimental torques using the WMISE

(equation 5.22) measure.

The following models (based on equation 7.32) are used in this evaluation:

• full model- all elements present in the model,

• no mPF- thePF element not present in the model,
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• no mPV- thePV element not present in the model,

• no mPV no mPF- the PV andPF elements are not present in the model (which

effectively leaves only the platform rotated gravity term),

• no platform- model of PA10-6CE with fixed horizontal base (equation 3.9).

For the comparison tests the PA10-6CE is commanded along the following trajectories:

• sine - equation 5.25,

• ssine - equation 5.24.

7.4.1 Single frequency 1-DOF motion

In this analysis single frequency 1-DOF trajectories are used for the platform (equation

6.1). Comparison of simulation and experimental results arepresented in tables 7.1 to 7.4.

An example comparison of motor torques for the PA10 trajectory sine and platform tra-

jectory roll sin is presented in figures 7.2 and 7.3. The corresponding bar plot of WMISE

differences is presented in figure 7.4.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.01181 0.00545 0.00913 0.04601 0.00893 0.00510
no mPF 0.02834 0.02290 0.03400 0.04498 0.00904 0.00510
no mPV 0.01240 0.00618 0.01157 0.04629 0.00906 0.00510
no mPV no mPF 0.02927 0.02397 0.03699 0.04523 0.00919 0.00510
no platform 0.12358 0.07982 0.11483 0.04498 0.00948 0.00510

Table 7.1: WMISE experimental and simulation torques comparison, experiment: PA10:
sine, PLAT: roll sin.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.01446 0.01133 0.01778 0.05115 0.01042 0.00477
no mPF 0.02349 0.03625 0.07179 0.05180 0.01096 0.00477
no mPV 0.01489 0.01076 0.01984 0.05102 0.01030 0.00477
no mPV no mPF 0.02407 0.03545 0.07414 0.05170 0.01092 0.00477
no platform 0.06953 0.13419 0.31167 0.05391 0.01149 0.00477

Table 7.2: WMISE experimental and simulation torques comparison, experiment: PA10:
ssine, PLAT: roll sin.

Discussion of results Based on the results the following can be observed:

• The presence of just the platform-rotated gravity element significantly reduces the

difference between the simulated model and experiment (thepoorest torque match

is in the top plot of figure 7.2 and the best match in the bottom plot of figure 7.3).
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Figure 7.2: Comparison of simulation and experiment torquesfor different manipulator
on platform model set-ups, PA10 trajectorysine, platform trajectory roll sin.
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Figure 7.3: Comparison of simulation and experiment torquesfor different manipulator
on platform model set-ups, PA10 trajectorysine, platform trajectory roll sin.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.01075 0.00395 0.00764 0.07289 0.00926 0.00497
no mPF 0.03758 0.01108 0.02309 0.07251 0.00935 0.00497
no mPV 0.01253 0.00575 0.01135 0.07359 0.00929 0.00497
no mPV no mPF 0.03739 0.01303 0.02795 0.07320 0.00942 0.00497
no platform 0.21750 0.04983 0.08751 0.07343 0.00964 0.00497

Table 7.3: WMISE experimental and simulation torques comparison, experiment: PA10:
sine, PLAT: pitch sin.

• Based on tables 7.1 to 7.4 and figure 7.4 the following can be stated about the

platform related model terms:

– ThePF element (depending on platform velocities and accelerations) further
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Figure 7.4: WMISE experiment and simulation torques comparison, experiment: PA10:
sine, PLAT: roll sin.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.01724 0.00564 0.01662 0.06947 0.00912 0.00486
no mPF 0.06498 0.03117 0.06672 0.06930 0.00896 0.00486
no mPV 0.01974 0.00680 0.01812 0.06934 0.00931 0.00485
no mPV no mPF 0.06564 0.03272 0.06874 0.06913 0.00898 0.00486
no platform 0.35802 0.12698 0.25139 0.07000 0.00947 0.00485

Table 7.4: WMISE experimental and simulation torques comparison, experiment: PA10:
ssine, PLAT: pitch sin.

reduces the WMISE difference.

– ThePV element has very little effect on the model.

• Based on tables 7.1 to 7.4 it can be deduced that Joints E2, W1 andW2 can be

considered to be unaffected by the platform model which can be attributed to low

or zero gravity contribution to the joint model and significantly lower link inertias

(and therefore less torque resulting from the platform terms).

7.4.2 Single frequency per channel 2-DOF motion

In this analysis single frequency 2-DOF trajectories are used for the platform (equations

6.2 and 6.2). Comparison of simulation and experimental results are presented in tables
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7.5 to 7.8. An example comparison of motor torques for the PA10 trajectoryssine and

platform trajectory roll+pitch with equal periods is presented in figures 7.5 and 7.6. The

corresponding bar plot of WMISE differences is presented in figure 7.7.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.00504 0.00274 0.00566 0.04647 0.00891 0.00523
no mPF 0.00916 0.00294 0.00765 0.04636 0.00893 0.00523
no mPV 0.00660 0.00313 0.00700 0.04679 0.00884 0.00523
no mPV no mPF 0.01095 0.00339 0.00930 0.04666 0.00886 0.00523
no platform 0.23414 0.04218 0.06369 0.04785 0.00916 0.00523

Table 7.5: WMISE experimental and simulation torques comparison, experiment: PA10:
sine, PLAT: roll + pitch sin equal periods.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.00461 0.00400 0.01321 0.04741 0.00757 0.00510
no mPF 0.00794 0.00565 0.01789 0.04720 0.00771 0.00511
no mPV 0.00472 0.00400 0.01526 0.04728 0.00759 0.00511
no mPV no mPF 0.00784 0.00595 0.02119 0.04707 0.00774 0.00511
no platform 0.15405 0.07155 0.24631 0.04656 0.00906 0.00511

Table 7.6: WMISE experimental and simulation torques comparison, experiment: PA10:
ssine, PLAT: roll + pitch sin equal periods.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.00652 0.00326 0.00541 0.08066 0.01024 0.00524
no mPF 0.02078 0.00753 0.01496 0.08047 0.01024 0.00524
no mPV 0.00791 0.00467 0.00785 0.08144 0.01034 0.00524
no mPV no mPF 0.01990 0.00848 0.01745 0.08122 0.01035 0.00524
no platform 0.15141 0.04839 0.07551 0.08176 0.01055 0.00524

Table 7.7: WMISE experimental and simulation torques comparison, experiment: PA10:
sine, PLAT: roll + pitch sin different periods.

model\ joint S1 S2 E1 E2 W1 W2
full model 0.00894 0.00380 0.02090 0.07318 0.00866 0.00447
no mPF 0.03236 0.01718 0.06373 0.07255 0.00873 0.00447
no mPV 0.00872 0.00451 0.02431 0.07303 0.00871 0.00447
no mPV no mPF 0.03042 0.01792 0.07002 0.07248 0.00890 0.00447
no platform 0.17030 0.07369 0.35562 0.07029 0.00972 0.00447

Table 7.8: WMISE experimental and simulation torques comparison, experiment: PA10:
ssine, PLAT: roll + pitch sin different periods.
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Figure 7.5: Comparison of simulation and experiment torquesfor different manipulator
on platform model set-ups, PA10 trajectoryssine, platform trajectory roll+pitch sin
with equal periods. 123
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Figure 7.6: Comparison of simulation and experiment torquesfor different manipulator
on platform model set-ups, PA10 trajectoryssine, platform trajectory roll+pitch sin
with equal periods.

Discussion of results Based on the results the following can be observed:

• The general properties of the model are similar to the case ofthe 1-DOF platform

motion in terms of torque plots in figures 7.5 and 7.6.

• For the slower trajectory with roll and pitch angles following a sine with the same

period, the significance of thePF term is greatly reduced, and although it still im-

proves the model, the difference is not as noticeable as in the case of faster tra-

jectories (figure 7.7 and tables 7.5 to 7.8. This may be attributed to the fact that

accelerations in a sine type trajectory increase with the square of the frequency

(e.g. for a 2× shorter trajectory period the accelerations are 4× greater).
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Figure 7.7: WMISE experiment and simulation torques comparison, experiment: PA10:
ssine, PLAT: roll + pitch sin equal periods.

• It can be noticed in figures 7.5 and 7.6 that once the platform orientation depen-

dant gravity term has been introduced to the model, there is not much noticeable

difference when the other two terms are introduced.

7.4.3 Sum of multiple frequencies 2-DOF motion

In this analysis, trajectories comprised of sums of multiple frequency sines on 2-DOF are

used for the platform (equation 6.4 and tables 6.4 to 6.7). Comparison of simulation and

experimental results are presented in tables 7.9 to 7.12. Anexample comparison of motor

torques for PA10 the trajectorysine and platform trajectory sin sum (2) is presented in

figures 7.8 and 7.9. The corresponding bar plot of WMISE differences is presented in

figure 7.10.

Discussion of results Based on the results the following can be observed:

• The torque plot results in figures 7.8 and 7.9 of the sum of multiple frequencies

platform trajectories follow the same pattern of model elements incorporating to

match the control torques as in the previous experiments.

• These trajectories are characterised by lower average absolute platform angles than

the simple sin trajectories and higher accelerations (due to the richer frequency con-
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Figure 7.8: Comparison of simulation and experiment torquesfor different manipulator
on platform model set-ups, PA10 trajectorysine, platform trajectory sin sum (2).
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Figure 7.9: Comparison of simulation and experiment torquesfor different manipulator
on platform model set-ups, PA10 trajectorysine, platform trajectory sin sum (2).

model\ joint S1 S2 E1 E2 W1 W2
full model 0.01829 0.01034 0.01789 0.06609 0.00984 0.00598
no mPF 0.04412 0.02594 0.04292 0.06504 0.00975 0.00598
no mPV 0.01936 0.01044 0.01876 0.06660 0.00988 0.00598
no mPV no mPF 0.04665 0.02585 0.04403 0.06556 0.00976 0.00598
no platform 0.09599 0.06281 0.09608 0.06535 0.00975 0.00598

Table 7.9: WMISE experimental and simulation torques comparison, experiment: PA10:
sine, PLAT: sin sum (1).

tent). This leads to a lower contribution of the gravity termand a higher contribution

of thePF term to the model (tables 7.9 to 7.12 and figure 7.10).
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Figure 7.10: WMISE experiment and simulation torques comparison, experiment: PA10:
sine, PLAT: sin sum (2).

model\ joint S1 S2 E1 E2 W1 W2
full model 0.02553 0.01374 0.04574 0.06139 0.00806 0.00565
no mPF 0.05448 0.03755 0.12644 0.06210 0.00784 0.00565
no mPV 0.02595 0.01388 0.04923 0.06133 0.00806 0.00565
no mPV no mPF 0.05517 0.03759 0.12941 0.06173 0.00783 0.00565
no platform 0.10521 0.08838 0.33269 0.06214 0.00806 0.00565

Table 7.10: WMISE experimental and simulation torques comparison, experiment: PA10:
ssine, PLAT: sin sum (1).

model\ joint S1 S2 E1 E2 W1 W2
full model 0.01854 0.00604 0.00797 0.05646 0.01045 0.00552
no mPF 0.04190 0.01787 0.02021 0.05750 0.01058 0.00552
no mPV 0.01935 0.00627 0.00732 0.05638 0.01043 0.00552
no mPV no mPF 0.04321 0.01833 0.01912 0.05742 0.01058 0.00552
no platform 0.23907 0.05825 0.07381 0.06082 0.01088 0.00552

Table 7.11: WMISE experimental and simulation torques comparison, experiment: PA10:
sine, PLAT: sin sum (2).

7.5 Summary

In this chapter a generic model of a robotic manipulator on a moving platform (not dy-

namically influenced by the manipulator) has been derived.
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model\ joint S1 S2 E1 E2 W1 W2
full model 0.02279 0.00866 0.03335 0.09333 0.00771 0.00517
no mPF 0.05086 0.02585 0.11062 0.09358 0.00766 0.00517
no mPV 0.02287 0.00868 0.03359 0.09353 0.00770 0.00517
no mPV no mPF 0.05083 0.02593 0.11064 0.09355 0.00772 0.00517
no platform 0.21988 0.08207 0.37961 0.09422 0.00792 0.00517

Table 7.12: WMISE experimental and simulation torques comparison, experiment: PA10:
ssine, PLAT: sin sum (2).

The derived equations have been used to obtain a model of the PA10-6CE manipulator

on a 2-DOF (roll and pitch) platform, with the configuration parameters presented in this

chapter. However, the model derivation procedure is general and applies to any rigid

manipulator on a 6-DOF moving base.

The obtained model has been compared with the experimental results from the actual

PA10 manipulator mounted on a moving platform by means of theweighted squares of

differences of control torques for the manipulator and the platform moving along a given

trajectory.

It has been confirmed (graphically and numerically) that theobtained model is well suited

for simulating the system.

The following properties of the model on platform (equation7.32) have been revealed by

simulation and experimental comparisons:

• The gravity term significantly improves the model for any tested trajectory.

• The PF term (independent of manipulator velocities) improves themodel mostly

for fast changing (containing high angular accelerations)trajectories.

• ThePV term has the least contribution when compared to the experimental control

torques in any case.

Based on the presented derivations and observations made, the problem of controlling a

robotic manipulator on a moving platform can be approached with verified prior knowl-

edge about the dynamic model.
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Chapter 8

Control of the PA10-6CE robotic

manipulator on a moving base

8.1 Introduction

In Chapter 7 a model of a robotic manipulator mounted on a moving base was presented.

Based on the results of the experiments and simulations presented, it was concluded that

certain parts of this model make a significant contribution to the manipulator dynamic

model. Using these observations, a controller can be designed for a manipulator mounted

on a moving base with the following assumptions:

• The frequencies present in the base motion can be consideredto be of the same

order (or less) than the manipulator trajectories.

• The manipulator is mounted on a base that is significantly heavier (with greater

inertia), therefore it is not influenced by the manipulator dynamics.

• The base motion is constrained to angles of≤ 20◦.

Based on the results from Chapter 7 it can be anticipated that only two of the additional

elements of the model will have a significant influence on the manipulator dynamics (from

equation 7.32), namely:

• the gravity elementgp(q,qp) (depending only on the manipulator angles and base

orientation),

• the free itemPF(qp, q̇p, q̈p) (depending only on the manipulator angles and base

trajectory (angles, velocities and accelerations)).

Considering that the latter term depends on angular acceleration of the base, it may be

difficult to obtain these in a noise free form at each control cycle (without a phase delay

of several samples). However, the gravity term, which has been determined to make a

significant contribution to the PA10 dynamic model, can be considered to be available in

several forms. In Chapter 6 it was presented that base orientation can be measured using
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a clinometer sensor. Moreover, the actual gravity vector (acting on the centre of the plat-

form mounting plate) can be measured with the accelerometer. These two measurement

methods are candidates for improving the trajectory tracking precision of the model based

controllers. The sensors, available in the lab set-up, may not always be installed (or mea-

surements may not be available) in real-life systems (e.g. off-shore). Therefore, it would

be desirable to have a control algorithm that performs similarly without these sensors.

This chapter presents results of experiments performed with the PA10-6CE manipulator

mounted on a CueSim motion platform for a number of model basedcontrollers with

various base trajectories including a typical vessel on sea6-DOF motion. The main con-

tributions of this chapter are:

• a broad comparison of the model based manipulator controllers in the presence of

base disturbances,

• a comparison of compensation methods for the base motion using sensors and adap-

tive control,

• the application of a model based adaptive controller to compensate for the varying

gravity vector due to base motion.

8.2 Control algorithms

The control schemes described in section 5.1, can all be easily modified to utilise the

sensor (clinometers or accelerometers) measurements in the gravity term. Consider any

of the controllers:

• gravity and friction compensation (equation 5.10),

• feedback linearisation (equation 5.14),

• Wen-Bayard algorithm (equation 5.17),

• Slotine-Li algorithm (equation 5.21)

and replace the fixed-base gravity term with the new one from equation 7.31.

The symbol for the generic manipulator gravity term (independent of the gravity acceler-

ation vector) is

Gi(q) =
n

∑
j=i

mj(U ji Rj) (8.1)

The symbols in this equation have been explained in section 3.4.1. The following replace-

ment gravity acceleration vector forms are then used

• using angular orientation sensors

gpi(q,qp) = g ·Rot(Y, β̂) ·Rot(X, α̂) ·Gi(q) (8.2)
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whereα̂ is the roll angle measurement from the sensor andβ̂ is the pitch angle

measurement from the sensor;

• using accelerometer sensors

gpi(q,qp) = ĝ ·Gi(q), (8.3)

whereĝ = (ĝx, ĝy, ĝz) is the vector of measured accelerations.

It can be noticed that the accelerometer measurement could account for translation ac-

celerations (automatically incorporating their effect into the model), whereas the angular

measurements would not deliver such extra functionality.

Both of these methods for replacing the static gravity vectorrequire additional hardware

consisting of sensors with the respective signal conditioning, data acquisition circuitry

and control system components. This may not be easily available in some applications,

therefore it would be desirable to have a gravity estimate without the need for measure-

ments.

8.2.1 Adaptive control

If the structure of the model is known, but the parameters areeither impossible to identify

[8.2] or their values change during the operation of the system, an adaptive model-based

algorithm can be applied. Bothcomputed torqueanddissipativealgorithms form a base

for adaptive algorithms. The main steps of an adaptive algorithm are:

• use the present estimates (or assumed values) of the unknownparameters to produce

a control signal,

• use the control error to update the parameter estimates.

Consider the manipulator dynamic model (3.7) and assume thatsome of its parameters

are unknown, the new equation is

Q(q, ϑ̂)q̈+C(q, q̇, ϑ̂)q̇+g(q, ϑ̂)+F(q̇)1 = u, (8.4)

whereϑ̂ is the vector of the unknown parameters that require to be adapted. However, the

dynamics equation is linear in these parameters and can be expressed as

Q(q, ϑ̂)q̈+C(q, q̇, ϑ̂)q̇+g(q, ϑ̂)+F(q̇) =Y(q̈, q̇, q̇,q)ϑ̂+F(q̇) = u. (8.5)

In a generic controller formulation, the friction model is not present, since it is not contin-

uous and it does not satisfy properties allowing the stability/convergence of the controllers

to be proved. However, due to the significant friction torquecontribution in the PA10 ma-

nipulator, the friction compensation is used in the adaptive controllers.
1there is no adaptation of the friction parameters assumed, since the model cannot be expressed as linear

in the parameters
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8.2.1.1 Adaptive feedback linearisation

The adaptive routine can be integrated into the feedback linearisation algorithm [8.4]. The

’static’ element of the controller is






u = Q(q, ϑ̂)v+C(q, q̇, ϑ̂)q̇+g(q, ϑ̂)+ F̂(q̇)

v = q̈d −Kdė−Kpe
(8.6)

and the parameters are updated according to

˙̂ϑ =−ΓYT(q̈, q̇, q̇,q)
(

(

(Q(q, ϑ̂)
)T
)−1

BTPz, (8.7)

whereΓ = ΓT is the gain matrix for the estimation algorithm andP = PT > 0 is the

solution of a Lyapunov equation

ATP+PA=−M,

where

A=

[

0 IIIn

−Kp −Kd

]

, B=

[

0

IIIn

]

, z= (eT , ėT)T

andM =MT is an arbitrary matrix responsible for the speed of convergence of the variable

z to zero.

The adaptive scheme can also be applied to the Wen-Bayard and Slotine-Li algorithms.

8.2.1.2 Adaptive Wen-Bayard controller

Since the Wen-Bayard controller does not perform a full feedback linearisation, the adap-

tation scheme is simpler in this case [8.1].

u = Q(qd, ϑ̂)q̈d+C(qd, q̇d, ϑ̂)q̇d +g(qd, ϑ̂)+ F̂(q̇)−Kdė−Kpe (8.8)

and the parameters are updated according to

˙̂ϑ =−ΓYT(q̈d, q̇d, q̇d,qd)(ė+ εe), (8.9)

whereKd = KT
d > 0 andKp = KT

p > 0 are the PD controller constants,Γ = ΓT > 0 is the

parameter adaptation gain (matrix) andε is the adaptation bandwidth parameter (similar

to ΛΛΛ in the sliding controller – here it has been chosen asε = Kp
Kd

).
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8.2.1.3 Adaptive Slotine-Li controller

The adaptive Slotine-Li [8.3] algorithm utilises theqr variable defined in equation 5.19

and the sliding surface defined in equation 5.20.

u = Q(q, ϑ̂)q̈r +C(q, q̇, ϑ̂)q̇r +g(q, ϑ̂)+ F̂(q̇)−Kds, (8.10)

where

s= ė+Λe

and the parameters are updated according to

˙̂ϑ =−ΓYT(q̈r , q̇, q̇r ,q)s, (8.11)

whereΓ = ΓT > 0 is the parameter adaptation gain (matrix). The controllercan be pre-

sented in a form equivalent to a PD controller by lettingKdΛ = Kp.

8.2.2 Adaptive gravity

The adaptive controllers listed above have been designed with the assumption that the un-

known parameters are constant over sufficiently long periods of time so that the adaptation

scheme can tune to a value which guarantees minimisation of the tracking error. With this

in mind it could be argued that the gravity vector in the case of a manipulator mounted on

a moving base does not fulfil such conditions. However, considering the PA10 manipula-

tor size and the control command sample rate, it can be observed that the base orientation

does not change significantly during a series of control samples. Therefore, if the adap-

tation were fast enough to adjust the unknown parameters, itcould be worth to evaluate

such a scheme.

Considering the adaptive schemes listed above, it can be observed that the adaptive feed-

back linearisation method requires the solution of the Lyapunov equation and the inverse

of the inertia matrix for each control cycle, which is computationally demanding and

may cause numerical instabilities. Additionally, the feedback linearisation controller is

considered to be highly sensitive to model inaccuracies andby assumption a part of the

dynamics originating from the platform motion (thePF andPV terms) is intentionally

omitted in the controller. Therefore, it has been decided toevaluate the two remaining

adaptive schemes presented above – the Wen-Bayard (equation8.8) and Slotine-Li (equa-

tion 8.10). TheregressormatrixY(. . .) used in the parameter update scheme (depending

on various angle / trajectory parameters for different control schemes) simplifies to the

generic gravity element

Y(. . .) = G(q), (8.12)

whereG(q) = (G1(q), . . . ,G3(q)) is the full 6×3 matrix of gravity terms from equation

8.1. It can be noticed that the generic gravity term used is exactly the same as for a
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manipulator with a static base (which simplifies the controller design effort).

8.2.3 Extension to simpler controllers

The manufacturer of the PA10 manipulator provides information on centres of mass, but

not the link inertias, and an adaptive controller based on a simple model can be attempted.

Assuming that the friction identification is an automated task, the gravity and friction

could be used in an adaptive controller. This is a natural extension to the controller pre-

sented in equation 5.10. Considering that such a controller can use different error based

feedback loop elements, the following controllers are evaluated in this analysis

• gravity + friction with a PD

u = ĝG(q)+F(q̇)−KPe−KDė (8.13)

with adaptation
˙̂gT =−ΓGT(q)(KAe+ ė).

with KA = diag(
Kp1
Kd1

, . . . ,
Kp6
Kd6

)

• gravity + friction with Slotine-Li sliding scheme

u = ĝG(q)+F(q̇)−KDsSL (8.14)

wheresSL is defined as the Slotine-Li sliding element (equation 5.20), with adapta-

tion
˙̂gT =−ΓGT(q)(sSL)

• gravity + friction with saturated sliding term

u = ĝG(q)+F(q̇)−K sat

(

ssat

ϕ

)

(8.15)

wheressat is defined as the sliding element (equation 5.8), with adaptation

˙̂gT =−ΓGT(q)sat

(

ssat

ϕ

)

.

It can be noticed that the amount of modelling required to derive these controllers is

significantly reduced (as is their computational load) in comparison to the controllers

employing inertia and Coriolis and Centrifugal model terms.

8.2.4 Algorithm tuning

It has been suggested in [8.1] not to perform adaptation whenthe control is saturated,

therefore an additional condition has been added to the algorithm to prevent the adapted
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parameter update when the motor torques saturate at the manufacturer’s rated levels. Ad-

ditionally, for the algorithm using the saturated sliding,the adaptation is not performed

when the saturation occurs.

8.3 Experiment set-up

To evaluate the performance of different controllers presented here, experiments using

the PA10-6CE manipulator mounted on a moving platform have been carried out. The

complete list of controllers to be evaluated in experiments, together with their abbreviated

names used in the tables and graphs is presented in table 8.1.

The PA10-6CE manipulator is commanded along two sinusoidal trajectories (see section

5.2)

• synchronised (ssine),

• asynchronous (sine).

The platform is commanded along the following trajectories(with the abbreviated names

used in tables and figures – see section 6.2):

• no platform motion (for reference):

– zero2;

• 1-DOF:

– roll sine (sin_r2p0),

– pitch sine (sin_r0p2);

• 2-DOF:

– roll + pitch sine with different frequencies (sin_r1p2_pi2),

– sum of sin (1) (sin2_s20),

– sum of sin (2) (sin2_s20_2);

• 6-DOF:

– vessel on sea motion (sea_all_2).

2this is not equivalent to platform being off due to additional noise induced in the system by the platform
control / communication signals
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Abbreviation Type Error Model Gravity
PD

robust

PD

none not present
sat_sl saturated sliding
slid Slotine-Li sliding
PID PID
grv_frc_PD

partial PD gravity, friction

constant
grv_frc_PD_rp roll + pitch
grv_frc_PD_acc accelerometer
grv_frc_PD_adap adaptive
grv_frc_sat_sl

partial saturated sliding gravity, friction

constant
grv_frc_sat_sl_s_rp roll + pitch
grv_frc_sat_sl_s_acc accelerometer
grv_frc_sat_sl_adap adaptive
grv_frc_slid

partial Slotine-Li sliding gravity, friction

constant
grv_frc_slid_s_rp roll + pitch
grv_frc_slid_s_acc accelerometer
grv_frc_slid_adap adaptive
lin_FULL

linearisation linearised PD full
constant

lin_FULL_s_rp roll + pitch
lin_FULL_s_acc accelerometer
lin_noCC

linearisation linearised PD no Coriolis
constant

lin_noCC_s_rp roll + pitch
lin_noCC_s_acc accelerometer
W-B_FULL

Wen-Bayard PD full

constant
W-B_FULL_s_rp roll + pitch
W-B_FULL_s_acc accelerometer
W-B_FULL_adap adaptive
W-B_noCC

Wen-Bayard PD no Coriolis

constant
W-B_noCC_s_rp roll + pitch
W-B_noCC_s_acc accelerometer
W-B_noCC_adap adaptive
S-L_FULL

Slotine-Li Slotine-Li sliding full

constant
S-L_FULL_s_rp roll + pitch
S-L_FULL_s_acc accelerometer
S-L_FULL_adap adaptive
S-L_noCC

Slotine-Li Slotine-Li sliding no Coriolis

constant
S-L_noCC_s_rp roll + pitch
S-L_noCC_s_acc accelerometer
S-L_noCC_adap adaptive

Table 8.1: List of evaluated controllers with abbreviations used in tables and graphs.

8.3.1 Control parameters

For all non-adaptive parts of the controllers, the parameters presented in Chapter 5 have

been used. Unless otherwise stated the gravity vector has been initialised to(0,0,−g)T

for all adaptive controllers. The adaptation gain has been set to(6400.0,6400.0,6400.0).

These values were chosen by trial and error in an attempt to maximise the adaptation
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speed without causing controller instability.

8.4 Experimental results

To compare the properties of the different controllers for various platform and manipula-

tor trajectories, multiple experiments have been performed and the results are presented

through a series of graphs and tables.

8.4.1 Angle tracking

The weighted mean squared angle tracking error (equation 5.22 - abbreviated as angle

WMISE) is used as the primary performance measure for all controllers. Based on all the

results (available in appendix E), it has been concluded that only joints S1, S2 and E1

need to be analysed in closer detail, as there is no significant amount of variation in the

results for the remaining three joints.

For reference, the results of the stationary platform are presented in figure 8.13 The fol-

lowing properties of the controllers can be observed:

• The adaptive controllers (Wen-Bayard and gravity+frictionwith either PD or satu-

rated sliding error feedback) perform best, even though thegravity vector is con-

stant.

• The full linearisation controller comes close for the sine trajectory (exhibiting more

joint inertia and Coriolis and centrifugal interactions). It is interesting to notice that

the version based on the roll/pitch sensor is marginally better than the static gravity

controller, and the one based on a noisy accelerometer reading is the worst from

this set. Marginally worse are the linearisation controllers with the Coriolis and

centrifugal term disabled.

• The non-saturated sliding based controller is the poorest scheme.

• The Slotine-Li controllers, on average, perform worse thanthe Wen-Bayard. This is

due to more measurement noise (especially from the velocitysignal) being passed

through.

• The angle WMISE is twice as small for the adaptive version of the Wen-Bayard

controller compared to the constant (actual) gravity basedWen-Bayard controller.

The ratio for the Slotine-Li controllers is 1.5. This needs to be considered when

comparing the controllers with a moving platform.

As an example of 1-DOF base motion, the pitch sine results arepresented in figure 8.2.

The following observations can be made based on these results.

3The robust controller results and the PA10 velocity controller results have been excluded from these
plots due to significantly higher errors (see appendix E for all results).
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Figure 8.1: Angle WMISE ordered by sum for S1, S2, E1, platformtrajectory: zero, for
both PA10 trajectories.
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Figure 8.2: Angle WMISE ordered by sum for S1, S2, E1, platformtrajectory: pitch sine,
for both PA10 trajectories.
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• For thessine trajectory the adaptive controllers outperform the accelerometer

based ones. It is even more interesting to notice that the order among both groups

is very similar with the feedback linearisation outperforming the Wen-Bayard con-

troller in the accelerometer ’group’.

• The adaptive gravity+friction with either PD or saturated sliding error feedback

perform similarly to the adaptive Wen-Bayard controllers. This could indicate that

both performance improvements came from adaptation being more significant than

the lack of a complete model in the controller.

• The angle WMISE with the adaptive Slotine-Li controller for joints S2 and E1

(mostly affected by gravity) is lower than with the accelerometer measurement,

which can be attributed to additional noise being transmitted from the accelerometer

sensor gravity measurement (which is also induced by the manipulator joint torque

chattering).

Results for the platform following a sum of multiple sine trajectories in 2-DOF are pre-

sented in 8.3. The angle tracking results are very similar tothe 1-DOF platform trajectory

results, which would indicate that the relative performance of the controllers is not af-

fected by the complexity of the base trajectory. It should still be noticed that the 1-DOF

sine trajectory utilises the entire pitch range of the platform with high speed, and the 2-

DOF trajectory has similar maximum angular velocities, however not lasting for such long

periods of time (therefore the absolute error levels are higher for the 1-DOF trajectory).

To evaluate the real-life performance of the analysed controllers, the motion platform is

commanded to follow a representative 6-DOF trajectory of a vessel on the sea. It needs

to be noted that the X, Y, Z and yaw motion of the base has not been considered in the

model simulations. The experimental results are presentedin figure 8.4, the following can

be remarked upon:

• The relative performance of the controllers is very similarto the case of no base

motion (which can be attributed to lower angular velocitiesand accelerations than

in the artificially generated paths).

• The adaptive controllers still perform best of all (even in conditions not considered

in the design step).

As can be noticed in figure 8.5, the PD controller angle WMISE are two orders of mag-

nitude higher than the adaptive controller using only gravity and friction models with PD

error feedback. It is interesting to notice that with the introduction of gravity and friction

models (based on constant gravity vector) the error reducesten-fold, it further reduces by

approximately 30% when deriving the gravity values from theroll+pitch clinometers. Ac-

celerometer sensors reduce the figure by another 30% and the adaptive gravity algorithm

gives a further four-fold tracking error reduction.
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Figure 8.3: Angle WMISE ordered by sum for S1, S2, E1, platformtrajectory: sum of sin
(1), for both PA10 trajectories.
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Figure 8.4: Angle WMISE ordered by sum for S1, S2, E1, platformtrajectory: vessel on
sea (6-DOF), for both PA10 trajectories.

143



0 2 4 6

x 10
−4

grv_frc_PD_adap

grv_frc_PD_s_acc

grv_frc_PD_s_rp

grv_frc_PD

PD

Comparison of S1+S2+E1 angle RMISE results, platform trajectory: sin_r1p2pi2, PA10 trajectory: sine.

RMISE

S1
S2
E1

Figure 8.5: Angle WMISE ordered by sum for S1, S2, E1, platformtrajectory: roll+pitch
sine with different periods, PA10 trajectoryssine.

8.4.2 Weighted mean control noise ratio

The high to low frequency control torque energy ratio results (equation 5.23) for the cases

presented above are shown in figures 8.6 to 8.9. The complete tabulated results are in

appendix F. The following observations can be made regarding the tested controllers

based on the obtained results

• The lowest noise energy occurs for the feedback linearisation algorithm.

• Wen-Bayard controllers generate less torque noise energy than the Slotine-Li.

• Accelerometer sensor measurements generate additional noise energy in compari-

son to adaptation or roll+pitch sensors.

• More dynamic base trajectories result in less relative torque noise.

• Adaptive gravity based controllers are generally scattered in the middle of the rela-

tive torque noise ranking.

8.4.3 Adaptive gravity estimation results

Gravity estimates initialisation To analyse thestaticperformance of the adaptive algo-

rithms the initial value of the gravity estimates has been set to ĝ0 = (5.66,−5.66,5.66)T
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Figure 8.6: High to low frequency control torque power ratioordered by sum for S1, S2,
E1, platform trajectory: zero, for both PA10 trajectories.
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Figure 8.7: High to low frequency control torque power ratioordered by sum for S1, S2,
E1, platform trajectory: pitch sine, for both PA10 trajectories.
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Figure 8.8: High to low frequency control torque power ratioordered by sum for S1, S2,
E1, platform trajectory: sum of sin (1), for both PA10 trajectories.
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Figure 8.9: High to low frequency control torque power ratioordered by sum for S1, S2,
E1, platform trajectory: vessel on sea (6-DOF), for both PA10 trajectories.
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(which is a vector of length|g| pointing in a wrong direction (to maximise the estimate to

actual value differences)). Experiments have been performed with the platform switched

off. The transient behaviour of adapted gravity estimates,along with the sum of absolute

errors for the first three joints is presented in figures 8.10 to 8.13. It can be noticed that

• The gravity estimates reach the actual values within 1.5 s for thesine trajectory

and within 1.8 s for thessine. The cause of this can be thesine trajectory

excitingthe generic gravity term better and leading to a faster estimation. It could

also be attributed to higher tracking errors at the start of thesine trajectory feeding

to the adaptation step of the control algorithm.

• The estimates move close to the reference value but vary withtime (trajectory). This

could be explained with the adaptation compensating for unmodelled dynamics.

• The gravity estimates for the simpler controllers (gravity+friction compensation

based) vary more (and therefore are more distant from the reference accelerometer

reference measurements) than for the full model Wen-Bayard and Slotine-Li con-

trollers. This can be attributed to the adaptive algorithm trying to compensate for

the missing dynamics terms.

• The noise in gravity estimates present on the Slotine-Li plots originates from the

physical transmission of the PA10 control torque noise (causing joint vibrations)

into the platform mounting plate and to the sensors.

Gravity estimates and joint tracking errors The gravity estimates for selected ex-

periments discussed in sections 8.4.1 and 8.4.2 are analysed here. Angle tracking errors

for PA10 trajectorysine and various platform trajectories with the gravity + friction +

PD controller using constant, accelerometer and adaptive gravity, along with the gravity

estimates are presented in figures 8.14 to 8.17.

• The adaptive gravity estimates can be considered to be correlated with the reference

accelerometer readings, however there are significant discrepancies.

• It can be observed that the joint angle errors are significantly reduced by using

the gravity measurements from the accelerometer and further reduced by applying

adaptive control.

• It is interesting to notice that even though the adapted estimates differ significantly

from the reference sensor readings, the algorithm performsnoticeably better at

keeping the angle tracking errors low.

• It can also be observed that there is lesserror noise(resulting from joint vibra-

tion caused by control torque noise) present in the adaptivecontroller results. This

translates to less physical wear of the actuator/transmission.
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Figure 8.10: Gravity estimates with reference accelerometer measurements and sum of
absolute joint tracking errors for S1, S2 and S3 with incorrectly initialised gravity vector
(to ĝ0 = (5.66,−5.66,−5.66)T). Platform stopped, both PA10 trajectories. Controller
used: gravity+friction+PD with adaptive gravity.
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Figure 8.11: Gravity estimates with reference accelerometer measurements and sum of
absolute joint tracking errors for S1, S2 and S3 with incorrectly initialised gravity vector
(to ĝ0 = (5.66,−5.66,−5.66)T). Platform stopped, both PA10 trajectories. Controller
used: gravity+friction+saturated sliding with adaptive gravity.

151



0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

ac
ce

le
ra

tio
n 

[m
/s

2 ]

experiment time [s]

gravity vector, PA10 traj: sine

g
x

adap
g

y
adap

g
z

adap
g

x
s_acc

g
y

s_acc
g

z
s_acc

0 1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025
sum of absolute angle tracking errors, controller: W−B_FULL_adap

an
gl

e 
er

ro
r 

[r
ad

]

experiment time [s]

sum of abs err

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

ac
ce

le
ra

tio
n 

[m
/s

2 ]

experiment time [s]

gravity vector, PA10 traj: ssine

g
x

adap
g

y
adap

g
z

adap
g

x
s_acc

g
y

s_acc
g

z
s_acc

0 1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025
sum of absolute angle tracking errors, controller: W−B_FULL_adap

an
gl

e 
er

ro
r 

[r
ad

]

experiment time [s]

sum of abs err

Figure 8.12: Gravity estimates with reference accelerometer measurements and sum of
absolute joint tracking errors for S1, S2 and S3 with incorrectly initialised gravity vector
(to ĝ0 = (5.66,−5.66,−5.66)T). Platform stopped, both PA10 trajectories. Controller
used: Wen-Bayard with full model and adaptive gravity.
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Figure 8.13: Gravity estimates with reference accelerometer measurements and sum of
absolute joint tracking errors for S1, S2 and S3 with incorrectly initialised gravity vector
(to ĝ0 = (5.66,−5.66,−5.66)T). Platform stopped, both PA10 trajectories. Controller
used: Slotine-Li with full model and adaptive gravity.
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Figure 8.14: Angle tracking errors for gravity+friction+PD controller with constant grav-
ity, accelerometer values and adaptive gravity (with gravity vector estimates). Platform
trajectory: zero, PA10 trajectorysine.
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Figure 8.15: Angle tracking errors for gravity+friction+PD controller with constant grav-
ity, accelerometer values and adaptive gravity (with gravity vector estimates). Platform
trajectory: pitch sine, PA10 trajectorysine.
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Figure 8.16: Angle tracking errors for gravity+friction+PD controller with constant grav-
ity, accelerometer values and adaptive gravity (with gravity vector estimates). Platform
trajectory: sum of sin (1), PA10 trajectorysine.
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Figure 8.17: Angle tracking errors for gravity+friction+PD controller with constant grav-
ity, accelerometer values and adaptive gravity (with gravity vector estimates). Platform
trajectory: vessel on sea (6DOF), PA10 trajectorysine.
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For comparison, the results of the same sets of PA10 and platform trajectories with the

full model Wen-Bayard controller (using constant, accelerometer and adaptive gravity)

are presented in figures 8.18 to 8.21:

• The adaptive gravity estimates are much closer to the reference sensor measurement

than in the case of the reduced model (gravity+friction).

• The angle tracking errors and theerror noiseare smallest for the adaptive algorithm.

8.5 Summary

Based on the results presented in this chapter, the followingconclusions can be drawn:

1. Adaptive controllers deliver superior joint angle tracking properties with average

torque noise generation.

2. The Wen-Bayard controllers outperformed the Slotine-Li ones in the above tests,

however it needs to be considered that these controllers maylose their performance

benefits when the manipulator cannot be driven very close to the desired trajectory,

which could happen:

• for lower torque motors,

• when a load is mounted on the tip.

In this case, thesine trajectory velocities are within 55-126% of the PA10-6CE

rated velocities (for reference see table 8.24), and the torques do not saturate, which

indicates that the manipulator has enough torque to remain on the desired trajectory.

3. The acceleration at the base of the manipulator is not equal to the gravitational ac-

celeration measured at the centre of the mounting plate. There is also an element

originating from the angular acceleration around they-axis (pitch) due to the ma-

nipulator being mounted at a distancerX (see section 7.3.1) from the centre. The

adaptive scheme attempts to compensate for this additionalacceleration, as it is

additive to thez-axis gravitational acceleration acting on the manipulator base.

4. The adaptive gravity controller attempts to compensate for unmodelled dynamics

(e.g. the harmonic drive compliance/flexibility), resulting in significantly reduced

angle tracking errors.

4it has been experimentally verified, that joints S1 and S2 areactually able to operate at 1.8 times rated
velocities
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Figure 8.18: Angle tracking errors for full model based Wen-Bayard controller with con-
stant gravity, accelerometer values and adaptive gravity (with gravity vector estimates).
Platform trajectory: zero, PA10 trajectorysine.
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Figure 8.19: Angle tracking errors for full model based Wen-Bayard controller with con-
stant gravity, accelerometer values and adaptive gravity (with gravity vector estimates).
Platform trajectory: pitch sine, PA10 trajectorysine.
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Figure 8.20: Angle tracking errors for full model based Wen-Bayard controller with con-
stant gravity, accelerometer values and adaptive gravity (with gravity vector estimates).
Platform trajectory: sum of sin (1), PA10 trajectorysine.
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Figure 8.21: Angle tracking errors for full model based Wen-Bayard controller with con-
stant gravity, accelerometer values and adaptive gravity (with gravity vector estimates).
Platform trajectory: vessel on sea (6DOF), PA10 trajectorysine.
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joint max(abs( ˙qd)) ratedq̇ % of rated
S1 1.257 1.00 126%
S2 0.977 1.00 98%
E1 1.010 2.00 55%
E2 1.795 6.28 29%
W1 2.094 6.28 33%
W2 1.839 6.28 29%

Table 8.2: Maximum joint velocities for thesine trajectory, with reference rated veloci-
ties and fraction of rated (in rad/s).
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Chapter 9

Conclusions

9.1 Summary

This thesis addresses several aspects of manipulator modelling and control on a fixed

and non-fixed base with simulations and experiments employing a Mitsubishi PA10-6CE

manipulator mounted on a CueSim 6-DOF motion platform. A dynamic model of the

PA10-6CE manipulator with fixed base has been derived using geometric models of the

links and available information on link mass and mass centres. Motor inertias have been

estimated experimentally and a non-parametric friction model for each joint has been ob-

tained. The model has been evaluated using a comparison of simulation and experimental

results and the following key conclusions were reached:

• gravity and friction terms are the most important parts of the manipulator dynamic

equation,

• link and motor inertias are important in modelling transients (e.g. response to a

torque step change),

• Coriolis and centrifugal term has the least contribution to the dynamic model of this

manipulator (due to the high transmission ratio).

Various controllers have been implemented using the derived model and their performance

evaluated quantitatively by means ofthe weighted mean squared joint angle tracking

error andthe weighted mean control torque high to low frequency component ratio. The

following key conclusions can be stated from these experiments:

• non-model based controllers such as PD and PID have significantly higher tracking

errors in comparison to model based controllers,

• model based controllers evaluated along a desired trajectory (such as the evaluated

Wen-Bayard controller [9.3]) deliver very good joint angle tracking performance

without generating unnecessary high frequency torques (resulting from amplifica-

tion of measurement noise) in comparison to the other controllers,
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• the last three joints of the PA10-6CE manipulator are mostly affected by friction

and other model based control schemes do not introduce significant improvements

to their tracking error performance figures.

A model of a robotic manipulator on a moving base has been derived (with an assump-

tion of the base not being influenced by the manipulator motion) and evaluated based on

simulation and experimental closed-loop control torque comparisons for the PA10-6CE

robotic arm. The following key points were observed:

• the extension of the gravity model to include base motion is the most significant

element for modelling a high gear ratio manipulator on a moving base,

• the inertial and Coriolis and centrifugal torques arising from the base motion con-

tribute little to the dynamic model accuracy (especially for slower base motion tra-

jectories), which can again be attributed to the high gear ratio.

Based on the the modelling experiences, an adaptive model based controller (using sche-

mes presented in [9.1] and [9.2]) has been suggested to compensate for the varying gravity

vector due to base motion and compared experimentally against model based controllers

employing sensor measurements (roll+pitch angles or 3-axis accelerometer) by means

of the weighted mean squared joint angle tracking errorand the weighted mean con-

trol torque high to low frequency component ratio. The following key conclusions were

obtained:

• suggested adaptive controllers outperform sensor based controllers, due to their

ability to compensate for modelled dynamics (such as harmonic drive flexibility/com-

pliance),

• Wen-Bayard type controllers are less prone to measurement noise and deliver supe-

rior joint angle tracking performance,

• there is no improvement possible beyond the friction + PD control for the last three

joints of the PA10-6CE manipulator.

In conclusion, the importance of model based control has been presented together with the

importance of analysing the dynamic model terms contribution to the model to remove

insignificant terms without reducing the joint angle tracking performance. It has been

shown that an adaptive controller can be successfully applied to compensate for the vary-

ing gravity vector and its performance is superior in comparison to direct accelerometer

measurement based algorithms.

9.2 Author’s contributions

The following can be stated as novel contributions presented in this work:
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• The author was the first to present a comparison of robust controllers for the PA10-

6CE manipulator in [9.5].

• The author was the first to present the full dynamic model of the PA10-6CE with a

nonparametric friction model and inertias of links calculated with the link element

densities chosen in such way to match the link centre of mass in [9.4]. This pre-

sentation was accompanied by a brief analysis of the incorporated dynamic model

terms in a comparison of simulation and experimental results using PID controllers.

• This thesis presents a novel approach to model the PA10-6CE robotic manipulator

on a moving platform.

• This thesis presents an extensive study of the model of a robotic manipulator with

harmonic drive transmission on a moving platform with simulation and experi-

mental results compared to evaluate the relevance of various terms in the dynamic

model.

• To the author’s best knowledge this thesis is novel in presenting a successful appli-

cation of various model based adaptive controllers to compensate for an unknown

varying gravity vector in a robotic manipulator’s gravity model.

• To the author’s best knowledge this thesis is novel in presenting an extensive com-

parison of various manipulator controllers (mostly model based) with constant, sen-

sor derived and an adaptive gravity vector based on angle tracking error (sum of

squares) and generated torque noise (above anticipated bandwidth of the mechani-

cal model).

9.3 Suggestions for Future Work

• Identify the transmission compliance and add it to the simulations and evaluate it in

the controller.

• Add adaptation to the feedback linearisation controller and compare against existing

experimental results.

• Evaluate the adaptive gravity profile against the accelerometer reading after adding

the transmission compliance element to the controller. If it is well correlated, de-

sign an inertial navigation system for task space control, using the adaptive control

gravity estimates to obtain the manipulator base position and compensate for base

motion in task space operations.

• Evaluate a double adaptation scheme – adapt the gravity vector to compensate for

base motion and adapt some of the model parameters to compensate as well e.g. a

change in load carried by the manipulator. Consider adaptation of each element at

each control step, or interleave both every odd/even step.
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Mobile Robots: Modelling, Motion Planning, and Control. (inPolish). Academic

Publishing House, 2000.

Chapter 4

[1] M.W. Dunnigan C.M. Wronka. Internet remote control interface for a multipurpose

robotic arm.The Int. J. Of Advanced Robotic Systems, 3:179–182, June 2006.

[2] R. Jamisola, M. Ang, T.M. Lim, O. Khatib, and S.Y. Lim. Dynamics identification

and control of an industrial robot. InThe 9th Int. Conf. Advanced Robotics, pages

323–328, 1999.

[3] C.W. Kennedy and J.P. Desai. Estimation and modeling of the harmonic drive trans-

mission in the Mitsubishi PA-10 robot arm. InIntelligent Robots and Systems, 2003.

(IROS 2003). Proc. 2003 IEEE/RSJ Int. Conf., volume 4, pages 3331–3336 vol.3, Oct.

2003.

[4] C.W. Kennedy and J.P. Desai. Modeling and control of the Mitsubishi PA-10 robot

arm harmonic drive system.Mechatronics, IEEE/ASME Trans., 10(3):263–274, June

2005.

[5] M.M. Olsen and H.G. Petersen. A new method for estimatingparameters of a dy-

namic robot model.Robotics and Automation, IEEE Trans., 17(1):95–100, Feb 2001.

[6] T. Scherer. pa10kinematic. RCCL/RCI C functions, 1999.

Chapter 5

[1] Z. Qu and J. Dorsey. Robust tracking control of robots by a linear feedback law.

Automatic Control, IEEE Trans., 36(9):1081–1084, Sep 1991.

[2] J.T. Shearer and B.T. Kulakowski.Dynamic Modeling and Control of Engineering

Systems. Maccillan-Collier, 1990.

[3] J.-J.E. Slotine. Sliding controller design for non-linear systems.Int. J. of Control,

40(2):421–434, 1984.

[4] J.-J.E. Slotine and W. Li. Adaptive manipulator control: A case study.IEEE Trans.

Autom. Contr, 33(11):995–1003, 1988.

[5] J.-J.E. Slotine and S. S. Sastry. Tracking control of non-linear systems using sliding

surfaces, with application to robot manipulators.Int. J. of Control, 38(2):465–492,

1983.

174



[6] M.W. Spong and M. Vidyasagar.Robot dynamics and control. Wiley, 1989.
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Appendix A

Relevant work published by the author

• C.M. Wronka, A. Uhlmann, M.W. Dunnigan, and A.M.S. Zalzala. Fast robust

controllers for a Mitsubishi PA-10 manipulator developed under QNX neutrino. In

ISR2004, Mar 2004.

Abstract: The new robotics facility at Heriot–Watt University in Edinburgh has

been established to test control algorithms for cooperating manipulators in the pres-

ence of environmental disturbances (e.g. the manipulator base not fixed). There are

real-world applications where the manipulator base is not fixed and is effectively

"floating". These applications include sub-sea (the vehicle cannot attach itself to

a suitable structure to stabilise), land (mobile robots formining, repair, etc.), and

space (satellite repair and creation of new space structures). The system comprises

two manipulator arms i.e. a PUMA 560 and a MITSUBISHI PA–10 anda CueSim

6-DOF motion platform, together with their controllers andtwo PCs to provide

communication with the user and to house all interface boards for controlling the

robots.

The control system is running on QNX Neutrino, a real–time OS, that assures all

the commands are issued on time. Due to its POSIX compliance,it allows fast

development of new software using existing templates and standard programming

languages (ANSI C, C++). Each robot is controlled in a different way, but the

software developed has an open structure to enable the user to communicate to all

the machines in a similar manner. The hardware realisationsvary significantly. The

PA-10 is controlled with torque commands via an ARCnet interface, the PUMA

is fed with torque values via a MultiQ I/O board, and the motion platform has its

own control system running on a separate DSP board and can only be controlled by

giving the desired positions. However, the software separates the operator from the

hardware with an abstract structure to represent any 6-DOF robot.

A control system has already been developed for the MITSUBISHI arm and in this

article a comparison of several robust control algorithms is presented (experimental

results together with a brief presentation of the controller structure)
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– standard PD and PID controllers,

– λ-tracking (adaptive PD) controller,

– sliding control algorithm.

This choice of algorithms, which do not require any knowledge about the model

of the arm, has been made as it is often difficult/impracticalto obtain the inertial

parameters accurately and the payload is variable.

By combining the hard real–time operating system (producinglittle overhead) with

fast robust control methods one can obtain good control properties without exces-

sive computational demand.

We are currently at the stage of expanding the system by adding a PUMA560 dy-

namic model based controller and an interface (driver) for the motion platform.

• C.M. Wronka and M.W. Dunnigan. Derivation and analysis of the full dynamic

model for a Mitsubishi PA10-6CE manipulator. InMethods and Models in Au-

tomation and Robotics. IEEE, Sep 2005.

Abstract: The open controller architecture of the PA10-6CE manipulator from Mit-

subishi Heavy Industries allows the user to perform torque control and derive and

test different control algorithms and manipulator models.Due to the inherent dif-

ficulty of the task there have been very few attempts to model the dynamics of the

arm. Neither of these attempts seem to accurately model the behaviour of the 6CE

version of the arm, therefore there is a need to develop an accurate and consistent

model. This paper presents a full set of the dynamic parameters based on certain

assumption regarding the construction of the manipulator and identification of the

friction torques for each joint.

• M.W. Dunnigan and C.M. Wronka. Internet remote control interface for a mul-

tipurpose robotic arm.The International Journal Of Advanced Robotic Systems,

3:179–182, Jun 2006.

Abstract: This paper presents an Internet remote control interface for a MIT-

SUBISHI PA10-6CE manipulator established for the purpose of the ROBOT mu-

seum exhibition during spring and summer 2004. The robotic manipulator is a part

of the Intelligent Robotic Systems Laboratory at Heriot – Watt University, which

has been established to work on dynamic and kinematic aspects of manipulator

control in the presence of environmental disturbances. Thelaboratory has been en-

riched by a simple vision system consisting of three web-cameras to broadcast the

live images of the robots over the Internet.

The Interface comprises of the TCP/IP server providing command parsing and ex-

ecution using the open controller architecture of the manipulator and a client Java

applet web-site providing a simple robot control interface.
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• M.W. Dunnigan and C.M. Wronka. Derivation and verification of the dynamic

model for the PA10-6CE robotic manipulator. submitted to International Journal

on Modelling, Identification and Control, Mar 2010.

Abstract: This paper presents a novel dynamic model derivation for thePA10-6CE

manipulator. The model consists of: gravity term based on manufacturer specifica-

tions, non-parametric friction term estimated experimentally, inertia, Coriolis and

centrifugal terms computed based on simplified geometric link models and motor

inertia estimated experimentally. The incorporation of the model terms is analysed

with a comparison of simulated and experimental closed-loop control tasks. Model

based controller performance is evaluated and analysed in terms of complexity ver-

sus tracking error performance.

• M.W. Dunnigan and C.M. Wronka. Derivation and analysis of a dynamic model of

a robotic manipulator on a moving base. submitted to Control Engineering Practice,

Apr 2010.

Abstract: A dynamic model of a robotic manipulator mounted on a moving base

is derived using the Euler-Lagrange approach. It is assumedthat the base inertia is

large enough not to be influenced by the manipulator motion and therefore can be

treated as a time-varying parameter in the dynamic equations. The presented deriva-

tion is applied to a Mitsubishi PA10-6CE robotic manipulatormounted on a 2-DOF

platform. The model is analysed by comparing simple closed-loop control results

of the simulated model with experimental data from the manipulator mounted on

the platform.
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Appendix B

Mathematica code

Mathematica code used to generate the dynamic equations forthe PA10-6CE on a moving

platform.

B.1 Tools module

BeginPackage["Tools‘"]
MatA::usage = "MatA[theta_,d_,a_,alpha_] returns the Dennavit Hartenberg
matrix for a joint from parameters theta_, d_, a_, and alpha_ (see Spong)"

RotM::usage = "RotM[phi_,chi_,psi_] returns a Denavit Hartenberg rotation
matrix, where phi_ is around x, chi_ around y, and psi_ around z"

TransM::usage = "TransM[x_,y_,z_] returns a Denavit Hartenberg rotation matrix,
where phi_ is around x, chi_ around y, and psi_ around z"

DenHart::usage = "DenHart[matK_,n_] returns the DH kinematics matrix
up to joint n"

DenHartmn::usage = "DenHart[matK_,m_,n_] returns the DH kinematics matrix
from joint m up to joint n"

PotentialEn::usage = "PotentialEn[mVect_,gVect_,matK_,rVect_] "

MatUij::usage = "MatUij[matK_,i_,j_] returns the U_ij matrix
for dynamics model (see Fu, Lee, Gonzales)"

GravityVector::usage = "GravityVector[potential_,vars_] "

Begin["‘Private‘"]

RotM[phi_,chi_,psi_]:=Block[{matX,matY,matZ,matrix},
matX={{1, 0, 0, 0}, {0, Cos[phi], -Sin[phi],0},

{ 0, Sin[phi], Cos[phi],0}, {0,0,0,1}};
matY={{Cos[chi], 0, Sin[chi],0}, {0, 1, 0,0},

{ -Sin[chi], 0, Cos[chi],0}, {0,0,0,1}};
matZ={{Cos[psi], -Sin[psi], 0,0}, {Sin[psi], Cos[psi], 0,0},
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{0, 0, 1,0}, {0,0,0,1}};
matrix=matX.matY.matZ;

matrix]

TransM[x_,y_,z_]:=Block[{matrix},
matrix={{1, 0, 0, x},{0, 1, 0, y},{0, 0, 1, z},{0, 0, 0, 1}};

matrix]

DenHart[matK_,n_]:=Block[{i,matA},
matA=TransM[0,0,0];
For[i=1,i<=n,i++,matA=matA.RotM[0,0,matK[[i,1]]].

TransM[0,0,matK[[i,2]]].
TransM[matK[[i,3]],0,0].
RotM[matK[[i,4]],0,0]];

matA]

DenHartmn[matK_,m_,n_]:=Block[{i,matA},
matA=TransM[0,0,0];
For[i=m+1,i<=n,i++,matA=FullSimplify[TrigReduce[matA.

RotM[0,0,matK[[i,1]]].
TransM[0,0,matK[[i,2]]].
TransM[matK[[i,3]],0,0].
RotM[matK[[i,4]],0,0]]]];

matA]

MatUij[matK_, ui_, uj_] := Block[{matA1, matA2, matQ, matU},
matQ = {{0, -1, 0, 0}, {1, 0, 0, 0},

{0, 0, 0, 0}, {0, 0, 0, 0}};
If[uj <= ui, matA1 = DenHartmn[matK, 0, uj - 1];

matA2 = DenHartmn[matK, uj - 1, ui];
matU = matA1 . matQ . matA2;,
matU = {{0, 0, 0, 0}, {0, 0, 0, 0},

{0, 0, 0, 0}, {0, 0, 0, 0}};];
matU]

End[]
Protect[RotM, TransM, DenHart, DenHartmn, PotentialEn,

MatUij, GravityVector]
EndPackage[]

B.2 Main script

--- load tools ---

«Tools.m

--- define the kinematics D-H transformations ---

matK={{Pi+q1,d1,0,Pi/2},{q2+Pi/2,0,a2,0},
{q3+Pi/2,0,0,Pi/2},{Pi+q4,d4,0,Pi/2},
{Pi+q5,0,0,Pi/2},{q6,d6,0,0}};
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--- define inertias ---

mJ1 = {{(−mIxx1+mIyy1+mIzz1)/2,0,0,mm1mX1},
{0,(mIxx1−mIyy1+mIzz1)/2,0,mm1mY1},
{0,0,(mIxx1+mIyy1−mIzz1)/2,mm1mZ1},
{mm1mX1,mm1mY1,mm1mZ1,mm1}};

mJ2 = {{(−mIxx2+mIyy2+mIzz2)/2,mIxy2,0,mm2mX2},
{mIxy2,(mIxx2−mIyy2+mIzz2)/2,0,mm2mY2},
{0,0,(mIxx2+mIyy2−mIzz2)/2,mm2mZ2},
{mm2mX2,mm2mY2,mm2mZ2,mm2}};

mJ3 = {{(−mIxx3+mIyy3+mIzz3)/2,0,0,mm3mX3},
{0,(mIxx3−mIyy3+mIzz3)/2,0,mm3mY3},
{0,0,(mIxx3+mIyy3−mIzz3)/2,mm3mZ3},
{mm3mX3,mm3mY3,mm3mZ3,mm3}};

mJ4 = {{(−mIxx4+mIyy4+mIzz4)/2,0,0,mm4mX4},
{0,(mIxx4−mIyy4+mIzz4)/2,0,mm4mY4},
{0,0,(mIxx4+mIyy4−mIzz4)/2,mm4mZ4},
{mm4mX4,mm4mY4,mm4mZ4,mm4}};

mJ5 = {{(−mIxx5+mIyy5+mIzz5)/2,0,0,mm5mX5},
{0,(mIxx5−mIyy5+mIzz5)/2,0,mm5mY5},
{0,0,(mIxx5+mIyy5−mIzz5)/2,mm5mZ5},
{mm5mX5,mm5mY5,mm5mZ5,mm5}};

mJ6 = {{(−mIxx6+mIyy6+mIzz6)/2,0,0,mm6mX6},
{0,(mIxx6−mIyy6+mIzz6)/2,0,mm6mY6},
{0,0,(mIxx6+mIyy6−mIzz6)/2,mm6mZ6},
{mm6mX6,mm6mY6,mm6mZ6,mm6}};

--- define platform related transformations ---

mAf=RotM[0,pPitch[t],0].RotM[pRoll[t],0,0].TransM[rX,0,0];

mAp=mAf/.{pPitch[t]→ pitch,pRoll[t]→ roll,
D[pPitch[t], t]→ dPitch,D[pRoll[t], t]→ dRoll,
D[pPitch[t],{t,2}]→ ddPitch,D[pRoll[t],{t,2}]→ ddRoll};

dAp=FullSimplify[D[mAf,t]]/.{pPitch[t]→ pitch,pRoll[t]→ roll,
D[pPitch[t], t]→ dPitch,D[pRoll[t], t]→ dRoll,
D[pPitch[t],{t,2}]→ ddPitch,D[pRoll[t],{t,2}]→ ddRoll};

ddAp=FullSimplify[D[mAf,{t,2}]]/.{pPitch[t] → pitch,pRoll[t]→ roll,
D[pPitch[t], t]→ dPitch,D[pRoll[t], t]→ dRoll,
D[pPitch[t],{t,2}]→ ddPitch,D[pRoll[t],{t,2}]→ ddRoll};

J={mJ1,mJ2,mJ3,mJ4,mJ5,mJ6}/.{mX6 → 0,mY6 → 0,
mX5 → 0,mY5 → 0,mX4 → 0,mZ4 → 0,
mX3 → 0,mY3 → 0,mZ2 → 0,mX1 → 0,mZ1 → 0};

--- function to calculate second derivatives of the D-H transformation
over time ---
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MatUijk[matK_,ui_,uj_,uk_]:=Block[{matA1,matA2,matA3,matQ,matU},
matQ= {{0,−1,0,0},{1,0,0,0},{0,0,0,0},{0,0,0,0}};
If [And[uj ≤ ui,uk≤ uj],
matA1= DenHartmn[matK,0,uk−1];
matA2= DenHartmn[matK,uk−1,uj−1];
matA3= DenHartmn[matK,uj−1,ui];
matU= matA1.matQ.matA2.matQ.matA3;,
If [And[uk≤ ui,uj ≤ uk],
matA1= DenHartmn[matK,0,uj−1];
matA2= DenHartmn[matK,uj−1,uk−1];
matA3= DenHartmn[matK,uk−1,ui];
matU= matA1.matQ.matA2.matQ.matA3;,
matU= {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}; ]];matU]

--- function to compute model items ---

VelocityItemPlat[i_,j_]:=Simplify[
Sum[Tr[Simplify[dAp.MatUij[matK,k, j]].J[[k]].
Simplify[Transpose[MatUij[matK,k, i]].Transpose[mAp]]],{k, i,6}]]

FreeItemPlat[i_]:=Simplify[
Sum[Tr[Simplify[ddAp.DenHartmn[matK,0, j]].J[[ j]].
Simplify[Transpose[MatUij[matK, j, i]].Transpose[mAp]]],{ j, i,6}]]

InertiaPlat[i_,j_]:=Simplify[
Sum[Tr[mAp.MatUij[matK,k, j].J[[k]].
Transpose[MatUij[matK,k, i]].Transpose[mAp]],{k, i,6}]]

CoriolisCentPlat[i_,j_,k_]:=Simplify[
Sum[Tr[mAp.MatUijk[matK,m, j,k].J[[m]].
Transpose[MatUij[matK,m, i]].Transpose[mAp]],{m, i,6}]]

--- function preparing precalculated constants for output form ---

cStyleReplacedElem[e_]:=Block[{newE},
newE= Simplify[e]/.{Cos[q1]→ c1,Sin[q1]→ s1,
Cos[q2]→ c2,Sin[q2]→ s2,Cos[2q2]→ c22,
Sin[2q2]→ s22,Cos[q2+q3]→ c23,Sin[q2+q3]→ s23,
Cos[2(q2+q3)]→ c2233,Sin[2(q2+q3)]→ s2233,
Cos[2q2+q3]→ c223,Sin[2q2+q3]→ s223,
Cos[q3]→ c3,Sin[q3]→ s3,Cos[q4]→ c4,Sin[q4]→ s4,
Cos[2q4]→ c44,Sin[2q4]→ s44,Cos[q5]→ c5,
Sin[q5]→ s5,Cos[2q5]→ c55,Sin[2q5]→ s55,
Cos[q6]→ c6,Cos[2q6]→ c66,Sin[q6]→ s6,
Sin[2q6]→ s66,mIxx1 → mIxx1,mIyy1 → mIyy1,
mIzz1→ mIzz1,mIxx2 → mIxx2,mIyy2 → mIyy2,
mIzz2→ mIzz2,mIxx3 → mIxx3,mIyy3 → mIyy3,mIzz3→ mIzz3,
mIxx4 → mIxx4,mIyy4 → mIyy4,mIzz4→ mIzz4,
mIxx5 → mIxx5,mIyy5 → mIyy5,mIzz5→ mIzz5,
mIxx6 → mIxx6,mIyy6 → mIyy6,mIzz6→ mIzz6,mIxy2 → mIxy2,
mm1 → mm1,mm2 → mm2,mm3 → mm3,mm4 → mm4,mm5 → mm5,
mm6 → mm6,mX1 → mX1,mY1 → mY1,mZ1 → mZ1,mX2 → mX2,
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mY2 → mY2,mZ2 → mZ2,mX3 → mX3,
mY3 → mY3,mZ3 → mZ3,mX4 → mX4,mY4 → mY4,
mZ4 → mZ4,mX5 → mX5,mY5 → mY5,mZ5 → mZ5,
mX6 → mX6,mY6 → mY6,mZ6 → mZ6,d1->d1,
a2 → a2,d4 → d4,d6 → d6,Sin[roll]→ sroll,
Cos[roll]→ croll,Sin[pitch]→ spitch,Cos[pitch]→ cpitch};newE]

--- functions printing results to files ---

PrintSubList[list_,strm_,sName_]:=Block[
{dim, i,newSName},dim= Dimensions[list];
If [Length[dim]> 1,For[i = 1, i<=dim[[1]], i++,
newSName= sName<>ToString[i]<>",";
PrintSubList[list[[i]],strm,newSName]],
For[i = 1, i<=dim[[1]], i++,
newSName= sName<>ToString[i]<>")=";
WriteString[strm,newSName,CForm[
cStyleReplacedElem[list[[i]]]],";\n\n"]]]]

PrintList[list_,fName_,sName_]:=Block[
{strm},strm= OpenWrite[fName];
WriteString[strm,"% ***** Matlab: \n\n"];
PrintSubList[list,strm,sName<>"("];
Close[strm]; ]

PrintFunc3D[Func_,range_,fName_,sName_]:=Block[{i,j,strm},
strm= OpenWrite[fName];
WriteString[strm,"% ***** Matlab: \n\n"];
For[i = range[[1,1]], i ≤ range[[1,2]], i++,
For[ j = range[[2,1]], j ≤ range[[2,2]], j++,For[k= range[[3,1]],k≤ range[[3,2]],k++,
WriteString[strm,sName,"(", i,",", j,",",k,")=",
CForm[cStyleReplacedElem[Func[i, j,k]]],";\n\n"]]]];
Close[strm]; ]

PrintFunc2D[Func_,range_,fName_,sName_]:=Block[{i,j,strm},
strm= OpenWrite[fName];
WriteString[strm,"% ***** Matlab: \n\n"];
For[i = range[[1,1]], i ≤ range[[1,2]], i++,
For[ j = range[[2,1]], j ≤ range[[2,2]], j++,WriteString[strm,sName,"(", i,",", j,")=",
CForm[cStyleReplacedElem[Func[i, j]]],";\n\n"]]];
Close[strm]; ]

PrintFunc1D[Func_,range_,fName_,sName_]:=Block[{i,j,strm},
strm= OpenWrite[fName];
WriteString[strm,"% ***** Matlab: \n\n"];
For[i = range[[1,1]], i ≤ range[[1,2]], i++,
WriteString[strm,sName,"(", i,")=", CForm[cStyleReplacedElem[Func[i]]],";\n\n"]];
Close[strm]; ]

--- calculate and save terms ---

PrintFunc2D[VelocityItemPlat,{{1,6},{1,6}},"plat_velocity_item.m","mPV"]
PrintFunc2D[InertiaPlat,{{1,6},{1,6}},"plat_inertia_item.m","mQ"]
PrintFunc3D[CoriolisCentPlat,{{1,6},{1,6},{1,6}},"plat_coriolis_item.m","mC"]
PrintFunc1D[FreeItemPlat,{{1,6}},"plat_free_item.m","mPF"]
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Appendix C

Matlab code

Elements of Matlab code used for PA10 dynamic model simulation

C.1 Solver function

function [t,x,u]=ode_cw(dyn_fcn,ts,x0,dyn_params)

MAX_ABS_TOL=.1;

MIN_SUB_STEPS=2;
MAX_SUB_STEPS=128;

state=x0;

t(1)=ts(1);
local_t=t(1);
x(1,:)=x0’;
u(1,:)=zeros(1,6);

last_sub_steps=MIN_SUB_STEPS;

for i=2:length(ts)

SUB_STEPS=max(last_sub_steps,MIN_SUB_STEPS);
sol_OK=0;
dyn_step.local_t=local_t;
dyn_step.state=state;
while sol_OK==0

local_t=dyn_step.local_t;
state=dyn_step.state;
break_done=0;
for j=1:SUB_STEPS

new_t=ts(i-1)+(j/SUB_STEPS)*(ts(i)-ts(i-1));
dt=new_t-local_t;
[dstate temp_u stop_vect]=feval(dyn_fcn,local_t,state,dyn_params);
old_state=state;
state=state+dstate*dt;
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if ~isempty(stop_vect)
stop1_ind=find(stop_vect<=6);
state(6+stop_vect(stop1_ind))=0;
stop2_ind=find(stop_vect>6);
for k=stop2_ind

% if the two velocities have different signs, then stop.
if (old_state(stop_vect(k))*state(stop_vect(k)))<0

state(stop_vect(k))=0;
end

end
end
if max(abs(state-old_state)) > MAX_ABS_TOL

SUB_STEPS=SUB_STEPS*2;
if SUB_STEPS>MAX_SUB_STEPS

fprintf(’#’);
end
break_done=1;
break;

end
local_t=new_t;

end
if break_done==0

sol_OK=1;
SUB_STEPS=SUB_STEPS/2;

end
end
t(i)=local_t;
x(i,:)=state’;
u(i,:)=temp_u’;
last_sub_steps=SUB_STEPS;

end;

C.2 Main dynamic structure function

function [dx, out_u, out_stop_joint]=dynamics_m(t,x,varargin)

global marker_t;
global marker_last_int;

MARKER_STEP=0.02;

FRICT_VEL_LIMIT=9.5e-3;

dyn_params=varargin{1};

q=x(1:6);
dq=x(7:12);

if isfield(dyn_params,’platformModel’)
plat_coord_fcn=dyn_params.platformModel{1}{1};
plat_coord_data=dyn_params.platformModel{1}{2};
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is_p_inert=dyn_params.platformModel{1}{3};
is_p_corcent=dyn_params.platformModel{1}{4};
plat_coord=feval(plat_coord_fcn,t,plat_coord_data);

[mQ mMQ vh fg mPF mPV]=pa10_i_dyn(x,plat_coord);

gv=[0 0 -9.81585];
% alow variable gravity vector.
rgv=gv*rotM(0, plat_coord.pitch, 0)*rotM(plat_coord.roll, 0, 0);
vg=fg*rgv’;

else
is_p_inert=0;
is_p_corcent=0;

[mQ mMQ vh fg]=pa10_i_dyn(x);

gv=[0 0 -9.81585]’;
vg=fg*gv;

end

if isfield(dyn_params,’motorInertia’)
mMQ=diag(dyn_params.motorInertia{1});

else
for i=1:6

if isfield(dyn_params,strcat(’motorInertia’,num2str(i)))
mMQ(i,i)=dyn_params.(strcat(’motorInertia’,num2str(i))){1};

end
end

end

if isfield(dyn_params,’frict’)
f=dyn_params.frict{1};
ft=friction(dq,f)*50;

if isfield(dyn_params,’frictScale’)
FRICT_SCALE=dyn_params.frictScale{1};

else
FRICT_SCALE=ones(6,1);

end
ft=ft.*FRICT_SCALE;

else
ft=zeros(6,1);

end

if isfield(dyn_params,’transmissionStiffness’)
transmission_stiffness=1;

else
transmission_stiffness=0;

end

u=zeros(6,1);

if isfield(dyn_params,’inputFcn’)
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if length(dyn_params.inputFcn)==1
inp_fcn=dyn_params.inputFcn{1};
inp_fcn_params={};

else
inp_fcn=dyn_params.inputFcn{1};
inp_fcn_params=dyn_params.inputFcn(2:end);

end;

inp_params.t=t;
inp_params.q=q;
inp_params.dq=dq;
if isfield(dyn_params,’integrateError’)

inp_params.errInt=x(13:18);
end;
inp_params.mQ=mQ;
inp_params.mMQ=mMQ;
inp_params.vh=vh;
inp_params.vg=vg;

if isfield(dyn_params,’trajFcn’)
if ~isempty(inp_fcn_params)

u=feval(inp_fcn,inp_params,inp_fcn_params,dyn_params.trajFcn{1});
else

u=feval(inp_fcn,inp_params,dyn_params.trajFcn{1});
end

else
u=feval(inp_fcn,inp_params,inp_fcn_params);

end
else

u=zeros(6,1);
end

if isfield(dyn_params,’integrateError’)
if length(u)>6

err_delta=u(7:12);
u=u(1:6);

else
err_delta=zeros(6,1);

end
end

dx(1:6,1)=reshape(x(7:12),6,1);

internal_part=-vh-vg+u; %-ft;

if isfield(dyn_params,’noGravity’)
internal_part=internal_part+vg;

end
if isfield(dyn_params,’noCoriolis’)

internal_part=internal_part+vh;
end
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if is_p_inert~=0
internal_part=internal_part-mPF;

end

if is_p_corcent~=0
plat_vel=mPV*dq;
internal_part=internal_part-2*plat_vel;

end

stop_joint=[];
stop_joint2=[];

if isfield(dyn_params,’frict’)
for i=1:6

if dq(i)>0
if internal_part(i)==0 && ft(i)>0

stop_joint2(end+1)=i;
else

if dq(i)<f.p{i}(1,1)
if (internal_part(i)>0) && internal_part(i)<ft(i)

stop_joint(end+1)=i;
end

end
end

else
if dq(i)<0

if internal_part(i)==0 && ft(i)<0
stop_joint2(end+1)=i;

else
if dq(i)>f.n{i}(1,1)

if (internal_part(i)<0) && internal_part(i)>ft(i)
stop_joint(end+1)=i;

end
end

end
end

end
end

dx(stop_joint)=0;

full_internal_part=internal_part-ft;

full_internal_part(stop_joint)=0;

else
full_internal_part=internal_part;

end

if nargout>2
out_stop_joint=[stop_joint stop_joint2+6];

end

189



if isfield(dyn_params,’lockedJoints’)
locked_joints=dyn_params.lockedJoints{1};
full_internal_part(locked_joints,1)=0;

end

if isfield(dyn_params,’onlyMotorInertia’)
dx(7:12,1)=(((mMQ)^-1)*(full_internal_part));

elseif isfield(dyn_params,’onlyJointInertia’)
dx(7:12,1)=(((mQ)^-1)*(full_internal_part));

elseif isfield(dyn_params,’unityInertiaMatrix’)
dx(7:12,1)=full_internal_part;

else
dx(7:12,1)=(((mQ+mMQ)^-1)*(full_internal_part));

end
if isfield(dyn_params,’integrateError’)

dx(13:18)=err_delta;
end

PA10_RatedVelocity=[1.64 1.705 2.24 9.63 9.63 9.63]’;

ind=find((x(7:12)>PA10_RatedVelocity).*(dx(7:12)>0));
if ~isempty(ind)

dx(6+ind)=0;
if isfield(dyn_params,’integrateError’)

dx(12+ind)=0;
end
u(ind)=vh(ind)+vg(ind)+ft(ind);

end

ind=find((x(7:12)<-PA10_RatedVelocity).*(dx(7:12)<0));
if ~isempty(ind)

dx(6+ind)=0;
if isfield(dyn_params,’integrateError’)

dx(12+ind)=0;
end
u(ind)=vh(ind)+vg(ind)+ft(ind);

end

if nargout>1
out_u=u;

end;

if isfield(dyn_params,’lockedJoints’)
locked_joints=dyn_params.lockedJoints{1};
dx(locked_joints,1)=0;
dx(6+locked_joints,1)=0;
if isfield(dyn_params,’integrateError’)

dx(12+locked_joints,1)=0;
end

end
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if (t==0.002)
marker_t=0;
marker_last_int=0;

end
if (floor(t)>marker_last_int)

fprintf(’\n’);
marker_last_int=floor(t);

end;
if (t>(marker_t+MARKER_STEP))

fprintf(’*’);
marker_t=t;

end
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Appendix D

C code

Elements of C code used in the PA10 control application.

// ctrl_all_controllers.cpp
if (g.cntrl_change>0) {

if (((controller_type&CRTL_MASK_CMD_TYPE)==CRTL_MASK_CMD_VELOCITY)
&&((g.cntrl_change&CRTL_MASK_CMD_TYPE)==CRTL_MASK_CMD_TORQUE)) {
pPA10->ToTorqueControl();
vel_trq_ctrl=1;
fprintf(stdout,"Switching to torque control\n");

} else if (((controller_type&CRTL_MASK_CMD_TYPE)==CRTL_MASK_CMD_TORQUE)
&&((g.cntrl_change&CRTL_MASK_CMD_TYPE)==CRTL_MASK_CMD_VELOCITY)) {
pPA10->ToVelocityControl();
vel_trq_ctrl=0;
fprintf(stdout,"Switching to velocity control\n");

}
fprintf(stdout,"switching controller from %08x to %08x\n",

controller_type,g.cntrl_change);
controller_type=g.cntrl_change;
g.cntrl_change=0;

}

g.pRobots[robotNum]->BeginCalculating();

// filter the velocity.
for (Loop = 0; Loop < NUM_JOINTS; Loop++) {

debug_val[Loop]=0;
if (filter_len>0) {

double temp_buf[20];

vel_buff[Loop][count % filter_len]=pV[Loop];

for(Loop2=0; Loop2<filter_len; Loop2++) {
temp_buf[Loop2]=vel_buff[Loop][Loop2];

}

switch (filter_type) {
case 0:
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cur_vel[Loop]=mean(temp_buf,0,filter_len);
break;

case 1:
cur_vel[Loop]=median(temp_buf,0,filter_len);
break;

case 2:
cur_vel[Loop]=(mean(temp_buf,0,filter_len) +

median(temp_buf,0,filter_len))/2.0;
break;

default:
cur_vel[Loop]=pV[Loop];
break;

}

} else {
cur_vel[Loop]=pV[Loop];

}
}

// populate the gravity vector and set flag
if (!g.nosensors) {
if ((controller_type&CRTL_MASK_GRAVITY_TYPE)>0) {

dynamics.type=PA10_DYN_GRAVITY_VECTOR;
if ((controller_type&CRTL_MASK_GRAVITY_TYPE)==CRTL_MASK_GRAVITY_S_ACC) {

// take gravity vector from acceleration sensors
dynamics.gravity_vector[0]=sens_p.ax;
dynamics.gravity_vector[1]=sens_p.ay;
dynamics.gravity_vector[2]=sens_p.az;

} else if ((controller_type&CRTL_MASK_GRAVITY_TYPE)==CRTL_MASK_GRAVITY_S_RP) {
// take ravity vector from roll+pitch sensors
dynamics.gravity_vector[0]=roll_pitch_grav[0];
dynamics.gravity_vector[1]=roll_pitch_grav[1];
dynamics.gravity_vector[2]=roll_pitch_grav[2];

}
}
}

if ((controller_type&CRTL_MASK_DYN_TYPE)>0) {
if ((controller_type&CRTL_MASK_DYN_TYPE)==CRTL_MASK_DYN_REFERENCE) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
dynamics.pA[Loop-1]=pos[Loop-1][count];
dynamics.pV[Loop-1]=vel[Loop-1][count];
dynamics.pV2[Loop-1]=vel[Loop-1][count];
dynamics.pX[Loop-1]=acc[Loop-1][count];

}
} else if ((controller_type&CRTL_MASK_DYN_TYPE)==CRTL_MASK_DYN_SLIDING) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
#ifndef CTRL_ALL_COPY_pA

dynamics.pA[Loop-1]=pA[Loop-1];
#else //CTRL_ALL_COPY_pA

dynamics.pA[Loop-1]=pa10_angle[Loop-1];
#endif //CTRL_ALL_COPY_pA

dynamics.pV[Loop-1]=cur_vel[Loop-1];
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dynamics.pX[Loop-1]=acc[Loop-1][count]-lambda[Loop-1]*
(pV[Loop-1]-vel[Loop-1][count]);

#ifndef CTRL_ALL_COPY_pA
dynamics.pV2[Loop-1]=vel[Loop-1][count]-lambda[Loop-1]*

(pA[Loop-1]-pos[Loop-1][count]);
#else //CTRL_ALL_COPY_pA

dynamics.pV2[Loop-1]=vel[Loop-1][count]-lambda[Loop-1]*
(pa10_angle[Loop-1]-pos[Loop-1][count]);

#endif //CTRL_ALL_COPY_pA
}

}
} else {

// direct model
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

#ifndef CTRL_ALL_COPY_pA
dynamics.pA[Loop-1]=pA[Loop-1];

#else //CTRL_ALL_COPY_pA
dynamics.pA[Loop-1]=pa10_angle[Loop-1];

#endif //CTRL_ALL_COPY_pA
dynamics.pV[Loop-1]=cur_vel[Loop-1];
dynamics.pV2[Loop-1]=cur_vel[Loop-1];
dynamics.pX[Loop-1]=0; //there are no acceleration estimates

//for direct model.
// for model based controllers:
// the filtered velocities are only used in model calculation,
// and the remainder feedback element uses the direct last measurement.

}
}

// calculate dynamics
pa10Dynamics(&dynamics);

for (Loop = 0; Loop < NUM_JOINTS; Loop++) {
// reset velocity to raw (unfiltered)
cur_vel[Loop]=pV[Loop];
// reset the temporary control values
newTorque[Loop]=0.0;
c_error[Loop]=0.0;

}

saturated=0;

double tmp_pos[NUM_JOINTS];
double tmp_vel[NUM_JOINTS];
double tmp_acc[NUM_JOINTS];

if ((controller_type&CRTL_MASK_SPC_TYPE)>0) {
if ((controller_type&CRTL_MASK_SPC_TYPE)==CRTL_MASK_SPC_DTZ) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
tmp_pos[Loop-1]=0;
tmp_vel[Loop-1]=0;
tmp_acc[Loop-1]=0;

}
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}
} else {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
tmp_pos[Loop-1]=pos[Loop-1][count];
tmp_vel[Loop-1]=vel[Loop-1][count];
tmp_acc[Loop-1]=acc[Loop-1][count];

}
}

if ((controller_type&CTRL_MASK_ERROR_C_TYPE)>0) {
if ((controller_type&CTRL_MASK_ERROR_PD)==CTRL_MASK_ERROR_PD) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
c_error[Loop-1]=-kp[Loop-1]*(pA[Loop-1]-tmp_pos[Loop-1])

-kd[Loop-1]*(cur_vel[Loop-1]-tmp_vel[Loop-1]);
}

}
if ((controller_type&CTRL_MASK_ERROR_SAT_SLIDING)==

CTRL_MASK_ERROR_SAT_SLIDING) {
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

c_error[Loop-1]=(cur_vel[Loop-1]-tmp_vel[Loop-1])
+lambda[Loop-1]*(pA[Loop-1]-tmp_pos[Loop-1]);

c_error[Loop-1]=-K_m[Loop-1]*sat(c_error[Loop-1]/varphi[Loop-1]);
if (abs(sat(c_error[Loop-1]/varphi[Loop-1]))==1) {

saturated=1;
}

}
}
if ((controller_type&CTRL_MASK_ERROR_SLIDING)==CTRL_MASK_ERROR_SLIDING) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
c_error[Loop-1]=(cur_vel[Loop-1]-tmp_vel[Loop-1])

+lambda[Loop-1]*(pA[Loop-1]-tmp_pos[Loop-1]);
c_error[Loop-1]=-kd[Loop-1]*c_error[Loop-1];

}
}
if ((controller_type&CTRL_MASK_ERROR_I)==CTRL_MASK_ERROR_I) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
c_error[Loop-1]+=-ki[Loop-1]*int_err[Loop-1];

}
}

}

if ((controller_type&CRTL_MASK_MODEL_TYPE)>0) {
if ((controller_type&CTRL_MASK_MODEL_GRAVITY)==CTRL_MASK_MODEL_GRAVITY) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
newTorque[Loop-1]+=dynamics.gravity[Loop-1]/50.0;

}
}
if ((controller_type&CTRL_MASK_MODEL_FRICTION)==CTRL_MASK_MODEL_FRICTION) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
newTorque[Loop-1]+=dynamics.frict[Loop-1];

}
}
if ((controller_type&CTRL_MASK_MODEL_COR_CENT)==CTRL_MASK_MODEL_COR_CENT) {
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for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
newTorque[Loop-1]+=dynamics.cV[Loop-1]/50.0;

}
}

if ((controller_type&CTRL_MASK_MODEL_FEEDBACK_LINEARISATION)==
CTRL_MASK_MODEL_FEEDBACK_LINEARISATION) {

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
c_error[Loop-1]=(acc[Loop-1][count])

-kdl[Loop-1]*(cur_vel[Loop-1]-tmp_vel[Loop-1])
-kpl[Loop-1]*(pA[Loop-1]-tmp_pos[Loop-1]);

}
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

newTorque[Loop-1]+=matrix_by_vector(dynamics.mQ,c_error,
Loop-1)/50.0;

}
} else if ((controller_type&CTRL_MASK_MODEL_INERTIA)==

CTRL_MASK_MODEL_INERTIA) {
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

newTorque[Loop-1]+=matrix_by_vector(dynamics.mQ,dynamics.pX,
Loop-1)/50.0;

}
}

}

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
if ((controller_type&CTRL_MASK_MODEL_FEEDBACK_LINEARISATION)!=

CTRL_MASK_MODEL_FEEDBACK_LINEARISATION) {
newTorque[Loop-1]+=c_error[Loop-1];

}
if (newTorque[Loop-1] > PA10_RatedTorque[Loop-1]) {

newTorque[Loop-1] = PA10_RatedTorque[Loop-1];
saturated=1;

}
if (newTorque[Loop-1] < -PA10_RatedTorque[Loop-1]) {

newTorque[Loop-1] = -PA10_RatedTorque[Loop-1];
saturated=1;

}
}

if ((controller_type&CRTL_MASK_GRAVITY_TYPE)==CRTL_MASK_GRAVITY_ADAPT) {
if (!saturated) {

int i,j;
double diff_el=0;
double dt=static_cast<double>(period)/1000.0;
int adapt_err_computed=0;
if ((controller_type&CTRL_MASK_ERROR_PD)==CTRL_MASK_ERROR_PD) {

for (i = 0; i < NUM_JOINTS; i++) {
adapt_err[i]=-c_error[i]/kd[i];
/*
adapt_err[i]=((cur_vel[i]-vel[i][count])+

wb_adapt_p_gn[i]*(pA[i]-pos[i][count]));
*/
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}
adapt_err_computed=1;

}
if ((controller_type&CTRL_MASK_ERROR_SAT_SLIDING)==

CTRL_MASK_ERROR_SAT_SLIDING) {
for (i = 0; i < NUM_JOINTS; i++) {

adapt_err[i]=-c_error[i]/K_m[i];
}
adapt_err_computed=1;

}
if ((controller_type&CTRL_MASK_ERROR_SLIDING)==

CTRL_MASK_ERROR_SLIDING) {
for (i = 0; i < NUM_JOINTS; i++) {

adapt_err[i]=-c_error[i]/kd[i];
}
adapt_err_computed=1;

}
if (adapt_err_computed!=0) {

for (j=0; j<CARTESIAN_DIM; j++) {
dadapt_grav[j]=0;
for (i=0; i<NUM_JOINTS; i++) {

dadapt_grav[j]+=(dynamics.full_gravity[i][j]/50.0)*
adapt_err[i];

}
dynamics.gravity_vector[j]+=-dadapt_grav[j]*g_adpt_gn[j]*dt;

}
}

}
}

//angle limit control
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

double tmp_a=static_cast<double>(pA[Loop-1]);
if ((tmp_a>=PA10_PositivePositionLimit[Loop-1])){

newTorque[Loop-1]=-PA10_RatedTorque[Loop-1];
fprintf(stderr,"<%i|",Loop-1);
fprintf(stderr,

"LIMIT angle[%i]=%2.5Lf, tmp_a=%2.5f, max: %2.5f, last=%2.5f\n",
Loop-1,pA[Loop-1],tmp_a,PA10_PositivePositionLimit[Loop-1],
last_pos[Loop-1]);

}
if ((tmp_a<=PA10_NegativePositionLimit[Loop-1])){ //

newTorque[Loop-1]=PA10_RatedTorque[Loop-1];
fprintf(stderr,"|%i>",Loop-1);
fprintf(stderr,

"LIMIT angle[%i]=%2.5Lf, tmp_a=%2.5f, min: %2.5f, last=%2.5f\n",
Loop-1,pA[Loop-1],tmp_a,PA10_NegativePositionLimit[Loop-1],
last_pos[Loop-1]);

}
}

{
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int saturated_t[NUM_JOINTS]={0,0,0,0,0,0};
//filter torques + gain adaptation:
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

#ifdef ADVANCED_TORQUE_FILTER
sgn_diff= newTorque[Loop-1]-oldTorque[Loop-1]>=0 ? 1 : -1;
if (abs(newTorque[Loop-1]-oldTorque[Loop-1])>

alpha[Loop-1]*PA10_RatedTorque[Loop-1]) {
newTorque[Loop-1]=oldTorque[Loop-1]+sgn_diff*

alpha[Loop-1]*PA10_RatedTorque[Loop-1];
}
if ((newTorque[Loop-1]*oldTorque[Loop-1]<0)&&(alpha[Loop-1]!=1)) {

newTorque[Loop-1]=0;
}

#endif
if (abs(pV[Loop-1])>abs(PA10_RatedVelocityZone[Loop-1]*

PA10_RatedVelocity[Loop-1])) {
// velocity close to saturation.
if ((controller_type&CRTL_MASK_SPC_TYPE)==CRTL_MASK_SPC_DTZ) {

newTorque[Loop-1]=newTorque[Loop-1]/vel_of_trq_div[Loop-1];
}

#ifdef ADVANCED_TORQUE_FILTER
else {

newTorque[Loop-1]=newTorque[Loop-1]/vel_of_trq_div[Loop-1];
}

#endif
saturated_t[Loop-1]=1;
//fprintf(stderr,".");

}

if (abs(newTorque[Loop-1]) == abs(PA10_RatedTorque[Loop-1])) {
// joint torque saturated
saturated_t[Loop-1]=1;

}
}

for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {
if ((anti_windup==0)||(saturated_t[Loop-1]=0)) {

int_err[Loop-1] += (pA[Loop-1]-tmp_pos[Loop-1]) *
static_cast<double>(period)/1000.0;

}
}

}

if ((controller_type&CRTL_MASK_CMD_TYPE)==CRTL_MASK_CMD_TORQUE) {
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

pT[Loop-1] = newTorque[Loop-1];
oldTorque[Loop-1]= newTorque[Loop-1];
newTorque[Loop-1]=0.0;

}
} else if ((controller_type&CRTL_MASK_CMD_TYPE)==CRTL_MASK_CMD_VELOCITY) {

//fprintf(stdout,"Velocity control commands \n");
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

pV[Loop-1] = vel[Loop-1][count];
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pT[Loop-1] = 0.0;
}

}
for (Loop = 1; Loop <= NUM_JOINTS; Loop++) {

last_c_error[Loop-1]=c_error[Loop-1];
c_error[Loop-1]=0.0;
last_vel[Loop-1]=pV[Loop-1];
last_pos[Loop-1]=pA[Loop-1];

}
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Appendix E

Tables with results of manipulator on

platform control experiments (angle

WMISE)

The results of angle tracking weighted mean squared error are presented in tables: E.1 to

E.14.
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controller S1 S2 E1 E2 W1 W2
PD 2.20e-5 2.76e-4 1.58e-4 2.14e-5 3.21e-5 1.32e-5
sat_sl 2.21e-5 2.76e-4 1.59e-4 1.85e-5 3.18e-5 1.32e-5
slid 2.20e-5 2.76e-4 4.27e-4 6.13e-6 3.21e-5 1.35e-5
PID 2.16e-5 2.74e-4 1.58e-4 2.15e-5 3.24e-5 1.37e-5
grv_frc_PD 3.81e-6 6.02e-6 1.08e-5 1.67e-6 3.70e-6 1.38e-6
grv_frc_PD_s_rp 3.70e-6 5.84e-6 1.05e-5 1.54e-6 3.38e-6 1.22e-6
grv_frc_PD_s_acc 3.65e-6 5.73e-6 1.02e-5 1.30e-6 3.37e-6 1.12e-6
grv_frc_PD_adap 1.31e-6 1.03e-6 2.59e-6 1.48e-6 3.44e-6 1.28e-6
grv_frc_sat_sl 3.78e-6 5.82e-6 1.06e-5 1.31e-6 3.44e-6 1.21e-6
grv_frc_sat_sl_s_rp 3.71e-6 5.92e-6 1.09e-5 1.28e-6 3.37e-6 1.14e-6
grv_frc_sat_sl_s_acc 3.68e-6 5.54e-6 1.03e-5 1.23e-6 3.42e-6 1.16e-6
grv_frc_sat_sl_adap 1.17e-6 6.64e-7 3.27e-6 1.32e-6 3.45e-6 1.28e-6
grv_frc_slid 3.89e-6 6.03e-6 2.78e-5 1.52e-6 3.49e-6 1.27e-6
grv_frc_slid_s_rp 3.83e-6 5.83e-6 2.86e-5 1.68e-6 3.64e-6 1.18e-6
grv_frc_slid_s_acc 3.83e-6 6.22e-6 2.88e-5 1.87e-6 3.66e-6 1.30e-6
grv_frc_slid_adap 1.52e-6 1.15e-6 6.38e-6 1.69e-6 3.42e-6 1.20e-6
lin_FULL 2.89e-6 7.89e-7 2.17e-6 5.89e-6 7.83e-6 6.76e-7
lin_noCC 2.84e-6 7.74e-7 2.48e-6 5.28e-6 7.97e-6 7.01e-7
lin_FULL_s_rp 2.66e-6 7.84e-7 1.91e-6 5.27e-6 7.41e-6 7.77e-7
lin_noCC_s_rp 3.32e-6 8.08e-7 2.55e-6 5.44e-6 7.79e-6 8.33e-7
lin_FULL_s_acc 2.84e-6 9.43e-7 2.30e-6 5.73e-6 7.79e-6 8.09e-7
lin_noCC_s_acc 3.46e-6 9.06e-7 2.74e-6 5.68e-6 7.49e-6 7.41e-7
W-B_FULL 1.54e-6 2.61e-6 2.70e-6 2.42e-6 3.26e-6 9.46e-7
W-B_noCC 1.91e-6 2.70e-6 3.90e-6 1.75e-6 3.46e-6 1.04e-6
W-B_FULL_s_rp 1.63e-6 2.64e-6 2.87e-6 1.97e-6 3.39e-6 1.16e-6
W-B_noCC_s_rp 2.02e-6 2.30e-6 4.10e-6 2.54e-6 3.43e-6 1.05e-6
W-B_FULL_s_acc 1.74e-6 2.67e-6 3.31e-6 2.17e-6 3.28e-6 1.00e-6
W-B_noCC_s_acc 1.85e-6 2.60e-6 4.08e-6 2.02e-6 3.38e-6 8.96e-7
W-B_FULL_adap 9.39e-7 6.91e-7 2.02e-6 1.84e-6 3.38e-6 1.09e-6
W-B_noCC_adap 9.78e-7 9.57e-7 2.27e-6 2.50e-6 3.43e-6 9.40e-7
S-L_FULL 1.64e-6 2.46e-6 7.26e-6 4.17e-6 3.36e-6 9.98e-7
S-L_noCC 2.14e-6 2.31e-6 1.03e-5 4.21e-6 3.71e-6 1.07e-6
S-L_FULL_s_rp 1.78e-6 2.89e-6 7.71e-6 4.85e-6 3.79e-6 9.77e-7
S-L_noCC_s_rp 1.83e-6 2.48e-6 1.03e-5 4.27e-6 3.59e-6 9.51e-7
S-L_FULL_s_acc 1.80e-6 2.47e-6 9.34e-6 4.14e-6 3.54e-6 1.08e-6
S-L_noCC_s_acc 1.91e-6 2.28e-6 1.20e-5 4.10e-6 3.58e-6 9.91e-7
S-L_FULL_adap 1.03e-6 1.22e-6 5.22e-6 4.02e-6 3.36e-6 9.14e-7
S-L_noCC_adap 1.35e-6 1.14e-6 6.74e-6 4.62e-6 3.72e-6 1.14e-6
PA10_vel 1.12e-2 4.51e-5 4.79e-5 3.38e-5 1.59e-4 3.37e-5

Table E.1: Comparison of angle WMISE results for different controllers, platform trajec-
tory: zero, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.06e-5 1.57e-4 3.60e-5 1.49e-5 2.20e-5 1.12e-5
sat_sl 2.03e-5 1.57e-4 3.49e-5 1.42e-5 2.23e-5 1.16e-5
slid 2.04e-5 1.56e-4 9.71e-5 5.11e-6 2.21e-5 1.14e-5
PID 2.07e-5 1.57e-4 3.58e-5 1.50e-5 2.24e-5 1.14e-5
grv_frc_PD 2.68e-6 2.57e-6 3.91e-6 9.32e-7 1.77e-6 8.16e-7
grv_frc_PD_s_rp 2.80e-6 2.55e-6 4.15e-6 1.02e-6 1.88e-6 8.86e-7
grv_frc_PD_s_acc 2.78e-6 2.59e-6 4.04e-6 9.93e-7 1.76e-6 8.09e-7
grv_frc_PD_adap 1.15e-6 1.25e-6 2.90e-6 1.10e-6 1.87e-6 9.45e-7
grv_frc_sat_sl 2.75e-6 2.65e-6 3.99e-6 9.55e-7 1.69e-6 8.05e-7
grv_frc_sat_sl_s_rp 2.81e-6 2.69e-6 4.11e-6 9.62e-7 1.81e-6 8.99e-7
grv_frc_sat_sl_s_acc 2.78e-6 2.52e-6 4.09e-6 9.37e-7 1.75e-6 8.26e-7
grv_frc_sat_sl_adap 9.10e-7 7.09e-7 3.89e-6 1.02e-6 1.85e-6 9.54e-7
grv_frc_slid 2.84e-6 2.72e-6 1.07e-5 1.15e-6 1.96e-6 9.55e-7
grv_frc_slid_s_rp 3.03e-6 2.72e-6 1.09e-5 1.27e-6 1.87e-6 8.73e-7
grv_frc_slid_s_acc 2.85e-6 2.52e-6 1.06e-5 1.18e-6 1.86e-6 8.90e-7
grv_frc_slid_adap 1.40e-6 1.49e-6 7.18e-6 1.19e-6 1.80e-6 8.90e-7
lin_FULL 4.15e-6 1.20e-6 4.56e-6 4.22e-6 4.61e-6 5.74e-7
lin_noCC 3.79e-6 1.12e-6 4.57e-6 3.74e-6 4.37e-6 6.26e-7
lin_FULL_s_rp 3.78e-6 1.13e-6 4.33e-6 3.87e-6 4.30e-6 6.65e-7
lin_noCC_s_rp 4.07e-6 1.14e-6 4.76e-6 3.78e-6 4.37e-6 6.32e-7
lin_FULL_s_acc 3.90e-6 1.35e-6 4.75e-6 4.29e-6 4.50e-6 6.86e-7
lin_noCC_s_acc 4.11e-6 1.28e-6 4.92e-6 4.21e-6 4.39e-6 6.73e-7
W-B_FULL 1.66e-6 2.65e-6 3.62e-6 1.44e-6 1.80e-6 7.52e-7
W-B_noCC 1.83e-6 2.60e-6 4.44e-6 1.55e-6 1.91e-6 8.76e-7
W-B_FULL_s_rp 1.70e-6 2.38e-6 3.78e-6 1.83e-6 1.85e-6 1.02e-6
W-B_noCC_s_rp 1.88e-6 2.18e-6 4.62e-6 1.81e-6 1.87e-6 8.33e-7
W-B_FULL_s_acc 1.88e-6 2.66e-6 3.73e-6 1.51e-6 1.88e-6 9.16e-7
W-B_noCC_s_acc 1.87e-6 2.53e-6 4.65e-6 1.68e-6 2.01e-6 8.50e-7
W-B_FULL_adap 1.12e-6 1.25e-6 3.20e-6 1.69e-6 1.89e-6 8.41e-7
W-B_noCC_adap 9.28e-7 1.23e-6 2.90e-6 1.77e-6 1.91e-6 7.85e-7
S-L_FULL 2.04e-6 2.70e-6 1.00e-5 2.98e-6 1.94e-6 8.81e-7
S-L_noCC 2.03e-6 2.39e-6 1.16e-5 2.89e-6 1.87e-6 8.30e-7
S-L_FULL_s_rp 1.84e-6 2.64e-6 9.94e-6 3.43e-6 1.94e-6 8.57e-7
S-L_noCC_s_rp 1.73e-6 2.28e-6 1.12e-5 3.08e-6 1.94e-6 7.53e-7
S-L_FULL_s_acc 1.80e-6 2.54e-6 9.15e-6 2.94e-6 1.90e-6 8.69e-7
S-L_noCC_s_acc 1.93e-6 2.32e-6 1.15e-5 2.85e-6 1.94e-6 7.68e-7
S-L_FULL_adap 1.14e-6 1.40e-6 7.93e-6 2.97e-6 1.93e-6 7.02e-7
S-L_noCC_adap 1.35e-6 1.53e-6 7.61e-6 3.41e-6 1.90e-6 8.24e-7
PA10_vel 1.15e-2 3.57e-5 2.36e-5 1.77e-5 3.77e-5 1.75e-5

Table E.2: Comparison of angle WMISE results for different controllers, platform trajec-
tory: zero, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 3.63e-5 3.02e-4 1.74e-4 2.02e-5 2.98e-5 1.40e-5
sat_sl 3.52e-5 3.02e-4 1.70e-4 1.95e-5 3.00e-5 1.34e-5
slid 3.50e-5 3.01e-4 4.61e-4 7.85e-6 2.98e-5 1.38e-5
PID 3.51e-5 3.01e-4 1.74e-4 2.08e-5 2.95e-5 1.35e-5
grv_frc_PD 5.87e-6 2.54e-5 2.17e-5 1.27e-6 4.01e-6 1.06e-6
grv_frc_PD_s_rp 5.56e-6 1.46e-5 1.46e-5 1.41e-6 3.96e-6 1.01e-6
grv_frc_PD_s_acc 3.57e-6 8.89e-6 1.16e-5 1.23e-6 4.16e-6 1.06e-6
grv_frc_PD_adap 1.99e-6 1.41e-6 3.12e-6 1.58e-6 4.59e-6 1.38e-6
grv_frc_sat_sl 6.43e-6 2.63e-5 2.22e-5 1.14e-6 4.30e-6 1.24e-6
grv_frc_sat_sl_s_rp 5.40e-6 1.46e-5 1.42e-5 1.01e-6 3.95e-6 1.25e-6
grv_frc_sat_sl_s_acc 3.60e-6 9.76e-6 1.15e-5 1.11e-6 3.80e-6 1.10e-6
grv_frc_sat_sl_adap 1.45e-6 7.35e-7 3.36e-6 1.09e-6 3.60e-6 1.16e-6
grv_frc_slid 6.12e-6 2.58e-5 5.89e-5 1.85e-6 4.15e-6 1.12e-6
grv_frc_slid_s_rp 5.38e-6 1.46e-5 3.86e-5 1.75e-6 4.12e-6 1.08e-6
grv_frc_slid_s_acc 3.81e-6 9.68e-6 3.09e-5 1.53e-6 4.28e-6 1.14e-6
grv_frc_slid_adap 1.97e-6 1.28e-6 6.96e-6 1.56e-6 4.07e-6 1.12e-6
lin_FULL 5.62e-6 2.52e-6 2.83e-6 4.39e-6 8.23e-6 6.54e-7
lin_noCC 7.74e-6 2.70e-6 3.44e-6 4.64e-6 9.78e-6 8.58e-7
lin_FULL_s_rp 3.19e-6 1.57e-6 2.29e-6 4.37e-6 9.30e-6 6.53e-7
lin_noCC_s_rp 4.64e-6 1.57e-6 2.88e-6 4.57e-6 9.92e-6 6.94e-7
lin_FULL_s_acc 2.55e-6 1.04e-6 2.16e-6 4.65e-6 9.19e-6 6.99e-7
lin_noCC_s_acc 3.28e-6 9.40e-7 2.55e-6 4.62e-6 9.46e-6 6.65e-7
W-B_FULL 3.58e-6 2.10e-5 1.72e-5 1.40e-6 3.86e-6 9.23e-7
W-B_noCC 4.52e-6 1.99e-5 1.72e-5 1.79e-6 3.89e-6 7.21e-7
W-B_FULL_s_rp 1.89e-6 9.84e-6 8.14e-6 1.72e-6 4.18e-6 9.61e-7
W-B_noCC_s_rp 2.83e-6 9.52e-6 9.09e-6 1.90e-6 4.12e-6 8.92e-7
W-B_FULL_s_acc 1.27e-6 5.63e-6 5.25e-6 1.35e-6 3.98e-6 9.65e-7
W-B_noCC_s_acc 1.87e-6 4.71e-6 5.68e-6 1.68e-6 3.98e-6 9.16e-7
W-B_FULL_adap 1.19e-6 9.71e-7 2.38e-6 1.60e-6 4.16e-6 8.84e-7
W-B_noCC_adap 1.49e-6 1.11e-6 2.51e-6 1.93e-6 4.02e-6 8.54e-7
S-L_FULL 3.43e-6 1.99e-5 4.17e-5 3.15e-6 4.14e-6 8.99e-7
S-L_noCC 4.49e-6 1.90e-5 4.19e-5 4.02e-6 4.23e-6 8.08e-7
S-L_FULL_s_rp 2.08e-6 9.41e-6 1.91e-5 3.39e-6 4.30e-6 9.09e-7
S-L_noCC_s_rp 2.74e-6 8.90e-6 2.18e-5 3.81e-6 4.33e-6 1.01e-6
S-L_FULL_s_acc 1.29e-6 5.47e-6 1.21e-5 3.02e-6 4.21e-6 8.41e-7
S-L_noCC_s_acc 1.86e-6 4.87e-6 1.39e-5 4.46e-6 4.37e-6 8.95e-7
S-L_FULL_adap 1.54e-6 1.59e-6 6.68e-6 3.51e-6 4.22e-6 8.52e-7
S-L_noCC_adap 1.99e-6 1.54e-6 7.25e-6 4.72e-6 4.68e-6 1.15e-6
PA10_vel 1.11e-2 4.27e-5 5.42e-5 4.11e-5 1.28e-4 3.21e-5

Table E.3: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin_r2p0, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.41e-5 1.39e-4 7.45e-5 1.53e-5 2.10e-5 1.22e-5
sat_sl 2.35e-5 1.40e-4 6.88e-5 1.46e-5 2.13e-5 1.14e-5
slid 2.31e-5 1.38e-4 1.99e-4 5.86e-6 2.10e-5 1.15e-5
PID 2.34e-5 1.38e-4 7.46e-5 1.48e-5 2.09e-5 1.14e-5
grv_frc_PD 2.82e-6 1.79e-5 1.70e-5 9.94e-7 1.96e-6 7.80e-7
grv_frc_PD_s_rp 2.12e-6 8.05e-6 6.78e-6 1.09e-6 1.88e-6 7.75e-7
grv_frc_PD_s_acc 2.31e-6 5.35e-6 4.01e-6 9.44e-7 1.94e-6 8.04e-7
grv_frc_PD_adap 6.13e-7 1.27e-6 2.54e-6 1.02e-6 2.10e-6 8.22e-7
grv_frc_sat_sl 2.77e-6 1.79e-5 1.64e-5 9.04e-7 1.90e-6 8.23e-7
grv_frc_sat_sl_s_rp 1.95e-6 7.95e-6 6.34e-6 8.49e-7 1.78e-6 9.09e-7
grv_frc_sat_sl_s_acc 2.44e-6 5.37e-6 4.01e-6 9.21e-7 1.81e-6 8.02e-7
grv_frc_sat_sl_adap 5.62e-7 6.89e-7 3.16e-6 8.45e-7 1.88e-6 8.45e-7
grv_frc_slid 2.59e-6 1.79e-5 4.36e-5 1.29e-6 2.03e-6 8.09e-7
grv_frc_slid_s_rp 2.07e-6 8.14e-6 1.67e-5 1.28e-6 1.94e-6 7.91e-7
grv_frc_slid_s_acc 2.30e-6 5.34e-6 1.03e-5 1.19e-6 2.04e-6 7.82e-7
grv_frc_slid_adap 7.45e-7 1.33e-6 6.20e-6 1.29e-6 2.06e-6 8.27e-7
lin_FULL 4.99e-6 2.89e-6 5.60e-6 3.29e-6 4.25e-6 5.90e-7
lin_noCC 6.53e-6 2.64e-6 5.46e-6 3.20e-6 4.97e-6 5.29e-7
lin_FULL_s_rp 2.65e-6 1.88e-6 3.90e-6 3.26e-6 4.66e-6 5.71e-7
lin_noCC_s_rp 2.98e-6 1.77e-6 4.29e-6 3.21e-6 5.00e-6 5.55e-7
lin_FULL_s_acc 3.27e-6 1.65e-6 4.35e-6 3.04e-6 4.82e-6 5.61e-7
lin_noCC_s_acc 3.91e-6 1.56e-6 4.80e-6 3.11e-6 4.65e-6 5.74e-7
W-B_FULL 2.51e-6 2.06e-5 2.19e-5 1.40e-6 1.87e-6 7.74e-7
W-B_noCC 2.90e-6 1.69e-5 1.86e-5 1.30e-6 2.00e-6 6.64e-7
W-B_FULL_s_rp 1.33e-6 8.89e-6 7.20e-6 1.34e-6 1.98e-6 6.82e-7
W-B_noCC_s_rp 1.51e-6 7.70e-6 7.38e-6 1.42e-6 1.96e-6 7.36e-7
W-B_FULL_s_acc 1.59e-6 6.08e-6 4.79e-6 1.50e-6 2.01e-6 8.70e-7
W-B_noCC_s_acc 1.78e-6 4.43e-6 4.62e-6 1.28e-6 1.98e-6 8.19e-7
W-B_FULL_adap 4.87e-7 1.16e-6 3.05e-6 1.45e-6 2.07e-6 7.32e-7
W-B_noCC_adap 5.25e-7 1.25e-6 2.88e-6 1.42e-6 2.05e-6 7.27e-7
S-L_FULL 2.46e-6 1.92e-5 4.96e-5 2.40e-6 2.07e-6 7.14e-7
S-L_noCC 2.99e-6 1.61e-5 4.37e-5 2.62e-6 2.16e-6 6.56e-7
S-L_FULL_s_rp 1.40e-6 8.83e-6 1.70e-5 2.34e-6 2.10e-6 8.17e-7
S-L_noCC_s_rp 1.53e-6 7.74e-6 1.71e-5 2.91e-6 2.18e-6 8.19e-7
S-L_FULL_s_acc 1.61e-6 5.93e-6 1.18e-5 2.57e-6 2.07e-6 7.72e-7
S-L_noCC_s_acc 1.95e-6 4.82e-6 1.16e-5 3.88e-6 2.26e-6 9.18e-7
S-L_FULL_adap 6.78e-7 1.30e-6 8.33e-6 2.67e-6 2.05e-6 7.54e-7
S-L_noCC_adap 7.06e-7 1.52e-6 6.92e-6 2.57e-6 2.20e-6 7.38e-7
PA10_vel 1.13e-2 3.05e-5 2.46e-5 1.72e-5 3.26e-5 1.63e-5

Table E.4: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin_r2p0, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 3.67e-5 3.02e-4 1.75e-4 2.06e-5 3.05e-5 1.33e-5
sat_sl 3.64e-5 3.01e-4 1.71e-4 1.85e-5 3.15e-5 1.35e-5
slid 3.45e-5 3.00e-4 4.63e-4 8.26e-6 3.13e-5 1.37e-5
PID 3.48e-5 2.99e-4 1.75e-4 1.89e-5 3.11e-5 1.36e-5
grv_frc_PD 1.40e-5 1.76e-5 2.08e-5 1.28e-6 3.52e-6 1.19e-6
grv_frc_PD_s_rp 8.51e-6 1.30e-5 1.62e-5 1.64e-6 3.49e-6 1.15e-6
grv_frc_PD_s_acc 5.00e-6 8.40e-6 1.34e-5 1.39e-6 3.36e-6 1.21e-6
grv_frc_PD_adap 2.28e-6 1.36e-6 2.89e-6 1.52e-6 3.37e-6 1.20e-6
grv_frc_sat_sl 1.37e-5 1.75e-5 2.08e-5 1.14e-6 3.57e-6 1.19e-6
grv_frc_sat_sl_s_rp 8.49e-6 1.35e-5 1.57e-5 1.20e-6 3.42e-6 1.31e-6
grv_frc_sat_sl_s_acc 5.29e-6 8.82e-6 1.21e-5 1.21e-6 3.50e-6 1.26e-6
grv_frc_sat_sl_adap 1.65e-6 7.22e-7 3.47e-6 1.31e-6 3.34e-6 1.19e-6
grv_frc_slid 1.41e-5 1.78e-5 5.55e-5 1.89e-6 3.81e-6 1.20e-6
grv_frc_slid_s_rp 8.51e-6 1.31e-5 4.23e-5 1.84e-6 3.55e-6 1.23e-6
grv_frc_slid_s_acc 5.07e-6 8.59e-6 3.44e-5 1.57e-6 3.63e-6 1.28e-6
grv_frc_slid_adap 2.44e-6 1.38e-6 7.15e-6 2.11e-6 3.89e-6 1.34e-6
lin_FULL 1.01e-5 1.73e-6 2.91e-6 5.59e-6 7.80e-6 6.90e-7
lin_noCC 1.38e-5 1.80e-6 3.68e-6 5.68e-6 8.21e-6 7.58e-7
lin_FULL_s_rp 6.11e-6 1.21e-6 2.48e-6 5.78e-6 7.91e-6 6.83e-7
lin_noCC_s_rp 8.02e-6 1.29e-6 3.18e-6 5.78e-6 8.23e-6 7.60e-7
lin_FULL_s_acc 3.68e-6 1.03e-6 2.51e-6 5.92e-6 8.47e-6 7.50e-7
lin_noCC_s_acc 4.50e-6 1.04e-6 3.06e-6 5.82e-6 8.49e-6 7.57e-7
W-B_FULL 7.01e-6 1.13e-5 1.11e-5 1.69e-6 3.67e-6 7.96e-7
W-B_noCC 8.27e-6 1.21e-5 1.34e-5 1.42e-6 3.88e-6 8.48e-7
W-B_FULL_s_rp 3.65e-6 6.76e-6 6.53e-6 1.80e-6 3.76e-6 7.70e-7
W-B_noCC_s_rp 4.38e-6 6.82e-6 8.09e-6 1.52e-6 3.78e-6 8.23e-7
W-B_FULL_s_acc 1.70e-6 3.93e-6 4.35e-6 2.31e-6 4.11e-6 9.88e-7
W-B_noCC_s_acc 1.81e-6 4.16e-6 5.46e-6 1.43e-6 3.63e-6 7.98e-7
W-B_FULL_adap 1.24e-6 8.93e-7 1.93e-6 1.86e-6 3.79e-6 8.04e-7
W-B_noCC_adap 1.49e-6 9.15e-7 2.11e-6 1.66e-6 3.95e-6 7.91e-7
S-L_FULL 7.29e-6 1.06e-5 2.64e-5 3.96e-6 4.26e-6 8.02e-7
S-L_noCC 7.96e-6 1.13e-5 3.23e-5 3.50e-6 3.99e-6 8.19e-7
S-L_FULL_s_rp 3.82e-6 6.17e-6 1.50e-5 3.15e-6 4.12e-6 7.61e-7
S-L_noCC_s_rp 4.64e-6 7.21e-6 2.15e-5 5.71e-6 4.37e-6 9.90e-7
S-L_FULL_s_acc 1.70e-6 3.67e-6 9.35e-6 3.77e-6 4.11e-6 8.03e-7
S-L_noCC_s_acc 1.97e-6 4.04e-6 1.45e-5 3.88e-6 4.10e-6 8.43e-7
S-L_FULL_adap 1.99e-6 1.36e-6 5.10e-6 3.47e-6 4.08e-6 8.71e-7
S-L_noCC_adap 2.30e-6 1.26e-6 6.21e-6 4.09e-6 3.97e-6 7.86e-7
PA10_vel 1.11e-2 4.33e-5 1.05e-4 3.28e-5 1.48e-4 3.41e-5

Table E.5: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin_r0p2, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.25e-5 1.78e-4 7.26e-5 1.49e-5 2.10e-5 1.15e-5
sat_sl 2.32e-5 1.81e-4 6.82e-5 1.43e-5 2.18e-5 1.17e-5
slid 2.25e-5 1.79e-4 1.92e-4 5.12e-6 2.12e-5 1.16e-5
PID 2.02e-5 1.73e-4 7.40e-5 1.48e-5 2.14e-5 1.17e-5
grv_frc_PD 1.50e-5 2.40e-5 1.63e-5 9.47e-7 1.93e-6 9.03e-7
grv_frc_PD_s_rp 7.43e-6 1.19e-5 5.40e-6 9.73e-7 1.89e-6 9.02e-7
grv_frc_PD_s_acc 5.00e-6 6.39e-6 5.43e-6 9.55e-7 1.99e-6 9.64e-7
grv_frc_PD_adap 2.08e-6 1.78e-6 2.17e-6 1.16e-6 2.13e-6 9.24e-7
grv_frc_sat_sl 1.51e-5 2.32e-5 1.69e-5 8.71e-7 2.01e-6 9.20e-7
grv_frc_sat_sl_s_rp 7.72e-6 1.22e-5 5.39e-6 8.84e-7 1.92e-6 9.90e-7
grv_frc_sat_sl_s_acc 5.13e-6 6.78e-6 5.07e-6 8.80e-7 2.07e-6 9.35e-7
grv_frc_sat_sl_adap 1.27e-6 9.53e-7 2.85e-6 9.18e-7 1.94e-6 8.45e-7
grv_frc_slid 1.52e-5 2.35e-5 4.30e-5 1.20e-6 1.99e-6 8.15e-7
grv_frc_slid_s_rp 7.32e-6 1.18e-5 1.32e-5 1.23e-6 1.97e-6 7.81e-7
grv_frc_slid_s_acc 4.94e-6 6.47e-6 1.35e-5 1.25e-6 2.03e-6 9.00e-7
grv_frc_slid_adap 2.18e-6 1.85e-6 4.35e-6 1.16e-6 1.92e-6 9.14e-7
lin_FULL 1.81e-5 2.83e-6 4.41e-6 3.57e-6 5.18e-6 5.90e-7
lin_noCC 2.22e-5 3.05e-6 4.58e-6 3.50e-6 5.06e-6 6.67e-7
lin_FULL_s_rp 1.08e-5 2.55e-6 3.67e-6 3.79e-6 5.41e-6 7.07e-7
lin_noCC_s_rp 1.13e-5 2.30e-6 3.74e-6 3.47e-6 5.20e-6 5.90e-7
lin_FULL_s_acc 5.86e-6 1.58e-6 3.91e-6 3.63e-6 5.54e-6 5.72e-7
lin_noCC_s_acc 7.06e-6 1.54e-6 4.25e-6 3.58e-6 5.57e-6 6.04e-7
W-B_FULL 1.03e-5 2.09e-5 1.31e-5 1.14e-6 2.09e-6 6.89e-7
W-B_noCC 1.10e-5 2.15e-5 1.73e-5 1.04e-6 2.21e-6 6.52e-7
W-B_FULL_s_rp 5.59e-6 1.19e-5 4.18e-6 1.33e-6 2.18e-6 7.03e-7
W-B_noCC_s_rp 5.94e-6 1.16e-5 6.06e-6 1.50e-6 2.42e-6 7.03e-7
W-B_FULL_s_acc 2.51e-6 5.55e-6 3.37e-6 1.01e-6 2.14e-6 6.77e-7
W-B_noCC_s_acc 2.76e-6 5.68e-6 5.47e-6 1.07e-6 2.33e-6 6.78e-7
W-B_FULL_adap 1.54e-6 1.47e-6 1.82e-6 1.09e-6 2.38e-6 6.73e-7
W-B_noCC_adap 1.60e-6 1.56e-6 1.75e-6 1.37e-6 2.56e-6 6.87e-7
S-L_FULL 1.00e-5 1.91e-5 3.26e-5 2.91e-6 2.52e-6 6.78e-7
S-L_noCC 1.14e-5 2.02e-5 4.03e-5 3.67e-6 2.67e-6 7.51e-7
S-L_FULL_s_rp 5.67e-6 1.12e-5 9.44e-6 2.97e-6 2.51e-6 6.60e-7
S-L_noCC_s_rp 5.79e-6 1.11e-5 1.22e-5 2.99e-6 2.59e-6 7.22e-7
S-L_FULL_s_acc 2.69e-6 5.49e-6 8.25e-6 2.89e-6 2.57e-6 7.11e-7
S-L_noCC_s_acc 2.98e-6 5.60e-6 1.28e-5 2.66e-6 2.78e-6 7.01e-7
S-L_FULL_adap 2.40e-6 2.11e-6 3.51e-6 2.62e-6 2.50e-6 7.75e-7
S-L_noCC_adap 2.58e-6 2.24e-6 3.68e-6 2.60e-6 2.56e-6 6.43e-7
PA10_vel 1.15e-2 3.27e-5 5.52e-5 1.70e-5 2.99e-5 1.67e-5

Table E.6: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin_r0p2, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 4.21e-5 3.19e-4 1.73e-4 2.14e-5 3.41e-5 1.59e-5
sat_sl 4.05e-5 3.20e-4 1.70e-4 1.99e-5 3.38e-5 1.52e-5
slid 3.99e-5 3.20e-4 4.65e-4 6.89e-6 3.15e-5 1.45e-5
PID 4.15e-5 3.20e-4 1.73e-4 2.24e-5 3.27e-5 1.49e-5
grv_frc_PD 1.34e-5 1.34e-5 2.05e-5 1.20e-6 3.71e-6 9.34e-7
grv_frc_PD_s_rp 6.87e-6 1.08e-5 1.41e-5 1.30e-6 3.95e-6 9.03e-7
grv_frc_PD_s_acc 4.58e-6 6.63e-6 1.10e-5 9.81e-7 3.94e-6 9.09e-7
grv_frc_PD_adap 1.76e-6 1.02e-6 2.29e-6 1.16e-6 3.95e-6 9.87e-7
grv_frc_sat_sl 1.36e-5 1.31e-5 2.05e-5 1.05e-6 4.27e-6 1.01e-6
grv_frc_sat_sl_s_rp 7.07e-6 1.11e-5 1.45e-5 1.08e-6 4.15e-6 9.54e-7
grv_frc_sat_sl_s_acc 4.40e-6 6.38e-6 1.12e-5 1.01e-6 4.05e-6 9.34e-7
grv_frc_sat_sl_adap 1.35e-6 8.05e-7 3.00e-6 1.21e-6 4.05e-6 1.03e-6
grv_frc_slid 1.34e-5 1.34e-5 5.39e-5 2.07e-6 4.00e-6 9.08e-7
grv_frc_slid_s_rp 7.05e-6 1.08e-5 3.88e-5 1.62e-6 3.93e-6 9.74e-7
grv_frc_slid_s_acc 4.69e-6 6.68e-6 2.91e-5 1.48e-6 3.99e-6 9.03e-7
grv_frc_slid_adap 1.90e-6 1.08e-6 5.45e-6 1.83e-6 3.99e-6 8.54e-7
lin_FULL 7.86e-6 1.55e-6 3.14e-6 4.60e-6 9.51e-6 4.96e-7
lin_noCC 1.02e-5 1.65e-6 3.90e-6 4.98e-6 1.00e-5 5.77e-7
lin_FULL_s_rp 4.74e-6 8.22e-7 2.12e-6 4.50e-6 9.48e-6 5.53e-7
lin_noCC_s_rp 6.41e-6 8.62e-7 2.72e-6 4.48e-6 9.40e-6 4.95e-7
lin_FULL_s_acc 2.87e-6 7.21e-7 1.86e-6 4.52e-6 9.21e-6 4.98e-7
lin_noCC_s_acc 3.90e-6 7.15e-7 2.53e-6 4.46e-6 9.08e-6 4.53e-7
W-B_FULL 6.16e-6 1.17e-5 1.24e-5 1.62e-6 3.95e-6 6.03e-7
W-B_noCC 7.81e-6 1.07e-5 1.47e-5 1.93e-6 3.99e-6 5.91e-7
W-B_FULL_s_rp 3.12e-6 3.99e-6 5.32e-6 1.45e-6 3.82e-6 6.97e-7
W-B_noCC_s_rp 3.79e-6 4.49e-6 7.24e-6 1.85e-6 3.89e-6 6.47e-7
W-B_FULL_s_acc 1.35e-6 2.46e-6 3.36e-6 1.42e-6 3.82e-6 6.07e-7
W-B_noCC_s_acc 1.89e-6 2.99e-6 5.19e-6 1.86e-6 3.87e-6 4.95e-7
W-B_FULL_adap 1.06e-6 7.71e-7 1.76e-6 1.69e-6 3.95e-6 6.61e-7
W-B_noCC_adap 1.19e-6 7.78e-7 1.81e-6 2.17e-6 3.67e-6 5.73e-7
S-L_FULL 6.23e-6 1.05e-5 2.96e-5 3.68e-6 3.93e-6 5.34e-7
S-L_noCC 7.29e-6 1.07e-5 3.53e-5 4.11e-6 3.84e-6 6.56e-7
S-L_FULL_s_rp 3.41e-6 3.75e-6 1.28e-5 3.40e-6 4.00e-6 6.04e-7
S-L_noCC_s_rp 4.12e-6 4.04e-6 1.83e-5 3.95e-6 4.05e-6 5.99e-7
S-L_FULL_s_acc 1.60e-6 2.32e-6 7.79e-6 3.36e-6 3.93e-6 6.65e-7
S-L_noCC_s_acc 1.98e-6 2.56e-6 1.24e-5 3.74e-6 3.92e-6 5.74e-7
S-L_FULL_adap 1.58e-6 9.00e-7 3.99e-6 3.63e-6 4.08e-6 6.12e-7
S-L_noCC_adap 1.89e-6 1.04e-6 4.75e-6 4.57e-6 4.19e-6 7.23e-7
PA10_vel 1.15e-2 4.36e-5 9.63e-5 3.27e-5 1.12e-4 2.91e-5

Table E.7: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin_r1p2pi2, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.14e-5 2.11e-4 6.18e-5 1.64e-5 2.30e-5 1.38e-5
sat_sl 2.02e-5 2.08e-4 6.24e-5 1.56e-5 2.24e-5 1.32e-5
slid 2.01e-5 2.08e-4 1.73e-4 5.49e-6 2.05e-5 1.26e-5
PID 2.06e-5 2.12e-4 6.06e-5 1.59e-5 2.11e-5 1.28e-5
grv_frc_PD 8.75e-6 1.89e-5 2.24e-5 8.33e-7 2.34e-6 6.47e-7
grv_frc_PD_s_rp 5.64e-6 9.84e-6 4.05e-6 8.32e-7 2.40e-6 6.14e-7
grv_frc_PD_s_acc 3.67e-6 5.20e-6 5.35e-6 7.71e-7 2.45e-6 5.84e-7
grv_frc_PD_adap 1.33e-6 1.44e-6 1.87e-6 8.83e-7 2.44e-6 6.39e-7
grv_frc_sat_sl 9.13e-6 1.85e-5 2.36e-5 8.08e-7 2.51e-6 6.45e-7
grv_frc_sat_sl_s_rp 5.74e-6 1.01e-5 3.96e-6 7.67e-7 2.41e-6 5.50e-7
grv_frc_sat_sl_s_acc 3.98e-6 5.41e-6 5.31e-6 7.98e-7 2.46e-6 7.02e-7
grv_frc_sat_sl_adap 9.63e-7 9.15e-7 2.55e-6 8.08e-7 2.46e-6 6.17e-7
grv_frc_slid 8.95e-6 1.87e-5 6.16e-5 1.19e-6 2.61e-6 6.30e-7
grv_frc_slid_s_rp 5.75e-6 9.98e-6 1.07e-5 1.23e-6 2.48e-6 6.49e-7
grv_frc_slid_s_acc 3.91e-6 5.36e-6 1.44e-5 1.20e-6 2.45e-6 6.35e-7
grv_frc_slid_adap 1.44e-6 1.67e-6 4.19e-6 1.11e-6 2.35e-6 5.56e-7
lin_FULL 1.03e-5 1.80e-6 6.96e-6 3.11e-6 6.45e-6 4.05e-7
lin_noCC 1.30e-5 1.87e-6 7.94e-6 3.10e-6 6.65e-6 3.66e-7
lin_FULL_s_rp 8.14e-6 1.77e-6 3.06e-6 2.98e-6 5.95e-6 4.28e-7
lin_noCC_s_rp 9.14e-6 1.81e-6 3.49e-6 2.90e-6 6.00e-6 3.99e-7
lin_FULL_s_acc 4.30e-6 1.09e-6 3.43e-6 3.06e-6 5.94e-6 3.83e-7
lin_noCC_s_acc 5.20e-6 1.08e-6 3.97e-6 2.96e-6 6.12e-6 3.55e-7
W-B_FULL 5.76e-6 1.23e-5 2.10e-5 1.21e-6 2.44e-6 4.75e-7
W-B_noCC 6.58e-6 1.39e-5 2.58e-5 1.21e-6 2.35e-6 4.64e-7
W-B_FULL_s_rp 4.84e-6 8.62e-6 3.07e-6 1.47e-6 2.25e-6 5.92e-7
W-B_noCC_s_rp 5.08e-6 8.99e-6 4.40e-6 1.40e-6 2.34e-6 5.28e-7
W-B_FULL_s_acc 2.39e-6 3.59e-6 3.86e-6 1.40e-6 2.35e-6 5.18e-7
W-B_noCC_s_acc 2.64e-6 4.91e-6 5.57e-6 1.22e-6 2.42e-6 4.70e-7
W-B_FULL_adap 9.65e-7 1.37e-6 2.15e-6 1.61e-6 2.34e-6 5.04e-7
W-B_noCC_adap 1.07e-6 1.52e-6 1.98e-6 1.39e-6 2.43e-6 4.62e-7
S-L_FULL 6.27e-6 1.14e-5 5.20e-5 2.84e-6 2.49e-6 4.41e-7
S-L_noCC 6.41e-6 1.25e-5 6.71e-5 2.74e-6 2.58e-6 5.69e-7
S-L_FULL_s_rp 4.99e-6 8.33e-6 6.51e-6 2.45e-6 2.45e-6 4.68e-7
S-L_noCC_s_rp 5.51e-6 8.82e-6 9.79e-6 3.07e-6 2.52e-6 4.52e-7
S-L_FULL_s_acc 2.40e-6 3.34e-6 9.87e-6 2.78e-6 2.38e-6 5.27e-7
S-L_noCC_s_acc 3.00e-6 3.92e-6 1.50e-5 3.16e-6 2.63e-6 5.25e-7
S-L_FULL_adap 1.65e-6 2.07e-6 4.77e-6 2.78e-6 2.52e-6 4.94e-7
S-L_noCC_adap 1.94e-6 2.29e-6 4.25e-6 2.80e-6 2.51e-6 5.08e-7
PA10_vel 1.14e-2 3.16e-5 4.91e-5 1.70e-5 3.19e-5 1.56e-5

Table E.8: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin_r1p2pi2, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 2.46e-5 2.97e-4 1.80e-4 1.98e-5 3.09e-5 1.44e-5
sat_sl 2.46e-5 2.96e-4 1.75e-4 1.92e-5 3.15e-5 1.43e-5
slid 2.43e-5 2.96e-4 4.76e-4 8.22e-6 3.14e-5 1.46e-5
PID 2.44e-5 2.96e-4 1.79e-4 2.05e-5 3.07e-5 1.45e-5
grv_frc_PD 5.41e-6 1.92e-5 2.04e-5 1.18e-6 3.62e-6 9.10e-7
grv_frc_PD_s_rp 4.85e-6 1.23e-5 1.60e-5 1.14e-6 3.66e-6 9.91e-7
grv_frc_PD_s_acc 4.00e-6 9.24e-6 1.34e-5 1.67e-6 4.01e-6 1.11e-6
grv_frc_PD_adap 1.92e-6 1.23e-6 2.64e-6 1.54e-6 3.47e-6 1.04e-6
grv_frc_sat_sl 5.64e-6 1.91e-5 1.84e-5 1.08e-6 4.06e-6 9.52e-7
grv_frc_sat_sl_s_rp 4.90e-6 1.25e-5 1.54e-5 1.14e-6 3.84e-6 1.01e-6
grv_frc_sat_sl_s_acc 3.81e-6 8.95e-6 1.24e-5 1.07e-6 3.47e-6 9.26e-7
grv_frc_sat_sl_adap 1.60e-6 7.47e-7 2.96e-6 1.17e-6 3.37e-6 9.59e-7
grv_frc_slid 5.59e-6 1.97e-5 5.22e-5 1.37e-6 3.69e-6 9.41e-7
grv_frc_slid_s_rp 4.95e-6 1.25e-5 4.02e-5 1.33e-6 3.95e-6 1.03e-6
grv_frc_slid_s_acc 3.74e-6 9.03e-6 3.30e-5 1.76e-6 3.53e-6 8.83e-7
grv_frc_slid_adap 2.21e-6 1.29e-6 6.14e-6 1.95e-6 3.69e-6 8.77e-7
lin_FULL 7.16e-6 2.10e-6 2.00e-6 4.87e-6 8.84e-6 6.19e-7
lin_noCC 6.59e-6 2.09e-6 2.41e-6 4.69e-6 8.27e-6 6.11e-7
lin_FULL_s_rp 6.39e-6 1.39e-6 2.28e-6 4.85e-6 8.15e-6 5.95e-7
lin_noCC_s_rp 6.31e-6 1.40e-6 2.79e-6 4.82e-6 8.11e-6 5.14e-7
lin_FULL_s_acc 4.20e-6 1.06e-6 1.95e-6 4.96e-6 7.67e-6 5.43e-7
lin_noCC_s_acc 4.62e-6 1.14e-6 2.71e-6 4.88e-6 8.20e-6 5.40e-7
W-B_FULL 3.29e-6 1.53e-5 1.18e-5 1.67e-6 3.40e-6 6.77e-7
W-B_noCC 3.07e-6 1.53e-5 1.29e-5 1.74e-6 3.41e-6 6.84e-7
W-B_FULL_s_rp 2.79e-6 8.33e-6 8.08e-6 2.01e-6 3.29e-6 6.16e-7
W-B_noCC_s_rp 2.99e-6 8.27e-6 8.87e-6 1.49e-6 3.50e-6 6.94e-7
W-B_FULL_s_acc 1.97e-6 5.37e-6 5.37e-6 1.63e-6 3.41e-6 7.41e-7
W-B_noCC_s_acc 2.36e-6 5.54e-6 6.86e-6 2.48e-6 4.12e-6 9.67e-7
W-B_FULL_adap 1.14e-6 9.84e-7 1.94e-6 2.32e-6 3.26e-6 7.17e-7
W-B_noCC_adap 1.59e-6 9.57e-7 2.18e-6 1.68e-6 3.28e-6 8.38e-7
S-L_FULL 3.54e-6 1.31e-5 2.45e-5 4.20e-6 3.29e-6 7.41e-7
S-L_noCC 2.87e-6 1.47e-5 3.00e-5 3.67e-6 3.33e-6 6.23e-7
S-L_FULL_s_rp 3.07e-6 8.09e-6 1.77e-5 3.84e-6 3.59e-6 6.68e-7
S-L_noCC_s_rp 3.07e-6 7.65e-6 2.01e-5 4.26e-6 3.90e-6 8.18e-7
S-L_FULL_s_acc 2.11e-6 5.13e-6 1.21e-5 3.27e-6 3.79e-6 6.39e-7
S-L_noCC_s_acc 2.07e-6 4.92e-6 1.48e-5 4.02e-6 3.76e-6 6.27e-7
S-L_FULL_adap 1.32e-6 1.14e-6 3.71e-6 4.01e-6 2.97e-6 5.81e-7
S-L_noCC_adap 1.61e-6 1.09e-6 4.98e-6 3.41e-6 3.14e-6 6.25e-7
PA10_vel 1.13e-2 4.78e-5 6.29e-5 3.24e-5 1.26e-4 2.72e-5

Table E.9: Comparison of angle WMISE results for different controllers, platform trajec-
tory: sin2_s20, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.22e-5 1.53e-4 5.13e-5 1.55e-5 2.17e-5 1.24e-5
sat_sl 2.16e-5 1.53e-4 4.91e-5 1.48e-5 2.20e-5 1.21e-5
slid 2.16e-5 1.54e-4 1.38e-4 5.16e-6 2.17e-5 1.26e-5
PID 2.19e-5 1.55e-4 5.09e-5 1.57e-5 2.18e-5 1.29e-5
grv_frc_PD 4.88e-6 1.09e-5 1.46e-5 8.38e-7 1.71e-6 4.94e-7
grv_frc_PD_s_rp 3.71e-6 6.20e-6 8.11e-6 9.20e-7 1.75e-6 6.86e-7
grv_frc_PD_s_acc 2.98e-6 4.34e-6 6.01e-6 8.72e-7 1.81e-6 6.29e-7
grv_frc_PD_adap 1.18e-6 1.19e-6 2.96e-6 9.63e-7 1.80e-6 6.48e-7
grv_frc_sat_sl 5.26e-6 1.15e-5 1.35e-5 8.69e-7 2.01e-6 6.67e-7
grv_frc_sat_sl_s_rp 3.92e-6 6.42e-6 7.40e-6 7.96e-7 1.69e-6 6.12e-7
grv_frc_sat_sl_s_acc 3.20e-6 4.89e-6 5.49e-6 7.87e-7 1.60e-6 6.28e-7
grv_frc_sat_sl_adap 1.01e-6 7.61e-7 3.86e-6 8.56e-7 1.87e-6 5.75e-7
grv_frc_slid 5.11e-6 1.12e-5 3.66e-5 1.16e-6 1.73e-6 7.00e-7
grv_frc_slid_s_rp 3.87e-6 6.37e-6 1.97e-5 1.09e-6 1.79e-6 6.45e-7
grv_frc_slid_s_acc 3.19e-6 4.59e-6 1.46e-5 1.13e-6 1.81e-6 6.00e-7
grv_frc_slid_adap 1.32e-6 1.34e-6 7.14e-6 1.17e-6 2.07e-6 6.27e-7
lin_FULL 9.55e-6 2.24e-6 5.54e-6 3.23e-6 4.39e-6 4.42e-7
lin_noCC 9.80e-6 2.15e-6 5.79e-6 3.24e-6 4.43e-6 4.99e-7
lin_FULL_s_rp 7.50e-6 1.67e-6 4.67e-6 3.27e-6 4.40e-6 4.74e-7
lin_noCC_s_rp 7.73e-6 1.58e-6 4.91e-6 3.21e-6 4.43e-6 3.61e-7
lin_FULL_s_acc 5.74e-6 1.69e-6 4.98e-6 3.44e-6 4.41e-6 5.87e-7
lin_noCC_s_acc 5.50e-6 1.43e-6 5.01e-6 3.15e-6 4.31e-6 3.97e-7
W-B_FULL 3.78e-6 1.34e-5 1.58e-5 1.63e-6 1.70e-6 5.10e-7
W-B_noCC 3.64e-6 1.20e-5 1.55e-5 1.27e-6 1.72e-6 5.97e-7
W-B_FULL_s_rp 2.99e-6 7.25e-6 9.13e-6 1.49e-6 1.92e-6 5.80e-7
W-B_noCC_s_rp 3.09e-6 6.55e-6 8.99e-6 1.52e-6 1.80e-6 5.66e-7
W-B_FULL_s_acc 2.24e-6 5.02e-6 6.26e-6 1.39e-6 1.90e-6 6.06e-7
W-B_noCC_s_acc 2.19e-6 4.32e-6 6.50e-6 1.26e-6 1.85e-6 5.51e-7
W-B_FULL_adap 1.16e-6 1.24e-6 3.28e-6 1.63e-6 1.77e-6 5.61e-7
W-B_noCC_adap 1.20e-6 1.24e-6 3.20e-6 1.49e-6 1.53e-6 6.24e-7
S-L_FULL 3.60e-6 1.24e-5 3.62e-5 2.68e-6 1.61e-6 5.05e-7
S-L_noCC 3.74e-6 1.18e-5 3.59e-5 2.54e-6 1.85e-6 5.27e-7
S-L_FULL_s_rp 2.88e-6 6.90e-6 2.02e-5 2.90e-6 1.72e-6 5.81e-7
S-L_noCC_s_rp 2.99e-6 6.36e-6 1.99e-5 2.83e-6 1.74e-6 6.07e-7
S-L_FULL_s_acc 2.20e-6 4.79e-6 1.51e-5 2.97e-6 1.96e-6 5.63e-7
S-L_noCC_s_acc 2.20e-6 4.16e-6 1.55e-5 2.75e-6 1.96e-6 4.95e-7
S-L_FULL_adap 1.78e-6 1.40e-6 7.58e-6 3.58e-6 1.56e-6 5.25e-7
S-L_noCC_adap 1.72e-6 1.38e-6 7.25e-6 2.69e-6 1.71e-6 5.39e-7
PA10_vel 1.15e-2 3.02e-5 2.97e-5 1.68e-5 3.35e-5 1.57e-5

Table E.10: Comparison of angle WMISE results for different controllers, platform tra-
jectory: sin2_s20, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 2.76e-5 2.55e-4 1.62e-4 2.14e-5 2.89e-5 1.51e-5
sat_sl 2.81e-5 2.56e-4 1.61e-4 1.82e-5 2.92e-5 1.52e-5
slid 2.80e-5 2.55e-4 4.28e-4 7.91e-6 2.92e-5 1.49e-5
PID 2.74e-5 2.55e-4 1.61e-4 1.99e-5 2.95e-5 1.49e-5
grv_frc_PD 1.41e-5 1.12e-5 1.14e-5 1.68e-6 4.17e-6 8.60e-7
grv_frc_PD_s_rp 5.38e-6 8.24e-6 1.19e-5 1.29e-6 4.20e-6 1.00e-6
grv_frc_PD_s_acc 4.98e-6 6.62e-6 1.05e-5 1.48e-6 4.07e-6 1.01e-6
grv_frc_PD_adap 1.55e-6 1.03e-6 2.84e-6 1.62e-6 4.08e-6 9.48e-7
grv_frc_sat_sl 1.46e-5 1.13e-5 1.08e-5 1.43e-6 4.55e-6 1.08e-6
grv_frc_sat_sl_s_rp 5.35e-6 8.08e-6 1.17e-5 1.16e-6 4.34e-6 8.69e-7
grv_frc_sat_sl_s_acc 4.61e-6 6.99e-6 9.88e-6 1.18e-6 4.27e-6 8.79e-7
grv_frc_sat_sl_adap 1.06e-6 5.80e-7 3.13e-6 1.23e-6 4.14e-6 8.93e-7
grv_frc_slid 1.45e-5 1.13e-5 2.83e-5 1.38e-6 4.24e-6 8.09e-7
grv_frc_slid_s_rp 5.37e-6 8.08e-6 2.95e-5 2.02e-6 4.14e-6 8.87e-7
grv_frc_slid_s_acc 4.52e-6 6.70e-6 2.49e-5 1.47e-6 4.26e-6 8.85e-7
grv_frc_slid_adap 1.43e-6 1.03e-6 6.54e-6 1.57e-6 3.97e-6 8.18e-7
lin_FULL 9.43e-6 1.94e-6 1.89e-6 5.72e-6 1.03e-5 4.89e-7
lin_noCC 1.02e-5 1.96e-6 2.04e-6 5.70e-6 1.04e-5 4.94e-7
lin_FULL_s_rp 5.06e-6 1.17e-6 2.19e-6 5.56e-6 1.01e-5 4.99e-7
lin_noCC_s_rp 5.27e-6 1.19e-6 2.42e-6 5.58e-6 1.02e-5 4.89e-7
lin_FULL_s_acc 3.62e-6 1.11e-6 2.18e-6 5.85e-6 1.04e-5 5.99e-7
lin_noCC_s_acc 3.83e-6 1.08e-6 2.57e-6 5.60e-6 1.02e-5 4.79e-7
W-B_FULL 8.15e-6 1.23e-5 6.74e-6 1.86e-6 4.25e-6 6.12e-7
W-B_noCC 8.89e-6 1.15e-5 6.40e-6 2.10e-6 4.30e-6 6.43e-7
W-B_FULL_s_rp 3.67e-6 5.59e-6 4.59e-6 2.19e-6 4.45e-6 5.70e-7
W-B_noCC_s_rp 3.68e-6 5.37e-6 4.99e-6 2.16e-6 4.48e-6 6.98e-7
W-B_FULL_s_acc 2.16e-6 4.71e-6 3.61e-6 1.97e-6 4.36e-6 6.55e-7
W-B_noCC_s_acc 2.49e-6 3.96e-6 4.14e-6 1.97e-6 4.28e-6 6.17e-7
W-B_FULL_adap 8.79e-7 7.66e-7 2.22e-6 1.88e-6 4.31e-6 6.96e-7
W-B_noCC_adap 9.53e-7 7.96e-7 2.39e-6 1.94e-6 4.18e-6 7.43e-7
S-L_FULL 8.53e-6 1.20e-5 1.49e-5 4.10e-6 4.50e-6 7.63e-7
S-L_noCC 8.97e-6 1.13e-5 1.45e-5 3.65e-6 4.67e-6 6.66e-7
S-L_FULL_s_rp 3.55e-6 5.27e-6 1.06e-5 3.92e-6 4.72e-6 7.30e-7
S-L_noCC_s_rp 3.63e-6 5.34e-6 1.17e-5 3.35e-6 4.91e-6 7.96e-7
S-L_FULL_s_acc 2.44e-6 4.39e-6 8.22e-6 5.36e-6 5.04e-6 8.21e-7
S-L_noCC_s_acc 2.57e-6 4.15e-6 9.97e-6 3.41e-6 4.76e-6 7.32e-7
S-L_FULL_adap 1.33e-6 1.01e-6 5.29e-6 3.84e-6 4.64e-6 7.63e-7
S-L_noCC_adap 1.40e-6 1.13e-6 6.33e-6 3.22e-6 4.67e-6 8.53e-7
PA10_vel 1.14e-2 4.87e-5 5.13e-5 3.15e-5 1.42e-4 3.22e-5

Table E.11: Comparison of angle WMISE results for different controllers, platform tra-
jectory: sin2_s20_2, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 1.79e-5 1.52e-4 3.65e-5 1.55e-5 2.02e-5 1.29e-5
sat_sl 1.78e-5 1.53e-4 3.45e-5 1.43e-5 2.04e-5 1.33e-5
slid 1.74e-5 1.52e-4 9.77e-5 5.24e-6 2.00e-5 1.30e-5
PID 1.83e-5 1.51e-4 3.61e-5 1.48e-5 2.04e-5 1.28e-5
grv_frc_PD 9.52e-6 6.09e-6 1.20e-5 9.46e-7 2.19e-6 5.80e-7
grv_frc_PD_s_rp 4.07e-6 4.51e-6 7.30e-6 1.01e-6 2.25e-6 6.53e-7
grv_frc_PD_s_acc 3.42e-6 3.35e-6 5.30e-6 1.01e-6 2.27e-6 6.96e-7
grv_frc_PD_adap 1.62e-6 1.28e-6 3.08e-6 1.07e-6 2.29e-6 7.02e-7
grv_frc_sat_sl 9.23e-6 6.20e-6 1.11e-5 8.53e-7 2.25e-6 5.66e-7
grv_frc_sat_sl_s_rp 3.86e-6 4.57e-6 6.87e-6 8.79e-7 2.35e-6 5.81e-7
grv_frc_sat_sl_s_acc 3.30e-6 3.06e-6 5.32e-6 8.54e-7 2.24e-6 5.71e-7
grv_frc_sat_sl_adap 1.16e-6 6.47e-7 3.57e-6 9.49e-7 2.29e-6 5.32e-7
grv_frc_slid 1.00e-5 6.42e-6 3.10e-5 1.27e-6 2.35e-6 6.65e-7
grv_frc_slid_s_rp 3.66e-6 4.59e-6 1.76e-5 1.09e-6 2.22e-6 5.52e-7
grv_frc_slid_s_acc 3.18e-6 3.24e-6 1.27e-5 1.04e-6 2.22e-6 4.97e-7
grv_frc_slid_adap 1.39e-6 1.26e-6 6.89e-6 1.10e-6 2.15e-6 5.90e-7
lin_FULL 1.47e-5 1.63e-6 4.93e-6 3.53e-6 5.86e-6 3.47e-7
lin_noCC 1.50e-5 1.52e-6 5.23e-6 3.41e-6 6.04e-6 3.67e-7
lin_FULL_s_rp 7.46e-6 1.31e-6 4.65e-6 3.65e-6 5.87e-6 3.74e-7
lin_noCC_s_rp 7.38e-6 1.29e-6 4.99e-6 3.76e-6 6.04e-6 4.04e-7
lin_FULL_s_acc 5.59e-6 1.32e-6 4.63e-6 3.83e-6 6.01e-6 3.99e-7
lin_noCC_s_acc 5.29e-6 1.20e-6 4.91e-6 3.81e-6 6.10e-6 3.57e-7
W-B_FULL 7.21e-6 9.69e-6 1.37e-5 1.50e-6 2.40e-6 5.11e-7
W-B_noCC 7.20e-6 8.63e-6 1.29e-5 1.42e-6 2.54e-6 4.96e-7
W-B_FULL_s_rp 3.31e-6 4.76e-6 7.38e-6 1.37e-6 2.41e-6 4.28e-7
W-B_noCC_s_rp 3.39e-6 4.37e-6 7.73e-6 1.45e-6 2.48e-6 4.98e-7
W-B_FULL_s_acc 2.41e-6 3.77e-6 5.47e-6 1.77e-6 2.52e-6 5.47e-7
W-B_noCC_s_acc 2.37e-6 3.39e-6 5.78e-6 1.64e-6 2.56e-6 5.24e-7
W-B_FULL_adap 1.41e-6 1.30e-6 3.34e-6 1.88e-6 2.62e-6 6.49e-7
W-B_noCC_adap 1.35e-6 1.23e-6 3.05e-6 1.50e-6 2.51e-6 5.86e-7
S-L_FULL 7.54e-6 8.92e-6 3.26e-5 2.62e-6 2.44e-6 5.55e-7
S-L_noCC 7.52e-6 8.12e-6 3.05e-5 2.93e-6 2.68e-6 5.43e-7
S-L_FULL_s_rp 3.31e-6 4.40e-6 1.78e-5 2.90e-6 2.57e-6 6.08e-7
S-L_noCC_s_rp 3.66e-6 4.12e-6 1.89e-5 2.68e-6 2.67e-6 5.89e-7
S-L_FULL_s_acc 2.50e-6 3.64e-6 1.28e-5 2.62e-6 2.56e-6 5.90e-7
S-L_noCC_s_acc 2.42e-6 3.36e-6 1.46e-5 2.82e-6 2.70e-6 5.09e-7
S-L_FULL_adap 1.78e-6 1.35e-6 8.74e-6 2.62e-6 2.69e-6 5.84e-7
S-L_noCC_adap 1.80e-6 1.40e-6 8.55e-6 2.63e-6 2.77e-6 6.21e-7
PA10_vel 1.15e-2 3.01e-5 2.32e-5 1.68e-5 3.11e-5 1.60e-5

Table E.12: Comparison of angle WMISE results for different controllers, platform tra-
jectory: sin2_s20_2, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 2.29e-5 2.75e-4 1.57e-4 2.35e-5 3.36e-5 1.29e-5
sat_sl 2.30e-5 2.75e-4 1.55e-4 1.95e-5 3.33e-5 1.39e-5
slid 2.33e-5 2.75e-4 4.19e-4 6.91e-6 3.31e-5 1.34e-5
PID 2.31e-5 2.75e-4 1.57e-4 2.27e-5 3.36e-5 1.33e-5
grv_frc_PD 3.45e-6 5.78e-6 9.62e-6 1.29e-6 2.97e-6 1.07e-6
grv_frc_PD_s_rp 3.80e-6 5.87e-6 1.01e-5 1.26e-6 3.40e-6 1.38e-6
grv_frc_PD_s_acc 3.76e-6 5.50e-6 9.76e-6 1.37e-6 2.96e-6 1.23e-6
grv_frc_PD_adap 1.37e-6 8.80e-7 2.39e-6 1.35e-6 2.81e-6 1.11e-6
grv_frc_sat_sl 3.63e-6 6.27e-6 1.02e-5 1.30e-6 3.69e-6 1.16e-6
grv_frc_sat_sl_s_rp 4.16e-6 6.16e-6 1.11e-5 1.48e-6 3.92e-6 1.61e-6
grv_frc_sat_sl_s_acc 3.58e-6 5.70e-6 1.04e-5 1.33e-6 3.61e-6 1.32e-6
grv_frc_sat_sl_adap 1.27e-6 8.08e-7 3.72e-6 1.53e-6 3.59e-6 1.46e-6
grv_frc_slid 3.61e-6 6.10e-6 2.62e-5 1.36e-6 3.14e-6 1.10e-6
grv_frc_slid_s_rp 3.96e-6 5.82e-6 2.59e-5 1.84e-6 3.05e-6 1.21e-6
grv_frc_slid_s_acc 3.79e-6 5.71e-6 2.58e-5 1.66e-6 3.05e-6 1.27e-6
grv_frc_slid_adap 1.51e-6 1.00e-6 6.29e-6 1.49e-6 3.13e-6 1.13e-6
lin_FULL 3.19e-6 8.51e-7 1.90e-6 4.86e-6 6.66e-6 7.43e-7
lin_noCC 3.79e-6 8.09e-7 2.46e-6 4.81e-6 6.40e-6 7.25e-7
lin_FULL_s_rp 3.18e-6 7.21e-7 1.95e-6 5.01e-6 6.58e-6 7.07e-7
lin_noCC_s_rp 4.02e-6 7.07e-7 2.40e-6 4.98e-6 6.66e-6 6.93e-7
lin_FULL_s_acc 3.44e-6 8.37e-7 2.01e-6 5.24e-6 7.11e-6 7.84e-7
lin_noCC_s_acc 3.90e-6 7.28e-7 2.50e-6 5.12e-6 6.60e-6 6.36e-7
W-B_FULL 1.49e-6 3.00e-6 3.04e-6 1.81e-6 2.85e-6 9.29e-7
W-B_noCC 1.94e-6 2.84e-6 4.26e-6 2.18e-6 2.95e-6 8.43e-7
W-B_FULL_s_rp 1.57e-6 2.45e-6 2.79e-6 2.33e-6 3.20e-6 1.02e-6
W-B_noCC_s_rp 1.85e-6 2.14e-6 3.87e-6 1.57e-6 3.15e-6 9.39e-7
W-B_FULL_s_acc 1.93e-6 3.04e-6 3.00e-6 1.73e-6 3.16e-6 1.04e-6
W-B_noCC_s_acc 1.95e-6 2.11e-6 3.89e-6 1.70e-6 3.07e-6 8.02e-7
W-B_FULL_adap 7.79e-7 6.42e-7 1.73e-6 1.53e-6 3.19e-6 8.54e-7
W-B_noCC_adap 8.96e-7 6.69e-7 1.85e-6 1.69e-6 3.11e-6 9.09e-7
S-L_FULL 1.44e-6 2.90e-6 6.59e-6 4.07e-6 3.46e-6 1.12e-6
S-L_noCC 1.80e-6 2.62e-6 9.30e-6 4.49e-6 3.40e-6 1.01e-6
S-L_FULL_s_rp 1.45e-6 2.14e-6 5.89e-6 3.61e-6 3.42e-6 1.14e-6
S-L_noCC_s_rp 1.87e-6 1.98e-6 9.43e-6 3.61e-6 3.29e-6 9.07e-7
S-L_FULL_s_acc 1.53e-6 2.38e-6 5.99e-6 3.32e-6 3.57e-6 8.83e-7
S-L_noCC_s_acc 1.91e-6 2.19e-6 8.44e-6 4.09e-6 3.35e-6 1.02e-6
S-L_FULL_adap 1.06e-6 9.18e-7 4.44e-6 3.64e-6 3.45e-6 1.11e-6
S-L_noCC_adap 1.26e-6 1.07e-6 5.07e-6 3.60e-6 3.42e-6 8.99e-7
PA10_vel 1.14e-2 5.24e-5 5.13e-5 3.86e-5 2.02e-4 3.19e-5

Table E.13: Comparison of angle WMISE results for different controllers, platform tra-
jectory: sea_all_2, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.20e-5 1.60e-4 3.55e-5 1.57e-5 2.28e-5 1.14e-5
sat_sl 2.12e-5 1.58e-4 3.45e-5 1.51e-5 2.31e-5 1.17e-5
slid 2.16e-5 1.58e-4 1.00e-4 5.12e-6 2.30e-5 1.15e-5
PID 2.15e-5 1.59e-4 3.58e-5 1.57e-5 2.30e-5 1.12e-5
grv_frc_PD 2.54e-6 2.62e-6 4.43e-6 8.64e-7 1.46e-6 7.66e-7
grv_frc_PD_s_rp 2.55e-6 2.37e-6 4.04e-6 9.17e-7 1.54e-6 9.08e-7
grv_frc_PD_s_acc 2.51e-6 2.38e-6 3.85e-6 9.22e-7 1.53e-6 8.67e-7
grv_frc_PD_adap 9.51e-7 1.14e-6 2.72e-6 9.04e-7 1.48e-6 8.35e-7
grv_frc_sat_sl 2.61e-6 2.97e-6 4.57e-6 1.03e-6 1.83e-6 8.75e-7
grv_frc_sat_sl_s_rp 2.85e-6 2.86e-6 4.36e-6 1.02e-6 1.77e-6 1.05e-6
grv_frc_sat_sl_s_acc 2.82e-6 2.81e-6 4.07e-6 1.01e-6 1.73e-6 1.02e-6
grv_frc_sat_sl_adap 9.58e-7 8.68e-7 4.02e-6 1.12e-6 1.83e-6 1.06e-6
grv_frc_slid 2.60e-6 2.66e-6 1.18e-5 1.28e-6 1.59e-6 7.53e-7
grv_frc_slid_s_rp 2.67e-6 2.49e-6 1.06e-5 1.28e-6 1.55e-6 8.78e-7
grv_frc_slid_s_acc 2.82e-6 2.63e-6 1.06e-5 1.31e-6 1.62e-6 9.59e-7
grv_frc_slid_adap 1.11e-6 1.31e-6 6.91e-6 1.12e-6 1.53e-6 7.92e-7
lin_FULL 3.53e-6 1.13e-6 4.39e-6 3.30e-6 3.60e-6 5.61e-7
lin_noCC 4.05e-6 1.05e-6 4.52e-6 3.28e-6 3.58e-6 6.12e-7
lin_FULL_s_rp 3.93e-6 1.10e-6 4.29e-6 3.45e-6 3.82e-6 6.19e-7
lin_noCC_s_rp 4.31e-6 9.86e-7 4.42e-6 3.48e-6 3.77e-6 5.84e-7
lin_FULL_s_acc 3.95e-6 1.13e-6 4.32e-6 3.46e-6 3.88e-6 6.28e-7
lin_noCC_s_acc 4.22e-6 1.03e-6 4.45e-6 3.42e-6 3.89e-6 5.39e-7
W-B_FULL 1.71e-6 2.71e-6 4.43e-6 1.47e-6 1.62e-6 9.43e-7
W-B_noCC 1.68e-6 2.22e-6 4.97e-6 1.50e-6 1.60e-6 6.42e-7
W-B_FULL_s_rp 1.82e-6 2.24e-6 3.80e-6 1.46e-6 1.61e-6 7.82e-7
W-B_noCC_s_rp 1.75e-6 1.99e-6 4.63e-6 1.45e-6 1.59e-6 7.80e-7
W-B_FULL_s_acc 1.59e-6 2.36e-6 3.70e-6 1.35e-6 1.59e-6 7.73e-7
W-B_noCC_s_acc 1.77e-6 1.98e-6 4.52e-6 1.37e-6 1.60e-6 6.70e-7
W-B_FULL_adap 6.96e-7 9.71e-7 2.57e-6 1.63e-6 1.79e-6 7.20e-7
W-B_noCC_adap 7.34e-7 1.01e-6 2.40e-6 1.46e-6 1.65e-6 7.82e-7
S-L_FULL 1.36e-6 2.42e-6 9.52e-6 2.51e-6 1.75e-6 7.68e-7
S-L_noCC 1.55e-6 2.28e-6 1.14e-5 2.83e-6 1.87e-6 7.82e-7
S-L_FULL_s_rp 1.59e-6 2.10e-6 8.81e-6 2.42e-6 1.77e-6 8.78e-7
S-L_noCC_s_rp 1.64e-6 1.71e-6 1.09e-5 2.76e-6 1.92e-6 8.40e-7
S-L_FULL_s_acc 1.58e-6 2.32e-6 8.21e-6 2.63e-6 1.84e-6 7.68e-7
S-L_noCC_s_acc 1.61e-6 1.96e-6 1.00e-5 2.78e-6 1.90e-6 9.10e-7
S-L_FULL_adap 1.01e-6 1.23e-6 6.54e-6 2.49e-6 1.84e-6 8.51e-7
S-L_noCC_adap 1.13e-6 1.38e-6 6.42e-6 3.16e-6 1.93e-6 7.16e-7
PA10_vel 1.13e-2 4.18e-5 2.61e-5 2.13e-5 3.28e-5 2.03e-5

Table E.14: Comparison of angle WMISE results for different controllers, platform tra-
jectory: sea_all_2, PA10 trajectory:ssine.
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Appendix F

Tables with results of manipulator on

platform control experiments (torque

noise power ratio)

The results of high to low frequency control torque power ratio are presented in tables:

F.1 to F.14.
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controller S1 S2 E1 E2 W1 W2
PD 2.20e-5 2.76e-4 1.58e-4 2.14e-5 3.21e-5 1.32e-5
sat_sl 2.21e-5 2.76e-4 1.59e-4 1.85e-5 3.18e-5 1.32e-5
slid 2.20e-5 2.76e-4 4.27e-4 6.13e-6 3.21e-5 1.35e-5
PID 2.16e-5 2.74e-4 1.58e-4 2.15e-5 3.24e-5 1.37e-5
grv_frc_PD 3.81e-6 6.02e-6 1.08e-5 1.67e-6 3.70e-6 1.38e-6
grv_frc_PD_s_rp 3.70e-6 5.84e-6 1.05e-5 1.54e-6 3.38e-6 1.22e-6
grv_frc_PD_s_acc 3.65e-6 5.73e-6 1.02e-5 1.30e-6 3.37e-6 1.12e-6
grv_frc_PD_adap 1.31e-6 1.03e-6 2.59e-6 1.48e-6 3.44e-6 1.28e-6
grv_frc_sat_sl 3.78e-6 5.82e-6 1.06e-5 1.31e-6 3.44e-6 1.21e-6
grv_frc_sat_sl_s_rp 3.71e-6 5.92e-6 1.09e-5 1.28e-6 3.37e-6 1.14e-6
grv_frc_sat_sl_s_acc 3.68e-6 5.54e-6 1.03e-5 1.23e-6 3.42e-6 1.16e-6
grv_frc_sat_sl_adap 1.17e-6 6.64e-7 3.27e-6 1.32e-6 3.45e-6 1.28e-6
grv_frc_slid 3.89e-6 6.03e-6 2.78e-5 1.52e-6 3.49e-6 1.27e-6
grv_frc_slid_s_rp 3.83e-6 5.83e-6 2.86e-5 1.68e-6 3.64e-6 1.18e-6
grv_frc_slid_s_acc 3.83e-6 6.22e-6 2.88e-5 1.87e-6 3.66e-6 1.30e-6
grv_frc_slid_adap 1.52e-6 1.15e-6 6.38e-6 1.69e-6 3.42e-6 1.20e-6
lin_FULL 2.89e-6 7.89e-7 2.17e-6 5.89e-6 7.83e-6 6.76e-7
lin_noCC 2.84e-6 7.74e-7 2.48e-6 5.28e-6 7.97e-6 7.01e-7
lin_FULL_s_rp 2.66e-6 7.84e-7 1.91e-6 5.27e-6 7.41e-6 7.77e-7
lin_noCC_s_rp 3.32e-6 8.08e-7 2.55e-6 5.44e-6 7.79e-6 8.33e-7
lin_FULL_s_acc 2.84e-6 9.43e-7 2.30e-6 5.73e-6 7.79e-6 8.09e-7
lin_noCC_s_acc 3.46e-6 9.06e-7 2.74e-6 5.68e-6 7.49e-6 7.41e-7
W-B_FULL 1.54e-6 2.61e-6 2.70e-6 2.42e-6 3.26e-6 9.46e-7
W-B_noCC 1.91e-6 2.70e-6 3.90e-6 1.75e-6 3.46e-6 1.04e-6
W-B_FULL_s_rp 1.63e-6 2.64e-6 2.87e-6 1.97e-6 3.39e-6 1.16e-6
W-B_noCC_s_rp 2.02e-6 2.30e-6 4.10e-6 2.54e-6 3.43e-6 1.05e-6
W-B_FULL_s_acc 1.74e-6 2.67e-6 3.31e-6 2.17e-6 3.28e-6 1.00e-6
W-B_noCC_s_acc 1.85e-6 2.60e-6 4.08e-6 2.02e-6 3.38e-6 8.96e-7
W-B_FULL_adap 9.39e-7 6.91e-7 2.02e-6 1.84e-6 3.38e-6 1.09e-6
W-B_noCC_adap 9.78e-7 9.57e-7 2.27e-6 2.50e-6 3.43e-6 9.40e-7
S-L_FULL 1.64e-6 2.46e-6 7.26e-6 4.17e-6 3.36e-6 9.98e-7
S-L_noCC 2.14e-6 2.31e-6 1.03e-5 4.21e-6 3.71e-6 1.07e-6
S-L_FULL_s_rp 1.78e-6 2.89e-6 7.71e-6 4.85e-6 3.79e-6 9.77e-7
S-L_noCC_s_rp 1.83e-6 2.48e-6 1.03e-5 4.27e-6 3.59e-6 9.51e-7
S-L_FULL_s_acc 1.80e-6 2.47e-6 9.34e-6 4.14e-6 3.54e-6 1.08e-6
S-L_noCC_s_acc 1.91e-6 2.28e-6 1.20e-5 4.10e-6 3.58e-6 9.91e-7
S-L_FULL_adap 1.03e-6 1.22e-6 5.22e-6 4.02e-6 3.36e-6 9.14e-7
S-L_noCC_adap 1.35e-6 1.14e-6 6.74e-6 4.62e-6 3.72e-6 1.14e-6
PA10_vel 1.12e-2 4.51e-5 4.79e-5 3.38e-5 1.59e-4 3.37e-5

Table F.1: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: zero, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.06e-5 1.57e-4 3.60e-5 1.49e-5 2.20e-5 1.12e-5
sat_sl 2.03e-5 1.57e-4 3.49e-5 1.42e-5 2.23e-5 1.16e-5
slid 2.04e-5 1.56e-4 9.71e-5 5.11e-6 2.21e-5 1.14e-5
PID 2.07e-5 1.57e-4 3.58e-5 1.50e-5 2.24e-5 1.14e-5
grv_frc_PD 2.68e-6 2.57e-6 3.91e-6 9.32e-7 1.77e-6 8.16e-7
grv_frc_PD_s_rp 2.80e-6 2.55e-6 4.15e-6 1.02e-6 1.88e-6 8.86e-7
grv_frc_PD_s_acc 2.78e-6 2.59e-6 4.04e-6 9.93e-7 1.76e-6 8.09e-7
grv_frc_PD_adap 1.15e-6 1.25e-6 2.90e-6 1.10e-6 1.87e-6 9.45e-7
grv_frc_sat_sl 2.75e-6 2.65e-6 3.99e-6 9.55e-7 1.69e-6 8.05e-7
grv_frc_sat_sl_s_rp 2.81e-6 2.69e-6 4.11e-6 9.62e-7 1.81e-6 8.99e-7
grv_frc_sat_sl_s_acc 2.78e-6 2.52e-6 4.09e-6 9.37e-7 1.75e-6 8.26e-7
grv_frc_sat_sl_adap 9.10e-7 7.09e-7 3.89e-6 1.02e-6 1.85e-6 9.54e-7
grv_frc_slid 2.84e-6 2.72e-6 1.07e-5 1.15e-6 1.96e-6 9.55e-7
grv_frc_slid_s_rp 3.03e-6 2.72e-6 1.09e-5 1.27e-6 1.87e-6 8.73e-7
grv_frc_slid_s_acc 2.85e-6 2.52e-6 1.06e-5 1.18e-6 1.86e-6 8.90e-7
grv_frc_slid_adap 1.40e-6 1.49e-6 7.18e-6 1.19e-6 1.80e-6 8.90e-7
lin_FULL 4.15e-6 1.20e-6 4.56e-6 4.22e-6 4.61e-6 5.74e-7
lin_noCC 3.79e-6 1.12e-6 4.57e-6 3.74e-6 4.37e-6 6.26e-7
lin_FULL_s_rp 3.78e-6 1.13e-6 4.33e-6 3.87e-6 4.30e-6 6.65e-7
lin_noCC_s_rp 4.07e-6 1.14e-6 4.76e-6 3.78e-6 4.37e-6 6.32e-7
lin_FULL_s_acc 3.90e-6 1.35e-6 4.75e-6 4.29e-6 4.50e-6 6.86e-7
lin_noCC_s_acc 4.11e-6 1.28e-6 4.92e-6 4.21e-6 4.39e-6 6.73e-7
W-B_FULL 1.66e-6 2.65e-6 3.62e-6 1.44e-6 1.80e-6 7.52e-7
W-B_noCC 1.83e-6 2.60e-6 4.44e-6 1.55e-6 1.91e-6 8.76e-7
W-B_FULL_s_rp 1.70e-6 2.38e-6 3.78e-6 1.83e-6 1.85e-6 1.02e-6
W-B_noCC_s_rp 1.88e-6 2.18e-6 4.62e-6 1.81e-6 1.87e-6 8.33e-7
W-B_FULL_s_acc 1.88e-6 2.66e-6 3.73e-6 1.51e-6 1.88e-6 9.16e-7
W-B_noCC_s_acc 1.87e-6 2.53e-6 4.65e-6 1.68e-6 2.01e-6 8.50e-7
W-B_FULL_adap 1.12e-6 1.25e-6 3.20e-6 1.69e-6 1.89e-6 8.41e-7
W-B_noCC_adap 9.28e-7 1.23e-6 2.90e-6 1.77e-6 1.91e-6 7.85e-7
S-L_FULL 2.04e-6 2.70e-6 1.00e-5 2.98e-6 1.94e-6 8.81e-7
S-L_noCC 2.03e-6 2.39e-6 1.16e-5 2.89e-6 1.87e-6 8.30e-7
S-L_FULL_s_rp 1.84e-6 2.64e-6 9.94e-6 3.43e-6 1.94e-6 8.57e-7
S-L_noCC_s_rp 1.73e-6 2.28e-6 1.12e-5 3.08e-6 1.94e-6 7.53e-7
S-L_FULL_s_acc 1.80e-6 2.54e-6 9.15e-6 2.94e-6 1.90e-6 8.69e-7
S-L_noCC_s_acc 1.93e-6 2.32e-6 1.15e-5 2.85e-6 1.94e-6 7.68e-7
S-L_FULL_adap 1.14e-6 1.40e-6 7.93e-6 2.97e-6 1.93e-6 7.02e-7
S-L_noCC_adap 1.35e-6 1.53e-6 7.61e-6 3.41e-6 1.90e-6 8.24e-7
PA10_vel 1.15e-2 3.57e-5 2.36e-5 1.77e-5 3.77e-5 1.75e-5

Table F.2: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: zero, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 3.63e-5 3.02e-4 1.74e-4 2.02e-5 2.98e-5 1.40e-5
sat_sl 3.52e-5 3.02e-4 1.70e-4 1.95e-5 3.00e-5 1.34e-5
slid 3.50e-5 3.01e-4 4.61e-4 7.85e-6 2.98e-5 1.38e-5
PID 3.51e-5 3.01e-4 1.74e-4 2.08e-5 2.95e-5 1.35e-5
grv_frc_PD 5.87e-6 2.54e-5 2.17e-5 1.27e-6 4.01e-6 1.06e-6
grv_frc_PD_s_rp 5.56e-6 1.46e-5 1.46e-5 1.41e-6 3.96e-6 1.01e-6
grv_frc_PD_s_acc 3.57e-6 8.89e-6 1.16e-5 1.23e-6 4.16e-6 1.06e-6
grv_frc_PD_adap 1.99e-6 1.41e-6 3.12e-6 1.58e-6 4.59e-6 1.38e-6
grv_frc_sat_sl 6.43e-6 2.63e-5 2.22e-5 1.14e-6 4.30e-6 1.24e-6
grv_frc_sat_sl_s_rp 5.40e-6 1.46e-5 1.42e-5 1.01e-6 3.95e-6 1.25e-6
grv_frc_sat_sl_s_acc 3.60e-6 9.76e-6 1.15e-5 1.11e-6 3.80e-6 1.10e-6
grv_frc_sat_sl_adap 1.45e-6 7.35e-7 3.36e-6 1.09e-6 3.60e-6 1.16e-6
grv_frc_slid 6.12e-6 2.58e-5 5.89e-5 1.85e-6 4.15e-6 1.12e-6
grv_frc_slid_s_rp 5.38e-6 1.46e-5 3.86e-5 1.75e-6 4.12e-6 1.08e-6
grv_frc_slid_s_acc 3.81e-6 9.68e-6 3.09e-5 1.53e-6 4.28e-6 1.14e-6
grv_frc_slid_adap 1.97e-6 1.28e-6 6.96e-6 1.56e-6 4.07e-6 1.12e-6
lin_FULL 5.62e-6 2.52e-6 2.83e-6 4.39e-6 8.23e-6 6.54e-7
lin_noCC 7.74e-6 2.70e-6 3.44e-6 4.64e-6 9.78e-6 8.58e-7
lin_FULL_s_rp 3.19e-6 1.57e-6 2.29e-6 4.37e-6 9.30e-6 6.53e-7
lin_noCC_s_rp 4.64e-6 1.57e-6 2.88e-6 4.57e-6 9.92e-6 6.94e-7
lin_FULL_s_acc 2.55e-6 1.04e-6 2.16e-6 4.65e-6 9.19e-6 6.99e-7
lin_noCC_s_acc 3.28e-6 9.40e-7 2.55e-6 4.62e-6 9.46e-6 6.65e-7
W-B_FULL 3.58e-6 2.10e-5 1.72e-5 1.40e-6 3.86e-6 9.23e-7
W-B_noCC 4.52e-6 1.99e-5 1.72e-5 1.79e-6 3.89e-6 7.21e-7
W-B_FULL_s_rp 1.89e-6 9.84e-6 8.14e-6 1.72e-6 4.18e-6 9.61e-7
W-B_noCC_s_rp 2.83e-6 9.52e-6 9.09e-6 1.90e-6 4.12e-6 8.92e-7
W-B_FULL_s_acc 1.27e-6 5.63e-6 5.25e-6 1.35e-6 3.98e-6 9.65e-7
W-B_noCC_s_acc 1.87e-6 4.71e-6 5.68e-6 1.68e-6 3.98e-6 9.16e-7
W-B_FULL_adap 1.19e-6 9.71e-7 2.38e-6 1.60e-6 4.16e-6 8.84e-7
W-B_noCC_adap 1.49e-6 1.11e-6 2.51e-6 1.93e-6 4.02e-6 8.54e-7
S-L_FULL 3.43e-6 1.99e-5 4.17e-5 3.15e-6 4.14e-6 8.99e-7
S-L_noCC 4.49e-6 1.90e-5 4.19e-5 4.02e-6 4.23e-6 8.08e-7
S-L_FULL_s_rp 2.08e-6 9.41e-6 1.91e-5 3.39e-6 4.30e-6 9.09e-7
S-L_noCC_s_rp 2.74e-6 8.90e-6 2.18e-5 3.81e-6 4.33e-6 1.01e-6
S-L_FULL_s_acc 1.29e-6 5.47e-6 1.21e-5 3.02e-6 4.21e-6 8.41e-7
S-L_noCC_s_acc 1.86e-6 4.87e-6 1.39e-5 4.46e-6 4.37e-6 8.95e-7
S-L_FULL_adap 1.54e-6 1.59e-6 6.68e-6 3.51e-6 4.22e-6 8.52e-7
S-L_noCC_adap 1.99e-6 1.54e-6 7.25e-6 4.72e-6 4.68e-6 1.15e-6
PA10_vel 1.11e-2 4.27e-5 5.42e-5 4.11e-5 1.28e-4 3.21e-5

Table F.3: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin_r2p0, PA10 trajectory: sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.41e-5 1.39e-4 7.45e-5 1.53e-5 2.10e-5 1.22e-5
sat_sl 2.35e-5 1.40e-4 6.88e-5 1.46e-5 2.13e-5 1.14e-5
slid 2.31e-5 1.38e-4 1.99e-4 5.86e-6 2.10e-5 1.15e-5
PID 2.34e-5 1.38e-4 7.46e-5 1.48e-5 2.09e-5 1.14e-5
grv_frc_PD 2.82e-6 1.79e-5 1.70e-5 9.94e-7 1.96e-6 7.80e-7
grv_frc_PD_s_rp 2.12e-6 8.05e-6 6.78e-6 1.09e-6 1.88e-6 7.75e-7
grv_frc_PD_s_acc 2.31e-6 5.35e-6 4.01e-6 9.44e-7 1.94e-6 8.04e-7
grv_frc_PD_adap 6.13e-7 1.27e-6 2.54e-6 1.02e-6 2.10e-6 8.22e-7
grv_frc_sat_sl 2.77e-6 1.79e-5 1.64e-5 9.04e-7 1.90e-6 8.23e-7
grv_frc_sat_sl_s_rp 1.95e-6 7.95e-6 6.34e-6 8.49e-7 1.78e-6 9.09e-7
grv_frc_sat_sl_s_acc 2.44e-6 5.37e-6 4.01e-6 9.21e-7 1.81e-6 8.02e-7
grv_frc_sat_sl_adap 5.62e-7 6.89e-7 3.16e-6 8.45e-7 1.88e-6 8.45e-7
grv_frc_slid 2.59e-6 1.79e-5 4.36e-5 1.29e-6 2.03e-6 8.09e-7
grv_frc_slid_s_rp 2.07e-6 8.14e-6 1.67e-5 1.28e-6 1.94e-6 7.91e-7
grv_frc_slid_s_acc 2.30e-6 5.34e-6 1.03e-5 1.19e-6 2.04e-6 7.82e-7
grv_frc_slid_adap 7.45e-7 1.33e-6 6.20e-6 1.29e-6 2.06e-6 8.27e-7
lin_FULL 4.99e-6 2.89e-6 5.60e-6 3.29e-6 4.25e-6 5.90e-7
lin_noCC 6.53e-6 2.64e-6 5.46e-6 3.20e-6 4.97e-6 5.29e-7
lin_FULL_s_rp 2.65e-6 1.88e-6 3.90e-6 3.26e-6 4.66e-6 5.71e-7
lin_noCC_s_rp 2.98e-6 1.77e-6 4.29e-6 3.21e-6 5.00e-6 5.55e-7
lin_FULL_s_acc 3.27e-6 1.65e-6 4.35e-6 3.04e-6 4.82e-6 5.61e-7
lin_noCC_s_acc 3.91e-6 1.56e-6 4.80e-6 3.11e-6 4.65e-6 5.74e-7
W-B_FULL 2.51e-6 2.06e-5 2.19e-5 1.40e-6 1.87e-6 7.74e-7
W-B_noCC 2.90e-6 1.69e-5 1.86e-5 1.30e-6 2.00e-6 6.64e-7
W-B_FULL_s_rp 1.33e-6 8.89e-6 7.20e-6 1.34e-6 1.98e-6 6.82e-7
W-B_noCC_s_rp 1.51e-6 7.70e-6 7.38e-6 1.42e-6 1.96e-6 7.36e-7
W-B_FULL_s_acc 1.59e-6 6.08e-6 4.79e-6 1.50e-6 2.01e-6 8.70e-7
W-B_noCC_s_acc 1.78e-6 4.43e-6 4.62e-6 1.28e-6 1.98e-6 8.19e-7
W-B_FULL_adap 4.87e-7 1.16e-6 3.05e-6 1.45e-6 2.07e-6 7.32e-7
W-B_noCC_adap 5.25e-7 1.25e-6 2.88e-6 1.42e-6 2.05e-6 7.27e-7
S-L_FULL 2.46e-6 1.92e-5 4.96e-5 2.40e-6 2.07e-6 7.14e-7
S-L_noCC 2.99e-6 1.61e-5 4.37e-5 2.62e-6 2.16e-6 6.56e-7
S-L_FULL_s_rp 1.40e-6 8.83e-6 1.70e-5 2.34e-6 2.10e-6 8.17e-7
S-L_noCC_s_rp 1.53e-6 7.74e-6 1.71e-5 2.91e-6 2.18e-6 8.19e-7
S-L_FULL_s_acc 1.61e-6 5.93e-6 1.18e-5 2.57e-6 2.07e-6 7.72e-7
S-L_noCC_s_acc 1.95e-6 4.82e-6 1.16e-5 3.88e-6 2.26e-6 9.18e-7
S-L_FULL_adap 6.78e-7 1.30e-6 8.33e-6 2.67e-6 2.05e-6 7.54e-7
S-L_noCC_adap 7.06e-7 1.52e-6 6.92e-6 2.57e-6 2.20e-6 7.38e-7
PA10_vel 1.13e-2 3.05e-5 2.46e-5 1.72e-5 3.26e-5 1.63e-5

Table F.4: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin_r2p0, PA10 trajectory: ssine.
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controller S1 S2 E1 E2 W1 W2
PD 3.67e-5 3.02e-4 1.75e-4 2.06e-5 3.05e-5 1.33e-5
sat_sl 3.64e-5 3.01e-4 1.71e-4 1.85e-5 3.15e-5 1.35e-5
slid 3.45e-5 3.00e-4 4.63e-4 8.26e-6 3.13e-5 1.37e-5
PID 3.48e-5 2.99e-4 1.75e-4 1.89e-5 3.11e-5 1.36e-5
grv_frc_PD 1.40e-5 1.76e-5 2.08e-5 1.28e-6 3.52e-6 1.19e-6
grv_frc_PD_s_rp 8.51e-6 1.30e-5 1.62e-5 1.64e-6 3.49e-6 1.15e-6
grv_frc_PD_s_acc 5.00e-6 8.40e-6 1.34e-5 1.39e-6 3.36e-6 1.21e-6
grv_frc_PD_adap 2.28e-6 1.36e-6 2.89e-6 1.52e-6 3.37e-6 1.20e-6
grv_frc_sat_sl 1.37e-5 1.75e-5 2.08e-5 1.14e-6 3.57e-6 1.19e-6
grv_frc_sat_sl_s_rp 8.49e-6 1.35e-5 1.57e-5 1.20e-6 3.42e-6 1.31e-6
grv_frc_sat_sl_s_acc 5.29e-6 8.82e-6 1.21e-5 1.21e-6 3.50e-6 1.26e-6
grv_frc_sat_sl_adap 1.65e-6 7.22e-7 3.47e-6 1.31e-6 3.34e-6 1.19e-6
grv_frc_slid 1.41e-5 1.78e-5 5.55e-5 1.89e-6 3.81e-6 1.20e-6
grv_frc_slid_s_rp 8.51e-6 1.31e-5 4.23e-5 1.84e-6 3.55e-6 1.23e-6
grv_frc_slid_s_acc 5.07e-6 8.59e-6 3.44e-5 1.57e-6 3.63e-6 1.28e-6
grv_frc_slid_adap 2.44e-6 1.38e-6 7.15e-6 2.11e-6 3.89e-6 1.34e-6
lin_FULL 1.01e-5 1.73e-6 2.91e-6 5.59e-6 7.80e-6 6.90e-7
lin_noCC 1.38e-5 1.80e-6 3.68e-6 5.68e-6 8.21e-6 7.58e-7
lin_FULL_s_rp 6.11e-6 1.21e-6 2.48e-6 5.78e-6 7.91e-6 6.83e-7
lin_noCC_s_rp 8.02e-6 1.29e-6 3.18e-6 5.78e-6 8.23e-6 7.60e-7
lin_FULL_s_acc 3.68e-6 1.03e-6 2.51e-6 5.92e-6 8.47e-6 7.50e-7
lin_noCC_s_acc 4.50e-6 1.04e-6 3.06e-6 5.82e-6 8.49e-6 7.57e-7
W-B_FULL 7.01e-6 1.13e-5 1.11e-5 1.69e-6 3.67e-6 7.96e-7
W-B_noCC 8.27e-6 1.21e-5 1.34e-5 1.42e-6 3.88e-6 8.48e-7
W-B_FULL_s_rp 3.65e-6 6.76e-6 6.53e-6 1.80e-6 3.76e-6 7.70e-7
W-B_noCC_s_rp 4.38e-6 6.82e-6 8.09e-6 1.52e-6 3.78e-6 8.23e-7
W-B_FULL_s_acc 1.70e-6 3.93e-6 4.35e-6 2.31e-6 4.11e-6 9.88e-7
W-B_noCC_s_acc 1.81e-6 4.16e-6 5.46e-6 1.43e-6 3.63e-6 7.98e-7
W-B_FULL_adap 1.24e-6 8.93e-7 1.93e-6 1.86e-6 3.79e-6 8.04e-7
W-B_noCC_adap 1.49e-6 9.15e-7 2.11e-6 1.66e-6 3.95e-6 7.91e-7
S-L_FULL 7.29e-6 1.06e-5 2.64e-5 3.96e-6 4.26e-6 8.02e-7
S-L_noCC 7.96e-6 1.13e-5 3.23e-5 3.50e-6 3.99e-6 8.19e-7
S-L_FULL_s_rp 3.82e-6 6.17e-6 1.50e-5 3.15e-6 4.12e-6 7.61e-7
S-L_noCC_s_rp 4.64e-6 7.21e-6 2.15e-5 5.71e-6 4.37e-6 9.90e-7
S-L_FULL_s_acc 1.70e-6 3.67e-6 9.35e-6 3.77e-6 4.11e-6 8.03e-7
S-L_noCC_s_acc 1.97e-6 4.04e-6 1.45e-5 3.88e-6 4.10e-6 8.43e-7
S-L_FULL_adap 1.99e-6 1.36e-6 5.10e-6 3.47e-6 4.08e-6 8.71e-7
S-L_noCC_adap 2.30e-6 1.26e-6 6.21e-6 4.09e-6 3.97e-6 7.86e-7
PA10_vel 1.11e-2 4.33e-5 1.05e-4 3.28e-5 1.48e-4 3.41e-5

Table F.5: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin_r0p2, PA10 trajectory: sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.25e-5 1.78e-4 7.26e-5 1.49e-5 2.10e-5 1.15e-5
sat_sl 2.32e-5 1.81e-4 6.82e-5 1.43e-5 2.18e-5 1.17e-5
slid 2.25e-5 1.79e-4 1.92e-4 5.12e-6 2.12e-5 1.16e-5
PID 2.02e-5 1.73e-4 7.40e-5 1.48e-5 2.14e-5 1.17e-5
grv_frc_PD 1.50e-5 2.40e-5 1.63e-5 9.47e-7 1.93e-6 9.03e-7
grv_frc_PD_s_rp 7.43e-6 1.19e-5 5.40e-6 9.73e-7 1.89e-6 9.02e-7
grv_frc_PD_s_acc 5.00e-6 6.39e-6 5.43e-6 9.55e-7 1.99e-6 9.64e-7
grv_frc_PD_adap 2.08e-6 1.78e-6 2.17e-6 1.16e-6 2.13e-6 9.24e-7
grv_frc_sat_sl 1.51e-5 2.32e-5 1.69e-5 8.71e-7 2.01e-6 9.20e-7
grv_frc_sat_sl_s_rp 7.72e-6 1.22e-5 5.39e-6 8.84e-7 1.92e-6 9.90e-7
grv_frc_sat_sl_s_acc 5.13e-6 6.78e-6 5.07e-6 8.80e-7 2.07e-6 9.35e-7
grv_frc_sat_sl_adap 1.27e-6 9.53e-7 2.85e-6 9.18e-7 1.94e-6 8.45e-7
grv_frc_slid 1.52e-5 2.35e-5 4.30e-5 1.20e-6 1.99e-6 8.15e-7
grv_frc_slid_s_rp 7.32e-6 1.18e-5 1.32e-5 1.23e-6 1.97e-6 7.81e-7
grv_frc_slid_s_acc 4.94e-6 6.47e-6 1.35e-5 1.25e-6 2.03e-6 9.00e-7
grv_frc_slid_adap 2.18e-6 1.85e-6 4.35e-6 1.16e-6 1.92e-6 9.14e-7
lin_FULL 1.81e-5 2.83e-6 4.41e-6 3.57e-6 5.18e-6 5.90e-7
lin_noCC 2.22e-5 3.05e-6 4.58e-6 3.50e-6 5.06e-6 6.67e-7
lin_FULL_s_rp 1.08e-5 2.55e-6 3.67e-6 3.79e-6 5.41e-6 7.07e-7
lin_noCC_s_rp 1.13e-5 2.30e-6 3.74e-6 3.47e-6 5.20e-6 5.90e-7
lin_FULL_s_acc 5.86e-6 1.58e-6 3.91e-6 3.63e-6 5.54e-6 5.72e-7
lin_noCC_s_acc 7.06e-6 1.54e-6 4.25e-6 3.58e-6 5.57e-6 6.04e-7
W-B_FULL 1.03e-5 2.09e-5 1.31e-5 1.14e-6 2.09e-6 6.89e-7
W-B_noCC 1.10e-5 2.15e-5 1.73e-5 1.04e-6 2.21e-6 6.52e-7
W-B_FULL_s_rp 5.59e-6 1.19e-5 4.18e-6 1.33e-6 2.18e-6 7.03e-7
W-B_noCC_s_rp 5.94e-6 1.16e-5 6.06e-6 1.50e-6 2.42e-6 7.03e-7
W-B_FULL_s_acc 2.51e-6 5.55e-6 3.37e-6 1.01e-6 2.14e-6 6.77e-7
W-B_noCC_s_acc 2.76e-6 5.68e-6 5.47e-6 1.07e-6 2.33e-6 6.78e-7
W-B_FULL_adap 1.54e-6 1.47e-6 1.82e-6 1.09e-6 2.38e-6 6.73e-7
W-B_noCC_adap 1.60e-6 1.56e-6 1.75e-6 1.37e-6 2.56e-6 6.87e-7
S-L_FULL 1.00e-5 1.91e-5 3.26e-5 2.91e-6 2.52e-6 6.78e-7
S-L_noCC 1.14e-5 2.02e-5 4.03e-5 3.67e-6 2.67e-6 7.51e-7
S-L_FULL_s_rp 5.67e-6 1.12e-5 9.44e-6 2.97e-6 2.51e-6 6.60e-7
S-L_noCC_s_rp 5.79e-6 1.11e-5 1.22e-5 2.99e-6 2.59e-6 7.22e-7
S-L_FULL_s_acc 2.69e-6 5.49e-6 8.25e-6 2.89e-6 2.57e-6 7.11e-7
S-L_noCC_s_acc 2.98e-6 5.60e-6 1.28e-5 2.66e-6 2.78e-6 7.01e-7
S-L_FULL_adap 2.40e-6 2.11e-6 3.51e-6 2.62e-6 2.50e-6 7.75e-7
S-L_noCC_adap 2.58e-6 2.24e-6 3.68e-6 2.60e-6 2.56e-6 6.43e-7
PA10_vel 1.15e-2 3.27e-5 5.52e-5 1.70e-5 2.99e-5 1.67e-5

Table F.6: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin_r0p2, PA10 trajectory: ssine.
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controller S1 S2 E1 E2 W1 W2
PD 4.21e-5 3.19e-4 1.73e-4 2.14e-5 3.41e-5 1.59e-5
sat_sl 4.05e-5 3.20e-4 1.70e-4 1.99e-5 3.38e-5 1.52e-5
slid 3.99e-5 3.20e-4 4.65e-4 6.89e-6 3.15e-5 1.45e-5
PID 4.15e-5 3.20e-4 1.73e-4 2.24e-5 3.27e-5 1.49e-5
grv_frc_PD 1.34e-5 1.34e-5 2.05e-5 1.20e-6 3.71e-6 9.34e-7
grv_frc_PD_s_rp 6.87e-6 1.08e-5 1.41e-5 1.30e-6 3.95e-6 9.03e-7
grv_frc_PD_s_acc 4.58e-6 6.63e-6 1.10e-5 9.81e-7 3.94e-6 9.09e-7
grv_frc_PD_adap 1.76e-6 1.02e-6 2.29e-6 1.16e-6 3.95e-6 9.87e-7
grv_frc_sat_sl 1.36e-5 1.31e-5 2.05e-5 1.05e-6 4.27e-6 1.01e-6
grv_frc_sat_sl_s_rp 7.07e-6 1.11e-5 1.45e-5 1.08e-6 4.15e-6 9.54e-7
grv_frc_sat_sl_s_acc 4.40e-6 6.38e-6 1.12e-5 1.01e-6 4.05e-6 9.34e-7
grv_frc_sat_sl_adap 1.35e-6 8.05e-7 3.00e-6 1.21e-6 4.05e-6 1.03e-6
grv_frc_slid 1.34e-5 1.34e-5 5.39e-5 2.07e-6 4.00e-6 9.08e-7
grv_frc_slid_s_rp 7.05e-6 1.08e-5 3.88e-5 1.62e-6 3.93e-6 9.74e-7
grv_frc_slid_s_acc 4.69e-6 6.68e-6 2.91e-5 1.48e-6 3.99e-6 9.03e-7
grv_frc_slid_adap 1.90e-6 1.08e-6 5.45e-6 1.83e-6 3.99e-6 8.54e-7
lin_FULL 7.86e-6 1.55e-6 3.14e-6 4.60e-6 9.51e-6 4.96e-7
lin_noCC 1.02e-5 1.65e-6 3.90e-6 4.98e-6 1.00e-5 5.77e-7
lin_FULL_s_rp 4.74e-6 8.22e-7 2.12e-6 4.50e-6 9.48e-6 5.53e-7
lin_noCC_s_rp 6.41e-6 8.62e-7 2.72e-6 4.48e-6 9.40e-6 4.95e-7
lin_FULL_s_acc 2.87e-6 7.21e-7 1.86e-6 4.52e-6 9.21e-6 4.98e-7
lin_noCC_s_acc 3.90e-6 7.15e-7 2.53e-6 4.46e-6 9.08e-6 4.53e-7
W-B_FULL 6.16e-6 1.17e-5 1.24e-5 1.62e-6 3.95e-6 6.03e-7
W-B_noCC 7.81e-6 1.07e-5 1.47e-5 1.93e-6 3.99e-6 5.91e-7
W-B_FULL_s_rp 3.12e-6 3.99e-6 5.32e-6 1.45e-6 3.82e-6 6.97e-7
W-B_noCC_s_rp 3.79e-6 4.49e-6 7.24e-6 1.85e-6 3.89e-6 6.47e-7
W-B_FULL_s_acc 1.35e-6 2.46e-6 3.36e-6 1.42e-6 3.82e-6 6.07e-7
W-B_noCC_s_acc 1.89e-6 2.99e-6 5.19e-6 1.86e-6 3.87e-6 4.95e-7
W-B_FULL_adap 1.06e-6 7.71e-7 1.76e-6 1.69e-6 3.95e-6 6.61e-7
W-B_noCC_adap 1.19e-6 7.78e-7 1.81e-6 2.17e-6 3.67e-6 5.73e-7
S-L_FULL 6.23e-6 1.05e-5 2.96e-5 3.68e-6 3.93e-6 5.34e-7
S-L_noCC 7.29e-6 1.07e-5 3.53e-5 4.11e-6 3.84e-6 6.56e-7
S-L_FULL_s_rp 3.41e-6 3.75e-6 1.28e-5 3.40e-6 4.00e-6 6.04e-7
S-L_noCC_s_rp 4.12e-6 4.04e-6 1.83e-5 3.95e-6 4.05e-6 5.99e-7
S-L_FULL_s_acc 1.60e-6 2.32e-6 7.79e-6 3.36e-6 3.93e-6 6.65e-7
S-L_noCC_s_acc 1.98e-6 2.56e-6 1.24e-5 3.74e-6 3.92e-6 5.74e-7
S-L_FULL_adap 1.58e-6 9.00e-7 3.99e-6 3.63e-6 4.08e-6 6.12e-7
S-L_noCC_adap 1.89e-6 1.04e-6 4.75e-6 4.57e-6 4.19e-6 7.23e-7
PA10_vel 1.15e-2 4.36e-5 9.63e-5 3.27e-5 1.12e-4 2.91e-5

Table F.7: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin_r1p2pi2, PA10 trajectory:sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.14e-5 2.11e-4 6.18e-5 1.64e-5 2.30e-5 1.38e-5
sat_sl 2.02e-5 2.08e-4 6.24e-5 1.56e-5 2.24e-5 1.32e-5
slid 2.01e-5 2.08e-4 1.73e-4 5.49e-6 2.05e-5 1.26e-5
PID 2.06e-5 2.12e-4 6.06e-5 1.59e-5 2.11e-5 1.28e-5
grv_frc_PD 8.75e-6 1.89e-5 2.24e-5 8.33e-7 2.34e-6 6.47e-7
grv_frc_PD_s_rp 5.64e-6 9.84e-6 4.05e-6 8.32e-7 2.40e-6 6.14e-7
grv_frc_PD_s_acc 3.67e-6 5.20e-6 5.35e-6 7.71e-7 2.45e-6 5.84e-7
grv_frc_PD_adap 1.33e-6 1.44e-6 1.87e-6 8.83e-7 2.44e-6 6.39e-7
grv_frc_sat_sl 9.13e-6 1.85e-5 2.36e-5 8.08e-7 2.51e-6 6.45e-7
grv_frc_sat_sl_s_rp 5.74e-6 1.01e-5 3.96e-6 7.67e-7 2.41e-6 5.50e-7
grv_frc_sat_sl_s_acc 3.98e-6 5.41e-6 5.31e-6 7.98e-7 2.46e-6 7.02e-7
grv_frc_sat_sl_adap 9.63e-7 9.15e-7 2.55e-6 8.08e-7 2.46e-6 6.17e-7
grv_frc_slid 8.95e-6 1.87e-5 6.16e-5 1.19e-6 2.61e-6 6.30e-7
grv_frc_slid_s_rp 5.75e-6 9.98e-6 1.07e-5 1.23e-6 2.48e-6 6.49e-7
grv_frc_slid_s_acc 3.91e-6 5.36e-6 1.44e-5 1.20e-6 2.45e-6 6.35e-7
grv_frc_slid_adap 1.44e-6 1.67e-6 4.19e-6 1.11e-6 2.35e-6 5.56e-7
lin_FULL 1.03e-5 1.80e-6 6.96e-6 3.11e-6 6.45e-6 4.05e-7
lin_noCC 1.30e-5 1.87e-6 7.94e-6 3.10e-6 6.65e-6 3.66e-7
lin_FULL_s_rp 8.14e-6 1.77e-6 3.06e-6 2.98e-6 5.95e-6 4.28e-7
lin_noCC_s_rp 9.14e-6 1.81e-6 3.49e-6 2.90e-6 6.00e-6 3.99e-7
lin_FULL_s_acc 4.30e-6 1.09e-6 3.43e-6 3.06e-6 5.94e-6 3.83e-7
lin_noCC_s_acc 5.20e-6 1.08e-6 3.97e-6 2.96e-6 6.12e-6 3.55e-7
W-B_FULL 5.76e-6 1.23e-5 2.10e-5 1.21e-6 2.44e-6 4.75e-7
W-B_noCC 6.58e-6 1.39e-5 2.58e-5 1.21e-6 2.35e-6 4.64e-7
W-B_FULL_s_rp 4.84e-6 8.62e-6 3.07e-6 1.47e-6 2.25e-6 5.92e-7
W-B_noCC_s_rp 5.08e-6 8.99e-6 4.40e-6 1.40e-6 2.34e-6 5.28e-7
W-B_FULL_s_acc 2.39e-6 3.59e-6 3.86e-6 1.40e-6 2.35e-6 5.18e-7
W-B_noCC_s_acc 2.64e-6 4.91e-6 5.57e-6 1.22e-6 2.42e-6 4.70e-7
W-B_FULL_adap 9.65e-7 1.37e-6 2.15e-6 1.61e-6 2.34e-6 5.04e-7
W-B_noCC_adap 1.07e-6 1.52e-6 1.98e-6 1.39e-6 2.43e-6 4.62e-7
S-L_FULL 6.27e-6 1.14e-5 5.20e-5 2.84e-6 2.49e-6 4.41e-7
S-L_noCC 6.41e-6 1.25e-5 6.71e-5 2.74e-6 2.58e-6 5.69e-7
S-L_FULL_s_rp 4.99e-6 8.33e-6 6.51e-6 2.45e-6 2.45e-6 4.68e-7
S-L_noCC_s_rp 5.51e-6 8.82e-6 9.79e-6 3.07e-6 2.52e-6 4.52e-7
S-L_FULL_s_acc 2.40e-6 3.34e-6 9.87e-6 2.78e-6 2.38e-6 5.27e-7
S-L_noCC_s_acc 3.00e-6 3.92e-6 1.50e-5 3.16e-6 2.63e-6 5.25e-7
S-L_FULL_adap 1.65e-6 2.07e-6 4.77e-6 2.78e-6 2.52e-6 4.94e-7
S-L_noCC_adap 1.94e-6 2.29e-6 4.25e-6 2.80e-6 2.51e-6 5.08e-7
PA10_vel 1.14e-2 3.16e-5 4.91e-5 1.70e-5 3.19e-5 1.56e-5

Table F.8: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin_r1p2pi2, PA10 trajectory:ssine.
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controller S1 S2 E1 E2 W1 W2
PD 2.46e-5 2.97e-4 1.80e-4 1.98e-5 3.09e-5 1.44e-5
sat_sl 2.46e-5 2.96e-4 1.75e-4 1.92e-5 3.15e-5 1.43e-5
slid 2.43e-5 2.96e-4 4.76e-4 8.22e-6 3.14e-5 1.46e-5
PID 2.44e-5 2.96e-4 1.79e-4 2.05e-5 3.07e-5 1.45e-5
grv_frc_PD 5.41e-6 1.92e-5 2.04e-5 1.18e-6 3.62e-6 9.10e-7
grv_frc_PD_s_rp 4.85e-6 1.23e-5 1.60e-5 1.14e-6 3.66e-6 9.91e-7
grv_frc_PD_s_acc 4.00e-6 9.24e-6 1.34e-5 1.67e-6 4.01e-6 1.11e-6
grv_frc_PD_adap 1.92e-6 1.23e-6 2.64e-6 1.54e-6 3.47e-6 1.04e-6
grv_frc_sat_sl 5.64e-6 1.91e-5 1.84e-5 1.08e-6 4.06e-6 9.52e-7
grv_frc_sat_sl_s_rp 4.90e-6 1.25e-5 1.54e-5 1.14e-6 3.84e-6 1.01e-6
grv_frc_sat_sl_s_acc 3.81e-6 8.95e-6 1.24e-5 1.07e-6 3.47e-6 9.26e-7
grv_frc_sat_sl_adap 1.60e-6 7.47e-7 2.96e-6 1.17e-6 3.37e-6 9.59e-7
grv_frc_slid 5.59e-6 1.97e-5 5.22e-5 1.37e-6 3.69e-6 9.41e-7
grv_frc_slid_s_rp 4.95e-6 1.25e-5 4.02e-5 1.33e-6 3.95e-6 1.03e-6
grv_frc_slid_s_acc 3.74e-6 9.03e-6 3.30e-5 1.76e-6 3.53e-6 8.83e-7
grv_frc_slid_adap 2.21e-6 1.29e-6 6.14e-6 1.95e-6 3.69e-6 8.77e-7
lin_FULL 7.16e-6 2.10e-6 2.00e-6 4.87e-6 8.84e-6 6.19e-7
lin_noCC 6.59e-6 2.09e-6 2.41e-6 4.69e-6 8.27e-6 6.11e-7
lin_FULL_s_rp 6.39e-6 1.39e-6 2.28e-6 4.85e-6 8.15e-6 5.95e-7
lin_noCC_s_rp 6.31e-6 1.40e-6 2.79e-6 4.82e-6 8.11e-6 5.14e-7
lin_FULL_s_acc 4.20e-6 1.06e-6 1.95e-6 4.96e-6 7.67e-6 5.43e-7
lin_noCC_s_acc 4.62e-6 1.14e-6 2.71e-6 4.88e-6 8.20e-6 5.40e-7
W-B_FULL 3.29e-6 1.53e-5 1.18e-5 1.67e-6 3.40e-6 6.77e-7
W-B_noCC 3.07e-6 1.53e-5 1.29e-5 1.74e-6 3.41e-6 6.84e-7
W-B_FULL_s_rp 2.79e-6 8.33e-6 8.08e-6 2.01e-6 3.29e-6 6.16e-7
W-B_noCC_s_rp 2.99e-6 8.27e-6 8.87e-6 1.49e-6 3.50e-6 6.94e-7
W-B_FULL_s_acc 1.97e-6 5.37e-6 5.37e-6 1.63e-6 3.41e-6 7.41e-7
W-B_noCC_s_acc 2.36e-6 5.54e-6 6.86e-6 2.48e-6 4.12e-6 9.67e-7
W-B_FULL_adap 1.14e-6 9.84e-7 1.94e-6 2.32e-6 3.26e-6 7.17e-7
W-B_noCC_adap 1.59e-6 9.57e-7 2.18e-6 1.68e-6 3.28e-6 8.38e-7
S-L_FULL 3.54e-6 1.31e-5 2.45e-5 4.20e-6 3.29e-6 7.41e-7
S-L_noCC 2.87e-6 1.47e-5 3.00e-5 3.67e-6 3.33e-6 6.23e-7
S-L_FULL_s_rp 3.07e-6 8.09e-6 1.77e-5 3.84e-6 3.59e-6 6.68e-7
S-L_noCC_s_rp 3.07e-6 7.65e-6 2.01e-5 4.26e-6 3.90e-6 8.18e-7
S-L_FULL_s_acc 2.11e-6 5.13e-6 1.21e-5 3.27e-6 3.79e-6 6.39e-7
S-L_noCC_s_acc 2.07e-6 4.92e-6 1.48e-5 4.02e-6 3.76e-6 6.27e-7
S-L_FULL_adap 1.32e-6 1.14e-6 3.71e-6 4.01e-6 2.97e-6 5.81e-7
S-L_noCC_adap 1.61e-6 1.09e-6 4.98e-6 3.41e-6 3.14e-6 6.25e-7
PA10_vel 1.13e-2 4.78e-5 6.29e-5 3.24e-5 1.26e-4 2.72e-5

Table F.9: Comparison of high to low frequency control torquepower ratio for different
controllers, platform trajectory: sin2_s20, PA10 trajectory: sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.22e-5 1.53e-4 5.13e-5 1.55e-5 2.17e-5 1.24e-5
sat_sl 2.16e-5 1.53e-4 4.91e-5 1.48e-5 2.20e-5 1.21e-5
slid 2.16e-5 1.54e-4 1.38e-4 5.16e-6 2.17e-5 1.26e-5
PID 2.19e-5 1.55e-4 5.09e-5 1.57e-5 2.18e-5 1.29e-5
grv_frc_PD 4.88e-6 1.09e-5 1.46e-5 8.38e-7 1.71e-6 4.94e-7
grv_frc_PD_s_rp 3.71e-6 6.20e-6 8.11e-6 9.20e-7 1.75e-6 6.86e-7
grv_frc_PD_s_acc 2.98e-6 4.34e-6 6.01e-6 8.72e-7 1.81e-6 6.29e-7
grv_frc_PD_adap 1.18e-6 1.19e-6 2.96e-6 9.63e-7 1.80e-6 6.48e-7
grv_frc_sat_sl 5.26e-6 1.15e-5 1.35e-5 8.69e-7 2.01e-6 6.67e-7
grv_frc_sat_sl_s_rp 3.92e-6 6.42e-6 7.40e-6 7.96e-7 1.69e-6 6.12e-7
grv_frc_sat_sl_s_acc 3.20e-6 4.89e-6 5.49e-6 7.87e-7 1.60e-6 6.28e-7
grv_frc_sat_sl_adap 1.01e-6 7.61e-7 3.86e-6 8.56e-7 1.87e-6 5.75e-7
grv_frc_slid 5.11e-6 1.12e-5 3.66e-5 1.16e-6 1.73e-6 7.00e-7
grv_frc_slid_s_rp 3.87e-6 6.37e-6 1.97e-5 1.09e-6 1.79e-6 6.45e-7
grv_frc_slid_s_acc 3.19e-6 4.59e-6 1.46e-5 1.13e-6 1.81e-6 6.00e-7
grv_frc_slid_adap 1.32e-6 1.34e-6 7.14e-6 1.17e-6 2.07e-6 6.27e-7
lin_FULL 9.55e-6 2.24e-6 5.54e-6 3.23e-6 4.39e-6 4.42e-7
lin_noCC 9.80e-6 2.15e-6 5.79e-6 3.24e-6 4.43e-6 4.99e-7
lin_FULL_s_rp 7.50e-6 1.67e-6 4.67e-6 3.27e-6 4.40e-6 4.74e-7
lin_noCC_s_rp 7.73e-6 1.58e-6 4.91e-6 3.21e-6 4.43e-6 3.61e-7
lin_FULL_s_acc 5.74e-6 1.69e-6 4.98e-6 3.44e-6 4.41e-6 5.87e-7
lin_noCC_s_acc 5.50e-6 1.43e-6 5.01e-6 3.15e-6 4.31e-6 3.97e-7
W-B_FULL 3.78e-6 1.34e-5 1.58e-5 1.63e-6 1.70e-6 5.10e-7
W-B_noCC 3.64e-6 1.20e-5 1.55e-5 1.27e-6 1.72e-6 5.97e-7
W-B_FULL_s_rp 2.99e-6 7.25e-6 9.13e-6 1.49e-6 1.92e-6 5.80e-7
W-B_noCC_s_rp 3.09e-6 6.55e-6 8.99e-6 1.52e-6 1.80e-6 5.66e-7
W-B_FULL_s_acc 2.24e-6 5.02e-6 6.26e-6 1.39e-6 1.90e-6 6.06e-7
W-B_noCC_s_acc 2.19e-6 4.32e-6 6.50e-6 1.26e-6 1.85e-6 5.51e-7
W-B_FULL_adap 1.16e-6 1.24e-6 3.28e-6 1.63e-6 1.77e-6 5.61e-7
W-B_noCC_adap 1.20e-6 1.24e-6 3.20e-6 1.49e-6 1.53e-6 6.24e-7
S-L_FULL 3.60e-6 1.24e-5 3.62e-5 2.68e-6 1.61e-6 5.05e-7
S-L_noCC 3.74e-6 1.18e-5 3.59e-5 2.54e-6 1.85e-6 5.27e-7
S-L_FULL_s_rp 2.88e-6 6.90e-6 2.02e-5 2.90e-6 1.72e-6 5.81e-7
S-L_noCC_s_rp 2.99e-6 6.36e-6 1.99e-5 2.83e-6 1.74e-6 6.07e-7
S-L_FULL_s_acc 2.20e-6 4.79e-6 1.51e-5 2.97e-6 1.96e-6 5.63e-7
S-L_noCC_s_acc 2.20e-6 4.16e-6 1.55e-5 2.75e-6 1.96e-6 4.95e-7
S-L_FULL_adap 1.78e-6 1.40e-6 7.58e-6 3.58e-6 1.56e-6 5.25e-7
S-L_noCC_adap 1.72e-6 1.38e-6 7.25e-6 2.69e-6 1.71e-6 5.39e-7
PA10_vel 1.15e-2 3.02e-5 2.97e-5 1.68e-5 3.35e-5 1.57e-5

Table F.10: Comparison of high to low frequency control torque power ratio for different
controllers, platform trajectory: sin2_s20, PA10 trajectory: ssine.

225



controller S1 S2 E1 E2 W1 W2
PD 2.76e-5 2.55e-4 1.62e-4 2.14e-5 2.89e-5 1.51e-5
sat_sl 2.81e-5 2.56e-4 1.61e-4 1.82e-5 2.92e-5 1.52e-5
slid 2.80e-5 2.55e-4 4.28e-4 7.91e-6 2.92e-5 1.49e-5
PID 2.74e-5 2.55e-4 1.61e-4 1.99e-5 2.95e-5 1.49e-5
grv_frc_PD 1.41e-5 1.12e-5 1.14e-5 1.68e-6 4.17e-6 8.60e-7
grv_frc_PD_s_rp 5.38e-6 8.24e-6 1.19e-5 1.29e-6 4.20e-6 1.00e-6
grv_frc_PD_s_acc 4.98e-6 6.62e-6 1.05e-5 1.48e-6 4.07e-6 1.01e-6
grv_frc_PD_adap 1.55e-6 1.03e-6 2.84e-6 1.62e-6 4.08e-6 9.48e-7
grv_frc_sat_sl 1.46e-5 1.13e-5 1.08e-5 1.43e-6 4.55e-6 1.08e-6
grv_frc_sat_sl_s_rp 5.35e-6 8.08e-6 1.17e-5 1.16e-6 4.34e-6 8.69e-7
grv_frc_sat_sl_s_acc 4.61e-6 6.99e-6 9.88e-6 1.18e-6 4.27e-6 8.79e-7
grv_frc_sat_sl_adap 1.06e-6 5.80e-7 3.13e-6 1.23e-6 4.14e-6 8.93e-7
grv_frc_slid 1.45e-5 1.13e-5 2.83e-5 1.38e-6 4.24e-6 8.09e-7
grv_frc_slid_s_rp 5.37e-6 8.08e-6 2.95e-5 2.02e-6 4.14e-6 8.87e-7
grv_frc_slid_s_acc 4.52e-6 6.70e-6 2.49e-5 1.47e-6 4.26e-6 8.85e-7
grv_frc_slid_adap 1.43e-6 1.03e-6 6.54e-6 1.57e-6 3.97e-6 8.18e-7
lin_FULL 9.43e-6 1.94e-6 1.89e-6 5.72e-6 1.03e-5 4.89e-7
lin_noCC 1.02e-5 1.96e-6 2.04e-6 5.70e-6 1.04e-5 4.94e-7
lin_FULL_s_rp 5.06e-6 1.17e-6 2.19e-6 5.56e-6 1.01e-5 4.99e-7
lin_noCC_s_rp 5.27e-6 1.19e-6 2.42e-6 5.58e-6 1.02e-5 4.89e-7
lin_FULL_s_acc 3.62e-6 1.11e-6 2.18e-6 5.85e-6 1.04e-5 5.99e-7
lin_noCC_s_acc 3.83e-6 1.08e-6 2.57e-6 5.60e-6 1.02e-5 4.79e-7
W-B_FULL 8.15e-6 1.23e-5 6.74e-6 1.86e-6 4.25e-6 6.12e-7
W-B_noCC 8.89e-6 1.15e-5 6.40e-6 2.10e-6 4.30e-6 6.43e-7
W-B_FULL_s_rp 3.67e-6 5.59e-6 4.59e-6 2.19e-6 4.45e-6 5.70e-7
W-B_noCC_s_rp 3.68e-6 5.37e-6 4.99e-6 2.16e-6 4.48e-6 6.98e-7
W-B_FULL_s_acc 2.16e-6 4.71e-6 3.61e-6 1.97e-6 4.36e-6 6.55e-7
W-B_noCC_s_acc 2.49e-6 3.96e-6 4.14e-6 1.97e-6 4.28e-6 6.17e-7
W-B_FULL_adap 8.79e-7 7.66e-7 2.22e-6 1.88e-6 4.31e-6 6.96e-7
W-B_noCC_adap 9.53e-7 7.96e-7 2.39e-6 1.94e-6 4.18e-6 7.43e-7
S-L_FULL 8.53e-6 1.20e-5 1.49e-5 4.10e-6 4.50e-6 7.63e-7
S-L_noCC 8.97e-6 1.13e-5 1.45e-5 3.65e-6 4.67e-6 6.66e-7
S-L_FULL_s_rp 3.55e-6 5.27e-6 1.06e-5 3.92e-6 4.72e-6 7.30e-7
S-L_noCC_s_rp 3.63e-6 5.34e-6 1.17e-5 3.35e-6 4.91e-6 7.96e-7
S-L_FULL_s_acc 2.44e-6 4.39e-6 8.22e-6 5.36e-6 5.04e-6 8.21e-7
S-L_noCC_s_acc 2.57e-6 4.15e-6 9.97e-6 3.41e-6 4.76e-6 7.32e-7
S-L_FULL_adap 1.33e-6 1.01e-6 5.29e-6 3.84e-6 4.64e-6 7.63e-7
S-L_noCC_adap 1.40e-6 1.13e-6 6.33e-6 3.22e-6 4.67e-6 8.53e-7
PA10_vel 1.14e-2 4.87e-5 5.13e-5 3.15e-5 1.42e-4 3.22e-5

Table F.11: Comparison of high to low frequency control torque power ratio for different
controllers, platform trajectory: sin2_s20_2, PA10 trajectory: sine.
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controller S1 S2 E1 E2 W1 W2
PD 1.79e-5 1.52e-4 3.65e-5 1.55e-5 2.02e-5 1.29e-5
sat_sl 1.78e-5 1.53e-4 3.45e-5 1.43e-5 2.04e-5 1.33e-5
slid 1.74e-5 1.52e-4 9.77e-5 5.24e-6 2.00e-5 1.30e-5
PID 1.83e-5 1.51e-4 3.61e-5 1.48e-5 2.04e-5 1.28e-5
grv_frc_PD 9.52e-6 6.09e-6 1.20e-5 9.46e-7 2.19e-6 5.80e-7
grv_frc_PD_s_rp 4.07e-6 4.51e-6 7.30e-6 1.01e-6 2.25e-6 6.53e-7
grv_frc_PD_s_acc 3.42e-6 3.35e-6 5.30e-6 1.01e-6 2.27e-6 6.96e-7
grv_frc_PD_adap 1.62e-6 1.28e-6 3.08e-6 1.07e-6 2.29e-6 7.02e-7
grv_frc_sat_sl 9.23e-6 6.20e-6 1.11e-5 8.53e-7 2.25e-6 5.66e-7
grv_frc_sat_sl_s_rp 3.86e-6 4.57e-6 6.87e-6 8.79e-7 2.35e-6 5.81e-7
grv_frc_sat_sl_s_acc 3.30e-6 3.06e-6 5.32e-6 8.54e-7 2.24e-6 5.71e-7
grv_frc_sat_sl_adap 1.16e-6 6.47e-7 3.57e-6 9.49e-7 2.29e-6 5.32e-7
grv_frc_slid 1.00e-5 6.42e-6 3.10e-5 1.27e-6 2.35e-6 6.65e-7
grv_frc_slid_s_rp 3.66e-6 4.59e-6 1.76e-5 1.09e-6 2.22e-6 5.52e-7
grv_frc_slid_s_acc 3.18e-6 3.24e-6 1.27e-5 1.04e-6 2.22e-6 4.97e-7
grv_frc_slid_adap 1.39e-6 1.26e-6 6.89e-6 1.10e-6 2.15e-6 5.90e-7
lin_FULL 1.47e-5 1.63e-6 4.93e-6 3.53e-6 5.86e-6 3.47e-7
lin_noCC 1.50e-5 1.52e-6 5.23e-6 3.41e-6 6.04e-6 3.67e-7
lin_FULL_s_rp 7.46e-6 1.31e-6 4.65e-6 3.65e-6 5.87e-6 3.74e-7
lin_noCC_s_rp 7.38e-6 1.29e-6 4.99e-6 3.76e-6 6.04e-6 4.04e-7
lin_FULL_s_acc 5.59e-6 1.32e-6 4.63e-6 3.83e-6 6.01e-6 3.99e-7
lin_noCC_s_acc 5.29e-6 1.20e-6 4.91e-6 3.81e-6 6.10e-6 3.57e-7
W-B_FULL 7.21e-6 9.69e-6 1.37e-5 1.50e-6 2.40e-6 5.11e-7
W-B_noCC 7.20e-6 8.63e-6 1.29e-5 1.42e-6 2.54e-6 4.96e-7
W-B_FULL_s_rp 3.31e-6 4.76e-6 7.38e-6 1.37e-6 2.41e-6 4.28e-7
W-B_noCC_s_rp 3.39e-6 4.37e-6 7.73e-6 1.45e-6 2.48e-6 4.98e-7
W-B_FULL_s_acc 2.41e-6 3.77e-6 5.47e-6 1.77e-6 2.52e-6 5.47e-7
W-B_noCC_s_acc 2.37e-6 3.39e-6 5.78e-6 1.64e-6 2.56e-6 5.24e-7
W-B_FULL_adap 1.41e-6 1.30e-6 3.34e-6 1.88e-6 2.62e-6 6.49e-7
W-B_noCC_adap 1.35e-6 1.23e-6 3.05e-6 1.50e-6 2.51e-6 5.86e-7
S-L_FULL 7.54e-6 8.92e-6 3.26e-5 2.62e-6 2.44e-6 5.55e-7
S-L_noCC 7.52e-6 8.12e-6 3.05e-5 2.93e-6 2.68e-6 5.43e-7
S-L_FULL_s_rp 3.31e-6 4.40e-6 1.78e-5 2.90e-6 2.57e-6 6.08e-7
S-L_noCC_s_rp 3.66e-6 4.12e-6 1.89e-5 2.68e-6 2.67e-6 5.89e-7
S-L_FULL_s_acc 2.50e-6 3.64e-6 1.28e-5 2.62e-6 2.56e-6 5.90e-7
S-L_noCC_s_acc 2.42e-6 3.36e-6 1.46e-5 2.82e-6 2.70e-6 5.09e-7
S-L_FULL_adap 1.78e-6 1.35e-6 8.74e-6 2.62e-6 2.69e-6 5.84e-7
S-L_noCC_adap 1.80e-6 1.40e-6 8.55e-6 2.63e-6 2.77e-6 6.21e-7
PA10_vel 1.15e-2 3.01e-5 2.32e-5 1.68e-5 3.11e-5 1.60e-5

Table F.12: Comparison of high to low frequency control torque power ratio for different
controllers, platform trajectory: sin2_s20_2, PA10 trajectory: ssine.
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controller S1 S2 E1 E2 W1 W2
PD 2.29e-5 2.75e-4 1.57e-4 2.35e-5 3.36e-5 1.29e-5
sat_sl 2.30e-5 2.75e-4 1.55e-4 1.95e-5 3.33e-5 1.39e-5
slid 2.33e-5 2.75e-4 4.19e-4 6.91e-6 3.31e-5 1.34e-5
PID 2.31e-5 2.75e-4 1.57e-4 2.27e-5 3.36e-5 1.33e-5
grv_frc_PD 3.45e-6 5.78e-6 9.62e-6 1.29e-6 2.97e-6 1.07e-6
grv_frc_PD_s_rp 3.80e-6 5.87e-6 1.01e-5 1.26e-6 3.40e-6 1.38e-6
grv_frc_PD_s_acc 3.76e-6 5.50e-6 9.76e-6 1.37e-6 2.96e-6 1.23e-6
grv_frc_PD_adap 1.37e-6 8.80e-7 2.39e-6 1.35e-6 2.81e-6 1.11e-6
grv_frc_sat_sl 3.63e-6 6.27e-6 1.02e-5 1.30e-6 3.69e-6 1.16e-6
grv_frc_sat_sl_s_rp 4.16e-6 6.16e-6 1.11e-5 1.48e-6 3.92e-6 1.61e-6
grv_frc_sat_sl_s_acc 3.58e-6 5.70e-6 1.04e-5 1.33e-6 3.61e-6 1.32e-6
grv_frc_sat_sl_adap 1.27e-6 8.08e-7 3.72e-6 1.53e-6 3.59e-6 1.46e-6
grv_frc_slid 3.61e-6 6.10e-6 2.62e-5 1.36e-6 3.14e-6 1.10e-6
grv_frc_slid_s_rp 3.96e-6 5.82e-6 2.59e-5 1.84e-6 3.05e-6 1.21e-6
grv_frc_slid_s_acc 3.79e-6 5.71e-6 2.58e-5 1.66e-6 3.05e-6 1.27e-6
grv_frc_slid_adap 1.51e-6 1.00e-6 6.29e-6 1.49e-6 3.13e-6 1.13e-6
lin_FULL 3.19e-6 8.51e-7 1.90e-6 4.86e-6 6.66e-6 7.43e-7
lin_noCC 3.79e-6 8.09e-7 2.46e-6 4.81e-6 6.40e-6 7.25e-7
lin_FULL_s_rp 3.18e-6 7.21e-7 1.95e-6 5.01e-6 6.58e-6 7.07e-7
lin_noCC_s_rp 4.02e-6 7.07e-7 2.40e-6 4.98e-6 6.66e-6 6.93e-7
lin_FULL_s_acc 3.44e-6 8.37e-7 2.01e-6 5.24e-6 7.11e-6 7.84e-7
lin_noCC_s_acc 3.90e-6 7.28e-7 2.50e-6 5.12e-6 6.60e-6 6.36e-7
W-B_FULL 1.49e-6 3.00e-6 3.04e-6 1.81e-6 2.85e-6 9.29e-7
W-B_noCC 1.94e-6 2.84e-6 4.26e-6 2.18e-6 2.95e-6 8.43e-7
W-B_FULL_s_rp 1.57e-6 2.45e-6 2.79e-6 2.33e-6 3.20e-6 1.02e-6
W-B_noCC_s_rp 1.85e-6 2.14e-6 3.87e-6 1.57e-6 3.15e-6 9.39e-7
W-B_FULL_s_acc 1.93e-6 3.04e-6 3.00e-6 1.73e-6 3.16e-6 1.04e-6
W-B_noCC_s_acc 1.95e-6 2.11e-6 3.89e-6 1.70e-6 3.07e-6 8.02e-7
W-B_FULL_adap 7.79e-7 6.42e-7 1.73e-6 1.53e-6 3.19e-6 8.54e-7
W-B_noCC_adap 8.96e-7 6.69e-7 1.85e-6 1.69e-6 3.11e-6 9.09e-7
S-L_FULL 1.44e-6 2.90e-6 6.59e-6 4.07e-6 3.46e-6 1.12e-6
S-L_noCC 1.80e-6 2.62e-6 9.30e-6 4.49e-6 3.40e-6 1.01e-6
S-L_FULL_s_rp 1.45e-6 2.14e-6 5.89e-6 3.61e-6 3.42e-6 1.14e-6
S-L_noCC_s_rp 1.87e-6 1.98e-6 9.43e-6 3.61e-6 3.29e-6 9.07e-7
S-L_FULL_s_acc 1.53e-6 2.38e-6 5.99e-6 3.32e-6 3.57e-6 8.83e-7
S-L_noCC_s_acc 1.91e-6 2.19e-6 8.44e-6 4.09e-6 3.35e-6 1.02e-6
S-L_FULL_adap 1.06e-6 9.18e-7 4.44e-6 3.64e-6 3.45e-6 1.11e-6
S-L_noCC_adap 1.26e-6 1.07e-6 5.07e-6 3.60e-6 3.42e-6 8.99e-7
PA10_vel 1.14e-2 5.24e-5 5.13e-5 3.86e-5 2.02e-4 3.19e-5

Table F.13: Comparison of high to low frequency control torque power ratio for different
controllers, platform trajectory: sea_all_2, PA10 trajectory: sine.
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controller S1 S2 E1 E2 W1 W2
PD 2.20e-5 1.60e-4 3.55e-5 1.57e-5 2.28e-5 1.14e-5
sat_sl 2.12e-5 1.58e-4 3.45e-5 1.51e-5 2.31e-5 1.17e-5
slid 2.16e-5 1.58e-4 1.00e-4 5.12e-6 2.30e-5 1.15e-5
PID 2.15e-5 1.59e-4 3.58e-5 1.57e-5 2.30e-5 1.12e-5
grv_frc_PD 2.54e-6 2.62e-6 4.43e-6 8.64e-7 1.46e-6 7.66e-7
grv_frc_PD_s_rp 2.55e-6 2.37e-6 4.04e-6 9.17e-7 1.54e-6 9.08e-7
grv_frc_PD_s_acc 2.51e-6 2.38e-6 3.85e-6 9.22e-7 1.53e-6 8.67e-7
grv_frc_PD_adap 9.51e-7 1.14e-6 2.72e-6 9.04e-7 1.48e-6 8.35e-7
grv_frc_sat_sl 2.61e-6 2.97e-6 4.57e-6 1.03e-6 1.83e-6 8.75e-7
grv_frc_sat_sl_s_rp 2.85e-6 2.86e-6 4.36e-6 1.02e-6 1.77e-6 1.05e-6
grv_frc_sat_sl_s_acc 2.82e-6 2.81e-6 4.07e-6 1.01e-6 1.73e-6 1.02e-6
grv_frc_sat_sl_adap 9.58e-7 8.68e-7 4.02e-6 1.12e-6 1.83e-6 1.06e-6
grv_frc_slid 2.60e-6 2.66e-6 1.18e-5 1.28e-6 1.59e-6 7.53e-7
grv_frc_slid_s_rp 2.67e-6 2.49e-6 1.06e-5 1.28e-6 1.55e-6 8.78e-7
grv_frc_slid_s_acc 2.82e-6 2.63e-6 1.06e-5 1.31e-6 1.62e-6 9.59e-7
grv_frc_slid_adap 1.11e-6 1.31e-6 6.91e-6 1.12e-6 1.53e-6 7.92e-7
lin_FULL 3.53e-6 1.13e-6 4.39e-6 3.30e-6 3.60e-6 5.61e-7
lin_noCC 4.05e-6 1.05e-6 4.52e-6 3.28e-6 3.58e-6 6.12e-7
lin_FULL_s_rp 3.93e-6 1.10e-6 4.29e-6 3.45e-6 3.82e-6 6.19e-7
lin_noCC_s_rp 4.31e-6 9.86e-7 4.42e-6 3.48e-6 3.77e-6 5.84e-7
lin_FULL_s_acc 3.95e-6 1.13e-6 4.32e-6 3.46e-6 3.88e-6 6.28e-7
lin_noCC_s_acc 4.22e-6 1.03e-6 4.45e-6 3.42e-6 3.89e-6 5.39e-7
W-B_FULL 1.71e-6 2.71e-6 4.43e-6 1.47e-6 1.62e-6 9.43e-7
W-B_noCC 1.68e-6 2.22e-6 4.97e-6 1.50e-6 1.60e-6 6.42e-7
W-B_FULL_s_rp 1.82e-6 2.24e-6 3.80e-6 1.46e-6 1.61e-6 7.82e-7
W-B_noCC_s_rp 1.75e-6 1.99e-6 4.63e-6 1.45e-6 1.59e-6 7.80e-7
W-B_FULL_s_acc 1.59e-6 2.36e-6 3.70e-6 1.35e-6 1.59e-6 7.73e-7
W-B_noCC_s_acc 1.77e-6 1.98e-6 4.52e-6 1.37e-6 1.60e-6 6.70e-7
W-B_FULL_adap 6.96e-7 9.71e-7 2.57e-6 1.63e-6 1.79e-6 7.20e-7
W-B_noCC_adap 7.34e-7 1.01e-6 2.40e-6 1.46e-6 1.65e-6 7.82e-7
S-L_FULL 1.36e-6 2.42e-6 9.52e-6 2.51e-6 1.75e-6 7.68e-7
S-L_noCC 1.55e-6 2.28e-6 1.14e-5 2.83e-6 1.87e-6 7.82e-7
S-L_FULL_s_rp 1.59e-6 2.10e-6 8.81e-6 2.42e-6 1.77e-6 8.78e-7
S-L_noCC_s_rp 1.64e-6 1.71e-6 1.09e-5 2.76e-6 1.92e-6 8.40e-7
S-L_FULL_s_acc 1.58e-6 2.32e-6 8.21e-6 2.63e-6 1.84e-6 7.68e-7
S-L_noCC_s_acc 1.61e-6 1.96e-6 1.00e-5 2.78e-6 1.90e-6 9.10e-7
S-L_FULL_adap 1.01e-6 1.23e-6 6.54e-6 2.49e-6 1.84e-6 8.51e-7
S-L_noCC_adap 1.13e-6 1.38e-6 6.42e-6 3.16e-6 1.93e-6 7.16e-7
PA10_vel 1.13e-2 4.18e-5 2.61e-5 2.13e-5 3.28e-5 2.03e-5

Table F.14: Comparison of high to low frequency control torque power ratio for different
controllers, platform trajectory: sea_all_2, PA10 trajectory: ssine.
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