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Abstract

In the first part of this thesis millimetre-wave interferometric imagers are considered

for short-range applications such as concealed weapons detection. Compared to real

aperture systems, synthetic aperture imagers at these wavelengths can provide improve-

ments in terms of size, cost, depth-of-field (DoF) and imaging flexibility via digital-

refocusing. Mechanical scanning between the scene and the array is investigated to

reduce the number of antennas and correlators which drive the cost of such imagers.

The tradeoffs associated with this hardware reduction are assessed before to jointly

optimise the array configuration and scanning motion. To that end, a novel metric is

proposed to quantify the uniformity of the Fourier domain coverage of the array and is

maximised with a genetic algorithm. The resulting array demonstrates clear improve-

ments in imaging performances compared to a conventional power-law Y-shaped array.

The DoF of antenna arrays, analysed via the Strehl ratio, is shown to be limited even

for infinitely small antennas, with the exception of circular arrays.

In the second part of this thesis increased DoF in optical systems with Wavefront

Coding (WC) is studied. Images obtained with WC are shown to exhibit artifacts

that limit the benefits of this technique. An image restoration procedure employing a

metric of defocus is proposed to remove these artifacts and therefore extend the DoF

beyond the limit of conventional WC systems. A transmission optical microscope was

designed and implemented to operate with WC. After suppression of partial coherence

effects, the proposed image restoration method was successfully applied and extended

DoF images are presented.
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Chapter 1

Introduction

Fourier optics can be defined as the treatment of classical optics, and in particular

imaging systems, with Fourier analysis tools. In signal processing these mathematical

tools state that any signal can be decomposed into a finite, or infinite, number of

sinusoids with different frequencies, amplitudes and phases. Similarly, in optics it is

possible to decompose the radiation of a source into a set of plane waves with different

amplitudes and propagating in different directions [1]. The performances of imaging

systems can be characterised by analysing their ability to transmit and record these

plane waves, also called spatial frequencies. When the source or object lies in the

far-field of an incoherent optical system, simplifications can be made to reduce the

image formation process to a spatial filtering of the object by the point-spread-function

(PSF) of the optical system. In this thesis we apply Fourier-optics analysis to imaging

systems as different as millimetre-wave synthetic aperture imagers, wavefront coding

systems and optical microscopes. This choice of applications was originally motivated

by the availability of research funding in these two separate fields, which were treated

independently from each other to a large extent. We will show however that these

imaging modalities share a wealth of common principles, tradeoffs and issues.

The spatial resolution is a critical parameter of every imaging systems. By spatial

resolution one usually refers to the transverse resolution of an imaging system, although

the term can also include the equally important axial resolution. The latter is propor-

tional to the depth-of-field (DoF) of the system which is more commonly discussed
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in the literature. The spatial resolution is well known to be intimately related to the

radiometric sensitivity or signal-to-noise ratio (SNR) in the image. Indeed, if noise-free

conditions were obtained, one could build a perfect model of the source and achieve

an infinitely high resolution by interpolation. Thus it should be kept in mind that the

DoF also fundamentally depends on the SNR in the image. The central question across

this thesis is that of the limited DoF in the seemingly very different imaging systems

mentioned above. Objects that lie outside the depth-of-focus region (the object space

conjugate to the DoF) of an imaging system appear in the recorded image as strongly

blurred or washed out compared to the image of an in-focus object. In conventional

imaging systems such as photography the DoF must be traded with the transverse

resolution and light throughput. In optical microscopy, high-numerical-aperture optics

are employed to achieve high spatial resolution. This may be desirable to exclude ob-

ject features that lie outside the region of interest. In conventional optical systems,

light outside the focal plane is spread over a wider transverse region but the integrated

intensity of light in each transverse plane remains constant. This is not true of confocal

microscopes, which use a pinhole in front of a single detector to further attenuate light

coming from out-of-focus features, and are therefore said to have an optical sectioning

ability. In confocal fluorescence microscopy one seeks to minimise the size of the exci-

tation spot in order to selectively excite molecules of interest to increase the SNR in

the image, and to minimise tissue damage. Conversely it may be desirable to attain

a large DoF, i.e. a low axial resolution, to record a two-dimensional projection of a

three-dimensional stack in a snapshot. Such examples can be found in microscopy to

understand the surface structure of a sample, or to monitor rapid dynamic biological

processes.

The limited DoF of imaging systems is due to their redundant sampling of the Fourier

domain. When the system is in-focus these redundant measurements add up in-phase.

The amount of redundant measurements at each spatial frequency determines the mod-

ulation transfer function (MTF) of the system, i.e. the transmittance of the system

for each spatial frequency. In the presence of defocus however, different points in the

aperture contribute to the sampling of the Fourier domain with a phase term that

is proportional to the square of the distance to the aperture origin. Thus, with in-
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creasing amount of defocus, redundant measurements at each spatial frequency add

up increasingly out of phase until the sum eventually reaches zero and then oscillates.

This results in a degradation of the MTF of the system, which attenuates or even

suppresses spatial frequencies from the object spectrum. The term DoF refers to the

maximum amount of defocus for which the loss of transmitted information compared

to the in-focus system is deemed acceptable. Wavefront coding (WC) systems offer

reduced sensitivity to defocus by removing the destructive interferences between re-

dundancies in the aperture plane with a specifically designed phase filter. The tradeoff

for this reduced sensitivity to defocus is an attenuation of the in-focus MTF, which

can be compensated for with a digital post-processing. Real-aperture millimetre-wave

personnel scanners also suffer from a limited DoF and could theoretically benefit from

the WC technique. Synthetic aperture imagers at these wavelengths on the other hand

have greatly reduced redundancies in the aperture and generally provide an extended

DoF.

Among the physical quantities central to this thesis is the complex degree of coher-

ence of light. In millimetre-wave synthetic aperture imaging, recording this quantity

allows the reconstruction of the brightness temperature distribution of an incoherent

source via the Van-Cittert Zernike theorem [2]. In transmission optical microscopy,

the complex degree of coherence in the object plane is a critical parameter since it de-

termines the image formation mechanism, coherent, incoherent or partially coherent,

and consequently determines the balance between contrast and resolution. Other sim-

ilarities unite the wavefront coding (WC) and synthetic aperture imaging techniques.

Similar to incoherent imaging systems considered for WC, synthetic aperture arrays

have a cutoff frequency given by the aperture of the array normalised to the wavelength.

The spatial filtering inherent to image formation in optical systems is performed digi-

tally in millimetre-wave synthetic aperture imagers. Synthetic aperture arrays however

have a PSF that can exhibit high sidelobe levels because of their sparse coverage of

the Fourier domain. Even in the ideal case of a hypothetical array that sampled the

Fourier domain perfectly uniformly, the sinc-type PSF would have a maximum sidelobe

level a factor of 2 higher than that of a diffraction-limited real-aperture imager which

has a sinc2-type PSF. These sidelobes greatly degrade the image by inducing strong
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oscillations and replicas. In most cases it is therefore necessary to deconvolve the image

in order to attenuate these artifacts. This is similar to WC systems. Thus one faces

the same tradeoff associated with digital deconvolution methods, namely that between

noise amplification and image sharpness. One may further emphasise the strong links

between the different imaging modalities discussed in this thesis by looking at their

successful combination in recently developed imaging techniques. Such examples in-

clude optical coherence tomography (OCT) [3, 4], where low coherence interferometry

is used to decouple the high transverse resolution achieved in microscopy from the

axial resolution to record a three-dimensional image, interferometric synthetic aper-

ture microscopy (ISAM) a computational imaging method built on OCT that achieves

depth-invariant transverse resolution by solving the inverse scattering problem [5]. Re-

cent breakthroughs in super-resolution optical microscopy have also been enabled by

the joint exploitation of these techniques, e.g. as in stimulated emission depletion

(STED) fluorescence microscopy where a doughnut-shaped depletion beam engineered

with a binary phase masks is employed to attain subdiffraction resolution [6], or in

structured illumination microscopy (SIM) where interferometric fringes are projected

onto the sample to shift the spatial frequency coverage of the microscope objective

[7, 8].

During recent years microwave radiometry has been widely studied in remote sensing

[9], medical imaging and personnel scanning [10, 11, 12]. Imagers at these wavelengths

provide an image of the brightness temperature of the target and are currently being

deployed at public sites for personal screening and threat detection such as weapons or

explosives. Imagers at these wavelengths provide a spatial resolution of the order of the

wavelength, typically 10mm, that is sufficient for threat detection applications. There

are privacy concerns associated with the screening of the brightness temperature of hu-

man bodies at this spatial resolution. However millimetre-wave scanners may provide

a more acceptable compromise between resolution and privacy than higher resolution

imaging modalities such as x-ray scanners. Moreover, in spite of the very small doses

emitted by x-ray scanners operating in backscatter mode (doses per scan are typically

60 times smaller than the daily exposure to x-ray due to background radiation [13]),

millimetre-waves present the significant advantage of being non ionising. Real-aperture
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millimetre-wave personnel scanners are necessarily fairly large in transverse and depth

dimensions, even when multiple reflections are used to reduce their depth. They also

suffer from a limited depth-of-field (DoF), typically of the order of 50cm at a 2m dis-

tance, because of the fast optics required to achieve high spatial resolution. On the

other hand synthetic aperture systems may be less thick, offer increased imaging flexi-

bility due to their beam-steering ability and can be designed to offer an extended DoF.

Synthetic aperture arrays require N small aperture antennas to form a high resolution

image with ≈ N ×N pixels. The raw image data consists of the cross-correlation be-

tween pairs of antenna signals, and must be digitally processed to form the final image.

When the scene lies in the far-field of the array, the image reconstruction is reduced

to performing a Fourier transform. Synthetic aperture imaging has been successfully

applied to radio-astronomy and the remote-sensing of the earth [14, 2], where a wealth

of useful literature can be found and applied to short-range imaging [15]. The earth

rotation synthesis (ERS) technique used in astronomy [2] is such an example. This

imaging technique extends the aperture synthesis principle by taking advantage of the

earth’s rotation to reduce the array complexity at the cost of a very long observation

time (typically several hours). In the first part of this thesis we seek to apply the ERS

principle to short-range synthetic aperture millimetre-wave imagers in order to reduce

their array complexity and therefore their cost. Indeed the cost of such systems is

still driven by the cost of receivers, typically around £1000 per receiver. In Chapter

2 the fundamentals of millimetre-wave synthetic aperture imaging are described. We

highlight the tradeoffs between antenna count, imaging frame rate and radiometric sen-

sitivity when a motion is introduced between the source and the array. A significant

difficulty in synthetic aperture imaging is the understanding of the accumulation of

noisy signals, radiated by the source, into the correlator’s output. Our analysis of the

radiometric sensitivity in the reconstructed image follows the rigourous work by Ruf

et al. in [9]. Chapter 3 deals with the system design and the combined optimisation

of the array and its motion relative to the source. When the array is in translation

relative to the scene, the technique is known as radiometric synthetic aperture radar

(RADSAR) [16]. For personnel scanners however we show that rotational scanning pro-

vides a more efficient sampling of the Fourier space. We therefore propose to optimise
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the Fourier domain coverage of antenna arrays after rotational scanning, a technique

we term aperture rotation synthesis. To that end a metric of the uniformity of the

Fourier domain coverage of the array was developed. Uniform coverage of the Fourier

domain was previously proposed [17] but a quantitative metric of coverage uniformity

is scarcely discussed. The metric we propose is similar to that described in [18] but is

more computationally efficient and is more rigourously derived. It therefore contributes

to improving array design and the understanding of its underlying principles. An array

design is presented after optimisation of this metric with a genetic algorithm (GA)

[19]. The imaging performances of this array are compared to more conventional ar-

rays, e.g. Y-shaped arrays, using simulated millimetre-wave scenes. The sensitivity of

the proposed technique to instrument errors is discussed in a final section. The results

presented in this Chapter have been published in [20, 21]. In Chapter 4 we show that

the depth-of-field of millimetre-wave synthetic aperture imagers can be derived in the

same way as for real-aperture optical systems. This analysis shows that real-aperture

millimetre-wave personnel scanners suffer from a limited depth-of-field and that syn-

thetic aperture arrays enable an extended DoF. Based on this analysis a new antenna

array is designed using the approach described in Chapter 3, with the additional con-

straint that the antennas be circularly distributed. This added constraint results in

the convergence of the GA to an array that exhibits a slightly reduced uniformity in its

coverage of the Fourier domain. This is however outweighed by the greatly increased

DoF of this array, which suppresses the need for digital refocusing at different ranges.

In the second part of this thesis we study hybrid optical/digital systems that offer a

larger depth-of-field than diffraction limited imaging systems, without sacrificing their

light gathering ability or transverse resolution. In such imaging systems the optical

design is optimised to account for image quality improvements that can be achieved

with a post-processing digital image restoration. Such systems are sometimes referred

to as integrated computational imaging systems (ICIS). An early ICIS system combined

an apodised pupil function with a Wiener restoration to extend the DoF [22, 23].

The apodised amplitude pupil function however reduces the light throughput of the

system. The benefits of this approach to designing imaging systems were accentuated

after image restoration methods successfully corrected for the spherical aberrations
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present in the early images measured by the Hubble Space Telescope [24, 25]. This

new paradigm was further advanced by Dowski et al. [26] who devised a technique they

termed “Wavefront Coding”. It consists of locating a phase filter in the entrance pupil

of the system so that its sensitivity to defocus is much decreased. The effect of the

phase filter can be understood by looking at the optical transfer function (OTF), which

characterises the transmittance of object spatial frequencies by the optical system.

Contrary to the OTF of diffraction limited systems, the OTF is now relatively invariant

with defocus and does not exhibit nulls at specific spatial frequencies and defocus

values. In that way, the image recorded is blurred but is easily restored with a single

filter for a large range of defocus values.

In Chapter 5 different techniques to extend the DoF of imaging systems are reviewed

and the principles of wavefront coding are described. We detail two approaches to de-

signing pupil phase masks. The first one is analytical and leads to cubic phase masks.

It is based on the constraint that an approximation of the amplitude of the ambiguity

function be constant with respect to defocus [26]. The second method, proposed by

Prasad et al. [27] and termed pupil phase engineering, involves the numerical optimi-

sation of two competing terms: the sensitivity to defocus and the image restorability.

This approach is attractive in that it directly addresses the tradeoff between a reduc-

tion of the sensitivity of the system to defocus and an attenuation of the amplitude of

spatial frequencies transmitted by the system. This attenuation degrades the spatial

resolution of the recorded image which appears blurred and must be digitally restored.

We also describe a novel metric of the defocus sensitivity of the system proposed in

[28] which allows for an efficient optimisation of pupil phase functions. We discuss

different metrics of image restorability and argue that the Strehl ratio metric employed

in [27, 28] is inappropriate because it is biased by phase effects such as a transverse

translation of the PSF. When using the Strehl ratio metric our results are in agree-

ment with those obtained in [27]. However, changing the image restorability metric to

exclude phase information drastically changes the phase mask design, which becomes

very close to the cubic phase masks derived by Dowski et al. in [26].

7



Extended DoF images obtained with pupil phase encoded systems are well known

to suffer from image artifacts. Surprisingly, very few publications can be found on

this subject, although they are mentioned and explained in [29]. The origin of these

artifacts mostly resides in the variations with defocus of the phase of the OTF. This

argument is illustrated with practical examples and a method is devised to remove these

artifacts, which are used as a signature of the defocus effect to estimate the defocus

parameter W20. The recorded image is then restored with the appropriate filter. This

image restoration procedure has been registered as a US patent [30]. The robustness of

several metrics of defocus are assessed. We demonstrate that small errors of the order

of λ/4 in the defocus estimate still allow for a significant reduction of the amplitude

of these artifacts. In Chapter 6 the potential benefits and challenges of implementing

WC in transmission microscopy are described. A transilluminated optical microscope

is designed and implemented to accommodate pupil phase filters. This allows us to

test experimentally the algorithms and metrics described in Chapter 5.
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Chapter 2

Theory of millimetre-wave aperture

synthesis imaging

2.1 Introduction

Passive and semi-passive mm-wave imaging techniques are currently receiving con-

siderable attention for short-range imaging, such as personnel scanners, due to their

ability to detect concealed weapons through obscurants such as clothing [10, 11, 12]. In

contrast to conventional real-aperture imaging systems, synthetic aperture systems al-

low for digital refocusing using an antenna array that is sparse and essentially planar.

For space-borne remote sensing applications, synthetic aperture imagers have tradi-

tionally been considered for the recording of high-spatial-resolution images in a single

snapshot. Snapshot operation necessarily requires a large number of antennas, which

contributes to the high cost of these systems. It is therefore highly desirable to reduce

the antenna count without adversely affecting the spatial resolution of the imager. To

that end it is possible to take advantage of a relative motion between the array and

the source. In Earth rotation synthesis [2], a technique used in radio-astronomy, the

motion is naturally provided by the rotation of the earth relative to the source. For

near-field imaging the motion can be provided by an airborne or spaceborne platform

in translation relative to the source. Examples of such scanning techniques are found

in synthetic aperture radar (SAR), and the currently developed radiometric synthetic

aperture radar (RADSAR) [16]. Since the visibility samples are recorded in time-
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sequence, the reduction in antenna-count is achieved at the cost of either a reduced

imaging frame-rate or a reduced radiometric sensitivity.

In section 2.2 and 2.3 we recall the fundamental imaging equations and image recon-

struction algorithms for near-field imaging [15], before considering in Section 2.4 the

requirements of the array to adequately sample the near-field image spatial frequen-

cies. Section 2.5 presents an analysis of the spectrum of the interference pattern for

different antenna-pair configurations. The tradeoffs associated with the reduction in

array complexity are discussed in Section 2.6. In comparison with a snapshot aperture

synthesis radiometer, the time-sequential recording of nt visibility data sets will be

shown to enable the number of antennas to be reduced by a factor of approximately
√
nt without reduction in spatial resolution or sampling density.

2.2 The Visibility Function

In aperture synthesis one aims to construct an image of the brightness temperature

distribution of a radiating source with an array of antennas. The image formed is based

on the mm-wave signals recorded by each antenna, which are then correlated by pair.

These measurements constitute samples of the so-called visibility function. Conven-

tional synthetic aperture imagers record N(N − 1) samples of the complex visibility

function in a snapshot using N antennas. Figure 2.1 shows a simple antenna configura-

tion with N = 2, recording a source with a brightness temperature distribution TB(~r),

where ~r is the vector from the origin of the antenna array to a point on the source.

In the far-field, the spatial frequency recorded by a pair of antennas equals the

length of this baseline measured in wavelengths and projected onto a plane normal to

the direction of the source [2]. Since the projected baseline varies with the direction of

the source, it is possible to record several spatial frequencies with a single baseline in

a time-sequence. The modus-operandus of the Earth-rotation-synthesis technique [2],

used in radio astronomy, takes advantage of this principle. The visibility function for

a pair of antennas denoted by indices n and m is described in [15]:
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Figure 2.1: Antenna configuration. The source S is in the far-field of the antennas but

in the near-field of the baseline formed by antennas 1 and 2.

Vnm =
kB∆ν√
ΩnΩm

∫∫

S

TB(~r)Knm(~r)FW (∆rnm,∆ν)e
− j2π

λ0
∆rnm dS , (2.1)

where:

Knm(~r) =
1

‖~rn‖‖~rm‖
√
Pn(~r)Pm(~r) cos θn cos θm , (2.2)

∆rnm = ‖~rn‖ − ‖~rm‖ , (2.3)

‖~rn‖ =
√

(xn − x)2 + (yn − y)2 +R2 , (2.4)

= r

√
1 − 2

(xn

r
sin θ cosϕ+

yn

r
sin θ sinϕ

)
+
(xn

r

)2

+
(yn

r

)2

, (2.5)

and kB is the Boltzmann constant, ∆ν is the bandwidth of the antenna channels,

Ωn and Ωm are the beam solid-angles of antenna n and m respectively, TB(~r) is the

brightness temperature distribution of the source, Knm(~r) is an amplitude term due to

the power patterns of antenna n and m, Pn(~r) and Pm(~r) denote the antenna power

pattern of antenna n and m respectively. The antennas may be oriented so that they

point at a specific point source, as shown in Figure 2.1. The angles between a point

source at location ~r and the beam centre of antennas n and m is denoted by θn and

θm respectively. It is assumed that the scene is in the far-field of the array elements,

but in the near-field of the array. FW is the fringe-wash function and depends on the

frequency response of the antenna channels and the path difference ∆rnm between the

point source at ~r and antennas n and m. Note the dependance of ∆rnm on ~r has

been omitted to simplify the notations. The expression for the fringe wash function for
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antenna channels with constant gain over the bandwidth ∆ν is:

FW (∆rnm,∆ν) =
sin π∆ν∆rnm/c

π∆ν∆rnm/c
. (2.6)

For wide-band signals, of the order of 10GHz at a centre frequency ν0 = 94GHz for

example, the first nulls of the fringe wash function can be located within the field-

of-view (FoV), e.g. ≈ 30◦. This results in a degradation in the signal-to-noise ratio

(SNR) of the visibility samples measured, and also of the reconstructed image. One

possible solution to reduce this degradation is to introduce artificial delay lines into one

antenna channel of each baseline so as to translate the fringe-wash function in azimuth.

Maximum signal power can then be recorded over the entire FoV by appropriately

choosing these time delays. For a single baseline, the lost signal is recovered by summing

all these translated, fringe-washed interference patterns. Another approach consists in

splitting the wide-band signal into a set of narrow-band signals such that their fringe

washing can be neglected over the FoV. The narrow band signals must be correlated

separately and an image is formed at each subband. These subband images have higher

noise levels than the full bandwidth image but can be averaged together to reduce the

noise back to the same level. These two approaches are reminiscent of the XF and

FX correlators [2], which use the WienerKhinchin theorem [2] to implement the signal

correlation in the time and spectral domains respectively.

Eq. (2.1) represents a projection of the brightness distribution onto a set of

weighted interference patterns. When the source is in the far-field of the array, these

interference patterns are complex exponentials and are invariant in the direction or-

thogonal to the baseline. However, when the source is in the near-field of the array, the

frequencies of these interference patterns are chirped and the orientation of the fringes

is spatially variant over the source extent.

2.3 Image Reconstruction Algorithm

When the source is located in the far-field of the array, the Van Cittert-Zernike theorem

states that the visibility function is equal to the Fourier Transform of the brightness

temperature distribution of the source [2]. Hence the image reconstruction is reduced

to an inverse Fourier Transform. In the near-field of the array however, this relationship
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is no longer valid and the image reconstruction must account for the amplitude and

frequency modulations of the interference patterns. This can be achieved by cross-

correlating the visibility function with the function Φnm(~r), defined as the interference

pattern weighted by the inverse of the amplitude modulation [15]:

T̂B(~r) =
1

N(N − 1)

N∑

n=1
n 6=m

N∑

m=1

VnmΦ∗
nm(~r) , (2.7)

with:

Φnm(~r) =
e
− j2π

λ0
∆rnm

Knm(~r)
. (2.8)

For simplicity the fringe-wash function was neglected since this term can be removed

with one of the two methods described in the previous section. Eq. (2.7) can be

rewritten as the linear combination of the scene TB(~r) and a spatially variant PSF

noted h(~r′, ~r):

T̂B(~r) ∝
∫∫

S′

TB(~r′)h(~r′, ~r) dS ′ , (2.9)

with h(~r′, ~r) defined as:

h(~r′, ~r) =
1

N(N − 1)

N∑

n=1
n 6=m

N∑

m=1

Knm(~r′)

Knm(~r)
e

j2π
λ0

(∆r′nm−∆rnm)
. (2.10)

For simplification the system is approximated as linear and translation invariant and

Eq. (2.9) is reduced to:

T̂B(~r) ∝
∫∫

S′

TB(~r′)h0(~r − ~r′) dS ′ , (2.11)

where h0(~r) = h(~r0, ~r) is the PSF at the origin of the synthesised map. For small anten-

nas, of the order of a wavelength, and for short-range personnel scanning applications

one can approximate the term Knm(~r0)/Knm(~r) to unity over the FoV, typically 30◦.

Hence Eq. (2.10) becomes:

h0(~r) =
1

N(N − 1)

N∑

n=1
n 6=m

N∑

m=1

e
j2π
λ0

(∆r0nm−∆rnm)
,

=
2

N(N − 1)

N∑

n=1

N∑

m=n+1

cos

[
2π

λ0

(∆r0nm − ∆rnm)

]
. (2.12)

Eq. (2.12) shows that the PSF of the array is real and is given by the sum of all the

interference patterns obtained with each antenna pair. It is important to note that in

13



contrast with conventional real aperture imaging systems, the PSF h(~r′, ~r) can have

negative values because the autocorrelation terms (i.e. m = n) are excluded from the

correlation in Eq. (2.7).

2.4 Spatial Resolution and Sampling Requirements

Each antenna pair in the array forms an interferometer which records different inter-

ference patterns with spatial frequencies denoted as u and v. The longest baseline in

the array is denoted as D. When imaging a source at a range R that is in the near-field

of the array, i.e. when the far-field approximation D2/λ0 << R does not hold, the

stationary phase principle can be used to provide a first-order approximation of the

spatial frequencies (u, v) recorded at a position ~r:

u(~r) = 1
λ0

∂∆rnm

∂θ

∣∣∣
ϕ=0

, v(~r) = 1
λ0

∂∆rnm

∂θ

∣∣∣
ϕ=π/2

. (2.13)

The highest spatial frequency umax recorded by the array at the origin of the source

(θ = 0), assuming a horizontal baseline such that xn = −xm (ym = yn = 0) and

xm − xn = D, is obtained by combining Eq. (2.13) with Eq. (2.3) and (2.5):

umax =
D

λ0

1√
1 + D2

4R2

. (2.14)

To restrict the aliased responses to regions outside the synthesised map, the sampling

period ∆u and ∆v in the Fourier domain must obey the Nyquist sampling requirements:

∆u ≤ 1
2 sin θmax

, ∆v ≤ 1
2 sin θmax

. (2.15)

where θmax is the maximum zenith angle within the FoV. In the case of a one-dimensional

imager, the minimum number of samples M required in the Fourier interval [0, umax]

is:

M =
umax

∆u
=
D

λ0

2 sin θmax√
1 + D2

4R2

. (2.16)

For a representative system used in personnel scanning, a diffraction-limited system

with an aperture diameter of D = 0.7m and a centre frequency ν0=94GHz is used

as a reference. In the Fraunhoffer region, the angular resolution of this system is

1.22λ0/D. For a source at close range, e.g. R = 2m, the radius of the Airy disk
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is approximately 11mm. Considering a 28◦ FoV, i.e. θmax = 14◦, the number of

measurements M required to Nyquist sample the Fourier plane with a cutoff frequency

umax is approximately 36,500. A conventional interferometric array would require 192

elements to record the visibility samples in a snapshot. We aim to reduce this antenna-

count, typically by an order of magnitude, to reduce the system complexity and cost.

2.5 Frequency content of the interference pattern

In this section the frequency content of the interference pattern recorded by a baseline

in motion with respect to a point-source is analysed. An important configuration is

considered here and consists of a translation motion along the X-axis between the

baseline and the point source. The output of the correlator is expressed as:

V(θ) = A(θ)ejφ(θ) , (2.17)

with:

A(θ) =

√
P1(r1)P2(r2) cos θ1 cos θ2

r1r2
FW (∆r,∆ν) , (2.18)

and φ(θ) = 2π∆r/λ. Eq. (2.17) represents an amplitude and frequency-modulated

complex signal, sometimes referred to as chirp and illustrated in Figure 2.2. One way

to analyse the frequency content of this signal is by looking at its Fourier transform,

denoted by χ(u) and written as:

χ(u) =

∫ +∞

−∞
A(θ)ejφ(θ)e−j2πuθ dθ . (2.19)

We recall that the Fourier Transform in Eq. (2.19) is equivalent to a projection of

V(θ) onto the set of complex exponentials e−j2πuθ. Moreover, in Eq. (2.19) there may

exist frequencies u for which the rate of change in φ(θ) is very different from the rate

of change in the term 2πuθ. This results in a neglectable projection in Eq. (2.19) and

no net contribution to the integral value. Contribution to the integral will occur when

the two phases have similar rate of change, see [31], i.e. for frequencies u that satisfy

the following relation:

2πu =
∂φ(θ)

∂θ
. (2.20)

This approximation is known as the stationary-phase principle. ∂φ(θ)/∂θ has the

dimension of spatial frequency expressed in [cycles/rad] and decreases with |θ| as
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shown on Figure 2.2. The maximum of ∂φ(θ)/∂θ is reached for θ = 0 and increases

with the ratio of the baseline length to the wavelength as in far-field interferometry.

The stationary-phase principle provides an approximation of the bandwidth ∆u of the

chirp’s spectrum. We denote by umin = u0 − ∆u/2 and umax = u0 + ∆u/2 the mini-

mum and maximum spatial frequencies respectively that satisfy Eq. (2.20). In order

to further characterise χ(u) two different cases may be distinguished. 1) the source is

scanned from both sides and 2) the source is scanned from one side only.
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Figure 2.2: From top to bottom respectively: phase, instantaneous spatial frequency and

real part of the interference pattern for a baseline length of D/λ ≈ 9.3. a) angular plot,

b) linear plot.

2.5.1 Bilateral scanning

Since in a bilateral scan A(θ) and φ(θ) are respectively even and odd relative to θ, as

is shown in Figure 2.2, V(θ) is Hermitian and its Fourier transform χ(u) is real. Thus

Eq. (2.19) becomes:

χ(u) =

∫ +∞

−∞
A(θ) cos(φ(θ) − 2πuθ) dθ ,

= 2

∫ +∞

0

A(θ) cos(φ(θ) − 2πuθ) dθ , (2.21)

= A(u) cos(Φ(u)) . (2.22)
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Eq. (2.22) readily shows that for bilateral scanning the frequency response of the

baseline is a real chirped signal with an amplitude modulation. Because of the cosine

term in Eq. (2.22) the frequency response contains non-desirable oscillations and ze-

ros, which are illustrated in Figure 2.3. Spatial frequencies where zeros occur will be

suppressed in the reconstructed image. It is therefore highly desirable to remove these

zeros to improve the quality of the reconstructed images.

2.5.2 Unilateral scanning

One way to reduce these oscillations and remove the zeros present in χ(u) is to scan

the source from one side only, e.g. for θ ≥ 0. The spectrum χ̃(u) for an unilateral scan

of the point source is expressed as:

χ̃(u) =

∫ +∞

0

Ṽ(θ)e−j2πuθ dθ ,

=

∫ +∞

0

A(θ) cos [φ(θ) − 2πuθ] dθ + j

∫ +∞

0

A(θ) sin [φ(θ) − 2πuθ] dθ .(2.23)

From Eq. (2.21) one recognises that the first term in Eq. (2.23) equals χ(u)/2. We

recall that the real and imaginary parts of the spectrum of a causal signal are Hilbert

pairs. Hence the second term on the right side of Eq. (2.23) is the Hilbert pair of the

first term and is denoted as χ
I
(u)/2. Using Eq. (2.22), χ̃(u) may be rewritten as:

χ̃(u) =
1

2
[χ(u) + jχ

I
(u)] , (2.24)

=
1

2
A(u) exp [jΦ(u)] .

Hence, it is shown that the amplitude of the spectrum of the interference pattern for

unilateral scanning equals half the amplitude of the oscillations of the spectrum with

bilateral scanning. Most importantly, the cosine term in Eq. (2.22) has been replaced

by a complex exponential in Eq. (2.23). Thus the zeros present in χ(u) are removed

in χ̃(u). Figure 2.3 shows the spectrum χ(u) and 2χ̃(u). Finally we conclude that the

source must be scanned only for positive (or negative) values of θ since it results in a

more constant frequency response of the correlator than if the scan extends on both

sides of the source.
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Figure 2.3: From top to bottom respectively, instantaneous spatial frequency and Fourier

transform of the interference pattern shown on Figure 2.2.

2.5.3 Effect of rotating the baseline around the Y axis

We have seen that a single baseline can record all the spatial frequencies from ≈ D/λ

down to the DC component when the source is scanned at azimuth angles −π/2 ≤
θ ≤ π/2, see Figure 2.2 a). For a translated baseline that is colinear to the plane of

the scene this requires an infinite scan extent, see Figure 2.2 b), and therefore can not

be implemented in reality. To reduce the scan extent one can artificially increase the

azimuth angle by rotating the baseline about the Y axis. Figure 2.4 shows the phase,

the spatial frequency and the real part of the interference pattern recorded by the same

baseline as in Figure 2.2 but when rotated by 30◦ around the Y axis. Such a baseline

enables the recording of lower frequencies with shorter scan extents, see Figure 2.4 b).

As expected the angular frequency response of a baseline being rotated by an angle β

around the Y axis is translated by the same angle, and is illustrated in Figure 2.5.

In this section the frequency content of the interference pattern recorded by a base-

line in motion relative to the source was analysed. It was shown that for a translation

motion along the X-axis each antenna pair performs a band-pass filtering of the spatial

frequencies present in the scene. A bilateral scan exhibits strong oscillations and zeros

within this pass-band, whereas no zeros degrade the baseline frequency response if an
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Figure 2.4: Phase (top row), instantaneous spatial frequency (centre row) and real part

of the interference pattern (bottom row) for a baseline length of D/λ ≈ 9.3 that is

rotated by 30◦ around the Y axis. Angular plot (left column) and linear plot (right

column) are presented.
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Figure 2.5: Spatial frequencies recorded by a baseline of length D/λ ≈ 9.3 that is rotated

by an angle β around the Y axis. The angular frequency response is translated by the

same angle β.

unilateral scan is performed. Furthermore, the extent of the scan to record low spatial

frequencies may be reduced by rotating the baseline with respect to the Y -axis. Apart

from the spatial frequency response, the radiometric sensitivity is another critical char-

acteristic determining the imaging performances of synthetic aperture arrays. In the

next section this property will be described and the tradeoffs inherent to the reduction

in array complexity will be assessed.
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2.6 Radiometric Sensitivity and Trade-offs

In order to understand the radiometric sensitivity achieved in synthetic aperture arrays

it is necessary to study how the noisy signals emitted by each point-source are recorded

by each antenna with different delays, accumulated in the correlators, transmitted to

the visibility data and later to the reconstructed image. For the earth rotation synthesis

technique used in radio astronomy this analysis can be simplified because the angular

extent of the source is generally small compared with the angular extent of individual

antenna patterns [2]. In this case the radiometric sensitivity mainly depends on the

redundancies in the spatial frequency measurements of the array. In remote-sensing of

the earth or near-field imaging however, the radiometric sensitivity also depends on the

brightness temperature distribution of the source and is detailed in [9]. For a uniform

source and a zero-redundancy array, the radiometric sensitivity ∆T at the bore-sight

pixel of the image is given by:

∆T = (TO + TR)

(
M

2∆ντ

)1/2

. (2.25)

where M = N.(N − 1), N is the number of antennas, TO and TR are the received

brightness temperature and the noise temperature of the receivers respectively, τ is

the integration time of the receivers. A mechanical scan of an array performs a time-

sequential multiplexing of the baselines and therefore enables a reduction in antenna-

count. An N -elements antenna-array, scanning a source at nt successive positions,

records N(N − 1)nt visibility samples in the time ntτ . This represents a reduction in

antenna-count by a factor of
√
nt. Assuming continuous integration, the integration

time τ is related to the frame rate F of the imager as follows:

τ =
1

ntF
=
N(N − 1)

M.F
. (2.26)

Combining Eq. (2.25) and (2.26) the radiometric sensitivity is expressed as a function

of N and F :

∆T = (TO + TR)

(
F

2∆νN(N − 1)

)1/2

M . (2.27)

Eq. (2.27) shows that reducing the number of antennas by a factor of
√
nt degrades

the radiometric sensitivity by the same factor, or alternatively degrades the imaging

frame-rate by a factor of nt. Therefore there is a trade-off between the reduction in
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antenna-count, the radiometric sensitivity and the frame rate of the imager. Figure 2.6

and Table 2.1 show the radiometric sensitivity achieved with various degrees of scanning

between the source and the array. These results are obtained using TO = 300K,

TR = 500K, ∆ν = 15GHz, M = N(N − 1)nt ≈36,500 and show e.g. that an image

with ∆T=0.9K can be recorded at a frame rate of 1Hz with a 192 antenna-array.

Alternatively an image with the same ∆T can be recorded in a time-sequence with a

61 antenna-array at a frame-rate of 0.1Hz.
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Figure 2.6: Radiometric sensitivity achieved by a synthetic aperture radiometer for dif-

ferent antenna counts. TO=300K, TR=500K, ∆ν=15GHz, M = N(N − 1)nt ≈36,500

2.7 Conclusions

The fundamentals of millimetre-wave synthetic aperture imaging were described. In

particular near-field effects associated with short-range imaging were accounted for in

the image reconstruction algorithm and sampling requirements. The frequency content

of the interference pattern measured by a two-antennas interferometer was analysed

when a displacement is introduced between the baseline and a point-source. When

the displacement is a translation along the direction of the baseline, it was shown

that each baseline performs band-pass filtering of the spatial frequencies present in

the scene. This band-pass frequency response is degraded by strong oscillations and

zeros for a bilateral scan, whereas this is not the case with unilateral scans. Moreover,
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F [Hz] 0.1 1 2 4 6 8 10

∆T [K] N nt N nt N nt N nt N nt N nt N nt

0.9 61 10 192 1

1 54 13

2 27 52 86 5

4 14 201 43 20 61 10 86 5 136 2

6 29 45 40 23 56 12 68 8 79 6 86 5

8 7 872 22 79 30 42 43 20 52 14 61 10 68 8

10 6 1221 17 135 24 66 34 33 42 21 48 16 54 13

Table 2.1: Radiometric sensitivity ∆T in the image for different values of the imaging

frame rate F , antenna-count N and number of time-sequential data acquisitions nt.

Parameters are the same as in Figure 2.6.

the extent of the scan to record low spatial frequencies may be reduced by rotating

the baseline with respect to the Y -axis. It was also shown that in synthetic aperture

near-field mm-wave imaging, time-sequential recording of the visibility function offers

a route to reduced antenna count and hence the potential for reduced complexity. If

the visibility function is recorded with nt time-sequential samples during which the

array is moved relative to the target, point-spread-function quality can be maintained

for a factor
√
nt reduction in the number of antennas and a factor nt reduction in the

number of correlators. This simplification is obtained at the cost of a deterioration in

radiometric sensitivity, which can be recovered only by a factor nt increase in the total

integration time. In principle, for certain applications where long integration times

are feasible, acceptable sensitivity of 2K could be obtained for systems in which the

number of antennas is an order of magnitude lower than for snapshot systems.

In Chapter 3 the design of scanning synthetic aperture mm-wave imagers will be

treated in more detail. In particular, the optimisation of the array configuration will

be considered and the improved spatial frequency coverage provided by scene scanning

will be accounted for.
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Chapter 3

System Design and performances

3.1 Introduction

We now consider the system design, and in particular the simultaneous optimisation

of the array design and the relative motion between the array and the scene. We

propose a technique that we call ‘Array rotation aperture synthesis’ that provides the

low antenna-count of Earth-rotation synthesis whilst enabling the near-field operation

required in short-range applications such as personnel scanning. In Section 3.2 we

show that rotational scanning presents advantages over linear scanning in terms of

spatial frequency coverage efficiency and imaging rates. In Section 3.3 antenna arrays

are optimised by means of a genetic algorithm (GA) [19, 32] for maximally uniform

(u, v) coverage after rotational scanning. The imaging performances of the array are

assessed using simulated millimetre-wave scenes and are compared with those achieved

with a conventional power-law Y-shaped array. Section 3.4 is concerned with the

hardware required to reduce bandwidth decorrelation. Section 3.5 presents a discussion

on phenomena that may degrade the imaging performance of a time-sequential system

relative to a snapshot system. These phenomena are 1) variations in the instrument

response during the acquisition time, 2) variations in the incident radiation from the

background during the acquisition time, 3) non uniform illumination of the scene.

Conclusions are presented in Section 3.6.
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3.2 Array Motion

Optimising arrays with large antenna numbers, N , is a complex task because the search

space has 2N dimensions for an array operating in a snapshot and 2Nnt when a scan is

included. Although the optimal system ideally requires optimisation of the array and

its motion relative to the scene simultaneously, the search space has been restricted to

linear and rotational motions only in order to simplify the optimisation and reduce the

computation time. In this section we consider the properties of linear and rotational

scans in order to determine which is more efficient for short-range imaging applications

such as personnel scanning.

3.2.1 Translation

When antenna signals are correlated by pairs while the array is in translation relative

to the source, e.g. along the x-axis, as in RADSAR [16], the spatial frequency recorded

by each baseline decreases as the array is translated away from a source. In the far-field,

one can show that ∆r12 ≈ D sin θ, with D the baseline length, and u(θ) ≈ D cos θ/λ0.

Hence the spatial frequency recorded by this baseline is maximum at zenith. In the

near-field case however, the exact expression of ∆r12 must be taken into account. For

a point source that lies along the x-axis (ϕ = 0) at a range R from antennas 1 and 2 at

locations (x1, y1, z1) and (x2, y2, z2) respectively, u(θ) and v(θ) are obtained using Eq.

(2.13):

u(θ) =
1

λ0 cos θ

(
x2au − x1bu +R tan θ(bu − au)

aubu

)
, (3.1a)

v(θ) =
1

λ0 cos θ

(
x2av − x1bv +R tan θ(bv − av)

avbv

)
, (3.1b)

with:

au =

√
1 +

(x2
1 + y2

1 − 2Rz1 + z2
1) cos2 θ − Rx1 sin θ

R2
, (3.2a)

bu =

√
1 +

(x2
2 + y2

2 − 2Rz2 + z2
2) cos2 θ − Rx2 sin θ

R2
, (3.2b)

av =

√
1 +

(x2
1 + y2

1 − 2Rz1 + z2
1) cos2 θ − Ry1 sin θ

R2
, (3.2c)

bv =

√
1 +

(x2
2 + y2

2 − 2Rz2 + z2
2) cos2 θ − Ry2 sin θ

R2
. (3.2d)
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In this case one can show that if R ≥ D, then u(θ) reaches maximum at zenith and

decreases with increasing θ. This means that translating the array relative to the

source does not provide dense coverage at high spatial frequencies. Figure 3.1 (a)

shows an array of 14 antennas evenly distributed on a Reuleux triangle [17]. This

array is translated along the x-axis as shown in Figure 3.1 (b). Figure 3.1 (c) and (d)

present the snapshot Fourier domain coverage of this array at boresight and at the scan

position x = 2m respectively. Figure 3.1 (e) shows the (u, v) coverage achieved after 10

translations between x = 0m and x = 3m. Note the higher density of measurements

recorded at low spatial frequencies.

3.2.2 Rotation

When the array is rotated about the Z-axis, the spatial frequencies recorded are also

rotated. Figure 3.2 presents the (u, v) coverage of the array shown in Figure 3.1 (a)

after 10 rotations by 6◦. Comparing the (u, v) coverage on Figure 3.1 (e) and Figure

3.2 shows that a rotational scan clearly achieves a higher density of measurements at

high spatial frequencies compared with a linear scan and a more even coverage overall.

A major issue when linear scans are employed for personnel scanning applications, is

the relatively long scan path required to fill the (u, v) plane. On the other hand, this

example illustrates that a rotational scan about the Z-axis efficiently yields uniform

(u, v) coverage without significantly increasing the size of the system. Furthermore the

logistics of rotational scanning are in practice generally simpler and more amenable

to high frame-rates than is the reciprocating motion required for linear scans. As a

consequence, the array design will be optimised for operating with a rotational scan.

3.3 Array Design

Two approaches for optimising the antenna array have been considered. The first

consists of minimising the sidelobe levels of the PSF of the array [19, 33, 34], while

the second aims to achieve a uniform coverage of the Fourier domain [17, 35, 36] in

order to minimise the effective measurement redundancies. In addition, since redun-

dant measurements of spatial frequencies by an imaging system limit its DoF, uniform
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Figure 3.1: (a) Evenly distributed Reuleux triangle array with 14 antennas centered at

the source origin (x, y) = (0, 0). (b) Same array translated by 2m along the x-axis. (c)

(d) Snapshot spatial frequency coverage of the array shown in (a) and (b) respectively.

(e) Spatial frequency coverage achieved when the array is translated by increments of

0.3m up to 3m.
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Figure 3.2: (u, v) coverage of the array shown in Figure 3.1 (a) when rotated around

the z-axis by increments of 6◦ up to 60◦.
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coverage of the (u, v) plane is desirable to achieve a large DoF. The DoF of antenna

arrays will be further discussed in Chapter 4. For these reasons it was decided to

maximise the uniformity of the scanned (u, v) coverage of the array. This leaves the

possibility to apply a tapering window to reduce the sidelobe levels near the central

peak if required. Note that in the literature for both approaches, optimisation of the

snapshot characteristics of the array is widely reported even when the array operates

in a scanning mode. To our knowledge, the scanned characteristics of the array have

only been considered in [37]. Optimum configurations for uniform (u, v) coverage are

believed to have been found for up to 30 elements in 1D [35] and 2D [36]. Because of the

2Nnt dimension of the search space and because of the theoretical convergence of GA

to global optimum after an infinite number of iterations only, the solution obtained in

practice is likely to be different from the global optimum. Thus, the solution depends

on the initial antenna positions and therefore a ‘good’ initial configuration is required.

Isotropic sampling of the (u, v) plane, or at least an isotropic cutoff frequency, is a

highly desirable characteristic and may be used to restrict the space of possible initial

configurations. Hence, arrays in the shape of curves of constant width are natural

candidates [17]. When antennas are evenly distributed along curves of constant width

with a rotational degree of symmetry n (invariance to a 2π/n rotation), the Fourier do-

main coverage exhibits a degree of rotational symmetry 2n. Therefore antenna arrays

distributed along Reuleux triangles (n = 3) provide (u, v) coverage with the smallest

degree of rotational symmetry among the shapes of constant width. This configuration

is used as the starting configuration of the GA. The motion considered is a rotation of

π/3 rad about the z-axis.

3.3.1 Metric of (u, v) coverage uniformity

Rationale

In this section we seek a metric that is maximised, or minimised, when the (u, v)

samples are distributed uniformly over the unit circle. Let us drop the constraint of

the support of the (u, v) samples and assume that the (u, v) samples are observations

of a random process with a probability density p(u, v) that is continuous over ℜ2. Then

a natural metric of the uniformity of p(u, v) is the differential entropy Hdiff, since it
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will be maximised when p(u, v) is uniform. Hdiff is given by:

Hdiff = −
∫

S

p(u, v) log2 p(u, v) dS . (3.3)

The differential entropy characterises the behaviour of the entropy of discrete versions

of p(u, v) in the limit of small bin widths [38]. This quantity is of interest since it is

independent of the bin width parameter and because it captures the greatest amount

of detail. Kozachenko et al. have derived an unbiased estimator Ĥdiff of the differential

entropy based on the nearest neighbour distances dj between samples [39]. Ĥdiff is

described in [38] by:

Ĥdiff = log2 [π(M − 1)] +
γ

ln 2
+

2

M

j=M∑

j=1

log2 dj . (3.4)

Where γ = 0.5772156649 is the Euler-Mascheroni constant. Eq. (3.4) shows that

the maximum of Ĥdiff occurs when the geometrical mean of the nearest neighbour

distances dj is maximised. Note that Ĥdiff can be greater than the value of Hdiff

obtained for a uniform distribution. This is easily shown by considering a probability

density p(u, v) = 1/a2 over a square domain of area a2 centered at the origin, and

p(u, v) = 0 outside this domain. In this case Hdiff = log2(a
2). When the M samples

are distributed on a rectangular grid and ifM >> 1, we have Ĥdiff ≈ Hdiff+
γ

ln 2
+log2(π).

This difference is perfectly normal since Ĥdiff is an unbiased estimator and is only on

average equal to Hdiff for random samples. This example also suggests that a reference

other than the value of Hdiff for a uniform distribution should be used to assess Ĥdiff.

The value of Ĥdiff,hex obtained for samples distributed on a hexagonal grid filling the

unit circle can be employed to estimate the maximum value of Ĥdiff. This is useful to

assess how close an array is to sampling the Fourier domain uniformly. For M ≈ 36500,

as in the representative system discussed in Chapter 2, Ĥdiff,hex = 4.342.

It was found a posteriori that a similar metric had previously been proposed by

Cornwell [18] to optimise the spatial frequency coverage of correlation arrays. Eq. 3.4

is however computationally more efficient than the metric proposed in [18] because it

only necessitate to compute the M nearest neighbour distances between samples, as

opposed to all of the M(M − 1)/2 distances between samples in Cornwell’s metric.

Furthermore, the use of the logarithm is rationalised in [18] to concentrate on closely
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spaced samples. The maximisation of the differential entropy and its estimation with

Eq. (3.4) provides different understanding and a rigorous justification for the use of

the logarithm of the nearest neighbour distances.

Maximisation of Ĥdiff guarantees that the uniformity of the distribution of the (u, v)

samples is also maximised but without constraints on the cutoff frequency. A constraint

on the extent of the (u, v) coverage is introduced with the term P that penalises antenna

arrays with (u, v) samples that lie outside the circle with the desired cutoff frequency:

P =
∑

j

pos
(
elj−1 − 1

)
, (3.5)

where lj is the L2 norm of the sample (uj, vj) and pos(x) is such that:

pos(x) =





x, x ≥ 0

0, x < 0
(3.6)

Finally the cost function to minimise is expressed as follows:

C = −Ĥdiff + P (3.7)

Efficient computation of Ĥdiff

Calculating Ĥdiff with Eq. 3.4 necessitates that one computes the nearest neighbour for

each of the M (u, v) samples. Using a brute force method, this would require computa-

tion of M(M−1)/2 distances. This can be computationally expensive when M is large,

typically of the order of 104 here. In the next section we describe genetic algorithms as

a means to maximise Ĥdiff. It is important to note that the implementation and eval-

uation of the merit function is an important factor in the speed and efficiency of these

algorithms. Consequently an efficient method for computing Eq. (3.4) is highly desir-

able. Delaunay triangulation can be used to obtain a small set of natural neighbours

for each point, thereby reducing considerably the number of Euclidian distances dj to

compute. Delaunay triangulation can be obtained very efficiently using the Quickhull

Algorithm [40] as follows:

• The input sites are lifted to a paraboloid by adding the sum of the squares of the

coordinates.
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• The height of the paraboloid is scaled to improve numerical precision.

• The convex hull of the lifted sites is computed and the lower convex hull is

projected back to the input.

3.3.2 Genetic algorithm

When optimising the Fourier domain coverage of antenna arrays, one has to cope with

multiple local minima. This prevents the use of local optimisation methods like the

gradient descent. For a two-dimensional antenna array with N elements, the number

of parameters to optimise is 2N . In the present case N = 27 and the number of

parameters is 54. Even if the antenna positions are constrained to lie on a rectangular

grid with a period of λ/2 the number of combinations is so large that an exhaustive

search is not practical. Simulated annealing and genetic algorithms (GA) are “global”

numerical optimisation methods that can handle a large set of discrete parameters.

Simulated annealing mirrors in principle the slow cooling process of a metal in a liquid

state to a metal in a solid state. GA on the other hand are inspired by the natural

selection processes of genetic evolution. We have chosen to implement a GA because

of previous experience working with these algorithms. Although these two algorithms

provide no guarantee of convergence to the global optimal in a finite amount of time,

but only after an infinite number of iterations, it has been shown that they can still

achieve useful results for array design problems, see e.g. [19, 32]. The structure of the

GA implemented is based on the algorithm described in [19] and is as follows:

Parameter encoding: Each parameter, namely the horizontal and vertical positions

of each antenna, is encoded into a Nbit bit sequence called a gene. To minimise

the number of bits required, the displacement relative to a reference position is

encoded rather than the absolute position. All the genes together form an array

of 2NNbit bits called a chromosome, which has an associated cost C, calculated

with Eq. (3.7). The total number of possible antenna arrays is therefore 22NNbit.

Initialisation: The algorithm starts with a large set of Nchro randomly generated

chromosomes which form the initial population. This means each bit of each

gene is equiprobable. The cost C of each chromosome is computed.
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Selection: Chromosomes are ranked and discarded according to a selection thresh-

old. In our implementation a 50% selection threshold was applied but randomly

varying selection thresholds are also possible.

Reproduction: Pairs of remaining chromosomes are randomly mated and generate

two offsprings as follows: a cross-over point is randomly selected. For every genes

all the bits strictly less significant than the cross-over bit are swapped between

the pair of chromosomes. Thus the size of the population is constant at each

iteration.

Mutations: A small percentage pmut of bits in the list of chromosomes are changed.

Iteration: Repeat selection and successive steps until stopping criterion is satisfied.

3.3.3 Results

The initial array provided to the GA has 27 antennas evenly distributed along a Reuleux

triangle. This is shown on Figure 3.4 (a) with its snapshot (u, v) coverage (b). This

array can operate at a frame-rate of 0.1Hz with a radiometric sensitivity of 2K. The

number of antennas was chosen to enable straightforward comparison with a Y-shaped

array, where the same number of antennas are distributed on three arms separated

from each other by an angle of 2π/3rad. The GA optimised the (u, v) coverage of

this array for a rotational scan of 60◦ in 52 steps. Thus, the number of (u, v) samples

is M = 27 × 26 × 52 = 36504 and satisfies the sampling requirements, expressed in

Eq. (2.14) and (2.15), for an array with a resolution of 11mm at a 2m range and a

28◦ FoV. The parameters of the genetic algorithm are reported in Table 3.1. Figure

3.3 shows the evolution of the minimum cost of the population every 10 iterations.

Note that the initial value of Ĥdiff equals −∞ because of redundancies in the scanned

(u, v) coverage of the initial array. A minimum cost Cmin = −2.1247 was reached

after 1260 iterations and the algorithm was stopped after 1480 iterations because no

further improvements of this result had been obtained. The resulting antenna array

and its snapshot (u, v) coverage are shown on Figure 3.4 (c) and (d) respectively. The

spatial coordinates of the optimised array are given in Appendix B. Figure 3.4 and

3.5 enable a comparison of the snapshot and scanned (u, v) coverage before and after
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optimisation. The optimisation clearly yields more even coverage, especially at low

spatial frequencies. Figure 3.6 shows the PSF obtained after scanning for the non-

optimised and optimised arrays. The full width at half maximum (FWHM) of these

two PSFs are both equal to 0.2◦. The level of the first sidelobes are very similar; -9.4dB

and -8.9dB for the non-optimised and optimised arrays respectively. This sidelobe can

only be improved by tapering the (u, v) cover, and is equal to -8.9dB in the case of

a perfectly uniform coverage. However the level of higher-order sidelobes is typically

reduced by 5dB to 10dB by the optimisation as can be seen in Figure 3.6 (c). This

improvement can be measured by the ratio of the energy in the main beam to the energy

in the sidelobes, which is increased by a factor of 3.4 by the optimisation procedure.

Number of

pmut Nchro Nbit ∆X & ∆Y Cmin iterations combinations

0.01 500 5 1mm -2.1247 1480 2270

Table 3.1: Values of the parameters used in the genetic algorithm optimisation of a 27

antenna Reuleux triangle array.
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Figure 3.3: Evolution of the minimum cost C associated with the 27 antennas array

optimised with a genetic algorithm.

The improved imaging performances provided by the optimised Reuleux triangle

array are illustrated here with simulated images. To that end, the mm-wave brightness

temperature image of a human body with an embedded rectangular metallic object
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Figure 3.4: (a) and (b) Evenly distributed Reuleux triangle array with 27 antennas and

its snapshot (u, v) coverage. (c) and (d) 27 antennas Reuleux triangle array, optimised

for maximum uniform (u, v) coverage after a rotational scan of 60◦ in 52 steps, and its

Snapshot (u, v) coverage. FoV=28◦, ν0=94GHz, D = 0.7m, R = 2m.
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Figure 3.5: (a) and (b) (u, v) coverage at boresight after rotational scanning of the

arrays shown in Figure 3.4 (a) and (c) respectively.

is modelled [41], see Figure 3.7 a). The body and metallic object have a uniform

temperature of 290K and the imaging system is passive. The changes observed in

the measured brightness temperature are related to variations in emissivity across the

scene due to the angular dependence of the Fresnel relations at a dielectric interface.

We assume the angular distribution of the brightness temperature incident from the

background is constant and stable over the acquisition time. The image recorded by

the array is simulated by the convolution of this raw image with the PSF of the antenna

array, and the addition of a white gaussian noise with a standard deviation of 2K. This

corresponds to a 43dB SNR (using the 20 log10 definition) in the recorded image. A

Wiener filter is then used to restore the image. This process is performed with three

arrays that each have 27 antennas and include a rotational scan of 60◦ in 52 steps. The

first array is a power-law Y-shaped array with α = 1.7 [42, 2], the other two arrays are

the pre-optimised and post-optimised arrays shown in Figure 3.4 a) and b). Figure 3.7

b), c) and d) show the restored images obtained with the Y-shaped array, the Reuleux

triangle array and the optimised Reuleux triangle array respectively. Figure 3.8 shows
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Figure 3.6: (a) and (b) Density plots in dB (10Log10 (|PSF |)) of the PSF at boresight

of the array shown in Figure 3.4 (a) and (c) respectively, after rotational scanning. (c)

1-dimensional plot of the PSF shown in (a) and (b):PSF (x, y = 0)
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the profiles of the raw and restored images along the white line drawn in Figure 3.7

top left. Note this plot incorporates the metallic object. The image obtained with

the evenly distributed Reuleux triangle array (3.7 c) appears sharper than the image

obtained with the Y-shaped array (3.7 b) due to its higher density of measurements

at high spatial frequencies. The sharpness of the image is further improved with the

optimised array, where noticeably lower levels of artifacts are present. The RMS error

between the restored images and the raw image are 5.6%, 4.7% and 3.3% for the images

shown in Figure 3.7 b), c) and d) respectively. These values are averages over 10

observations. This endorses the better imaging performances provided by the Reuleux

triangle arrays compared with the Y-shaped array and illustrates the improvements

provided by the optimisation of the array.

The design of antenna arrays for short-range imaging that include a rotational scan

was described. The design is aimed at optimising the uniformity of the sampling of

the Fourier domain by antenna arrays. We proposed to measure this quantity with an

estimator of the differential entropy of the density of measurements. This metric was

optimised with a GA and it was demonstrated that the resulting array achieves signif-

icantly higher imaging performances than the non-optimised array or a conventional

Y-shaped array. In the next section, the fringe wash function effect due to wideband

receivers is addressed.

3.4 Reduction of Bandwidth Decorrelation

It was stated in section 2.2 that the unwanted amplitude modulation of the visibility

function due to the fringe-wash function can be greatly reduced by introducing delay

lines in the antenna channels. Since the delay lines must be introduced before the

correlator, an additional correlator is included for each delay line. We seek now to

estimate the number of delay-lines required. To that end we estimate the period XIPnm

of the interference pattern and the position XFWnm
of the first null of the fringe-wash

function. To simplify the analysis we consider a horizontal baseline with coordinates

(−Dnm/2, 0, 0) and (Dnm/2, 0, 0). Using Eq. (2.4) and (2.6) we obtain XIPnm
and
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(a) (b)

(c) (d)

Figure 3.7: Imaging performances of various antenna arrays. a) Simulated mm-wave

image of a human body including a rectangular metallic object. Noise level in the

recorded images is ∆T =2K and corresponds to a 43 dB SNR. b) c) and d) Images re-

stored with the Wiener filter and recorded with the Y-shaped array, the Reuleux triangle

array and the optimised Reuleux triangle array respectively.
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Figure 3.8: Imaging performances of various antenna arrays. 1-dimensional plot of the

restored images including the metallic object.

XFWnm
:

XIPnm
=
λ0

2

√
1 +

4R2

D2
nm − λ2

0

, (3.8)

XFWnm
=

c

2∆ν

√
1 − 4R2

(
c

∆ν

)2 −D2
nm

. (3.9)

The interference patterns must be translated by ∆Xnm so that they sum in-phase. The

translation ∆Xnm =Round
(

XF Wnm

XIPnm

)
XIPnm

provides a reasonable amplitude modula-

tion after addition of all the translated interference patterns. Typically the amplitude

modulation is less than 4%. Thus the number of delay lines for the baseline nm is

Round
(

2xmax

∆Xnm

)
. Finally, the number ,N , of delay lines and correlators to be intro-

duced to compensate for the fringe-wash function can be estimated as:

N =
N∑

n=1

N∑

m=n+1

round

(
2xmax

∆Xnm

)
. (3.10)

For the array shown in Figure 3.4 (c), we estimate N ≈ 4000.

The subband, or spectral, implementation described in section 2.2 requires a complex

correlator per baseline and per subband. For the system considered here, the 15GHz

bandwidth would have to be divided into approximately 30 subbands in order to record

90% of the signal at the edges of the 28◦ FoV. This leads to a total number of correlators

of 10500, a factor of more than 2.5 times the number of correlators required with the
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delay-lag implementation also described in section 2.2. However, the spectral technique

has the significant advantage of requiring narrow-band correlators that operate at a

frequency a factor of 30 lower than that of the wideband correlators needed in the delay

line technique. Thus, the lower cost associated with the reduction in the frequency of

the correlators clearly outweighs the extra cost due to the increased number of narrow-

band correlators required with the spectral technique. Compared to the delay line

technique, the spectral method therefore seems more cost efficient to implement. Note

that since both implementations require a number of correlators that increases with

the number of baselines, sequential acquisition of the visibility data in nt iterations

enables a reduction in the number of correlators by the same factor compared with a

snapshot array.

3.5 System sensitivity to errors

3.5.1 Instrument errors

Instrument errors in correlation antenna arrays degrade the retrieved brightness tem-

perature map. Extensive modelling of these errors has been reported in the literature,

see e.g. [43, 44]. A non-exhaustive list of instrument errors comprise 1) antenna posi-

tion errors, 2) radiation voltage mismatch (in phase and amplitude) between antennas,

3) mutual coupling between antennas, i.e. the alteration in individual antenna pat-

terns due to interactions with other antennas, 4) frequency response mismatch between

receiver channels, 5) correlator errors such as phase errors in the quadrature arm of

the complex correlator. Several calibration procedures have been proposed to correct

for different errors [45, 46, 47]. In this section, the aim is to assess the degradation in

imaging performances due to the increased acquisition time demanded by the proposed

technique. Time-sequential acquisition of the visibility data will normally reduce the

number of short antenna baselines and hence the effects of mutual coupling between

receivers should be reduced, simplifying calibration of this effect. Conversely the in-

creased time necessary to sample the visibility function increases sensitivity to drift in

electronic gain and offset of the receivers and correlators compared to snapshot acqui-

sition. In many short-range imaging applications for which the proposed technique is
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of interest, real-time calibration may be implemented by recording the visibilities for

calibration images which incorporate point-source beacons. It is of interest however to

consider the impact of drift in the absence of such on-line calibration. We address this

by supposing a linear drift with time in the gain and offset of the recorded correlations

and compare the image quality of a snapshot imager with that of a sequential imager.

For each baseline (m,n), we assume errors introduced in the original calibration to be

negligible. Thus the time varying gain of the correlator can be expressed as:

Gmn(t) = 1 + (ρrmn
+ jρimn

)t , (3.11)

where ρrmn
and ρimn

are the drift rates in the real and imaginary part of the gain

respectively, and are simulated as zero mean Gaussian distributed random variables

with standard deviation σ, noted Gaussian(0, σ). Similarly, the offset of the correlator

is written as:

Omn(t) = (ρrmn
+ jρimn

)t , (3.12)

Hence, the measured visibility Ṽmn is related to the true visibility Vmn as:

Ṽmn = VmnGmn(t) +Omn(t) . (3.13)

We seek to formulate how these errors affect the synthesised image. Using Eq. (2.7)

and (3.13) the synthesised image with instrument errors can be written as:

T̃B(~r) ∝
∑

i

TB(~ri)h̃(~ri, ~r) + O(~r) , (3.14)

with:

h̃(~ri, ~r) =
∑

m6=n

GmnΦmn(~ri)Φ
∗
mn(~r) , (3.15)

O(~r) =
∑

m6=n

OmnΦ∗
mn(~r) . (3.16)

Eq. (3.14) may be simplified if we assume that ~r is restricted to an isoplanatic region

of the system so that h̃(~ri, ~r) only depends on the vector displacement ~r − ~ri. Thus,

the system is linear translation invariant and Eq. (3.14) is approximated by:

T̃B(~r) ∝ TB(~r) ∗ h̃0(~r) + O(~r) , (3.17)
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where ∗ denotes the convolution product and h̃0(~r) = h̃(~r0, ~r) is the distorted kernel

at the centre of the synthesised map. Eq. (3.17) shows that instrument gain errors

are convolutive whereas instrument offset errors are additive in the synthesised map.

We seek to quantify the degradation of the performances of the array shown in Figure

3.4 (c), nt = 52, due to the instrument drift. To that end, the RMS error ε in the

synthesised image was calculated for 10 observations so as to account for the random

nature of the instrument drift. In addition, we also record the standard deviation σG of

the phase errors in the gain, the RMS value of the offset term Orms in the synthesised

image, see Eq. (3.16), and the RMS errors in the visibility function ǫV and in the

restored images ǫI . All these parameters vary linearly with the RMS drift rate ρrms as

is shown on Figures 3.9, 3.10 and 3.11.
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Figure 3.9: Parameters of the distribution of the phase in the gain of the correlator

as a function of the drift rate ρrms. Left: snapshot system, right: scanning system

with nt=52. σG is the standard deviation, σL is the scale parameter of the Laplace

distribution.

We use a metric similar to the Strehl ratio to measure the distortion of the PSF due

to instrument errors. The Strehl ratio measures the reduction of the peak power of the

distorted PSF compared with the peak power of the non distorted PSF, usually the
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diffraction limited PSF. For a synthesised imager one can define the Strehl ratio S as:

S =

∣∣∣∣∣
∑

m6=n

Gmn

∣∣∣∣∣

2

(
∑

m6=n

|Gmn|
)2 . (3.18)

When only phase aberrations occur and have a Gaussian distribution with a standard

deviation σG, S can be expressed as [48]:

S = e−σ2

G

(
1 +

eσ2

G − 1

M

)
, (3.19)

where M is the number of terms in the sums of Eq. (3.18). When M >> eσ2

G − 1,

S is dominated by the term e−σ2

G . For drift rates that follow a Laplace distribution

however, S is different from Eq. (3.19). We will show later that this assumption

leads to a more accurate modelling of S in the presence of a linear instrument drift

with gaussian distributed drift rates. The distribution of phase errors in the gain after

nt = 13 time-sequential measurements are shown in Figure 3.12. Clearly the Laplace

distribution provides a better fit to data than the Gaussian distribution. The Laplace

distribution is characterised by two parameters: the location µ and the scale parameter

σL. For a Laplace distribution, with µ = 0, S may be expressed as:

S =
1

(1 + σ2
L)

2

(
1 +

σ2
L

M
(2 + σ2

L)

)
. (3.20)

When M >> σ2
L(2 + σ2

L), the Strehl ratio is dominated by the term 1/(1 + σ2
L)2. The

derivation of Eq. (3.19) and (3.20) is detailed in Appendix C. Figure 3.13 shows that

Eq. (3.19) accurately models S for small values of σG only, typically below 0.2rad.

Eq. (3.20) on the other hand accurately predicts S even for large phase errors such

that σL = 0.6rad. Note σG and σL have been estimated with maximum likelihood

estimators.

We also seek to assess the degradation in the performance of the system for increasing

acquisition times. In order to maintain the geometry of the array constant, we arti-

ficially split the sequentially recorded baselines in different sequences. For instance,

the 18252 baselines were recorded in 52 time-sequential steps, 351 at a time. We now
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simulate the effect of recording 1404 baselines in nt = 13 sequential steps. We repeat

this simulation for other values of nt and perform a linear regression between ρrms and

the parameters σG, Orms, ǫV and ǫI . The regression parameters Cφ, Coffset, CV and CI

are such that:

σL = Cφρrms (3.21a)

Orms = Coffsetρrms (3.21b)

ǫV = CV ρrms (3.21c)

ǫI = CIρrms (3.21d)

Figure 3.14 shows that Cφ, Coffset, CV and CI increase linearly with nt. This is

evidence that the error in the restored image increases linearly with the acquisition

time in the presence of a linear instrument drift. This corresponds to a challenging

calibration problem. Figure 3.15 further illustrates this issue and displays the linear

increase in ǫI with nt for three different values of ρrms. Combining Eq. (3.21a) and

(3.21d) results in the linear relationship ǫI = 8.377σL which may only be valid for

small values of σL (σL < 38◦ in this simulation). We estimate that for the brightness

temperature image shown in Figure 3.7 a) a value of 6.8◦ in σL of the phase of the gain

and offset of the correlator causes a RMS error of 1K in the restored image.
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Figure 3.15: RMS error in the synthesised image as a function of nt. Conversion to

absolute error assumes a signal amplitude (difference between maximum and minimum

values) of 20K.

3.5.2 Background Illumination

In the simulations illustrated in Figure 3.7, the scene illumination is from ambient

surroundings and is considered to be constant with time and uniform in angular dis-

tribution [41]. For applications such as personnel scanning it will be possible for the

background and illumination to be kept relatively constant during the acquisition times

considered here, however, the longer acquisition times of the proposed technique will

increase sensitivity to temporal changes in average illumination compared to a snap-

shot technique. For completeness we briefly describe the impact of the illumination on

the synthesised map.

• The angular distribution of the incident radiation is not uniform but stable in

time. Because of specular reflections, the background brightness temperature

measured TC(~ri, mn) will also depend upon the antenna positionsm and n. Hence

the measured visibility is:

Ṽmn =
∑

i

(TB(~ri) + TC(~ri, mn))Φmn(~ri) , (3.22)

and the synthesised image follows:

T̃B(~r) ∝
∑

i

TB(~ri)h̃(~ri, ~r) , (3.23)

with:

h̃(~ri, ~r) =
∑

m6=n

Φmn(~ri)Φ
∗
mn(~r)

(
1 +

TC(~ri, mn)

TB(~ri)

)
. (3.24)
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This situation also corresponds to a convolutive error in the synthesised image.

• The angular distribution of the incident radiation is uniform but not stable with

time. One can show that this is equivalent to having an offset term in the visibility

measurements:

Omn = TC(mn)
∑

i

Φmn(~ri) , (3.25)

T̃B(~r) = T̂B(~r) +
∑

m6=n

OmnΦ∗
mn(~r) . (3.26)

3.6 Conclusions

Recording nt images in a time-sequence with an interferometric synthetic aperture

array in motion relative to the scene enables a reduction in the antenna-count by a

factor of
√
nt, but at the cost of a degradation in the radiometric sensitivity by a

factor of
√
nt, or a degradation in the imaging frame rate of the imager by a factor

of nt. Introducing a relative motion between the array and the source can be seen as

an additional degree of freedom in the optimisation process. We have presented the

advantages of rotational scanning over linear scanning of the array in terms of spatial

frequency coverage efficiency and imaging frame rates.

We developed a new and more rigourous understanding of the metric of the

(u, v) coverage uniformity. In addition, the proposed metric is computationally more

efficient than the one discussed in [18]. Using this metric, antenna arrays were optimised

with a genetic algorithm for time-sequential scanning acquisition. A 27-antenna array

was presented and clearly demonstrates increased imaging performances over the non

optimised array and conventional Y-shaped array.

The potential for reducing the antenna-count with the concept of antenna rotation

aperture synthesis was assessed. Reduction factors can be extended to 10 or more

for mm-wave imaging applications where low frame rates of the order of 0.1Hz are

acceptable. The longer acquisition times of the proposed technique however increases

sensitivity to instrument drift and temporal changes in average illumination, compared

to a snapshot technique. This represents a serious calibration problem and increases

the necessity for a real-time calibration procedure.
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Chapter 4

Depth of field of antenna arrays

4.1 General description

The depth-of-field (DoF) of an optical system can be defined as the range extent in

the object that remains acceptably sharp in the image [49]. The concept of DoF is

illustrated in Figure 4.1 where a point outside the plane of best focus results in a

wavefront error relative to the ideal spherical wavefront originating from an in-focus

point. This wavefront error is generally characterised by the defocus parameter W20.

W20 is defined as the optical path length intercept, at the edge of the exit pupil, between

the wavefront of an axially defocused point and the spherical wavefront of the axially

focused point. The optical path difference W (x, y) between a defocused wavefront and
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Figure 4.1: Depth of field, depth of focus and the defocus coefficient W20.
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the ideal wavefront at any point (x, y) within the exit pupil of an optical system is [1]:

W (x, y) =
1

2

(
1

zd

− 1

zi

)
(x2 + y2) , (4.1)

where zd and zi are the distances from the exit pupil to the defocused plane and image

plane respectively. At the edge of a circular exit pupil of radius a, W defines the

magnitude of the defocus coefficient W20 which measures the severity of the defocus

effect:

W20 =
a2

2

(
1

zd

− 1

zi

)
. (4.2)

Note that W20 is usually compared with the wavelength and may therefore be expressed

in units of wavelengths. Some authors tend to use the defocus parameter ψ such that:

ψ =
2π

λ
W20 . (4.3)

Various criteria have been proposed to define the acceptable reduction in image sharp-

ness associated with defocus: the Strehl ratio [50], the Rayleigh quarter-wave criterion

[51] and the generally accepted Hopkins criterion [52, 53]. Hopkins criterion states

that the system can be considered in-focus if the MTF does not fall below 80% of that

of an in-focus diffraction limited system at any spatial frequency. For a clear circular

aperture this criterion determines that ψ must be approximately less than 1, which

corresponds to W20 ≈ 0.215λ.

For a rotationally symmetric optical system, the pupil function associated with a

defocused wavefront is defined as the 1-dimensional function P (r), with r = x/a the

normalised pupil function variable. P (r) may be written as:

P (r) = p(r)ej 2π
λ

W20r2

, (4.4)

with p(r) = 1 for |r| ≤ 1 and p(r) = 0 otherwise.

4.2 Array refocusing

Real aperture imagers perform a redundant sampling of the spatial frequencies. When

the system is focused these redundant frequencies add up in-phase. In a defocused sys-

tem, however, there is a phase mismatch between redundant frequencies which there-

fore interfere with each other. This leads to an amplitude reduction of the modulation
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transfer function (MTF) of the system compared with a focused system. For specific

values of defocus and spatial frequencies these interferences create nulls in the MTF.

This corresponds to a loss of information that will result in an increased blur in the

recorded image, or alternatively in an increased noise level if one attempts to correct

for this effect. Synthetic aperture imagers on the other hand record spatial frequencies

separately and require the image to be formed in computer hardware, which enables

refocus of the system for any distance. This is the reason these imagers are sometimes

inaccurately considered to have an infinite depth of field. The only variations with

range that occur in the (u, v) coverage of the array or its refocused PSF are due to

near-field effects. Figure 4.2 shows that only very small variations in the (u, v) cover

occur when the range of the array shown in Figure 3.4 (c) changes from 1.8m to 4.2m

corresponding to a defocus parameter W20 of -1λ and +5λ respectively. Figure 4.3

confirms that the corresponding PSF of the array is almost invariant with range.
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Figure 4.2: Variation with range of the (u, v) coverage of the optimised Reuleux array.

4.3 Impact of refocusing errors - Depth of field

When the refocusing of the array is performed without error we have shown that

negligible variations with range occur in the PSF of the array. However one can wonder

what impact refocusing errors have on the performance of the array. In other words,

we seek to analyze the depth of field of synthetic aperture arrays. To that end we
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measure the Strehl ratio of different arrays and compare them with that of a real,

circular aperture imager with a focal distance f . For a circular real-aperture optical

system one can show that except for an irrelevant phase factor, the axial amplitude

impulse response Q(W20), within the paraxial approximation, is [54]:

Q(W20) =
π(NF − 2W20)

f

∫ 0.5

−0.5

e−j2πW20ξ dξ ,

=
π(NF − 2W20)

f
sinc(W20) , (4.5)

where ξ is the normalised radial pupil coordinate, W20 is in units of wavelengths and

NF is the Fresnel number of the aperture such that:

NF =
a2

λf
, (4.6)

with a the radius of the pupil. Hence the Strehl ratio of a real, circular aperture optical

system with a defocus parameter W20 is described as:

S(W20) =
|Q(W20)|2
|Q(0)|2 =

(NF − 2W20)
2

N2
F

sinc2(W20) . (4.7)

Note that Eq. (4.7) shows that the axial value of the PSF for such optical systems is

null when W20 expressed in wavelengths is an integer. The factor (NF − 2W20)
2/N2

F

in Eq. (4.7) is equal to unity for large Fresnel apertures, typically NF ≥ 100, and

can therefore be neglected in most optical systems operating at visible frequencies.

However this factor becomes significant for low-Fresnel-number apertures, as is the

case in mm-wave imaging (here NF ≃ 19), and is responsible for an axial shift of the

maximum axial intensity away from the focal plane and towards the exit pupil [54].
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We seek to establish the expression for S(W20) for synthetic-aperture imagers in

order to compare their DoF with that of real circular aperture systems. For simplicity

we derive this expression for a source that lies in the far-field of the array. We also

consider finite size antenna dishes. Using Eq. (4.4) the pupil function of the array, in

the presence of defocus, is given by:

P (~r,W20) =
∑

k

[δ(~r − ~rk) ∗ p(rra)] e
j2π

W20

λ
r2

, (4.8)

where ∗ denotes the convolution product, r is the normalised radial pupil coordinate,

ra the radius of each antenna dish normalised to the semi array aperture size. The

impulse response P̂ (~ρ,W20) of the array is equal to the Fourier-transform of the pupil

function P (~r,W20):

P̂ (~ρ,W20) = 2πr2
a

∑

k

[
ej2π ~rk.~ρ.

J1(2πρra)

2πρra

]
∗ L̂(ρ,W20) , (4.9)

with:

L̂(ρ,W20) =
ejπ/4

√
4π|W20|

λ

e
−j λρ2

8πW20 . (4.10)

We denote the pupil vector ~r and the image plane vector ~ρ as ~r = (ξ, η) and ~ρ = (x, y).

Hence Eq. (4.9) can be rewritten as:

P̂ (~ρ,W20) =
2πr2

ae
jπ/4

√
4π|W20|

λ

∑

k

∫∫
ej2π(ξkx′+ηky′).

J1(2πρra)

2πρra

e
−j λ

8πW20
[(x−x′)2+(y−y′)2] dx′ dy′ ,

(4.11)

where one recognises the Fourier transform with frequency parameters (ξk, ηk). Thus

Eq. (4.11) reduces to:

P̂ (~ρ,W20) =
∑

k

p(rkra) ∗ ej2π[W20

λ
(ξ2

k
+η2

k
)+xξk+yηk] , (4.12)

=
∑

k

ej2π[W20

λ
r2

k
+xξk+yηk]

×
∫∫

p(r′ra)e
j2π

W20

λ
r′2e−j2π[ξ′u+η′v] dξ′ dη′ , (4.13)

where we make use of the radial coordinate rk =
√
ξ2
k + η2

k, r
′ =

√
ξ′2 + η′2 and the

following change of coordinates:

u = x+ 2
W20

λ
ξk , (4.14a)

v = y + 2
W20

λ
ηk . (4.14b)
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The double integral in Eq. (4.13) is a rotationally symmetric function since it is the

Fourier transform of a rotationally symmetric function. Thus it is necessary to define

the radial coordinate ζ associated with the cartesian coordinates u and v:

ζ =

√(
x+ 2

W20

λ
ξk

)2

+

(
y + 2

W20

λ
ηk

)2

. (4.15)

Hence Eq. (4.13) can be reduced to:

P̂ (~ρ,W20) =
∑

k

ej2π[W20

λ
r2

k
+xξk+yηk]F (~ρ,W20, rk, ra) , (4.16)

where F (~ρ,W20, rk, ra) is in general a complex scalar that depends on the location of

the antenna, its size and the location of the source. F (~ρ,W20, rk, ra) is expressed as:

F (~ρ,W20, rk, ra) = 2π

∫ ra

0

ej2π
W20

λ
r′2J0(2πζr

′)r′ dr′ , (4.17)

with J0(x) the Bessel function of the first kind of order zero. In order to compute

S(W20) we are interested in P̂ (0,W20), which is derived from Eq. (4.16) and (4.17):

P̂ (0,W20) =
∑

k

ej2π
W20

λ
r2

kF (0,W20, rk, ra) . (4.18)

At this point it is useful to decompose the scalar F (0,W20, rk, ra) in Eq. (4.18) into its

amplitude and phase components such that:

F (0,W20, rk, ra) = AW20

k ejθ
W20

k . (4.19)

Note that F (0, 0, rk, ra) equals the area of the antenna dish. The PSF is defined as the

square modulus of the impulse response, i.e. PSF (~ρ,W20) = P̂ (~ρ,W20)P̂
∗(~ρ,W20). For

synthetic aperture arrays, the cross terms only are included in the PSF. Combining

Eq. (4.18) and (4.19) one obtains the expression of the PSF at the origin:

PSF (0,W20) =

N(N−1)∑

m6=n

ej2π
W20

λ
(r2

m−r2
n)AW20

m AW20

n ej(θ
W20
m −θ

W20
n ) ,

= 2

N(N−1)/2∑

m6=n

AW20

m AW20

n cos

[
2π
W20

λ
(r2

m − r2
n) + θW20

m − θW20

n

]
.(4.20)

Hence the Strehl ratio S(W20) = PSF (0,W20)/PSF (0, 0) of an antenna array can be

written as:

S(W20) =
2

N(N − 1)(πr2
a)

2

N(N−1)/2∑

m6=n

AW20

m AW20

n cos

[
2π
W20

λ
(r2

m − r2
n) + θW20

m − θW20

n

]
.

(4.21)
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If we consider the limit case of point-like antennas, Eq. (4.12) becomes:

P̂ (~ρ,W20) =
∑

k

ej2π[W20

λ
r2

k
+ ~rk.~ρ] . (4.22)

In this case f(rk,W20, ra) equals unity and Eq. (4.21) reduces to:

S(W20) =
2

N(N − 1)

N(N−1)/2∑

m6=n

cos

[
2π
W20

λ
(r2

m − r2
n)

]
. (4.23)

It is clear from Eq. (4.23) that for an array of infinitely small antennas distributed

along a circle, S(W20) equals unity independently of the amount of defocus. This is

equivalent to an infinite DoF. If one accounts for the finite size of the antennas, then

for this type of arrays S(W20) is such that:

S(W20) =
2

N(N − 1)(πr2
a)

2

N(N−1)/2∑

m6=n

AW20

m AW20

n cos
[
θW20

m − θW20

n

]
. (4.24)

Note that for arrays with any degrees of rotational symmetry, a rotational scan around

the centre of symmetry of the array will not change the value of S(W20), and the

number N of added terms in Eq. (4.23) can be reduced to the number of antennas in

the array. Figures 4.4, 4.5, 4.6 and 4.7 show the horizontal slice at y = 0 of the PSF

after a rotational scan for the power law Y array, the Reuleux triangle array and the

optimised Reuleux triangle array respectively. The different curves on each figure have

been obtained for the defocus values W20 = 0λ, 0.25λ, 0.5λ, 1λ. It is worth mentioning

that the optimised Reuleux array and the circular array have different aperture size

than the Y array and the regular Reuleux array despite having the same maximum

baseline. This means W20 has to be recalculated for each array. Comparing Figures

4.4, 4.5 and 4.6 it can be observed that the PSF of the Y array is significantly more

degraded with increasing defocus than for Reuleux arrays. This is because the Y array

differs more from a circular array than the Reuleux arrays. As expected the PSF of the

circular array, see Figure 4.7, is invariant with defocus. The measured Strehl ratio of

these arrays are plotted on Figure 4.8 as a function of W20 and are in good agreement

with the models described in Eq. (4.23). The measured Strehl ratio are shown on

Figure 4.9 together with the Strehl ratio of a real, circular aperture imager obtained

from Eq. (4.7). Figure 4.9 clearly shows the smaller depth of field provided by the

Y array compared with that achieved by the Reuleux arrays. It also illustrates the
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invariance with defocus of the PSF of a circular array. Note that the two Reuleux

arrays achieve a very similar depth of field, which is extended compared with that

of the real aperture imager. On the other hand the Y array reduces the depth of

field compared with the real aperture imager, or alternatively provides axial super-

resolution. In order to quantify the depth of field of these imagers we use the Hopkins

criterion (W20 ≈ 0.215λ) and measure S(±0.215λ) for the real circular aperture system.

We consider the more restrictive value SDOF = S(−0.215λ) ≈ 0.896 and quantify the

depth of field of the antenna arrays as the defocus W20 for which S(W20) ≈ SDOF .

Using this procedure one estimates a DoF of ≈ 0.37λ and 0.16λ for the Reuleux arrays

and Y array respectively. Figure 4.9 (b) is magnified around W20 = 0λ and highlights

the asymmetric profile of S(W20) for a real aperture imager due to the focal shift effect

discussed above. The impact on S(W20) of the factor f(rk,W20, ra) due to the finite

size of antenna dishes is shown on Figure 4.10 for antennas that are λ in diameter

(ra ≈ 0.004). The reduction in DoF due to this antenna size is of the order of λ/100

for the Y-shaped and Reuleux arrays and can be neglected. The DoF of the circular

array with antenna diameter λ is of the order of 33λ. This corresponds to a hyperfocal

distance of 58cm, with all objects beyond 45cm acceptably sharp. It is important to

remember that the F/# of the array increases with the focused range and therefore that

the depth-of-focus increase with the square of the focused range. We find that even

when focusing at a distance of 4m the Y-array, the circular real aperture system and

the Reuleux arrays have a depth-of-focus of 27cm, 36cm and 62cm respectively. This

highlights the very limited depth-of-focus of real aperture mm-wave imaging systems

and shows that this characteristic can be extended with the use of synthetic aperture

Reuleux arrays.

4.4 Design of antenna arrays with an infinite depth-

of-field

We have seen in Section 4.3 that correlation arrays with circularly distributed antennas

have an on-axis PSF that is invariant with defocus, in the limit of infinitely small

antennas. This is because the wavefront emitted by an on-axis point-source is recorded
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Figure 4.4: Variation with defocus of the PSF of the power law Y array.
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Figure 4.5: Variation with defocus of the PSF of the non optimised Reuleux array.
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Figure 4.6: Variation with defocus of the PSF of the optimised Reuleux array.
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Figure 4.7: PSF of a circular array after a rotational scan for different values of W20.
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Figure 4.8: Measured and modelled Strehl ratio VS defocus for a) the non optimised

Reuleux triangle array, b) the optimised Reuleux triangle array and c) the power law

Y array.
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aperture imager and Hopkins’ criterion.
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Figure 4.10: (a) Strehl ratio vs defocus for different antenna arrays. Results show the

influence of real size antenna dishes that are λ in diameter. (b) magnification around

S(W20) = 1 showing the almost infinite DoF achieved with circular array of antennas

that are λ in diameter.
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by all antennas of a circular array with the same phase. This constant phase term for all

antennas cancels out when correlations between pairs of antenna signals are performed,

independently of the source range. In this section we seek to take advantage of this

property to design antenna arrays with an infinite DoF. Evenly distributed circular

arrays however have a poor coverage of the Fourier domain because of their rotational

symmetry [17] and their PSF therefore suffer from high sidelobe levels. We apply here

the array optimisation method and algorithms described in section 3.3 to the subset

of circular arrays. This approach presents the advantage of reducing the dimension of

the search space from 2N to N , with N the number of antennas in the array.

In order to fit the bit-encoded-parameter implementation of the GA described in

section 3.3, the angular position of circularly distributed antennas is discretised. The

angular sampling period δθ is based on a minimum spacing between antennas δρ equal

to the wavelength, and is defined as cos δθ = 1− 2δρ2/D2. We recall that the displace-

ment of each antenna relative to a reference position is encoded in order to minimise

the number of bits required. The reference array is taken to be the evenly distributed

circular array which defines an angular separation θ0 = 2π/N between antennas. If the

maximum angular displacement allowed is ±2θ0, the number of bits Nbit required for

the parameter encoding can be estimated with log2(2θ0/δθ). For a 27-antenna circular

array, as considered in section 4.3, we have 2θ0/δθ ≈ 51. This corresponds to 6 bits per

parameter plus one bit for the sign of the displacement, thus Nbit = 7. The parameters

of the genetic algorithm used to optimise the 27-antenna circular array are summarised

in Table 4.1. For comparison with the array design obtained in section 3.3, rotational

scanning of the array is maintained at π/3rad. The angular coordinates of the opti-

mised array are given in Appendix B. Note that the algorithm was run here for an

extra 40% in computational time compared to the optimisation of the Reuleux array

presented in section 3.3, see Table 3.1. In spite of this additional computation, the

algorithm converged to a solution with a cost function Cmin = −2.007, that is higher

than the value Cmin = −2.1247 obtained for the optimised Reuleux array. This indi-

cates that the optimised circular array performs a less uniform sampling of the Fourier

domain than that achieved with the optimised Reuleux array. This may be due to the

increased constraint on the search space and possibly a less favorable starting position.
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The optimised circular array is presented in Figure 4.11 with its snapshot and scanned

MTF. An evenly distributed circular array is also shown for comparison. Note again

the much increased uniformity of the scanned (u, v) coverage achieved by the optimised

circular array.

Number of

pmut Nchro Nbit δρ δθ Cmin iterations combinations

0.01 500 7 λ 9.1 mrad -2.007 2060 2189

Table 4.1: Values of the parameters used in the genetic algorithm optimisation of a 27

antenna circular array.
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Figure 4.11: Circular array optimised for maximum uniform (u, v) coverage (right

column) and infinite depth-of-field. Snapshot and scanned (u, v) coverage are shown

below. An evenly distributed circular antenna array is presented for comparison.
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4.5 Conclusions

In this chapter we introduced the defocus parameter W20 used to characterise the

severity of the defocus effect in imaging systems. We showed that without refocusing

errors the axial PSF of synthetic aperture arrays is invariant with range, with the

exception of negligible near-field effects. We show that digital refocusing errors in

synthetic aperture imagers are mathematically equivalent to the defocus effect applied

to the amplitude pupil function of the array. Using the Strehl ratio as a metric of

the system sensitivity to defocus, we show that the depth-of-field (DoF) of antenna

arrays depends solely on the radial positions of the antennas, and that Reuleux arrays

have a larger DoF than both the Y-array and real circular-aperture systems with equal

F/#. It also follows that arrays with antennas distributed on a circle exhibit an infinite

DoF at the array boresight. Following the optimisation method described in section

3.3, we take advantage of this property to maximise the uniformity of the Fourier

domain coverage of an infinite DoF antenna array. The effect of finite size antennas

on the DoF of the array is also modelled. For the 27-element circular array considered

here and a single antenna diameter equal to the wavelength, corresponding to a fill

factor of ∼ 0.004, the DoF is of the order of W20 = 33λ. This is equivalent to a

hyperfocal distance of 58cm. Further investigation will be necessary to obtain a general

relationship between the fill factor of the array and its DoF.
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Chapter 5

Wavefront coding theory

In this chapter we are concerned with the depth-of-field (DoF) of optical systems. We

study a method called “wavefront coding” that enables to extend the DoF without

reducing the transverse resolution and sensitivity of the system. This method relies

on the combination of an additional optical element designed to reduce the sensitivity

of the system to defocus, with a post-processing digital restoration. In section 5.1 we

review the various approaches proposed to increase the DoF and show how wavefront

coding emerged as the state-of-the-art method in this field. In section 5.2 we describe

the principles of this method and present two approaches to designing pupil phase

filters for enhanced DoF: 1) an analytical method that leads to phase filters with a

cubic profile. This derivation however is restricted to rectangular, linearly separable

filters. 2) A numerical optimisation of phase filters with higher order polynomials. This

method can be applied to circular aperture optical systems and results in two types of

phase filters, namely cubic and petal, depending on the type of constraint applied in

the optimisation algorithm. Section 5.3 describes the Wiener filter employed to restore

the recorded images. The tradeoffs associated with wavefront coding are discussed in

section 5.4. We present in section 5.5 a restoration method that improves the quality

of the extended DoF images.
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5.1 Depth of field - a review

We have introduced the DoF of an optical system in section 4.1 and described its

relationship to the defocus parameter W20. The most common way to increase the

depth-of-field of an optical system consists of closing down the aperture stop. This is

universally used in conventional photography. However, reducing the diameter of the

aperture stop by a factor n effectively increases the F/# = f/D (where f is the focal

length and D is the diameter of the aperture stop of the system) by the same factor and

increases the depth-of-field by a factor n2. This method suffers from a reduction in the

optical power throughput by a factor n2 and a reduced transverse resolution by a factor

n. While this may be acceptable in many situations such as conventional photography,

it can be highly desirable to extend the DoF without reducing the light gathering ability

and transverse resolution of the optical system. Such applications include imaging in

dim light illumination and optical microscopy where spatial resolution and photon

sensitivity cannot be traded for an extended DoF. One of the first methods proposed

that avoids this tradeoff was in fact developed in microscopy [55]. It consists in moving

the focus of the microscope along the optical axis as the image is being recorded. Thus,

the effective MTF of the microscope is the average of the MTF at the different focuses.

The recorded image is blurred but is easily restored with a digital filter because the

effective MTF does not contain nulls anymore.

One of the early descriptions of annular apertures as a means to increase the DoF

is given in [56]. Interestingly, the reduction in speed, i.e. optical power throughput,

associated with an increased DoF is the same for both annular and stopped down cir-

cular apertures. However the former offers improved resolution over the latter. The

ambiguity function (AF) was employed to demonstrate the increased DoF of centrally

obscured rectangularly separable pupils [57]. Similarly it was used to design rotation-

ally symmetric amplitude pupil filters for reducing the sensitivity to spherical aber-

rations [58]. Rotationally symmetric amplitude and phase filters were also described

in [59] to increase the transverse resolution of confocal microscopes. Castañeda et al.

[22] have been arguably the first to combine (amplitude only) pupil filters, for reducing

the sensitivity to defocus, with digital post-processing for improving the quality of the
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extended depth-of-field (EDF) images. This new paradigm, where the pupil filter is

designed to facilitate the digital restoration, was applied to phase-only pupil functions

and termed wavefront coding in [26]. Arguing that these filters do not degrade the

system speed, such filters were designed to minimise the variation of the amplitude

of the AF with defocus [26], see also [60]. Rectangularly separable cubic phase masks

(CPM) were shown to be optimal in this sense. Note that the appearance of nulls in the

MTF of such systems is restricted to large amounts of defocus. This facilitates the im-

age restoration, similarly to the technique proposed in [55]. A very similar phase pupil

function, coined the logarithmic phase mask because its phase follows αsign[x]x2 log |x|,
is obtained when minimising the variation of the PSF with defocus [61]. Phase-only

pupil functions have been discussed for various other purposes: two-zone annular phase

masks for increasing the axial resolution in confocal microscopes [62], rotationally sym-

metric phase masks the mitigation of spherical aberrations [63], coma and astigmatism

[64]. In [54] the Strehl ratio is used instead to characterise the extended DoF of non-

centrally obscured pupil functions. Building on the work in [26], Prasad et al. proposed

to optimise higher order phase polynomials numerically [27]. This scheme minimises

the system sensitivity to defocus and is regularised by a competing term, the image

restorability. A computationally efficient metric of the system sensitivity to defocus is

detailed in [28, 65]. Radially symmetric quartic and logarithmic phase masks do not

require digital post-processing and have been shown to allow the mitigation of modest

amounts of aberrations.

The DoF can also be decoupled from the aperture size by digitally refocusing an

image recorded with an integral imaging system [66, 67]. Digital refocusing denotes the

process of reconstructing an image focused on a specific plane based on the information

recorded at a different focus. It is strictly speaking not a method for extending the

depth-of-field since this feature remains unchanged in the synthesized image. Digital

refocusing requires to measure the four-dimensional (4D) light field with an integral

imaging system such as a plenoptic camera [68]. The 4D light field is composed of the

two spatial dimensions, plus two additional dimensions that define the orientation of

each light ray arriving on the detector. A plenoptic camera focuses the light from the

object plane onto a microlens array, positioned so that each microlens forms an image
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of the aperture of the main lens onto N pixels of the detector. This design is similar

to the Shack-Hartmann sensor used to measure optical aberrations [69]. The plenoptic

camera yields N sub-images of the object formed through N different sub-apertures

of the main lens, each sub-aperture being N times smaller than the aperture of the

main lens. Hence the DoF in the sub-images should be a factor N2 larger than that

in an image recorded with the main lens. This larger DoF puts a physical limit to the

amount of defocus that can be exactly compensated for with a plenoptic camera. Post

processing of the 4D light field also enables range estimations, see e.g. [69, 70] for more

details.

5.2 Wavefront coding principles

5.2.1 Optical transfer function and ambiguity function

We assume the system is incoherently illuminated, that is to say linear in intensity, and

translation invariant, i.e. the PSF is considered to be constant across the field of view.

For simplicity we consider a one-dimensional system but the following calculations can

be easily extended to two-dimensional systems. The optical transfer function H(u)

characterises the system response to the spatial frequencies u and is defined as the

autocorrelation of the generalised pupil function P (ξ):

H(u) =

∫ +∞

−∞
P (ξ + u/2)P ∗(ξ − u/2) dξ

∫ +∞

−∞
|P (ξ)|2 dξ

, (5.1)

where ξ is the normalised pupil coordinate and u is the normalised spatial frequency.

The generalised pupil function is described by:

P (ξ) = p(ξ)ejkW (ξ) , (5.2)

where W (ξ) is the one-dimensional aberration function and p(ξ) is such that:

p(ξ) =





1 If |ξ| ≤ 1

0 otherwise
(5.3)
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When the system suffers from defocus aberration only, P (ξ) is described by Eq. (4.4)

and can be substituted into Eq. (5.1) to yield:

H(u,W20) =
1

2

∫ +∞

−∞
p(ξ + u/2)p(ξ − u/2)ej 2π

λ
2W20uξ dξ . (5.4)

The ambiguity function is a very useful tool in signal processing and optics. It is

well known to be related to the OTF and has been previously used to characterise it

in the presence of aberrations [71, 57, 58]. We denote the ambiguity function operator

as A. The ambiguity function AP (u, t) of the pupil function P (u) is defined as [72]:

AP (u, t) =

∫ +∞

−∞
P (ξ + u/2)P ∗(ξ − u/2)ej2πtξ dξ . (5.5)

Comparing Eq. (5.5) with Eq. (5.4) we observe that the ambiguity function and the

OTF are related as follow:

H(u,W20) =
1

2
AP

(
u,

2W20u

λ

)
. (5.6)

Thus, except for the factor 1/2, a slice of the ambiguity function along the line t =

2W20u/λ provides the OTF for the defocus value W20. Hence the ambiguity function

of the generalised pupil function is a polar representation of the OTF with defocus as

variable [71]. The ambiguity function can be seen as a generalisation of the OTF since

it characterises completely the behaviour of the OTF with respect to defocus. Note the

ambiguity function is closely related to the Wigner distribution function [73, 74] and

both have been used to simplify greatly the image formation formalism under partially

coherent light [75, 76]. It is important to note that the analysis of two-dimensional

optical systems with the ambiguity function is limited to rectangularly separable, or

circularly symmetric pupil functions [60, 63].

5.2.2 Phase mask design for extending the depth of field

In this section we seek to establish the optimum phase filter for extending the DoF. The

choice of phase-only filters is guided by the objective of maximising the light gathering

and resolution.
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Reducing the sensitivity of the ambiguity function to defocus

One approach to designing phase-only filters for enhanced depth of field is to minimise

the variation of the amplitude of the ambiguity function with respect to defocus. For

the sake of completeness we summarise here the main steps of the derivation leading

to the phase mask design and described in [26].

The generalised pupil function P (ξ) of phase-only filters is described as:

P (ξ) =





exp[jθ(ξ)] If |ξ| ≤ 1

0 otherwise
(5.7)

where θ(ξ) is the phase delay profile to be determined. The ambiguity function of this

pupil function is obtained by substituting Eq. (5.7) into Eq. (5.5):

AP (u, t) =

∫ 1−|u|/2

−1+|u|/2

exp[jθ(ξ + u/2)] exp[−jθ(ξ − u/2)] exp[j2πtξ] dξ . (5.8)

Developing the phase profile θ(ξ + u/2) and θ(ξ − u/2) into their Taylor series, Eq.

(5.8) becomes:

AP (u, t) =

∫ 1−|u|/2

−1+|u|/2

exp[jp(ξ)] exp[j2πtξ] dξ for |u| ≤ 2 , (5.9)

with p(ξ) given by:

p(ξ) = 2

[
θ′(ξ)

(u
2

)
+

1

3!
θ(3)(ξ)

(u
2

)3

+ ... +
1

(2n+ 1)!
θ(2n+1)(ξ)

(u
2

)2n+1
]
, (5.10)

and where θ′(ξ) and θ(n)(ξ) denote the first and nth derivative of θ(ξ) relative to ξ

respectively. The integral in Eq. (5.9) can be approximated by mean of the stationary

phase principle [31]. This principle states that for each value of t the rate of change

in p(ξ) is very different from the rate of change in the term 2πtξ for most values of ξ,

thus giving no net contribution to the integral value. Contribution to the integral will

occur when the two phases have similar rate of change, which occurs at the stationary

point denoted ξs, such that:
∂p(ξ)

∂ξ

∣∣∣∣
ξs

+ 2πt = 0 . (5.11)

We assume that the stationary point is unique and that p(ξ) has some degree of smooth-

ness. Thus Eq. (5.9) can be rewritten as:

AP (u, t) ≈ exp[j (p(ξs) + 2πtξs)]

∫ ∞

−∞
exp

[
j
1

2
p′′(ξs)(ξ − ξs)

2

]
dξ , (5.12)
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where p′′(ξs) denotes the second derivative of p(ξ) with respect to ξ evaluated at ξs.

The Gaussian integral in Eq. (5.12) can be determined analytically and one can show

that AP (u, t) is approximated as:

AP (u, t) ≈ 1

2

√
2π

|p′′(ξs)|
exp[j (p(ξs) + 2πtξs)] . (5.13)

Differentiating Eq. (5.11) with respect to t we obtain:

∂2p(ξ)

∂ξ2

∂ξ

∂t

∣∣∣∣
ξs

+ 2π = 0 , (5.14)

∂ξ

∂t

∣∣∣∣
ξs

= − 2π

p′′(ξs)
. (5.15)

Eq. (5.13) shows that the amplitude of AP (u, t) is independent of the parameter t if

p′′(ξs) is itself independent of t. This is the constraint applied in [26] to increase the

DoF of the system. Eq. (5.15) shows that this condition is satisfied if there is a linear

relationship between ξs and t. Consequently, there must also be a linear relationship

between p′(ξs) and ξs. Implementing this relationship into Eq. (5.10) we obtain:

p′(ξ) = 2

[
θ′′(ξ)

(u
2

)
+

1

3!
θ(4)(ξ)

(u
2

)3

+ ... +
1

(2n+ 1)!
θ(2n+2)(ξ)

(u
2

)2n+1
]
,

= a1ξ + a0 . (5.16)

θ(ξ) represents the solution to this differential equation. By differentiating Eq. (5.16)

twice with respect to ξ we obtain a polynomial in u that must be equal to zero for

all u. This is only possible if all the coefficients θ(4)(ξ), θ(6)(ξ), ...,θ(2n+4)(ξ) are null.

Hence Eq. (5.16) reduces to a second order differential equation:

θ′′(ξ) = a1ξ + a0 , (5.17)

where the dependance on u was implicitly included in the coefficients a1 and a0. Eq.

(5.17) is straightforward to solve, and θ(ξ) is therefore given by a third order polyno-

mial:

θ(ξ) = a3ξ
3 + a2ξ

2 + a1ξ + a0 , (5.18)

with a3 6= 0. As mentioned in [29], the coefficient a2 can be neglected since it represents

a defocus term to which the ambiguity function was designed to be independent. The

coefficients a1 and a0 represent the tilt, and thickness of the phase filter respectively
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and can be set to zero as they have no physical interest. Consequently it is shown that

the optimal phase mask that minimises the sensitivity to defocus of the modulation

transfer function (MTF) of the system is simply described as:

θ(ξ) = a3ξ
3 , (5.19)

where a3 controls the amplitude of the phase delay function and is usually expressed

in terms of λ:

a3 =
2πα

λ
, (5.20)

with the parameter α controlling the optical path difference introduced by the phase

mask expressed in spatial units. Combining the expression of the phase mask in Eq.

(5.19) with Eq. (5.10) to solve Eq. (5.11) one easily obtains an approximation of the

ambiguity function of the cubic phase mask:

AP (u, t) ≈ 1

2

√
π

3|a3u|
exp

[
−j π

2t2

3a3u

]
exp

[
j
a3u

3

4

]
, (5.21)

with u 6= 0. Note that the expression of the phase mask in Eq. (5.19) can be readily

extended to rectangularly separable two-dimensional systems:

θ(ξ, η) = a3(ξ
3 + η3) . (5.22)

Although not valid for circular apertures, this result has been used to justify cubic

phase masks with such apertures since they are almost universally found in optical

systems. Such phase masks actually exhibit greater imaging performances, perhaps

due to an apodising effect of the circular aperture.

The limits of this approach reside in the fact that although the amplitude term in

Eq. (5.21) is independent of t, and therefore of W20, the exact expression of AP (u, t)

actually shows significant variations in amplitude with respect to t beyond a certain

value, thereby limiting the depth of field. Another limitation is the variation of the

phase term in Eq. (5.21) with t2. Note that these phase variations decrease with the

amplitude of the phase delay function a3. These variations imply that the phase of the

defocused OTF can not be perfectly compensated with a single restoration filter based

on the OTF at W20 = 0λ, and that the residual phase error will create artifacts in the

restored images.
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Pupil phase engineering

Building on the work of Dowski and Cathey [26] proposing the purely cubic phase

mask, higher order polynomials pupil functions have been considered. Prasad et al.

[27] coined the term pupil phase engineering for the numerical optimisation of these

polynomial coefficients with regard to two competing terms: the system sensitivity to

defocus and its image restorability. The image restorability term penalises solutions

with excessively low OTF. Thus convergence to an infinitely strong phase mask is

prevented and the tradeoff between defocus invariance and restorability is addressed.

This last point will be further discussed in section 5.4.1.

In [27] the sensitivity of the system to defocus is analysed in the spatial domain

via the PSF rather than in the spatial frequency domain with the OTF. Desirable

properties of the phase filters have been proposed to limit the search space of θ(ξ, η).

Assuming that the filter be optimised equally relative to ξ and η, then it must be

invariant under an ξ ↔ η exchange operation. The phase filter can also be required to

be odd, i.e. θ(−ξ,−η) = −θ(ξ, η), so that the Taylor expansion of the PSF, and OTF,

with respect to W20 has only even power terms. Hence the generalised cubic phase

profile to be optimised is now of the form [27]:

θ(ξ, η) = a0(ξ
3 + η3) + a1(ξ

2η + ξη2) . (5.23)

Higher order cubic-pentic polynomials have also been considered in [27, 28, 65]. Simi-

larly to Eq. (5.20), a0 and a1 are expressed in terms of the wavelength λ:

a0 =
2πα

λ
, a1 =

2πβ

λ
. (5.24)

The generalised cubic phase mask is often referred to as the petal phase mask because

of its profile, shown in Figure 5.1 with a square aperture. The even parity of the PSF

and OTF with respect to defocus for odd parity pupil phase functions can be proven by

looking at the expression of their PSF. For clarity we describe below the expression of a

one-dimensional PSF, but the expression readily extends to two-dimensional systems.

The PSF h(x;W20) of an incoherent system can be expressed as the square modulus of

the coherent impulse response P̂ (x;W20):

h(x;W20) =
∣∣∣P̂ (x;W20)

∣∣∣
2

, (5.25)
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Figure 5.1: OPD of the rectangularly separable generalised cubic phase mask with pa-

rameters α and β.

with P̂ (x;W20) equal to the Fourier transform of the generalised pupil function:

P̂ (x;W20) =
1

λf
√
A

∫ +∞

−∞
p(ξ) exp

[
j

{
2π

λ

(
−a
f
ξx+W20ξ

2

)
+ θ(ξ)

}]
dξ , (5.26)

where f is the focal length of the system, a and A are the half width and length of

the aperture respectively. Thus if θ(ξ) is odd, combining Eq. (5.25) and (5.26) one

obtains:

h(x;W20) =
1

A2

∫ +∞

−∞

∫ +∞

−∞
p(ξ)p(η) cos

[
2π

λ
W20(ξ

2 − η2)

]

cos

[
−2π

λ

a

f
x(ξ − η) + θ(ξ) − θ(η)

]
dξ dη . (5.27)

Eq. (5.27) shows that the PSF depends on the cosine of the defocus parameter, and

therefore exhibits only even power terms in its Taylor expansion at W20 = 0λ. This is

also valid for the OTF of such pupil functions. Hence the OTF around W20 = 0 can

be approximated as:

H(u;W20) ≈ H(u; 0) +
∂2H(u;W20)

∂W 2
20

∣∣∣∣
W20=0

W 2
20

2
. (5.28)

We remind that the phase mask design require us to define a metric of the sensitivity

of the system to defocus. Metrics such as the Strehl ratio SR have been proposed to

quantify the sensitivity of the system to defocus. This metric is however fundamentally

limited by the wealth of information disregarded. Indeed, as is the case for the purely

cubic phase mask which ignores the variation with defocus of the phase transfer func-

tion, the Strehl ratio only accounts for the on-axis value of the PSF. A metric based on
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the Fisher-information answers that shortcoming [27] but involves heavy computations.

Suitable metrics for an implementation in numerical optimisation algorithms must be

computationally efficient. One can think of a simple approach where the OTF is com-

puted at different values of W20 over a given range. A meaningful metric of the sensi-

tivity to defocus could be defined as the average of the L2 norm of H(u;W20)−H(u; 0)

over this range of defocus values. Unfortunately, such a metric is computationally

heavy, since many two-dimensional OTF have to be computed, and can not realis-

tically be implemented in an optimisation algorithm. Recently however an efficient

computation method that approximates the L2 norm of H(u;W20)−H(u; 0) has been

described in [28, 65]. From Eq. (5.28) the L2 norm of the error H(u;W20) − H(u; 0)

can be approximated as:

||H(u;W20) −H(u; 0)|| ≈M
W 2

20

2
, (5.29)

with:

M =

∣∣∣∣∣

∣∣∣∣∣
∂2H(u;W20)

∂W 2
20

∣∣∣∣
W20=0

∣∣∣∣∣

∣∣∣∣∣ . (5.30)

We recall that the Lp norm of a vector x = [x1, x2, ..., xn] is defined as:

||x||p =

(
n∑

i=1

|xi|p
)1/p

. (5.31)

It was shown in [28] that the metric M in Eq. (5.30) accurately describes the sensi-

tivity of the OTF for values of W20 up to 1.5λ. Beyond this value of W20 the quartic

term in the Taylor expansion can be included in the metric to increase its accuracy.

Most importantly, this metric accounts for both amplitude and phase variations of the

OTF with defocus. This represents a fundamental improvement over the analytical

approach previously described, where variations with defocus in the phase of the am-

biguity function were neglected. In addition, M can be computed very efficiently. The

derivation of the efficient computation of M is given in [28] and is reported here for

the slightly simplified case of odd pupil phase functions that concerns us. This metric

derives from applying Parceval’s relation to Eq. (5.5). Thus it is shown in [77] that

AP (u, t) can equally be written as:

AP (u, t) =

∫ +∞

−∞
P̂ (x+ t/2)P̂ ∗(x− t/2)e−j2πux dx , (5.32)

AP (u, t) = AP̂ (t,−u) , (5.33)
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where the role of the variables t and u has been exchanged compared with Eq. (5.5).

Combining Eq. (5.6) and Eq. (5.32) we obtain a new form of the OTF:

H(u;W20) =
1

2
AP̂ (

2W20u

λ
,−u) , (5.34)

which can be expanded to:

H(u;W20) =
1

2

∫ +∞

−∞
P̂

(
x+

2W20u

λ

)
P̂ ∗
(
x− 2W20u

λ

)
exp[−j2πux] dx . (5.35)

The relationships between the quantities P (ξ, η), P̂ (x, y;W20), h(x, y;W20) andH(u, v;W20)

are summarised in Figure 5.2. Differentiating Eq. (5.35) twice with respect to W20,
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Figure 5.2: Relationships between P (ξ, η), P̂ (x, y;W20), h(x, y;W20) and H(u, v;W20).

ΓPP denotes the autocorrelation operator, FT and FT−1 denote the two-dimensional

Fourier and inverse Fourier transforms respectively, the block labelled W20 denotes a

multiplication by the term exp[j2πW20(ξ
2 + η2)/λ]. ||2 denotes the square modulus

operator.

and evaluating the resulting function at zero defocus yields:

∂2H(u; 0)

∂W 2
20

=
( u

2π

)2
∫ +∞

−∞
P(x) exp[−j2πux] dx , (5.36)

where ∂2H(u; 0)/∂W 2
20 denotes the second derivative of H(u;W20) with respect to W20

and evaluated at W20 = 0, and with:

P(x) = P̂ ∗(x)
∂2P̂ (x)

∂x2
− 2

∂P̂ (x)

∂x

∂P̂ ∗(x)

∂x
+ P̂ (x)

∂2P̂ ∗(x)

∂x2
. (5.37)

74



One recognises in Eq. (5.36) the Fourier transform of P(x), denoted as P̂(u). Eq.

(5.36) readily extends to two-dimensional systems [65]:

∂2H(u, v; 0)

∂W 2
20

=
( u

2π

)2

P̂x,x(u, v) +
( v

2π

)2

P̂y,y(u, v) +
uv

2π2
P̂x,y(u, v) , (5.38)

where the circumflex denotes a two-dimensional Fourier transform. For the special case

of hermitian pupil functions P (ξ, η) (i.e. odd phase function), P̂ (x, y) is real. Thus

Pd,d(x, y) for d = x or d = y, and Px,y(x, y) reduce to:

Pd,d(x, y) = 2


P̂ (x, y)

∂2P̂ (x, y)

∂d2
−
(
∂P̂ (x, y)

∂d

)2

 , (5.39a)

Px,y(x, y) = 2

[
P̂ (x, y)

∂P̂ (x, y)

∂x∂y
− ∂P̂ (x, y)

∂x

∂P̂ (x, y)

∂y

]
. (5.39b)

Eq. (5.38) enables one to visualise instantly the sensitivity to defocus of the OTF for

any odd pupil phase function. Thus it can be considered to serve the same purpose as

the ambiguity function, but extended to two-dimensional systems. Furthermore Eq.

(5.38) can be computed very efficiently with only four fast Fourier transforms (FFT).

In our implementation of Eq. (5.38), the derivatives are calculated via convolution

with a 3x1 derivative of gaussian filter, normalised for unit energy, instead of the

finite difference approximation advised in [28], in order to maintain symmetry. Figure

5.3 shows the MTF of a DL system, and the pupil functions (α, β) = (2.5, 0) and

(α, β) = (3.39,−10.17) at W20 = 0λ and W20 = 1λ. These two pupil functions have

been selected here because they model phase masks that we have implemented in

an optical microscope, and will be further discussed in Chapter 6. Note that the

MTF varies significantly less between W20 = 0λ and W20 = 1λ with the two phase

masks than in the DL system. In Figure 5.4 we present the second derivative of the

OTF with respect to defocus for the same pupil functions, calculated with Eq. (5.38).

These graphs are a good approximation of |H(u, v;W20) −H(u, v; 0)| for W20 ≤ 1.5λ.

Attention should be paid to the difference in intensity scale which illustrates again the

reduced sensitivity to defocus of these pupil functions relative to that of the DL system.

As mentioned previously, Prasad proposed to add a regularisation term to the de-

focus sensitivity metric to minimise in order to avoid convergence to infinitely strong
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Figure 5.3: MTF of different pupil functions. From left to right: diffraction limited

system, (α, β) = (2.5, 0) and (α, β) = (3.39,−10.17). Top row: W20 = 0λ, bottom row:

W20 = 1λ.
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phase masks [27]. Such phase masks are not desirable because the higher the parame-

ters α and β, the greater the attenuation of the OTF. This attenuation determines the

amplification of spatial frequencies that must be performed during the image restora-

tion. Since noisy signals at amplified frequencies can not be separated from the object

spectrum, these spurious signals will also be amplified and will degrade the quality of

restored images. We therefore use a Wiener filter to restore the images and will further

describe this filter later on. Nevertheless, the tradeoff between defocus invariance and

image restorability must be accounted for. This can be accomplished by including a

term that penalises phase masks with unacceptably attenuated OTF. Hence the cost

function CΨ(a0, a1) to minimise is expressed as:

CΨ(a0, a1) = M(a0, a1) + PΨ(a0, a1) , (5.40)

where M(a0, a1) is the metric of the sensitivity of the system to defocus and PΨ(a0, a1)

is the regularisation term, sometimes referred to as the penalty term. We use the

Fermi-Dirac regularisation function as proposed in [27]:

PΨ(a0, a1) = K(1 − Ψ(a0, a1))
1

exp(η(Ψ(a0, a1) − Ψ0)) + 1
, (5.41)

where Ψ(a0, a1) is the metric of restorability, Ψ0 is the minimum acceptable value of this

metric, K and η define the amplitude and slope of the penalty function respectively.

A commonly employed metric of restorability is the in-focus Strehl ratio SR [27, 28,

65], defined as the axial value of the PSF of the in-focus optical system to that of

a diffraction limited system with similar aperture size and F/#. Note this definition

differs from that of S(W20) in Eq. (4.7). This is justified because we now seek to

measure the image restorability whereas S(W20) measures the sensitivity of the system

to defocus. We will discuss other metrics of restorability in the next section and show

that it has a significant impact on the design of the phase mask.

5.2.3 Phase mask optimisation results

In this section we 1) detail the optimisation procedure, 2) discuss various image restora-

bility metrics and 3) present the results of the optimisation. In particular we will show

that purely cubic phase masks and petal phase masks with β = −3α provide a good
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tradeoff between defocus invariance and image restorability depending on the metric

of restorability.

Because the (α, β) search space exhibits multiple local minimum we randomly gen-

erate the starting points of a local minimisation algorithm (Quasi-Newton). We use

the FindMinimum function in Mathematica to perform the Quasi-Newton minimisa-

tion at each of these starting points. Each local minimisation therefore converges to a

local optimum in the (α, β) plane. The global optimum is calculated as the one point

among these local optimum that minimises CΨ. Note that the algorithm is restricted

to values of α and β within the [−19λ, 19λ] range. Figure 5.5 displays the metric M

at the random starting positions of the local optimisation, where defocus sensitivity is

color coded and increases from blue to red. Figure 5.6 shows the values of Ψ, PΨ and

CΨ at these starting points (K = 0.1, η = 500, Ψ0 = 10−3). For Ψ = SR, left column of

Figure 5.6, the penalty term PΨ strongly penalises purely cubic phase masks, yielding

comparatively better phase masks around the line β = −3α. Indeed the graph of CΨ,

shown on the bottom left of Figure 5.6, exhibits a valley along the line β = −3α and

the global optimum is found to be close to this line:

α = 3.423λ, β = −13.754λ . (5.42)

This result is in good agreement with the results presented in [27], where the solution

(α, β) = (5.2,−16.2) is also close to the β = −3α line. The difference in the solutions

found is due to different settings for the minimum acceptable Strehl ratio. These results

strongly indicate that phase masks with β = −3α provide a good compromise between

defocus invariance and image restorability. In Chapter 6 we will implement the phase

mask (α/λ, β/λ) = (3.39,−10.17) in an optical microscope to extend its DoF. This

phase mask is designed so that β = −3α and was readily available at the time the

microscope was being developed. Note however that it is close in performances and

design to the phase mask (α/λ, β/λ) = (3.423,−13.754), as is shown in Figures 5.4

and 5.8 and Table 5.1.

We now discuss desirable properties of the metric of image restorability. In particular,

we argue that the metric of image restorability should solely depend on the amplitude
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Figure 5.5: Value of the metric M at the random starting points of the local optimisa-

tion.

of the OTF and exclude the phase of the OTF. Indeed, the phase information can

theoretically always be recovered provided that the SNR is sufficiently high. Therefore

SR may be biased by phase effects since we have SR ∝
∫
H(u) du. For instance, SR

will underestimate the restorability of purely cubic phase masks because of the lateral

shift of the peak PSF value they introduce. Consequently we argue that the design

of phase masks whose penalty term includes SR are suboptimal. It may be preferable

instead to use the normalised L2 norm of the PSF or OTF:

E =

∫ +∞

−∞
|H(u; 0)|2 du

∫ +∞

−∞
|Hdl(u; 0)|2 du

=

∫ +∞

−∞
|h(x; 0)|2 dx

∫ +∞

−∞
|hdl(x; 0)|2 dx

, (5.43)

where hdl(x; 0) and Hdl(u; 0) denote the in-focus diffraction limited PSF and OTF

respectively. In place ofE one may employ
√
E to be more consistent with the definition

of the metric M . Another metric, denoted E2, similar to
√
E is based on the L2 norm

of the ratio of the in-focus MTF to the DL MTF:

E2 =

√∫ +∞

−∞

|H(u; 0)|2
|Hdl(u; 0)|2 du . (5.44)

These metrics have closely related definitions and the optimisation results they yield are

unlikely to significantly differ from one another, provided the parameters of the penalty

function Ψ are adjusted correspondingly. The right column in Figure 5.6 displays E, its

79



Ψ = SR Ψ = E

Ψ

-10 0 10 20

Α
����
Λ

-10

0

10

20

Β
����
Λ

1
2
4
6
7
9

11
12
14
16

x10 -3

-10 0 10 20

Α
����
Λ

-10

0

10

20

Β
����
Λ

1
2
4
6
7
9

11
12
14
16

x10 -3

PΨ

-10 0 10 20

Α
����
Λ

-10

0

10

20

Β
����
Λ

5
10
16
21
26
31
36
41
47
52

x10 -3

-10 0 10 20

Α
����
Λ

-10

0

10

20

Β
����
Λ

5
10
16
21
26
31
36
41
47
52

x10 -3

CΨ

-10 0 10 20

Α
����
Λ

-10

0

10

20

Β
����
Λ

Β=-3Α

10
14
19
23
28
33
37
42
46
51

x10 -3

-10 0 10 20

Α
����
Λ

-10

0

10

20

Β
����
Λ

Β=-3Α

18
22
25
29
33
36
40
44
47
51

x10 -3

Figure 5.6: Random starting points of the local optimisation. From top to bottom:

metric of restorability Ψ, penalty term PΨ and cost function CΨ. Ψ is from left to right

the Strehl ratio SR and the normalised L2 norm of the PSF E.
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associated penalty and cost functions PΨ and CΨ respectively. Note that the penalty

PΨ applied to cubic phase masks is now similar to that of the petal phase masks. The

optimal phase mask using Ψ = E was found to be almost purely cubic:

α = 7.247λ, β = 0.463λ . (5.45)

The MTF of these two pupil functions are shown in Figure 5.7 at W20 = 0λ and

W20 = 1λ. Again, the variation of their OTF with defocus is well approximated by the

second derivative of their OTF with respect to defocus, which are displayed in Figure

5.8. The parameters of these pupil functions are summarised in Table 5.1.
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Figure 5.7: MTF of different pupil functions. From left to right: (α, β) =

(3.423,−13.754) and (α, β) = (7.247, 0.463). Top row: W20 = 0λ, bottom row:

W20 = 1λ.

5.3 Image restoration

We previously assumed the system to be linear in intensity because of incoherent

illumination. We also assume the angular extent of the object is small enough to fall
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Figure 5.8: Normalised absolute value of the second derivative of the OTF with respect

to defocus for different pupil functions.

(α/λ, β/λ) M SR E C

(2.5, 0) 0.07541 0.01542 0.04759 0.07541

(3.39,−10.17) 0.01062 0.01114 0.00347 0.03308

(3.423,−13.754) 0.00766 0.00898 0.00226 0.04236

(7.247, 0.463) 0.01460 0.00365 0.00798 0.01754

Table 5.1: Parameters of different pupil functions defined by their coefficients

(α/λ, β/λ). The metric of restorability used in C is Ψ = E. For a diffraction lim-

ited system (α, β) = (0, 0) all the parameters are equal to unity.
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in an isoplanatic region of the system (region over which aberrations are constant), i.e.

that the PSF of the system is translation invariant [78]. Thus the image of the object

formed by the system is equal, to a good approximation, to the convolution product

between the object and the system PSF:

I(x, y) =

∫ +∞

−∞

∫ +∞

−∞
O(x′, y′)h(x− x′, y − y′) dx′ dy′ , (5.46)

where O(x, y), I(x, y) and h(x, y) are the object, image and PSF of the system respec-

tively. We seek to recover O(x, y) from the measurement of I(x, y) and the knowledge

of h(x, y). Linear estimators are commonly used in deconvolution procedures and es-

timate the object spectrum as the product of the image spectrum and the spectrum

of a linear filter. The restored image is then obtained by taking the inverse Fourier-

transform of this product:

Ô(x, y) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
I(u, v)G(u, v) exp[j2π(ux+ vy)] du dv , (5.47)

where Ô(x, y), I(u, v), G(u, v) are the restored image, the image spectrum and filter

spectrum respectively. The Wiener filter is the optimal linear filter in the sense that

it minimises the mean-square-error between the restored image spectrum Ô(u, v) =

FT[Ô(x, y)] and the true object spectrum O(u, v) = FT[O(x, y)], in the presence of

noise with a known power-spectral-density |P (u, v)|2. Obviously G(u, v) must be a

function of the in-focus OTF H(u, v; 0), since phase masks were designed to reduce

defocus sensitivity at W20 = 0λ. One can show that the Wiener filter is written as:

G(u, v) =
H(u, v; 0)∗

|H(u, v; 0)|2 + |P (u,v)|2
|O(u,v)|2

. (5.48)

In order to compare the quality of the deconvolved images with that of a diffraction

limited (DL) system, we apodise G(u, v) with a window equal to the in-focus OTF of

a DL system of similar aperture size and F/#. This OTF, denoted as Hdl(ν; 0) where ν

is the normalised radial spatial frequency coordinate such that ν =
√
u2 + v2, is equal

to the Fourier transform of the Airy disk and can be expressed as [79]:

Hdl(ν; 0) =
2

π

[
arccos [ν] − |ν|

√
1 − ν2

]
. (5.49)

Hence the restoration filter becomes:

G(u, v) =
H(u, v; 0)∗

|H(u, v; 0)|2 + |P (u,v)|2
|O(u,v)|2

Hdl(ν; 0) . (5.50)
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Since we seek to recover the object O(u, v), a good estimate of its power spectral

density |O(u, v)|2 is crucial in determining the quality of the restoration. A possi-

ble estimate is the power spectral density of the detected image |I(u, v)|2 [80]. We

found this estimate to excessively amplify certain spatial frequencies, thus leading to

artificial oscillations in the restored image. Better image quality was obtained by use

of a Wiener filter employing a user-defined constant noise-to-signal power ratio, i.e.

|P (u, v)|2/|O(u, v)|2 = K. Thus Eq. (5.50) reduces to:

G(u, v) =
H(u, v; 0)∗

|H(u, v; 0)|2 +K
Hdl(ν; 0) . (5.51)

As it will be shown, it is convenient for Eq. (5.51) to be generalised to account for an

estimate Ŵ20 of the defocus parameter W20. Eq. (5.51) is therefore rewritten as:

G(u, v) =
H(u, v; Ŵ20)

∗

|H(u, v; Ŵ20)|2 +K
Hdl(ν; 0) . (5.52)

It is also useful to define the absolute radial spatial frequency coordinate ν ′ expressed

in units of cycles/mm. ν ′ is such that ν = ν ′/ν0, where ν0 = 1/λF/# is the optical

cutoff frequency.

5.4 Wavefront coding tradeoffs

5.4.1 Extended depth-of-field vs restorability

When designing a phase mask to extend the depth-of-field, there is a compromise

between defocus invariance and image restorability. The optimisation of this tradeoff

is key to the pupil-phase-engineering approach presented in section 5.2.2. Figures 5.5

and 5.6 present the defocus sensitivity metric M and the restorability metric E at

uniformly distributed random locations in the (α, β) plane. These scatter-plots were

chosen for computational efficiency but the sampling density enables us to highlight

the conflict between these two metrics. To underline this tradeoff we pose the problem

of choosing the strength of a particular type of phase mask. For cubic phase masks and

petal phase masks with β = −3α, this comes down to choosing the value of α. Figure

5.9 displays M and
√
E versus α for these two phase masks. Observe that both metrics

decrease monotonically with the phase mask strength α for both types of phase mask.
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This graph therefore clearly indicates that extended depth-of-field (EDF) is achieved

at the expense of a reduced SNR in the restored image. Note that for α > 1λ there

is approximately a 6.4dB and 4.5dB difference in M and
√
E respectively between the

two types of phase masks. This means that purely cubic phase masks must have a

larger α value than that of petal phase masks with an identical defocus sensitivity.

0 1 2 3 4 5 6 7

Α
����
Λ

-30

-25

-20

-15

-10

-5

0
dB

�!!!!E: petal

�!!!!E: Cubic
M: petal
M: Cubic

Figure 5.9: Metrics of defocus sensitivity M and restorability
√
E vs phase mask

strength. dB=10log.

5.4.2 Restored images artifacts

We have seen in Section 5.2.2 that phase masks can be designed to minimise the

sensitivity of the system to defocus for a given noise level. Nevertheless, the system can

only be assumed invariant to defocus in a specific range. Indeed, the defocus sensitivity

metric M only tends asymptotically towards zero as the phase mask strength increases,

see Figure 5.9. Outside this region, variations in the OTF become significant and have

an impact on the final image quality. Variations in the MTF have little impact on

the restored image quality as long as the MTF remains significantly higher than the

noise level. Variations in the phase of the OTF however, create artifacts which may

significantly degrade the quality of the restored images. The nature and amplitude

of these artifacts naturally depend on the phase mask, the amplitude of the phase

disparity and the object spectrum.

We seek here to show that, for modest values of W20, the origin of the artifacts lies

in variations of the phase of the OTF. To that end we consider the situation where
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we successively capture the images of an object located at different distances from

the focal plane of the system. We denote by I1(u, v) and I2(u, v) the spectrum of the

images recorded in noise-free conditions at these two positions and denote by w1 and

w2 the values of the defocus parameter associated with these two positions. We restore

I1(u, v) with the filter given in Eq. (5.52) (with K=0) for the defocus w2 and denote

the resulting image by Ô12(u, v). We proceed reciprocally for I2(u, v) and denote the

image restored with w1 by Ô21(u, v). Thus the restored images can be expressed as:

Ô12(u, v) = O(u, v)
|H(u, v;w1)|
|H(u, v;w2)|

exp[jφ12(u, v)] , (5.53a)

Ô21(u, v) = O(u, v)
|H(u, v;w2)|
|H(u, v;w1)|

exp[jφ21(u, v)] , (5.53b)

with φij(u, v) = φ(u, v;wi) − φ(u, v;wj) and φ(u, v;wi) is the phase of the OTF at

defocus wi. Assuming that |H(u, v;w1)| ≈ |H(u, v;w2)|, Eq. (5.53a) and (5.53b)

reduce to Ô12(u, v) ≈ O(u, v) exp[jφ12(u, v)] and Ô12(u, v) ≈ O(u, v) exp[−jφ12(u, v)]

respectively. Since the terms φij(u, v) have an odd parity, the restored images Ô12(x, y)

and Ô21(x, y) are the result of the convolution of the object O(x, y) with a real function

h12(x, y) and h21(x, y) respectively:

h12(x, y) = FT−1[exp[jφ12(u, v)]] , (5.54a)

h21(x, y) = h12(−x,−y) . (5.54b)

Thus it is shown that if the MTF is approximately invariant between w1 and w2, the

image artifacts in Ô12(x, y) are different from those in Ô21(x, y) but will exhibit a high

degree of symmetry. We simulate the one-dimensional artifacts in the restored images

of a vertical edge. Since the optical system is two-dimensional the simulation can be

efficiently implemented using a one-dimensional edge and the Fourier Slice Theorem

[81]. The images Ô12(x, y) and Ô21(x, y) obtained for w1 = λ and w2 = 0λ with the

phase mask (α/λ, β/λ) = (3.39,−10.17) are shown in Figure 5.10. The artifacts in

Ô12(x, y) and Ô21(x, y) clearly exhibit some symmetry, and show their origin to lie

in the phase mismatch between the convolving OTF and the restoration filter. The

images of an edge with increasing amount of defocus and restored with a filter at

W20 = 0 are shown on left column of Figure 5.11, for different phase masks. The right

column in Figure 5.11 shows the image of an in-focus edge restored with filters with
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W20 varying from 0λ to 3λ. The artifacts shown in the left and right columns clearly

exhibit the degree of symmetry discussed above. However when the MTF significantly

varies between w1 and w2, the approximations in Eq. (5.54a) and (5.54b) are not valid

anymore and the artifacts in Ô12(x, y) and Ô21(x, y) do not exhibit this high degree of

symmetry. This is illustrated on the top row of Figure 5.11 (for the cubic phase mask

(α/λ, β/λ) = (2.5, 0)) where oscillations in the left and right column are clearly not

symmetric anymore.
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Figure 5.10: Artifacts in restored images of an horizontal edge for the phase mask

(α/λ, β/λ) = (3.39,−10.17).

There exists a defocus effect that is specific to cubic phase masks (CPM). Using a

phasor decomposition of the OTF, Muyo and Harvey obtained an approximation of

the phase of the OTF φ(u) of rectangular, linearly separable cubic phase masks at low

spatial frequencies [82, 29]:

φ(u) = −4πW20u
3α

, for |u| <
√

|W20|
3α2 . (5.55)

From the Fourier shift theorem one deduces that one effect of defocus for CPM is the

translation of image features by a distance proportional to W20/3α. For the circular-

aperture CPM an analytical expression of the phase is not readily available but the

translation effect remains and can be clearly observed on Figure 5.12.

We now assess the image artifacts in two-dimensional images. The image of Lena,

which has been widely employed by the image processing community, serves as a rea-

sonable scene due to it complexity. Figure 5.13 shows the restored image of Lena

obtained with different phase masks for a defocus W20 = 1λ, an estimated defocus

Ŵ20 = 0λ and a 60dB SNR. We define the SNR in the coded images as:

SNR = 20 log

(
Max − Min

σ

)
, (5.56)
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Figure 5.11: Artifacts in restored images of a horizontal edge for different phase masks.

Left: edge with increasing defocus restored with a single filter at W20 = 0λ. Right: in-

focus edge restored with various filters with increasing W20 values.
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Figure 5.12: Restored images of a vertical edge for increasing amounts of defocus and

for the phase mask (α, β) = (2.5, 0). Note the translation of the position of the edge

with increasing defocus.

where σ denotes the standard deviation of the gaussian noise added to the coded

image, Max and Min refer to the maximum and minimum values respectively of the

coded image before noise addition. Other definitions of the SNR can be found in

the literature but they yield very similar values. For instance, one could use the

maximum value of the image in place of the dynamic range in Eq. (5.56). For the

image of Lena, the difference between the two definitions is smaller than 0.2dB at

60dB and can be neglected. The 60dB SNR corresponds approximately to a dynamic

range of 2250:1 achieved with the Hamamatsu C4742-95-12G04 camera implemented in

the wavefront coded microscope described in Chapter 6. The reference image, shown

in top left on Figure 5.13, is exactly recovered with any phase mask in ideal noise-

free conditions when W20 = Ŵ20. The image obtained with a DL system, labelled as

(α/λ, β/λ) = (0, 0), is also displayed for comparison. In this particular case the restored

image is simply the convolution of the object with the defocused PSF because of the

form of the Wiener filter in Eq. (5.50). For all the phase masks presented the restored

images exhibit increased sharpness compared with that of a DL system with an equal

amount of defocus. For the two cubic phase masks (2.5, 0) and (7.247, 0.463) artifacts

consist of unidirectional oscillations and visible replicas near strong edge features (e.g.

near the hat of Lena). The latter artifacts are dominant in images with the two petal

phase masks (3.39,−10.17) and (3.423,−13.754). All these artifacts become more

apparent as the mismatch between W20 and Ŵ20 increases. This illustrated in Figure
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5.14 where the defocus effect is stronger, W20 = 3λ and the estimated defocus is

maintained at Ŵ20 = 0. Despite strong image artifacts being now clearly visible for all

phase masks, the image sharpness is still greatly improved relative to the DL system.

Artifacts can be greatly reduced if the parameter K in Eq. (5.52) is increased. This

means that the restoration filter amplifies less the spectrum of the detected image,

which results in images with a reduced sharpness. Increasing K in the Wiener filter

is usually associated with increasing levels of noise. We described in the previous

section the tradeoff between the sensitivity to defocus and the noise level in the image.

Similarly we can also see the artifacts in the restored images as another tradeoff to the

depth-of-field extension.

To summarise, we have described the tradeoff between defocus sensitivity and image

restorability. This tradeoff was accounted for in the phase mask design described in

Section 5.2.2. Simulated images of vertical edges and two-dimensional images have

demonstrated the extended DoF provided by different phase mask designs and also

highlighted the presence of artifacts in the restored images. We have shown the origin

of these artifacts to lie in the phase mismatch between the restoration OTF H(u, v; 0)

and the actual OTF H(u, v;W20). The image quality degradation brought by these

artifacts can be seen as a tradeoff to the EDF achieved in wavefront coded systems.

5.5 Estimation of defocus for artifacts removal

We seek to improve the imaging performance of wavefront- coded systems by removing

the artifacts from the restored images. This can be treated as a general deconvolution

problem where we assume the system is characterised, i.e. we know the OTF of the

system H(u, v;W20). There exists a plethora of general deconvolution approaches and

algorithms in the literature and a comparison of their performances for wavefront coded

systems is beyond the scope of this thesis. We choose to focus on removing the artifacts

simply by estimating W20 from the artifacts in the restored image. Once an estimation

Ŵ20 of W20 is available, we then deconvolve the coded image with the Wiener filter

detailed in Eq. (5.52) and with the parameter Ŵ20.
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W20 = Ŵ20 (0, 0) (2.5, 0)

(7.247, 0.463) (3.39,−10.17) (3.423,−13.754)

Figure 5.13: Top left: reference image. Restored Images obtained with different phase

masks, with parameters (α/λ, β/λ), are shown for a 60dB SNR, W20 = 1λ and Ŵ20 =

0λ.
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W20 = Ŵ20 (0, 0) (2.5, 0)

(7.247, 0.463) (3.39,−10.17) (3.423,−13.754)

Figure 5.14: Restored images obtained with different phase masks (α/λ, β/λ) and for

a 60dB SNR, W20 = 3λ and Ŵ20 = 0λ. Top left: reference image.
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5.5.1 Metrics of defocus

The oscillation artifacts near strong edges apparent in, for example Figures 5.11 and

5.14, not only introduce artificial features in the image but are also perceived as re-

ducing image contrast. Therefore a contrast metric should be maximised when the

artifacts are minimised, i.e. when Ŵ20 = W20. Different contrast metrics have been

proposed for various applications. Michelson defined the visibility of interferometric

fringes with the quantity V = (IMAX − IMIN)/(IMAX + IMIN) [83], and is widely used to

measure physical contrast in interferometry, see for example [84]. Other contrast met-

rics such as the Lp norm and the entropy have also been proposed for contrast-based

phase calibration of beam-forming arrays [85]. We originally chose to maximise the

variance of the normalised image, which is similar to the L2 norm, for its simplicity

and computational efficiency. Some authors (see e.g. [86]) argue that for complex

signals or images only local measurements of contrast that fit the human perception

of local contrast are meaningful. Peli shows in [86] that standard definitions of con-

trast, including V as described above, do not fit with experimental data for the human

perception of contrast in Gabor signals (sinusoid with gaussian envelope). He pro-

posed instead a metric based on multi-scale bandpass Gabor filtering which accurately

models the human contrast perception of Gabor signals. However, to the best of our

knowledge this model was not tested with other, more complex signals.

Recently Demenikov proposed a wavelet-based metric for estimating W20 in wave-

front coded systems. The Haar wavelet is utilised with a median absolute deviation

metric (MAD); i.e. the median of the |xi−median[x]| values, of the coefficients in each

high-frequency sub-bands is computed. The metric is defined as the sum of these values

across all sub-bands. The multi-scale processing inherent to the wavelet framework is

justified by psychophysical notions of the human visual system. Furthermore it con-

cords with Peli’s multi-scale contrast definition, but benefits from the orthogonal prop-

erties of the Wavelet decomposition. The flexibility of this metric, both an advantage

and an inconvenience, stems from the required tuning in the number of decomposition

levels which must be adapted to the target size. Demenikov argues that oscillating

artifacts appear as high amplitude ripples in high-frequency sub-bands. Therefore a
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minimisation of this metric should converge to an estimator Ŵ20 that minimises oscil-

lating artifacts. How the metric discriminates between high amplitude coefficients due

to edges and those due to artifacts remains unclear.

Following Peli’s multi-scale contrast definition we investigate a third metric of defo-

cus. Using the Haar Wavelet decomposition suggested by Demenikov, we measure the

contrast as the L2 norm of the wavelet coefficients across scales, after normalisation

by their L1 norm. We refer to this metric as the wavelet energy (WE) metric. It is

also similar to the variance metric but is applied in the wavelet domain instead of the

spatial domain.

The development of a general purpose, robust metric for estimating the defocus

parameter from image artifacts is a difficult image-processing task and an on-going

process. An easier approach consists in calibrating a metric for a given data set to

ensure that the metric provides reasonably accurate estimates of W20. In the next

section we analyse the accuracy of the various metrics described above for different

types of images and phase masks.

5.5.2 Defocus estimation results

In noise-free signals

We report here the defocus estimations of the metrics described above in noise-free

conditions for a) a unit vertical step, b) the image of Lena which represents general

image features. We include in these results two implementations of the MAD metric,

denoted MAD and MAD3, corresponding to a single level and three levels wavelet

decomposition respectively. In order to quantify the accuracy of the metrics estimates

we proceed as follow. For a set of actual defocus values W20 we compute the defocus

estimates Ŵ20. We utilise the relative error between the vectors Ŵ20 and W20 to

summarise the performance of each metric. The relative error δ[X,X0] of a vector X

with respect to a vector X0, is defined for n-dimensional vectors as:

δ[X,X0] =
||X −X0||n

||X0||n
. (5.57)
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We therefore use the L1 norm in Eq. (5.57) to compute δ[Ŵ20,W20] and express it in

%. Note that the step size in Ŵ20 and W20 is equal to λ/4. Further decreasing this

step size is unlikely to have any significant impact on the outcome of this analysis but

will increase significantly the computational time. Defocus estimations for the vertical

step target are presented in Figure 5.15 and the values of δ[Ŵ20,W20] are reported in

Table 5.2. Since Figure 5.15 shows plots of Ŵ20 versus W20 an ideal metric would yield

estimates that lie on the Ŵ20 = W20 line.These results show that for this target, the

variance metric yields an unbiased estimator of defocus for the petal phase masks, and

has a λ/4 bias at W20 = 0 for the two cubic phase masks, see top row on Figure 5.15.

The WE metric is unbiased for all phase masks except for the cubic mask (2.5, 0). The

MAD metrics clearly do not provide meaningful estimates for the cubic mask (2.5, 0)

and only achieves reasonable accuracy with the petal phase mask (3.423,−13.754).

Defocus estimations for the target Lena are displayed in Figure 5.16 and the values

of δ[Ŵ20,W20] are reported in Table 5.3. It shows the MAD3 and WE metrics are

unbiased for all phase masks except for a λ/4 and λ/2 error respectively at W20 = 3λ

with the cubic phase mask (2.5, 0).

We observe that the variance metric performs significantly better for the single edge

than for the target Lena. This seems to indicate that the variance metric is a reasonable

local measure of contrast but may be ill-suited to large, complex two dimensional

images. These results indicate that the WE metric appears to be the most accurate

estimator of defocus among those tested here in noise-free conditions.

(α/λ, β/λ) (2.5, 0) (7.247, 0.463) (3.39,−10.17) (3.423,−13.754)

variance 1.3 1.3 0 0

MAD 46.2 14.1 11.5 3.8

MAD3 64.1 6.4 14.1 2.6

WE 2.6 0 0 0

Table 5.2: Relative error δ[Ŵ20,W20] in percent of the defocus estimates for the vertical

unit edge in noise-free conditions.
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Figure 5.15: Defocus estimation in restored images of a unit vertical edge, in noise-free

conditions, with different metrics and phase masks (α/λ, β/λ).
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Figure 5.16: Defocus estimation in the restored images of Lena, in noise-free conditions,

with different metrics and phase masks (α/λ, β/λ).
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(α/λ, β/λ) (2.5, 0) (7.247, 0.463) (3.39,−10.17) (3.423,−13.754)

variance 8.3 4.2 8.3 20.8

MAD 8.3 8.3 4.2 8.3

MAD3 8.3 0 0 0

WE 4.2 0 0 0

Table 5.3: Relative error δ[Ŵ20,W20] in percent of the defocus estimates for the image

of Lena in noise-free conditions.

In noisy signals

The presence of noise in the coded image influences artifacts in the restored image and

will in general degrade the accuracy of the defocus estimates. Indeed, the K value in

the Wiener filter, given in Eq. 5.52, must be increased with the noise level in the coded

image. Thus higher noise levels are associated with increased smoothing by the Wiener

filter, which results in a decreased sharpness in restored images and an attenuation of

the image artifacts. In other words, as the noise level increases it progressively degrades

the image quality and takes over the image artifacts. It is therefore crucial to assess

the performance of the metrics in the presence of noise. To that end we include an

additive white gaussian noise to the coded image (SNR=60dB). We present the average

and standard deviation values of the defocus estimates over 10 iterations. Figure 5.17

and 5.18 show the defocus estimations in a vertical edge for the cubic and petal phase

masks respectively. The relative errors δ[Ŵ20,W20] are reported in Table 5.4 and show

that the WE metric yields the best estimate of defocus with a relative error as low

as 2.6% achieved with petal mask (3.423,−13.754). In agreement with the noise-free

simulations the MAD metrics do not provide meaningful defocus estimations in the

present of noise for the edge target. The defocus estimations with the Lena target are

presented in Figure 5.19 and 5.20 for the cubic and petal phase masks respectively.

The relative errors δ[Ŵ20,W20] are reported in Table 5.5 show that the MAD metrics

provide better accuracy than the WE and variance metrics for all phase masks (average

relative error reduced by factors of 5 and 20 respectively) except the cubic mask (2.5, 0)

where WE has the smallest error. Furthermore the relative error δ[Ŵ20,W20] achieved

with MAD3 is consistently below 1.3% for the two petal phase masks and even reaches
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0% for the cubic phase mask (7.247, 0.463) that was previously optimised.
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Figure 5.17: Defocus estimation in restored images of a unit vertical edge with two

CPM. The metrics employed are shown in the legend. SNR in coded image is 60dB.
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Figure 5.18: Defocus estimation in restored images of a unit vertical edge with different

metrics and petal phase masks (α/λ, β/λ). SNR in coded image is 60dB.

(α/λ, β/λ) (2.5, 0) (7.247, 0.463) (3.39,−10.17) (3.423,−13.754)

variance 6.4 13.6 13.2 15

MAD 78.3 65.6 53.8 47.7

MAD3 74.3 68.5 53.2 55.3

WE 2.7 4.2 4 2.6

Table 5.4: Average relative error in percent of the defocus estimates for the vertical

unit edge. SNR in coded images is 60dB.
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Figure 5.19: Defocus estimation in restored images of Lena with different metrics and

cubic phase masks (α/λ, β/λ). SNR in coded image is 60dB.

(α/λ, β/λ) (2.5, 0) (7.247, 0.463) (3.39,−10.17) (3.423,−13.754)

variance 11.3 16.3 22.5 12.1

MAD 8.3 3.3 3.8 0.4

MAD3 8.3 0 1.3 1.3

WE 4.2 4.2 5.8 4.2

Table 5.5: Average relative error in percent of the defocus estimates for the image Lena.

SNR in coded images is 60dB.

100



(3.39,−10.17) (3.423,−13.754)

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

Var

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

Var

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

MAD

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

MAD

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

MAD3

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

MAD3

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

WE

ref

0.5 1 1.5 2 2.5 3
W20@ΛD

0.5

1

1.5

2

2.5

3
W
`

20@ΛD

WE

ref

Figure 5.20: Defocus estimation in restored images of Lena with different metrics and

petal phase masks (α/λ, β/λ). SNR in coded image is 60dB.
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Further work on defocus metrics

We recently investigated a different approach to the problem of estimating the amount

of defocus in wavefront coded images. The method takes advantage of the a priori

knowledge of edge profiles in the restored images. Indeed, the profiles shown in Figure

5.11 constitute noise-free calibrated data of the artifacts in a step. Therefore the

maximum of a set of correlations between the noisy and calibrated data should yield

a robust estimate of the defocus parameter. Moreover this method is by definition

unbiased in noise-free conditions. We employ Pearson’s correlation coefficient between

two discrete signals Xi and Yi and record the maximum value of the spatial correlation

function ρj defined as:

ρj =
1

n− 1

n∑

i=1

Xi+j − X̄j

σXj

Yi − Ȳ

σY

, (5.58)

where Ȳ and σY denote the average and standard deviation of Y respectively, X̄j and

σXj
denote the moving average and standard deviation respectively of the sub-samples

{Xj+1, Xj+2, ..., Xj+n}. The estimation method was implemented for a vertical edge.

Interim simulations (with SNR=60dB) determined unbiased estimates for the CPM

(2.5, 0) and a relative errors of 0.4% for the CPM (7.247, 0.463). These represent an

increased robustness compared with the 2.7% and 4.2% errors respectively, previously

attained with the WE metric. No improvement was detected with the petal phase

masks. For two-dimensional images further improvements are expected since the cali-

brated data can include several directions.

5.5.3 Image quality improvements

It is important to note that the magnitude of the artifacts is greatly reduced by a

restoration with Ŵ20 compared to the conventional restoration with W20 = 0. This

remains valid for λ/2 or smaller biases in Ŵ20. Figure 5.21 illustrates the artifact

reduction achieved, without noise, with a λ/4 bias in the defocus estimation for the

petal phase mask (3.39,−10.17). The relative error of the restored image is decreased

by a factor of 8 in this case and the artifacts are hardly noticeable. Similar artifacts

suppression is achieved when the proposed restoration procedure is applied to the other

phase masks presented in this Chapter. Figure 5.22 presents the restored images in the

102



presence of a 60dB SNR. Again the artifacts are greatly reduced by a defocus estimation

prior to the restoration. The degradation due to a λ/4 bias in Ŵ20, corresponding

approximately to Hopkins’ criterion, is hardly noticeable compared with the optimal

restoration Ŵ20 = W20. Hence we showed that wavefront coding image artifacts can

be removed to a large extent by estimating W20 in the restored images. This can be

seen as a further extension of the DoF in wavefront coded images.

Ŵ20 = W20 = 3λ Ŵ20 = 0λ Ŵ20 = 2.75λ

0%

183%

0%

28%

Figure 5.21: Artifacts comparison in conventional restoration and with a defocus es-

timation (SNR=∞). True defocus is W20 = 3λ. Top row, from left to right: per-

fectly restored image, conventional wavefront coding restoration (relative error 2.5%),

restoration with a defocus estimation (relative error 0.31%). Bottom row: relative error

images. Phase mask is (3.39,−10.17).
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Ŵ20 = 0λ Ŵ20 = 2.75λ Ŵ20 = 3λ
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Figure 5.22: Artifacts comparison in conventional restoration and with a defocus esti-

mation (SNR=60dB). True defocus is W20 = 3λ. From left to right: image obtained

with a conventional wavefront coding restoration (relative error 2.2%), image obtained

with a λ/4 bias in the defocus estimation (relative error 0.71%), image restored with

the true defocus (relative error 0.68%). Phase mask is (3.39,−10.17).
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5.6 Conclusions

In this chapter we seek to design and analyse optical systems that extend the depth

of field (DoF) beyond that of diffraction-limited systems. We first describe the funda-

mental tools required to characterise optical systems, and in particular their response

to defocus. We recall that for one-dimensional optical systems, the ambiguity function

is a polar representation of the optical-transfer-function with the defocus parameter as

the variable. This property can be extended to two-dimensional rectangularly separa-

ble systems. For such systems, pupil functions with a cubic-phase profile arise from the

restriction that the amplitude of the ambiguity function be invariant to defocus [26].

The pupil-phase-engineering approach [27] optimises higher order polynomial pupil

functions with two competing merit functions: the system sensitivity to defocus and

its restorability. This approach directly addresses the tradeoff between extending the

DoF and reducing the MTF of the system. We limit our optimisation to generalised

cubic phase masks with parameters within [−19λ, 19λ] and use the computationally

efficient metric of the system sensitivity to defocus detailed in [28, 65]. When the

restorability merit function is the in-focus Strehl ratio as proposed in [28], the algo-

rithm converges to the phase mask (α/λ, β/λ) = (3.423,−13.754). However we argue

that the Strehl ratio as employed in [27, 28, 65] underestimates the restorability of

CPM because of the transversal shift they introduce in the image. We propose to use

instead the L2 norm of the OTF of the system normalised to that of a diffraction-

limited system. Using this restorability metric the algorithm converges to the nearly

cubic mask (7.247, 0.463). The imaging performances of these phase masks is then

assessed. Improved accuracy of the metric of sensitivity could be achieved by including

the fourth order derivative of the OTF with respect to defocus.

The reduced sensitivity to defocus of wavefront coded systems allows for a restora-

tion procedure that is independent of the defocus parameter W20. Deconvolution is

performed here with the Wiener filter. We show that this standard restoration filter

leads to image artifacts which vary with the amount of defocus and the phase mask

utilised. We determine the origin of these artifacts as the variations with defocus in the

phase of the OTF. These artifacts can largely be removed if the correct value of W20 is
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implemented in the Wiener filter. We therefore present several metrics of defocus and

quantitatively assess their performances. The MAD metric offers the best robustness

of the metrics tested. It also achieves best performance when combined with the opti-

mised mask (7.247, 0.463). In addition its flexibility allows for an adaptative estimation

for any given image data set. Promising interim results were also obtained with a new

approach based on the correlation of edge or step profiles with calibrated data. The

images restored with the estimated defocus parameter exhibit greatly reduced artifacts.

This remains valid even with small biases in Ŵ20, i.e. smaller than λ/4, and represent

a significant improvement in the imaging performances of wavefront coding systems.

In the next Chapter we will apply the wavefront coding principles and the enhanced

image restoration detailed here to extend the depth-of-field of an optical microscope.

Indeed these optical systems exhibit a very small depth-of-field, of the order of 1µm.

Enhanced depth-of-field may be required for specific applications such as to understand

the surface structure of a sample or to monitor rapid dynamic behaviours of a biological

specimen.
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Chapter 6

Wavefront coded microscopy

6.1 Introduction

In this chapter we discuss implementation of wavefront coding (WC) within a transillu-

minated microscope to increase its depth-of-field (DoF). We also assess the validity of

the image restoration scheme detailed in Chapter 5 to remove wavefront coded image

artifacts. The main motivation for the development of a microscope was to investigate

the potential of WC for an imaging application other than conventional photography.

It turns out that the specificity of the transmission microscope, most notably the de-

pendance of the microscope imaging performances on the specimen structure and the

degree of coherence of light due to transillumination represent challenges to fully exploit

the potential of the WC technique.

In section 6.2 the fundamental principles of transmission microscopy are briefly de-

tailed. A review of the techniques used in microscopy to increase the DoF or, on the

contrary, achieve axial superresolution is given in Section 6.3. The WC microscope

design is described in Section 6.4. The modelled and measured OTF of the micro-

scope are presented in Section 6.5 for the aliasing-free configuration. Interim results

are presented in Section 6.6 for matched illumination and introduce the effect of the

transillumination on image formation that is discussed in Section 6.7. In Section 6.8,

restoration of images recorded with the WC microscope is shown to be greatly im-

proved when partial coherence effects have been removed. The “super” extended DoF
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provided by multiple-kernel restoration is demonstrated. Spatially variant restoration

is performed in Section 6.9 and “super” extended DoF images are presented. The ac-

curacy of the range detection method is assessed in Section 6.10. The difficulties of

restoring WC images of weak objects are discussed in Section 6.11. Conclusions are

presented in section 6.12.

6.2 Fundamentals of microscopy

We briefly discuss here a few fundamental aspects of microscopy that have to be consid-

ered when designing a microscope and for its use with wavefront coding. Some aspects

regarding image quality and image restoration are particularly important to WC.

6.2.1 Köhler illumination

Köhler illumination is a method of illumination used to achieve bright and even il-

lumination across the whole specimen. Figure 6.1 shows the actual optical set up

implemented in the microscope to achieve Köhler illumination. This design was per-

formed with the optical design software ZEMAX. In Köhler illumination, the collector

lens L1 creates an image of the source S in the front focal plane of the condenser lens

L2. The condenser therefore collimates the ray bundle from each point source onto the

specimen, see also Figure 6.2, and its front focal plane contains the aperture stop (AS)

of the illumination system. Setting the diameter of this diaphragm properly is crucial

to Köhler illumination since it determines the cone of light incident on the sample, i.e.

it defines the numerical aperture NAc of the illumination system. To achieve maximal

transverse resolution, NAc must be greater or equal to the numerical aperture of the

microscope objective NAo. We detail in a later section which value of NAc provides

optimal resolution. The object plane O and the field stop are conjugate planes and

therefore every point in the specimen receive identical contributions from all points

across the source. This ensures even illumination is achieved across the specimen.

Parameter values of the implemented Köhler illumination are detailed in Figure 6.3.
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Figure 6.1: Köhler illumination configuration designed (aspect ratio divided by two).

S: source, L1: collector lens, FS: field stop, AS: aperture stop, L2: condenser lens, O:

object plane, L3: microscope objective.

Figure 6.2: Köhler illumination configuration. Enlargement of the object plane.

Figure 6.3: Köhler illumination parameters.
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6.2.2 Spatial resolution

Using the Rayleigh criterion, the spatial resolution r of a transmission microscope with

an incoherent source is given by:

r = 1.22
λ0

NAc + NAo

. (6.1)

When NAc ≥ NAo this expression reduces to:

r = 0.61
λ0

NAo
. (6.2)

In a later section we will see that it is possible to improve slightly this resolution by

carefully choosing NAc.

6.2.3 Abbe’s theory of image formation in the microscope

There are several types of mechanisms of contrast formation generally used in light

microscopy. For bright field microscopy they are mainly absorption and diffraction.

Abbe’s theory of image formation in a microscope considers the simplifying case of a

diffraction grating being illuminated by a plane wave. This theory states that an im-

age of the grating is formed if the MO at least captures the first-order diffracted rays

produced by the grating. All the rays of identical diffraction orders will interfere con-

structively in the back focal plane (BFP) of the MO, where the Fraunhofer diffraction

pattern of the object wave can be observed. The object wave is defined as the product

of the incident wave and the transmission function of the specimen. Abbe showed that

the image is formed by the interferences between the spherical waves emitted by the

secondary point sources in the BFP of the MO. The image formation in this case is

coherent and is illustrated in Figure 6.4.
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Figure 6.4: Diagram depicting Abbe’s description of the image formation by a lens.

(Image courtesy of Cambridge University, DoITPoMS.)

6.3 Review of depth-field alteration techniques in

microscopy

In this section we shall focus on the various techniques employed in microscopy to

modify the DoF. In microscopy it can be desirable to reject bright out-of-focus features

that are superimposed upon faint in-focus regions of the specimen. Confocal micro-

scopes include a pinhole placed in front of a photomultiplier tube (PMT) to reject

most of the light coming from out-of-focus regions of the specimen, effectively reduc-

ing the DoF, or increasing the axial resolution. Thus the integrated intensity in each

transverse plane decreases rapidly with the distance from the focal plane. This prop-

erty called optical sectioning, is specific to confocal microscopes. A scanning unit can

rapidly form a 2D image of the specimen. Recording a set of images at various depths

enables 3D visualisation. Confocal microscopy is now widely used with fluorescence

microscopy because of its ability to select and record a component of interest, labelled

with a fluorescent molecule, in the specimen [87]. Because laser sources are usually

employed due to the high intensity required to illuminate the specimen, such systems

are called confocal laser scanning microscopes (CLSM). The image formation theory in
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conventional and confocal microscopes is reviewed in [79]. Sheppard and Choudhury

show that 1) contrary to the condenser lens in a conventional microscope, the aber-

rations in the collector lens of a confocal microscope affect its imaging performances,

2) confocal microscopes achieve slightly higher transverse resolution than conventional

microscopes because the PSF of the former is equal to the square of the PSF of the

latter, 3) annular pupils in confocal microscopes achieve transverse superresolution and

extended depth-of-field (EDF), see also [79, 88].

The terms axial resolution and DoF are employed in the literature to characterise the

axial discrimination capability of a microscope. We recall that the DoF of an optical

system corresponds to W20 = 0.25λ, i.e. z = 2λF 2
/#, whereas the axial resolution can

be defined with the Rayleigh criterion as the position of the first null of the point

source diffraction pattern in the axial direction. This occurs when W20 = 1λ, i.e. when

z = 8λF 2
/# and can be compared with the transverse resolution given in Eq. (6.2)

1.22λF/#.

Axial superresolution with two-zone phase-only filters in CLSM has been investi-

gated in [59, 62]. In [59] transverse resolution improvements by a factor of 2 are

demonstrated but without presenting the associated changes in axial resolution. In

[62], three properties of the PSF obtained with these filters are analyzed: the axial

spot size, the axial maximum sidelobe level and the Strehl ratio. Other binary phase-

only filters are reported in [89] and are designed to fit any desired PSF in three points

only. The proposed filters reduce the axial and lateral half-widths to 80% (filters with

eight phase levels in 45deg steps). Another filter proposed is worth mentioning and

improves the lateral resolution to 85% at the cost of a decreased axial resolution, i.e.

increased depth of field, by a factor of 2. This filter has an annulus and a centre

with transmittivity +1 and -1 respectively. The annular structure of this filter can be

related to the pupils discussed in [79] and to the circular array discussed in Chapter 4,

and its EDF should come as no surprise. Note however that these filters do not require

any digital post-processing, as is usually the case in WC systems, because of the mask

symmetry.
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A very large DoF may sometimes be desirable in microscopy to understand the sur-

face structure of a sample or when counting the number of particles present within a

thick specimen. Attempts to apply WC to microscopy have, to the best of our knowl-

edge, so far been limited to low NA objectives and magnification (5x objective with

NA=0.078) [90]. Access to the AS is obtained here with a relay system which increases

aberrations in the optical system. These aberrations are then mitigated by the WC.

WC could potentially correct field related aberrations (field curvature, spherical aber-

ration, and chromatic aberrations) [64] which are expensive to correct, and thus could

reduce the cost of lower end microscopes. Other potential applications include diag-

nostic microscopes in cytology, inspection of integrated circuit boards and applications

that require the acquisition of a sequence of EDF images in quick succession to monitor

the dynamic behaviour of a specimen.

In confocal microscopes the acquisition speed is limited by the speed at which the

system can be refocused to acquire the image stacks. An innovative method of refo-

cusing a confocal microscope is proposed in [91, 92] to achieve real-time EDF. This

method is based on the use of a second MO and a mirror placed in its focal plane. The

pupil planes of the two MO are mapped onto one another with a 4f imaging system.

Provided that the second MO is carefully chosen [91], this system does not introduce

any extra aberrations for different focal settings.

6.4 The wavefront coded microscope

In this section we describe the implementation of pupil phase masks in a wide-field

microscope to extend its DoF using WC. The wavefront coded microscope developed

will then be used to assess the quality of the multiple-kernel image restoration method

described in Chapter 5.
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6.4.1 System description

Optical set up

An objective lens with NAo = 0.6 (Edmund optics) and a tube lens are used to form a

compound microscope that is infinity-corrected. This set up, illustrated in Figure 6.5,

enables the phase mask to be placed between the objective lens and the tube lens since

the MO forms an image of the sample at infinity. For the system to be translation-

invariant, the phase mask should be placed in the AS of the MO, which is a conjugate

plane of the aperture of the condenser lens L2, so that each point source in the object

plane is similarly encoded by the phase mask. The set up shown on Figure 6.5 is said

to be object-space telecentric since the entrance pupil is located at infinity. This is also

a desirable property because such a system will have a constant magnification for all

object distances. Note that the illumination of the sample is distributed over the entire

FoV of the CCD sensor. The transversal magnification of the image is determined by

the ratio f2/f1 which equals 20 here. Pictures of the experimental set up are shown on

Figure 6.6.

We started this project with a microscope that had been assembled by a MSc student.

The MO and the tube lens are still in use in the current system but the original system

had to be entirely redesigned and reassembled to meet our requirements. A new and

more powerful xenon arc light source (Perkin Elmer XL3000) was chosen for its high

power (300W), broadband signal covering the entire visible spectrum and fiber optic

cable providing enhanced flexibility. A new illumination system was designed in Zemax

and then implemented to provide Köhler illumination. An additional diaphragm was

placed as close as possible to the BFP of the MO to reduce its NA and remove aliasing.

The 8-bit Infinity camera was replaced by a highly sensitive 12-bit camera (Hamamatsu

C4742-95).

Illumination spectrum

In addition to the optical elements discussed above, the illumination system includes

an IR filter to prevent heat transfer from the xenon arc lamp to the specimen and to

the CCD sensor, which are very sensitive to IR. A UV filter is also included for safety
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Figure 6.5: Infinity-corrected microscope. L2: condenser lens, MO: microscope objec-

tive f1 = 10mm, AS: aperture stop of the imaging part and conjugate to the aperture

of the condenser, TL: tube lens with f2 = 200mm.

 

 

Xenon arc lamp 

CCD camera 

Tube lens 

MO 

Diffuser 

XYZ micro 
stage 

Light guide 

Condenser 
lens  

IR & UV filters 

Narrow-band filter 

Collector lens 

Phase mask 

Field diaphragm 

Aperture diaphragm 

Figure 6.6: Photographs of the wavefront coded microscope.
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reasons. This results in white light illumination with spectrum shown on Figure 6.7.

This safe illumination is filtered with a ∆λ = 10nm narrow band bandpass interference

filter, to prevent spectral blurring by the phase mask. Thus the coherence length of the

illumination source is L = λ2/∆λ ≃ 43.6µm for a narrow band centered at λ = 660nm.

Note that the temporal coherence of the illumination does not impact the equal time

complex degree of spatial coherence in the object plane, see Eq. (6.4).

Figure 6.7: Spectrum of the white light illumination after IR and UV filtering.

Camera sensitivity and resolution

It was noted in the previous chapter that the SNR in the recorded images is the

parameter limiting the extension of the DoF in WC systems. In addition to the light

gathering ability of the illumination system, the sensitivity of the sensor is crucial.

For this reason we use a highly sensitive CCD camera (Hamamatsu C4742-95) that

uses Peltier cooling and which records 12 bit images. The effective dynamic range is

smaller than the expected 4096 and is defined as the ratio of the full well capacity to

the read out noise. It is equal to 2250 (manufacturer specification) and corresponds to

an electronic SNR of 20 log10(Vs/Vn) = 67dB. Note that this value will be used in the

Wiener filter restoration. The pixel size of this camera is 6.45µm in both directions

and the number of pixels in the image is 1344(H)x1024(V).

6.4.2 Pre-processing of raw images

The acquisition time and illumination intensity are always adjusted so that the full

dynamic range of the camera is exploited while ensuring that the sensor is not saturated.
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200 images are then acquired and averaged together thereby providing an increase in

SNR by a factor of 14. We systematically correct for the dark current bias introduced

in the image by the camera sensor. This is achieved by recording a dark image and then

subtracting it from the image of the specimen. When possible we also record a white

image, without any specimen, to correct for slightly uneven illumination. Together,

these corrections form the flat field correction which is standardly used in microscopy.

It is illustrated on Figure 6.8 with images of spinal cord cells and lung cells with

bronchus. Note that it is critically important to denoise the measured PSF prior to

use in image restorations. To that end we subtract the dark current image and apply

an hysteresis threshold. The rationale for such a threshold is to preserve low intensity

levels that are connected to higher intensity levels.

6.4.3 Implementation issues

We detail in this section practical and fundamental issues encountered during the

design and implementation of the WC microscope and discuss the solutions that were

employed to address them. Such issues range from illumination matching, aliasing and

the choice of phase mask.

Measuring the PSF: pinhole size requirement

Before measuring the PSF of the optical system we want to establish the diameter dp of

the largest pinhole that is unresolved by the MO. Highest resolution is achieved when

NAc ≥ NAo and is given by Eq. (6.2). Thus a pinhole with diameter dp < 0.67µm will

be unresolved by a MO with NAo = 0.6. The smallest pinhole that was commercially

available is 0.5µm±0.3µm and therefore meets our requirements. When measuring

the PSF of the microscope, the imaging system is decoupled from the illumination

system because of the diffraction by the pinhole. This means the measured PSF equals

that of an incoherent imaging system, independently of the degree of coherence in the

illumination.
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Figure 6.8: From left right: raw and flat field corrected images. The first two rows are

images and 1-dimensional slices of spinal cord cells. The last two rows are images and

1-dimensional slices of lung cells with bronchus. Specimen stained with Haematoxylin

and Eosin.
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Aliasing

The sampling period xs of the camera sensor determines the Nyquist frequency νnyq,

which is given by νnyq = 1/2xs. For the Hamamatsu camera C4742-95, xs = 6.45µm

and νnyq = 77.5cycles/mm. The cutoff frequency ν0 of the MO is in the image space

ν0 = 2NA/λ0MT , with MT the transverse magnification of the MO-eyepiece combi-

nation. ν0 = 109cycles/mm for NA=0.6 at λ0 = 550nm. Under these conditions the

recorded images are degraded by aliasing since ν0 > νnyq. In order to preserve im-

age quality, it was decided that aliasing should be removed, although the degradation

associated with aliasing was demonstrated to be relatively benign in wavefront coded

systems [93]. Aliasing can be removed by reducing the NA of the objective or by in-

creasing λ0 so that ν0 ≤ νnyq. In order to maximise the benefits from wavefront coding

in the microscope, it is preferable to increase λ0 rather than reduce the NA. Indeed the

transverse resolution, axial resolution, and the wavefront coding power decrease lin-

early with λ0 whereas they decrease linearly, quadratically and cubically respectively

for decreasing NA. Thus we choose λ0 = 660nm since it is approximately the longest

wavelength in the visible range. In order to satisfy the Nyquist condition, ν0 ≤ νnyq, ν0

was reduced to 74 cycles/mm by decreasing the active aperture of the MO from 11mm

to ≃ 9.75mm. This represents a 11% reduction in aperture.

Matching NAo and NAc

The illumination shown on Figure 6.1 is designed so that the NA of the condenser

matches the NA of the MO. In practice however we could not match the effective NA

of the condenser to NAo because of mechanical design issues: the condenser could not

be placed close enough to the sample because of the thickness of the sample stage and

condenser holder. A new mechanical design was required to solve this issue but could

not be implemented due to time constraints. The implications of this issue will be

further discussed in Section 6.6 and 6.7.

6.4.4 Choice of phase mask

The design of the MO used in the experimental set up does not permit access to its

aperture plane. We therefore place the phase mask as close as practically possible to
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the back surface of the MO. This means wavefronts from various off-axis field positions

in the object plane will be encoded differently by the phase mask. This results in

off-axis artifacts in restored images.

At the time the microscope was being implemented, two phase masks were available.

The first one is a cubic phase mask designed to have a peak-to-valley OPD of 10λ at

λ = 550nm, i.e α = 2.5 at this wavelength, and has a square aperture of side 20mm.

The objective on the other hand has an aperture of 11mm. To maximise the wavefront

encoding, the beam exiting the MO would have to be expanded by a factor of ∼2.

A beam expander was therefore designed based on the Galilean telescope to minimise

the added length between the MO and the tube lens. Its magnification M = 1.8 is

given by the ratio of the focal length of the convex lens to that of the concave lens.

It was optimised for spherical and chromatic aberrations and is shown on Figure 6.9.

Its calculated MTF is shown on Figure 6.9 with a small amount of tilt in the two

convex lenses. The OPD profile of the phase mask is shown in Figure 6.10 with its

active pupil when implemented with the microscope and the beam expanders. The

beam expander reduces the divergence of the output beam compared to that of the

incident rays and therefore reduces the magnification of the microscope by a factor

M . For the microscope magnification to be maintained another beam expander must

be included head to tail after the phase mask. The added complexity of this design,

which significantly increases the optical path length of the microscope, increases optical

aberrations and therefore reduces the image contrast. Combined with a small DoF

extension because of the weak phase encoding, 2.8λ peak-to-valley OPD, this overall

design will be shown to be less favourable than the phase mask discussed below.

The second phase mask used is a circular aperture petal phase mask with a 11.8mm

diameter. It was designed to have a peak-to-valley OPD of 11.52λ at λ = 550nm, i.e.

α = 4.07 at λ = 550nm, and β = −3α = −12.22. At the 660nm wavelength that

concerns us here, the parameters become (α, β) = (3.39λ,−10.18λ) and were included

in the simulations described in Chapter 5. The active aperture of the phase mask is here

reduced by a factor of ≃ 0.83 compared with the full aperture φ = 11.8mm of this phase

mask which corresponds to a peak-to-valley OPD of 5.4λ. This reduction in wavefront
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encoding is illustrated on Figure 6.11. Figure 6.12 shows that variations with defocus in

the MTF are greatly reduced with the CPM compared with a diffraction limited system,

and are further reduced with the PPM. Compared to the CPM discussed above, the

stronger coding power of this phase mask combined with the close match between its

aperture and that of the MO removes the necessity for a beam expansion. This makes

it a much preferred candidate for implementation within the microscope. Although

some experiments were conducted with the CPM, we present here only experimental

results obtained with the PPM because they were the most conclusive. Parameters of

the two phase masks are summarised in Table 6.1.

Figure 6.9: Beam expander design. From top to bottom: 3D layout, MTF, and design

parameters. The magnification M is equals −f2/f1 = 135/75 = 1.8.
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Figure 6.11: OPD of the petal phase mask with α = 3.39 and β = −10.18 at λ = 660nm.

Top left: full aperture, top right: active aperture. Bottom: 1D profile along the direction

of maximum peak-to-valley OPD difference (y=x).

122



-1 0 1
u

0.2

0.4

0.6

0.8

1

W20=1Λ
W20=0.5 Λ
W20=0.25 Λ
W20=0Λ

-1 0 1
u

0.2

0.4

0.6

0.8

1

W20=1Λ
W20=0.5 Λ
W20=0.25 Λ
W20=0Λ

(a) (b)

-1 0 1
Ν

0.2

0.4

0.6

0.8

1

MTF

W20=1Λ
W20=0.5 Λ
W20=0.25 Λ
W20=0Λ

(c)

Figure 6.12: MTF variation with defocus for various pupil functions. (a) diffraction

limited system, (b) cubic phase mask (α = 2.08 at λ = 660nm), (c) petal phase mask

(α = 3.39 and β = −10.18 at λ = 660nm).
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Centre wavelength λ = 660nm

Bandwidth ∆λ = 10nm
Illumination

Source coherence length L ≃ 43.6µm

NA of condenser NAc = 0.6

NA of objective NAo = 0.6
Imaging

Transverse magnification MT = −20

peak to valley distance 13.8µm

circular aperture diameter φ=11.8mm

Petal phase mask refractive index nq = 1.459

parameters at λ = 660nm α = 3.39

β = −3α = −10.18

peak to valley distance 11.98µm

rectangular aperture side 20mm
Cubic phase mask

refractive index nq = 1.459

parameters at λ = 660nm α = 2.08

pixel size, sampling period xs = 6.45µm
Sensor

dynamic range 1:2250

Table 6.1: Key parameters of the WC microscope
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6.5 PSF and OTF of the microscope

In order to restore wavefront coded images knowledge of the OTF of the system is re-

quired. The OTF can be estimated either by modelling or by indirect measurement via

its PSF. Performing both estimations is important because it enables a cross-validation

of the modelled and measured data. It also allows to calibrate future measurements.

6.5.1 OTF model

To achieve reasonable accuracy the model must include 1) the frequency response of

the objective which is ultimately limited by diffraction, 2) the pixel response, 3) the

sampling pattern. For incoherently illuminated optical systems the OTF is calculated

as the autocorrelation of the generalised pupil function and was given in Eq. (5.1). To

guarantee accurate simulations the cutoff frequency of the optical system is estimated

in the measured PSF. The pixel response is due to the intensity integration over the

area of each pixel performed at the detector. Its effect on the frequency response of the

optical system is a multiplicative term sinuxs sin vxs. The sampling pattern results

from the spatial variation of the detector response to a point source. Indeed the image

of this source will depend on its position on the sensor. e.g. the image will be different if

it falls between two pixels or if it is imaged on a single pixel. This only affects imaging

systems that suffer from aliasing. In addition one can show that for such systems, the

average contribution of this effect on the frequency response is another multiplicative

term identical to the pixel frequency response [94]. Since the microscope described

here is designed to exclude any aliasing, the sampling pattern is not included in the

OTF model.

6.5.2 Validation of modelled and measured PSF

Figure 6.13 shows the simulated PSF and OTF of the microscope including the pixel

frequency response for various amounts of defocus between W20 = 0λ and W20 = 0λ =

3λ. Figure 6.14 shows the simulated PSF and OTF of the same system including the

petal phase mask with α = 3.39 and β = −10.18. It can be observed that the variation

of the OTF with defocus is greatly reduced with the petal phase mask. This was
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previously illustrated on Figure 6.12 where neglectable variations in the OTF can be

observed between W20 = 0λ and W20 = 1λ. Figure 6.15 and 6.16 enable comparison

of the modelled and measured PSF and OTF of the system. A relative error of 19%

between the measured and modelled OTF is calculated from Eq. (5.57). This error

may be due to minor misalignments in the microscope, small errors in the estimates

of the cutoff frequency and the transverse angular orientation of the phase mask. In

addition, the accuracy of the model may be improved by including the discrete phase

steps, of the order of λ, of the experimental petal phase mask employed. Nevertheless,

Figure 6.16 highlights the good agreement between the model and the experimental

data, especially with regard to the most important information, the phase of the OTF.

6.5.3 Defocus calibration of measured PSF

The defocus parameter of the measured PSF was calibrated by restoring these PSF

with modelled PSF, whose defocus parameter is known. The defocus parameter W20

providing the restored PSF that was closest to the DL PSF was recorded. Figure

6.17 shows the measured PSF and OTF of the microscope for calibrated values of the

defocus parameter W20 = 0λ, 0.5λ, 1λ, 2λ. Again, these measurements are in good

agreement with the model shown in Figure 6.14.
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Figure 6.13: From top to bottom: modelled PSF, MTF and phase of the OTF of the MO with varying defocus W20. The pixel size of

the PSF is 0.32µm in object space.
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Figure 6.14: From top to bottom: modelled PSF, MTF and phase of the OTF of the microscope including a petal phase mask with

parameters α = 3.39 and β = −10.18 for varying defocus W20. The pixel size of the PSF is 0.32µm in object space.
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Figure 6.15: From top to bottom: PSF, MTF and phase of the OTF of the microscope for W20 = 0λ. From left to right: modelled

data, measured data, 1-dimensional horizontal and vertical plots. The pixel size of the PSF is 0.32µm in object space.
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Figure 6.16: From top to bottom: PSF, MTF and phase of the OTF of the microscope including a petal phase mask with parameters

α = 3.39 and β = −10.18 for W20 = 0λ. From left to right: modelled data, measured data, 1-dimensional horizontal and vertical plots.

The pixel size of the PSF is 0.32µm in object space.
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Figure 6.17: From top to bottom: measured PSF, MTF and phase of the OTF of the microscope with the petal phase mask (α = 3.39

and β = −10.18). The pixel size of the PSF is 0.32µm in object space.
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6.6 Interim results with matched illumination

Matched illumination is achieved when NAc = NAo and was originally thought to

be critical to the implementation of WC in the transmission microscope. Indeed,

since the light diffracted by an unresolved pinhole is guaranteed to fill the aperture

of the MO, the measured OTF will include all spatial frequencies up to the cutoff

frequency ν0 = 2NAo/λ. If NAc < NAo however, an image of a non-diffracting or

weakly diffracting object will only be formed with the rays within the cone of light

defined by NAc. For such objects the highest spatial frequency transmitted by the

microscope is ν0 = (NAc + NAo)/λ. There is therefore a mismatch between the image-

forming cutoff frequency and the cutoff frequency of the measured OTF, used in the

Wiener restoration filter, which prevents the restoration of WC images. For this reason,

the active aperture of the MO was reduced to achieve matched illumination. This can

be done by placing a diaphragm as close as possible to the AS of the MO and imaging a

pinhole, of size approximately 2 orders of magnitude greater than λ. Such a pinhole is

large enough to transmit non diffracted light with sufficient intensity but small enough

to visualise the collimated beam between the MO and tube lens. Since the diffracted

light is small compared to the transmitted light, the diameter of this beam is related

to the effective NA of the condenser. By adjusting the aperture of the diaphragm to

equal the beam width, one effectively reduces NAo so that NAo = NAc.

6.6.1 PSF of the WC microscope with matched illumination

Because the NA of the MO was reduced to attain matched illumination, the active

aperture of the petal phase mask was also reduced. The resulting severe reduction in

phase encoding is shown on Figure 6.18. Following the procedure described in Section

6.5, the OTF of the system in matched illumination is modelled as well as measured.

Figure 6.19 shows that the modelled and measured data are in good agreement. The

change in MTF between W20 = 0λ and W20 = 1λ is presented in Figure 6.20.

By measuring the reduced cutoff frequency ν0c of the OTF, NAc can be estimated

based on the following equality:
NAc

NAo
=
ν0c

ν0
, (6.3)
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where ν0 is the cutoff frequency of the MO at full numerical aperture NAo. From the

measured MTF shown in Figure 6.19, one estimates that ν0c ≃ 805cycles/mm (in object

space) at λ = 640nm. Using Eq. (6.3), the NA of the condenser is therefore estimated

to be NAc ≃ 0.26. Thus when the MO aperture is fully opened NAc/NAo ≃ 0.43, and

when it is adjusted to avoid aliasing so that NAo ≃ 0.49, NAc/NAo ≃ 0.53.

-1 0 1
x

-4

-2

2

4

OPD @ΛD

Active aperture, Φa=0.45 Φ
Full aperture, Φ

Figure 6.18: OPD of the petal phase mask with a reduced active aperture due to matched

illumination (NAc = NAo ≃ 0.26). The profile is taken along the direction of maximum

peak-to-valley OPD difference (y=x).

6.6.2 Interim experimental results

Interim experimental results are presented in this section with the chrome-on-glass

USAF target (Edmund optics). This target has periodic bar patterns with calibrated

spatial frequencies. The highest spatial frequency in the target is 645 cycles/mm and

is located in the pattern group 9. Following the multiple-kernel image restoration

described in Chapter 5, each WC image is restored with a set of filters based on PSF

measured at different defocus parameters. Figure 6.21 presents the non-coded images,

WC images and restored images for W20 = 0λ and W20 = 0.5λ. The restored images

are obtained after restoration with Ŵ20 = W20. The in-focus restored image is slightly

degraded by bright replicas near dark bars. These image restoration artifacts strongly

degrade the quality of the restored image shown in bottom right of Figure 6.21, despite

the modest amount of defocus W20 = Ŵ20 = 0.5λ. In the next section potential causes

for these strong image artifacts will be discussed.
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Figure 6.19: From top to bottom: in-focus PSF, MTF and phase of the OTF of the microscope with the petal phase mask. Matched

illumination with NAc = NAo ≃ 0.26. From left to right: modelled data, measured data, 1-dimensional horizontal and vertical plots.

The pixel size of the PSF is 0.32µm in object space.
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Figure 6.20: MTF variation with defocus for the petal phase mask and matched illumi-

nation (see Figure 6.18).

non-coded WC restored

Figure 6.21: Non-coded image (left), WC image (centre) and WC image restored with

the defocus parameter Ŵ20 = W20. W20 = 0λ (top row) and W20 = 0.5λ (bottom row).

Note the strong image artifacts that degrade the restored image at W20 = 0.5λ.
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6.6.3 Discussion

Possible reasons that may cause the strong image artifacts exhibited in Figure 6.21

are detailed here, together with the solutions applied to address them: 1) an incorrect

PSF is used in the image recovery: the measured and modelled OTF displayed in

Figure 6.19 are clearly in very good agreement, 2) mismatched illumination: the strong

image artifacts were still present with matched illumination as was observed in Figure

6.21, 3) off-axis aberrations (spherical, astigmatism) not included in the modelled and

measured PSF: this hypothesis was excluded because artifacts also appeared on-axis,

4) chromatic aberrations due to the phase mask: these were minimised by using a 10nm

narrow band illumination, 5) aliasing: the active aperture of the MO was reduced to

remove any aliasing, which was demonstrated in the OTF presented in Figures 6.15

and 6.19, 6) the image artifacts are inherent to the Wiener restoration algorithm itself:

the restoration algorithm was validated with numerous simulated images.

Having addressed all these potential sources of errors it was suspected that the arti-

facts were related to the main characteristic that differentiates transmission microscopy

from conventional photography, the illumination. It was found in the literature that

the transmission microscope is in general not an incoherent system due to the tran-

sillumination. This would mean that the convolution product between the intensity

distribution in the object plane and the PSF of the system no longer equals the de-

tected intensity distribution in the image plane. Since this relation forms the basis of

the image restoration we employ, this hypothesis could explain the distortion in the

recovered images. These artifacts will in turn degrade the robustness of the defocus es-

timates and must be suppressed. In the next section the effect of the transillumination

on the image formation in the microscope will be analysed.

6.7 Effect of transillumination on image formation

6.7.1 Image formation with partially coherent illumination

The transillumination can be shown to introduce some degree of spatial coherence in

the optical system, even if a totally incoherent light source is employed. The reason
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for this lies in the diffraction at the condenser lens, which creates an Airy disk in the

object plane of the microscope objective (MO) for each secondary point source at the

field stop. The light across each Airy disk is coherent, since it originates from a single

point source. But the light of different Airy disks are incoherent, since they originate

from different secondary point sources in the field stop. Consequently the sample in

the object plane of the MO receives both coherent and incoherent contributions. Thus

one needs to calculate the complex degree of coherence of light in the object plane.

This quantity can be shown to depend on the spatial extension of the illuminated

specimen, i.e. the FoV, and the numerical aperture NAc of the condenser. A detailed

analysis of the effect of specimen transillumination on the resolution in a microscope

is given in [95]. We summarise here the key aspects of this discussion. Since the

active region of the specimen is much larger than the effective size of the Airy disk due

to the condenser, the illumination system described above is such that the condenser

aperture is incoherently illuminated. The expression of the equal time complex degree

of coherence V (P1, P2) between to points P1(x1, y1) and P2(x2, y2) in the object plane

of the MO is of the form:

V (P1, P2) = 2J1(u12)
u12

, u12 = 2π
λ0

h12nc sin θc , (6.4)

with NAc = nc sin θc and h12 =
√

(x1 − x2)2 + (y1 − y2)2 the distance between the

points P1 and P2. We define another point P (x, y) in the object plane of the MO and

denote by P ′ its conjugate in the image plane of the MO. We consider the contributions

from the point sources at P1 and P2 to the intensity I(P ′) detected at P ′:

I(P ′) =

(
2J1(v1)

v1

)2

+

(
2J1(v2)

v2

)2

+ 2
2J1(mv12)

mv12

2J1(v1)

v1

2J1(v2)

v2
, (6.5)

where:

m =
nc sin θc

no sin θo

, (6.6a)

v12 =
u12

m
, (6.6b)

v1 =
2π

λ0

h1no sin θo , (6.6c)

v2 =
2π

λ0

h2no sin θo , (6.6d)

with h1 =
√

(x− x1)2 + (y − y1)2, h2 =
√

(x− x2)2 + (y − y2)2 and NAo = no sin θo.

The first two terms in Eq. (6.5) represent the incoherent contributions to I(P ′) from
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point sources at P1 and P2, whereas the third term is due to their partially coherent

contributions. Note that when m → 0, the intensity distribution I(P ′) follows that

of perfectly coherent illumination, whereas the illumination is totally incoherent when

m → ∞. Thus m is referred to as the incoherence parameter. Because of the term

2J1(mv12)/mv12 in Eq. (6.5) the optical system is linear neither in amplitude, as in

a perfectly coherent system, nor in intensity, as in a perfectly incoherent system. In-

stead the system is said to be bilinear because it depends on the object amplitude

at two points [96, 97]. Eq. (6.5) can be used to determine the value of m that opti-

mises the resolution. Born & Wolf [95] find that optimal resolution is achieved when

NAc = 1.5NAo and that it is slightly smaller than the 0.61λ0/NAo achieved with totally

incoherent illumination (providing that NAc ≥ NAo).

It must be stated here that the partial coherence of the illumination in the micro-

scope was only understood near the end of this project. As a consequence an interim

solution that could be implemented rapidly was sought. A potential solution to obtain

an incoherent system consists of illuminating the specimen by reflection. This solution

suffers from low light collection and would result in higher noise levels in recorded

images. We recall that noise amplification is the key tradeoff in WC systems. Interim

results with this type of illumination suggested the high noise levels made WC imprac-

tical in this case. Another solution to remove coherence consists of placing a diffuser

between the condenser and the specimen, very close to the specimen to minimise light

losses. This solution offers the advantage of decoupling the illumination system from

the microscope and ensures the resolution achieved is given by Eq. (6.2) regardless

of NAc. This is particularly useful in the present case since for practical reasons NAc

appeared to be smaller than NAo, as was demonstrated in Section 6.6. Since image for-

mation is now incoherent, the full aperture of the MO can be filled and is only slightly

closed down to avoid aliasing effects. Hence the stronger phase encoding that comes

with larger active apertures is performed and was shown in Figure 6.11. Similarly, the

OTF presented in Section 6.5 can be used again in the restoration algorithm. The main

drawback of this solution is to reduce the image contrast to that of an incoherent imag-

ing system. It may also cause shadows and glare when the light reaching the specimen

is uneven. It is worth noting that Köhler illumination was specifically designed to avoid
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introducing such diffusers. However for the present work, implementation of WC in a

wide-field microscope, the benefits of this solution in terms of imaging performances

clearly outweighed its disadvantages.

6.7.2 Tradeoff between transverse resolution and contrast

Keeping in mind the Abbe’s image formation theory, it is clear that if the degree of

coherence of the light projected onto the grating is reduced, the diffracted rays will

interfere less strongly in the BFP of the MO, resulting in a reduced contrast image.

Since the degree of coherence in the object plane of the MO depends on NAc according

to Eq. (6.4), an increase in NAc will reduce the overall degree of coherence of light

illuminating the sample, thereby reducing the contrast of the image towards that of an

incoherent system. Put differently, compared to conventional imaging where light at

the object is incoherent, partial coherence in microscopy will increase image contrast.

This also shows there is a tradeoff between contrast and transverse resolution in tran-

silluminated microscopy. The necessary compromise between these two attributes can

be obtained by adjusting the diaphragm in the aperture of the condenser. We illustrate

the effect of the degree of coherence of light in the object plane by placing a diffuser

between the condenser and the target. The diffuser greatly reduces the degree of co-

herence (increases m to infinity) resulting in a reduced image contrast but ensures that

the full aperture of the MO is filled, thereby achieving maximum transverse resolution.

This effect is illustrated in Figure 6.22.

6.7.3 OTF in partially coherent illumination

We recall that the OTF of a coherent imaging system is readily obtained from the pupil

function. For incoherent imaging systems the OTF is given by the autocorrelation

of the pupil function, thereby providing a two-fold increase in cut-off frequency, in

agreement with Eq. (6.1) and (6.2), but with a near-linear attenuation of the high

spatial frequencies. For partially coherent imaging systems, as is generally the case in

transmission microscopy, the OTF becomes four-dimensional [79]. In addition to the

degree of coherence of light in the object, the OTF is influenced by the mechanisms

of image formation that vary with the type of object being imaged. For so-called
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Figure 6.22: Partial coherence effect on image contrast. Left: image recorded with par-

tially coherent light. right: image recorded with a holographic diffuser placed between

the condenser and the object (very close to the object), which decreases the light coher-

ence. Note the reduced contrast of the image recorded in reduced light coherence (right

image).

strong objects, contrast is formed via diffraction and absorption. For such objects the

partially coherent OTF is complex and four-dimensional. For weak objects, where the

diffracted light is much less intense than the non-diffracted light the image is formed via

phase and absorption. In this case, the OTF becomes two-dimensional and relates the

object (complex) transmission function to the image intensity. The concept of three-

dimensional aperture and three-dimensional transfer function for a partially coherent

microscope is detailed by Streibl in [98] for such objects. Most importantly, Streibl

shows that the transmission of the phase and absorption information of such objects

is carried out via the real and imaginary parts of the OTF respectively. The two-

dimensional defocused transfer function of a partially coherent microscope is expressed

analytically in [96] for these objects. When the system is in-focus the cutoff frequency

ν0 of the OTF increases linearly with the coherence parameter m, in agreement with

Eq. (6.1):

ν0 =





NAo

λ
(1 +m) , for 0 ≤ m ≤ 1 ,

2NAo

λ
, for m > 1 .

(6.7)

140



The contrast-resolution tradeoff in the transmission microscope is directly explained

by the change in the OTF with the coherence parameter m.

6.8 Extended depth of field of the WC microscope

6.8.1 Restoration with modelled and experimental PSF

Following the discussion on the degree of coherence of the illumination, and detailed

in the previous section, images of the sample are now recorded with a diffuser placed

between the condenser and the sample. This diffuser has the effect to remove coher-

ent contributions from the image formation. In this section the quality of the image

restorations based on experimental and modelled PSF are compared. Images of the

USAF target, oriented horizontally, are recorded for increasing amounts of defocus.

At each value of defocus, the restored images presented have been selected from a

set of images restored with filters having different estimated defocus parameter Ŵ20.

The selection, performed here by a human operator, is based on the human percep-

tion of image quality (sharpness, contrast, artifacts/distorsion amplitude). Figure 6.23

presents non-coded images (left column) and WC images restored with experimental

and modelled PSFs respectively (centre and right columns) for various amounts of de-

focus. Restored images in both cases clearly display increased resolution and contrast

compared to the non-coded images. This demonstrates that extended DoF in the mi-

croscope is achieved. Small artifacts in restored images can be observed in the form of

oscillations around strong edges and appear here as dark and bright spots. We recall

that these artifacts were previously described in Section 5.4.2 with simulated images.

It is important to note here that images restored with measured PSF (centre column)

clearly exhibit lower levels of artifacts and have a higher contrast than those restored

with the modelled PSF (right column). This result highlights the non-neglectable effect

on restoration performance of the small differences between the measured and mod-

elled OTF, whose origin were discussed in Section 6.5. Note that the defocus estimated

from both restorations can differ by λ/4. Figure 6.23 also shows that image restoration

performance decreases with large defocus values, typically W20 = 2.5λ.
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Figure 6.23: Image restoration comparison. From left to right: non coded image,

encoded image restored with measured and modelled PSF respectively. The estimated

defocus parameter is shown above each image.
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6.8.2 Assessing the extended depth-of-field

In conventional WC systems the DoF is increased to the defocus region where only

small variations in the PSF occur. In the previous section and in Chapter 5, the DoF

is extended beyond this region by restoring the image with a set of PSFs corresponding

to different defocus values. There is a lack in the literature of a simple optical based

criterion to determine the boundary between these two regimes. Hopkin’s DoF crite-

rion, i.e. an 80% threshold in the ratio of the defocused MTF to the in-focus MTF,

could be used but it does not account for the fundamental difference between DL and

WC systems. Namely that the OTF of WC systems is complex. In addition, it is well

known that the phase information in the spectrum of an image is dominant over its

amplitude information [99]. It can therefore be argued that for WC systems, a DoF

criterion must account for the difference between the phases of the defocused and in-

focus OTFs. We propose a simple criterion based on the presence of phase inversions at

any spatial frequency in the restored OTF of the system. The restored OTF is defined

as the ratio of the defocused OTF to the in-focus OTF. Indeed, these phase inversions

lead to strong image artifacts that are illustrated in Figure 6.24. The effects of phase

inversions and zeros in the OTF is assessed by applying these distortions to a small

region of the image spectrum. This region is chosen to match the high spectrum ampli-

tude corresponding to a small part of the image (the three vertical bars located third

from top left in the image). For both distortions we observe that this part of the image

is more degraded than features with significantly different spectrum content. Note also

that in both cases the whole image is degraded by spurious oscillations. However the

image degradation due to phase inversions is clearly more severe than the one due to

artificial spectrum nulls. For a diffraction limited system such phase inversions occur

for values of W20 greater than W inv
20 = 2/π ≃ 0.64. For the CPM and PPM previously

described they occur when W20 is greater than 0.97 and 1.46 respectively. Figure 6.25

shows the phase inversions in the restored OTF of these three optical systems. Note

that there is a difference between the phase inversions in DL and WC systems. Indeed

for DL systems the phase inversion transitions in the OTF are accompanied by zeros

in the MTF whereas this is generally not the case in the restored OTF of WC systems.

Furthermore, for DL systems the phase of the restored OTF equals that of the defo-
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cused OTF and is binary (equal to zero or π). For these reasons it may not be relevant

to directly compare the values of W inv
20 in DL and WC systems. Nevertheless for WC

systems, W inv
20 provides an upper limit to the defocus value that can be tolerated using

a single filter restoration. Beyond this limit, phase inversions in the spectrum of the

object cause strong spurious signals in the restored image. These can only be removed

by mean of a deconvolution based on the PSF at W20.

Figure 6.26 and 6.27 present simulation results of the image artifacts obtained with

the PPM and the CPM respectively. These results show that the phase inversion

criterion can be reasonably used to estimate the extended depth of field of these WC

systems. Note however that for each phase mask the phase error, i.e. the phase of the

restored OTF, varies differently with defocus. For instance, the phase error is strong

in the first and third quarters of the OTF for the CPM, whereas it exhibits a degree

of rotational symmetry of 3 for the PPM. This suggests that a criterion based on the

total phase error might be more accurate in characterising the EDF of a phase mask

using single kernel restoration.

6.9 Spatially variant restoration

In the previous section the extended DoF with multiple-kernel restoration in the WC

microscope was assessed. This technique demonstrated a DoF extended up to 2.5λ in

an horizontally oriented target. In the next section we seek to apply this technique to

an object that exhibits features at different ranges. Image segmentation is therefore

required and is performed here manually. A set of sub-images containing meaningful

features, referred to as snippets in the image processing literature, are selected. For

each snippet, the restored image that optimises the proposed metrics of defocus are

selected. The defocus estimates are validated by a human operator, ensuring that

the best perceived restored snippet was indeed selected by each metric. Since this

procedure provides an estimate of the defocus parameter from which the range can be

measured, a more accurate assessment consists in quantifying the uncertainty of the

range estimates. This will be performed in the following section.
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Figure 6.24: Image artifacts due to phase inversions and zeros in the MTF. Top row:

raw image (left), image resulting from phase inversions in its spectrum (centre) and

image resulting from zeros in its spectrum (right). Bottom row: spectrum of the three

vertical bars located third from top left in the raw image (left), same spectrum showing

the regions where phase inversions and zeros are applied (right).
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Figure 6.25: Phase inversions in the restored OTF, H(u;W20)/H(u; 0), of various

systems. From left to right: DL system with W20 = 0.64, CPM with W20 = 0.98 and

PPM with W20 = 1.48 respectively. Black and white regions indicate a phase inversion.
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W20=0Λ W20=0.5 Λ W20=0.75 Λ W20=1Λ

W20=1.2 Λ W20=1.4 Λ W20=1.6 Λ W20=1.8 Λ

Figure 6.26: Simulation of image artifacts with the PPM for various amounts of defo-

cus.

W20=0Λ W20=0.5 Λ W20=0.75 Λ W20=1Λ

W20=1.2 Λ W20=1.4 Λ W20=1.6 Λ W20=1.8 Λ

Figure 6.27: Simulation of image artifacts with the CPM for various amounts of defo-

cus.
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6.9.1 Metric validation

The chrome-on-glass USAF target is positioned at a slant angle so that its range varies

linearly along the x axis and is constant along the y axis. Figure 6.28 shows the coded

and non-coded images of this target. Figure 6.29 shows that both metrics provide

reasonable estimates of W20 since the optimally restored snippets according to both

metrics do not exhibit strong image artifacts. Figure 6.30 shows similar slightly im-

proved performance is obtained when restorations are based on measured PSF. We

observe that the MAD metric, described in Section 5.5.1, provides a more robust es-

timate of defocus than the variance metric. This is illustrated in the third column of

Figures 6.29 and 6.30 where the variance estimator is biased by the distortion artefact

typically associated with petal phase masks. In this case this estimator failed to select

the best restoration available, which the MAD metric successfully achieved.

Practical experience showed that an accurate image segmentation is required to

perform spatially variant restorations. Image segmentation is a field of research in

itself and algorithms and levels of sophistication largely depend on the application.

A complete implementation would require to test segmentation algorithms and assess

their impact on the quality of the final image. In order to concentrate on the main issue

here, the image was manually segmented. In an attempt to reduce the impact of this

arbitrary block segmentation, the defocus metrics are computed for a set of windows

that are translated relative to the centre pixel of the snippet. We then select the median

value to reduce the weight of erroneous defocus estimates in the final defocus estimate.

This assumes range continuity in a small neighbourhood, typically a few pixels.

6.9.2 Image fusion

Up to this point, the different features obtained from the image segmentation have

been separately restored with the best kernel available based on different metrics.

These features are now fused together to form a single image, which should exhibit a

DoF that is extended beyond the limit achieved with single-kernel restoration methods

in WC systems.
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Figure 6.28: Non-coded image (left) and coded image (right) of the USAF target posi-

tioned at slant angle. Defocus increases linearly from the right to the left sides of each

image. The petal phase mask used is shown on Figure 6.11.

First image fusion

Figure 6.31 presents the fused snippet image based on restorations with measured

PSFs and estimations of W20 with the MAD metric. Note that some of the snippets

fused here were presented in Figure 6.30. The initial image segmentation and the

image fusion are made clear here with a white background. A uniform background

can be justified under the assumption that no meaningful information is excluded

from the selected region-of-interest (ROI). In order to reconstruct a more physically

realistic image, the background can be adjusted to the highest gray level present in

the original wavefront-coded image. The result of this operation is presented in Figure

6.32, where the fused images have been obtained with modelled PSFs. The non-

coded image and the coded-image restored with a single kernel at W20 = 1.5 are also

shown for comparison. The spatially variant multiple-kernel restoration (using either

the variance or the MAD metrics of defocus) provides clear improvements in terms of

image sharpness and artifacts amplitude over the single restoration WC image (top

right). For instance, in the single-kernel restoration image, the horizontal bars on the

right hand side suffer from strong artifacts and the number “6” on the left side of

the image is distorted. These spurious signals are clearly removed with the spatially

variant multiple-kernel restorations (bottom left and right images). This confirms that
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Figure 6.29: Spatially variant restoration of the slanted USAF target based on the

modelled OTF. Reference snippets in non-coded coded image (top row), corresponding

snippets in WC images after restoration with best kernel, using the variance metric

(second row) and the MAD metric (third row). Metrics as a function of W20 (bottom

row).
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Figure 6.30: Spatially variant restoration of the slanted USAF target based on the

measured OTF. Results are presented in the same order as in Figure 6.29.
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the DoF is extended beyond that of a conventional WC system using single-kernel

restorations. Moreover, these results are further improved when restorations are based

on measured PSFs, see Figure 6.33. These results demonstrate a DoF extension by a

factor of 11 with respect to a DL microscope, which corresponds to a tolerable defocus

of W20 = 2.75, is achieved with the spatially variant multi-kernel restoration. Beyond

this range of defocus values, the magnitude of the artifacts become too large and

prevent the automatic kernel selection to be performed with acceptable accuracy.

The loss of contrast inherent to the Wiener restoration could be reduced with the

use of more sophisticated restoration techniques such as iterative restoration methods

(Lucy-Richardson,...). These methods usually clip negative values in the restored image

since these values do not represent any physical reality but are merely due to restoration

imperfections. For completeness we show the effect of this non-linear operation on our

restored and fused images, see Figure 6.34.

Figure 6.31: Fused snippet image based on multiple-kernel restorations with measured

PSFs. The initial image segmentation is made clear here with a white background.

Defocus is estimated with the MAD metric.

Image fusion with zeroth order interpolation

A physically more realistic solution than the uniform background previously discussed

arguably consists of performing an interpolation of the defocus parameter outside the
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Figure 6.32: Fused snippet images of the USAF target oriented at a slant angle. Non-

coded image (top left), WC image restored with a single kernel at W20 = 1.5 (top

right), corresponding to the defocus at the centre of the target. Images obtained after

spatially-variant multiple-kernel restorations and estimation of the defocus with the

variance (bottom left) and MAD (bottom right) metrics. Restorations are based on

modelled PSFs.
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Figure 6.33: Fused snippet images of the USAF target oriented at a slant angle. Im-

ages obtained after spatially-variant multiple-kernel restorations and estimation of the

defocus with the variance (top left) and MAD (top right) metrics. WC image restored

with a single kernel at W20 = 1.5 (bottom). Restorations are based on measured PSFs.
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Figure 6.34: Left to right: multiple kernel restoration with variance and MAD metrics

respectively. Negative values in the restored blocks have been clipped.

ROIs from its estimates inside the ROIs. This solution offers the advantage to be more

robust to image segmentation errors because of the added continuity constraint. The

interpolation is efficiently implemented here using the Voronoi diagram (used in nearest

neighbour search) of the centroid of each snippet. Zeroth order interpolation of W20 is

applied here and the results are displayed on Figure 6.35. Note that the continuity of

the images is preserved here, as opposed to the images reconstructed with a uniform

background and shown in Figure 6.33.

6.10 Range detection

The range information of features in extended DoF images can theoretically be ex-

tracted from the defocus estimates Ŵ20 with Eq. (4.2). In this section we seek to

assess the accuracy of this range detection method. To that end the defocus estimates

across the slanted USAF target presented in Section 6.9 are utilised.

In estimating range from the defocus parameter W20, there is an ambiguity about

the sign of the defocus parameter because the PSF is identical for ±W20. If features

in the sample are located at both positive and negative values of W20, this ambiguity

has to be removed. In the results presented here this has been done using the a priori
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Figure 6.35: Fused snippet images with zeroth order interpolation of W20 outside the

ROIs. Multiple-kernel restorations are based on measured PSFs. Defocus is estimated

with the variance (left) and MAD (right) metrics.

information about the sample, i.e. using the knowledge that the target is positioned

at a slant angle.

6.10.1 Calibration of the slant angle

In order to assess the accuracy of the range estimates of the proposed method, the

slant angle of the USAF target has to be calibrated. This is achieved by focusing on

an arbitrary image feature which will serve as a range reference (without phase mask).

Bringing into focus other features across the target, the associated micro stage dis-

placements are recorded. Although this method can in principle measure the absolute

range of sample features, we only calibrate here their relative range positions. Thus

the slant angle of the USAF target can be accurately calibrated. This is shown by

correlation ratios higher than 0.99 on Figure 6.36 and 6.37. The error bars shown on

these graphs are due to measurement errors that are approximated by the estimated

DoF of the system, here ≃ 1.1µm.
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6.10.2 Error of range estimates

Using the standard first order approximation of Eq. (4.2), the distance z between the

defocused and the in-focus planes in object space can be rewritten as:

z = −8λF 2
/#W 20 , (6.8)

where the focused distance zi equals the focal length f of the MO, z = zd − zi and

W 20 = W20/λ. Consequently the error dz on the estimation of z is:

dz = −16λW 20F/# dF/# − 8λF 2
/# dW 20 . (6.9)

Using F/# ≃ 0.94, dF/# = 10−2 and dW 20 = 1/4 we estimate dz as:

dz = −0.15λW 20 − 1.77λ . (6.10)

6.10.3 Results

Figure 6.36 shows the range estimates extracted from features across the USAF target

placed at a slant angle and previously shown in Figure 6.32. Each point in these

graphs corresponds to a different snippet. As expected, results are improved when

restorations are performed with measured PSFs, see Figure 6.37. A few remarks about

Figure 6.36 are necessary at this point. We use the plots shown on Figure 6.36 to assess

the coefficient of correlation R2 of the range estimations. Consequently we projected

the 3D data points in the (X,Z) plane along the best fitted plane for each data set.

This means identical range estimates with the variance and MAD metrics may appear

at a different range location on these plots since these datasets have different linear

regressions. In addition, we recall here that the calibrated data represents the relative,

not absolute, range positions of sample features. Therefore the apparent vertical bias

between the range estimates and the calibrated data is irrelevant. The validity of the

proposed range finding method is based on the estimated slant angle error relative to

its calibrated value, and on the correlation ratio of the range estimates. The variance

and MAD metrics measure the slant angle θ̂ of the target at 3.8◦ and 4.7◦ respectively,

compared with the 4.3◦ angle measured with the calibration method. This represents

an absolute error ∆θ of 12% and 8% respectively. This experiment was repeated and
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similar accuracy was obtained. When restorations are performed with measured PSFs

the accuracy of range estimates is improved as is shown by the 11% and 3% errors

obtained in this case. These results, summarised in Table 6.2. The bias µz and the

standard deviation σz of the range estimations are also reported in Table 6.2 with their

corresponding values expressed in terms of W20, µW20
and σW20

respectively. These

results show that the standard deviation of the defocus estimations is approximately

0.4λ for both the variance and MAD metrics. Both estimators suffer from a λ/4 bias,

with the exception of the MAD estimator used with measured PSF where the bias is

neglectable. These results indicate that further improvements in the accuracy of this

range detection method are required to compete with fast refocusing systems, which

can provide unbiased range estimations with a standard deviation of the order of λ/4.
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Figure 6.36: Estimated range of features in the USAF target positioned at a slant angle

along the x axis. The experiment was repeated twice and both results are shown here.

Restorations are based on modelled PSFs.
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Figure 6.37: Estimated range of features in the USAF target positioned at a slant angle

along the x axis. Restorations are based on measured PSFs.

Restoration Method θ̂ R2 ∆θ
µz

[µm]

µW20

[λ]

σz

[µm]

σW20

[λ]

Calibration 4.32◦ 0.99

Variance 3.81◦ 0.91 12% 1.2 0.26 1.9 0.4
modelled PSF

MAD 4.68◦ 0.95 -8% 1.8 0.39 1.5 0.32

Variance 4.82◦ 0.92 -11% 0.8 0.17 2.3 0.5
measured PSF

MAD 4.20◦ 0.94 3% < 0.1 < 0.02 2.2 0.47

Calibration 4.52◦ 0.99

Variance 4.76◦ 0.9 -5% -0.8 -0.18 1.9 0.41
modelled PSF

MAD 4.93◦ 0.95 -9% -1.2 -0.27 1.4 0.3

Table 6.2: Range estimations and errors provided by the variance and MAD metrics

with the USAF target.

6.11 Restoration of weak objects

We conclude this chapter with a few remarks on the restoration of WC images for weak

objects, i.e. objects where diffracted light is weak compared to non-diffracted so that

interaction between diffracted rays can be neglected. As mentioned in Section 6.7.3,

the weak OTF relates the transmission function of the object to the image intensity.
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Thus, the restoration of WC images for such objects must be aimed at recovering their

transmission function. For weak phase objects (no absorption) one therefore wishes

to form an image which intensity is proportional to the phase of the object. Since

conventional imaging systems are only sensitive to the intensity of light transmitted

by the object, one can only record information about the amplitude changes and not

the phase changes introduced by the object. Although non-interferometric techniques

have been developed to image and extract the phase of the object, e.g. the phase

contrast method proposed by Zernike [100], phase contrast in weak phase objects can

also be obtained by introducing a small amount of defocus. Indeed, the imaginary part

of the partially coherent weak OTF (without phase mask), which is responsible for

transmitting phase information, is null when the system is in-focus but becomes non-

zero in the presence of defocus. The variation in phase contrast with defocus can be

observed in the human red blood cells (HRBC) shown on Figure 6.38 (left), where the

slide has been oriented at a slant angle to introduce various amounts of defocus across

the object. Taking advantage of this, quantitative phase retrieval can be performed

from the recording of two images with small defocus W20 and −W20 [96, 101].

Restoration of the WC image (centre) of the HRBC is presented on Figure 6.38

(right). HRBC typically are 6 to 8 µm wide and 2µm thick while the DoF in the

non-coded image is 1.2µm. The (single-kernel) restoration clearly increases the quality

of the WC image, but may be further improved with a more accurate knowledge of the

image formation process. Further work will be required in particular to determine the

model for the weak OTF (with and without WC) in the presence of the diffuser.

6.12 Conclusions

In this Chapter a transmission microscope was designed and implemented to accommo-

date pupil phase masks. The purpose of this experiment was to test the effectiveness

of the image restoration method described in Chapter 5 to remove WC image artifacts,

thereby further extending the DoF of WC systems. The compound microscope uses

narrow-band Köhler illumination, an infinity-corrected 0.6 NA objective and a tube

lens for a transverse magnification factor of 20. Phase encoding was realised with the
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non-coded WC restored

Figure 6.38: Image of human red blood cells at different defocus (microscope slide

is oriented at a slant angle in the left-right direction). Note the variation in phase

contrast with defocus in the non-coded image (left). WC image (centre) and restored

image (right) are shown.

petal phase mask (α, β) = (3.39λ,−10.18λ) (λ = 660nm). The PSF of the microscope

was measured and simulated in two situations: aliasing-free (NAo = 0.49, NAc = 0.26)

and matched illumination (NAc = NAo = 0.26). In both cases the modelled and

measured data are in good agreement. Restored images in matched illumination are

shown to exhibit strong artifacts because of the degree of partial coherence in the ob-

ject plane. Indeed, the image formation in the transmission microscope is well-known

to be partially coherent due to the transillumination. There is therefore a mismatch

between the image formation taking place in the microscope and the incoherent image

formation assumed in the WC image restoration. Incoherent illumination was achieved

with a diffuser positioned between the condenser lens and the sample. This modifi-

cation enables the microscope to operate with WC in the aliasing-free configuration.

Restored images of the USAF target demonstrate the extended DoF of the microscope,

typically of the order of 1.25λ of defocus. For larger values of W20 the phase mismatch

between the defocused and in-focus OTF creates strong artifacts in the restored image.

For the petal phase mask used, phase inversions in the image occur when W20 ≥ 1.46λ.

Using the multiple-kernel restoration method described in Chapter 5, WC artifacts in

the image of the USAF target oriented horizontally are shown to be greatly attenuated

up to W20 = 2.75λ. This corresponds to a further extension of the DoF by a factor of
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two. The method is tested in a 3D scene made of the USAF target oriented at a slant

angle. Spatially variant restoration is effectively achieved in two steps: 1) segmented

image features are separately restored using multiple-kernels and defocus estimation,

2) the restored features are fused together. The image smoothness is preserved out-

side the ROIs by performing a zeroth-order interpolation of W20 at each pixel. The

reconstructed image displays the expected 2.75λ “super” extended DoF.

The accuracy of the defocus estimation employed as a range detection method is

assessed in the final section. Results show that for both the variance and MAD met-

rics the standard deviation of the defocus estimations is approximately 0.4λ. Both

estimators suffer from a λ/4 bias, with the exception of the MAD estimator used with

measured PSF where the bias is neglectable. These results indicate that further im-

provements in the accuracy of this range detection method are required to compete

with rapidly refocusing microscopes, which can provide unbiased range estimations

with a standard deviation of the order of λ/4.

Further work will focus on improving the quality of WC restored images of weak

objects, e.g. some biological tissues, red blood cells etc.. Quantitative phase extrac-

tion for weak phase objects is of particular interest in microscopy and requires the

reconstruction of an image which intensity is directly proportional to the phase of the

object. Whether WC may allow quantitative phase extraction or provide benefits for

this application will have to be investigated. In addition it will be necessary to de-

termine the model for the weak OTF (with and without WC) in the presence of the

diffuser. Partially coherent systems can provide an optimum tradeoff between contrast

and resolution and therefore offer increased imaging performances compared to fully

coherent or incoherent systems. Further improvements in the image quality of WC

microscopes could be aimed at including partial coherence effects in the image restora-

tion. Finally, a promising application for extending the DoF with WC may be found in

the widely employed fluorescence microscope because of the incoherence of fluorescent

radiations.
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Chapter 7

Conclusions and future work

In Chapter 2 we described the fundamentals of millimetre-wave synthetic aperture

imaging. It was demonstrated that in synthetic aperture short-range mm-wave imag-

ing, time-sequential recording of the visibility function offers a route to reduced array

complexity. The tradeoff between array complexity, radiometric sensitivity and imag-

ing frame rate that is associated with this technique were analysed. It was shown

that if the visibility function is recorded with nt time-sequential samples during which

the array is moved relative to the target, point-spread-function and image quality can

be maintained for a factor
√
nt reduction in the number of antennas and a factor nt

reduction in the number of correlators. This simplification is obtained at the cost of

a deterioration in radiometric sensitivity, which can be recovered only by a factor nt

increase in the total integration time. This means that in principle, for certain appli-

cations where long integration times are feasible, acceptable sensitivity of 2K could be

obtained for systems in which the number of antennas is an order of magnitude lower

than for snapshot systems. Since the cost of these systems is largely driven by the

number of antennas in the array, the proposed technique can significantly reduce the

cost of mm-wave synthetic aperture personal scanners.

Near-field effects associated with short-range imaging were accounted for in the image

reconstruction algorithm. We would like to mention here that the feasibility of adapt-

ing the backward-wave image reconstruction algorithm to synthetic aperture imagers

was investigated. This algorithm is based on Fourier optics techniques [1] and takes

advantage of the O(N logN) complexity of the FFT. It is computationally more effi-
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cient than the correlation algorithm presented here, which has a O(N2) complexity. It

was originally developed for acoustic holography [102] and was successfully applied to

real-aperture millimetre-wave personnel scanning [10]. For synthetic aperture imaging,

the algorithm is expected to consist of two two-dimensional (2D) Fourier Transforms,

one 2D inverse Fourier Transform and multiplicative factors that account for near-field

effects. Further details on this algorithm and its performances may be the object of

a future paper as it is clear that short-range synthetic aperture imagers will benefit

from such efficient algorithms. The frequency content of the interference pattern was

analysed when a point source is in translation relative to the array. In general the

signal recorded is a non-linear chirp (that is, the rate of variation of the frequency

with time is not constant), but can be approximated to a linear chirp if the scanning

of the source is restricted to a specific region. Interestingly, the Fourier-transform of

this chirp has a form that matches the near-field (Fresnel region) diffraction pattern

of plane waves by a 1D slit. Moreover such diffraction patterns are well known to be

related to the fractional Fourier-transform [74] of such aperture functions. Thus it may

prove useful to analyse interference patterns with the fractional Fourier-transform.

In Chapter 3 the array was designed to optimise the improved spatial frequency

coverage achieved after linear or rotational scanning of the source. We show that

a rotational scan more efficiently samples the spatial frequencies of the scene. We

therefore design the array so that the uniformity of its sampling of the Fourier do-

main is maximised after rotational scanning, a technique we termed aperture rotation

synthesis. To that end, a novel metric of the sampling uniformity was proposed and

completes the array design presented in [17], where sampling uniformity was only as-

sessed qualitatively. The proposed metric is based on a binless estimator of the entropy

of the density of measurements across the Fourier plane. It is similar to the metric

proposed by Cornwell [18] in that it also uses the logarithm of distances between sam-

ples, but it is computationally more efficient because of the restriction to the nearest

neighbours only. Efficient implementation of this metric was achieved using Delaunay

triangulation. In addition, the use of the differential entropy to derive this metric

provides a rigourous justification and a new understanding of the design of antenna

arrays. A 27 antenna array design obtained after optimisation of this metric with a
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genetic algorithm is presented. The imaging performances of this array were assessed

with simulated millimetre-wave scenes and compared with the more conventional Y-

shaped array. We show that the optimised array exhibits greatly enhanced imaging

performances. Furthermore, the genetic algorithm employed can readily be applied

to different applications and include additional practical constraints on the antenna

positions. The longer acquisition times of the proposed technique however increases

sensitivity to instrument drift and temporal changes in average illumination, compared

to a snapshot technique. This represents a serious calibration challenge and increases

the necessity for a real-time calibration procedure.

In Chapter 4 the distinction between the digital refocusing ability and the DoF of

interferometric synthetic aperture antenna arrays was presented. This is a new result

as the DoF of synthetic aperture antenna arrays is not mentioned in the literature

and was originally thought to be infinite. Digital refocusing is enabled by the separate

recording of spatial frequencies at each baseline, which allows compensation for defocus

related phase delays. We showed that ranging errors in the digital refocusing are

mathematically equivalent to the defocus effect in a conventional optical system. This

enabled us to analyse the DoF of antenna arrays with conventional optics tools such as

the Strehl ratio. We derived an analytical expression of the Strehl ratio that includes

the effect of defocus and established that this metric varies significantly with W20.

Thus it is demonstrated that antenna arrays have a finite DoF, even in the ideal case

of point-like antennas, with the exception of circular arrays of point-like antennas.

This general expression can be applied to any array configuration and is useful when

designing short-range synthetic aperture arrays with a specific DoF. The parameters

affecting the DoF of antenna arrays have been identified as the size of the antennas and

their radial positions with respect to the aperture origin. Using Hopkin’s criterion, the

DoF of the Reuleux and Y-shaped arrays presented in Chapter 3 have been quantified

as ≈ 0.37λ and 0.16λ respectively when focusing at a 2m distance, as compared with

0.215λ for real circular aperture systems with equal F/#. The expression of the Strehl

ratio readily shows that circular arrays can achieve a very large DoF. A 27 antennas

circular array with a fill factor of ≈ 0.004 was therefore designed with the optimisation
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method described in Chapter 3. This array can record images with a 33λ DoF, which

corresponds to a hyperfocal distance of 58cm. Thus requirements for axial refocusing

is suppressed with this design.

In Chapter 5 the principles of wavefront coding were presented. In wavefront coded

systems, reduced sensitivity to defocus is attained by placing specifically designed phase

filters in the entrance pupil of the system. The reduced MTF causes the recorded image

to be blurred, which is easily restored for a large range of defocus values with a single

digital filter because the MTF does not contain any nulls. Two approaches, one ana-

lytical the other numerical, to designing pupil phase masks were detailed. Cubic-phase

profiles in rectangular, linearly separable phase masks are derived analytically when

the amplitude of the ambiguity function is constrained to be invariant with defocus.

The numerical method, termed pupil phase engineering, optimises simultaneously the

defocus sensitivity and the image restorability. This approach is attractive because it

directly addresses the tradeoff between these two competing terms. It also enables the

optimisation of phase masks with a circular aperture, which represents a significant

advantage over the analytical approach. The defocus sensitivity metric was chosen as

the L2 norm of the second derivative of the OTF with respect to defocus, taken at

W20 = 0λ, as proposed in [28]. This metric can be computed efficiently with only four

two-dimensional FFT. We argue that choosing the Strehl ratio as the metric of image

restorability, as in [27, 28], is suboptimal because it is biased by phase effects such

as a transverse translation of the PSF. As a result, cubic phase masks are artificially

penalised. When using the Strehl ratio metric our results are in agreement with those

obtained in [27]. We propose instead to use the normalised L2 norm of the PSF as the

image restorability metric in order to be insensitive to phase information. In this case

we show that the algorithm converges to a phase mask that is almost purely cubic, i.e.

it has a small β/α ratio approximately equal to 0.06. This result confirms that cubic

phase masks can be applied to circular aperture systems.

Restored images in wavefront coded systems were shown to be degraded by image ar-

tifacts in the form of oscillations and edge replicas. The origin of these artifacts is

demonstrated to reside in the variations with defocus of the phase of the OTF. These

artifacts are rarely mentioned in the literature but seriously limit the imaging perfor-
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mance of wavefront coded systems. Removal of these artifacts is therefore critical. An

iterative restoration method was therefore devised to remove these artifacts, which are

first used as a signature of the defocus effect to estimate the defocus parameter W20.

The recorded image is then restored with the filter corresponding to this value of W20.

We assessed the robustness of several defocus metrics with simulated images and con-

cluded that the MAD metric was the most robust for two-dimensional images. Future

work will continue the development of more robust metrics of defocus. One promising

approach briefly detailed in Chapter 5 is based on the correlation of edge profiles with

calibrated data. Such correlation may be implemented with wavelet decomposition,

which is known to be particularly robust for edge detection in noisy signals. It was

also demonstrated that excellent suppression of these artifacts is still achieved with

errors in the defocus estimates of the order of λ/4. The proposed image restoration

method therefore extends the DoF beyond that of wavefront coded systems.

Recently, similar phase masks were designed by Tom Vettenburg of Heriot-Watt Uni-

versity using a different optimisation approach. Although further confirmation of the

agreement of these results must be obtained, they may constitute a first evidence that

the small β value plays the role of an apodisation term for the circular aperture. Fur-

ther investigation of this hypothesis is required and could be validated if a value of

0 was obtained for β after applying the same optimisation to square aperture phase

masks.

In Chapter 6 we describe the design and implementation of WC in an optical trans-

mission microscope. This allows us to assess the effectiveness of the image restoration

method described in Chapter 5 in removing WC image artifacts. The compound micro-

scope uses a narrow-band Köhler illumination, an infinity-corrected 0.6 NA objective

and a tube lens for a transverse magnification factor of 20. Phase encoding was realised

with the petal phase mask (α, β) = (3.39λ,−10.18λ) (at λ = 660nm). The PSF of the

microscope was measured and simulated in two situations: aliasing-free (NAo = 0.49,

NAc = 0.26) and matched illumination (NAc = NAo = 0.26). In both cases the mod-

elled and measured data are shown to be in good agreement. Nevertheless, restored

images in matched illumination are shown to exhibit strong artifacts. We argue that

these artifacts are caused by the degree of partial coherence in the object plane. Image
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formation in transmission optical microscopes is partially coherent due to diffraction

at the condenser lens. To our knowledge this issue has not been previously reported

in the literature regarding WC adaptations to wide-field microscopy. Incoherent illu-

mination of the sample was obtained with a diffuser positioned between the condenser

lens and the sample. This modification enables the microscope to operate with WC

in the aliasing-free configuration. Extended DoF of the order of 1.25λ of defocus is

demonstrated in microscope images of the USAF target. For larger values of W20 the

phase mismatch between the defocused and in-focus OTF creates strong artifacts in

the restored image. For the petal phase mask employed here, phase inversions in the

image occur when W20 ≥ 1.46λ. Using the multiple-kernel restoration method, WC

artifacts in the image of the USAF target oriented horizontally are shown to be greatly

attenuated up to W20 = 2.75λ. This corresponds to a further extension of the DoF

by a factor of two compared to conventional WC systems and validates the results

presented in Chapter 5. The method is tested in a 3D scene made of the USAF target

oriented at a slant angle. Spatially variant restoration is effectively achieved in two

steps: 1) segmented image features are separately restored using multiple-kernels and

defocus estimation, 2) the restored features are fused together. The image smoothness

is preserved outside the ROIs by performing a zeroth-order interpolation of W20 at each

pixel. The reconstructed image displays the expected 2.75λ “super” extended DoF.

The accuracy of the defocus estimation employed as a range detection method is as-

sessed in the final section. Results show that for both the variance and MAD metrics

the standard deviation of the defocus estimations is approximately 0.4λ. Both esti-

mators suffer from a λ/4 bias, with the exception of the MAD estimator used with

measured PSF where the bias is neglectable. These results indicate that further im-

provements in the accuracy of this range detection method are required to compete

with rapidly refocusing microscopes, which can provide unbiased range estimations

with a standard deviation of the order of λ/4.

Further work could focus on the determination of the model for the weak OTF (with

and without phase mask) in the presence of the diffuser. The use of higher NA objec-

tives is also desirable and will require the paraxial diffraction approximation assumed

here to be replaced by a more accurate description of the diffraction such as Debyes
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non-paraxial scalar formulation [103]. Partially coherent systems can provide an op-

timum tradeoff between contrast and resolution and therefore offer increased imaging

performances compared to fully coherent or incoherent systems. Further improvements

in the image quality of WC microscopes could therefore be aimed at including partial

coherence effects in the image restoration. Alternatively it may be more straightforward

to use WC in fluorescence microscopy because of the spatial incoherence of fluorescent

radiations. Exploiting the full potential of the proposed restoration method to fur-

ther extending the DoF in fluorescence microscopy may however be difficult because

of the serious image segmentation challenge. Another line of research may be to im-

prove the quality of WC images of weak objects, e.g. biological tissues, red blood cells

etc.. Quantitative phase extraction for weak phase objects is of particular interest

in microscopy and requires the reconstruction of an image which intensity is directly

proportional to the phase of the object. Whether WC may allow quantitative phase

extraction or provide benefits for this application will have to be investigated. In any

case, the benefits of WC for microscopic thick tissue imaging are limited by the aber-

rations introduced by the biological tissue itself. It is therefore highly desirable to

compensate for these perturbations in order to obtain high quality images. It has been

pointed out that one dominant type of aberration degrading deep-tissue images is the

spherical aberration caused by the refractive-index mismatch between the sample and

the immersion (or air) medium [104]. This causes a small degradation in the transverse

resolution compared to that in the axial resolution and a significant deterioration in

the image contrast. The magnitude of these spherical aberrations vary with defocus

and can not be corrected for in a single restoration as in conventional WC. Recently,

Saavedra et al. [103] proposed to employ a radially symmetric version of the cubic

phase mask to reduce the sensitivity of the system to spherical aberrations. Thus a

single restoration may be employed again. Another promising approach to correcting

specimen-induced aberrations is through the use of adaptive optics [104, 105], a tech-

nique originally developed in astronomy to compensate for aberrations introduced by

atmospheric turbulence. Implementation of adaptive optics in a confocal microscope

has been described [104] and is well suited to the correction of the low-order Zernike

polynomials that characterise tissue-induced aberrations. This enhanced flexibility over
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the WC approach is attained however at the cost of an increased hardware complexity

and may be restricted in the future to high-end microscopes.
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Appendix A

Publications and patents

The abstracts of the published papers related to this thesis are detailed below.

• [21] B. M. Lucotte, B. Grafulla-González, and A. R. Harvey. Array rotation

aperture synthesis for short-range imaging at millimeter wavelengths. Radio

Sci., 44(RS1006), 2009.

Millimeter-wave interferometric synthetic aperture imagers are currently being

developed for short-range applications such as concealed weapons detection. In

contrast to the traditional snapshot imaging approach, we investigate the poten-

tial of mechanical scanning between the scene and the array in order to reduce

the number of antennas and correlators. We assess the trade-off between this

hardware reduction, the radiometric sensitivity and the imaging frame rate of

the system. We show that rotational scanning achieves a more uniform coverage

of the (u, v) plane than the more conventional linear scanning. We use a ge-

netic algorithm to optimize two-dimensional arrays for maximum uniform (u, v)

coverage after a rotational mechanical scan and demonstrates improvements in

the array point spread function. Imaging performance is assessed with simulated

millimeter-wave scenes. Results show an increased image quality is achieved with

the optimized array compared with a conventional power law Y-shaped array. Fi-

nally we discuss the increased demands on system stability and calibration that

the increased acquisition time of the proposed technique places.

• [20] B. M. Lucotte and A. R. Harvey. Antenna rotation aperture synthesis for
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short- range personnel scanning at mm wavelengths. In PIERS Proc, pages 400–

410, 2007. Prague, Czech Republic.

Mm-wave interferometric synthetic aperture imagers are currently being devel-

oped for the detection of concealed weapons and usually operate in a snapshot.

We investigate the potential of including a mechanical scanning between the

scene and the array in order to reduce the number of antennas and to ease the

calibration process. We show that rotational scanning achieves a more uniform

coverage of the (u; v) plane than the linear scanning traditionally used in RAD-

SAR systems. We optimize rotated evenly distributed Reuleux triangle arrays

for maximum uniform (u; v) coverage with a genetic algorithm and present the

improvements in the sidelobes of the Point Spread Function.

• [106]A.R. Harvey, T. Vettenburg, M. Demenikov, B. Lucotte, G. Muyo, A. Wood,

N. Bustin, A. Singh, and E. Findlay. Digital image processing as an integral com-

ponent of optical design. In Novel optical systems design and optimization XI,

volume 7061 of SPIE, pages 6104–6104, 2008.

The design of modem imaging systems is intricately concerned with the control of

optical aberrations in systems that can be manufactured at acceptable cost and

with acceptable manufacturing tolerances. Traditionally this involves a multi-

parameter optimisation of the lens optics to achieve acceptable image quality at

the detector. There is increasing interest in a more generalised approach whereby

digital image processing is incorporated into the design process and the perfor-

mance metric to be optimised is quality of the image at the output of the image

processor. This introduces the possibility of manipulating the optical transfer

function of the optics such that the overall sensitivity of the imaging system to

optical aberrations is reduced. Although these hybrid optical/digital techniques,

sometimes referred as wavefront coding, have on occasion been presented as a

panacea, it is more realistic to consider them as an additional parameter in the

optimisation process. We will discuss the trade-offs involved in the application of

wavefront coding to low-cost imaging systems for use in the thermal infrared and

visible imaging systems, showing how very useful performance enhancements can

be achieved in practical systems.
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The image reconstruction procedure described in Chapter 5 to remove artifacts from

wavefront coded images has been registered as a patent [30]:

M. Demenikov, E. Findlay, A. Harvey, B. Lucotte, and G. Muyo. Artifact removal

from phase encoded images. US patent number: 20100008597. Assignees: STMicro-

electronics (Research & Development) Limited.
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Appendix B

Optimised antenna array

coordinates
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(a)

X [mm] Y [mm]

337 −194

349 −128

319 −27

297 46

275 122

230 190

179 262

118 309

83 347

0 390

−62 345

−118 300

−172 257

−231 177

−276 98

−293 35

−341 −38

−342 −123

−339 −188

−278 −245

−216 −257

−109 −293

−43 −301

27 −295

112 −276

197 −260

285 −229

(b)

θ [◦]

3.6572

19.8011

34.3253

51.5663

43.9647

65.2286

81.3986

101.3825

98.7180

126.1992

130.6662

155.4044

160.7857

166.6895

-173.0896

-171.2087

-149.7358

-135.6034

-122.9077

-112.7982

-97.1768

-80.1186

-70.8972

-58.4105

-41.8748

-22.8052

-7.7324

Table B.1: Antenna coordinates of the optimised Reuleux array (a) and the optimised

circular array (b).
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Appendix C

Derivation of the Strehl ratio for

phase errors with various

distributions

The power of the in-phase summation of N unit vector is N2. When summing N unit

vector Gi with a random phase, the expected power sum is:

P = 〈|
N∑

i

Gi|2〉

= N2 〈cosφ〉 +N(1 − 〈cosφ〉) (C.1)

with φ the difference between the phases of two terms Gi and Gk. 〈cosφ〉 may be

written as:

〈cos φ〉 =

∫ +∞

−∞
cosφ fΦ(φ) dφ (C.2)

with fΦ(φ) the probability density function of the random variable Φ.

C.1 Gaussian distributed phases

If the phase of Gi is a Gaussian distributed random variable with a standard deviation

σG and µ = 0, then φ is a Gaussian distributed random variable with standard deviation
√

2σG. We refer to this distribution with the notation Gaussian(0,
√

2σG). One can

show that 〈cosφ〉 is such that:

〈cosφ〉 = e−σ2

G (C.3)
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and using Eq. (C.1) and (C.3) one obtains:

P = N2e−σ2

G +N(1 − e−σ2

G) (C.4)

This is Eq. (4) from [48]. Hence the Strehl ratio for unit vectors with random phases

taken from a distribution Gaussian(0, σG) is expressed as:

S = e−σ2

G

(
1 +

eσ2

G − 1

N

)
(C.5)

For N >> eσ2

G − 1, S is dominated by the term e−σ2

G .

C.2 Laplace distributed phases

It is argued in section 3.5 that for a linear instrument drift with time and Gaussian

distributed random drift rates, the assumption of Laplace distributed random phases

leads to a more accurate modelling of the Strehl ratio of the array compared to the

assumption of Gaussian distributed phases. We therefore consider now the case when

the phase of Gi is a Laplace distributed random variable with a scale parameter σG

and a location parameter µ = 0. We note this distribution Laplace(0, σL). One needs

to know the probability density function fΦ(φ) of the random variable Φ = Φ1 − Φ2

where Φ1 and Φ2 both have a distribution Laplace(0, σL). To that end we use the

characteristic function ϕX(t) of a random variable X and defined as:

ϕX(t) =
〈
ejtX

〉
(C.6)

=

∫ +∞

−∞
ejtxfX(x) dx (C.7)

The characteristic function ϕΦ(t) can written as:

ϕΦ(t) =
〈
ejt(φ1−φ2)

〉
=
〈
ejtφ1

〉 〈
e−jtφ2

〉
= ϕΦ1

(t)ϕ−Φ2
(t) (C.8)

One can show that the characteristic functions ϕΦ1
(t) and ϕ−Φ2

(t) are equal and ex-

pressed as:

ϕΦ1
(t) = ϕ−Φ2

(t) =
1

1 + σ2
Lt

2
(C.9)

Using Eq. (C.8) and (C.9) one obtains:

ϕΦ(t) =
1

(1 + σ2
Lt

2)
2 (C.10)
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Looking at the definition of the characteristic function in Eq. (C.7) one observes that

ϕX(t) is equal to the inverse Fourier transform of the probability density function

fX(x). Therefore fΦ(φ) may be expressed as the Fourier transform of ϕΦ(t):

fΦ(φ) = FT [ϕΦ(t)] (C.11)

= FT
[
ϕ2

Φ1
(t)
]

(C.12)

= FT [ϕΦ1
(t)] ∗ FT [ϕΦ1

(t)] (C.13)

where ∗ denotes the convolution product. The Fourier transform of ϕΦ1
(t) can be

written as:

FT

[
1

1 + σ2
Lt

2

]
= e

− |φ|
σL (C.14)

Calculating the convolution product of Eq. (C.13), fΦ(φ) can be rewritten as:

fΦ(φ) =
1

4σ2
L

(σL + |φ|)e−
|φ|
σL (C.15)

where a factor 1/4σ2
L has been included to maintain the unity of the integral of fΦ(φ).

Eq. (C.2) can now be calculated:

〈cosφ〉 =
1

4σ2
L

∫ +∞

−∞
cosφ (σL + |φ|)e−

|φ|
σL dφ

=
1

2σ2
L

(
σL

∫ +∞

0

cos φ e
− φ

σL dφ+

∫ +∞

0

φ cosφ e
− φ

σL dφ

)

=
1

(1 + σ2
L)

2 (C.16)

Using Eq. (C.1) and (C.16) the Strehl ratio obtained for unit vectors with random

phases taken from a distribution Laplace(0, σL) is finally expressed as:

S =
1

(1 + σ2
L)

2

(
1 +

σ2
L

N
(2 + σ2

L)

)
(C.17)

When N >> σ2
L(2 + σ2

L), the Strehl ratio is dominated by the term 1/(1 + σ2
L)2.
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C.3 List of useful integrals and Fourier transform

∫ +∞
0

e−ax2

cos bx dx =
√

π
2a
e−b2/4a2

, (a > 0)

∫ +∞
0

e−ax cosmxdx = a
a2+m2 , (a > 0)

∫ +∞
0

xe−ax cos bx dx = a2−b2

(a2+b2)2
, (a > 0)

FT
[
e−a|t|] =

√
2
π

a
a2+ω2
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[54] J. Ojeda-Castañeda, M. Mart́ınez-Corral, P. Andrés, and A. Pons. Strehl ratio

versus defocus for noncentrally obscured pupils. Applied Optics, 33(32):7611–

7616, November 1994.
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[91] E.J. Botcherby, R. Juškaitis, M.J. Booth, and T. Wilson. An optical technique

for remote focusing in microscopy. Optics communications, 281:880–887, 2008.
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