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Abstract

A general understanding of the role that both shared disease and competition may play in

ecological invasions is lacking. We develop a theoretical framework to determine the role

of disease, in addition to competition, in invasions.

We first investigate the effect of disease characteristics on the replacement time of a

native species by an invader. The outcome is critically dependent on the relative effects

that the disease has on the two species and less dependent on the basic epidemiological

characteristics of the interaction. This framework is extended to investigate the effect of

disease on the spatial spread of an invader and indicates that a wave of disease spreads

through a native population in advance of the replacement.

A probabilistic simulation model is developed to examine the particular example of the

replacement of red squirrels by grey squirrels in the United Kingdom. This model is used

to examine conservation strategies employed within red squirrel refuges and compared to

observations from Sefton Coast Red Squirrel Refuge. Our findings indicate that culling

greys may be effective at protecting red populations from replacement, but none of the

conservation strategies currently employed can prevent periodic outbreaks of infection

within red squirrel refuges.
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Chapter 1

Introduction

1.1 Overview

Ecological invasions, in which new species attempt to establish themselves in non-native

environments, are a world-wide problem with major economic repercussions. They are

widely acknowledged to be one of the main threats to native biodiversity and ecosystem

function (Sala et al., 2000; Kolar and Lodge, 2001). Regardless of this, we continue at

an ever increasing rate to introduce alien species into new ecosystems (Pimentel et al.,

2001) with potentially devastating consequences for native species. A further concern is

the change in species’ natural ranges as a result of predicted changes in climate (Dukes

and Mooney, 1999; Ims et al., 2008).

Some well-studied invasions, from across the world, include the invasion of Nile

perch, Lates niloticus, into Lake Victoria (Kolar and Lodge, 2001) and the rapid spread

of the European zebra mussel, Dreissena polymorpha, through North America (Lodge,

1993). It is unknown how many non-native species are present within the United Kingdom

(UK), some well-known examples are highlighted below (further examples are included

in later chapters).

Giant hogweed (Herracleum mantegazzianum), native in South-West Asia, was in-

troduced to the UK in the 1800s as an ornamental plant but it has rapidly spread and is

now common along river banks, roadsides and waste-ground. It produces a large num-

ber of seed and long-distance dispersal is possible along waterways (Tiley et al., 1996).

The seeds can also be accidentally dispersed when present in soil (Cook et al., 2007).

Giant hogweed is seen as a threat to UK biodiversity as it shades out and replaces na-

tive flora (Manchester and Bullock, 2000). It is also a danger to human health as it can
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Chapter 1: Introduction

cause phytophotodermatitis if contact occurs with the skin, resulting in sensitivity to the

sun, pigmentation and blistering for up to six years following contact (Tiley et al., 1996).

This threat to human health makes any eradication programme less manageable and due

to the large seed base it is believed that any clearance needs to be followed up by seven

years of further controls (Manchester and Bullock, 2000). A second invasive plant caus-

ing problems in the UK is rhododendron (Rhododendron ponticum), which is found in

woodland, grassland and heaths and believed to inhibit native woodland regeneration and

cause major changes in soils (Manchester and Bullock, 2000). Like giant hogweed, it is

difficult and expensive to control with any clearance requiring follow-up controls such as

herbicide spraying.

Our third example of a well-known plant invader in the UK is Japanese knotweed,

Fallopia japonica, it not only displaces native plants but also damages roads and pave-

ments. Following its introduction in the 1800s, it has spread throughout the entire UK

with the exception of the islands of Orkney in Scotland (Kidd, 2000). Its control is costly

as it requires that all plants and rhizomes, horizontal stems found underground, are killed

(Manchester and Bullock, 2000). A consortium of organisations, including DEFRA and

Network Rail, have formed the “Japanese Knotweed Alliance” and are currently propos-

ing the introduction of a biological control (Kidd, 2000).

Turning our focus away from plant invasions, the New Zealand flatworm, Artioposthia

triangulata, was accidentally introduced into the UK relatively recently in plant pots, with

the first recorded sightings dating from the 1960s (Cannon et al., 1999). They are believed

to replace the native earthworms and potentially reduce them to extinction, hence impact-

ing soil processes (Manchester and Bullock, 2000). There is not a recognised chemical

control for New Zealand flatworm and no known biological controls, so current strategies

rely on physical and cultural methods (Cannon et al., 1999).

The final two examples, outlined here, are the North American signal crayfish (Paci-

fastacus leniusculus) and the grey squirrel (Sciurus carolinensis); both of these species

threaten to replace native species (the white-clawed crayfish, Austropotamobius pallipes,

and the red squirrel, Sciurus vulgaris, respectively). Both of the native species have been

replaced across much of the UK as a result of the invading species, and are under constant

threat of further replacement (Reynolds, 1985; Cerenius et al., 2003). In both cases the

invader is a superior competitor and also carries a disease that is much more lethal to the

2



Chapter 1: Introduction

native than to the invading species.

The crayfish and squirrel examples highlight the importance of disease in ecological

invasions. It has become increasingly recognised that disease plays an important part in

ecological invasions, although our theoretical understanding of this is lacking and requires

further research (Prenter et al., 2004). Within this thesis, we will incorporate the influence

of disease and competition, using mathematical modelling to gain an insight into the

underlying causes of ecological replacement of a native species by an alien invader.

1.2 Mathematical modelling of ecological interactions

The logistic equation, first proposed for use in ecology by Verhulst in 1838, describes

population growth of one species (Begon et al., 1996). It is a simple, but very powerful,

continuous-time model:

dH
dt

= rH
(
1 −

H
K

)
. (1.1)

Here, H represents the density of individuals, r the growth rate (birth rate − death rate)

and K is the carrying capacity. The single population is subject to density dependence,

with the population reaching a stable equilibrium at its carrying capacity. The logistic

equation, although simple, has played a significant role in the development of ecology.

The logistic equation formed the basis for the Lotka-Volterra equations (proposed by

Volterra in 1926 and Lotka in 1932), they can be expressed as follows

dH1

dt
= r1H1

(
1 −

H1 + c2H2

K1

)
(1.2a)

dH2

dt
= r2H2

(
1 −

H2 + c1H1

K2

)
. (1.2b)

These equations model two species, species 1 and species 2, all parameters have a sub-

script i which equals 1 or 2 and refers to each species respectively. Hi represents the

number of individuals, ri the growth rate (birth rate − death rate), Ki the carrying capacity

and ci the competitive effect of species i on the other species. The logistic equation is used

to model one species subject to intraspecific competition, while the Lotka-Volterrra equa-

tions model the interaction between two species subject to intraspecific and interspecific

3



Chapter 1: Introduction

competition.

The Lotka-Volterra equations greatly enhanced ecological understanding of predator-

prey dynamics, especially the oscillatory population levels observed (Murray, 2002).

They also provide theoretical evidence to support the competitive exclusion principal

which states that two species that compete for the same resources cannot coexist stably

(Begon et al., 1996).

Similar modelling techniques have also been developed to investigate the effect of

disease on ecological populations. One of the earliest was proposed by Kermack and

McKendrick (1927) to model the Bombay Plague Epidemic in 1905 and 1906. A special

case of their model has formed one of the simplest and yet most influential models, in this

field (Brauer, 2005). It is aptly named the Kermack-McKendrick epidemic model and

consists of three ordinary differential equations as follows

dS
dt

= −βS I (1.3a)

dI
dt

= βS I − γI (1.3b)

dR
dt

= γI. (1.3c)

The population is split into three classes susceptible (S ), infected (I) and removed (R)

with β representing the infection rate and γ the removal rate. All the parameters are

non-negative and the model maintains a constant population size as
dS
dt

+
dI
dt

+
dR
dt

= 0.

Although this model is simple, it produces broadly relevant results and introduces us to

the basic reproductive number (R0). R0 is the expected number of secondary infections

caused from one infected individual entering a purely susceptible population (R0 =
βS 0

γ
here, where S 0 is the initial number of susceptibles). If R0 > 1 an epidemic will occur and

if R0 < 1 it will not, R0 is a very powerful threshold value when considering a potential

epidemic or the viability of vaccination (Murray, 2002).

The Kermack-McKendrick model formed the basis for many models offering further

insight into the effect of disease on a population including Anderson and May (1978) and

May and Anderson (1978). Anderson and May (1981) considered a number of different

variations, to analyse the different effects of disease including reduction in fecundity, den-

sity dependence and the effect of vertical transmission. Their work was further extended

4



Chapter 1: Introduction

by Holt and Pickering (1985) to consider the effect of two species with a shared disease.

These two areas of similar modelling techniques, the first considering competition and

the second disease were first joined to consider the combined effects of intraspecific com-

petition and disease (Begon et al., 1992; Greenman and Hudson, 1997; Hethcote et al.,

2005). This work was further extended to include both intraspecific and interspecific com-

petition (Bowers and Turner, 1997; Saenz and Hethcote, 2006). These model frameworks

have greatly improved the theoretical understanding of interactions between species.

All the models discussed so far, have considered temporal but not spatial population

dynamics. The addition of space into these models is often achieved using a diffusion

term (Murray, 2002). Examples of this method of modelling spatial spread (known as

reaction-diffusion equations) include the modelling of an advantageous gene through a

population by Fisher (1937), the spread of the muskrat (Ondatra zibethica) through Eu-

rope by Skellam (1951) and the spread of rabies through foxes by Murray et al. (1986).

Another possible extension to these continuous-time models is to develop a proba-

bilistic simulation model that takes stochastic effects into consideration. These methods

are discussed in detail in Renshaw (1991) and are based on the underlying deterministic

frameworks.

One of the aims of this study is to further develop temporal, spatial and probabilistic

frameworks to provide a fuller understanding of how competition and a shared disease

affect the characteristics of invasion and replacement of native species. We also wish

to use insight gained from examining models of competition and disease to allow us to

further develop our understanding of the replacement of red squirrels by greys within the

UK. Thus, we will outline the background relating the grey squirrel invasion in the UK.

1.3 Squirrels in the UK

The North American grey squirrel was introduced to the UK in 1876, since then it has

replaced the native red squirrel throughout much of the UK (Middleton, 1930; Lloyd,

1983; Reynolds, 1985). There are believed to be only 160,000 red squirrels left in the

UK, with the majority found in Scotland (Harris et al., 1995; Battersby and Partnership,

2005). It was not initially believed that the decline of red squirrels within the UK was

being caused by the introduced grey squirrel (notably Middleton (1932) discounted it).
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Chapter 1: Introduction

However, over time as the spread of the greys and associated decline of reds continued,

it was accepted that greys were replacing reds and this was initially believed to be as a

result of competition for resources (Reynolds, 1985; Gurnell, 1987).

A mathematical model of competition between red and grey squirrels was presented

by Okubo et al. (1989). They developed a continuous-time deterministic model of a

Lotka-Volterra type and considered both competition and diffusion. The model consisted

of a set of coupled reaction-diffusion equations (this modelling method is discussed in

detail in Chapter 3). They assumed the greys out-competed the reds and “investigated the

possibility of travelling waves of invasion of grey squirrels that drive out the reds”. They

compared their theoretical findings to the field evidence documented by Reynolds (1985)

who monitored the spread of grey squirrels through East Anglia from 1961 to 1981. They

concluded that competition could account for the replacement of red squirrels by greys.

A different modelling technique was presented by Rushton et al. (1997), who used

an integrated Geographical Information System (GIS)-spatially explicit population dy-

namics model. The model simulated mortality, reproduction and dispersal in individual

populations of red or grey squirrels within habitat blocks identified using GIS. The squir-

rels were able to move between the habitat blocks and interspecific competition occurred

if both species were present within a block. They also made a comparison with the field

data of Reynolds (1985) and modelled the spread of the grey squirrels through East An-

glia. They investigated the effect of adult mortality, juvenile mortality, fecundity, carrying

capacity and maximum dispersal distance on the spread of grey squirrels. Their results

found that fecundity rates had to be raised and the mortality rates lowered from the ob-

served rates to allow a reasonable match with the field data of Reynolds (1985). They

conclude in their discussion that competition alone “was sufficient to explain the decline

of the red squirrel in Norfolk as the grey expanded its range”.

The model presented by Rushton et al. (1997) was further extended to include squir-

relpox and the results published in 2000 (Rushton et al., 2000). Squirrelpox is a disease

shared by red and grey squirrels; it is harmless (at least under laboratory conditions) to

greys and lethal to reds (Tompkins et al., 2002). They investigated the effect of different

disease parameters including persistence, encounter rate and infection rate. They again

compared their findings to those of Reynolds (1985) and concluded that disease could be a

potential cause of decline in red squirrels. A deterministic model presented by Tompkins

6



Chapter 1: Introduction

et al. (2003), further extended our understanding of the role of squirrelpox in the interac-

tion. They showed that competition alone could explain the replacement of red squirrels

by greys (again in East Anglia, with Reynolds’ (1985) results used for comparison) but

at a slower rate than the observed rate. However, the addition of squirrelpox to the model

allowed the grey squirrels to replace the reds at a comparable rate to the observed rates.

They concluded that squirrelpox was necessary to explain the rapid replacement of red

squirrels by grey across the UK.

The importance of squirrelpox in the replacement of red squirrels by greys was fur-

ther discussed by Rushton et al. (2006). They gathered records of red and grey squirrels

in Cumbria between 1993 and 2003, and produced comparable maps to those used by

Reynolds (1985). Using the models outlined in Rushton et al. (1997) and (2000), they

investigated the effect of squirrelpox and concluded that the replacement rate of red squir-

rels by greys is 17–25 times faster if the disease is present. The use of mathematical

models in all these studies has greatly improved our understanding of the red and grey

squirrel system within the UK.

We hope to use mathematical models to further explore scenarios where a shared

disease is influencing an ecological replacement. In the context of squirrels, we hope

to build on the work of Tompkins et al. (2003), to further develop our understanding of

squirrelpox within this system and to investigate current conservation and management

strategies employed for the protection of red squirrels within the UK.

1.4 Main objectives

The main objectives of this thesis are as follows:

1. Use mathematical models to help understand the spread of disease in invasive sys-

tems. We will concentrate on the effect of disease on the replacement time of a

naive native by an alien invader.

2. Analyse the effect of disease on the spatial spread of an alien invader.

3. Develop a red/grey/squirrelpox model to allow modelling of different conservation

and management strategies.
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4. Evaluate the effectiveness of these conservation and management strategies by mod-

elling a red squirrel refuge (based on the refuge at Formby, Merseyside).

1.5 Outline of thesis

A general outline of the thesis is as follows: in Chapter 2 we consider a two-host shared-

parasite framework to examine the effect of disease on the replacement time of ecological

invasion. We consider the effect of the relative magnitude of disease-induced fecundity

loss, disease-induced mortality and recovery from disease on the replacement time of a

native species by an alien invader. In Chapter 3, we extend the temporal findings for

the replacement of a native species to a spatial model framework. The spread of the

invading species across the landscape is analysed algebraically and critical wave speeds

are compared to numerical simulations. An important general phenomenon is highlighted

by comparing the wave speed of the disease and the wave speed of replacement in this

system.

In both Chapter 2 and Chapter 3, we consider deterministic modelling frameworks for

general two-host shared-parasite scenarios. The work in these two chapters provides a

good insight into the effect of disease, both temporally and spatially, on the replacement

of a native species by an alien invader. We also wish to consider the particular example

of the replacement of the UK’s native red squirrels by the invading grey squirrel. We be-

gin this examination in Chapter 4 by developing a stochastic individual-based modelling

framework for the red/grey/squirrelpox system based on the Tompkins et al. (2003) deter-

ministic model framework. In this chapter, we provide an overview of the model studied

by Tompkins et al. (2003) and detail the method used to build the probabilistic simulation

model. This stochastic model is tested and compares favourably with the previous studies

on the red/grey/squirrelpox system.

The framework described in Chapter 4 provides a suitable model for the squirrel sys-

tem and is extended in Chapter 5 to consider a red squirrel refuge model (based on the

refuge at Formby, Merseyside). We assess the population dynamics of the red squirrels

in the refuge under different conservation and management strategies representing culling

of grey squirrels and including a buffer zone around the refuge of unsuitable habitat. The

results compare well with observations from the Formby squirrel system.
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In the final chapter, we draw together the findings from the previous four chapters:

we compare the different modelling techniques considered and their relevance to different

ecological examples. We pay particular attention to the red/grey/squirrelpox system and

further discuss the current situation within the UK.

I was the primary researcher for all of the work presented in this thesis. The find-

ings described in Chapters 2 and 3 are published in Theoretical Ecology, see Bell et al.

(2009). The work in Chapter 4 is a necessary foundation for the refuge model described

in Chapter 5, which is currently being prepared as an article for submission.

9



Chapter 2

TemporalModelling of

Invasion Dynamics

2.1 Introduction

There is much interest in examining the effect that new or introduced species may have

on native ecosystems. The catastrophic damage to native communities of past introduc-

tions such as Nile perch, Lates niloticus, into Lake Victoria (Kolar and Lodge, 2001) and

the rapid spread of the European zebra mussel, Dreissena polymorpha, through North

America (Lodge, 1993; Vitousek et al., 1996; Pimentel et al., 2001) provides evidence

of the role invading species play in reshaping ecosystems. Notwithstanding the docu-

mented negative effects on species diversity, the rate at which human activity is introduc-

ing species, either accidentally or deliberately, into new habitats is still increasing (Prenter

et al., 2004). The large majority of these organisms die-out shortly after introduction, but

those invasive species which establish themselves are recognised as a major international

threat to native biodiversity (Vitousek et al., 1997; Sala et al., 2000; Kolar and Lodge,

2001). In addition to these human-induced species introductions, current and predicted

changes to the climate are likely to lead to significant shifts in species ranges which are

also likely to threaten native systems (Dukes and Mooney, 1999; Ims et al., 2008). In

general, there are likely to be many factors which affect the success and rate of spread of

invasive species, including differences in resource utilisation or life history characteristics

between the invasive and native species. More recently a number of studies have high-

lighted the role of infectious disease as an important determinant in native survival and

invasive success (Hudson and Greenman, 1998; Daszak et al., 2000; Prenter et al., 2004).
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Commonly, when disease has been considered in the context of invasions, it has been

as part of the enemy escape hypothesis. Here the invasive species is thought to gain an

advantage in its new environment by virtue of escaping its natural enemies, including vir-

ulent parasites as well as predators. For example, Aliabadi and Juliano (2002) found that

when the invasive Asian tiger mosquito, Aedes albopictus, is released in North America, it

initially experiences reduced infection by its gut parasite Ascogregarina taiwanensis. This

escape gives it a small, but significant, competitive advantage over the native tree-hole

mosquito, Ochlerotatus triseriatus, allowing it to expand its range more rapidly. It is also

increasingly recognised that an invading species can gain an advantage by introducing a

novel harmful disease to the native system. This scenario, in which the parasite acts as

a “biological weapon”, has been an important factor in the replacement of the UK’s only

native crayfish. The white-clawed crayfish, Austropotamobius pallipes, has been replaced

throughout much of its range by the introduced North American signal crayfish (Pasci-

fastacus leniusculus). The white-clawed crayfish suffers both as a result of competition

for resources from the larger and more aggressive signal crayfish, and also the transmis-

sion of crayfish plague, Aphanomyces astaci, from the invading species. Signal crayfish

are resistant to crayfish plague (Cerenius et al., 2003), which is lethal to white-clawed

crayfish and has been responsible for mass mortality in many British crayfish populations

(Holdich, 2003; Bubb et al., 2004). Other examples include: the replacement of the pe-

dunculate oak, Quercus robur, in the UK by the introduced Turkey oak, Quercus cerris,

due to the impact of the knopper gall wasp, Andricus quercuscalicis, which causes huge

acorn losses to the native species but has little effect on the introduced species (Hails and

Crawley, 1991); monogenean gill fluke, Nitzschia sturionis, which was introduced with

the Caspian Sea sturgeon, Huso huso, in the 1930s and has detrimentally affected the den-

sity of the Aral Sea Sturgeon, Acipenser nudiventris, (Rohde, 1984); and the expansion of

the white-tailed deer, Odocoileus virginianus, in North America into territories occupied

by moose, Alces alces, and caribou, Rangifer tarandus, which was aided by the meningeal

worm Parelaphostrongylus tenuis which is carried by the white-tailed deer but lethal to

the other species (Anderson, 1972; Bergerud and Mercer, 1989; Pybus et al., 1990; Oates

et al., 2000).

A well known example of invasion and replacement is the decline of the UK’s native

red squirrels, Sciurus vulgaris, over the past 70 years as a result of the introduced North

11



Chapter 2: Temporal Modelling of Invasion Dynamics

American grey squirrel, Sciurus carolinensis, (Middleton, 1930; Lloyd, 1983; Reynolds,

1985). Red replacement was traditionally believed to result solely from the superior

competitive ability of the greys (Okubo et al., 1989). However, recent evidence has re-

vealed the existence of an infectious disease, squirrelpox, which is shared between the

two species (Rushton et al., 2000) but is harmless (at least under laboratory conditions) to

greys and lethal to reds (Tompkins et al., 2002). In models of the system, the inclusion of

the effects of squirrelpox was necessary to explain the rapid replacement of red squirrels

by greys in the UK (Tompkins et al., 2003; Rushton et al., 2006).

In all of the above examples the invader gained an advantage through disease. How-

ever, there are also examples where disease can be advantageous to the native species.

Hoogendoorn and Heimpel (2002) examined ladybird beetles in North America; the na-

tive species Coleomegilla maculata suffers less from the parasitoid Dinocampus coccinel-

lae when the alien species Harmonia axyridis is present. This lessens the competitive

effects of the alien ladybird beetle and slows the rate of alien invasion. There is also

evidence that infectious disease that is endemic in the native population may be highly

pathogenic to invading species and therefore prevent the invader from establishing (Hilker

et al., 2005; Petrovskii et al., 2005).

An important open question is, how the characteristics of particular parasite inter-

actions affect the likelihood and rate of invasion by different species. In this chapter, a

theoretical framework is developed to understand how disease in combination with com-

petition can affect the success of invasion, and the time taken for a native species to be

replaced by an invader. Holt and Pickering (1985) studied the effect of an infectious

disease attacking two host species. Their model is a two-host version of model B in An-

derson and May (1981). It consists of the following four ordinary differential equations

with S i representing the density of individuals susceptible to the disease and Ii the density
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of infected individuals in host species i (1 or 2)

dS 1

dt
= r1S 1 − β11S 1I1 − β12S 1I2 + a1(1 − f1)I1 + γ1I1 (2.1a)

dI1

dt
= β11S 1I1 + β12S 1I2 − d1I1 (2.1b)

dS 2

dt
= r2S 2 − β22S 2I2 − β21S 2I1 + a2(1 − f2)I2 + γ2I2 (2.1c)

dI2

dt
= β22S 2I2 + β21S 2I1 − d2I2. (2.1d)

The parameters are all assumed to be non-negative and ri represents the intrinsic rate of

population growth of species i, βi j the disease transmission coefficient from species j to i

and ai(1 − fi) the per capita birth rate of infected individuals of species i with fi being the

fecundity loss as a result of infection. The per capita net rates of loss of infectives is di

and comprises natural mortality bi, pathogen-induced mortality αi and recovery γi. This

model assumes no vertical transmission or acquired immunity, and density-dependent

(mass action) infection dynamics. There is no interspecific or intraspecific competition,

so each host population increases exponentially in the absence of the disease. It is also

assumed the disease can regulate each host species in the absence of the other host (di >

ai(1 − fi) + γi > 0).

Their results show that in a two-host model with a shared infectious disease and no

interspecific or intraspecific competition, one species excludes the other although if either

species was alone with the disease it would coexist with the disease. One species can

exclude the other if it has a higher susceptible growth rate, less susceptibility to infection

or a higher tolerance to the disease (faster recovery, lower death rates or higher repro-

ductive rates). For more insight into this model and further conclusions drawn from the

model see Holt and Pickering (1985). Begon et al. (1992) further investigated this model

by extending it to include intraspecific competition and investigated the different routes

to coexistence of the two species and the disease. They identified five different routes

to coexistence with particular discussion of the first case when two hosts, who would be

uninfected if alone with the disease, can coexist with the pathogen as a result of disease

transmission between the two hosts. In the second case at least one of the species would

coexist with the pathogen in the absence of the other species and they both suffer more
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within- than between-species infection. This case represents partitioning of predator-free

space and is comparable to the coexistence case discussed by Holt and Pickering (1985).

The third case describes resource-mediated co-existence where at least one species would

coexist with the disease in the absence of the other species but the disease could not reg-

ulate either species in the absence of intraspecific competition. In the fourth case, when

alone with the disease one species would maintain the disease and the other would ex-

clude it. Furthermore, the excluding species could not be regulated by the disease in the

absence of intraspecific competition and/or within-species infection is more prominent

than between-species infection. The final case involves two species who when alone co-

exist with the disease but when both are present the disease is unable to regulate one host

in the absence of intraspecific competition. They noted that a combination of “partion-

ing of predator-free space” and “resource-mediated coexistence” allows coexistence and

should not be considered as alternative paths to coexistence. For more detail about these

cases of coexistence when intraspecific competition is present see Begon et al. (1992).

The first model structure to include intraspecific and interspecific competition was

developed by Bowers and Turner (1997). They found invasion criteria in a similar host-

host-pathogen system with both interspecific and intraspecific host competition. Their

model consists of the following four ordinary differential equations with Hi representing

the total population density of host species i (1 or 2) while Yi represents its infected (and

infectious) component

dH1

dt
= r1H1(1 − c11H1 − c12H2) − α1Y1 (2.2a)

dY1

dt
= β11(H1 − Y1)Y1 + β12(H1 − Y1)Y2 − Γ1Y1 (2.2b)

dH2

dt
= r2H2(1 − c21H1 − c22H2) − α2Y2 (2.2c)

dY2

dt
= β21(H2 − Y2)Y1 + β22(H2 − Y2)Y2 − Γ2Y2. (2.2d)

All parameters are assumed to be non-negative where ri are the intrinsic per capita rates

of population growth, ci j are competitive coefficients, βi j are disease transmission coeffi-

cients, αi are per capita rates of pathogen-induced mortality and Γi are per capita net rates

of loss of infected individuals (comprising natural mortality bi, pathogen-induced mortal-

14



Chapter 2: Temporal Modelling of Invasion Dynamics

ity αi and recovery γi). This model assumes density-dependent (mass action) infection

dynamics. The carrying capacities for each species are represented by Ki and correspond

to Ki = 1/cii. Bowers and Turner (1997) investigate the invadability of one species by the

other with purely competitive, purely infective and competitive and infective interactions.

The criteria required to allow species 2 to invade species 1 for the three different types of

interaction are listed in table 2.1.

Interaction Criterion for invadability of species 1 by species 2

Purely competitive c21K1 < c22K2

Purely infective β21Ŷ1 < β22Ŷ2

Competitive and infective
c21H∗1
c22K2

+
β21Y∗1
β22Y2

+
(

r2
α2−r2

) ( c21H∗1
c22K2

) (
β21Y∗1
β22Y2

)
< 1

Table 2.1 Invadability criteria for different types of interaction. This table is reproduced from
Bowers and Turner (1997). (Ĥi, Ŷi) is one of the steady states found when only host species i
is present; it represents the equilibrium densities when species i is coexisting with the disease.
(H∗1,Y

∗
1 , 0, 0) is one of the steady states found when both species are present; it represents species

1 coexisting with the disease and excluding species 2.

Bowers and Turner (1997) investigate the effects of the different forces acting on in-

vadability when there are both competitive and infective interactions to examine the pos-

sibility of infected coexistence. They show that there are two main routes to infected co-

existence. Firstly, infected coexistence occurs if neither species 1 or species 2 support the

pathogen alone but coexist in the absence of the pathogen at sufficiently high densities to

support the pathogen jointly. Their possible explanation for this is the interspecific infec-

tion pathways. Secondly, infected coexistence can occur when either species 1, species 2

or both can support the pathogen alone and both species can invade the other. In summary

both species coexist purely competitively and at sufficiently high densities to support the

pathogen jointly or if the species would not coexist in the absence of the pathogen but

there is strong intraspecific infection (lowering densities) and weak interspecific infection

(favouring invadability).

In this chapter we wish to consider a two-host shared-parasite framework. Our work

will differ from previous studies (Holt and Pickering, 1985; Begon et al., 1992; Bowers

and Turner, 1997) in that our focus will be to understand how the presence of a shared

disease affects the replacement time of a native species by an invader. This question has

previously been addressed for a specific model set-up and ecological scenario, namely

the replacement of red squirrels by greys (Tompkins et al., 2003). In that study it was
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shown that the disease enhanced the ability of the greys to invade and greatly reduced the

replacement time. We wish to extend this analysis to consider different model frameworks

and a wide range of parameters. We aim to determine the scenarios in which the disease

will increase or decrease the replacement time of a native species by an invader.

2.2 Model

Below we outline the framework for the full host-host-pathogen system with interspecific

and intraspecific competition. The classes of susceptible, S i, and infected, Ii, individuals

are represented by the following system of equations, where i = 1, 2 with 1 representing

the native species and 2 representing the alien invader

dS 1

dt
= [a1 − q1(H1 + c2H2)](S 1 + f1I1) − b1S 1 − β11S 1I1 − β12S 1I2 + γ1I1 (2.3a)

dI1

dt
= β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 (2.3b)

dS 2

dt
= [a2 − q2(H2 + c1H1)](S 2 + f2I2) − b2S 2 − β22S 2I2 − β21S 2I1 + γ2I2 (2.3c)

dI2

dt
= β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 (2.3d)

where H1 = S 1 + I1 and H2 = S 2 + I2. We assume all parameters are non-negative and ai

represents the maximum reproduction rate, bi the natural mortality rate, ci the competitive

effect of species i on the other species and βi j the disease transmission coefficient from

species j to i. In this study we assume that βi j = β for all i and j, but see Tompkins et al.

(2003) for an assessment of different within and between species transmission rates. We

assume density-dependent (mass action) infection dynamics (Holt and Pickering, 1985;

Bowers and Turner, 1997; Tompkins et al., 2003) but see Saenz and Hethcote (2006) for

a similar model with frequency-dependent transmission. We assume a positive carrying

capacity, Ki, which is related to susceptibility to crowding, qi, since Ki = (ai − bi)/qi.

We assume susceptible and infected individuals from the same species are equally com-

petitive. The model assumes infected individuals experience disease induced mortality

at rate αi. Infecteds may recover back to susceptibility at rate γi and infecteds experi-

ence only a proportion, fi, of the fecundity of a susceptible host; fi ∈ [0, 1] (parameters
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Table 2.2 Summary of parameters used in equations (2.3a–d).

Parameter Symbol

Maximum reproductive rate (species i) ai

Natural mortality rate (species i) bi

Susceptibility to crowding (species i) qi

Carrying capacity (species i); Ki = (ai − bi)/qi Ki

Competitive effect of species i on the other species ci

Disease transmission coefficient from species j to i βi j

Disease induced mortality rate (species i) αi

Recovery rate from disease (species i) γi

Proportion of fecundity experienced by infecteds (species i); fi ∈ [0, 1] fi

are summarised in table 2.2). The model framework is similar to that analysed in detail

by Bowers and Turner (1997) but we additionally include the possibility of the para-

site reducing the fecundity of infected hosts (see also Holt and Pickering (1985); Begon

et al. (1992); Greenman and Hudson (1997); Saenz and Hethcote (2006); Malchow et al.

(2008)). The key difference between previous studies that consider ecological interaction

and infectious disease and the current study is our focus on determining whether disease

increases or decreases the time taken for an invader to replace the native population. By

manipulating the infection parameters the model equations (2.3) can represent different

classical disease frameworks. If γi > 0 the model represents an SIS framework, whereas

if γi = 0 it represents an SI framework. It is also of interest to examine the effects of in-

fection on fecundity in these frameworks. These range from a castrating parasite ( fi = 0)

to one in which disease has no effect on fecundity ( fi = 1). We will investigate the role of

disease on invasion under these different scenarios.

2.3 Results

We begin by presenting a summary of the steady states and their stability properties (more

detailed analysis is presented in Appendix 2.5). There are seven equilibrium points ob-
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tained from setting the right-hand side of equations (2.3a–d) equal to zero.

(S 1, I1, S 2, I2) =(0, 0, 0, 0), (2.4a)

(K1, 0, 0, 0) =
(

a1−b1
q1

, 0, 0, 0
)
, (2.4b)

(S ∗1, I
∗
1, 0, 0) =

(
b1+α1+γ1

β11
,

Ψ1+
√

Ψ2
1+Ω1

2q1 f1β11
, 0, 0

)
, (2.4c)

(0, 0,K2, 0) =
(
0, 0, a2−b2

q2
, 0

)
, (2.4d)

(0, 0, S ∗2, I
∗
2) =

(
0, 0, b2+α2+γ2

β22
,

Ψ2+
√

Ψ2
2+Ω2

2q2 f2β22

)
, (2.4e)

(S +
1 , 0, S

+
2 , 0) =

(
c2K2−K1
c1c2−1 , 0,

c1K1−K2
c1c2−1 , 0

)
, (2.4f)

(Ŝ 1, Î1, Ŝ 2, Î2) (2.4g)

where in the steady state (2.4g) the values are algebraically complicated and therefore

omitted for brevity.

If f1 > 0, the steady state defined in equation (2.4c) is expanded with Γ1 = α1 +b1 +γ1,

Ψ1 = (a1 f1 − b1 −α1)β11 − q1 f1Γ1 − q1Γ1 and Ω1 = 4 f1q2
1Γ1(β11K1 − Γ1). In the alternative

case when f1 = 0, I∗1 in equation (2.4c) becomes I∗1 =
Γ1 (β11K1 − Γ1) (a1 − b1)

β11 (Γ1 (a1 − b1) + K1β11 (Γ1 − γ1))
.

If f2 > 0, the steady state defined by equation (2.4e) is expanded with Γ2, Ψ2 and Ω2;

where Γ2, Ψ2 and Ω2 are equivalent to Γ1, Ψ1 and Ω1 respectively with the subscript 1

changed to 2. Alternatively if f2 = 0, I∗2 in equation (2.4e) is equivalent to that for I∗1 with

the subscript 1 changed to 2.

The trivial equilibrium is unstable (since we assume a1 > b1 and a2 > b2). For the

other equilibrium points, we will give a brief description of their stability conditions.

These are calculated using standard linear stability analysis (see, for example, Murray

(2002)) with the mathematical software package Maple used for algebraic manipulation.

At the steady state (K1, 0, 0, 0), the native is at its carrying capacity and the invader is

not present (detailed calculations are presented in Appendix 2.5). This is always feasible
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(positive steady state), and is stable if the following two conditions hold

c1K1 − K2 > 0 (native has a competitive advantage), (2.5a)

R0(1) =
K1β11

Γ1
< 1 (the disease cannot invade the native species) (2.5b)

where Γ1 = α1 + b1 + γ1 represents the total removal from infection for the native species.

R0(i) represents the basic reproductive number for species i when it is alone with the

disease. The basic reproductive number is the expected number of secondary infec-

tions caused from one infected individual entering a purely susceptible population. At

(S ∗1, I
∗
1, 0, 0) the native is at its endemic level and the invader is not present. This is feasi-

ble, if R0(1) > 1; when feasible it is stable if the following condition holds

(a2 − b2 − q2c1(S ∗1 + I∗1)) + ((β21I∗1)/Γ2)( f2a2 − b2 − f2q2c1(S ∗1 + I∗1) − α2) < 0. (2.6)

This condition represents the fact that the fitness of the alien species is negative. At

(0, 0,K2, 0) the invader is at its carrying capacity and the native is not present. This is

always feasible, and is stable if the following two conditions hold

c2K2 − K1 > 0 (invader has a competitive advantage), (2.7a)

R0(2) =
K2β22

Γ2
< 1 (the disease cannot invade the alien species) (2.7b)

where Γ2 = α2 + b2 + γ2 represents the total removal from infection for the alien species.

At (0, 0, S ∗2, I
∗
2) the invader is at its endemic levels and the native is not present. This is

feasible if R0(2) > 1, and when feasible it is stable if the following condition holds

(a1 − b1 − q1c2(S ∗2 + I∗2)) + ((β12I∗2)/Γ1)( f1a1 − b1 − f1q1c2(S ∗2 + I∗2) − α1) < 0 (2.8)

This condition represents the fact that the fitness of the native species is negative.

At (S +
1 , 0, S

+
2 , 0) the native and alien species are coexisting with no disease present.
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This steady state is feasible and stable if the following five conditions hold

c1K1 − K2 < 0, (2.9a)

c2K2 − K1 < 0, (2.9b)

c1c2 − 1 < 0, (2.9c)

(β11S +
1 − Γ1) + (β22S +

2 − Γ2) < 0, (2.9d)

(β11S +
1 − Γ1)(β22S +

2 − Γ2) − β12β21S +
1 S +

2 > 0. (2.9e)

The final equilibrium, (Ŝ 1, Î1, Ŝ 2, Î2), represents all the classes having positive densi-

ties and both the native and invader coexisting with the parasite. We assume it is stable

when all other steady states are unstable (see Bowers and Turner (1997) for a detailed

steady state and stability analysis for a similar model). When observed in numerical

simulations, it exhibited behaviour of a stable equilibrium point but see Greenman and

Hudson (1997) for a discussion of other potential behaviour. The focus of this study

is a set-up in which native species is initially at its carrying capacity with no disease

(K1, 0, 0, 0). Parameters are chosen such that when the invader is introduced it has a com-

petitive advantage and replaces the native, with the invader attaining its carrying capacity

(0, 0,K2, 0) in the absence of disease or its endemic steady state (0, 0, S ∗2, I
∗
2) when disease

is present.

As stated, our focus is to understand how the disease affects the replacement time

of the native species by the invader. To achieve this we assume that the non-disease

parameters in equations (2.3) are equal for the native and invading species except that the

invader has a superior competitive ability, c2 > c1. In the absence of the disease the native

will be replaced and the population will be transformed to the steady state containing a

purely susceptible alien species at its carrying capacity (0, 0,K2, 0) (figure 2.1).

The replacement time is measured as the time taken for the native population to fall

below 0.1% of its carrying capacity (which in figure 2.1 is 70.4 time units). To examine

how the inclusion of disease alters the replacement time we use the same non-disease

parameters as in figure 2.1 and compare the replacement time for competition-mediated

replacement to that for competition-and-disease-mediated replacement in which the pop-
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Figure 2.1 Density of the native (black line) and alien (red line) species over time in the ab-
sence of disease. Initially the native species is at its carrying capacity and the invader is intro-
duced at low density (neither are infected). The alien species replaces the native species and
reaches its carrying capacity. Parameters are: a1 = a2 = 1, b1 = b2 = 0.4, K1 = K2 = 200,
c1 = 0.9, c2 = 1.5, and βi j = αi = γi = fi = 0 for i = 1, 2. These results were produced using
MATLAB ODE45 which is based on an explicit Runge-Kutta (4,5) formula.

ulation is transformed to the endemic disease equilibrium(0, 0, S ∗2, I
∗
2). In this way we ex-

amine whether disease increases or decreases the replacement time of the native species

for a range of disease parameters.

2.3.1 Disease-induced fecundity loss

The effect on the replacement time when both species suffer equal fecundity loss as a

result of the infection for a variety of combinations of the other disease parameters is

shown in figure 2.2a. When there is no disease induced mortality and no fecundity loss

for infecteds the replacement time is the same as in the absence of disease. As the loss

of fecundity due to infection increases ( fi decreases from 1 to 0) the replacement time

increases. This trend occurs since fecundity loss leads to a lower overall growth rate for

the invader and therefore it takes longer for the invader to increase in number and oust

the established native population (figure 2.2a). When there is mortality due to the disease

(αi > 0), the replacement time is increased when compared to competition-only for all

levels of fecundity loss. When fecundity loss is low, disease induced mortality increases

replacement time compared to when it is absent. In contrast when fecundity loss is high,

disease induced mortality reduces replacement time (compared to when disease induced

mortality is absent) since here infected individuals, which contribute little to the overall

growth rate of the invading species, are removed more rapidly. The effect of recovery is to

reduce the replacement time at all levels of fecundity when compared to the appropriate
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Figure 2.2 The effect of different disease parameters on competition-and-disease-mediated re-
placement time: panels a–c disease induced fecundity loss; panels d–f disease induced mortality;
panels g–i recovery from infection. For each of these parameters, we look at combinations of
presence/absence of the other two disease parameters as detailed in the key for each row of plots.
In panels a, d and g the native and alien have equal values for the disease parameter, while in
the remaining panels the native suffers a relative disadvantage. The dotted line represents the
replacement time when disease is absent. Parameters common to every panel are: a1 = a2 = 1,
b1 = b2 = 0.4, K1 = K2 = 200, c1 = 0.9, c2 = 1.5 and βi j = 0.06. In addition we fix the following
parameters: in panel b f2 = 0.8, panel c f2 = 0.2, panel e α2 = 1, panel f α2 = 2, panel h γ2 = 1
and panel i γ2 = 5. The results are qualitatively similar for a wide range of parameters that
satisfy the conditions necessary for the invader to have a competitive advantage. All results were
produced using MATLAB ODE45 which is based on an explicit Runge-Kutta (4,5) formula.

results for the presence or absence of disease induced mortality (figure 2.2a). The clear

general trend is that if disease has the same effect in reducing the native and invading

species fecundity the replacement time increases.

We next examine the effect on replacement time when the disease induced reduction

in fecundity is more severe for the native than the invading species. If the invading species

has a “low” level of fecundity loss then the disease will increase replacement time (com-

pared to in the absence of disease) if the relative fecundity loss of the native is small,

but reduce replacement time once the relative fecundity advantage of the invading species

exceeds a threshold (figure 2.2b). This threshold increases if individuals can recover to

susceptibility (as once recovered the disease induced relative costs are not realised) and if
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the disease induces additional mortality (as the death of infected individuals also negates

the fecundity advantage of the invading species). The threshold also increases if the invad-

ing species has a ’high’ level of fecundity loss (figure 2.2c) and here even a high relative

fecundity advantage may not be sufficient for the replacement time to be less than in the

absence of disease.

2.3.2 Disease-induced mortality

We consider increases in disease induced mortality when it is equal in both species

(α1 = α2) for a variety of combinations of the other disease parameters (figure 2.2d). If the

parasite castrates both species ( fi = 0), an increase in disease induced mortality reduces

replacement time, but it can never be less than that for competition-only replacement

(figure 2.2d). Here, the increase in disease induced mortality acts to reduce the preva-

lence of an infection and so the castrating effect of the parasite becomes less apparent. If

the parasite has no effect on fecundity ( fi = 1), the replacement time initially increases

since disease induced mortality reduces the overall density and therefore lowers total re-

production. As disease induced mortality increases further, replacement time reaches a

maximum and then decreases and tends to but is never less than that for competition-only

replacement. The approach of the diseased replacement time to the non-diseased time

occurs because when disease induced mortality is high, infected individuals are removed

so quickly that the model system behaves in a similar manner to the competition-only

case. As the fecundity loss increases ( fi changes from 1 to 0) the replacement time at

α1 = α2 = 0 increases and the curves change between the two cases. The effect of recov-

ery is to reduce the replacement time at all levels of disease induced mortality for the all

cases (and is similar to the response shown in figure 2.2a).

Next we consider when the native suffers higher disease induced mortality than the in-

vading species. If the parasite is castrating and there is no recovery, the replacement time

is always increased even if the native suffers high disease induced mortality compared to

the invader (figure 2.2e). With recovery present, if the advantage of the invader (in terms

of lower disease induced mortality) is small, the disease will again increase replacement

time, but if the relative advantage of the invader exceeds a threshold the replacement time

can be reduced compared to competition-only. This threshold is lower if the parasite is

non-castrating as this allows higher reproduction into the susceptible class and therefore
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faster growth of the invading species. The trend is observed if the underlying level of

disease induced mortality of the invading species is increased but the threshold values

at which the disease acts to reduce the replacement time are increased and in some cir-

cumstance a high relative advantage for the invader may not be sufficient to reduce the

replacement time below that of competition-only (figure 2.2f).

2.3.3 Recovery from disease

If both species have an equal recovery rate from the disease (γ1 = γ2), the replace-

ment time decreases as the recovery rate increases but replacement is never faster than

competition-only (figure 2.2g). If the relative advantage of the invader in terms of recov-

ery exceeds a threshold then the replacement time can be lower than for competition-only

(figure 2.2h–i). When the disease is castrating (or leads to a “large” reduction in fecun-

dity) the recovery advantage is particularly important, as recovery acts as a route back to

full fecundity.

2.3.4 Generality of results

Above we consider the effects of disease on replacement time when the invader is a supe-

rior competitor, but the disease can also have a significant effect when the native species

is the superior competitor (and therefore the competition alone would eradicate the in-

vader). The disease can allow a competitively inferior invader to replace a native species

(this occurs when criterion (2.8) above is satisfied). When the parasite is castrating the

invader requires a high recovery rate to negate its inferior competitive ability (αi can affect

the speed of replacement but cannot alone allow invasion). For a non-castrating parasite,

replacement requires the invader to suffer sufficiently lower mortality due to disease (dif-

ferences in recovery can affect the replacement time but alone cannot allow invasion). In

general the qualitative trends in replacement time for changes in disease parameter values

are as outlined in figure 2.2. (Although not the focus of this study the invading species

could coexist with the native, see Appendix 2.5 for relevant criteria. The disease impacts

on the time taken to coexistence in a similar manner to the one outlined above.) It is also

possible to have situations where the disease acts to prevent invasion, even if the native is

an inferior competitor, providing the native has sufficiently better recovery when fi = 0

24



Chapter 2: Temporal Modelling of Invasion Dynamics

or sufficiently lower mortality when fi > 0 (see criterion (2.6) above).

The modelling framework above examined both SI and SIS models, but can be ex-

tended to include both SIR and SIRS models where R represents a recovered and immune

class. In the SIRS model, immunity can wane and individuals can become susceptible

once more. The three classes of susceptible, S I , infected, Ii, and recovered, Ri, are rep-

resented by the following system of equations, with i = 1, 2 representing the native and

invading species respectively

dS 1

dt
= [a1 − q1(H1 + c2H2)](S 1 + f1I1 + R1) − b1S 1 − β11S 1I1 − β12S 1I2 + λ1R1 (2.10a)

dI1

dt
= β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 (2.10b)

dR1

dt
= γ1I1 − b1R1 − λ1R1 (2.10c)

dS 2

dt
= [a2 − q2(H2 + c1H1)](S 2 + f2I2 + R2) − b2S 2 − β22S 2I2 − β21S 2I1 + λ2I2 (2.10d)

dI2

dt
= β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 (2.10e)

dR2

dt
= γ2I2 − b2R2 − λ2R2 (2.10f)

where H1 = S 1 + I1 + R1 and H2 = S 2 + I2 + R2. As seen in our earlier model, we assume

all parameters are non-negative and ai represents the maximum reproduction rate, bi the

natural mortality rate, ci the competitive effect of species i on the other species and βi j the

disease transmission coefficient from species j to i. We again assume a positive carrying

capacity, Ki, which is related to susceptibility to crowding, qi, and infected individuals

experience disease induced mortality at rate αi. However, infecteds now recover into the

recovered class, Ri at rate γi and from the recovered class return to the susceptible class

at rate λi. The birth rate from the recovered class is the same as the susceptible class and

again infecteds experience only a proportion, fi, of the fecundity of a susceptible host.

Equations (2.10a–f) represent an SIR framework if λ1 = λ2 = 0 and an SIRS frame-

work if λ1 > 0 and λ2 > 0. The results for the SIR and SIRS frameworks are similar to the

SIS model results. The effects of mortality from disease on invasion are the same for SIS,

SIR and SIRS models. The effects of recovery from disease follow the same patterns for

all three models although the effect of recovery is more pronounced with SIRS and SIR
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Figure 2.3 The speed of replacement for different model frameworks against recovery from
infection. The plot shows an SIS (blue line), SIRS (green line), SIR (red line) and competition-
only (black line) frameworks in relation to the effect of recovery. The results for all SIS, SIR and
SIRS are qualitively very similar but recovery is having a more pronounced effect in both SIR and
SIRS. The parameters used here are: f1 = f2 = 1, a1 = a2 = 1, b1 = b2 = 0.4, K1 = K2 = 200,
c1 = 0.9, c2 = 1.5, βi j = 0.06, α1 = α2 = 1 and γ1 = γ2.

and increases the replacement speed compared to the SIS framework (figure 2.3).

These temporal results highlight the importance of infection in determining the out-

come and time required for an invading species to replace a native species. The replace-

ment time for alien species to invade are shortest when the invader has better recovery

than the native species, lower mortality from the disease and a greater reproduction rate

when infected. However, a disease introduced by an invading species may not reduce the

replacement time. The general message is that a shared disease carried by an invading

species may be detrimental to the invaders’ attempts to replace the native if the disease

has a similar effect on both species, even if it is more “harmful” to the native. Only when

the invading species has a sufficient relative advantage does the disease assist in reducing

the replacement time.
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2.4 Discussion

In this chapter we have considered a strategic theoretical framework to investigate the

role of a shared disease, in addition to competition for resources, in the invasion of novel

organisms. We have shown that disease can increase or decrease the time taken for an

invading species to replace an established native population with the outcome critically

dependent on the relative effects that the disease has on the two species and less dependent

on the basic epidemiological characteristics of the interaction. Disease may also allow the

invasion of a poorer competitor that otherwise would have been excluded by the native

species.

Of great conservation concern is the situation where a shared disease can aid the inva-

sion of an exotic species. The extinction of native red squirrel by the introduced grey in

much of England and Wales has highlighted the role that disease may play in speeding up

the replacement process (Tompkins et al., 2003; Rushton et al., 2006). We have shown

that a shared disease is most likely to aid the invasion of a species if the native suffers

higher disease-induced mortality, a lower level of fecundity due to infection and a lower

rate of recovery compared to the invading species. These characteristics closely match

those of the squirrel system in the UK. Squirrelpox virus appears to have little effect on

the mortality or fecundity of grey squirrels and greys appear to make a full recovery from

infection. Red squirrels however suffer high mortality from the virus, do not reproduce

when infected and do not recover from infection (Tompkins et al., 2002). As such the

greys benefit from all of the factors that allow disease to increase the speed of invasion.

If an invading species has sufficient advantage due to the disease it can replace a native

species even if the invader is an inferior competitor. However, disease does not always

benefit invading species. Hoogendoorn and Heimpel (2002) show that for ladybird bee-

tle populations in North America; the native species suffers less from a shared parasitoid

when the alien species is present. This reduces the competitive effects of the alien lady-

bird beetle allowing the native an extra advantage and slowing the alien invasion. If the

native suffers less harm from a disease then this can allow the native to repel a poten-

tial invasion even if the native is an inferior competitor (Hilker et al., 2005; Petrovskii

et al., 2005). A shared disease can increase the replacement time when disease charac-

teristics are similar for the native and invading species even when an invading species

has a competitive advantage. This emphasises that detailed epidemiological studies are
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needed when we want to predict the impact of disease in natural communities. A virulent

disease may increase replacement time as often it is the relative effects of the disease on

the native and alien species that are important. Furthermore it is not just the lethal effects

that are important. Sub-lethal effects on fecundity can have a pronounced influence on

the outcome of the interaction. It is increasingly recognised that sub-lethal fecundity ef-

fects, rather than mortality effects, can drive the population dynamics of natural systems

(Dobson and Hudson, 1986; Hudson et al., 1998; Boots and Norman, 2000). Our work

emphasises that they may also be crucial to invasion dynamics. Therefore disease may

be crucial to conservation efforts even if it does not result in large mortality since less

obvious and less studied effects on reproduction may be more important.

There are several examples where disease has played an important role in the success-

ful invasion of non-native species. In the UK, the native white-clawed crayfish suffers

very high disease induced mortality, with no recovery, while the invasive signal crayfish

are resistant (Cerenius et al., 2003; Holdich, 2003; Bubb et al., 2004). If we consider these

characteristics under our framework, the relatively higher mortality suffered by the native

as a result of the disease decreases replacement time compared to competition-only. More

detailed information on the system regarding fecundity, recovery and competition would

allow us to gain better insight into this invasion but our framework highlights that the

disease should be considered in conservation strategies to save the white-clawed crayfish.

In North America, the invasion of white-tailed deer has been aided by the transmission of

a meningeal worm which is lethal to caribou (Anderson, 1972; Pybus et al., 1990; Oates

et al., 2000). One of the conservation strategies has been to reintroduce caribou; however

in regions where infected white-tailed deer are present these reintroductions have been

unsuccessful (Bergerud and Mercer, 1989). This emphasises the detrimental effect dis-

ease can have on conservation efforts. A further example is the replacement of the native

pedunculate oak with Turkey oak in the UK. The Turkey oak is aided in this replacement

by the detrimental effects of the knopper gall wasp on the pedunculate oak; the sexual

generation of gall wasp develops in Turkey oak but causes little harm. However during

the agamic generation, knopper galls develop which distort the growing acorns of pen-

duculate oak and can greatly reduce fecundity (Hails and Crawley, 1991). The results

from our general framework show that replacement time can be lower than competition-

only when the native suffers a relative reduction in fecundity compared to the invading
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species. This is the case here; with infection giving the Turkey oak an advantage over the

native oak species. These effects should be considered in conservation strategies for the

pedunculate oak.

In summary, we have used a general model framework to investigate the impact of

a shared disease on the replacement time of a native species by an invader. If the char-

acteristics of the disease are similar in both the species the disease acts to increase the

time taken for the invading species to replace the native species. The disease can reduce

replacement time providing that invading species suffers sufficiently less “harm” from the

disease. This may explain the speed of replacement of native species observed in natural

systems (Reynolds, 1985; Hails and Crawley, 1991; Holdich, 2003).

The results in this chapter are published in Theoretical Ecology, see Bell et al. (2009).
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2.5 Appendix

In this appendix we provide a detailed analysis of the steady states including their feasibil-

ity and stability properties. The dynamics of susceptible (S i) and infected (Ii) individuals

are represented by a system of ordinary differential equations (2.3a–d) , where i = 1, 2

with 1 representing the native species and 2 representing the invading species

dS 1

dt
= [a1 − q1(H1 + c2H2)](S 1 + f1I1) − b1S 1 − β11S 1I1 − β12S 1I2 + γ1I1 (2.11a)

dI1

dt
= β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 (2.11b)

dS 2

dt
= [a2 − q2(H2 + c1H1)](S 2 + f2I2) − b2S 2 − β22S 2I2 − β21S 2I1 + γ2I2 (2.11c)

dI2

dt
= β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 (2.11d)

where H1 = S 1 + I1 and H2 = S 2 + I2. We assume all parameters are positive and ai represents the

maximum reproduction rate, bi the natural adult mortality rate, ci the competitive effect of species i

on the other species and βi j the virus transmission rate from species j to i. The carrying capacity is

represented by Ki which is related to susceptibility to crowding (qi) since Ki = (ai−bi)/qi. We will

always assume ai is greater than bi meaning Ki is also always positive. The model assumes infected

individuals die at rate αi, recover back to susceptible at rate γi and the reduction in fecundity when

infected is represented by f . We will analyse the following three scenarios: both species with no

disease present (competition-only), one species with the disease present (disease-only) and both

species with the disease present (full-model).

2.5.1 Competition-only model

In this section, we consider the scenario when both species are present but the disease is not.

Letting I1 = I2 = 0, equations (2.11a–d) simplify to the classic Lotka-Volterra equations discussed

in Chapter 1 (see Murray (2002) for further discussion), as follows

dS 1

dt
= [a1 − q1(S 1 + c2S 2)]S 1 − b1S 1 (2.12a)

dS 2

dt
= [a2 − q2(S 2 + c1S 1)]S 2 − b2S 2. (2.12b)
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There are four equilibrium points obtained from setting the right-hand side of equations (2.12a–b)

equal to zero,

(S 1, S 2) = (0, 0), (K1, 0), (0,K2) and (S +
1 , S

+
2 ), (2.13)

where (S +
1 , S

+
2 ) =

(
c2K2−K1
c1c2−1 ,

c1K1−K2
c1c2−1

)
.

Feasibility and Stability

1. (0, 0)

We begin by considering the origin, (S 1, S 2) = (0, 0), where both species are extinct. Linearising

equations (2.12a–b) about (0, 0) gives the following Jacobian matrix

J(0,0) =

a1 − b1 0

0 a2 − b2

 (2.14)

with eigenvalues λ11 = a1 − b1 and λ12 = a2 − b2. λ11 and λ12 are always greater than zero, since

ai − bi > 0 (i = 1, 2). Therefore the origin, where both the resident and invader are extinct, is

always unstable.

2. (K1, 0)

At the equilibrium (K1, 0), the native species is at its carrying capacity and the invader is extinct.

This equilibrium is always feasible since K1 > 0. Linearising equations (2.12a–b) about (K1, 0)

gives the following Jacobian matrix

J(K1,0) =


b1 − a1 c2(b1 − a1)

0 (a2 − b2)
(
1 −

c1K1

K2

) (2.15)

with the following two eigenvalues

λ21 = b1 − a1, (2.16a)

λ22 = (a2 − b2)
(
1 −

c1K1

K2

)
. (2.16b)

The eigenvalue λ21 is always less than zero. The other eigenvalue λ22 is less than zero if c1K1 −

K2 > 0. Therefore (K1, 0) is stable when c1K1 − K2 > 0, this represents the native species having

a competitive advantage.

3. (0,K2)
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The third equilibrium point (0,K2), where the native species is excluded and the invader is at its

carrying capacity, is always feasible since K2 > 0. Linearising equations (2.12a–b) about (0,K2)

gives the following Jacobian matrix

J(0,K2) =

(a1 − b1)
(
1 −

c2K2

K1

)
0

c1(b2 − a2) b2 − a2

 (2.17)

with the following eigenvalues

λ31 = b2 − a2, (2.18a)

λ32 = (a1 − b1)
(
1 −

c2K2

K1

)
. (2.18b)

The first eigenvalue, λ31, is always less than zero. The second eigenvalue, λ32, is less than zero if

c2K2 − K1 > 0. Therefore, this equilibrium is stable when c2K2 − K1 > 0 representing the alien

species having a competitive advantage.

4. (S+
1 ,S

+
2 )

The final equilibrium (S +
1 , S

+
2 ), where the native and alien coexist, is feasible if S +

1 > 0 and S +
2 > 0

which occurs when c2K2 − K1, c1K1 − K2 and c1c2 − 1 are either all positive or all negative. Lin-

earising equations (2.12a–b) about (S +
1 , S

+
2 ) gives the following Jacobian matrix

J(S +
1 ,S

+
2 ) =

−2q1S +
1 + a1 − b1 − q1c2S +

2 −q1c2S +
1

−q2c1S +
2 −2q2S +

2 + a2 − b2 − q2c1S +
1

 . (2.19)

Since S +
1 , 0 and S +

2 , 0, equations (2.12a–b) give us a1 − b1 − q1S +
1 − q1c2S +

2 = 0 and

a2 − b2 − q2S +
2 − q2c1S +

1 = 0. These two expressions can be used to simplify J(S +
1 ,S

+
2 ) (2.19) to

give

J(S +
1 ,S

+
2 ) =

 −q1S +
1 −q1c2S +

1

−q2c1S +
2 −q2S +

2

 . (2.20)

The equilibrium point (S +
1 , S

+
2 ) is stable if the following trace and determinant conditions from the

Jacobian matrix J(S +
1 ,S

+
2 ) hold:

q1S +
1 + q2S +

2 > 0 (always holds when feasible), (2.21a)

q1q2S +
1 S +

2 (c1c2 − 1) < 0 (holds when c1c2 − 1 < 0). (2.21b)
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It follows from the feasibility condition that c2K2 − K1 < 0, c1K1 − K2 < 0 and c1c2 − 1 < 0 must

all hold for stability. Therefore, (S +
1 , S

+
2 ) is stable when the following three conditions hold:

c1K1 − K2 < 0, (2.22a)

c2K2 − K1 < 0, (2.22b)

c1c2 − 1 < 0. (2.22c)

These conditions reflect that neither species can out-compete the other.
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2.5.2 Disease-only model

In this section we investigate the scenario where there is only one species and the disease. Letting

S 2 = I2 = 0, and dropping subscript 1 as only one species present, equations (2.11a–d) become

dS
dt

= [a − q(S + I)](S + f I) − bS − βS I + γI (2.23a)

dI
dt

= βS I − ΓI (2.23b)

where Γ = α + b + γ. There are three equilibrium points obtained from setting the right-hand side

of equations (2.23a–b) equal to zero,

(S , I) = (0, 0), (K, 0) and (S ∗, I∗), (2.24)

where (S ∗, I∗) =

Γ

β
,
Ψ +

√
Ψ2 + Ω

2q fβ

 with Ψ = (a f − α − b)β − qΓ f − qΓ and Ω = 4 f Γq2(βK − Γ)

when f > 0. In the case when f = 0, the equilibrium point can be rewritten as (S ∗, I∗) =(
Γ

β
,

Γ (βK − Γ) (a − b)
β (Γ (a − b) + Kβ (Γ − γ))

)
.

Feasibility and Stability

1. (0, 0)

We begin by considering the origin, (S , I) = (0, 0), where there is no species or disease. Linearising

equations (2.23a–b) about (0, 0) gives the following Jacobian matrix

J(0,0) =

a − b a f + γ

0 −Γ

 (2.25)

with eigenvalues λ41 = a − b and λ42 = −Γ. λ42 is always less than zero but λ41 is always

greater than zero, since a− b > 0. Therefore the origin, where both the species and the disease are

excluded, is always unstable.

2. (K, 0)

At the equilibrium (K, 0), the native species is at its carrying capacity and the invader is extinct.

This equilibrium is always feasible since K > 0. Linearising equations (2.23a–b) about (K, 0)

gives the following Jacobian matrix

J(K,0) =

b − a b − a + f b − βK + γ

0 βK − Γ

 (2.26)
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with the following eigenvalues

λ51 = b − a, (2.27a)

λ52 = βK − Γ. (2.27b)

The eigenvalue λ51 is always less than zero. The other eigenvalue λ52 is less than zero if R0 =
βK
Γ
< 1; R0 is the basic reproductive number and represents the expected number of secondary

infections caused from one infected individual entering a purely susceptible population. There-
fore (K, 0) is stable when R0 < 1, this represents that the disease cannot invade the species. When
we later consider both species, we will use R0(1) and R0(2) to represent the basic reproductive
numbers for host species 1 and 2 respectively.

3. (S∗, I∗)
The third equilibrium point (S ∗, I∗) where the native species and the disease are coexisting is
feasible if R0 > 1. Linearising equations (2.23a–b) about (S ∗, I∗) gives the following Jacobian
matrix

J(S ∗ ,I∗) =

a − q(S ∗ + I∗) − b − q(S ∗ + f I∗) − βI∗ f (a − q(S ∗ + I∗)) − q(S ∗ + f I∗) − βS ∗ + γ

βI∗ βS ∗ − Γ

 . (2.28)

Since I∗ , 0, equation (2.23b) gives us βS ∗ − Γ = 0. This expression can be used to simplify
J(S ∗,I∗), (2.28), to give

J(S ∗ ,I∗) =

a − q(S ∗ + I∗) − b − q(S ∗ + f I∗) − βI∗ f (a − q(S ∗ + I∗)) − q(S ∗ + f I∗) − βS ∗ + γ

βI∗ 0

 (2.29)

Since S ∗ , 0 and I∗ , 0, equation (2.23a) can be rearranged to give two useful simplifications.

Firstly, (2.23a) can be divided by S ∗ to give

aS ∗ + a f I∗ − q(S ∗ + I∗)S ∗ − q f I∗S ∗ − q f I∗2 − bS ∗ − βS ∗I∗ + γI∗

S ∗
= 0 (2.30a)

⇒ a +
a f I∗

S ∗
− q(S ∗ + I∗) − q f I∗ −

q f I∗2

S ∗
− b − βI∗ +

γI∗

S ∗
= 0. (2.30b)

This can be rearranged to give

a − q(S ∗ + I∗) − b − βI∗ = −
1

S ∗
(
a f I∗ − q f I∗S ∗ − q f I∗2 + γI∗

)
, (2.30c)
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and subtracting q(S ∗ + f I∗) from both sides, we can then rearrange again

a − q(S ∗ + I∗) − b − βI∗ − q(S ∗ + f I∗)

= −
1

S ∗
(
a f I∗ − q f I∗S ∗ − q f I∗2 + γI∗

)
− q(S ∗ + f I∗)

(2.30d)

⇒ a − q(S ∗ + I∗) − b − βI∗ − q(S ∗ + f I∗) = −
1

S ∗
(
a f I∗ − q f I∗2 + γI∗ + qS ∗2

)
(2.30e)

⇒ a − q(S ∗ + I∗) − b − βI∗ − q(S ∗ + f I∗) = −
1

S ∗
(
(a − qI∗) f I∗ + qS ∗2 + γI∗

)
. (2.30f)

Secondly, equation (2.23a) can be divided by I∗ to give

aS ∗ + a f I∗ − qS ∗2 − qI∗S ∗ − q f I∗(S ∗ + I∗) − bS ∗ − βS ∗I∗ + γI∗

I∗
= 0 (2.31a)

⇒
aS ∗

I∗
+ a f −

qS ∗2

I∗
− qS ∗ − q f (S ∗ + I∗) −

bS ∗

I∗
− βS ∗ + γ = 0. (2.31b)

This can be rearranged to give

f (a − q(S ∗ + I∗)) − qS ∗ − βS ∗ + γ = −
1
I∗

(
(a − b − qS ∗)S ∗

)
, (2.31c)

and subtracting q f I∗ from both sides, we can then rearrange again:

f (a − q(S ∗ + I∗)) − qS ∗ − βS ∗ + γ − q f I∗ = −
1
I∗

(
(a − b − qS ∗)S ∗

)
− q f I∗ (2.31d)

⇒ f (a − q(S ∗ + I∗)) − q(S ∗ + f I∗) − βS ∗ + γ = −
1
I∗

(
(a − b − qS ∗)S ∗ + q f I∗2

)
. (2.31e)

Equations (2.30f) and (2.31e) can then be used to simplify the expression for J(S ∗,I∗), (2.29), to

give

J(S ∗,I∗) =

− 1
S ∗

(
(a − qI∗) f I∗ + qS ∗2 + γI∗

)
− 1

I∗
(
(a − b − qS ∗)S ∗ + q f I∗2

)
βI∗ 0

 . (2.32)
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The equilibrium point (S ∗, I∗) is stable if the following trace and determinant conditions from the

Jacobian matrix J(S ∗,I∗) (2.32) hold

−
1

S ∗
(
(a − qI∗) f I∗ + qS ∗2 + γI∗

)
< 0 (holds if a − qI∗ > 0), (2.33a)

β
(
(a − b − qS ∗)S ∗ + q f I∗2

)
> 0 (2.33b)

⇒ β

((
a − b −

qΓ

β

) (
Γ

β

)
+ q f I∗2

)
> 0

(
S ∗ =

Γ

β

)
(2.33c)

⇒ (β (a − b) − qΓ)
(
Γ

β

)
+ βq f I∗2 > 0 (holds if R0 > 1). (2.33d)

The trace condition holds if a − qI∗ > 0, to show this holds we again consider (2.23a)

aS ∗ + a f I∗ − q(S ∗ + I∗)S ∗ − q f I∗S ∗ − q f I∗2 − bS ∗ − βS ∗I∗ + γI∗ = 0. (2.34a)

This can be rearranged to give

a − q(S ∗ + I∗) =
bS ∗ + βS ∗I∗ − γI∗

S ∗ + f I∗
(2.34b)

=
bS ∗ + ΓI∗ − γI∗

S ∗ + f I∗
[βS ∗ = Γ] (2.34c)

=
bS ∗ + (α + b + γ)I∗ − γI∗

S ∗ + f I∗
[Γ = α + b + γ] (2.34d)

=
bS ∗ + (α + b)I∗

S ∗ + f I∗
> 0 [S ∗ > 0, I∗ > 0] (2.34e)

i.e. a − q(S ∗ + I∗) > 0 (2.34f)

i.e. a − qI∗ > 0 [a − qI∗ > a − q(S ∗ + I∗)]. (2.34g)

Therefore, (S ∗, I∗) is feasible and stable if R0 > 1 (this holds for f > 0).
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2.5.3 Full model

This section considers both species with the disease present. There are seven equilibrium points,

seen earlier in the text (2.4a–g), obtained from setting the right-hand side of equations (2.11a–d)

equal to zero,

(S 1, I1, S 2, I2) =(0, 0, 0, 0), (2.35a)

(K1, 0, 0, 0) =
(

a1−b1
q1

, 0, 0, 0
)
, (2.35b)

(S ∗1, I
∗
1 , 0, 0) =

(
Γ1
β11
,

Ψ1+
√

Ψ2
1+Ω1

2q1 f1β11
, 0, 0

)
, (2.35c)

(0, 0,K2, 0) =
(
0, 0, a2−b2

q2
, 0

)
, (2.35d)

(0, 0, S ∗2, I
∗
2) =

(
0, 0, Γ2

β22
,

Ψ2+
√

Ψ2
2+Ω2

2q2 f2β22

)
, (2.35e)

(S +
1 , 0, S

+
2 , 0) =

(
c2K2−K1
c1c2−1 , 0,

c1K1−K2
c1c2−1 , 0

)
, (2.35f)

(Ŝ 1, Î1, Ŝ 2, Î2) (2.35g)

where in the steady state (2.35g) the values are algebraically complicated and omitted. If f1 > 0,

the steady state defined in equation (2.35c) is expanded with Γ1 = α1 + b1 + γ1, Ψ1 = (a1 f1 − b1 −

α1)β11 − q1 f1Γ1 − q1Γ1 and Ω1 = 4 f1q2
1Γ1(β11K1 − Γ1). In the alternative case when f1 = 0, I∗1

in equation (2.35c) becomes I∗1 =
Γ1 (β11K1 − Γ1) (a1 − b1)

β11 (Γ1 (a1 − b1) + K1β11 (Γ1 − γ1))
. If f2 > 0, the steady state

defined by equation (2.35e) is expanded with Γ2, Ψ2 and Ω2 ; where Γ2, Ψ2 and Ω2 are equivalent

to Γ1, Ψ1 and Ω1 respectively with the subscript 1 changed to 2. Alternatively, if f2 = 0, I∗2 in

equation (2.35e) is equivalent to that for I∗1 when f1 = 0 described above, with the subscript 1

changed to 2.

Feasibility and Stability

1. (0, 0, 0, 0)

We begin by considering the origin, (S 1, I1, S 2, I2) = (0, 0, 0, 0), where there is no species or

disease (2.35a). Linearising equations (2.11a–d) about (0, 0, 0, 0) gives the following Jacobian
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matrix

J(0,0,0,0) =



a1 − b1 f1a1 + γ1 0 0

0 −Γ1 0 0

0 0 a2 − b2 f2a2 + γ2

0 0 0 −Γ2


(2.36)

with eigenvalues λ61 = a1 − b1, λ62 = a2 − b2, λ63 = −Γ1 and λ64 = −Γ2 . λ63 and λ64 are

always less than zero but λ61 and λ62 are always greater than zero, since ai − bi > 0 (for i = 1, 2).

Therefore the origin, where both species and the disease are excluded, is always unstable.

2. (K1, 0, 0, 0)

At the equilibrium (K1, 0, 0, 0), given in (2.35b), the native species is at its carrying capacity and

the invader and disease are excluded. This equilibrium is always feasible since K1 > 0. Linearis-

ing equations (2.11a–d) about (K1, 0, 0, 0) gives the following Jacobian matrix

J(K1,0,0,0) =



b1 − a1 b1 − a1 + f1b1 − K1β11 + γ1 c2(b1 − a1) (b1 − a1)c2 − β12K1

0 K1β11 − Γ1 0 β12K1

0 0 (a2 − b2)(1 − c1K1
K2

) f2a2 + γ2 −
f2(a2−b2)c1K1

K2

0 0 0 −Γ2


(2.37)

with the following eigenvalues

λ71 = b1 − a1, (2.38a)

λ72 = −Γ2, (2.38b)

λ73 = β11K1 − Γ1, (2.38c)

λ74 =
(b2 − a2)(c1K1 − K2)

K2
. (2.38d)

The eigenvalue λ71 is always less than zero, since a1−b1 > 0 always holds. λ72 is always less than
zero since Γ2 is positive. The eigenvalue λ73 is less than zero if R0(1) =

β11K1
Γ1

< 1. Finally, λ74 is
less than zero if c1K1−K2 > 0. Therefore (K1, 0, 0, 0) is stable when R0(1) < 1 and c1K1−K2 > 0;
these represent that the disease cannot invade the native species but the native species has a com-
petitive advantage over the alien species.

3. (S∗1, I
∗
1, 0, 0)

The third equilibrium point (S ∗1, I
∗
1 , 0, 0), with the native species and the disease coexisting, is fea-
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sible if R0(1) > 1. Linearising equations (2.11a–d) about (S ∗1, I
∗
1 , 0, 0) gives the following Jacobian

matrix
J(S ∗1,I

∗
1 ,0,0) =



a1 − q1(S ∗1 + I∗1) − b1 f1(a1 − q1(S ∗1 + I∗1))
−q1c2(S ∗1 + f1I∗1)

−q1c2(S ∗1 + f1I∗1)

−q1(S ∗1 + f1I∗1) − β11I∗1 −q1(S ∗1 + f1I∗1) − β11S ∗1 + γ1 −β12S ∗1

β11I∗1 β11S ∗1 − Γ1 0 β12S ∗1

0 0
a2 − b2 − q2c1S ∗1 f2a2 − f2q2c1S ∗1
−q2c1I∗1 − β21I∗1 − f2q2c1I∗1 + γ2

0 0 β21I∗1 −Γ2



. (2.39)

To determine the stability, the eigenvalue problem can be factorised into two different quadratic
components. These components correspond to two 2x2 submatrices of J(S ∗1,I

∗
1 ,0,0), (2.39). The first

submatrix is the upper left components
J(S ∗1,I

∗
1 ,0,0)a =

a1 − q1(S ∗1 + I∗1) − b1 − q1(S ∗1 + f1I∗1) − β11I∗1 f1(a1 − q1(S ∗1 + I∗1)) − q1(S ∗1 + f1I∗1) − β11S ∗1 + γ1

β11I∗1 β11S ∗1 − Γ1

 . (2.40)

This is equivalent to the Jacobian matrix J(S ∗,I∗), seen earlier in the disease-only model (2.28).

It can be simplified in the same way as used earlier to obtain (2.29)–(2.32) and resulting stabil-

ity conditions (2.33)–(2.34) found in the same way. Therefore, the first stability condition for

J(S ∗1,I
∗
1 ,0,0) is R0(1) > 1 (holds when f1 > 0). The second submatrix of J(S ∗1,I

∗
1 ,0,0), (2.39), is the

lower right components

J(S ∗1,I
∗
1 ,0,0)b =

a2 − b2 − q2c1S ∗1 − q2c1I∗1 − β21I∗1 f2a2 − f2q2c1S ∗1 − f2q2c1I∗1 + γ2

β21I∗1 −Γ2

 (2.41)

with the following trace and determinant conditions

a2 − b2 − q2c1(S ∗1 + I∗1) − β21I∗1 − Γ2 < 0, (2.42a)

−Γ2(a2 − b2 − q2c1(S ∗1 + I∗1) − β21I∗1) − β21I∗1( f2(a2 − q2c1(S ∗1 + I∗1)) + γ2) > 0. (2.42b)

The determinant condition, (2.42b), can be rearranged as follows

a2 − b2 − q2c1(S ∗1 + I∗1) − β21I∗1 +
β21I∗1

Γ2

(
f2a2 − f2q2c1(S ∗1 + I∗1) + γ2

)
< 0 (2.43a)

⇒
(
a2 − b2 − q2c1(S ∗1 + I∗1)

)
+
β21I∗1

Γ2

(
f2a2 − b2 − f2q2c1(S ∗1 + I∗1) − α2

)
< 0. (2.43b)
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If we assume the trace condition (2.42a) is equal to zero, we can rearrange it to get the following

two equations

a2 − b2 − q2c1(S ∗1 + I∗1) − β21I∗1 = Γ2, (2.44a)

a2 − q2c1(S ∗1 + I∗1) = β21I∗1 + Γ2 + b2. (2.44b)

These two equations (2.44a–b) can then be used to simplify the determinant condition (2.42b) to

give

− Γ2(Γ2) − β21I∗1( f2(β21I∗1 + Γ2 + b2)) + γ2) > 0. (2.44c)

which never holds as the left hand side is less than zero. When the trace condition (2.42a) is

equal to zero, the determinant condition (2.42b) is always less than zero. Therefore, the determi-

nant condition is violated before the trace condition and we only need to consider the determinant

condition. Therefore, the simplified determinant condition, (2.43b), is the only stability condition

required from submatrix J(S ∗1,I
∗
1 ,0,0)b. We can then combine this with the stability condition found

from the first submatrix, J(S ∗1,I
∗
1 ,0,0)a, to find the stability conditions of the steady state (S ∗1, I

∗
1 , 0, 0).

Hence, the steady state (S ∗1, I
∗
1 , 0, 0) is feasible and stable when R0(1) > 1 and (2.43b) holds. The

condition R0(1) > 1 represents that the disease can invade the native species and (2.43b) represents

the fitness of the alien species being negative.

4. (0, 0,K2, 0)

At the fourth equilibrium (0, 0,K2, 0), the alien species is at its carrying capacity and the native

and disease are excluded (2.35d). This equilibrium is always feasible since K2 > 0. Linearising

equations (2.11a–d) about (0, 0,K2, 0) and reordering to consider (S 2, I2, S 1, I1) gives the follow-

ing Jacobian matrix

J(0,0,K2,0) =



b2 − a2 b2 − a2 + f2b2 − K2β22 + γ2 c1(b2 − a2) (b2 − a2)c1 − β21K2

0 K2β22 − Γ2 0 β21K2

0 0 (a1 − b1)(1 − c2K2
K1

) f1a1 + γ1 −
f1(a1−b1)c2K2

K1

0 0 0 −Γ1


(2.45)
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with the following eigenvalues

λ81 = b2 − a2, (2.46a)

λ82 = −Γ1, (2.46b)

λ83 = β22K2 − Γ2, (2.46c)

λ84 =
(b1 − a1)(c2K2 − K1)

K1
. (2.46d)

The eigenvalue λ81 is always less than zero, since a2−b2 > 0 always holds. λ82 is always less than
zero since Γ1 is positive. The eigenvalue λ83 is less than zero if R0(2) =

β22K2
Γ2

< 1. Finally, λ84 is
less than zero if c2K2−K1 > 0. Therefore (0, 0,K2, 0) is stable when R0(2) < 1 and c2K2−K1 > 0;
these represent that the disease cannot invade the alien species while the alien species has a com-
petitive advantage over the native species.

5. (0, 0,S∗2, I
∗
2)

The fifth equilibrium point (0, 0, S ∗2, I
∗
2), with the alien species and the disease coexisting is fea-

sible if R0(2) > 1. Linearising equations (2.11a–d) about (0, 0, S ∗2, I
∗
2) and reordering to consider

(S 2, I2, S 1, I1) gives the following Jacobian matrix
J(0,0,S ∗2,I

∗
2) =



a2 − q2(S ∗2 + I∗2) − b2 f2(a2 − q2(S ∗2 + I∗2))
−q2c1(S ∗2 + f2I∗2)

−q2c1(S ∗2 + f2I∗2)

−q2(S ∗2 + f2I∗2) − β22I∗2 −q2(S ∗2 + f2I∗2) − β22S ∗2 + γ2 −β21S ∗2

β22I∗2
β22S ∗2 − Γ2

0 β21S ∗2

0 0
a1 − b1 − q1c2S ∗2 f1a1 − f1q1c2S ∗2
−q1c2I∗2 − β12I∗2 − f1q1c2I∗2 + γ1

0 0 β12I∗2 −Γ1



. (2.47)

To determine the stability, the eigenvalue problem can be factorised into two different quadratic
components. These components correspond to two 2x2 submatrices of J(0,0,S ∗2,I

∗
2), (2.47). The first

submatrix is the upper left components
J(0,0,S ∗2,I

∗
2)a =

a2 − q2(S ∗2 + I∗2) − b2 − q2(S ∗2 + f2I∗2) − β22I∗2 f2(a2 − q2(S ∗2 + I∗2)) − q2(S ∗2 + f2I∗2) − β22S ∗2 + γ2

β22I∗2 β22S ∗2 − Γ2

 . (2.48)

This is equivalent to the Jacobian matrix J(S ∗,I∗), seen earlier in the disease-only model (2.28).

It can be simplified in the same way, (2.29)–(2.32) and resulting stability conditions found in the

same way, (2.33)–(2.34). Therefore, the first stability condition for J(0,0,S ∗2,I
∗
2) is R0(2) > 1 (holds

when f2 > 0). The second submatrix of J(0,0,S ∗2,I
∗
2),(2.47), is the lower right components
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J(0,0,S ∗2,I
∗
2)b =

a1 − b1 − q1c2S ∗2 − q1c2I∗2 − β12I∗2 f1a1 − f1q1c2S ∗2 − f1q1c2I∗2 + γ1

β12I∗2 −Γ1

 (2.49)

with the following trace and determinant conditions

a1 − b1 − q1c2(S ∗2 + I∗2) − β12I∗2 − Γ1 < 0, (2.50a)

−Γ1(a1 − b1 − q1c2(S ∗2 + I∗2) − β12I∗2) − β12I∗2( f1a1 − f1q1c2(S ∗2 + I∗2) + γ1) > 0. (2.50b)

The determinant condition, (2.50b), can be rearranged as follows

a1 − b1 − q1c2(S ∗2 + I∗2) − β12I∗2 +
β12I∗2

Γ1

(
f1a1 − f1q1c2(S ∗2 + I∗2) + γ1

)
< 0 (2.51a)

⇒
(
a1 − b1 − q1c2(S ∗2 + I∗2)

)
+
β12I∗2

Γ1

(
f1a1 − b1 − f1q1c2(S ∗2 + I∗2) − α1

)
< 0. (2.51b)

If we assume the trace condition (2.50a) is equal to zero, we can rearrange it to get the following

two equations

a1 − b1 − q1c2(S ∗2 + I∗2) − β12I∗2 = Γ1, (2.52a)

a1 − q1c2(S ∗2 + I∗2) = β12I∗2 + Γ1 + b1. (2.52b)

These two equations (2.52a–b) can then be used to simplify the determinant condition (2.50b) to

give

− Γ1(Γ1) − β12I∗2( f1(β12I∗2 + Γ1 + b1)) + γ1) > 0. (2.52c)

which never holds as the left hand side is less than zero. When the trace condition (2.50a) is
equal to zero, the determinant condition (2.50b) is always less than zero. Therefore, the determi-
nant condition is violated before the trace condition and we only need to consider the determinant
condition. Therefore, the simplified determinant condition, (2.51b), is the only stability condition
required from submatrix J(0,0,S ∗2,I

∗
2)b. We can then combine this with the stability condition found

from the first submatrix, J(0,0,S ∗2,I
∗
2)a, to find the stability conditions of the steady state (0, 0, S ∗2, I

∗
2).

Hence, the steady state (0, 0, S ∗2, I
∗
2) is feasible and stable when R0(2) > 1 and (2.51b) holds. The

condition R0(2) > 1 represents that the disease can invade the alien species and (2.51b) represents
the fitness of the native species being negative.

6. (S+
1 , 0,S

+
2 , 0)

The sixth equilibrium (S +
1 , 0, S

+
2 , 0), (2.35f), with the native and alien coexisting and no disease

present is feasible if S +
1 > 0 and S +

2 > 0 which occurs when c2K2 − K1, c1K1 − K2 and c1c2 − 1
are either all positive or all negative. Linearising equations (2.11a–d) about (S +

1 , 0, S
+
2 , 0) and re-
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ordering to consider (S 1, S 2, I1, I2) gives the following Jacobian matrix
J(S +

1 ,0,S
+
2 ,0) =



−2q1S +
1 + a1 − b1

−q1c2S +
1

f1(a1 − q1(S +
1 + c2S +

2 ))
−q1c2S +

1 − β12S +
1

−q1c2S +
2 −q1S +

1 − β11S +
1 + γ1

−q2c1S +
2 −2q2S +

2 + a2 − b2 − q2c1S +
1 −q2c1S +

2 − β21S +
2

f2(a2 − q2(S +
2 + c1S +

1 ))

−q2S +
2 − β22S +

2 + γ2

0 0 β11S +
1 − Γ1 β12S +

1

0 0 β21S +
2 β22S +

2 − Γ2



. (2.53)

To determine the stability, the eigenvalue problem can be factorised into two different quadratic

components. These components correspond to two 2x2 submatrices of J(S +
1 ,0,S

+
2 ,0), (2.53). The first

submatrix,J(S +
1 ,0,S

+
2 ,0)a, is the upper left components

J(S +
1 ,0,S

+
2 ,0)a =

−2q1S +
1 + a1 − b1 − q1c2S +

2 −q1c2S +
1

−q2c1S +
2 −2q2S +

2 + a2 − b2 − q2c1S +
1

 . (2.54)

This is equivalent to the Jacobian matrix J(S +
1 ,S

+
2 ), (2.19), seen earlier in the competition-only

model. It can be simplified in the same way, (2.20), and resulting stability conditions found in the

same way, (2.21a–b). Therefore, the first three stability conditions for J(S +
1 ,0,S

+
2 ,0) are

c1K1 − K2 < 0, (2.55a)

c2K2 − K1 < 0, (2.55b)

c1c2 − 1 < 0. (2.55c)

The second submatrix of J(S +
1 ,0,S

+
2 ,0), (2.53), is the lower right components

J(S +
1 ,0,S

+
2 ,0)b =

β11S +
1 − Γ1 β12S +

1

β21S +
2 β22S +

2 − Γ2

 (2.56)

with the following trace and determinant conditions

β11S +
1 − Γ1 + β22S +

2 − Γ2 < 0, (2.57a)

(β11S +
1 − Γ1)(β22S +

2 − Γ2) − β12β21S +
1 S +

2 > 0. (2.57b)
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We can combine these with the stability conditions found from the first submatrix, J(S +
1 ,0,S

+
2 ,0)a, to

find the stability conditions of the steady state ((S +
1 , 0, S

+
2 , 0). Hence, the steady state (S +

1 , 0, S
+
2 , 0)

is feasible and stable when the following five conditions hold

c1K1 − K2 < 0, (2.58a)

c2K2 − K1 < 0, (2.58b)

c1c2 − 1 < 0, (2.58c)

β11S +
1 − Γ1 + β22S +

2 − Γ2 < 0, (2.58d)

(β11S +
1 − Γ1)(β22S +

2 − Γ2) − β12β21S +
1 S +

2 > 0. (2.58e)

This reflects the fact that neither species can out-compete the other and that the disease cannot

invade either single population or the joint population.

7. (Ŝ1, Î1, Ŝ2, Î2)

The final equilibrium (Ŝ 1, Î1, Ŝ 2, Î2), (2.35g), represents all the classes having positive densities

and both the native and invader coexisting with the parasite. We do not discuss the stability of

this steady state here as the algebra is intractable. Bowers and Turner (1997) and Greenman and

Hudson (1997) both give a detailed steady state and stability analysis for a similar model.

45



Chapter 3

SpatialModelling of Invasion Dynamics

3.1 Introduction

We now extend our analysis to investigate how the temporal findings for the replacement of a

native species extend to a spatial model framework by developing a system of reaction-diffusion

equations. This is a classical modelling approach, that assumes random movement, and involves

adding a diffusion term to a set of spatially homogeneous population differential equations (Mur-

ray, 2002; Cantrell and Cosner, 2003; De Vries et al., 2006). Reaction-diffusion equations were

used by Fisher (1937) to model the spread of an advantageous gene through a population and

by Skellam (1951) to investigate the spread of the muskrat, Ondatra zibethica, in central Europe

following its introduction in 1905. This approach has been used in single species epidemiolog-

ical models. An example of particular relevance to our study is Murray et al. (1986) extension

of Anderson et al. (1981) model to include a diffusion term for the random wanderings of rabid

foxes. This modelling allowed Murray et al. to investigate the effect of a rabies introduction to

the UK and potential strategies for stopping an epidemic. Another particularly relevant example

is White et al. (1999) who extended the Anderson and May (1981) model G using this approach

to model the effects of movement on an insect host-pathogen model with a free-living stage. Dif-

fusion terms can also be added when more than one species is involved. In particular Okubo et al.

(1989) used coupled reaction-diffusion equations to model the competition-mediated replacement

of red squirrels by greys in the UK.

To understand some of the key features of the reaction-diffusion system we will begin by

examining a variation of the Fisher-Kolmogorov equation (Fisher, 1937; Kolmogorov et al., 1937)

that considers a single-species competition-only version of the model seen in chapter two

dS
dt

= rS − qS 2 + D
∂2S
∂x2 . (3.1)
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Here, S represents the population density, r the growth rate (birth − death), t time, x spatial position

and D is the diffusion coefficient. We assume positive carrying capacity, K, which is related to

susceptibility to crowding, q, since K = r/q. We will consider a situation where the species is

introduced to a homogeneous landscape and investigate travelling wave solutions (figure 3.1). To

investigate travelling wave solutions we consider S (x, t) = S (x−θt) where θ > 0 is the wave speed.

By using Z = x − θt we can examine equation (3.1) in a coordinate system that moves at the same

speed as the travelling wave. Substituting these solution forms into equation (3.1) and denoting

differentiation with respect to Z by prime gives

− θS ′ = rS − qS 2 + DS ′′ (3.2)

Using Ṡ = S ′, equation (3.2) can be written as the following system of first-order ordinary differ-

ential equations

S ′ = Ṡ (3.3a)

Ṡ ′ = (−1/D)(rS − qS 2 + θṠ ) (3.3b)

There are two equilibrium points obtained from setting the right-hand side of equations (3.3a) and

(3.3b) equal to zero, (S , Ṡ ) = (0, 0) and (K, 0). To investigate possible wave speeds, we linearise

at the steady state ahead of the wave. Linearising equations (3.3a) and (3.3b) at (0, 0), gives the

following Jacobian matrix

J(0,0) =

 0 1

− r
D − θ

D

 . (3.4)
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Figure 3.1 Spread across a spatial landscape from Fisher-type equation. The density is
recorded at time points 300 and 500. The parameters are: r = 0.4, K = 200, q = 0.002 and
D = 0.18. We assumed zero flux boundary conditions and the initial conditions are S = K
for x < 50 and S = 0 otherwise. These observed values were produced using a semi-implicit
Crank-Nicolson method with a grid spacing of 10−2 and a time step of 10−2.
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It follows that (0, 0) is a stable node or focus with the following eigenvalues

λ1,2 =
1
2

−θD ±
√(

θ

D

)2
− 4

( r
D

) . (3.5)

λ1 and λ2 are either real and negative (stable node), or a complex conjugate pair with a negative

real part (stable focus). To ensure we do not have negative population densities (0, 0) must not be

a focus (the eigenvalues must be real). We therefore impose the following condition

(
θ

D

)2
− 4

( r
D

)
> 0 (3.6a)

⇒ θ2 > 4rD (3.6b)

⇒ θ > 2
√

rD = θ f . (3.6c)

Kolmogorov et al. (1937) showed that, providing local dynamics satisfy some simple conditions,

there are wave front solutions for any value of the wave speed above the critical minimum value.

Moreover, for biologically sensible initial conditions, the travelling wave will typically move at

the minimum speed. For instance, if

S (x, 0) = S 0(x) > 0, S 0(x) =

 K if x < x1,

0 if x > x2,
(3.7)

where x1 < x2 and S 0(x) is continuous in x1 < x < x2, then the solution S (x, t) of equation (3.1)

evolves to the the travelling wave solution S (Z) with the minimum wave speed θ f , given by:

θ f = 2
√

rD. (3.8)

For the parameters used in figure 3.1 the minimum wave speed is calculated as θ f = 0.54. This

matches very closely with the wave speed that can be calculated from simulations (figure 3.1). An

overview of the methods used above can be found in Shigesada and Kawasaki (1997), Kot (2001),

Okubo et al. (2001) and Murray (2002). We will now extend these methods to investigate the

spatial model framework for the model seen in chapter two.
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3.2 Model

We extend our system of ordinary differential equations (2.3a–d) by adding diffusion terms, to

give the following reaction-diffusion equations. The classes of susceptible, S i, and infected, Ii in-

dividuals are represented by the following system of equations, where i = 1, 2 with 1 representing

the native species and 2 the alien invader.

∂S 1

∂t
= [a1 − q1(H1 + c2H2)](S 1 + f1I1) − b1S 1 − β11S 1I1 − β12S 1I2 + γ1I1 + D1

∂2S 1

∂x2 (3.9a)

∂I1

∂t
= β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 + D1

∂2I1

∂x2 (3.9b)

∂S 2

∂t
= [a2 − q2(H2 + c1H1)](S 2 + f2I2) − b2S 2 − β22S 2I2 − β21S 2I1 + γ2I2 + D2

∂2S 2

∂x2 (3.9c)

∂I2

∂t
= β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 + D2

∂2I2

∂x2 (3.9d)

where H1 = S 1 + I1 and H2 = S 2 + I2. We assume all parameters are non-negative and ai

represents the maximum reproduction rate, bi the natural mortality rate, ci the competitive effect

of species i on the other species and βi j the disease transmission coefficient from species j to

i. We assume a positive carrying capacity, Ki, which is related to susceptibility to crowding, qi,

since Ki = (ai − bi)/qi. The model assumes that infected individuals experience disease-induced

mortality at rate αi. Infecteds may recover back to susceptibility at rate γi and experience only a

proportion, fi of the fecundity of a susceptible host; fi ∈ [0, 1]. The diffusion coefficients, D1 and

D2, approximate random movement for each of the species; we assume the same dispersal rate for

susceptible and infected individuals.

3.3 Results

Our aim is to investigate the spatial spread and replacement when an invading species is introduced

at one location into a disease-free native population. Again we compare results for competition-

mediated and competition-and-disease-mediated replacement. We consider a situation in which

the alien species has a competitive advantage in the absence of disease.

In competition-only replacement a travelling wave sweeps across the landscape, transforming

the population from the native carrying capacity in front of the wave to a population of invaders

only, at their carrying capacity, behind the wave. This is shown in figure 3.2(a) and these numerical

solutions can be used to determine that this competition-only wave has speed 0.2. The spatial

results for competition-and-disease-mediated replacement are shown in figure 3.2(b).
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Figure 3.2 Density of the native (S 1, I1) and alien (S 2, I2) species across the spatial landscape.
In panel a competition-mediated and in panel b competition-and-disease-mediated spatial re-
placement is shown at time points 400 and 600 respectively (note the difference in spatial scale
in panels a and b). The parameters are: f1 = f2 = 1, a1 = a2 = 1, b1 = b2 = 0.4, K1 = K2 = 200,
c1 = 0.9, c2 = 1.5, α1 = 0.7, α2 = 0.2, γ1 = γ2 = 0.2, βi j = 0.06 and D1 = D2 = 0.18. The initial
conditions in a are S 1 = K1, I1 = I2 = 0 for all x and S 2 = 4 for x 6 10, S 2 = 0 otherwise. The
initial conditions in b are S 1 = K1 for all x, I1 = 0 for all x, S 2 = I2 = 2 for x 6 10, S 2 = I2 = 0
otherwise. In a temporal model, these parameters result in a decrease in replacement time when
disease is present. Similarly, in the spatial model we see the invading species spreading further
across the landscape when disease is present (panel b) compared to when absent (panel a). Note
in panel b the wave of replacement occurs behind the wave of disease. These observed values
were produced using a semi-implicit Crank-Nicolson method with zero flux boundary conditions,
a grid spacing of 10−2 and a time step of 10−2.

In an extensive program of numerical simulations, we have found that when disease is present,

a rapid “wave of disease” spreads across the landscape, followed by a slower “wave of replace-

ment”. The wave of disease spreads through the native population (in the absence of the invading

species) and transforms the native population from its disease-free state to its endemic population

level. For the results shown in figure 3.2(b) the wave of disease has speed 3.0. Behind the wave of

disease is a wave of replacement in which the invading species replaces the native species, leav-

ing the invading species at its endemic population level. In figure 3.2(b) the wave of replacement

has speed 0.5. For the parameter values used in figure 3.2 the temporal model predicts that the

replacement of the native species will be faster when the disease is included. In line with this,

the invading wave moves faster when the disease is present. For parameter values for which the

disease would slow the replacement of the native species in the temporal system, our results in-

dicate that the spatial replacement is also slower than in the absence of disease. Thus, the spatial

results parallel the temporal findings in terms of the effect disease will have on the replacement of
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a native species. We will begin by calculating the wave speed for the three types of waves.

3.3.1 Critical wave speed

Competition-only

The “competition-only” PDEs are given by setting I1 = I2 = 0 in the full model (3.9a–d), giving

∂S 1

∂t
= [a1 − b1 − q1(S 1 + c2S 2)]S 1 + D1

∂2S 1

∂x2 (3.10a)

∂S 2

∂t
= [a2 − b2 − q2(S 2 + c1S 1)]S 2 + D2

∂2S 2

∂x2 . (3.10b)

To investigate travelling wave solutions we consider S i(x, t) = S i(x − θt) where θ > 0 is the wave

speed. We use Z = x − θt to denote the travelling wave variable. Substituting these solution forms

into equations (3.10a) and (3.10b) and denoting differentiation with respect to Z by prime gives

−θS ′1 = [a1 − b1 − q1(S 1 + c2S 2)]S 1 + D1S ′′1 (3.11a)

−θS ′2 = [a2 − b2 − q2(S 2 + c1S 1)]S 2 + D2S ′′2 . (3.11b)

Using Ṡ 1 = S ′1 and Ṡ 2 = S ′2, equations (3.11a) and (3.11b) can be written as the following four

first-order ordinary differential equations

S ′1 = Ṡ 1 (3.12a)

Ṡ ′1 = (−1/D1)([a1 − b1 − q1(S 1 + c2S 2)]S 1 + θṠ 1) (3.12b)

S ′2 = Ṡ 2 (3.12c)

Ṡ ′2 = (−1/D2)([a2 − b2 − q2(S 2 + c1S 1)]S 2 + θṠ 2). (3.12d)

There are four equilibrium points obtained from setting the right-hand side of equations (3.12a) to

(3.12d) equal to zero,

(S 1, Ṡ 1, S 2, Ṡ 2) = (0, 0, 0, 0), (K1, 0, 0, 0), (0, 0,K2, 0) and (S +
1 , 0, S

+
2 , 0),

where S +
1 = (c2K2 − K1)/(c1c2 − 1) and S +

2 = (c1K1 − K2)/(c1c2 − 1).

In this case the native species is at its carrying capacity until the alien species invades so the

equilibrium in front of the wave will be (K1, 0, 0, 0) (see figure 3.3a). Linearising equations (3.12a)
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Figure 3.3 Spatial replacement across landscape highlighting competition-only wave, wave of
replacement and wave of disease. In panel a competition-mediated and in panel b competition-
and-disease-mediated spatial replacement is shown at time point 400. The parameters are: f1 =

f2 = 1, a1 = a2 = 1, b1 = b2 = 0.4, K1 = K2 = 200, c1 = 0.9, c2 = 1.5, α1 = 0.7, α2 = 0.2,
γ1 = γ2 = 0.2, βi j = 0.06 and D1 = D2 = 0.18. The initial conditions in a are S 1 = K1,
I1 = I2 = 0 for all x and S 2 = 4 for x 6 10, S 2 = 0 otherwise. The initial conditions in b are
S 1 = K1 for all x, I1 = 0 for all x, S 2 = I2 = 2 for x 6 10, S 2 = I2 = 0 otherwise. These observed
values were produced using a semi-implicit Crank-Nicolson method with zero flux boundary
conditions, a grid spacing of 10−2 and a time step of 10−2.

to (3.12d) at (K1, 0, 0, 0) gives the following Jacobian matrix

J(K1,0,0,0) =



0 1 0 0
a1−b1

D1
− θ

D1

(a1−b1)c2
D1

0

0 0 0 1

0 0 (a2−b2)(c1K1−K2)
D2K2

− θ
D2


(3.13)

with the following four eigenvalues

λ1,2 =
−θ ±

√
θ2 + 4D2(a2 − b2)( c1K1

K2
− 1)

2D2
, (3.14a)

λ3,4 =
−θ ±

√
θ2 + 4D1(a1 − b1)

2D1
. (3.14b)

λ3 and λ4 are always real since θ2 + 4D1(a1 − b1) > 0; one is positive and the other is negative. λ1

and λ2 are either both real and negative, or a complex conjugate pair with negative real part; the
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condition for them being real is

θ2 + 4D2(a2 − b2)
(
c1K1

K2
− 1

)
> 0 (3.15a)

⇔ θ2 > 4D2(a2 − b2)
(
1 −

c1K1

K2

)
(3.15b)

⇔ θ > 2

√
D2(a2 − b2)

(
1 −

c1K1

K2

)
(3.15c)

( since θ > 0). This suggests that the competition-only wave will move with speed θC , given by:

θC = 2

√
D2(a2 − b2)

(
1 −

c1K1

K2

)
. (3.16)

Wave of disease

The “wave of disease” is the wave seen ahead of the wave of replacement, in which the native

species is reduced from its carrying capacity to its endemic state (see figure 3.3b). This transition

occurs without direct involvement from the alien species, so that the relevant equations are given

by setting S 2 = I2 = 0 in the full model, giving

∂S 1

∂t
= (a1 − q1(S 1 + I1))(S 1 + f1I1) − b1S 1 − β11S 1I1 + γ1I1 + D1

∂2S 1

∂x2 (3.17a)

∂I1

∂t
= β11S 1I1 − b1I1 − α1I1 − γ1I1 + D1

∂2I1

∂x2 . (3.17b)

To investigate travelling waves, we look for a solution of the form S 1(x, t) = S 1(x − θt) and

I1(x, t) = I1(x − θt) where θ > 0 is the wave speed. As before, we define the wave variable

Z = x − θt and denote differentiation with respect to Z by prime. Therefore, equations (3.17a) and

(3.17b) become

−θS ′1 = (a1 − q1(S 1 + I1))(S 1 + f1I1) − b1S 1 − β11S 1I1 + γ1I1 + D1S ′′1 (3.18a)

−θI′1 = β11S 1I1 − b1I1 − α1I1 − γ1I1 + D1I′′1 . (3.18b)

Using Ṡ 1 = S ′1 and İ1 = I′1, equations (3.18a) to (3.18b) can be written as the following four
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first-order ordinary differential equations

S ′1 = Ṡ 1 (3.19a)

Ṡ ′1 = (−1/D1)((a1 − q1(S 1 + I1))(S 1 + f1I1) − b1S 1 − β11S 1I1 + γ1I1 + θṠ 1) (3.19b)

I′1 = İ1 (3.19c)

İ′1 = (−1/D1)(β11S 1I1 − b1I1 − α1I1 − γ1I1 + θİ1). (3.19d)

We are considering a situation in which the native species is at its carrying capacity ahead of the

wave, with no disease and no invader present; so we linearise equations (3.18a) to (3.19d) about

the steady state (S 1, Ṡ 1, I1, İ1) = (K1, 0, 0, 0) (see figure 3.3b). The Jacobian matrix is

J(K1,0,0,0) =



0 1 0 0
a1−b1

D1

−θ
D1

a1−b1− f1b1+β11K1−γ1
D1

0

0 0 0 1

0 0 −β11K1+b1+α1+γ1
D1

−θ
D1


(3.20)

with the following four eigenvalues

λ1,2 =
−θ ±

√
θ2 − 4D1(β11K1 − b1 − α1 − γ1)

2D1
, (3.21a)

λ3,4 =
−θ ±

√
θ2 + 4D1(a1 − b1)

2D1
. (3.21b)

λ3 and λ4 are real since θ2 + 4D1(a1 − b1) > 0; one is positive and the other is negative. λ1 and λ2

are either both real and negative, or a complex conjugate pair with negative real part; the condition

for them being real is

θ2 − 4D1(β11K1 − α1 − b1 − γ1) > 0 (3.22a)

⇔ θ2 > 4D1(β11K1 − α1 − b1 − γ1) (3.22b)

⇔ θ >
√

4D1(β11K1 − α1 − b1 − γ1). (3.22c)
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This suggests that the wave of disease will move with speed θD, given by:

θD = 2
√

D1 (β11K1 − α1 − b1 − γ1). (3.23)

Wave of replacement

The “wave of replacement” is the wave seen behind the wave of disease, in which the invading

species is replacing the native species (see figure 3.3b). This transition involves both species so

we must consider the full model equations as follows

∂S 1

∂t
= [a1 − q1(H1 + c2H2)](S 1 + f1I1) − b1S 1 − β11S 1I1 − β12S 1I2 + γ1I1 + D1

∂2S 1

∂x2 (3.24a)

∂I1

∂t
= β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 + D1

∂2I1

∂x2 (3.24b)

∂S 2

∂t
= [a2 − q2(H2 + c1H1)](S 2 + f2I2) − b2S 2 − β22S 2I2 − β21S 2I1 + γ2I2 + D2

∂2S 2

∂x2 (3.24c)

∂I2

∂t
= β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 + D2

∂2I2

∂x2 . (3.24d)

To investigate travelling waves, we look for a solution of the form S 1(x, t) = S 1(x − θt), I1(x, t) =

I1(x − θt), S 2(x, t) = S 2(x − θt) and I2(x, t) = I2(x − θt) where θ > 0 is the wave speed. As before,

we define the wave variable Z = x − θt and denote differentiation with respect to Z by prime.

Therefore, equations (3.24a) to (3.24d) become

−θS ′1 = [a1 − q1(H1 + c2H2)](S 1 + f1I1) − b1S 1 − β11S 1I1 − β12S 1I2 + γ1I1 + D1S ′′1 (3.25a)

−θI′1 = β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 + D1I′′1 (3.25b)

−θS ′2 = [a2 − q2(H2 + c1H1)](S 2 + f2I2) − b2S 2 − β22S 2I2 − β21S 2I1 + γ2I2 + D2S ′′2 (3.25c)

−θI′2 = β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 + D2I′′2 . (3.25d)

Using Ṡ i = S ′i and İi = I′i , equations (3.25a) to (3.25d) can be rewritten as the following eight
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first-order equations

S ′1 = Ṡ 1 (3.26a)

Ṡ ′1 = (−1/D1)([a1 − q1(H1 + c2H2)](S 1 + f1I1) − b1S 1 − β11S 1I1 − β12S 1I2 + γ1I1 + θṠ 1) (3.26b)

I′1 = İ1 (3.26c)

İ′1 = (−1/D1)(β11S 1I1 + β12S 1I2 − b1I1 − α1I1 − γ1I1 + θİ1) (3.26d)

S ′2 = Ṡ 2 (3.26e)

Ṡ ′2 = (−1/D2)([a2 − q2(H2 + c1H1)](S 2 + f2I2) − b2S 2 − β22S 2I2 − β21S 2I1 + γ2I2 + θṠ 2) (3.26f)

I′2 = İ2 (3.26g)

İ′2 = (−1/D2)(β22S 2I2 + β21S 2I1 − b2I2 − α2I2 − γ2I2 + θİ2). (3.26h)

As before, we will examine the stability of the equilibrium point in front of the wave. We are

considering a situation where the native species has already been reduced to its endemic state

by the disease (via the “wave of disease”) and there is no invader present, so we linearise about

(S 1, Ṡ 1, I1, İ1, S 2, Ṡ 2, I2, İ2) = (S ∗1, 0, I
∗
1 , 0, 0, 0, 0, 0) (see figure 3.3b). Equations (3.26e) to (3.26h)

decouple from equations (3.26a) to (3.26d). For realistic travelling wave solutions we require the

four eigenvalues obtained from these decoupled equations (3.26e) to (3.26h) to be non-oscillatory

(if they have negative real part). The other four eigenvalues have zero components for S 2 and I2

and therefore do not impose any restrictions on population densities being positive in the travelling

wave. For notational simplicity we define

A = a2 − q2c1H∗1 − b2 − β21I∗1 , (3.27)

B = (a2 − q2c1H∗1) f2 + γ2, (3.28)

E = β21I∗1 , (3.29)

∆ = −b2 − α2 − γ2. (3.30)

56



Chapter 3: Spatial Modelling of Invasion Dynamics

The relevant part of the Jacobian is then

J(0,0,0,0) =



0 1 0 0
−A
D3

−θ
D2

−B
D3 0

0 0 0 1
−E
D2

0 −∆
D2

−θ
D2


(3.31)

with four eigenvalues (i = 1, . . . , 4)

λ1,2 =
−θ ±

√
θ2 − 2D2

(
A + ∆ +

√
(A + ∆)2 − 4A∆ + 4EB

)
2D2

, (3.32)

λ3,4 =
−θ ±

√
θ2 − 2D2

(
A + ∆ −

√
(A + ∆)2 − 4A∆ + 4EB

)
2D2

. (3.33)

We are concerned with parameter values in which the native species, in its endemic state, is un-

stable to the introduction of the alien species. The condition for this is (a2 − b2 − q2c1(S ∗1 + I∗1)) +

(β21I∗1)/(α2 + b2 + γ2)( f2a2 − b2 − f2q2c1(S ∗1 + I∗1) − α2) > 0 (2.6 from chapter two), which is

equivalent to EB− A∆ > 0. As a result of this the eigenvalues λ3 and λ4 are real with one positive

and the other negative. λ1 and λ2 are either both real and negative, or a complex conjugate pair

with negative real part; the condition for them being real is

θ2 − 2D2
(
A + ∆ +

√
(A + ∆)2 − 4A∆ + 4EB

)
> 0 (3.34)

⇔ θ2 > 2D2
(
A + ∆ +

√
(A + ∆)2 − 4A∆ + 4EB

)
(3.35)

⇔ θ >
√

2D2
(
A + ∆ +

√
(A + ∆)2 − 4A∆ + 4EB

)
. (3.36)

This suggests that the wave of replacement will move with speed θR, given by

θR =

√
2D2

(
A + ∆ +

√
(A + ∆)2 − 4A∆ + 4EB

)
. (3.37)

Single wave
If the speed of the wave of replacement is faster than the wave of disease, we may no longer expect
to see two separate waves. Instead, we may expect to see one combined disease and competition
wave referred to here as the “single wave”. To understand the properties of the single wave we
must again consider the full model equations. This requires us to follow the previous procedure
to examine travelling waves and we will need to re-examine the system of equations (3.26a–
h). However, the situation ahead of the single wave is different when compared to the wave of
replacement. For the single wave the native species is at its carrying capacity ahead of the wave
with no disease and no invader present. Behind the wave the system is at the alien species endemic
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equilibrium. We consider the full model, equations (3.26a–h), and linearise about the steady state
(S 1, Ṡ 1, I1, İ1, S 2, Ṡ 2, I2, İ2) = (K1, 0, 0, 0, 0, 0, 0, 0). The resulting Jacobian is

J(K1 ,0,0,0,0,0,0,0) =



0 1 0 0 0 0 0 0

(a1 − b1) −θ (a1 − b1 − f1b1
0

((a1 − b1)c2)
0

(β12K1
0

/D1 /D1 +β11K1 − γ1)/D1 /D1 +c2(a1 − b1))/D1

0 0 0 1 0 0 0 0

0 0
(−β11K1 + b1 −θ

0 0
−β12K1

0
+α1 + γ1)/D1 /D1 /D1

0 0 0 0 0 1 0 0

0 0 0 0
(a2 − b2)(c1K1 −θ ( f2(c1K1(a2 − b2)−

0
−K2)/D2K2 /D2 a2K2) − γ2K2)/D2K2

0 0 0 0 0 0 0 1

0 0 0 0 0 0
(b2 + α2 + γ2) −θ

/D2 /D2



(3.38)

with the following eight eigenvalues

λ(1,2) =
−θ ±

√
θ2 + 4D1(a1 − b1)

2D1
, (3.39a)

λ(3,4) =
−θ ±

√
θ2 + 4D2(b2 + α2 + γ2)

2D2
, (3.39b)

λ(5,6) =
−θ ±

√
θ2 + 4D2(a2 − b2)( c1K1

K2
− 1)

2D2
, (3.39c)

λ(7,8) =
−θ ±

√
θ2 − 4D1(β11K1 − b1 − α1 − γ1)

2D1
. (3.39d)

Eigenvalues λ1 and λ2 are always real since θ2 + 4D1(a1 − b1) > 0; one is positive and the other is

negative. λ3 and λ4 are always real since θ2 + 4D2(b2 +α2 + γ2) > 0; again one is positive and one

is negative. λ5 and λ6 are either both real and negative, or a complex conjugate pair with negative
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real part; the condition for them being real is

θ2 + 4D2(a2 − b2)
(
c1K1

K2
− 1

)
> 0 (3.40a)

⇔ θ2 > 4D2(a2 − b2)
(
1 −

c1K1

K2

)
(3.40b)

⇔ θ > 2

√
D2(a2 − b2)

(
1 −

c1K1

K2

)
= θC . (3.40c)

Recall that θC is our predicted speed of the competition-only wave. λ7 and λ8 are either both real

and negative, or a complex conjugate pair with negative real part; the condition for them being

real is

θ2 − 4D1(β11K1 − α1 − b1 − γ1) > 0 (3.41a)

⇔ θ2 > 4D1(β11K1 − α1 − b1 − γ1) (3.41b)

⇔ θ >
√

4D1(β11K1 − α1 − b1 − γ1) = θD (3.41c)

Recall that θD is our predicted speed of the wave of disease. To ensure positive population densities

the speed of the single wave must satisfy both θ > θC and θ > θD. This suggests that the single

wave will move with speed θS , given by

θS = max{θC , θD}. (3.42)

Comparison with numerical wave speeds

For the parameters used in figure 3.2, the values of these speeds are θC = 0.2, θR = 0.5 and

θD = 2.8. These match very closely with the numerical simulations plotted in figure 3.2, and this is

true for a wide range of other parameters for which θD > θR. When θD < θR, one might expect that

the wave of replacement would “catch up with” the wave of disease, leading to the formation of a

single, combined wave front. However, in numerical simulations we observe different behaviour,

namely that while the wave of replacement still travels at speed θR, the wave of disease travels at

a speed faster than θD, and indeed faster than θR (illustrated in figure 3.4). This is reminiscent of

the behaviour observed by Hosono (1998) in competition-only models; a detailed understanding

of what determines the actual wave speed is lacking even in that much simpler case. The only

exception that we found to this behaviour was in the case D1 = 0; then a wave of disease is not

possible, and the invasion occurs via a single travelling wave, moving at speed θC . Apart from in
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Figure 3.4 Effect of relative diffusion on observed and critical wave speeds. Critical minimum
wave speeds are calculated for the three types of waves seen in our solutions (competition-only
wave (θC), wave of disease (θD) and wave of replacement (θR)) for a range of relative diffusion
rates (D2/D1). In this scenario, the alien species invades and replaces the native species with
disease present. This results in two waves, a wave of disease followed by a wave of replacement.
When θD > θR, the observed wave speeds seen in numerical simulations match very closely with
the critical wave speeds. If θD < θR, the observed wave of replacement (observedR) still travels
at speed θR however the observed wave of disease (observedD) travels at a speed faster than θD.
The parameters used are: f1 = f2 = 1, a1 = a2 = 1, b1 = b2 = 0.4, K1 = K2 = 200, c1 = 0.9,
c2 = 1.5, α1 = 0.7, α2 = 0.2, γ1 = γ2 = 0.2, βi j = 0.06 and D1 = 0.18. The “observed” results
come from numerical solutions of the equations using a semi-implicit Crank-Nicolson method
with zero flux boundary conditions, grid spacings of 10−2 and time steps of 10−2. For larger
ratios of the diffusion coefficients, the numerical simulations are relatively time consuming as
they require a large spatial domain.

this very special case, our results always show that a rapid wave of disease spreads through the

native population, with the actual invasion of the alien population occurring more slowly. This

occurs regardless of whether disease acts to increase or decrease the replacement time.

3.3.2 Range of spatial spread

The spatial investigation has shown that when the disease decreases the temporal replacement time,

it also results in a faster spatial wave of replacement. We also investigated whether disease can

change the spatial range over which the alien species can invade. To examine this we considered a

heterogeneous spatial landscape in which the carrying capacity of the invader decreases across the

spatial landscape while the carrying capacity of the native species increases. In the absence of the

disease, the wave of invasion causes replacement of the native population. However, as this wave
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spreads across the landscape it begins to slow and eventually stops (figure 3.5a). The wave halts

as the competitive advantage of the invader is countered by its inferior carrying capacity. When

the disease is included, the wave of replacement is again observed, with the wave speed slowing

as the invader progresses across the landscape, but the disease allows the wave to progress further

(figure 3.5b). Thus, not only can disease speed up the replacement of a native species, it can also

extend the spatial range over which replacement can occur.

3.4 Discussion

The results for the temporal replacement of a native species can be extended to understand the

spatial spread of invasion. When a disease reduces the temporal replacement time (compared to

the absence of disease) this translates into a faster wave of replacement in the spatial framework

(and increased temporal replacement time relates to a slower wave of replacement). This correla-
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Figure 3.5 Total density of the native (solid line) and alien (dashed line) species across a het-
erogeneous landscape. The heterogeneity is created by altering their carrying capacities; the
invader’s is 400 at x = 0 and decreases linearly to 200 at x = 500 while the native’s is 200 at
x = 0 and increases linearly to 400 at x = 500. In panel a the disease is absent and the com-
petitive advantage, which is modified by the difference in carrying capacity, allows the native to
halt the spread of the invader at approximately x = 350. In panel b the disease is present and the
invading species can spread further across the landscape and is halted at approximately x = 450
(note the change in scale on the y-axis). The time points of each wave are 800, 1600, 2400, 3200
and 4000 in both plots (although in panel a the final three time plots are effectively superim-
posed). The parameters used are f1 = f2 = 0, a1 = a2 = 1, b1 = b2 = 0.4, c1 = 0.9, c2 = 1.5,
α1 = 1.1, α2 = 1.0, γ1 = 1.0, γ2 = 1.1, βi j = 0.06 and D1 = D2 = 0.18. These results were
produced using a semi-implicit Crank-Nicolson method with zero flux boundary conditions, a
grid spacing of 10−2 and a time step of 10−2.
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tion emphasises how informative relatively straightforward temporal models can be in informing

spatial behaviour. The spatial model framework was also analysed and it was possible to deter-

mine algebraic expressions for the minimum wave speed at the possible wave front transitions

exhibited by our model. In the absence of disease a competition-only wave occurs with the native

species at its carrying capacity ahead of the wave and with the alien species at its carrying capacity

behind the wave front. These results are in accordance with the study of Okubo et al. (1989), who

examined the interaction of red and grey squirrels within the UK. Okubo et al. (1989) modelled

the effect of competition and diffusion on this interaction using a set of coupled reaction-diffusion

equations similar to our competition-only framework. The wave front seen in Okubo et al. (1989)

and our competition-only wave front exhibit similar behaviour (see figure 3.2a).

When disease is included in the spatial model we find that the initial response is for a wave of

disease to spread across the landscape transforming the native species from its carrying capacity

to its endemic level. The alien species is not involved in the transition. The system is therefore

similar to that of Murray et al. (1986) who modelled the spread of rabies among foxes. Murray

et al. (1986) extended a susceptible-infected-recovered model framework (Anderson et al., 1981)

to include a diffusion term for the random wanderings of rabid foxes. They examined the situation

where a few rabid foxes were introduced into a stable disease free population. Their results show

a wave-front transforming the population from an uninfected zone with the susceptible population

at its carrying capacity to a infected population at its endemic level. The wave front has a very

similar shape as the wave of disease seen in our simulations, however we do not see a similar

pattern of repeated outbreaks. Murray et al. (1986) further investigated these repeated outbreaks

and also possibilities for stopping the spread of rabies. We have calculated the critical wave speed

of the wave of disease and represent it by θD. In our numerical simulations the wave of disease

travelled at a speed very close to θD when θR < θD. However, when θD < θR the wave of disease

travelled at a speed greater than θD (see figure 3.4 for further details).

The wave of replacement which occurs behind the wave of disease and the possibility of a

single wave are findings that have not been reported in previous studies. The wave of replacement

describes the replacement of the native species by the alien invading species. It occurs after the

wave of disease has swept through the landscape and transformed the native species to its endemic

level. The wave of replacement then sweeps across, replacing the native at its endemic level with

the alien species at its endemic level. We have calculated the critical wave speed of the wave of

replacement and denote it by θR (see 3.37). For a wide range of parameter values, our numerical

simulations show the wave of replacement moving at a speed very similar to θR. The single wave

occurs when the wave of replacement catches up with the wave of disease resulting in a single

62



Chapter 3: Spatial Modelling of Invasion Dynamics

combined wave. We expected to see the single wave when θD < θR, however in our wide ranging

numerical simulations we only found the single wave occurring in one special case (D1 = 0). In

this special case, we observed the single wave travelling at its critical wave speed θS = max{θC , θD}

(3.42).

The spatial results highlight an important, general, phenomenon. When a diseased popula-

tion invades a landscape composed of a disease-free native population the initial response is for

a wave of disease to sweep through the native population, reducing the population to its endemic

level. The wave of replacement of the invading species travels well behind the wave of infection.

Importantly this phenomenon is observed even when the wave of replacement is slowed down by

the presence of disease. There is some evidence that this may occur in natural systems. Reynolds

(1985) catalogued the replacement of red squirrels by greys in East Anglia between 1960 and

1981. He reported that diseased red squirrels where found well in advance of grey squirrels being

reported at a particular spatial location. At the time this was used as evidence to dismiss disease

being linked to the subsequent replacement of red squirrels. Our study suggests that such obser-

vations may be a direct result of the invasion of a disease-carrying species. From a conservation

point of view, the emergence of the disease in a protected native population before the invader has

reached the area may indicate the imminent replacement of the protected species. This could be

used as an early warning system to implement emergency conservation efforts.

Disease can also allow an invading species to change the spatial range of replacement. The re-

sults shown in figure 3.5 indicate that disease can increase the range of replacement. This happens

when the disease allows the alien to spread further through the landscape by reducing the native

population to its endemic level, thereby giving the alien species a relative advantage. Disease can

also reduce the range over which a species is replaced or even prevent replacement entirely. This

happens when a competitively inferior native suffers relatively less “harm” from the disease than

the alien species. The native would need relatively better recovery than the alien species if fecun-

dity was unaffected by the disease and lower mortality from the disease if fecundity was affected.

Hilker et al. (2005) studied the possibility of a disease slowing down or preventing an invasion

in a frequency-dependent model. Their results show that an infectious disease is capable of slow-

ing or stopping an invasion. This depends on the virulence of the disease: if the extra mortality

through infection is high enough to over-balance the growth at the head of the population front,

the invasion will be reversed. For further details of this, see Hilker et al. (2005).

The results indicating that disease can change the range of replacement of a native species

has important biological implications. The boundary between species often arises due to niche

separation whereby in its own niche a species can out-compete another species. However the
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shared disease can act to remove the competitive advantage of a species within its niche resulting

in its replacement. Grey squirrels have still to invade some regions of Scotland and this is believed

to be partly due to habitat characteristics that favour reds over greys. Conservation efforts are

also being used to provide red squirrel refuges in such suitable habitat. Our study indicates that

such conservation efforts should also consider the role of squirrelpox virus as this may spread

beyond grey squirrel occupied areas and allow greys to invade regions which would otherwise be

unsuitable. From a conservation point of view, the manipulation of habitat may not be enough to

prevent the spread of the invasive species since the prevention of the disease is also crucial. The

results in this chapter are published in Theoretical Ecology, see Bell et al. (2009).
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Chapter 4

A Stochastic Framework for

Modelling Competition and Disease

4.1 Introduction

In previous chapters we investigated the population dynamics and spread of disease-carrying in-

vading species using deterministic modelling frameworks. These frameworks treat the population

density as a continuous variable, whereas in reality populations are composed of distinct indi-

viduals. Notwithstanding, deterministic frameworks have been fundamental in advancing our

understanding of infectious disease. They highlight key phenomena such as threshold levels of

susceptible hosts below which the disease cannot persist (Anderson and May (1991), and see

Chapter 2) and travelling wave of disease spread (Murray (2002), and see Chapter 3).

Deterministic systems can also produce unrealistic results when population classes can recover

from very small densities, referred to as “atto-foxes” and “nano-hawks” (Mollison, 1991; Grenfell

and Dobson, 1995). The systems examined in Chapters 2 and 3, considering the invasion of a new

species into an established native population, assume the invader is initially at a low density. Also,

the infected classes in these systems often reach a low density endemic level. When a population

falls to very small numbers there is a greater probability of population extinction or the disease

dying out. Therefore, it is important to investigate the impact of such low densities on our findings.

The main motivation, for this investigation, is to develop a realistic model of the red/grey/

squirrelpox system. Such a model can be used to assess conservation strategies for maintain-

ing red squirrel populations, but will require that we consider individual-based modelling frame-

works. To achieve this we will consider a stochastic individual-based model framework based

on the Tompkins et al. (2003) squirrel model. This will allow a comparison between stochastic

and deterministic frameworks in a system with a disease-carrying invasive species. The stochas-

65



Chapter 4: A Stochastic Framework for Modelling Competition and Disease

tic framework developed can then be used to consider conservation strategies to protect the red

population (see later, Chapter 5, where we will focus on a system that provides a refuge for red

squirrels similar to the refuge in Formby, Merseyside).

4.2 Model

We begin by giving a brief overview of the deterministic model and results of Tompkins et al.

(2003) (see Chapter 1 for a description of the red/grey/squirrelpox system ). The Tompkins et al.

(2003) model uses five ordinary differential equations (4.1a–e) to represent the system. Since

the reds cannot recover from the disease there are only two classes of reds: susceptible (S R)

and infected (IR). The greys can recover from the disease so are represented by three classes:

susceptible (S G), infected (IG) and recovered (RG). HR represents the total red population (S R +IR)

and HG represents the total grey population (S G + IG + RG). The equations are:

∂S R

∂t
= (aR − qR(HR + cGHG))HR − bS R − βS R(IR + IG) (4.1a)

∂IR

∂t
= βS R(IR + IG) − IR(b + α) (4.1b)

∂S G

∂t
= (aG − qG(HG + cRHR))HG − bS G − βS G(IR + IG) (4.1c)

∂IG

∂t
= βS G(IR + IG) − IG(b + γ) (4.1d)

∂RG

∂t
= γIG − bRG. (4.1e)

All parameters are assumed to be non-negative and ai represents the maximum reproduc-

tion rate (where i = R for reds and i = G for greys), b the natural adult mortality rate for both

species, ci the competitive effect of species i on the other species and β the virus transmission

rate between species. We assume a positive carrying capacity, Ki, which is related to suscepti-

bility to crowding (qi) since Ki = (ai − bi)/qi. Red squirrels experience an additional mortality

due to the disease, at rate α, while the grey squirrels recover, to RG, at rate γ. Tompkins et al.

(2003) investigated the time taken to transform the disease-free red squirrel population equilibrium

((S R, IR, S G, IG,RG) = (KR, 0, 0, 0, 0)) to either the disease-free grey squirrel population equilib-

rium, (0, 0,KG, 0, 0), when considering competition-mediated replacement or the grey squirrel

population equilibrium with endemic infection, (0, 0, S ∗G, I
∗
G,R

∗
G), when considering competition

and infection-mediated replacement.

66



Chapter 4: A Stochastic Framework for Modelling Competition and Disease

Table 4.1 Parameters used in Tompkins et al. (2003).

Parameter Symbol Value Original Reference

Maximum reproductive rate (red) aR 1.0 (year−1) Okubo et al. (1989)
Maximum reproductive rate (grey) aG 1.2 (year−1) Okubo et al. (1989)

Natural mortality rate b 0.4 (year−1)
Gurnell (1987),
Wauters et al. (2000)

Carrying capacity (red) KR 60 (5km−2) Rushton et al. (1997)
Carrying capacity (grey) KG 80 (5km−2) Rushton et al. (1997)
Competitive effect on grey cR 0.61 Bryce et al. (2001)
Competitive effect on red cG 1.65 Bryce et al. (2001)
Virus transmission coefficient β 0.75 (km2year−1) Tompkins et al. (2003)
Mortality rate due to virus α 26 (year−1) Tompkins et al. (2002)
Recovery rate from virus per γ 13 (year−1) Tompkins et al. (2002)

Tompkins et al. (2003) estimated parameters from experimental and field data (table 4.1), and

with these parameters reds were always replaced if greys were introduced. The addition of squir-

relpox enabled grey squirrels to replace reds more quickly. Figure 4.1a shows the replacement

of reds with competition-only replacement while figure 4.1b shows the replacement when com-

petition and infection are mediating replacement. The reds are initially at their carrying capacity

(KR = 60) and the greys invade at a low density. The greys replace the reds and reach their carry-

ing capacity, while the red population dies out. The greys replace the reds faster when the disease

is also introduced (replacement took approximately 15 years in figure 4.1a but only 6 years in

figure 4.1b). This is caused by an initial epidemic in the reds, reducing the density of red squirrels,

which lessens the competition for resources and allows the greys to replace the reds more easily.

Tompkins et al. (2003) also shows that the endemic levels of infection in a red-only or grey-

only system are at low density. When a small number of infected reds are introduced into a
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Figure 4.1 Results from Tompkins et al. (2003) deterministic model (4.1a–e). Panel a shows
the results from competition-only mediated replacement and panel b the results from competition
and disease mediated replacement. The parameters are the same as those used by Tompkins et al.
(2003) and can be found in table 4.1. The initial conditions are the red squirrels at their carrying
capacity (KR = 60) and 2 susceptible greys (per 5km square) introduced in panel a and 2 infected
greys (per 5km square) introduced in panel b.
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Figure 4.2 Results from Tompkins et al. (2003) deterministic model (4.1a–e). In panel a, the
susceptible reds at their carrying capacity (KR = 60) and 2 infected reds are introduced. In panel
b, the susceptible greys at their carrying capacity (KG = 80) and 2 infected greys introduced.

disease-free red population the disease persists in the population at its endemic level (S ∗R, I
∗
R, 0, 0, 0)

(figure 4.2a). Similarly, when a small number of infected greys are introduced, into a disease-

free grey population, the disease persists in the population at its endemic level (0, 0, S ∗G, I
∗
G,R

∗
G)

(figure 4.2b). This persistence of the disease in low levels was highlighted by Tompkins et al.

(2003) as a potential reason why the disease was overlooked as a factor in the replacement of red

squirrels by greys. However, in a stochastic model framework the low level of disease may lead to

disease extinction.

Stochastic Model

We develop a probabilistic simulation model of Tompkins et al. (2003) system by following the

methods outlined in Renshaw (1991). These methods convert the rates in the Tompkins et al.

(2003) framework, such as the birth rate of a susceptible red squirrel, into probabilities that an

event will happen, such as the probability of a birth of a susceptible red squirrel. All the birth,

death, infection and recovery rates in the Tompkins framework are converted to an event, with an

associated probability of the event occurring. When an event occurs it changes the number of indi-

viduals in any particular class and hence the probabilities of an event occurring are updated. There

are 10 possible events that can occur in this model (see table 4.2) with a Probability Calculation

Value (PCV(i), i=1:10) connected to each one calculated from ((4.1a)–(4.1e)). The probability of

each event(p(i), i=1:10) can then be calculated using:

p(i) =
PCV(i)
PCVsum

where PCVsum =

10∑
i=1

PCV(i) (4.2)

The strategy to determine which event happens is as follows. A random-number (Y1) between

0 and 1 is calculated using a random number generator: if Y1 ∈
[
0 : p(1)) then event 1 occurs

68



Chapter 4: A Stochastic Framework for Modelling Competition and Disease

Table 4.2 Events in the stochastic Tompkins et al. (2003) model.

i Description Outcome PCV

1 Red birth S R → S R + 1 (aR − qR(HR + cGHG))HR

2 Susceptible red death S R → S R − 1 bS R

3 Infected red death IR → IR − 1 (α + b)IR

4 Infection of red S R → S R − 1 & IR → IR + 1 βS R(IR + IG)
5 Grey birth S G → S G + 1 (aG − qG(HG + cRHR))HG

6 Susceptible grey death S G → S G − 1 bS G

7 Infection of grey S G → S G − 1 & IG → IG + 1 βS G(IG + IR)
8 Death of infected grey IG → IG − 1 bIG

9 Recovery of infected grey IG → IG − 1 & RG → RG + 1 γIG

10 Death of recovered grey RG → RG − 1 bRG

and S R becomes S R + 1, if Y1 ∈
[
p(1) : p(1) + p(2)) event 2 occurs and S R becomes S R − 1,

if Y1 ∈
[
p(2) : p(1) + p(2) + p(3)) event 3 occurs and IR becomes IR − 1 and so on for all 10

possibilities. This method determines the event and updates the density of each population class.

We also need to determine when each event occurs, we again follow a method from Renshaw

(1991). The time between each event is called the inter-event time and denoted Te. From Renshaw

(1991), the time T from the current event to the next is assumed to be an exponentially distributed

random variable with

Pr(T > Te) = exp{−PCVsumTe}. (4.3a)

To simulate the inter-event time T = Te we generate a second random number, Y2 ∈ (0, 1), and set

exp{−PCVsumTe} = Y2. (4.3b)

Taking logarithms of both sides of 4.3b we get

−PCVsumTe = loge(Y2) (4.3c)

⇔ Te = −
loge(Y2)
PCVsum

. (4.3d)

This process can be repeated for any number of events or length of time. The stochastic nature of

the simulations means that each simulation will produce different results. We will therefore repeat

each simulation many times to provide a clear reflection of the trends and variability of our results.
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4.3 Results

To reproduce comparable scenarios to those investigated by Tompkins et al. (2003), the initial con-

ditions are set as the red squirrels at their carrying capacity with no disease present (KR, 0, 0, 0, 0).

A small number of greys are introduced (to analyse competition-mediated replacement) and a

small number of infected greys are introduced (to analyse competition and infection-mediated re-

placement). The default number of runs for the stochastic model was 10,000 and, to allow a direct

comparison with Tompkins et al. (2003), the same parameters were used (see table 4.1).

4.3.1 Competition-only scenario

To consider the system with no squirrelpox present, a small number of uninfected greys were

introduced. There are two possible outcomes in this stochastic competition-only model. The

greys can invade and replace the red squirrels (0, 0,KG, 0, 0) or the greys fail to invade and the reds

stabilise at their carrying capacity (KR, 0, 0, 0, 0) (figure 4.3). Figure 4.3a shows the percentage of

different outcomes recorded, just over half the time the greys manage to invade and replace the

reds. Figures 4.3b–c show the density of reds and greys over time in two typical simulations; the

greys die out in 4.3b while in 4.3c the greys manage to invade and replace the reds.

The number of greys, initially introduced, was altered to see the effect this had on the per-

centage of different outcomes. In figure 4.3a one grey has been introduced, in figure 4.4a two

greys have been introduced, in figure 4.4b five greys have been introduced and in figure 4.4c ten

greys have been introduced. We have not considered male and female squirrels separately as this

would greatly complicate the model. We have calculated the probability of a grey birth taking

the number of greys present, annual birth rates and competitive effects into account, therefore

one squirrel may reproduce alone without the presence of another squirrel. It can be seen that as
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Figure 4.3 Results from competition-mediated stochastic model with 1 grey invading. Panel a
shows the percentage of the two possible outcomes after 10,000 runs . Panels b and c show the
density of red and grey squirrels over time in two typical simulations. The parameters are the
same as those used by Tompkins et al. (2003) and can be found in table 4.1. The initial conditions
are the red squirrels at their carrying capacity (KR = 60) and one grey introduced.
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Figure 4.4 Percentage of the two possible outcomes from competition-mediated stochastic
model with different numbers of greys invading. There are 2 greys introduced in panel a, 5 in
panel b and 10 in panel c. All other parameters and initial conditions are the same as figure 4.3.

the number of greys increases, the proportion of simulations resulting in the greys excluding the

reds increases until the greys manage to invade and replace the reds in all of the simulations. In

Tompkins et al. (2003) the greys always successfully invade and replace the reds, regardless of

the number of greys introduced. The two outcomes seen here are a result of either the greys dying

out from small numbers or the greys establishing themselves and replacing the reds. If the greys

manage to establish themselves they always replace the reds.

These results highlight the differences between the deterministic and stochastic frameworks.

For a single realisation of the stochastic framework, there is a chance that a population at low

density will become extinct. However, if the introduction of greys is not at a low density or there

are repeated introductions of greys into the red populations over time, then at some point the grey

population will become established and replace the reds. The results would then mirror the results

found by Tompkins et al. (2003).

4.3.2 Competition-and-infection scenario

We next examine the effect on the replacement when there is disease present in the system, by

introducing a small number of infected greys. In Tompkins et al. (2003) model this resulted

in the greys replacing the reds and the disease persisting in the population at its endemic state

(0, 0, S ∗R, I
∗
R,R

∗
G).

Figure 4.5 shows the effect when one infected grey is introduced into a red population at its

carrying capacity. Figure 4.5a shows the percentage of different outcomes recorded, just over half

the time the greys manage to invade and replace the reds. This result is almost identical to the result

seen for the competition-only stochastic framework (figure 4.3a). Figures 4.5b–c show the density

of reds and greys over time in two typical simulations; as seen previously, the greys die out in 4.5b

and replace the reds in 4.5c. The success rate of the greys replacing the reds is not affected by the
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Figure 4.5 Results from competition-and-infection-mediated stochastic model with one grey
invading. Panel a shows the percentage of the two recorded outcomes after 10,000 simulations.
Panels b and c show the density of red and grey squirrels over time in two individual simula-
tions. The parameters are the same as those used by Tompkins et al. (2003) and can be found in
table 4.1. The initial conditions are the red squirrels at their carrying capacity (KR = 60) and one
infected grey introduced.
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Figure 4.6 Percentage of the two possible outcomes from competition-and-infection-mediated
stochastic model with different numbers of greys invading. There are 2 infected greys introduced
in panel a, 5 in panel b and 10 in panel c. All other parameters and initial conditions are the same
as figure 4.5.

disease. However, the replacement when successful is faster with disease present (see figures 4.3c

and 4.5c for a comparison). When we compare the average replacement time with and without

disease, in the simulations where replacement occurs, it can be shown that disease speeds up the

replacement.

If the numbers of introduced infected greys are increased, the proportion of successful in-

vasions increases (see figure 4.6). Only two outcomes are seen, the reds only with no disease

(KR, 0, 0, 0, 0) and the greys only with no disease (0, 0,KG, 0, 0). Regardless of the proportion of

simulations resulting in invasion and replacement of the reds, the disease does not persist in any of

the simulations (figure 4.6). The disease can cause an epidemic in the reds, however it always dies

out when the reds reach a low density and before the greys reach a high density (see figure 4.7).

The disease does allow the greys to replace reds more quickly, due to the initial epidemic in reds

rapidly reducing red numbers but the disease does not remain at endemic levels in the grey popu-

lation (figure 4.7). Thus, the outcome for the stochastic model is similar under competition-only

72



Chapter 4: A Stochastic Framework for Modelling Competition and Disease

0

20

40

60

80

100

D
en

si
ty

a

 

 

0 0.25 0.5 0.75 1
0

5

10

15

20

D
en

si
ty

Time (years)

b

 

 

S
R

S
G

R
G

I
R

I
G

Figure 4.7 Density of red and grey squirrels over time in one run (two infected greys intro-
duced). The time scale on the x-axis has been chosen to highlight the disease epidemic phase.
Panel a shows the density of susceptible reds (S R) and susceptible greys (S G) over time, the greys
are invading and replacing the reds. Panel b provides the densities of infected reds (IR) and in-
fected greys (IG) over time. Note that the infection dies out in both the red and grey populations.
All other parameters and initial conditions are the same as figure 4.5.

and competition and disease scenarios.

A motivation for producing this stochastic model is to develop a framework that can be com-

pared to “realistic” red squirrel refuge sites in the field. As the disease is endemic in grey pop-

ulations in the field, it is important that our model can also capture this behaviour. Therefore,

the following sections explore possible modifications to the stochastic model framework to allow

disease persistence in the grey population.

4.3.3 Grey-only scenario

We consider a model framework for the grey squirrels only and investigate a range of model

modifications that may allow the disease to persist within the the grey population. If one infected

grey is introduced to a grey-only population (0, 0,KG, 0, 0), in our stochastic model framework, the

disease does not persist in any of the simulations (figure 4.8a). Although the outcome is always the

same, there are two different paths to this outcome. Firstly, the disease does not manage to invade

and the population of susceptible population remains at the carrying capacity (see figure 4.8b).

Secondly, the disease manages to invade the susceptible population, there is an initial epidemic

causing the population to crash but the disease always dies out and the population recovers (see

figure 4.8c).
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Figure 4.8 Results from grey-only stochastic model with only one infected grey introduced.
Panel a shows the percentage of recorded outcomes after 10,000 runs. Panels b and c show
the density of susceptible (S G), infected (IG) and recovered (RG) grey squirrels over time in two
typical simulations. The parameters are the same as those used by Tompkins et al. (2003) and can
be found in table 4.1. The initial conditions are the susceptible greys at their carrying capacity
(KG = 80), no reds and one infected grey introduced.

The disease does not persist if the number of introduced infected greys is increased. If the

number of introduced infected greys is increased, the proportion of simulations involving a disease

epidemic followed by the disease dying out increases. If enough infected greys are introduced (ten

is sufficient), the disease will always invade the susceptible population, cause an epidemic and then

die out. Therefore, either the model assumptions or chosen parameters are inappropriate for the

stochastic model. Hence, we will investigate the following modifications to the model framework

and assess their effect on disease persistence:

• Carrying capacity

The carrying capacity currently considered is 80, this may be too small to sustain the in-

fection. We are going to investigate the potential for improving disease persistence by

increasing the carrying capacity.

• Seroprevalence

The seroprevalence is currently set at 74%, and defined to be the percentage of the recovered

class in the total population. The remaining 26% of the population encompasses the sus-

ceptible and infected population. There is some uncertainty about the level and definition

of the seroprevalence, we will investigate the effects of changing its level and its definition

(by assuming the seroprevalence includes the recovered and infected classes).

• Recovery time

There is a wide range of different values used, in the literature, for the recovery period.

These range from four weeks (Tompkins et al., 2003) to the lifetime of an infected grey

(Rushton et al., 2000). The current version of the model assumes a recovery period of four

weeks; hence we will investigate the effect, on disease persistence, of increasing this period
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of recovery.

• Spatial structure

Spatial structure, in particular metapopulations in which collections of subpopulations are

linked by dispersal, have been shown to allow populations to persist “globally” although

they may go extinct “locally” (Levins, 1969; Begon et al., 1996; Hanski and Gilpin, 1997;

Hanski, 1998). To assess whether spatial structure allows disease persistence, we will de-

velop a metapopulation representation of our system by linking a grid of subpopulations

that contain the temporal stochastic framework.

Carrying capacity

The value for the carrying capacity of the greys (KG), comes from Tompkins et al. (2003) (ta-

ble 4.1). To test the effect of this parameter on persistence of the disease within a grey-only

scenario, the carrying capacity is altered within the stochastic model. All other parameters remain

as in table 4.1 except the rate of virus transmission, β, which alters as the carrying capacity alters.

Tompkins et al. (2003) calculated β using the value for average seroprevalence against squirrelpox

seen in grey squirrel populations in England and Wales (74%) (Sainsbury et al., 2000). This can

be interpreted as 74% of the total population, at equilibrium, in a grey-only model is found in the

recovered class (R∗G)
R∗G

S ∗G + I∗G + R∗G
= 0.74. (4.4)

Since, S ∗G =
b + γ

β
, I∗G =

b(βKG − b − γ)
β(b + γ)

and R∗G =
γ(βKG − b − γ)

β(b + γ)
we get

R∗G
S ∗G + I∗G + R∗G

=
γ(βKG − b − γ)
βKG(b + γ)

= 0.74 (4.5)

∴ β =
γ(b + γ)

KG(γ − 0.74(b + γ))
(4.6)

∴ β =
56.485

KG
( γ = 13 and b = 0.4 ( from table 4.1)) . (4.7)

As our estimate of the carrying capacity increases, we must decrease our estimate of the disease

transmission rate, β, to maintain the correct seroprevalence level. Figure 4.9 shows that as the

carrying capacity increases, the disease is more likely to persist. Although the rate of transmission

is lower, the higher density of the grey population allows the disease to be maintained within the

population. However, the carrying capacity has to be increased considerably to allow the disease

to persist and this means we are considering a large, well-mixed population and, therefore, ap-
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Figure 4.9 Effect of varying carrying capacity (KG) on grey-only stochastic model with ten
infected greys introduced. In panel a KG = 800, in panel b KG = 1500 , in panel c KG = 8000
and in panel d KG = 80000. All other parameters are the same as those used by Tompkins et al.
(2003) and can be found in table 4.1.

proximating the mean-field system. We want to consider a stochastic model in which low density

is important, and increasing the carrying capacity to large levels will not allow us to consider this

effect. In further model formulations we will consider the grey carrying capacity to be 80 or 1500,

and examine other modifications that will allow disease persistence. (Here we choose 1500 as it

represents the size of the squirrel population in the Formby refuge, hence it will be important in

Chapter 5.)

Seroprevalence

To allow investigation into the effect of seroprevalence on disease persistence, we apply two differ-

ent modifications to the model. Firstly, we will lower the seroprevalence to allow the susceptible

and infected class to represent a larger proportion of the population. Secondly, we modify the sero-

prevalence definition to include both the recovered and infected classes, which may boost infected

numbers.

Although seroprevalence is not a parameter, it is used to calculate the rate of virus transmission

(β). If the seroprevalence is varied, the rate of virus transmission will subsequently change (see

equations 4.4–4.7). The virus transmission rate β is calculated for each of the different values of

seroprevalence and carrying capacity (see table 4.3).

At the original carrying capacity of 80 used by Tompkins et al. (2003) altering seroprevalence,
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Table 4.3 Virus transmission rate (β)

Seroprevalence β when KG = 80 β when KG = 1500

0.1 0.187 0.01
0.25 0.226 0.012
0.5 0.346 0.018
0.74 0.706 0.038

and consequently virus transmission rate, has no effect on the outcome of the invasion (figure 4.10).

Identical results, to those seen in figure 4.10, are obtained if the carrying capacity is increased to

1500. The value of seroprevalence does not affect the persistence of the disease at either of the

carrying capacities.

Tompkins et al. (2003) defined seroprevalence, s, to be the proportion of the whole population

in the recovered class. It could, conceivably, be defined as the proportion of the whole population

who are infected, that is
I∗G + R∗G

S ∗G + I∗G + R∗G
= s. (4.8)
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Figure 4.10 Effect of varying seroprevalence in the grey-only stochastic model. In panel a
the seroprevalence is set to 0.1, in panel b 0.25, in panel c 0.5 and in panel d 0.74. All other
parameters are the same as those used by Tompkins et al. (2003) and can be found in table 4.1.
The initial conditions are the susceptible greys at their carrying capacity (KG = 80), no reds and
ten infected greys introduced.
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Table 4.4 Virus transmission rate (β)
with seroprevalence defined as I∗G+R∗G

S ∗G+I∗G+R∗G
.

Seroprevalence β when KG = 80 β when KG = 1500

0.1 0.186 0.01
0.25 0.223 0.012
0.5 0.335 0.018
0.74 0.644 0.035

This can be used to calculate a new value for β as follows

I∗G + R∗G
S ∗G + I∗G + R∗G

=
βKG − b − γ

βKG
= s (4.9)

∴ β =
b + γ

(1 − s)KG
(4.10)

β =
13.4

(1 − s)KG
( γ = 13 and b = 0.4 ( from table 4.1)) . (4.11)

We again consider the values 0.1, 0.25, 0.5 and 0.74 for seroprevalence and both 80 and 1500 for

carrying capacity. The resulting virus transmission rates (β) are very similar to those seen earlier

(see table 4.4).

The disease did not manage to persist within the population in any of the simulations, all

results were identical to those seen in figure 4.10. Therefore, redefining seroprevalence did not

allow the disease to persist within the population. We conclude that seroprevalence has no notable

effect on the persistence of disease within the grey-only population.

Recovery time

There is uncertainty, within the literature, regarding the length of time grey squirrels remain in-

fected. Tompkins et al. (2003) used a recovery time (defined as the average length of time for an

infected grey to recover) of 4 weeks while Rushton et al. (2000) assume a grey remains infected

for the rest of its life. We wish to investigate the effect of altering the recovery time, on disease

persistence, in our stochastic model. The recovery time is calculated as the inverse of the recovery

rate
(

1
γ

)
.

We fix the seroprevalence as
R∗G

S ∗G + I∗G + R∗G
= 0.74 and examine grey carrying capacities of

80 and 1500; resulting in a possible range of γ from 13 to 2 (with consequential recovery times of

4 to 26 weeks). If the carrying capacity is 80, the length of the recovery period has no effect on

disease persistence. When the carrying capacity is 1500, the disease persists within the population

78



Chapter 4: A Stochastic Framework for Modelling Competition and Disease

   (0,0,KG,0,0)  (0,0,SG*,IG*,RG*)
0

20

40

60

80

100

P
er

ce
nt

ag
e

Outcome

a

   (0,0,KG,0,0)  (0,0,SG*,IG*,RG*)
0

20

40

60

80

100

P
er

ce
nt

ag
e

Outcome

b

   (0,0,KG,0,0)  (0,0,SG*,IG*,RG*)
0

20

40

60

80

100

P
er

ce
nt

ag
e

Outcome

c

   (0,0,KG,0,0)  (0,0,SG*,IG*,RG*)
0

20

40

60

80

100

P
er

ce
nt

ag
e

Outcome

d

Figure 4.11 Effect of varying recovery (γ) in the grey-only stochastic model with a carrying
capacity of 1500. The recovery time in panel a is 26 weeks, panel b is 10.4 weeks, panel c is
6.5 weeks and panel d is 4.7 weeks. All other parameters and initial conditions are identical to
figure 4.9.

2 4 6 8 10 12 14
0

20

40

60

80

100

P
er

ce
nt

ag
e 

(p
er

si
st

en
ce

)

Recovery Rate (γ)

Figure 4.12 Effect of varying recovery (γ) on infection-only stochastic model with a carrying
capacity of 1500. All other parameters and initial conditions are identical to figure 4.9.

provided the recovery time is long enough (see figure 4.11). This can be seen clearly by plotting

the percentage of disease persistence against the recovery rate (figure 4.12). At low recovery

rates (longer recovery times) the disease always persists. For intermediate levels of recovery (γ

between 6 and 11) there is a gradual decrease in the proportion of simulations resulting in disease

persistence and at high recovery rate the disease is excluded.

Similar results are also found for the alternative definition of seroprevalence,
I∗G + R∗G

S ∗G + I∗G + R∗G
, see figure 4.13 where γ is varied from 0 to 14 (here, γ = 0 implies that we are

representing the grey population by an SI disease framework and equates to the assumption of

lifetime infection used by Rushton et al. (2000)).
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Figure 4.13 Effect of varying recovery (γ) in the grey-only stochastic model with a carrying
capacity of 80 in panel a and 1500 in panel b. Seroprevalence is now defined as I∗G+R∗G

S ∗G+I∗G+R∗G
. All

other parameters and initial conditions are identical to figure 4.9.

Therefore, extending the recovery time is a modification that can be employed to allow the

disease to persist. Later in this chapter, we will consider the implications of this modification in

the “full” red/grey/squirrelpox stochastic model.

Spatial structure

Spatial structure has been shown to allow metapopulation persistence, even when local populations

can temporarily become extinct (Begon et al., 1996; Hanski and Gilpin, 1997). To generate a

spatial stochastic version of our model we let the current model (as described in section 4.2)

represent one patch, and consider an array of connected patches. The disease may manage to

persist if it can spread to another patch before it dies out in its current patch. Our spatial model

will extend our earlier stochastic model; therefore in each patch there is the possibility of the

previous birth, death, infection or recovery event (table 4.2) but in addition there is the possibility

of dispersal to a neighbouring patch.

We consider a one-dimensional row of eleven identical patches that link in a circular manner

(figure 4.14). Individuals can move to an adjacent patch on either side, with patches 1 and 11

1 2 3 4 5 6 7 8 9 10 11

Figure 4.14 One-dimension grid for spatial stochastic model.

linked. All individuals are assumed to move at a rate, m, proportional to squirrel density; this is

used to calculate the probability of movement with an equal chance of the squirrels moving in

both directions. Our model assumes a healthy population of susceptible greys in every patch and

introduce a small number of infected grey squirrels into patch 6. The spatial model is implemented
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Figure 4.15 Outcomes from one-dimensional spatial stochastic model with 11 patches, carry-
ing capacity of 80 and a spatial parameter m = 0.4. Panel a shows the percentage of simulations
resulting in each outcome. Panel b plots the density of each class over time in patch 1.

by firstly calculating a PCV for each possible event, including all those in table 4.2 and movement

to adjacent patches, in each patch. Therefore, the model considers each event in each patch with

its own PCV and the probability of each event is then calculated using equation 4.2. The same

strategy as earlier, involving a random number, is implemented to determine which of all the events

in all the patches happens.

The disease does not persist when the carrying capacity is 80 and the dispersal rate is small

(figure 4.15a). The low dispersal rate results in the disease failing to spread across the landscape

(it fails to reach patch 1, following its introduction into patch 6 and there are no infected individ-

uals at any time point in figure 4.15b). This is shown clearly by plotting the populations density

against space at different times (figure 4.16). The disease is introduced into patch 6, causing an

initial wave of infected greys (see figure 4.16b). The infected greys do not spread further than

patches 4 and 8 (figure 4.16b,e,h, and k), before dying out or recovering (figure 4.16n). The popu-

lations is behaving like a single patch, with the disease dying out due to small numbers of infected

individuals.

When the dispersal rate is increased, for patches with a carrying capacity of 80, the disease

does spread across the whole landscape; however, it does not persist (see figure 4.17a). There

is one outbreak of the disease in patch 1, resulting in an epidemic followed by the population

recovering and the disease dying out (figure 4.17b). By examining the spatial dynamics over time

it can be seen that the disease spreads across the landscape in two waves (figure 4.18). However,

these two waves eventually collide and behind the wave there is no susceptible population to

infect, meaning the infection dies out. We have carried out further investigation in which the one-

dimensional spatial array is extended or a two-dimensional array patches is considered, but in all

cases the disease dies out when the patch carrying capacity is 80.

If the carrying capacity is increased to 1500, the disease persists in all simulations (see fig-

ure 4.19a). It again spreads out with two waves of infection (figure 4.20) causing an initial epi-
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Figure 4.16 Effect on different classes in one-dimensional spatial stochastic model with carry-
ing capacity of 80 and a spatial parameter m = 0.4. Density of susceptible greys (panels a, d, g,
j and m), infected greys (panels b, e, h, i and j) and recovered greys (panels c, f, i, l and o) in all
11 patches. These results have been smoothed using a spline function to allow representation of
the spatial waves.
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Figure 4.17 Outcomes from one-dimensional spatial stochastic model with 11 patches, carry-
ing capacity of 80 and a spatial parameter m = 0.8. Panel a shows the percentage of simulations
resulting in each outcome. Panel b plots the density of each class over time in patch 1.

demic in each patch (see patch 1 in figure 4.19b). However when these waves meet, unlike earlier,

there are enough susceptibles behind the wavefront to allow the disease to persist within the land-

scape (figure 4.20). The disease is sustained in each patch with small oscillations close to zero.

Therefore, spatial structure allows the disease to persist, provided the carrying capacity in

each patch is sufficiently large. However it is important to note, in the absence of space, the

disease did not persist with a carrying capacity of 1500 (see figure 4.9). The spatial structure is
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Figure 4.18 Effect on different classes in one-dimensional spatial stochastic model with carry-
ing capacity of 80 and a spatial parameter of m=0.8. Density of susceptible greys (panels a, d,
g, j and m), infected greys (panels b, e, h, i and j) and recovered greys (panels c, f, i, l and o) in
all 11 patches. These results have been smoothed using a spline function to allow representation
of the spatial waves.

not equivalent to increasing the overall carrying capacity, it allows the disease to persist at lower

total population numbers than would be possible in a single site. The results, here, hold for a large

range of dispersal rates (above a minimum value).

The one-dimensional spatial structure applied to the stochastic model allows the disease to

persist in the grey-only population. Other forms of spatial structure could be included and we

have examined a range of two-dimensional spatial arrangements including a 11x11 patch grid and
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Figure 4.19 Outcomes from one-dimensional spatial stochastic model with 11 patches, car-
rying capacity of 1500 and a spatial parameter of m = 0.4. Panel a shows the percentage of
simulations resulting in each outcome. Panel b plots the density of each class over time in patch
1.
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a 51x51 patch grid. This also allows the disease to persist, at carrying capacities lower than 1500,

but the results are qualitatively similar (persistence over all patches with small oscillations, near

zero, in infected numbers in an individual patch). The two-dimensional spatial arrangement is

more complicated to model and implement, due to movement in four directions rather than two,

resulting in longer computational time. Therefore, as the results are qualitatively similar we chose

to use a one-dimensional grid.

Summary

The following four modifications were examined to investigate their effect on disease persistence

in a grey-only stochastic model.

• Carrying capacity

The disease can persist if the carrying capacity is increased considerably. However, this

does not reflect the importance of small population numbers on the outcome, so will only

consider carrying capacities of 80 and 1500 for grey squirrels.

• Seroprevalence
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Figure 4.20 Effect on different classes in one-dimensional spatial stochastic model with carry-
ing capacity of 1500 and a spatial parameter of m = 0.4. Density of susceptible greys (panels a,
d, g, j and m), infected greys (panels b, e, h, i and j) and recovered greys (panels c, f, i, l and o) in
all 11 patches. These results have been smoothed using a spline function to allow representation
of the spatial waves.
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Figure 4.21 Results from competition-mediated stochastic model with carrying capacities
KG = 1500 and KR = 1125. Panel a shows the percentage of possible outcomes and panel b
shows the density of red and grey squirrels over time in an individual run. All other parameters
are the same as those used by Tompkins et al. (2003) and can be found in table 4.1. The initial
conditions are the red squirrels at their carrying capacity (KR = 1125) with ten greys introduced.

Altering the seroprevalence has no notable effect on the persistence of disease within the

grey-only population.

• Recovery time

The disease persists, with a carrying capacity of 1500, if the recovery time is greater than

8.7 weeks (recovery rate is less than 6).

• Spatial structure

If the carrying capacity is 1500, a one-dimensional spatial structure allows the disease to

persist.

We did not find any “realistic” modifications, that allowed the disease to persist with a car-

rying capacity of 80, the baseline carrying capacity value used in Tompkins et al. (2003). If

the carrying capacity is 1500, realistic changes in the recovery time or a simple spatial struc-

ture allow the disease to persist. We now wish to investigate the effect of these modifications on

the full red/grey/squirrelpox model framework and examine their effect on competition-only and

competition-and-infection mediated replacement of red squirrels by greys.

4.3.4 Model modifications

The modifications we wish to consider, all assume the carrying capacity of the greys is 1500. To

maintain the same relationship between the carrying capacities as Tompkins et al. (2003), we set

the red carrying capacity as 1125. In a competition-only scenario, the greys always replace the

reds (see figure 4.21a). This replacement takes approximately 21 years as shown in figure 4.21b.
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Recovery time

If we examine the effect of increasing the recovery time (from 8.7 weeks up to the lifetime of

the infected grey) on competition-and-infection replacement we find that the disease dies out; the

results are analogous to those of competition-only replacement (figure 4.21). Here, the disease

does not manage to persist, in the red population, and dies out before there are sufficient greys to

sustain it. Therefore, although disease can be sustained in a grey-only population it does not play

a significant role in the invasion and replacement dynamics of red squirrels by greys.

Spatial Structure

We consider a one-dimensional spatial framework as displayed in figure 4.14. We consider the red

squirrels at their carrying capacity in every patch except one patch with greys present. The greys

will either be at their carrying capacity, when considering competition-only, or at endemic levels

when considering disease. The grey squirrels invade and replace the reds across the landscape (in

every patch), regardless of the presence of disease (see figure 4.22). If the disease is present, it

persists across the landscape in the grey population (figure 4.22b). The disease enables the greys

to replace the reds more quickly; it takes approximately 15 years without disease and 8 years

with the disease (figure 4.22). This agrees with the earlier findings from the deterministic model

(Tompkins et al. (2003)).

The disease is spreading in two waves, from it’s introduction in patch 6, across the landscape.

In a similar manner to the models discussed in chapter 3, the disease spreads across the landscape

in advance of the greys (figure 4.23b highlights this phenomenon).
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Figure 4.22 Total densities, across landscape, in competition-only (panel a) and competition-
and-infection (panel b) spatial stochastic frameworks. The spatial framework is a one-
dimensional loop of 11 patches; the densities, of each class, have been summed over all patches.
The carrying capacities are KG = 1500 and KR = 1125 and all other parameters are the same as
those used by Tompkins et al. (2003) and can be found in table 4.1.
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Figure 4.23 Effect on different classes in competition-only (panel a) and competition-and-
infection (panel b) spatial stochastic model (time = 1 year). The parameters are the same as
those used in figure 4.22.

4.4 Discussion

In this chapter, we developed a stochastic model of the red/grey/squirrelpox system, to examine

the effects of small numbers on this system. A further motivation, for considering this model,

is to develop a “realistic” framework to model red squirrel refuge sites in the field. The model

was based on, and allowed comparison with, the deterministic model framework proposed by

Tompkins et al. (2003) for the squirrel system.

Our initial comparisons between competition-only and competition-and-infection scenarios,

showed that the disease did not persist within the grey population. An assessment of the grey-

only model framework, concluded that either the model assumptions or chosen parameters were

inappropriate. Therefore, we investigated the following modifications to the stochastic model

framework to assess their effect on disease persistence:

• Carrying capacity

The baseline carrying capacity of 80, used by Tompkins et al. (2003), was increased to in-

vestigate its effect on disease persistence. Although significantly larger carrying capacities

would allow the disease to persist, we would no longer be modelling the importance of

small population numbers on the outcome. Therefore, we chose to only consider carrying

capacities of 80 and 1500 for grey squirrels.

• Seroprevalence

Tompkins et al. (2003) used a seroprevalence value of 74% and defined this as the per-

centage of the recovered class in the total population. We assessed the effect of lowering

seroprevalence, and also the effect of changing the definition to include both the recovered

and infected classes. Neither of these modifications allowed the disease to persist resulting

in a conclusion that seroprevalence has no notable effect on the persistence of disease in a

grey-only population.
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• Recovery time

The recovery time, calculated as the inverse of the recovery rate
(

1
γ

)
, was modified to

assess its effect on disease persistence. It was considered for both carrying capacities (80

and 1500) and over a wide range of values (from 4 weeks (the value used by Tompkins

et al. (2003)) to the lifetime of an infected grey squirrel (as considered by Rushton et al.

(2000))). Our investigation showed that the disease did not persist with a carrying capacity

of 80. However, we concluded that with a carrying capacity of 1500, the disease persists if

the recovery time is greater than 8.7 weeks (a recovery rate of less than 6).

• Spatial structure

We applied a one-dimensional spatial grid to our stochastic model to assess its potential for

allowing disease persistence. Our spatial structure consisted of eleven linked patches and

each patch was modelled using the temporal stochastic model. This modification, allowed

the disease to persist with a carrying capacity of 1500.

Two modifications allowed the disease to persist within a grey-only population, with a carrying

capacity of 1500. These, were an increased recovery time and spatial structure, and both modifica-

tions were then considered in a red/grey/squirrelpox model framework. The disease did not persist

in the “full” system when the recovery time was increased, but it did when a one-dimensional

spatial framework was adopted. Therefore, the only suitable modification to the model to allow

disease to persist is the spatial framework.

Our spatial structure transforms the population into a metapopulation, consisting of subpopula-

tions with migration between neighbouring patches. Harrison and Taylor (1997) stated metapopu-

lation theory was based on “the fundamental theory that the persistence of species depends on their

existence as sets of local populations largely independent yet interconnected by migration”. The

metapopulation, as a whole, persists as a result of migration between subpopulations. There are

“local” extinctions, within subpoulations, followed by recolonisation from neighbouring patches

(Begon et al., 1996).

The dispersal rate, is an important parameter within a metapopulation model as it governs the

ability of individuals to move between patches. If the dispersal parameter is increased, recoloni-

sation following local extinction will happen faster; this may, in turn, improve the persistence

chances of the metapopulation. However, there are negative effects of increased dispersal, as dis-

cussed by Hess (1996) in relation to corridors between patches. One of the negative impacts,

outlined by Hess (1996), is the increased spread of infectious diseases (see Grenfell and Harwood

(1997) for a review of disease dynamics within metapopulations).

A relevant example, to our work, of a metapopulation framework was used by Foley et al.
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(1999) to model feline enteric coronavirus dynamics in domestic cats. Their framework differs

from ours as there is no recovered class and infecteds can recover back to the susceptible class

(SIS). However, they too considered a stochastic model framework and found that the disease did

not persist in an isolated population but did within a metapopulation.

The spatial structure, showed the disease enabling the greys to replace the reds faster (approx-

imately 15 years without disease and 8 years with the disease, figure 4.22). These findings are

very similar to those of Tompkins et al. (2003), whose deterministic model showed a replacement

without disease taking 15 years and replacement with disease taking 6 years. Tompkins et al.

(2003) also highlighted that the disease was only present in small numbers, and offered this as a

reason why disease may be overlooked in observational studies. Our results also highlight this, as

there is small oscillations, near zero, of the infected class seen in our spatial framework.

Our spatial results also show the disease spreading, across the landscape, into the red squir-

rel populations in advance of the greys. This agrees with evidence collected from the field by

Reynolds (1985) (replacement of red squirrels by greys in East Anglia between 1960 and 1981).

Diseased red squirrels were found in spatial locations, before any grey squirrels. These findings

were assumed, at the time, to show that the disease was not connected to the invasion of grey

squirrels. However, our models show that this is not the case and the disease is a result of the grey

invasion. This phenomenon was also seen in our spatial deterministic results, reaction-diffusion

equations, in Chapter 3. These findings indicate the importance of considering individuals to be a

discrete entity; they also highlight how useful deterministic approaches can be in laying down the

key mechanisms that determine the population dynamics.

In the next chapter, we hope to build a “realistic” model of a refuge for red squirrels similar

to the refuge in Formby, Merseyside. Based on the findings above, we will use a spatial stochastic

model framework as the foundation from which to build the refuge model.
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Chapter 5

A StochasticModel of a

Red Squirrel Refuge

5.1 Introduction

In this chapter we will develop the spatial stochastic model, seen in Chapter 4, to represent a variety

of strategies for red squirrel conservation. One conservation strategy employed for red squirrels

is the establishing of red squirrel refuges with surrounding buffer zones. The aim of a refuge and

buffer zone is to isolate the red squirrel population from greys found in the wider population. We

wish to develop a model encompassing a refuge, buffer zone and wider population; this model will

allow analysis into the effectiveness of buffer zones and also of further conservation efforts such as

culling. Our model will be based on the refuge at Formby, Merseyside but is applicable to general

refuges and strategies.

The United Kingdom has seen its native red squirrel, Sciurus vulgaris, replaced by the in-

troduced North American grey squirrel, Sciurus carolinensis, since its first introduction in 1876

(Middleton, 1930; Lloyd, 1983; Reynolds, 1985). It is now widely acknowledged that the re-

placement of red squirrels by greys has been aided by the greys acting as a reservoir host for

squirrelpox (Sainsbury et al., 2000; Tompkins et al., 2003). There are now over 2.5 million grey

squirrel widespread throughout Britain (Harris et al., 1995). However, there are believed to be

only 160,000 red squirrels left in Britain with 75% of these found in Scotland, 19% in England

and 6% in Wales (Harris et al., 1995; Battersby and Partnership, 2005).

The Forestry Commission Scotland has undertaken a consultation process to identify 18 red

squirrel “strongholds” throughout Scotland (Forestry Commision Scotland, 2009). It is currently

seeking formal agreements with relevant landowners. This forms part of the “Red Squirrel Action

Plan 2006–2011”, which gives details of squirrel conservation plans for Scotland. These plans in-
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clude grey control programs throughout Scotland, forest management to promote habitat suitable

for red squirrels and the formation of red squirrel refuges or “strongholds” (Forestry Commision

Scotland et al., 2006). The proposed 18 strongholds are all forests between 2,400 and 14,400

hectares, meaning 100,000 hectares of woodlands would be allocated to red squirrel conservation

in Scotland. The forests would be improved for red squirrels within the strongholds, threats from

greys would be minimised and continual research and monitoring carried out. They are not in-

tending to provide buffer zones around the strongholds but recognise that site-specific measures

may be needed. The proposed strongholds are located in the following woodlands:

1. Morangie Forest (Highland)

2. Glen Glass (Highland)

3. Culbin (Grampian and Moray / Highland)

4. Black Isle (Highland)

5. Ordiequish, Whiteash, Ben Aigan (Grampian and Moray)

6. Daviot Loch Moy (Highland)

7. Abernethy, Nethy Bridge (Highland)

8. Inshriach and Glenfeshie (Highland)

9. Glentochty (Grampian and Moray)

10. Balmoral to Inver (Grampian and Moray)

11. Leanachan (Highland)

12. South Rannoch (Tayside)

13. Inverliever (Argyll)

14. Eredine (Argyll)

15. Kilmichael (Argyll)

16. Eskdalemuir(Dumfries and Galloway)

17. Fleet Basin (Dumfries and Galloway)

18. Glenbranter (Argyll)

The strongholds are being proposed as a contingency plan in case the ongoing forestry manage-

ment to favour red squirrels and grey culling in Scotland does not prevent the greys spreading

through Scotland. The Isle of Arran is the only Scottish island with a resident red squirrel popu-

lation. Although it has not been specifically named as a stronghold site, measures are being put

in place on the island to protect the reds from invading greys and forests are being managed to

provide a red refuge in the future if necessary (Forestry Commision Scotland, 2009).

The Welsh population is confined to Tywi, Crychan, Irfon, Brechfa and the island of Angle-
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sey (there are also two small populations believed to exist near Bala and Dolgellau) (Cartmel,

2003). The Island of Anglesey lies off the North Wales coast, it is separated from the mainland

by the narrow Menai Straits and is linked by two bridges. Although red squirrels were once

widespread on the island, the population had decreased to approximately 40 red squirrels in 1998

as a result of grey squirrel invasion. Due to the near extinction of the red population, a local

conservation group “The Friends of the Anglesey Red Squirrels” was formed and grey squirrel

control implemented (approximately 8,000 greys were removed from the island of Anglesey be-

tween 1998 and 2009). The grey control strategies were followed by a successful reintroduction

programme (six red squirrels were released between 2006 and 2008). The grey squirrel control

and reintroduction of red squirrels continues in Anglesey with positive results for red squirrels

(see http://www.redsquirrels.info/index.html).

The majority of the English red squirrel population are found in the North of the country

with only small populations, isolated from greys, in the South. These pockets of remaining red

squirrels can be found in Cannock Chase the Isle of Wight and three small islands in Poole Harbour

(Kenward and Holm, 1993). There was a small population of red squirrels surviving in Thetford

Chase, Norfolk until recent years. A refuge was set up and grey squirrel control along with red

squirrel reintroductions implemented; however, the reintroductions were unsuccessful as a result

of squirrelpox (Gurnell et al., 2002). It is now believed that there are no red squirrels left in this

area (Carroll et al., 2009). It is estimated that 85% of the remaining population in England is found

in Cumbria, North Lancashire and Northumberland (Harris et al., 1995). Following an assessment

of all the forests in Cumbria, Lancashire, Northumberland, Yorkshire and Durham in 2001–2004,

the following 16 sites were chosen as “National Squirrel Refuge and Buffer Zones” (SAVE OUR

SQUIRRELS, 2005):

1. Kielder (Northumberland / Cumbria)

2. Kidland (Northumberland)

3. Uswayford (Northumberland)

4. Harwood (Northumberland)

5. Kyloe (Northumberland)

6. Raylees (Northumberland)

7. Greystoke (Cumbria)

8. Garsdale/Mallerstang (Cumbria)

9. Widdale (North Yorkshire)

10. Thirlmere (Cumbria)

11. Sefton (Merseyside)
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.

 

Figure 5.1 Map outlining Sefton Coast Refuge and Buffer Zone, courtesy of Sefton Council
(available from http://sefton.gov.uk).

12. Whinfell (Cumbria)

13. Dipton/Dukeshouse Wood (Northumberland)

14. Healey/Kellas (Northumberland)

15. Slaley/Dukesfield (Northumberland)

16. Whinlatter (Cumbria).

The National Trust site at Formby is one of the remaining red squirrel populations in Northern

England; the squirrels have been a tourist attraction for many years with organised red squirrel

walks and peanuts sold for feeding. It officially became a refuge in 2005 when the Sefton Coast

Woodlands became one of the 16 National Squirrel Refuge and Buffer Zones (Burkmar, 2006).

The woodlands consist of mainly conifers making them well suited for red squirrels; they are

actively managed to ensure they are suited to red squirrels by the Sefton Coast Woodlands Forest
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Figure 5.2 Population trends of red squirrel population within Sefton Coast Red Squirrel
Refuge. These results are reproduced from White (2009b)

.

Plan (Whitfield, 2008). There are small pockets of woodlands within the buffer zone, as well as

agricultural and urban areas (figure 5.1 shows a map outlining refuge and buffer zones).

Red squirrels occupy both the refuge and buffer zone; they are a vulnerable population and

considerable conservation efforts are carried out to protect and maintain the populations within

the refuge and buffer zone. A large number of organisations are involved in the conservation,

with the majority of the work being carried out by volunteers and coordinated by Red Alert (as

part of the, The Heritage Lottery funded, “SAVE OUR SQUIRRELS” project) (Burkmar, 2006).

The main threat to the Formby populations is the spread of grey squirrels into the refuge and

resulting outbreaks of squirrelpox. Other potential threats include road mortalities and over-mature

woodlands no longer providing suitable food resources (Whitfield, 2008).

The squirrel population in the refuge and buffer zone, have been monitored since 2002 using

line transect surveys White (2009b). This data is used to produce a population index, highlighting

the population trends since 2002 (figure 5.2). The red squirrel population in the refuge suffered

declines in 2003, following the first reported squirrelpox outbreak in Formby. The population did

show signs of recovering following this outbreak; unfortunately another outbreak of squirrelpox

occurred in 2006 and major declines followed. As a result, by Autumn 2008 the red squirrel

population within the refuge had declined by 80% (compared to 2002) (White, 2009b). Prior to

the squirrelpox outbreaks, the refuge was believed to carry a population of up to 1500 red squirrels

with a minimum spring population of between 800 and 1000 squirrels. In July 2009, the population

was estimated to be between 150 and 200 red squirrels although thought to be recovering (White,

2009a). There was a confirmed case of squirrelpox in October 2009, although this is not thought

to have spread (Lancashire Wildlife Trust, 2009).

Squirrelpox will be a major consideration in our model as it is not only one of the main threats
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to the red squirrel population at Formby but also to the other British red squirrel refuges. Following

the analysis in Chapter 4, we will develop a refuge model that is represented by an array of patches

connected by dispersal between neighbouring patches.

5.2 Model

We will consider a spatial stochastic framework, with three regions: refuge, buffer zone and land-

scape. The refuge and buffer zone will both be single patches and the landscape an array of 11

locally connected patches (see figure 5.3). We showed in Chapter 4 the 11 patch spatial arrange-

ment allows persistence of squirrelpox, across the landscape, in the grey population. The refuge

and buffer zone are connected, and the buffer zone is connected to one of the landscape patches.

Therefore, the only route for a squirrel to enter the refuge is through the buffer zone, and there is

only one route from the landscape to the buffer zone (see figure 5.3). This allows comparison with

the Formby refuge, where the sea is located on one side and the buffer zone on the other.

The model framework consists of each patch being modelled in an identical manner to the

stochastic model used in chapter 4 (see section 4.2 for a description). We will undertake the

following analysis to assess a variety of conservation and management strategies:

• Baseline scenario

In this scenario the refuge and buffer zone are identical and there are no management strate-

gies in place. Therefore, this scenario models the red/grey/squirrelpox system if there is no

effective refuge or buffer zone in place. We will use this scenario as a baseline to compare

the various conservation and management strategies.

• Buffer zone characteristics

We consider the effect, on the red squirrel population within the refuge, of the level of

Figure 5.3 A schematic representation of the spatial stochastic model involving refuge, buffer
zone and landscape patches.
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connectivity between the buffer zone and the landscape. We also assess the effect of varying

habitat suitability, for squirrels, within the buffer zone.

• Management strategies

Grey squirrel control is a common management strategy used in red squirrel refuge and

buffer zones. We analyse the effect of two different control strategies on red squirrel popu-

lations within refuges.

5.3 Results

Baseline scenario

We will initially consider a baseline scenario in which no conservation strategies are applied. To

allow comparison with the Formby refuge, the red carrying capacity is taken to be 1125 and grey

carrying capacity 1500 (Whitfield, 2008). The disease transmission rate is determined using the

methods outlined in Chapter 4. Following a comparison of simulations using a range of spatial

parameters, a spatial parameter of 0.2 has been chosen as a baseline as this corresponds to a value

that allows grey squirrel and disease persistence in the spatial model. All other parameters are

the same as those used by Tompkins et al. (2003) and can be found in table 4.1. As in Chapter

4, we carry out a default number of 10,000 simulations in each scenario. The initial conditions

consist of the reds alone, at their carrying capacity, in the refuge and buffer zone and the greys

at “realistic” endemic levels, across the landscape. Our work in Chapter 4 suggested squirrelpox

persists, amongst the greys, by spreading in waves across the landscape. To allow us to capture

these waves within the initial conditions, we ran a grey-only simulation in the 11 landscape patches

for a long time period (a spin-up phase). The final densities of susceptible, infected and recovered

greys in each patch were recorded and used as initial conditions for the baseline scenario.

In the baseline scenario, the susceptible and recovered greys disperse into the buffer zone

almost immediately, with a squirrelpox epidemic occurring amongst the reds within a year. The

invasion of greys and the squirrelpox epidemic result in the reds being replaced by the greys, in

the buffer zone, within five years (we ran multiple simulations, figure 5.4b plots a simulation with

representative behaviour). A similar pattern is observed in the refuge, however the presence of the

buffer zone delays the process meaning the invasion, squirrelpox epidemic and replacement occur

later (figure 5.4). The reds are replaced and the greys establish themselves, within the refuge

and buffer zone, with squirrelpox at endemic levels (figure 5.4). Thus, in a situation with no

intervention our model predicts that the reds would be replaced (as they have been in most regions
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Figure 5.4 Population densities in refuge and buffer with no conservation strategies in place
(baseline scenario). Panel a shows the densities in the refuge and panel b the densities in the
buffer zone from. The carrying capacities are set as KR = 1125 and KG = 1500 with a spatial
parameter of 0.2. All other parameters are identical to those used by Tompkins et al. (2003)
and can be found in table 4.1. The initial conditions are the reds alone in the refuge and buffer
zone and the greys at a pseudo endemic level across the landscape (obtained from a grey-only
simulation involving only the landscape patches). This single realisation is representative of
behaviour seen in the majority or simulations.

of the UK).

5.3.1 Buffer zone characteristics

The characteristics of the buffer zone, will have a great effect on the success of the refuge in

protecting the red squirrels. We will investigate three different factors:

• The connectivity of the buffer zone, will affect grey dispersal rate into the buffer zone and

hence the refuge. We expect low connectivity to have a positive effect on the red squirrel

population densities within the buffer zone and refuge.

• It is a common conservation policy, for the buffer zone to provide an unsuitable habitat

for squirrels (both red and grey). An example of this would be a buffer zone consisting of

farmland or urban areas.

• If the buffer zone contains woodlands, an alternative conservation strategy is to provide

a habitat suitable for red squirrels but unsuitable for greys. This could be implemented

by, woodland management within the buffer zone, ensuring only tree species favouring red

squirrels are planted.

Connectivity

The connectivity of the buffer zone, affects the dispersal of the squirrels from the landscape to

the buffer zone and vice versa. If the connectivity is lowered between the buffer zone and the

rest of the landscape, we expect to observe less invasions by the greys. The connectivity of the
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Figure 5.5 Population densities within refuge and buffer zone with lowered connectivity be-
tween buffer zone and landscape. Panels a and c show the densities in the refuge and panels
b and d the densities in the buffer zone. The probability of dispersal between the buffer zone
and landscape is lowered from 0.2 to 0.02 in panels a–b and 0.002 in panels c–d. All other
parameters and initial conditions are identical to the baseline scenario (figure 5.4). This single
realisation is representative of behaviour seen in the majority or simulations.

buffer zone is lowered, by reducing the probability of dispersal between the buffer zone and the

landscape.

A reduction in the connectivity of the buffer zone reduces the number of attempted invasions,

from the landscape, by the greys and hence outbreaks of squirrelpox. Figure 5.5a–b shows den-

sities of the red and grey populations, in the refuge and buffer zone, following a reduction in the

connectivity to 10% of its previous level. There are two outbreaks of squirrelpox within the buffer

zone, and consequently the refuge, resulting in large reductions in the red populations. Squir-

relpox dies out, following the first epidemic, as there are insufficient greys to sustain squirrelpox.

However, following the second outbreak the grey population has increased to sufficient levels to

allow squirrelpox to remain at endemic levels within the population and the reds do not recover.

This reduction in connectivity protected the reds for a further 4 years (see figure 5.5a–b).

A further reduction in the connectivity, to 1% of its original connectivity, protects the reds for

a longer period (figure 5.5c–d). The lower the connectivity, the longer the red population in the

refuge will be protected. Regardless of the length of protection, the result is always replacement

of the reds by the greys. The only exception to this, is if there is no connectivity between the buffer

zone and the landscape (for example an island, with no entry method for the greys or squirrelpox).
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Reduced habitat suitability in the buffer zone

We next consider the effect of a reduction in the habitat suitability for (i) both red and grey squirrels

and (ii) grey squirrels only in the buffer zone. To represent a reduction in habitat suitability, we

lower the carrying capacities within the buffer zone. In (i) we reduce both carrying capacities by

75% to give K̃R = 0.25KR and K̃G = 0.25KG (figure 5.6a–b). While, in (ii) we use the original red

carrying capacity and reduce the grey carrying capacity by 75% to give K̂R = KR and K̂G = 0.25KG

(figure 5.6c–d).

(i) There is no epidemic observed in the buffer zone when habitat suitability of both reds and

greys is reduced. The greys and squirrelpox enter the buffer zone almost immediately and replace-

ment of the red population occurs within 12 years (figure 5.6b). However, there is an epidemic

observed within the refuge resulting in a rapid decline of the red population and a replacement of

the red population in approximately 11 years (figure 5.6a).

(ii) A reduction in habitat suitability for the grey squirrels sees the initial large population of

red squirrels in the buffer zone suffer a decline following a squirrelpox epidemic (figure 5.6d).

This squirrelpox outbreak spreads into the refuge, causing an epidemic and rapid decline in the

red and grey populations. However, squirrelpox does not persist within the grey population until

there is a second epidemic approximately 5 years later. The reds are replaced within the refuge

within approximately 12 years and the buffer zone within 15 years (figure 5.6c–d).

A reduction in habitat suitability within the buffer zone, for red and grey squirrels or greys

only, greatly reduces the influx of greys but squirrelpox will always invade unless the carrying

capacity is reduced to very low levels. If the carrying capacity is reduced to zero, we create a

disconnected refuge with similar results as the disconnected buffer zone described above. In both

cases, if the buffer zone provides a harsher environment than that of the refuge, the number of

attempted invasions is decreased leading to protection for the red squirrel population in the refuge.

A buffer zone consisting of no trees, for example agricultural fields or urban environments, would

provide a harsh environment for both reds and grey squirrels. If the forestry, within the buffer

zone, is managed to provide trees preferable to reds but not greys, a harsh environment for greys

is created.

All the strategies considered here that relate to the buffer zone characteristics fail to protect

the red population within the refuge. They act to reduce the amount of invasions of greys into

the refuge, by limiting connectivity or restricting the pool of potential dispersers. This prolongs

the time in which the reds can be maintained in the refuge but cannot ultimately prevent their

replacement.
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Figure 5.6 Population densities in refuge and buffer zone with reduced habitat suitability for
squirrels in the buffer zone. In panels a–b the carrying capacity of the reds and greys, in the
buffer zone, are reduced by 75% (K̃R = 0.25KR = 281 and K̃G = 0.25KG = 375). In panels
c–d the carrying capacity of greys, in the buffer zone, is reduced by 75% (K̂R = KR = 1125 and
K̂G = 0.25KG = 375). All other parameters and initial conditions are identical to the baseline
scenario (figure 5.4). This single realisation is representative of behaviour seen in the majority
or simulations.

5.3.2 Management strategies

A common strategy employed within red squirrel refuges and buffer zones is the culling of grey

squirrels. We will investigate the effectiveness of two culling strategies: (i) culling the greys at

given points in time and (ii) culling them when their population reaches a certain level. In both

(i) and (ii) the parameters are identical to those used in the baseline scenario, except we include

a culling strategy. In (i) we reduce the grey population in the refuge and buffer zone by a given

proportion twice each year. We examine the effectiveness of this control measure and compare

different culling proportions. Grey squirrel culling is carried out in the refuge and buffer zone at

Formby twice a year White (2009b).

If all the greys in the buffer zone and refuge are culled twice a year, the red population in

the buffer zone and refuge is protected. The refuge and buffer zone still suffer from squirrelpox

outbreaks, but manage to recover; in our representative simulation we see four epidemics within

the refuge and at least seven within the buffer zone (figure 5.7 a–b). Similar results are seen for

culling levels of 90% and 50%, although the level of greys in the refuge is greater with 50% culling

(figure 5.7 c–f). If the level of culling is lowered to 25%, the refuge and buffer zone are protected

for a prolonged period but not indefinitely and the greys invade and replace the reds (figure 5.7
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g–h). Therefore, culling twice a year can protect the red squirrel population within the refuge if

carried out at sufficient levels and continued indefinitely.

The second culling strategy, (ii), instruments culling whenever the grey population, within the

buffer zone reaches a given level. This given level is a percentage of the grey carrying capacity and

denoted by KG (for example, if we are considering a given level of 50%, KG = 0.5KG). If the total

grey population within the buffer zone reaches this level, KG, a proportion of the grey population

in the refuge and buffer zone is culled (if S G + IG + RG > KG then S G, IG and RG are all reduced).

This strategy simulates the culling of greys when they become visible in the buffer zone.

If 20% of the greys in the refuge and buffer zone are culled whenever the grey population

reaches 10% of its carrying capacity (KG = 0.1KG), the red population is protected from replace-

ment by the greys. The greys have to be repeatly culled within the buffer zone but the reds in the

buffer zone are not replaced by the greys. However, squirrelpox is present and they suffer from

many small declines but always recover (figure 5.8b). As a result of this culling there are only a

low number of greys observed within the refuge. The red squirrel population within the refuge

is protected from grey replacement but not outbreaks of squirrelpox; the population suffers from

rapid declines after each outbreak but then manages to recover (we observe four such declines

and recoveries within 30 years in figure 5.8a). If the proportion of the grey population culled is

increased or decreased from 20%, we see a very similar pattern within the buffer zone and refuge.

However, the larger the proportion culled, the shorter the time period between necessary culls.

An increase in the level determining culling, (KG), reduces the effectiveness of this control

measure. If the level is increased to 50%, KG = 0.5KG, the reds are no longer protected from

replacement (figure 5.8c–d). An initial epidemic followed by a rapid decline in red squirrels

allows replacement by the greys within the buffer zone. The squirrelpox outbreak spreads into the

refuge and again causes a rapid decline of reds followed by replacement by the greys. Although,

the greys continue to be culled, the reds never manage to recover. This culling strategy can protect

the population of red squirrels within the refuge and buffer zone, but it must be carried out at

suitable levels.

Culling, using either strategy, can result in the red squirrel population in the refuge and buffer

zone being protected from grey invasion. However, they will not be protected from squirrelpox,

with the buffer zone suffering from more outbreaks, but they should recover if culling is carried

out at sufficient levels. If the culling is carried out at given time intervals, there will be a minimum

required threshold to ensure success. If the culling is carried out whenever the grey populations

reaches a certain level (KG) there is a minimum threshold for the level, and the higher the propor-

tion culled the less frequently the culling will need to be carried out. Theoretically, either strategy
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will be effective if carried out at the required levels but in practice culling twice a year is more

manageable.

5.4 Discussion

This chapter examined some of the common strategies employed in planning and managing red

squirrel refuges in the UK. Our model is based on the Sefton Coast Woodlands National Squirrel

Refuge and Buffer Zone at Formby, Merseyside but can be applied to general refuge strategies.

We initially examined a baseline scenario, with no conservation strategies in place, and observed

squirrelpox spreading through the buffer zone and refuge causing rapid declines in the red popu-

lations followed by replacement of the red squirrels by greys. We compared the following design

and management strategies to the baseline scenario to examine their effectiveness:

• Buffer zone characteristics

We considered three different buffer zone characteristics to assess their influence on protect-

ing the red squirrel population in the refuge from grey replacement and disease. The effect

of reduced connectivity, reduced habitat suitability in the buffer zone for both the red and

grey squirrels and reduced habitat suitability for greys. All three approaches prolonged the

time the red squirrels were maintained in the refuge, but none of them protected the reds in-

definitely unless the refuge was completely isolated from the landscape (was effectively an

island). In each scenario, the red squirrels suffered rapid declines as a result of squirrelpox

outbreaks, followed by replacement by the greys.

• Management strategies

The two management strategies we considered involved culling grey squirrels in the refuge

and the buffer zone. We examined culling a proportion of the grey squirrels in the refuge

and buffer zone twice a year and culling when the population of grey squirrels in the buffer

zone reached a certain level. Both control strategies can protect the red squirrel population

within the refuge, but in both cases there is a minimum level of effort required and the

culling must continue indefinitely. Although, culling of greys at sufficient levels protects

the red squirrel populations from replacement, they suffer repeated squirrelpox outbreaks

but manage to recover.

Except for extreme strategies (full continual culling, isolation of the refuge) no single strat-

egy could protect the red population in the refuge from periods of population decline. If a refuge

and buffer zone is completely disconnected or isolated from any surrounding grey squirrel popu-

lations, it will be protected indefinitely. There is evidence to support this in the UK, as the only
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remaining populations of red squirrels in Southern England are found either on islands or in areas

isolated from greys (Kenward and Holm, 1993). The Isle of Wight is one of these last remaining

strongholds, and recognised as a priority area for red squirrels in the UK. The Isle of Wight is a

small island 3km off the South coast of England, and boasts an estimated summer population of

3,330 red squirrels (Harris et al., 1995; Pope and Grogan, 2003).

It is widely acknowledged that this isolated population of red squirrels have survived because

there are no greys on the island. An accidental or deliberate introduction of grey squirrels to

the island is regarded as the greatest threat to the Isle of Wight red squirrel population. This is

not only because of squirrelpox but it is also feared grey squirrels would replace the reds very

quickly as a result of the habitat on the island being better suited to greys than reds (Rushton

et al., 1999). As a result of this threat, English Nature, Forestry Commission and Isle of Wight

Council have formed a “Grey Squirrel Contingency Plan” in case of any grey squirrel sightings on

the island (Pope and Grogan, 2003). The contingency plan was put into operation in 2002, with

the help of Wight Squirrel Project, Wight Wildlife and Forest Enterprise, following a grey squirrel

corpse being found on the island in July 2001, and three further sightings in 2002. The emergency

measures include trapping and humanely killing greys, monitoring using hair tubes and public

awareness campaigning. The contingency plan in 2002, or “Operation Squirrel” as it became

known, did not find any more greys on the island and concluded there was no resident grey squirrel

population (Isle of Wight Council, 2002). The contingency plan is an ongoing initiative, and

reviewed regularly as part of the “Isle of Wight Biodiversity Action Plan”, to ensure all required

measures can be carried out quickly if needed (Pope and Grogan, 2003).

Unlike the Isle of Wight, the red squirrel refuge and buffer zone at Formby is not isolated from

surrounding greys and as a result has suffered from disease outbreaks and invasions (Whitfield,

2008). The Formby buffer zone characteristics consist of natural reduced connectivity due to the

shoreline but not isolation (see figure 5.1). The buffer zone offers habitat with reduced suitability

for both red and grey squirrels as it consists of woodland, agricultural and urban areas. There are

grey squirrels in the buffer zone and refuge; a management strategy is in place involving culling

of grey squirrels twice a year (in 2002–2004, 118 grey squirrels were culled while it is estimated

approximately 500 were present in the refuge and buffer zone (Whitfield, 2005)).

The red squirrel population in the refuge, at Formby, suffered rapid declines in 2003, 2007 and

2008 as a result of squirrelpox outbreaks (White, 2009b). The population showed signs of recovery

following the declines in 2003 and is believed to recovering following the later outbreak with no

new cases of squirrelpox recorded between December 2008 and July 2009 (White, 2009a). This is

analogous to our findings when considering the management strategy of culling twice a year (see
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figure 5.7). The red squirrel population within the refuge is protected from grey replacement but it

suffers and recovers from repeated squirrelpox outbreaks. Our results, closely match the observed

pattern of population densities observed in Formby (see figures 5.2 and 5.7). If the current culling

strategy is continued indefinitely, the reds within the refuge should be protected from replacement

by the greys but will continue to suffer from periodic outbreaks of squirrelpox resulting in low

densities of reds within the refuge.

Our results, when considering grey culling twice a year, showed that culling levels above 50%

are effective at protecting the red squirrels within the refuge from replacement but not squirrelpox

outbreaks. This agrees, in principal, with Rushton et al. (2006)’s results, that suggest a grey

squirrel control strategy using a cull level of 60% would have prevented the decline of red squirrels

within Cumbria. Although it is diffficult to compare our findings accurately as it is not clear from

their paper which culling strategy they were modelling. Our results also show that an increase

from 50% to 90% or 100% has little effect on the length of time between squirrelpox epedemics

within the refuge (see figure 5.8). Therefore, an increased effort will not neccesarily provide better

protection for the red squirrels within the refuge.

We have not considered, here, the effect of supplementary feeding that occurs at Formby,

this supplementary feeding could act to increase the carrying capacity of red squirrels within the

refuge. Although, it could also increase the carrying capacity of the grey squirrels if they have

access to the food or steal it from a red squirrel cache. Supplementary feeding could potentially

increase the spread of squirrelpox if both red and grey squirrels are present. Following a study at

Formby, it is recommended that any supplementary feeding programmes are accompanied by grey

control strategies Shuttleworth (2000).

This chapter not only offers insight into the refuge and buffer zone at Formby, the results can

be extended to consider other refuge and buffer zones. It not only reminds us of the importance

of squirrelpox in the replacement of red squirrels by greys, it also shows the difficulty in trying

to protect red squirrels within refuge and buffer zones from it. Squirrelpox is a major factor in

the replacement of reds when we consider different buffer characteristics (see figures 5.5 and 5.6).

Management strategies can protect the red squirrels from replacement by the greys but it cannot

protect them from squirrelpox (see figures 5.7 and 5.8). Therefore all refuges, except those isolated

from all surrounding populations, are constantly at risk of a squirrelpox outbreak. This difficulty

in protecting red populations from squirrelpox needs to be considered in all conservation strategy

planning for red squirrel refuges in the UK.
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Figure 5.7 Refuge and buffer zone, with management strategy of culling 100% (panels a–
b), 90% (panels c–d), 50% (panels e–f), 25% (panels g–h) of greys, in both buffer zone and
refuge, twice a year. All parameters and initial conditions are identical to the baseline scenario
(figure 5.4). This single realisation is representative of behaviour seen in the majority or simula-
tions.
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Figure 5.8 Population densities in the refuge and buffer zone, with culling occurring when
the total grey population reaches 10% (panels a–b) and 50% (panels c–d) of KG, in buffer zone.
Culling is being carried out in both the refuge and buffer zone and 20% of all greys present are be-
ing removed. All parameters and initial conditions are identical the baseline scenario (figure 5.4).
This single realisation is representative of behaviour seen in the majority or simulations.
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Discussion

This thesis has aimed to broaden our theoretical understanding of the role of disease, combined

with competition, in ecological invasions. The effect of disease on ecological invasions is widely

recognised, although our theoretical knowledge on the underlying effects of disease is still lacking

(Prenter et al., 2004). The need for a deep understanding of ecological invasions is not only driven

by their adverse effects on native biodiversity, community structure and ecosystem function but

also their economic repercussions (Sala et al., 2000; Kolar and Lodge, 2001).

6.1 The impact of disease on ecological invasions

The first main objective of this thesis was to use mathematical models to help understand the

spread of disease in invasive systems. We set up a continuous time deterministic model in Chapter

2 to address this objective, with a focus on situations where the disease acts as a “biological

weapon”. Our modelling framework was based on classical competition (Lotka-Volterra) and

epidemiological (Anderson and May) modelling frameworks, and allowed us to analyse the effect

of different disease parameters on the replacement time of a native by an alien invader.

We analysed the effect of disease-induced fecundity loss, additional mortality through disease

and recovery from disease. Our findings showed a shared disease passed from an alien to a native

species does not always have beneficial effects on the attempted invasion. If the disease has a

similar effect on both species, it will not decrease the replacement time and in many scenarios it

will increase the replacement time compared to when the disease is not present. The invader must

have a sufficient relative advantage over the native species for the disease to be beneficial to the

invader.

Our work is focussed on invasion and the effect on replacement time and this sets our work

apart from previous studies that focus on a steady-state and stability analysis (Holt and Pickering,
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1985; Begon et al., 1992; Bowers and Turner, 1997). Holt and Pickering (1985) described a

disease-only model with two species and a shared disease, and identified that the exclusion of

one species by another may occur as a result of a difference in tolerance to a shared disease.

They further defined this higher tolerance to the disease as potentially resulting from “their faster

recovery, lower death rates, or higher reproductive rates” (Holt and Pickering, 1985). Our work is

in agreement with the findings of Holt and Pickering (1985) – and also the study of Begon et al.

(1992) who additionally include intraspecific competition – but our study additionally includes

the effect of interspecific competition between species. We also highlight the key result that the

invader must possess a sufficient relative advantage, over the native species, for disease to enhance

the replacement process.

Our work also builds on the study of Bowers and Turner (1997) who consider intraspecific

competition, interspecific competition and disease since our model additionally includes fecundity

loss as a result of disease. Their study focuses on the conditions for coexistence of the two species

with the disease whereas our focus is on the effect of disease on replacement time.

Our modelling framework has added to the knowledge of the underlying parameters affecting

the replacement of native species. It is a very flexible framework and can be used to examine indi-

vidual case-studies including SI and SIS frameworks, lethal and non-lethal diseases, a castrating

parasite or a disease which has no effect on the fecundity of infected individuals. This flexibil-

ity allows the examination of a wide range of ecological examples, allowing us to increase our

theoretical understanding of invasion, competition and disease dynamics within an ecosystem.

We discussed a selection of ecological examples in Chapter 2; examined how our model would

relate to them and compared this to evidence from the literature. These examples included: (1)

the effect of squirrelpox on the replacement of red squirrels by greys in the UK, (2) the effect of

crayfish plague on the replacement of white-clawed crayfish by introduced North American signal

crayfish and (3) the replacement of the UK’s native pedunculate oak by the introduced Turkey

oak. We showed in each of the examples how our modelling framework can help inform our

understanding of the invasion process.

Although this work offers good insight into the effect of disease on the replacement time of

a native by alien species, it offers no insight into the spatial effects. This leads us to our next

objective, which is to extend the work to include the effects of space and compared our findings to

the temporal results.
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6.2 The spatial spread of invading species

The temporal findings of Chapter 2 are extended to include spatial effects by considering random

movement in the form of diffusion. Such systems of reaction-diffusion equations have a long

history in modelling movement in ecological systems that include competition and/or infectious

diseases (for example Murray (2002); Cantrell and Cosner (2003); De Vries et al. (2006) all give

excellent introductions to the subject).

Our findings showed that the temporal and spatial models have similar properties; if the dis-

ease caused the temporal replacement time to slow, it would also cause the spatial spread to slow.

Conversely, if the disease hastened the temporal replacement, it also hastened spatial replace-

ment. In the absence of disease there was one wave of replacement spreading across the landscape

transforming the population from the native carrying capacity, in front of the wave, to the alien

carrying capacity behind. When the disease was present, we observed two waves, a wave of dis-

ease spreading across the landscape transforming the population from the native carrying capacity

to the native at endemic levels. This was followed by a wave of replacement transforming the

population from the native at its endemic levels to the alien at its endemic levels.

The wave of replacement occurring behind the wave of disease is an important finding that

had not been reported in other studies. It increases our understanding of the replacement of native

species by alien invaders and highlights the subtle impact of disease. This phenomenon occurs

regardless of whether disease increased or decreased the temporal and spatial replacement time

and may be wrongly overlooked or discounted as a contributing factor to the replacement of a

native species. This is the case with red squirrels in the UK, squirrelpox was discounted as a

contributing factor to their replacement by greys in East Anglia as diseased red squirrels were

found well in advance of the greys (Reynolds, 1985). In fact, the observation of disease may act

as an early warning of imminent invasion. We also examined the effect of disease on the spatial

dynamics and disease can allow an invader to increase the range of its spatial spread. These

are important findings when considering the conservation implications of ecological invaders and

show disease must not be ignored as a factor in invasion success, speed and spatial range.

There is scope to extend the mathematical analysis of the spatial results in our study and in

particular to gain a better understanding of the disease and replacement waves. This could also

include relaxing the assumption that susceptible and infected individuals disperse at the same rate.

These findings would have general implications for the spatial spread of disease in interacting

species.

Chapters 2 and 3 studied general theoretical frameworks, and we wish to use the frameworks

and insights gained here as a baseline from which to consider the specific ecological system of the
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invasion and replacement of red squirrels by greys.

6.3 Red squirrels, grey squirrels and squirrelpox

The third main objective of this thesis was to develop a red/grey/squirrelpox model to allow in-

vestigation into different conservation and management strategies. To do this, we extended the

continuous-time frameworks examined in Chapters 2 and 3 (and in Tompkins et al. (2003)) and

developed an individual-based, probabilistic model of the UK squirrel population.

The probabilistic model allowed us to examine the effect of stochasticity, and the chance of

persistence of the disease at low endemic levels in the red/grey/squirrelpox system. A direct

analogue of the Tompkins et al. (2003) model did not allow disease persistence; spatial structure in

the form of a set of linked sub-populations was required to allow disease persistence (see Chapter 4

for a discussion and related literature). Following the inclusion of this metapopulation structure,

the results from the probabilistic model are in agreement with the findings of Tompkins et al.

(2003). The probabilistic model displayed the key result of squirrelpox reducing replacement time

for the grey squirrel and also indicated that a wave of disease would spread ahead of a wave of

replacement. This highlights the importance of deterministic models as a key to increasing our

theoretical knowledge and understanding of ecological systems.

The red squirrel has been replaced throughout much of the UK, as a result there are a range

of conservation and management strategies in place. The development of this stochastic model

framework allowed us to model and examine the effectiveness of these strategies within a red

squirrel refuge.

6.4 Red squirrel conservation

The final objective of this thesis was to evaluate the effectiveness of current conservation and

management strategies that are used to protect remaining populations of red squirrels. We de-

veloped a modelling framework that encompassed the refuge, buffer zone and wider population

using the spatial probabilistic framework developed in Chapter 4. The framework was developed

to incorporate some of the key properties of a red squirrel refuge in Formby, Merseyside.

We considered a range of different strategies employed in the red squirrel refuges within the

UK to examine their effectiveness at maintaining red squirrel numbers. Buffer zones of “un-

favourable” habitat around red squirrel refuges have been suggested as a way of protecting red

populations (Forestry Commision Scotland et al., 2006). Our study indicates that such buffer
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zones alone cannot protect the refuge from invasion of grey squirrels unless buffer zones are so

“harsh” that they fully isolate the refuge. We evaluated the replacement of red squirrels and found

buffer zones can slow down the replacement of reds within the refuge.

Another strategy that is employed is the culling of grey squirrels in the refuge and buffer

zone (Rushton et al., 2006). Providing the culling effort exceeds a threshold (and is maintained

periodically) it can be effective at protecting the red population in the refuge. Such culling protects

the red population, in the refuge, from replacement but does not protect the reds from infection.

Our model predicts the reds will suffer from regular outbreaks of squirrel pox in the refuge. This

is analogous to observations at Formby where a culling strategy is employed and the the red

population has exhibited several population crashes as a result of squirrel infection (Burkmar,

2006; Whitfield, 2008; White, 2009a,b). Out theoretical study indicates that it is difficult to impose

a conservation strategy that will prevent disease outbreaks in the refuge.

We compared our results to those of Rushton et al. (2006), whose findings suggested that a

60% culling level would have prevented the decline of red squirrels within Cumbria. It is difficult

to compare our findings as their strategy is not explained in detail; however, we found that cull

levels above 50% are effective controls against replacement when culling twice a year. Our results

are similar, although we further build on this by showing that an increase in the culling level

above 50% has little effect on the period of time between suirrelpox outbreaks and is therefore not

neccesary.

Although, this model is based on the red squirrel refuge and buffer zone in Formby, its results

are useful when considering red squirrel refuges in general and could easily be adapted to another

specific site. There are potential extensions to this work including the investigation of supplemen-

tary feeding of the reds, vaccination of the reds and sterilisation of the greys. Another conservation

strategy not discussed here but being considered as an option, within refuges and buffer zones, is

the culling of any diseased reds or reds found in the vicinity of a confirmed squirrelpox case. This

could also be included as an extension to our work and the results would be useful in examining

the usefulness of this strategy as a conservation tool.

The model could also be adapted for other species, we know of a similar example involving

the replacement of white-clawed crayfish throughout the UK by North American signal crayfish.

The native species suffers as a result of a shared disease (crayfish plague), while the invading

species is resistant to it (Holdich, 2003; Bubb et al., 2004). This framework may be adaptable

to the crayfish example by considering an individual watercourse, as opposed to a refuge, and its

connecting sites.
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6.5 The future of red squirrels in the UK

It is estimated that 75% of Britain’s remaining red squirrels are found in Scotland (Harris et al.,

1995; Battersby and Partnership, 2005). The Scottish population is threatened by replacement

from greys spreading North from England and through released populations in the Central Belt

and Aberdeen City. It is believed the Scottish population will be replaced in the next 50–100 years

if measures are not taken to stop the spread of greys (Forestry Commision Scotland et al., 2006).

Our spatial spread model described in Chapter 3 gives insight into the spread of disease ahead

of an invading species and also the potential increase in spatial range as a result of disease. This is

of major importance in the planning of conservation measures for Scotland. If the grey squirrels

have been kept out of Scotland as a result of differences in habitat, squirrelpox may allow them to

invade. Hence, it is important to either stop the spread of squirrelpox through Scotland or to ensure

the wave of replacement, behind, is halted. It may be possible to halt the wave of replacement using

culling as shown, for a refuge, in Chapter 5.

A potential extension to our work described in Chapters 4 and 5 would be to adapt our refuge

model to investigate the spread of grey squirrels into and through Scotland. The stochastic mod-

elling framework described in Chapter 4 could be used as a basis for a larger model to analyse the

situation in Scotland as a whole with particular consideration to natural corridors available to the

greys for dispersal. There are currently some conservation efforts in place including a consultation

to identify squirrel strongholds. The design of these strongholds could be greatly improved if theo-

retical models, similar to the model described in Chapter 5, were used to examine the effectiveness

of different sites and relevant conservation and management strategies available.

It is essential that conservation strategies continue to be implemented to try and protect the

UK’s remaining red squirrels. Theoretical modelling techniques, like those described in this thesis,

can help find the most beneficial conservation strategies and ensure the best use of skills, time and

money. The use of theoretical modelling can not only help us plan the conservation of red squirrels

but can also be extended to other animals suffering from the threat of an alien invader.
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