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Abstract 

This study describes a new approach to the quality assessment of thermally sprayed 

carbide and ceramic coatings produced by High Velocity Oxy-Fuel (HVOF) and Air 

Plasma Spray (APS) processes. The aim of the work was to develop an experimental 

methodology based on Acoustic Emission (AE) monitoring of a dead-weight Vickers 

indentation to assess the degree of cracking and hence the toughness of the coating. AE 

monitoring was also applied to an industrial process as a contribution to the possibility 

of quality assessment during the deposition process.  

 

AE data were acquired during indentation tests on samples of coating of nominal 

thickness 250-325 µm at a variety of indentation loads ranging from 49 to 490 N. 

Measurements were carried out on six different thick-film coatings (as-sprayed HVOF-

JP5000/JetKote WC-12%Co, HIPed HVOF-JetKote WC-12%Co, as-sprayed HVOF-

JP5000 WC-10%Co-4%Cr, conventional powder APS-Metco/9MB Al2O3 and fine 

powder HVOF-theta gun Al2O3) and also on soft and hard metallic samples and metals. 

The raw AE signals were analysed along with force and displacement history and the 

total surface crack length around the indent determined. Also, a selection of the indents 

was sectioned in order to make some observations on the sub-surface damage. The 

results show characteristic AE time evolutions during indentation for tough metals, hard 

metals, and carbide and ceramic coatings. Within each category, AE can be used as a 

suitable surrogate for crack length measurement for assessing coating quality.  

 

Finally, a preliminary observation on AE monitoring during HVOF (JP5000) WC-

10%Co-4%Cr thermal spraying was made.  It was found that AE is sensitive to 

individual particle landings during thermal spraying and therefore can, in principle, be 

used to monitor the spray process. 
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Chapter 1 

INTRODUCTION 

1.1 Research context 

The pyramidal diamond Vickers indentation test has been used not only to quantify the 

hardness of materials [1] but also to study the generation of micro-fracture in brittle 

materials [2-4]. Various authors have also used crack patterns around indentations at, 

and beneath, the surface to assess the fracture toughness of ceramics [5-11], study the 

hardness of plasma-sprayed coatings [12-14], and evaluate the residual stress, adhesive 

strength and fracture toughness of thermally sprayed HVOF cermet coatings [15-19]. 

However, no specific work has studied micro-fissuring of thermal sprayed ceramic 

coating materials during (as opposed to after) the indentation process and the potential 

that this gives for separation of the various accommodation mechanisms around the 

indenter and hence an improved understanding of the key microstructural variables 

which give resistance to wear in extreme conditions.  

 

AE is a non-destructive technique that has been used widely to monitor damage 

processes in engineering materials [20], as well as for condition monitoring [21-26]. It 

is well established that crack extension processes give rise to AE which can be recorded 

using sensors placed on the surface of the structure or sample of interest. There have 

been some limited studies of the use of AE to study fracture during indentation, for 

example by Safai et al. [27]  who found the total AE event count during Brinell 

indentation tests to be related to the porosity of plasma sprayed alumina coatings. They 

noted that the high critical loads for this particular coating-substrate couple were not 

enough to generate de-bonding at the interface during indentation but they suggested 

that some of the AE sources might be due to mechanically-induced closure of pores. 

Prasad et al. [28] used on-line AE monitoring along with off-line damage assessment by 

SEM to corroborate the critical loads for plasma-sprayed alumina-titania coating 

systems subjected to Vickers indentation. They suggested that, when the material is 

yielding plastically, the AE signal will be of a more continuous type with a lower 

characteristic frequency content (35-40 kHz) than when the material is cracking, where 

the instantaneous relaxation produces burst type AE signals with a characteristic 

frequency in the range 220-280 kHz. Vijayakumar et al. [29] applied high-frequency 
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dynamic impacts (at 20 kHz) with a diamond pyramid indenter to plasma-sprayed 

alumina-titania coatings with and without subsequent microwave-treatment and found 

the frequency of the AE signal to be in the range of 200-400 kHz for the as-sprayed 

coatings and 800-900 kHz for the microwave-treated coatings. Sentruk et al. [30] found 

that the presence of a bond coat layer of NiCrAl in partially stabilized plasma sprayed 

zirconia (PSZ) ceramic coatings suppresses AE activity during Hertzian indentation, 

and attributed this to surface compressive stresses inhibiting cracks. Sentruk et al. [30] 

also observed that the critical load (found based on AE energy) during indentation is 

higher when a bond coat layer is present for both continuously and non-continuously 

sprayed coatings.  

 

Stoica et al. [31] and Stoica [32] give a typical example of the fracture pattern around 

Vickers indentations in functionally graded HVOF WC-NiCrBSi, preferring qualitative 

analysis to the empirical models as reviewed by Ponton and Rawlings [33] to obtain 

fracture toughness. They pointed out that, if micro-fissuring in the sub-surface region 

takes the place of surface radial cracks at lower loads, this complicates the issue of 

using empirical models to measure fracture toughness. Factor and Roman [34-35] 

observed both radial and circular cracks in thermally sprayed coatings, but found that 

most were of mixed characteristic and were not easy to categorise. The uncertainty in 

measuring the crack lengths in cracking from indentation [34-36] makes empirical 

fracture models (e.g. Palmqvist/radial-median) unsuitable, in particular for thermal 

sprayed coatings, and it is expected that AE monitoring along with load and 

displacement transducer signals may provide a solution to this problem, given that AE 

potentially can detect events associated with cracks both on and beneath the surface.  

 

In addition to AE monitoring during Vickers indentation, the relationship between 

measured AE features and HVOF Thermal Spray (TS) process parameters is also 

investigated in this work. AE detection during spraying has a potential advantage over 

current conventional coating quality testing techniques such as indentation, bending and 

residual stress analysis, which are destructive and cannot be carried out during the 

process. There are no industrial on-line coating quality monitoring systems and quality 

control usually involves post-process acceptance sampling/testing of test coupons.  

 

It is widely acknowledged in the thermal spray industry that existing quality control 

techniques and testing techniques need to be improved. New techniques which help to 
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understand the effects of coating process parameters on the characteristics of the coating 

are therefore of value, as are new methods of coating quality assessment with minimal 

destruction.  

1.2 Objective and scope of present research work 

The primary aim is to find an AE based method of recognising and characterising the 

indentation fracture pattern of surface and critical load in thermal sprayed carbide and 

ceramic coatings with a view to rapid coating quality evaluation. A test that can be 

applied quickly and efficiently, perhaps as an adjunct to the manufacturing process, and 

perhaps with better resolution than can be obtained by measurement of surface cracks is 

of obvious value. The sensitivity of AE offers the potential for minimally invasive 

indentation tests, provided that the near-surface behaviour can be taken as 

representative of the coating as a whole. The Vickers indentation technique was chosen 

because the stages of failure (i.e. surface cracks, sub-surface cracks localised 

deformation and pore closure and, possibly, sub-surface lateral cracks leading to 

delamination) are fairly well-studied giving a basis on which to investigate how AE can 

be used to monitor these processes. This study also aims to determine if the sources of 

AE generated during HVOF thermal spraying can be characterised in relation to final 

coating structure and to the spray process parameters such as gun transverse speed and 

gas pressure for a given powder-particle size and spraying distance.  

 

It is anticipated that this research will ultimately lead to the establishment of AE-based 

coating quality monitoring to assess residual stresses, porosity, cohesive and adhesive 

strength and other coating defects quantitatively, by observations of the micro fracture 

and plastic deformation behaviour as reflected in the AE signal. The applications of this 

non-destructive test will range from quality control to the optimisation of coating 

processes and process parameters. 

 

The objectives were therefore:  

a) To understand the Vickers indentation behaviour of soft and hard metals 

and thermal sprayed carbide and ceramic coatings surface as reflected in 

the AE; 



 13 

b) To recognise and characterise the Vickers indentation fracture pattern of 

surface; and critical load in thermal sprayed carbide and ceramic coatings 

using the raw AE signal; 

c) To exploit the various AE features to estimate the fracture toughness of 

thermal sprayed coatings; 

d) To identify various AE sources during thermal spraying process.  

1.3 Research methodology 

No specific work has studied micro-fissuring of thermal sprayed coating materials 

during the Vickers indentation process and the potential that AE gives for separation of 

the various accommodation processes. The methodology was therefore centred on a 

series of observations of AE during indentation. In a subset of the tests both load and 

indenter positions were recorded at the same time as the AE for a wide range of 

materials so that the sources of AE could be characterised. In the main tests, 

observations were made on the microstructure and cracking patterns both on the surface 

and across the section of the specimens. The indentation tests were carried out at a 

range of loads in order that some idea of the development of cracking patterns could be 

obtained, lower load tests corresponding very roughly to the earlier stages of higher 

load tests. In this way it was expected that a picture of the accommodation processes 

could be built up for comparison with the observed time evolution of the AE.  

1.4 Thesis outline 

Chapter 1: Introduction. This chapter gives a description of how the present work is 

inspired and addresses its contribution to the development of thermal spray coating 

indentation testing methodology using AE techniques 

 

Chapter 2: Literature Review. The first section reviews some aspects of indentation 

testing of materials including potential sources of AE, its application to thermally 

sprayed ceramic coatings, and the various indentation testing systems. The second 

section summarizes the state of knowledge on AE techniques applied to indentation 

testing of bulk materials and coatings including thermally sprayed coatings. The third 

section briefly describes the thermal spray process with a focus on the High Velocity 

Oxy-Fuel (HVOF) and Air Plasma Spray (APS) techniques, with a view to identifying 
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sources of AE during these processes. Finally, the thesis topic is described identifying 

the contribution to be made. 

 

Chapter 3: Experimental Procedures. This chapter describes the experimental apparatus, 

materials and methods used for the research including analysis techniques. Two distinct 

types of experiments were used, the first related to AE monitoring of the Vickers 

indentation behaviour of metals and thermally sprayed carbide and ceramic coatings, 

and the second related to AE monitoring of the thermal spraying process itself.  

 

Chapter 4: Results. This chapter presents experimental results from the open loop dead-

weight type Vickers indentation testing and its AE response on various metals and 

thermal sprayed carbide and ceramic coating specimens. It also presents results from 

AE monitoring during the thermal spraying process.  

 

Chapter 5: Discussion. This chapter provides an overall interpretation of the 

experimental results covering the important aspects related to the Vickers indentation 

behaviour of the thermal sprayed carbide and ceramic coatings and monitoring the 

thermal spraying process.  

 

Chapter 6: Concluding remarks and recommendations for future work are presented. 

  

Contribution to knowledge: 

As far as the author is aware, no systematic attempts have been made to relate 

accommodation processes during indentation to AE on thermally sprayed carbide and 

ceramic coatings. Furthermore, the identification of fracture stages and zones during 

indentation of these coatings, the identification of multiple sources in the thermal 

spraying process, the development of experimental and analytical models for AE during 

indentation and thermal spraying process, are, to the author’s knowledge, significant 

contributions. The overall outcome of improved assessment of coating quality using on-

line AE based measurement during Vickers indentation is therefore the specific area in 

which a contribution to knowledge is claimed. Additionally, a better understanding of 

the Vickers indentation behaviour of materials is also presented through a new 

instrumentation technique.  
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Chapter 2 

LITERATURE REVIEW  

This chapter is divided into three main sections. The first section reviews some aspects 

of indentation testing of materials including potential sources of AE, its application to 

thermally sprayed coatings, and the force/displacement profiles typical of dead-weight 

indentation systems.  The second section summarizes the state of knowledge on acoustic 

emission (AE) techniques applied to indentation testing of bulk materials and coatings 

including thermally sprayed coatings. The third section briefly describes the thermal 

spray process with focus on the High Velocity Oxy-Fuel (HVOF) and Air Plasma Spray 

(APS) techniques, with a view to identifying sources of AE during these processes.  

 

2.1 Indentation testing 

2.1.1 Mechanics of indentation and potential sources of AE 

Indentation essentially consists of pressing a non-compliant indenter into the surface of 

the material to be tested. The material can accommodate the indenter by elastic or 

plastic deformation, local cracking, material densification, or a combination of these 

accommodation mechanisms. Most commonly, the material is assessed by the size of 

the impression and/or by the cracking pattern left on the surface once the indenter has 

been removed. There are two main approaches to the mechanics of indentation 

depending upon the whether the accommodation is by deformation or by fracture.  

 

Elastic, perfectly plastic and hydrostatic pressure models have been developed to 

describe indentation [1, 37-38]. For an elastic material, the indentation impression 

disappears after unloading, whereas, for plastic material, permanent deformation occurs 

around the indentation [1].  Two types of plastic material accommodation can be 

identified (see Figure 2.1) using the slip-line field solution [39], upward extrusion of 

displaced material very close to the periphery (‘piling-up’), or downward depression of 

displaced material around the periphery (‘sinking-in’). The ‘piling-up’ effect is expected 

in materials which work-harden (e.g. soft metals), whereas ‘sinking-in’ is expected in 

hard materials (e.g. hard metals or brittle thick coatings).   
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Figure 2.1 2-D deformations in an elastic-perfectly plastic material around the 
indentation produced by blunt and sharp indenters [adapted from ref. 1] 
 

Slip-line field models calculate deformation under the indenter by allowing plastic 

deformation along available slip-lines (Figure 2.2) once the yield criterion (Tresca or 

von-Mises) has been met [1, 37-39]. A slip-line is a line of maximum shear stress and 

the field can be seen as a curvilinear mesh of two orthogonal families of lines radiating 

from arc centres (A and B in Figure 2.2). For example, considering friction-free 

deformation of an ideal plastic metal (yield stress Y) by an infinitely long, hard and 

undeformable flat punch, the shear stress at the edges (A and B) of the punch will be 

relatively high, and the metal in the region of A and B will be in a state of plasticity. In 

other parts of the metal the overall yielding will be small, but, as the punch load is 

increased, the size of the plastic region increases allowing the indenter to penetrate. 

Plastic flow occurs when the maximum shear stress reaches a critical value k, where 2k 

= 1.15Y or where 2k = Y for the von-Mises and Tresca criteria, respectively. Using 

various indenter shapes, the material flow direction under the indenter can be assessed.  

 

In the hydrostatic pressure model [3] as shown schematically in Figure 2.3, the ductile 

material accommodates the indenter due to an outwardly expanding hydrostatic core 

(plastic region). The hydrostatic core causes the observed symmetry of the stress field 

under the indenter and it leads to the development of a hemispherical plastic zone 

around the indenter outside of which the material deforms elastically. 

 

Piling-up 

Flat-punch indenters 

Spherical indenters 

Sharp indenters 

Original surface 

Deformed surface 

Sinking-in 
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Figure 2.2 Slip-line-field solutions for indentation of rigid-plastic half space solid by a 
frictionless (a) flat-ended 2-D punch indenter showing no piling-up or sinking-in, (b) 
wedge shaped 2-D indenter showing piling-up [adapted from ref. 1].  
 

 
 

Figure 2.3 Hydrostatic pressure model [adapted from ref. 3]. 
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Figure 2.4 Elastic contact pressure distribution for various indentation systems, where P 
is the applied load and 2a is the spatial contact dimension [adapted from ref. 1, 3] 
 

  

Figure 2.5 Point load Boussinesq stress field for principal normal stresses σ11, σ22 and 
σ33 (a) Half surface view (top) and side view (bottom) of stress trajectories, (b) Principal 
normal stress contours (side view), tangent to trajectories denote direction and points on 
contours denote magnitude [3-4].  

 

Elastic stress fields are important when considering fracture around the indenter. Figure 

2.4 illustrates how the intensity of the contact stress, which can be described by the 

mean contact pressure, p0 = P/απa2, where P the applied load and α a dimensionless 

indenter geometry constant (α = 1 for axi-symmetric indenters) [3], and a is the spatial 

contact dimension. Considering an isotropic linear elastic half space subjected to a point 

load, the solution for the stress field was first given by Boussinesq and Figure 2.5 [3-4] 

represents the principal normal stresses (σ11 > σ22 > σ33) in the Boussinesq field. These 

stresses are the ones responsible for cracking and: σ11 is tensile at all points in the field 

with maxima at the surface and along the contact axis; σ22 (‘hoop’ stress) is tensile 

subsurface; σ33 is compressive everywhere. Since brittle cracks propagate along paths 

normal to the greatest tensile stresses [4], it is expected that the most fully developed 
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cracks will lie on either quasi-conical (σ22-σ33) or median (σ11-σ33) trajectory surfaces. 

Other stress components of the contact field are, shear, (σ11-σ33)/2, (σ11-σ2)/2, (σ22-

σ33)/2, and hydrostatic compression, -(σ11+ σ11 + σ33)/3. Whenever tension is suppressed 

(e.g. immediately under the contact circle, especially sharp contacts), the material may 

be deformed irreversibly, leaving a residual, ‘plastic’ impression [4].  

 

Loading 

   

Unloading 

   

Figure 2.6 Schematic of an ideal vent crack formation under point load indentation. 
Fracture starts from inelastic deformation dark zone [3].  
 

  
Figure 2.7 Hertzian indentation (a) surface ring and cone fracture and (b) radial tensile 
and compressive stress distribution [40] 
 

The indentation stress fields shown in Figures 2.3 and 2.5 can be useful in indicating 

how cracks will tend to initiate, Figures 2.6 to Figures 2.9. Cracks can initiate from 
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pre-existing flaws (Griffith [41]) or flaws induced by the indentation itself [3]. 

Deformation induced flaws tend to nucleate at points of intense stress concentration 

ahead of locally impeded zones of inelastically deformed material (e.g. piling-up) [3]. 

Upon attaining some critical configuration, a dominant flaw develops into a well-

defined propagating crack, and tends to propagate along trajectories which maintain 

near orthogonality to a major component of tension [42].  

 

Considering the Hertzian configuration (in Figure 2.5), the main change as load 

increases is a minor flattening of the tensile σ11 trajectories immediately below the 

contact area, with extremely high stress gradients at the edge of the contact [3], meaning 

that the main crack-forming stress acts in a circumferential direction and is highest in 

magnitude close to the indenter forming a surface ring crack (Figure 2.7). Downward 

propagation of surface ring cracks follows along the σ33 trajectories to form a fully 

developed Hertzian cone crack. The peak pressure under the Hertzian contact [40, 43] is 

p0 = 3P/2πa2 = (3/2π).(P)1/3.(4E*/3r0)
2/3, where the contact radius a = [3r0P/4E*] 1/3, P 

is the indentation load and r0 is the spherical indenter radius, 1/E* = (1-ν1
2)/E1 + (1-

ν2
2)/E2; and ν1,  ν1 and  E1,  E2 are Poisson’s ratio and Young’s modulus for the indenter 

and substrate respectively. The resulting radial tensile stress field in the test specimen 

decays with distance, r (ring crack radius), from the contact centre as σ11(r) = (1-

2ν).P/2πr2. The radial tensile stress decreases rapidly with depth and shortly becomes 

compressive as shown in Figure 2.7.  

 

Lawn and Wilshaw [3] described crack formation under point loading (e.g. Vickers and 

Knoop indenters, Figure 2.6) including an inelastic deformation zone, opening of a 

median vent (along the axial stress trajectory, σ33, and orthogonal to the tensile stress 

σ11 = σ22) and its growth during loading. During unloading the median vent closes 

leading to the development of lateral vents (along σ11 trajectories and orthogonally 

everywhere to the hoop stress σ22).  

 

Since Figure 2.6 depicts only an ideal sequence of crack events, the median stages 

(half-penny model: Figure 2.8) may be suppressed [4] at lower loads, such that only 

surface radial (Palmqvist: Figure 2.9) segments form. Half-penny cracks develop on 

symmetrical median planes containing the load axis, whereas Palmqvist cracks are 

shallow radial surface cracks and extend out from the corners of the indentation.  
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Figure 2.8 Ideal schematic diagram of the Vickers indentation classical fracture model: 
‘Radial-median’ or ‘half-penny’ model [adapted from ref. 33]. 
 

 
Figure 2.9 Ideal schematic diagram of the Vickers indentation classical fracture model: 
radial ‘Palmqvist’ model [adapted from ref. 33]. 
 
 

2.1.2 Vickers indentation fracture of thermally sprayed ceramic coatings 

Because of their complex nature, including properties which vary with depth and multi-

phase mixture of materials of varying toughness, indentation testing of thermally 
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sprayed coatings is potentially a very rich area of study, with a number of as yet 

unanswered questions on the measurement of hardness, fracture toughness and 

load/depth profile. In this study the main focus has been the cracking patterns developed 

in HVOF and APS ceramic coatings. It has been suggested that quenching, macro-

compressive and peening effects during thermal spraying develop residual stresses in 

coating materials [44-48]. It is also known (Figure 2.10a) that through-thickness 

residual strain and stress plays a very important role in the extension or suppression of 

cracking [48-49]. For example (Figure 2.10b, c), it has been observed [31] that at the 

same indentation load, the relatively high residual compressive stresses in HIPed WC-

NiCrBSi coatings inhibited the extension of cracks seen in the as-sprayed coating.  

 

 

 
 

Figure 2.10 (a) Through thickness residual strain and stress distribution obtained via 
neutron diffraction technique for HVOF WC-NiCrBSi coatings [49]. Static Vickers 
indentation at 490 N load on corresponding coating surfaces: (b) as-sprayed and (c) 
HIPed at 850ºC [31]  
 

Stoica et al. [31] and Stoica [32] have used the fracture pattern around Vickers 

indentations in functionally graded HVOF WC-NiCrBSi coating surfaces (Figure 

2.10b, c), to make a qualitative assessment of fracture toughness because these coatings 

did not meet the empirical model criteria c > 2a [33] (see Figure 2.8). The empirical 

models tend to be based on an idealised cracking pattern and do not account for micro-

fissuring in the sub-surface region especially if this takes the place of surface radial 

(a) (b) 

(c) 
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cracks as it does at lower loads.  The uncertainty in measuring the crack lengths in 

Vickers indentation [34-36] makes empirical models particularly unsuitable for thermal 

sprayed coatings. Irregular networks of smaller cracks not originating at indentation 

corners have been observed by other investigators [31, 34-35, 51-53] working on 

thermally sprayed coatings. For example, Ostojic and McPherson [53] reported ‘no 

dominant cracks’ in plasma sprayed coatings even very close to the impression.  

 

  

 Figure 2.11 Static Vickers indentations at 9.8 N load on cross-section of plasma 
sprayed Al2O3-3%TiO2 coatings (a) conventional, and (b) nanostructured powder [54] 
 

  

Figure 2.12 Static Vickers indentation at 29 N on cross-section of plasma sprayed 
Al2O3-13%TiO2 coatings (a) Metco 130, (b) corresponding nanostructured [55] 
 

Typical Vickers indentation fracture patterns for plasma sprayed alumina-titania 

coatings consist of a network of cracks around the indentation (Figure 2.11 and Figure 

2.12). As well as this network, radial cracks emanating from the two opposite indent 

corners, on a plane parallel to the coating-substrate interface, can also be seen. The 

indentation fracture in these coatings also tends to be asymmetric, which has been 

attributed by Ostojic and McPherson [53] to a macroscopic variation in relative density, 

the presence of pores or other defects around the contact and through thickness residual 

stresses variation. They [53] suggested that indentation in porous regions of the coatings 
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results in localised densification about the contact site, resulting in little transmission of 

indentation stresses to the surrounding materials, and the confinement of cracking to the 

vicinity of the impression. Interaction with large coating pores or defects near the 

impression diagonal would then be expected to result in longer cracks, producing a 

modified Boussinesq stress field. Since the degree of porosity varies between coatings 

(e.g. HVOF < 1.5 %, APS < 2 % [35]) as well as within a given coating, Ostojic and 

McPherson [53] also suggested that different loads would be required to produce 

cracking in different coatings of the same type and even from place to place in a single 

coating.   

 

WC-Co WC-Co-Cr 

  
  

  
Figure 2.13 Vickers indentation of HVOF ceramic coating surface under 10 N load, 
SEM images and corresponding FEA maximum principal stress distribution [56].   
 

To model more complex indent shapes, such as those produced by the Vickers indenter 

requires a numerical approach, such as FEA [56-57]. Despite some theoretical 

limitations (e.g. considering elastically deformable material, ignoring surface 

roughness, and taking coating and substrate as solid and homogeneous materials), 

Baung et al. [56] have managed to simulate Vickers indentation on HVOF coatings (e.g. 

Figure 2.13) to determine the stress distributions and critical loads in the 

coating/substrate systems, relating their findings to the observed cracking profile. As 

shown in Figure 2.13, the highest compressive stress occurs in the area right beneath 
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the indenter tip and the highest tensile stress occurs in the centre of the indentation 

edges and decreases along the indentation edge towards the indentation corner. This 

suggests that edge cracks will initiate first at the coating surface, and will propagate 

along the indentation edge. Also, the high tensile stress in the area of the indentation 

corners induces corner cracks to propagate radially outwards along the diagonal of the 

indentation.  

2.1.3 Indentation testing systems and AE measurement 

The main features affecting the response of materials under indentation are the load, the 

shape of the indenter, the size of the indentation and, to a lesser extent, loading rate [3, 

58]. Traditional static and quasi-static systems have gradually given way to 

instrumented systems where load and displacement are measured as a function of time. 

Hardness indentation testing systems can be classified into open and closed loop 

systems as shown in the schematic diagram, Figure 2.14. In open loop systems, there is 

no control of load or displacement, whereas, closed loop systems allow control and 

measurement of the load and/or displacement during the indentation cycle.  

 

 
 

Figure 2.14 Dynamic indentation model: (a) open [59], (b) closed loop [60-63] 

 

Conventional open loop hardness indentation machines operate with a dead-weight 

counter balanced by a dashpot (or cam). A sequence of levers and arms (Figure 2.15) 

apply the stacked dead-weights to the indenter, and a dashpot (or cam) determines how 

smoothly the indenter contacts the specimen once the weight is released, primarily to 

avoid impact [64]. In closed loop indentation systems, there is the potential to control 

the nominal load or displacement versus time characteristic [65-67], (i.e. impact free 

with no under-shoot or over-shoot, as shown in Figure 2.16). Open loop indentation 
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systems have been in use for the past 75 years [66], where mechanical control of the 

descent is limited to avoiding impact and subsequent mechanical control is offered by 

the material under test depending on its elastic and plastic properties. Calibrated open 

loop dead-weight indentation systems apply the load approximately uniformly to the 

nominal level, and are used in cases where the main interest is in producing a quick and 

easy measure of hardness or toughness.   

 

Figure 2.15 Schematic of (a) open loop dead-weight indentation, (b) closed-loop 
nanoindentation [63] 
 

 

Figure 2.16 Schematic of indentation cycle (force-time and displacement-time) 

 

Closed loop indentation systems [60-63, 65-67] generally have displacement and force 

control components, for example using a series of capacitors (as opposed to a stack of 

dead-weights) to apply the force and measuring the displacement through changes in 

capacitance. The relevant components in closed loop (e.g. instrumented 

nanoindentation) systems are shown in Figure 2.14.  One example of the use of such 

systems is in the dynamic indentation where the imposed driving force is given by P = 

Pos.exp(iωt) and the displacement response of the indenter is given by h(ω) = 

h0.exp(iωt+φ), where Pos is the magnitude of the force oscillation, h(ω) is the magnitude 
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of the resulting displacement oscillation, ω is the frequency of the oscillation, and φ is 

the phase angle between force and displacement signals [60].  

 
Figure 2.17 Closed loop indentation: Force-displacement curve during loading (a) 
elasto-plastic material [68], (b) load-controlled [69], (c) displacement-controlled [69] 
 

The loading response of an elasto-plastic material to sharp (e.g. Berkovich, Conical, 

Vickers) indentation, (Figure 2.17a) is governed by Kick’s Law, P = Ch2 where C is a 

constant dependent on elastic and plastic material properties as well as indenter 

geometry [68]. Under load-control with constant strain rate (e.g. nanoindentation), 

elastic or plastic deformation give smooth curves (Figure 2.17a) but, as the load 

increases above a certain threshold, a ‘displacement burst’ or ‘pop-in’ event occurs [68-

70] (Figure 2.17b). The initial positive slope corresponds to the response of a purely 

elastic material and the first displacement burst typically occurs at a load that 

corresponds to the maximum shear stress under the indenter of the same order as the 

theoretical shear strength of the indented specimen material [68]. With increased 

loading above the elastic limit, the material continues to deform in both an elastic and 

inelastic manner with sequences of bursts. For displacement-control, a ‘kink’ (load 

burst) event occurs [69] (Figure 2.17c).  

 

Such series of displacement and force bursts and corresponding AE events (e.g. Figure 

2.18 and 2.19) have been attributed to microstructural changes (e.g. onset of plasticity, 

crack formation, dislocation or phase transformation), depending on the specific 

material, loading conditions and tip geometry. For example, in nanoindentation fracture 

tests ‘pop-in’ events are observed, where a crack initiates and grows using the stored 

elastic energy that has been built up in the previous loading period. Jungk et al. [70] 

have suggested that cracks propagate faster than the mechanically constrained indenter 

tip can respond and the indenter tip loses contact with the material surface. The loss in 

Plateau 

Kink 

Force, P Force, P 

Depth, h Depth, h 

(b) (c) 

Depth, h 

Force, P 

(a) 



 28 

contact results in a loss of the driving stress for crack propagation until the indenter tip 

regains contact at the end of the displacement burst. Subsequent crack extension then 

requires a replenishing of the elastic strain that was consumed during the crack 

extension. Consequently, Jungk et al. [70] proposed a linear relationship between the 

indentation load, P, and the resulting indentation stress, σI = ζ.P, where ζ is a 

conversion factor with units of GPa/mN. Since the residual stress (σR) influences the 

crack extension or suppression, Jungk et al. [70] also proposed that the total stress, σT = 

σI + σR.  

 

  

Figure 2.18 AE monitored nanondentations into a 110 nm thick Ta-C film: (a) The dark 
dots correspond to AE events during loading and are coincident with indenter tip 
displacement bursts attributed to film cracking, and (b) comparison between the AE 
energy and the calculated released elastic energy [70]. 
 

  

Figure 2.19 AE monitored indentations: (a) Hertzian indentation on polycrystalline 
alumina [71], and (b) Rockwell indentation on carbon-doped PVD chromium coating 
[72]. The AE bursts correspond to indenter loading attributed to material cracking.  

2.2 AE monitored indentations 

Over the past three decades since the first application of AE during compression tests of 

polycrystalline alumina ceramics by Lankford (1978) [73], there have been numerous 
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studies undertaken to understand the effect of indentation on various materials using AE 

sensors. Most observations of AE monitored indentation indicate that the majority of the 

AE is generated during indenter loading with very little or none during the holding 

period, while AE may or may not be generated during unloading. AE monitoring has 

been applied to indentation testing by a very large number of authors using various 

types of indenters and AE systems (Appendix A). Relatively few authors have applied 

the approach to thermal spray coatings, so the experience in other materials is also 

reviewed here with the aim of distilling out the key features of AE signals which are 

relevant for coatings. Since the cracking pattern depends on material type and 

indentation shape, it makes sense to divide the review by material and indenter type.  

2.2.1 AE monitoring of ceramics 

Table 2.1 summarises the key information related to the published work on AE 

monitoring of indentation in bulk ceramic materials.  

 

a. Hertzian (spherical) indenters  

Bouras et al. [71] and Bouras and Bouzabata [74] observed that the critical load at 

which Hertzian ring and sub-surface conical cracks appear was accompanied by high 

amplitude burst-type AE signals. Bouras et al. [71] found the critical load 

corresponding to the final unstable crack extension to be characterised by high 

amplitude AE events while the crack extension which occurred before reaching the 

critical load produced low amplitude AE events, while Bouras and Bouzabata [74] 

observed surface ring cracks with the beginning of a conical form. Usami et al. [75] 

found the load-displacement curves in loading to be approximately linear up to the point 

where a ring crack occured around the indenter contact area, detected using the AE 

signal. Further loading after the detection of the first AE signal resulted in another ring 

crack outside the first ring crack. Although the level of detail varied, the investigations 

by Bouras et al. [71], Bouras and Bouzabata [74] and Usami et al. [75] all show the 

common pattern that classified Hertzian cracks (ring or conical cracks) can be detected 

by burst-type high amplitude AE signals.  

 

b. Vickers indenters 

Xiaoli et al. [76], Bergner [77] and Kapoor et al. [78] have also attributed the AE during 

indentation of ceramics to crack extension and have investigated the effect of porosity 
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and microstructural inhomogenities on the AE. Xiaoli et al. [76] found that the fracture 

toughness (measured by both Vickers indentation and a diametral compression method) 

of Si3N4 was mainly controlled by the local pore distribution rather than the mean 

porosity distribution and developed an empirical relationship (Section 2.2.8) based on 

AE event count and AE energy distribution to assess the crack extension due to 

indentation. Bergner [77] observed no AE on loading AlN 3wt.%Y2O3 but found 

multiple events during unloading. Kapoor et al. [78], working with sintered UO2,  

observed strong burst-type AE signals during loading and attributed these to crack 

initiation and propagation, while the AE signal observed during dwell time was 

attributed to the extension of cracks developed during loading.  

 
Table 2.1 AE monitoring of ceramics 

Specimen  
 

Indenter Indentation 
system 

Load/Rate Indentation 
cycle AE 

AE: Source / 
features identified 

Ref. 

Coarse and fine grained alumina 
ceramics (2 and 10 µm grain size) 

94WC-6Co 
Hertzian ball, 
1 to 14 mm rad.  

Instron machine 
 

0-1.35 kN 
 

Loading & 
unloading 
 

Fissuration of conical 
crack/ Amplitude 
 

[71] 

Vitroceramic-alumino silicate and 
sintered alumina (2 and 10 µm 
grain size) both as received (20 x 
20 x 5 mm) and in an implanted 
state with zirconium ions, Zr+ (10 
x 10 x 5 mm) 

WC-Co Hertzian 
ball, 1 and 11 
mm radius 
 

Instron machine-
model no. 1195 
 

0-1.1 kN 
0-1.2 kN 
 

Loading & 
unloading 
 

Fissuration of conical 
crack/Amplitude 
 

[74] 

Alumina ceramics (HD-11 and 
SSA-999s), (8 mm thick, 30 mm 
dia.; 3 x 4 x 40 mm) 
 

WC-Co, Si3N4, 
Al2O3 and 
hardened steel 
(SUJ2) spheres 
of 9.45 mm dia. 

Electro-mechanical 
indentation testing 
–Shimadzu’s AG-
10KG machine 

0.01 mm 
min-1 

 

Loading 
 

Crack growth/ AE 
signal 
 

[75] 

Pressureless sintered Si3N4 (17 
mm dia., 2 mm thick) 

Vickers 
 

Vickers indentation 
tester 

200 N 
 

Loading 
 

Fracture/ Event count 
& energy 

[76] 

Fine-grained AlN ceramic (5 mm 
thick) 
 

Vickers 
 

Vickers indentation 
tester 
 

10-50 N 
 

Loading & 
unloading 
 

Fracture & lateral 
cracks/ Amplitude, 
Frequency, Event 
count 

[77] 
 

Sintered UO2 ceramic Vickers Vickers hardness 
tester 

1.96, 2.94, 
4.9, 9.8 N 

Loading, 
dwelling & 
unloading 

Crack initiation and 
propagation/ AE 
Ring-down count, 
peak amplitude and 
energy 

[78] 

Ceramic-Sintered Al2O3 
 

Vickers 
 

Microhardness 
tester 
 

10-500 N 
 

Loading & 
unloading 
 

Deformation & 
lateral cracks/ 
Amplitude, 
Frequency, Count 

[79] 

Alumina (3 x 4 x 50 mm) 
 

Vickers 
 

Hardness testing 
machine 

0.3, 0.4, 0.5 
and 0.6 kN 

Loading & 
unloading 

Crack growth/ 
Cumulative AE count 

[80] 

Sintered Al2O3 and SiC ceramics 
(3 x 4 x 20 mm) 

Vickers Microhardness 
tester 

9.8, 19.6, 49, 
98, 196 N 

Loading & 
unloading 

Elastic wave/AE 
signal, event, freq. 

[81] 

Sialon-based ceramic in the Y-Si-
Al-O-N system 
 

Vickers 
 

Contact 
microhardness 
tester 
 

3-20 N 
 

Loading & 
unloading 
 

Nucleation of median 
radial crack/ Event, 
amplitude & energy 

[82] 

 

Using dead-weight Vickers indentation where load, AE average amplitude and 

cumulative event count were recorded as a function of time, Akbari et al. [79] reported 

that AE generated by cracking in sintered Al2O3 is of higher magnitude, longer duration 

and higher frequency than the corresponding signals associated with plastic 

deformation. They suggested that the lower frequency (around 300 kHz) events were 

related to median cracks or radial cracks (generated during loading) while frequencies 

between 550 and 600 kHz were associated with lateral cracks (generated during 
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unloading). Also working with Al2O3, Ray et al. [80] found higher cumulative AE 

counts during loading (material in tensile hoop stress) than unloading (compressive 

elastic strain is removed) and suggested that this was due to fast crack growth 

(intergranular fracture) during loading due to the accumulated residual stress energy, 

although indenter holding time (material in compressive elastic strain) did not produce 

any AE. Ray et al. [80] also noted that the number of AE hits increased with increasing 

indentation load leading to microscopically observed intergranular fracture and 

Palmqvist type cracks although they did not directly correlate AE with radial surface 

crack opening.   

 

Ahn et al. [81] observed many AE bursts (attributed to median and micro cracks) during 

loading and unloading but not during holding in sintered Al2O3 and SiC. They found 

characteristic peaks in the AE spectrum for Al2O3 and SiC but no spectral features 

changed with the type of cracking. Yurkov et al. [82] correlated AE records with 

observations of cracking during indentation of Sialon and attributed AE activity at 

lower loads with the indentation and growth of median cracks. At higher loads, 

extensive AE activity was found to be associated with the formation of radial cracks.  

 

2.2.2 AE monitoring of crystals 

Table 2.2 summarizes the published work in crystals again showing the main findings 

and methods. The distinction between ‘ceramics’ as reviewed in previous section and 

‘crystals’ is somewhat artificial, but this section focuses on aspects of ceramic material 

which specifically relate to their crystalline nature.  

 

a. Hertzian (spherical) indenters  

Guiberteau et al. [83] observed discrete AE activity in crystalline Al2O3 and related it to 

the existence of well-defined local instabilities in the deformation-fracture process, 

including increased AE activity with increasing grain size. From examination of cross-

sections of the indentations, the fully developed deformation-microfracture damage 

zones underneath the indenter were found to be made up of an accumulation of 

microstructurally discrete events, each consisting of intra-grain shear faulting 

accompanied by inter-grain microcracking. Most of the AE activity was concentrated 

towards the end of the loading with minor AE activity during the unloading half cycle.  
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Table 2.2 AE monitoring of crystals 

Specimen  
 

Indenter Indentation 
system 

Load/Rate Indentation 
cycle AE 

AE: Source / features 
identified 

Ref. 

Si-single crystal (0.5 mm thick) 
 

Vickers 
 

Vickers 
indentation 
tester 
 

10-50 N 
 

Loading & 
unloading 
 

Fracture & lateral 
cracks/ Amplitude, 
Frequency, Event count 

[77] 

Monophase polycrystalline 
aluminas (mean grain size: 3, 
9, 15, 21, 35 and 48 µm), (20 x 
2.5 x 2.5 mm) 

WC-Hertzian ball 
 

Indentation 
using Instron 
UTM, model 
1122 

0-2 kN, 
1.67 µm s-1 
 

Loading & 
unloading 
 

Deformation, 
fracture/Cumulative & 
peak AE energy 

[83] 

Si and sapphire 
 

Berkovich, 
Spherical 
 

Ultra-
microindentation 
system (UMIS-
2000) 

0-500 mN 
 

Loading & 
unloading 
 

Lateral, radial, edge 
cracks, twinning/AE 
activity 

[84] 

Ceria-stabilised tetragonal 
zirconia polycrystal (Ce-TZP) 
ceramic 

WC-spheres of 
radius 1.2-12.5 
mm 

Universal servo-
hydraulic testing 
machine (Instron 
8051) 

3000 N at 
1.0 µm s-1 

 

Loading & 
Unloading 
 

Phase transformation/ 
Cumulative AE 
amplitude 

 

[85] 

Single crystals-NaCl, Si, Ge 
and polycrystals-SiC, Al2O3 

Vickers 
 

Microhardness 
tester 

0.01-60 N Loading & 
unloading 

Nucleation of lateral, 
radial  cracks/ Count 

[86] 

MgO crystals (1.5-2 mm thick 
sample cleaved along the 
{001} planes) 
 

Vickers Vickers 
microindentation 
tester 

0.2-5 N 
 

Loading & 
unloading 
 

Deformation/ AE signal 
 

[87] 

Single crystal of sapphire 
(0001) (1 x 15 x 15 mm); 
Polycrystalline Al2O3 (10 µm 
grain size) 

Vickers 
 

Microhardness 
tester 
 

20 N 
 

Loading 
 

Cracking, twinning, 
dislocation/ Onset count 

[89] 

P type (100) silicon wafers 
(500 µm thick); Single crystal 
of tungsten (10 mm length and 
5 mm dia.) 

Nanoindenter 
 

Load controlled 
nanoindentation 
 

48, 120, 
250 mN; 
15.5 mN 
 

Loading & 
unloading 
 

Dislocation, radial & 
lateral cracks/ AE 
signal, events, 
amplitude 

[90] 

Single crystals of W (100), 
MgO (100) 
 

Nanoindenter: 50, 
80, 100, 140, 160 
nm tip radius;  
Nanoindenter (90° 
included angle) 
tip radius of 500 
nm 

TriboScope 
system, 
Hysitron, Inc. 
 

0.1-1.6 mN 
 

Loading & 
unloading 
 

Slip & Twinning/ AE 
signal 
 

[91] 

Four different sapphire (Al2O3) 
single crystals: Basal, C(0001); 
Rhombohedral, R(1012); and 
two Prismatic, A(1210), 
M(1010) 

Conical 
nanoindenter (90° 
included angle) 
tip radius of 500 
nm; Cube corner 
indenter, tip 
radius of 100 nm 

TriboScope 
system, 
Hysitron, Inc. 

0.1-1.6 mN Loading & 
unloading 

Slip & Twinning/ AE 
signal 
 

[92-93]  
 

Beta crystalline SiC (K1c ~ 3.23 
MPa.m1/2) 

Cube-corner 
nanoindenter 

NanoTest 
Instruments 
(Micro Materials 
Ltd.) 

25, 125, 
225, 250 
and 450 
mN 

Loading and 
unloading 

Radial and wing cracks/ 
AE counts, energy, rise 
time, duration time and 
amplitude 

[94] 

Single crystal of W (100) (5 
mm dia and 2 mm thick), 
Single crystal of Fe-3%Si 
substrate of 3 mm x 3 mm x 800 
µm to 4 mm x 24 mm x 4 mm 
sizes 

Nanoindenter 
 

Load controlled 
nanoindentation 
 

- Loading & 
unloading 
 

Sample size, 
dislocation/ AE signal, 
AE energy, frequency, 
rise time 

[95] 

 

Swain and Wittling [84] investigated the cracking and twinning of silicon and sapphire 

crystals where, beyond a certain threshold during loading, AE activity rose in steps to 

the final load. While unloading, no AE activity was observed except at the final stage. 

For the sapphire crystals, the on-set threshold of AE activity was attributed to large-

scale plastic deformation (twinning) with limited evidence of radial or circumferential 

cracking.  

 

Latella et al. [85] investigated Hertzian contact damage leading to phase transformation 

of polycrystals (9 mol% ceria-stabilised tetragonal zirconia polycrystal: Ce-TZP) of 

various grain sizes. The micromechanical nature of the damage was predominantly 

tetragonal-monoclinic (t-m) transformation on loading and microcracking on unloading. 
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For the smallest grain size (1.1 µm) AE activity only occured during the loading cycle 

whereas, for large sizes (1.6, 2.2 and 3.0 µm), there was an appreciable amount of AE 

activity also during the unloading cycle, which was ascribed to initiation/extension of 

microcracks or subsurface microcracks. They suggested that the Hertzian compressive 

field coupled with the transformation process and associated expansion of the 

precipitates inevitably raises the compressive stress field further during the loading 

cycle ultimately restricting microcrack initiation and propagation. On unloading, the 

compressive stress field gradually reduces, so that microcrack propagation proceeds 

much more freely. In contrast with the loading cycle, the evolution of the AE amplitude 

curves for the unloading cycle were generally smooth, and this difference was attributed 

to the AE activity on loading being largely associated with the t-m transformation.  

 

b. Vickers indenters  

Lankford and Davidson [86] found that the size of the threshold indentation cracks 

could be predicted using AE event counts for different crystals (single crystals of: NaCl, 

Si, Ge and polycrystals of: SiC, Al2O3). AE events were also detected in the first half 

second of indenter unloading, except for fairly high loads, and these were attributed to 

extension of the radial cracks formed during loading or initiation of lateral cracks during 

unloading. Based on the AE event count at the threshold indentation load, the least 

crack resistant material was found to be Ge followed in order of increasing resistance by 

Si, SiC, Al2O3 and NaCl. Bergner [77] found that AE events occurred both during 

indenter loading and unloading in Si single crystals.   

 

Zhitaru and Rahvalov [87] used AE to observe a type of ‘prolonged deformation 

process’ in MgO single crystals, which are characterised by the occurrence of strains 

after the indenter is removed [88]. Breval et al. [89] compared the micro-cracking 

phenomena in single crystal sapphire (Al2O3) and polycrystalline Al2O3 on a 

microhardness tester and the observation of AE counts showed that there was less 

micro-crack formation in polycrystalline alumina than in single crystal alumina. The 

main contribution to the AE in single crystal sapphire were observed to be 

microcracking with high AE amplitude, where as the plastic deformation due to 

dislocation movements in slip planes, gave low AE amplitude in polycrystalline Al2O3.  
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c. Nanoindenters 

Swain and Wittling [84] investigated the cracking and twinning of silicon and sapphire 

crystals. Whereas median cracks developed in the silicon during loading (identified by 

SEM examination of indent cross-section) during loading, no AE events were detected. 

During unloading, there were significant increases in AE events associated with the 

propagation of lateral cracks. While loading the sapphire crystals, AE activity occurred 

at higher loads whereas none was observed during unloading. Using microscopical 

techniques, radial cracks, edge cracks and uplift in the residual impression were 

observed suggesting considerable twinning of the crystal had occurred under the 

indentation stress.  

 

Weihs et al. [90] applied nanoindentation to P type (100) silicon wafers and annealed 

single tungsten crystals, parallel to the (100) crystal direction. In both crystals 

indentation generated sharp AE signals due to radial crack formation at the indentation 

corners during loading. The displacement profile of the indenter showed a short plateau 

during loading and during unloading, and low amplitude AE signals were occasionally 

detected. The upward thrust of the specimen onto the nanoindenter observed during 

unloading was attributed to lateral crack growth as well as phase transformation in the 

silicon. During indentation of the annealed tungsten single crystal, it was found that 

initial elastic deformation was followed by yield and plastic deformation as might be 

expected. The point of yielding during loading was characterised by a plateau and 

associated AE was attributed to generation and motion of dislocations in crystals.  

 

Dyjak and Singh [94] investigated the initiation and propagation of local failure 

processes during nanoindentation of beta crystalline SiC. Due to the crystalline structure 

of SiC, the AE activity was discrete. After reaching a threshold load, a few discrete AE 

events of lower amplitude were observed during the loading cycle (i.e. opening of radial 

cracks) and a higher rate of larger amplitude events was seen during the unloading cycle 

(i.e. growth of wing cracks). In cases where there were measurable radial cracks, they 

found that the threshold load for the start of the AE activity could be used as an 

indicator of fracture toughness of the material. Using the cumulative AE energy 

parameter, they developed an empirical relationship (Section 2.2.8) between the AE 

energy and the radial crack length (c) during the loading cycle.  
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Bahr and Gerberich [95] investigated the relationship between AE signals and the 

dimensions (size or geometry) of specimens of single crystal tungsten and Fe-3%Si. It 

was found that sample geometry affects the rise time and frequency of the AE signals, 

and that samples of similar size that generate AE signals from different event types (e.g. 

dislocations) have similar waveform characteristics. A linear relationship between 

released elastic energies measured using the nanoindentation technique and the 

corresponding dislocation AE energies were observed regardless of sample geometry or 

material under investigation.  

 

Tymiak et al. [91-93] investigated the initial stages of indentation-induced plasticity 

(slip or twinning) for tungsten and MgO on a single crystal plane and four different 

sapphire (Al2O3) single crystal planes [91-93]. Linear relationships between released 

elastic energies and the corresponding AE energies were observed for all three single 

crystals [91]. Two types (1 and 2) of yield point AE signals were detected [91-93] and 

patterns were attributed to slip and highly localized twinning respectively. Type 1 

(transient) AE patterns were observed for all the tested crystallographic planes and were 

attributed to slip, rhombohedral twinning or twin growth. Type 2 AE patterns were 

observed for the two prismatic crystallographic planes and correlated to linear surface 

features which were identified as basal twins (twin nucleation and twin growth).  

 

2.2.3 AE monitoring of glasses 

Table 2.3 summarizes the published work on AE and indentation of glasses, here 

defined as ceramic materials with low levels of crystallinity. Since most of the work 

relates to soda-lime glass, the material of study in the following will only be mentioned 

if different.  

 
a. Hertzian (spherical) indenters  

Kim and Sachse [96] found reproducible AE signals due to Hertzian cone cracking 

during loading and lateral vent cracking during unloading. Usami et al. [97] also 

observed ring and cone cracks to grow during loading. The AE amplitude decreased 

with decrease in the cross-head speed and indentation size and was not detectable at the 

lowest values of each experimental variable. Usami et al. [97] proposed an empirical 

relationship between fracture stress (σn) and the ratio of ring crack radius and contact 
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radius (r/a). In correlating this with AE signals they found that the larger values of 

fracture stress corresponded to when AE is detected.  

 

b. Vickers indenters  

Bergner [77] investigated the characteristics of AE signals in amorphous slide glass and 

found no AE events during loading but multiple events were observed during unloading 

as well as during holding where it was explained that lateral cracks formed. Ahn et al. 

[81] recorded many burst-type AE signals during loading and unloading but not during 

holding time. The AE events were found to increase with the increase in the indentation 

load, and the cracks (median and micro crack) were initiated during indentation and 

were propagated by release of residual stress during unloading, where the stronger AE 

signals were detected.   

 

Lee and Kim [98] suggested that median and lateral cracks were the possible sources of 

AE because, as the indenter penetrates into the specimen, the median crack extends 

downwards at first then extends radially on unloading. The jumps in the AE event 

counts during indenter holding time were correlated to the sudden breakthrough of the 

median vent through the restraining compressive lobes to intersect the free surface. In 

addition to this, they assumed lateral cracks to be producing minor AE. The level of AE 

increased with load and the higher indentation loads generated AE almost immediately 

after the contact between indenter and specimen, the incubation time between contact 

and AE signal initiation becoming shorter at higher loads. Kim and Sachse [96] found 

two mutually perpendicular median cracks of half-penny configuration, and the 

characteristics of the AE source resembled neither that of a dipole nor a vertical force 

drop but of a mixed type, which can be explained if the driving force for the 

development of median cracks is governed by hoop tension as described by Lawn and 

Wilshaw [3]. Tanikella and Scattergood [99] also found that AE measurements can 

provide enhanced information on crack initiation (median or lateral cracks) at specific 

points of loading and unloading.  

 

Following their work on the identification of critical loads during the Vickers test using 

AE, Lee and Kim [98] and Kim and Sachse [96] proposed empirical models (Section 

2.2.8) for evaluating the mechanical properties of glass or other brittle materials. Lee 

and Kim [98] proposed that the cumulative AE energy is proportional to the fourth 

power of the median crack length (c), whereas Kim and Sachse [96] proposed using the 
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amplitude of the first P-wave arrival (associated with the formation of an unloading 

lateral vent crack) proportional to nth power of (Pm-Pt), where Pm and Pt are the 

maximum and threshold load values, respectively.  

 

The pyramidal shape of the Knoop indenter also induces radial and lateral cracks similar 

to the Vickers. Tanikella and Scattergood [99] found that AE measurements using a 

Knoop indenter were not very reproducible but that the AE can be used to monitor the 

initiation of lateral cracks at specific points of loading and unloading in conjunction 

with instrumented indentation systems.  

 

Table 2.3 AE monitoring of glasses 
Specimen 
 

Indenter Indentation system Load/Rate Indentation 
cycle AE 

AE: Source / 
features identified 

Ref. 

Slide glass (1mm thick) 
 

Vickers 
 

Vickers indentation tester 
 

30 N 
 

unloading 
 

Fracture & lateral 
cracks/ Amplitude, 
freq. & pulse length 

[77] 

Soda-lime glass (5 x 10 x 
15 mm) 

Vickers 
 

Microhardness tester 
 

9.8, 19.6, 49, 
98 and 196 
N 

Loading & 
unloading 

Elastic wave/AE 
signal, event, freq. 

[81] 

Soda-lime glass 
 

Cube-corner 
nanoindenter 
 

NanoTest Instruments 
(Micro Materials Ltd.) 

25, 125, 225, 
250 and 450 
mN 

Loading and 
unloading 

Radial and wing 
cracks/ AE counts, 
energy, rise time, 
duration time and 
amplitude 

[94] 

Soda-lime glass (10 x 10 x 
1.243 cm) 
 

Vickers, 
90 µm dia. 
diamond sphere 

Indenter fixed on loading 
frame via a miniature load 
cell 

55.1 N, 50N 
 

Loading & 
unloading 
 

Cone and lateral vent 
cracks/ P-wave 
amplitude 

[96] 

Soda-lime glass (3 x 4 x 
40 mm) 
 

SiN, Al2O3 and 
hard steel 
spheres of 9.45 
mm dia. 

Electro-mechanical 
indentation testing –
Shimazu’s AG-10B 
machine 

0.01  
mm min-1 

 

Loading 
 

Crack growth/ AE 
signal 
 

[97] 

Soda-lime glass (40 mm 
dia., 3 mm thick) 
 

Vickers 
 

Tukon hardness tester 
 

2-80 N 
 

Loading 
 

Median & Lateral 
cracks/ Ring down 
count & AE energy 

[98] 

Soda-lime glass (20 x 20 x 
3.125 mm) 
 

Knoops, 
Vickers, 
Rockwell C 
 

Indentation using UTM 
 

5-200 N 
 

Loading & 
unloading 
 

Median, radial, 
lateral, Hertzian 
cracks/ Amplitude & 
time duration 

[99] 

Soda-lime glass 
 

WC-Conical 
 

Indenter fixed on loading 
frame via a miniature load 
cell 

26.2 N 
 

Loading & 
unloading 
 

Penny shaped crack/ 
P &S-wave 
amplitude 

[100-101] 

 
 

d. Conical indenters  

Kim and Sachse [100] studied the generation of penny-shaped cracks of Mode-I type in 

soda-lime glass plate, and found that their orientation can be accurately determined 

from the radiation patterns of AE, detected using a circular array of eight sensors. In an 

extension to this investigation, Kim and Sachse [101] proposed an alternative approach 

using dipole strength and source-time function analysis of the radiation pattern 

associated with the amplitude of the first arrival AE signal from a penny-shaped crack. 

Tanikella and Scattergood [99] found that the AE measurement in soda-lime glass was 

highly reproducible and can provide information on Hertzian ring crack initiation.  
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2.2.4 AE monitoring of composites 

Table 2.4 summarizes the published work on AE monitored indentation of a variety of 

composites and polymers.  

 

a. Hertizan (spherical) indenters  

Kent et al. [102], working on polystyrene injection mouldings, found that the load at 

first fracture (determined using the AE signal) proved to be a good indicator of the 

magnitude of the orientation of polystyrene present in the surface layers of the 

mouldings. Wang and Darvell [103] explored the Hertzian failure of dental restorative 

composite materials, and found that an AE sensor mounted on the indenter mandrel was 

useful to detect the first crack while loading. Yang and Han [104-105] monitored the 

indentation damage of carbon fibre reinforced plastic (CFRP) and fibre-metal laminate 

(FML), and found that the damage information obtainable from built-in optical fibre 

vibration sensors was comparable in quality to AE data (amplitude and count rate) 

which was attributed to reinforcing fibre break.   

 
Kawaguchi et al. [106] investigated the indentation fatigue properties of glass-fibre 

reinforced polyphenyleneether (GFPPE), polyphenylenesulfide (GFPPS) and syndio-

tactic polystyrene (GFSPS) thermoplastics, and found that the AE began to occur early 

in the loading cycle, the AE amplitude reaching its maximum value when the load 

reached its maximum. The specimen did not show ultimate failure at the maximum 

load, and the load decreased gradually as the defects such as fibre breakage, micro-

voiding, change in the orientation of fibres and plastic deformation of the matrix 

propagated. Cesari et al. [107] investigated damage accumulation (matrix cracking, 

delamination and fibre breakage) in quasi-isotropic carbon fibre reinforced epoxy resin 

laminate, and found that sudden arrests in the load-displacement curve due to 

delamination and fibre failure were accompanied by sudden drop in the ratio of elastic 

energy to AE energy.  

 
 

b. Vickers indenters  

Ray et al. [80] found more AE during unloading than loading cycles in silicon carbide 

whisker (SiCw) reinforced alumina composite. Although holding time did not produce 

any AE signals, Palmqvist type cracks were observed at higher loads. In Al2O3 / SiC 

composites, Ahn et al. [81] found less AE during the unloading compared to the loading 

cycle, possibly because the voids absorbed some energy during the loading cycle. Many 
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burst-type AE signals due to median and micro cracks were recorded during loading and 

unloading but not during holding. AE event counts were found to increase with 

increasing indentation load, but the waveform frequency content (in the bands 50-200, 

200-400, 450-550 and 650-700 kHz) was not related to the indentation load.  

 
Table 2.4 AE monitoring of composites 

Specimen  
 

Indenter Indentation 
system 

Load/Rate Indentation 
cycle AE 

AE: Source/ 
features identified 

Ref. 

25wt. % SiWw whisker reinforced 
alumina composites (3 x 4 x 50 
mm) 

Vickers 
 

Hardness tester 
 

0.63, 0.8, 1.0 
and 1.2 kN 

Loading & 
unloading 

Crack growth/ 
Cumu. AE count 

[80] 

Al2O3-15% vol. SiC composite (3 
x 4 x 20 mm) 

Vickers 
 

Microhardness 
tester 

9.8, 19.6, 49, 
98, 196 N 

Loading & 
unloading 

Elastic wave/AE 
event, frequency 

[81] 

Metal-matrix composites 
(Al/Al 2O3) 
 

Vickers 
 

Microhardness 
tester 

20 N 
 

Loading 
 

Twinning, 
dislocation/count 

[89] 

Polystyrene (2 mm thick) 
 

Steel balls 
indenters (2.4 
& 1.8 mm 
radius) 

Indentations on 
Instron tensile 
testing machine 

1.0 mm min-1 
penetration 
rate 

Loading Fracture/ AE signal 
 

[102] 

Amalgam and ceramic reinforced 
glass ionomer cement, GIC (0.4-
0.8 mm thick) on 30% glass fiber-
reinforced polyamide (5 mm thick 
of 10 mm dia.) substrate 

Hard steel ball 
of 20 mm dia. 
 

- 0.02 mm 
min-1 
 

Loading 
 

Failure of 
composites/ AE 
signal 
 

[103] 

Carbon fiber epoxy matrix (70 x 
70 x 1.5 mm) 

Hemispherical 
shape indenter, 
12.7 mm dia. 

Indentation on 
Shimadzu’s UTM 
 

3 mm min-1 
 

Loading 
 

Fiber damage/ 
Count rate & 
amplitude 

[104] 

Al laminate and carbon/epoxy 
matrix (100 x 100 mm) 

Hemispherical 
shape indenter, 
12.7 mm dia. 

Indentation on 
Shimadzu’s UTM 
 

3 mm min-1 
 

Loading 
 

Damage/Count rate 
& amplitude 
 

[105] 

Glass-fiber reinforced 
polyphenyleneether (GFPPE), 
polyphenylenesulfide (GFPPS), 
syndio-tactic polystyrene 
(GFSPS), (1.6 x 60 x 60 mm) 

Hertzian 
shaped 
indenter 
 

Indentation on 
Shimadzu’s 
Servopulser 
 

1 mm min-1 
 

Loading 
 

Crack initiation and 
ultimate failure/ AE 
counts 
 

[106] 

Carbon fiber reinforced epoxy 
resin laminate (250 x 250 x 1.6 
mm) 

Hardened steel 
ball, 4 and 7 
mm radius 

Hydraulic Instron 
8033/MTS Testar II 
system 

0.05 mm 
min-1 
 

Loading 
 

Delamination and 
fiber failure/ AE 
energy 

[107] 

 Mullite matrix embedded with 
Al2O3 and tetragonal zirconia 
polycrystal (TZP) 
 

Vickers 
 

Instron machine 
 

196-427N 
 

Loading & 
unloading 
 

Fracture & 
decohesion/ Event 
count & amplitude 

[108] 

Tetragonal Zr polycrystal powder 
ZrO2 stabilized with 3 mol. % 
Y2O3 with single crystal Al2O3 
platelets (platelets dia. 3µm) as a 
reinforcing phase (28 mm dia., 
4.8mm thick) 

Vickers 
 

Vickers indentation 
tester 
 

49-491N 
 

Loading & 
unloading 
 

Crack/ Event, 
Cumu. event & 
energy,  amplitude 
 

[109] 

Unidirectional SiC (Nicalon 
fibres)/Mullite composite (cross-
section of 5 mm x 8 mm and 10-12 
mm length) 

Vickers 
 

Microhardness 
tester 
 

Debonding 
stress 2-12 
GPa 

Loading 
 

Debonding 
mechanism/ Events 
 

[110] 

 

Baudin et al. [108] compared the AE characteristics due to fracture of the mullite matrix 

with its CMC reinforcing particles of aluminum oxide and tetragonal zirconia 

polycrystals (TZP). Total numbers of AE events gathered during loading were 

correlated with the total area of crack surface and found to increase with increasing load 

in an approximately linear fracture. Shifts in AE signal amplitude distribution were 

observed for all three components (mullite matrix, and aluminum oxide and TZP 

particles). The low values of amplitude for TZP (coming from the decohesion of the 

glassy phase) shows that the total AE energy is divided between a small numbers of 

events of high amplitude whereas the high values of amplitude for alumina particles and 
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mullite matrix (coming from the fracture of the matrix and particles) reflects a division 

into a large number of low-energy events.  

 

Form et al. [109] were interested in fracture toughness differences between specimens 

of zirconia matrix material with alumina platelet reinforcement. AE activity associated 

with cracking was at the very initial period of indentation, and the higher amplitude 

bursts were attributed to the influence of the platelets.  The small numbers of AE events 

during the initial elastic indentation period were attributed to friction between the 

indenter and the specimen.   

 

Breval et al. [89] compared the micro-cracking phenomena in a metal-matrix composite 

of Al/Al 2O3 with glass (MgO) sintered Al2O3. The metal-bonded alumina (Al/Al2O3) 

exhibited less AE counts than glass-bonded alumina (MgO-sintered Al2O3) indicating 

that some of the stress is taken up by the metallic phase. In a SiC (Nicalon fibre) 

reinforced mullite composite, Rouby and Osmani [110] found that AE event count was 

a good tool for detecting debonding and the debonding mechanism between fibre and 

matrix was found to be governed by energy release rate and not by a local failure 

criterion.  

 

Replacing and rationalising the time-consuming indentation crack length measurement 

with the AE parameters to determine the mechanical properties of composites and the 

specific crack sequence in which they form is an important aspect of the work of Baudin 

et al. [108] and Form et al. [109]. For example, Baudin et al. [108] proposed a power 

law correlation between AE and fracture toughness (Section 2.3.8).  

 

2.2.5 AE monitoring of metals and metal foams 

Table 2.5 summarizes the published work on AE monitored indentation of metals and 

metal foams. Because there are so few studies, these are discussed per material in the 

following.  

 

Girodin et al. [111] studied the static and cyclic Hertzian indentation of hardened 

martensitic steel (750-800 HV), and identified cracking in spheroidal carbide particles 

(size ~ 10 µm) observed through surface microscopy at the edge of the plastic zone as 



 41 

the main source of AE during loading. The AE response of embrittled structural and 

tool steels during Vickers indentation was studied by Clough and Simmons [112]. They 

classified the steels in terms of hardness: < 40 HRC, 40-50 HRC, and > 50 HRC and 

found no AE from the softest group with AE always being observed in the hardest 

group. The intermediate group only occasionally produced AE. SEM analysis indicated 

that the AE signals were produced by the nucleation and incremental growth of 

subsurface penny-shaped cracks in hard steels. Finally, Breval et al. [89] observed no 

AE during Vickers indentation loading of a polycrystalline aluminum alloy and 

attributed this to fracture-free deformation.  

 

Table 2.5 AE monitoring of metal and metal foams 
Specimen  
 

Indenter Indentation 
system 

Load/Rate Indentation cycle 
AE 

AE: Source/ 
features identified 

Ref. 

Polycrystalline aluminum alloy 
(Al 5083 with 3.85% of Mg): 
Vickers hardness of 1.1-1.6 GPa 

Vickers 
 

- 20 N Loading 
 

Fracture free 
deformation/No AE 
detected 

[89] 

Martensitic steel (X105CrMo17)  
with  M7C3 eutectic carbides  

Hertzian Static or 50 Hz 
cyclic load  

4000-15000 
MPa 

Loading Crack initiation/AE 
signal 

[111] 

Embrittled steel such as pressure 
vessel steel with embrittled weld 
and embrittled tool steels (2.54 cm 
thick, 7.62cm dia.) 

Vickers 
 

Manual load 
control on a 10:1 
lever arm 
mechanism 

- Loading 
 

Nucleating & growth 
of sub-surface 
cracks/ Amplitude 
waveforms 

[112] 

Al-based foams, e.g. aluminium-
silicon foam (AlSi10) and Alporas 
foam (AlCa5Ti3) (40 x 40 x 40 
mm) 

Flat-plate 
circular 
cylinder 
punches:  1.5 
and 5 mm 
dia. 

MTS hydraulic 
machine in 
displacement 
control-quasistatic 
compression 

5x10-3-
1.25x10-1 mm 
s-1 

 
 

Loading 
 

Fracture & plastic 
yield/ Count & event 
& amplitude 
waveforms 
 

[113] 

Metcomb AlMg1Si0.6CuCr + 
15% Al2O3 foams (aluminum 
matrix composite reinforced by 
Al2O3 or SiC particles) with 
different Si and Mg content, (30 x 
30 x 20 mm) 

Flat-plate 
circular 
cylinder 
punches: 5 
mm dia. 
 

MTS hydraulic 
machine in 
displacement 
control-quasistatic 
compression 
 

0.025 mm s-1 

 
Loading 
 

Fracture & plastic 
yield/ Count & event 
& amplitude 
waveforms 
 

[114] 

 

Kàdàr et al. [113-114] used flat cylindrical punches to examine the AE response during 

indentation of metallic foams, e.g. aluminium-silicon foam (AlSi10) and Alporas foam 

(AlCa5Ti3) and Metcomb (AlMg1Si0.6CuCr + 15% Al2O3). The indentation punch 

stress values were correlated with AE count rates. For Al-based metallic foams [113], 

the rise time of the AE amplitude was found to be indicative of two different 

deformation modes; fracture (low rise time) and plastic yield (high rise time). Foam cell 

wall bending was identified as causing a continuous AE signal whereas cell wall 

buckling with fracture or yielding was identified as causing a burst-type AE signal. Cell 

walls were deformed directly beneath the indenter (cell collapse) and densified to form 

a rigid material. A high AE count rate was found when the stress droped at cell wall 

failure at which point high AE amplitudes were observed, and attributed to either 

fracture or the formation of cracks.  
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2.2.6 AE monitoring of thin solid films 

Table 2.6 summarizes the published work on AE monitored indentation of thin solid 

films, noting also the substrate material.  

 

a. Hertzian (spherical) indenters 

Swain and Wittling [84] observed considerable AE activity followed by a major burst 

during loading of a TiN film on a silicon substrate. With increasing load both the coated 

substrate and uncoated substrate showed a series of distinct AE burst events with little 

AE activity during unloading. A TiN film coated on sapphire substrate produced a 

major AE burst event larger than for the uncoated sapphire which was attributed to 

spallation of the TiN film from the sapphire substrate by cracking and twinning. Shiwa 

et al. [115] found that AE was able to detect the onset of cracking of a hard TiN film on 

a softer silicon substrate during loading, and film delamination during unloading. Three 

stages of indentation were identified during loading: elastic response of coating-

substrate system (stage-I), development of circular film cracking and/or shear faulting 

(stage-II), radial cracks and extended plastic deformation of substrate (stage-III). During 

unloading, a further three stages were identified: elastic response of coating-substrate 

system and interfacial delamination (stage-IV), continued radial cracking in films 

(stage-V) and continued interfacial delamination (stage-VI).  

 

b. Vickers indenters  

Tanikella et al. [116] observed a reproducible AE signal which did not vary with 

loading rate which occurred at the fracture threshold in thin amorphous SiC coatings 

deposited on an Incoloy substrate. Intermittent AE signals of larger amplitude and 

duration were also detected with increased indentation load but no radial or lateral 

cracks or de-cohesion were observed. Walter et al. [117] investigated indentation-

induced cracking patterns of DC magnetron-sputtered boron carbide-DLC coatings with 

a Ti interlayer leading to adhesive and cohesive failure from the steel substrate. The 

cracking patterns (e.g. crack openings, corner cracks and crack paths) and their AE 

activities (counts) for coatings deposited at various flow rate of acetylene gas were 

found to vary. Ikeda et al. [118] observed the initiation and progression of micro-

fractures in polycrystalline CVD diamond films deposited on a SiC substrate. They 

found that the AE event count and energy cannot reveal the fracture type due to 

indentation, which led them to study the fracture types by analyzing the first arrival (so-

mode) Lamb waves detected by four sensors. Yonezu et al. [119-120] found AE signals 
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to be very useful in identifying and measuring the Mode-I ripple crack produced by film 

bending (leading to delamination under the tensile stress in TiN and DLC coatings.   

 

c. Nanoindenters 

Jungk et al. [70] studied the fracture behavior and toughness of tetrahedral amorphous 

carbon films deposited on silicon substrates. ‘Pop-in’ displacement excursion events 

during loading were attributed to film cracking and were associated with AE energy. 

They also proposed load-independent empirical models (Section 2.2.8) based on the 

type of cracking (radial or channel) to measure the fracture toughness using AE 

parameters. The fracture toughness values obtained using the classical approach (3.3-3.7 

MPa.m1/2) was found to be similar to the values measured using AE parameters (3.0-3.8 

MPa.m1/2).  

 

Weihs et al. [90] investigated Ni films coated onto glass slides and found a 

displacement plateau equal to the film thickness during loading. This plateau was 

attributed to debonding of the Ni film, and was associated with sharp AE signals. Swain 

and Wittling [84] found some AE at very low loads due to asperity deformation and 

cracking of TiN films on silicon and sapphire crystal substrates. A significant amount of 

AE activity (counts) was observed during loading, as well as some during unloading. 

Major bursts of AE activity during unloading were attributed to delamination of the film 

with no radial cracking. The buckling of the film which led to delamination occurred 

during the final stages of unloading and was driven by residual compressive stresses 

within the film. Daugela and Wyrobek [121] also detected AE signals due to nano scale 

cracking during loading and adhesive failure during unloading of SiN film on 

polycarbonate substrate.  
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Table 2.6 AE monitoring of thin solid films 
Specimen  
 

Indenter Indentation system Load/Rate Indentation 
cycle AE 

AE: Source/ 
features identified 

Ref. 

Pulsed laser deposited (PLD) 110nm 
thick tetrahedral amorphous carbon (ta-
C) on (001) silicon substrate 

Cube-corner 
nanoindenter 
 

TriboIndenter 
 

1 to 9 mN at 
20 mN s-1 

Loading 
 

Radial and channel 
cracking/ AE 
signal, energy 

[70] 

Filtered arc  PVD TiN film (0.8 µm 
thick) on Si and sapphire substrate 
 

Spherical, 
Berkovich 
 

Ultra-
microindentation 
system (UMIS-2000) 
 

0-500 mN 
 

Loading & 
unloading 
 

Cracks, 
delamination/ 
Counts 
 

[84] 

Nickel films (1 µm thick) evaporated 
onto glass microscope slides 

Nanoindenter Load controlled 
nanoindentation 

130, 250 mN Loading & 
unloading 

Delamination/ AE, 
events 

[90] 

Filtered arc PVD TiN film (2.7 µm 
thick) on Si single crystal wafer of 
thickness 1.05 mm 

Spherical 
 

Ultra-
microindentation 
system (UMIS-2000) 
 

0-350 mN, 
0-650 mN 
 

Loading & 
unloading 
 

Cracks, 
delamination, 
deformation/ RMS 
amp. & counts 

[115] 

Amorphous SiC coatings of 5µm 
thickness deposited on an Incoloy (dia. 
12 mm) by using low temperature 
plasma-assisted chemical vapor 
deposition (PACVD) process 

Vickers 
 

Indentation on piezo 
translator (PZT) 
mounted to cross-
head testing machine 

0.1-8 N 
 

Loading 
 

Fracture/ Amplitude 
 

[116] 

DC magnetron-sputtered boron-carbide 
DLC coating (1, 1.5, 1.9 and 2.5 µm 
thick) on 52100 steel disk with Ti 
interlayer (32 mm dia. and 6.5 mm 
thick) 

Vickers 
 

Instrumented 
indentation system 
 

40, 100, 300 
and 750 N 
 

Loading 
 

Adhesive and 
cohesive failure/ 
AE counts 
 

[117] 

Polycrystalline diamond films deposited 
by CVD on sintered SiC substrate (15 
mm wide and 5mm thick); Micro-
crystalline diamond-MCD film 
thickness of 53 µm for Vickers test; 
Nano-crystalline diamond-NCD film 
thickness of 35 µm for Rockwell-C test, 
NCD film of 33 µm for both test 

Rockwell-C, 
Vickers 
 

Instrumented 
indentation 
 

10-30 N at 
0.02 N s-1 ; 
10-50 N at 
0.49 N s-1 
 

Loading & 
unloading 
 

Lateral, ring cracks, 
delamination/ AE 
signal 
 

[118] 

PVD-TiN film of thickness 
4µm/4µm/3.5µm/1µm on austenitic 
stainless steel/carbon steel/forging 
steel/pure iron deposited on substrate 
such as austenitic stainless steel, carbon 
steel, forging steel and pure iron 
respectively (30 x 30 x 2 mm) 

Vickers 
 

Vickers micro-
indentation test using 
electro magnetic 
servo-testing 
machine 
 

20 N at 10 
mN s-1 

 

Loading 
 

Mode-I  ripple 
fracture/ 
Cumulative count, 
Lamb wave 
amplitude 
 

[119] 

DLC thin film by CVD of thickness 3 
µm deposited on austenitic stainless 
steel (30 x 30 x 2 mm) 
 

Vickers, 
Rockwell (0.4 
mm tip radius) 
 

Micro-indentation 
test using electro 
magnetic servo-
testing machine 
 

35 N & 30 N 
at 100 & 20 
mN s-1 
 

Loading 
 

Mode-I  ripple 
fracture/ 
Cumulative count, 
Lamb wave 
amplitude 

[120] 

60 nm SiN thin film on Polycarbonate 
substrate 
 

Nanoindenter 
 

Instrumented 
indentation 
 

1000 µN 
 

Loading & 
Unloading 
 

Nanoscale 
cracking/ AE signal 
 

[121] 

Polycrystalline 3C-SiC (a poly-types 
with cubic structure) CVD thin films of 
thickness 50-285 nm 
 

Nanoindenter: 
Cube-corner 
diamond tips, 
radius 116 and 
685 nm 

Nanoindentation in 
Atomic Force 
Microscope 
retrofitted with a 
Triboscope system, 
Hysitron Inc. 

0-7000 µN 
 

Loading 
 

Fracture, 
Deformation/ 
Amplitude, Energy, 
Frequency 
 

[122] 

Au alloy film on glass substrate 
 

Conical PbO-
TiO2-ZrO2 

Microidentation 
adhesion tester 

1.4-20 nm s-
1 0-12 mN 

Loading 
 

Delamination, 
cracking/ Counts, 
amplitude 

[123] 

MPCVD diamond coated (6 µm film 
thickness) on sintered Si3N4 substrate 
(15.3 mm dia., 3.1 mm thick) 

Brale diamond 
cone 
 

Indenter adapted to 
UTM, Shimadzu’s 
model AG-25TA 

50 µm/min 
 

Loading 
 

Lateral & radial 
cracks, debonding, 
AE signal, 
amplitude 

[124] 

Polycrystalline diamond films (30 µm 
thick with 10 µm grain size) deposited 
on sintered Si3N4 ceramic substrate; 
Micro-crystalline diamond-MCD film 
using MPCVD; Nano-crystalline 
diamond-NCD film using HFCVD 

Brale diamond 
cone  
 

Indenter adapted to 
UTM, Shimadzu’s 
model AG-25TA 
 

50 µm min-1 
at discrete 
load range 
of 0-1000 N 

Loading 
 

Fracture and 
cleavage/ AE 
amplitude peaks 
 

[125] 

MPCVD diamond films of thickness 
5µm (heat-treated/untreated of as-
deposited sample) deposited on dc 
sputtered Ti-interlayer of 0.6 µm thick 
on Cu substrate (10 x 10 x 1 mm) 

200µm radius 
Rockwell-C 
 

Indentation using 
CSEM-Revetest 
scratch tester 
 

0-100 N, 0-
200 N at 30 
N min-1 

 

Loading 
 

Delamination/ 
Amplitude 
 

[126] 

MPCVD diamond films of 1.5 µm 
thickness on pure substrate such as Ti, 
Cr, Si and Ti coated on Cu substrate (5 
x 5 x 1 mm); Sputtered Ti-interlayer of 
0.6 µm thickness on Cu substrate before 
CVD process 

200 µm radius 
Rockwell-C 
 

Indentation using 
CSEM-Revetest 
scratch tester 
 

0-180N at 
30 N min-1 
 

Loading 
 

Delamination/ 
Amplitude 
 

[127] 

Nitrogen-doped stainless-steel PVD 
coatings (10 µm thick)  deposited by 
reactive magnetron sputtering 
 

Rockwell-C 
 

Indentation using 
LSRH-Revetest 
scratch tester 
 

0-40 N 
 

Loading & 
unloading 
 

Tensile ring cracks/ 
Amplitude & FFT 
 

[128] 
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Ma et al. [122] suggested that crack nucleation and growth along grain boundaries in 

polycrystalline silicon carbide thin films with columnar microstructure was the most 

likely accommodation mechanism during indentation. AE signals were always produced 

just before commencement of a ‘pop-in’ but not at any other point of the loading curve, 

which they look to be indicative of a combination of deformation and fracture processes 

in films and not associated with frictional slip at the indenter tip/film contact interface. 

The load at the instant of ‘pop-in’ excursion (i.e. critical load) and the associated AE 

energy increased with film thickness. Bahr and Gerberich [95] investigated the 

relationship between the measured elastic energy using the nanoindentation technique 

with the AE energy during indentation of brittle thin films of Ti2N on sapphire 

substrates. A linear relationship between released elastic energies and the corresponding 

delamination AE energies was observed regardless of sample geometry. 

 

d. Conical indenters  

Tsukamoto et al. [123] observed sudden fluctuations in load during loading of thin Au 

films on a glass substrate along with synchronous AE, which they related to the film 

delamination from the substrate. Indenting at 30° and 45° to the horizontal produced a 

typical ‘kink’ in the load-displacement hysteresis during loading with synchronous high 

amplitude AE which was attributed to film delamination, cracking and slip of the 

indenter. Tsukamoto et al. [123] also studied the adhesive strength of diamond coatings 

on Si wafer substrates and showed that the substrate was the main source of most of the 

AE peaks (mainly due to deformation and cracking).  

 

Belmonte et al. [124] compared the adhesive behaviour of diamond film coated onto 

Si3N4 ceramic substrates polished to two different roughnesses. The ‘ground’ material 

(Ra: 0.178 µm) exhibited the most intense AE peak due to spalling of the film and this 

occured at a higher load, while the ‘polished’ material (Ra: 0.013 µm) exhibited 

delamination of the film at lower load. Amraval et al. [125] investigated the fracture, 

cleavage and adhesive behaviour of polycrystalline diamond films coated onto sintered 

Si3N4 ceramic. Although no correlation between the star shaped radial cracking around 

indentations and AE was attempted, the observed high amplitude peaks were attributed 

to fracture, cleavage and adhesion of the diamond films while in contact with the 

indenter.  
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Fan et al. [126-127] and Ikeda et al. [118] have investigated the adhesion of diamond 

films deposited on different substrates by analysis of the critical loads. Fan et al. [126] 

identified and compared the critical loads during loading, which caused delamination of 

as-deposited and post-treated diamond films deposited on Cu substrates with Ti 

interlayers. For the post-treated films, the higher annealing temperature and/or longer 

annealing time were thought to lower the critical load and be exhibiting worse adhesion, 

due to changes in the structure of the diamond film/interlayer/substrate interface. For 

diamond coatings on Ti and Cr substrates, Fan et al. [127] found that the indentations 

caused substrate cracking prior to the failure of the film/substrate interface. The 

diamond coated Ti specimen exhibited regular AE peaks of low intensity, while a very 

intense AE peak was detected for the diamond coated Cr substrate. The small AE peaks 

for diamond coated Ti specimens were attributed to film cracking and localized 

detachment. They concluded that film cracking followed by film delamination was 

associated with high intensity AE, and a number of failure modes could be detected 

using AE, such as substrate cracking, film cracking and localized detachment, and film 

delamination and its propagation. In nano-crystalline diamond (NCD) film coated onto 

sintered SiC substrates, Ikeda et al. [118] detected and separated the outer ring-shaped 

cracks due to tensile stresses and inner ring-shaped crack due to compressive stresses 

using AE signals. They found that delamination of NCD films was caused by Mode-II 

fracture or buckling of the film due to compressive residual stress in the film. Higher 

numbers of ring shaped cracks were attributed to the weak inter-granular cohesive 

strength of the diamond film, whereas the few radial cracks in NCD film were found to 

be due to the difference of the compressive residual stresses.  

 

Stebut et al. [128] developed an on-line AE tool using instrumented indentation (depth-

time) to identify brittle, cohesive and adhesive failure mechanisms of nitrogen-doped 

stainless-steel thin films. The sharp and high amplitude AE signals corresponded to 

brittle and tangential ring cracking during holding, whereas continuous low amplitude 

AE signals corresponded to background noise identified right through the indentation 

cycles. They found that ring cracks developed through the coating thickness but no 

delaminations from the substrate were observed.  
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2.2.7 AE monitoring of thermal spray coatings 

Table 2.7 summarizes the published work on AE monitored indentation of thermal 

spray coatings surfaces, which is the material of most relevance to this work.  

 
a. Hertizan (spherical) indenters  

Safai et al. [27] used Brinell indentation to characterise the porosity of plasma and 

flame sprayed alumina coatings. The amount of cracking due to porosity in the plasma 

sprayed coatings was approximately one-half that of the flame sprayed coatings, 

evaluated using the average AE event counts. It was therefore concluded that a 

reduction in AE event count was representative of reduced porosity. These authors also 

used high indentation loads to study the debonding mechanisms of sprayed coatings 

from the substrate, but did not report any finding about AE.   

 

The influence of a bond coat on the cracking features of plasma spray coatings were 

investigated by Sentruk et al. [30] using Hertzian indentation. They found that a bond 

coat layer of NiCrAl under plasma sprayed partially stabilized zirconia (PSZ) ceramic 

coatings suppresses AE activity and associated this with surface compressive stresses 

inhibiting cracks. They also observed that the critical load (determined on the basis of 

AE energy) was higher when a bond coat layer was present for both continuously and 

non-continuously sprayed coatings. The cracking phenomena occurring during 

indentation and the associated AE activity were also influenced by the thermal spray 

process parameters.  

 

Table 2.7 AE monitoring of thermal spray coatings 
Specimen  Indenter Indented 

surface 
Indentation 
system 

Load/
Rate 

Indentation 
cycle AE 

AE: Source/ 
features 
identified 

Ref. 

Al2O3 (oxyacetylene: 15% porosity), 
Al203 (plasma: 8-9% porosity), Al203-
13%TiO2 (plasma-fused: 4% porosity), 
Al203-40%TiO2 (plasma-fused: 6% 
porosity), Al203-40%TiO2 (plasma-
composite: 4% porosity) on mild-steel 
substrate; 130 µm thick coating 

Brinell, 
10 mm 
dia. 
 

Coating 
surface 

Brinell’s 
indentation 
 

5 kN 
 

Loading & 
unloading 
 

Densification of 
pores/Total counts 
 

[27] 

Top coat (500 µm) of Plasma-sprayed 
Al2O3-40% TiO2, Al2O3-13% TiO2, 
Al2O3-3% TiO2 with Ni-Al bond coat 
(60-80 µm thick) on low carbon steel 
substrate (75 x 10 x 5 mm) 

Vickers 
 

Coating 
surface  

Depth 
sensing 
indentation: 
Instron 4301 

20-300 
N 
 

Loading 
 

Fracture & 
Deformation/ 
RMS amplitude 
and frequency 

[28] 

Top coat (900 µm) of Plasma-sprayed 
Al2O3-13% TiO2with Ni-Al bond coat 
(100 µm) on low carbon steel substrate 
(5 mm thick) as-sprayed and micro-wave 
treated 

Vickers 
 

Coating 
surface  

High-
frequency 
dynamic 
impact 
(at 20 kHz 
impact 
duration of 5 
minutes) 

5-15 N 
 

Loading 
 

Fracture & 
Deformation/ 
RMS amplitude 
and frequency 

[29] 

Top coat (900-1100 µm)  of Plasma-
sprayed Yttria stabilized zirconia (YSZ) 
ceramic coatings with and without 
NiCrAl bond coat (150-200 µm thick) on 
mild steel substrate (60 x 7 x 2.54 mm) 

Hertzian 
WC ball, 
3.175 mm 
dia. 
 

Coating 
surface  

Servo-
hydraulic 
machine: 
Instron 8502 

10 µm 
s-1 load 
up to 3 
kN 
 

Loading 
 

Pore coalesce, 
layered cracking/ 
Energy and Event 

[30] 
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The results from Safai et al. [27] and Sentruk et al. [30] indicate that soon after the 

Hertzian indenter touches the plasma sprayed surface, AE events occur which could be 

associated with crack nucleation beneath the indenter and some of the AE sources could 

be related to sub-surface effects such as mechanically induced closure of pores and/or 

densification due to the compressive stresses acting below the indenter.  This has been 

described further by Factor and Roman [34-35] working on micro-indentation testing of 

thermally sprayed coatings with a metal matrix. When indenting these coatings, the 

material beneath the indenter experiences compaction (due to Hertzian compressive 

stresses) facilitated by failure of weakest links. The compaction may involve plastic 

deformation of the metal matrix leading to development of additional residual stresses, 

failure of the matrix-reinforcement interface, or local cracking of the hard phase 

particles. In thermal spray coatings, the main contributor to the indenter accommodation 

is porosity closure in the stress field of the indentation.  

 

b. Vickers indenters  

Prasad et al. [28] carried out on-line AE monitoring along with off-line damage 

assessment by scanning electron microscopy (SEM) to corroborate the critical loads for 

three grades of plasma-sprayed alumina-titania coatings (Al2O3-40% TiO2, Al2O3-13% 

TiO2, Al2O3-3% TiO2) on a carbon steel substrate with a Ni-Al bond coat. They found 

that the RMS AE increased at a critical load just before the onset of rupture of coatings, 

after which the RMS decreased. It was found that, as the percentage composition of 

alumina increased; the critical load decreased. Further, they classified the AE response 

into two categories according to AE frequency; deformation mode (35-40 kHz) and 

fracture mode (220-280 kHz). According to Prasad et al. [28], plastic deformation 

produces continuous AE with low frequency, whereas cracking produces burst-type AE 

signals.  

 

In an extension to the work of Prasad et al. [28], Vijayakumar et al. [29] used high 

frequency dynamic impact of a pyramidal diamond indenter to compare the critical load 

for rupture for plasma as-sprayed and microwave-treated (post-processed) alumina-

titania coatings. It was found that, during the ‘deformation mode’ the frequency of the 

AE was in the range 200-400 kHz for as-sprayed coatings and 800-900 kHz for 

microwave treated coatings. They observed that post-treatment (microwave treatment in 

this case) of coatings increases the micro-hardness and reduces porosity so that 

microstructure exhibits higher resistance to dynamic impacts for a longer time. Also, 
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post-treatment will reduce the residual stresses which might otherwise drive further 

coating damage during dynamic impact.  

 

2.2.8 Prospects of AE monitored indentation testing 

It is clear from the foregoing review that cracks formed during indentation of bulk 

materials and coatings generate AE. It is also clear that the uncertainty in quantifying 

and measuring the total crack lengths in indentation makes a simple fracture-mechanics 

based assessment of coating toughness difficult for all but the simplest cracking 

patterns. It is therefore expected that correlation between AE and fracture patterns will 

lead to an improved method for coatings quality evaluation. Table 2.8 summarizes 

those empirical relationships which have been published using AE, fracture toughness 

and cracking pattern. The review has indicated very limited work on thermally sprayed 

coatings certainly much less than on thin solid films. Such work as has been done, along 

with structural bulk materials, such as ceramics and composites suggests that cracking 

patterns will be rather complex for coatings where there is a ductile (metallic) and 

brittle component, so challenges were expected in observing cracking patterns. 

Furthermore, the difficulty in measuring the cracking makes the case of AE for coating 

quality estimation all the more advantageous.  

 
Table 2.8 Empirical formulations for AE and cracking 

 
There are no fixed standards (except on the thickness) for the size of the indentation test 

specimens, although much of the reported work is on relatively small specimens, as 

Material group Materials Indenter/Indentation Mechanical properties evaluation using AE Ref. 
GLASS Soda-lime glass 

 
Vickers/Tukon hardness 
tester 

Accumulated AE energy, 42 )/(~ cEKcε ; ‘c’ is median 

crack length, Kc is stress intensity factor, and E is Young’s 
modulus. 

[98] 

GLASS Soda-lime glass 
 

Vickers/ Indenter fixed on 
loading frame via a 
miniature load cell 

P-wave amplitude; AE amplitude ‘A’ of first P-wave 
arrival of the unloading crack signal, A = a (Pm-Pt)

n; 
where  a, n is a constant of curve fit, Pm is max. load prior 
unloading, Pt  is threshold load for unloading cracks. 

[96] 
 

CERAMIC Si3N4  Vickers/ Vickers 
indentation tester 

AE Energy/Event ratio,  1.2
1

−= cAKε , A is a constant, 

K1c is indentation fracture toughness 

[76] 

COMPOSITE Mullite matrix 
embedded with 
aluminum oxide and 
tetragonal zirconia 
polycrystal (TZP) 

Vickers/ Instron machine 
 

Power law: Cumulative distribution of AE events, F(A) = 
(A/A0)

-b; A is lowest detectable AE amplitude, index ‘b’ 
gives a measure of fracture toughness 
 

 [108] 
 

CERAMIC Al2O3  
 

Vickers/ Microhardness 
tester 

The AE energy rate EcnU /2σ=
�

, where σ is applied 
stress, c is crack length, η is a constant, and E is  Young’s 

modulus 

 [79] 

CRYSTAL MgO  
 

Vickers/ Microindentation 
tester 

Stress deformation relaxation, K = (N-N1)/N; N1 is AE 
signal due to indenter penetration and N  is AE signal 
during al indentation process (N) 

[87] 
 

GLASS Soda-lime glass 
 

Cube-corner nanoindenter AE energy = 0.007 c4.1; c is radial crack length 
 

[94] 

CRYSTAL beta-SiC Cube-corner nanoindenter AE energy = 0.202 c2.1; c is radial crack length [94] 
THIN FILM 
COATINGS 

Pulsed laser deposited 
(PLD) 110nm thick 
tetrahedral 
amorphous carbon 
(ta-C) on (001) 
silicon substrate 

Cube-corner nanoindenter/ 
TriboIndenter 
 

Radial crack, [ ] 2/1

1)./2( ∑= sioncrackextenAEKc απ ; α is a 

sensor constant, K1 is fracture toughness, 

and, Channel crack ∑= sioncrackextenf AEKtc )./1( 1α , 
ft is 

film thickness 

[70] 
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little as 0.5 mm [e.g. 77] to 1 mm thick [e.g. 77, 89-90, 115, 126-127, 129-130]. 

Extending findings to real structural components requires consideration of the fact that 

AE experimental data is influenced by specimen geometry [131-132]. There are some 

guidelines for specimen thickness for indentation induced cracking and deformation. 

For indentation induced cracking, the thickness should be at least five times the distance 

radial cracking extends from the centre of the indentation, or ten times the depth of 

penetration, whichever is greater [133]. For indentation induced deformation, the 

thickness should be at least 1.5 times the length of the diagonal [134-135]. These 

limitations need to be considered when designing specimens for AE monitored 

indentation, although other considerations might influence specimen geometry.  

 

2.3 Thermal spray coatings 

Since the work involves thermally sprayed coatings and the monitoring of the thermal 

spray process, it is appropriate to review this process briefly.  

2.3.1 Thermal spray principle and sources of AE 

“Thermal spraying” is a generic term used for processes whereby a sprayed layer is built 

up by partially melting a powder in a high temperature zone (a flame or plasma) and 

propelling the resulting spray towards the substrate in the form of splats [136-137]. 

Various thermal spraying process exist (e.g., High Velocity Oxy-Fuel: HVOF, Air 

Plasma Spray: APS, Detonation Spray: DS and Cold Spray Gas Dynamic: CGDS) and 

all are used to produce thick-film coatings to combat surface degradation of engineering 

components by wear, corrosion and fatigue crack initiation. The kinetic energy of small 

particles has been found to dissipate within the substrate material in the form of elastic 

energy [138], and AE can, in principle, be used to characterize this because it is 

generated by rapid release of strain energy within a material. Part of the energy radiates 

from the source in the form of elastic waves which propagate over the material surface 

and can be detected using AE sensors. This can be relatively simply shown for single 

elastic impacts, but the situation is more complicated in spraying where the particles 

undergo significant plastic deformation, and there are many, perhaps overlapping events 

and a number of secondary processes (such as the collapse of particle agglomerations 

and phase changes) going on [139].  
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The sequence of events leading to the formation of the coating by a thermal spray 

process is shown in schematically in Figure 2.20. Virtually any material that melts 

without decomposing can be sprayed, and sprayed coatings are built up layer by layer. 

Although the desired thickness of the deposit may vary depending upon the application, 

protective coatings are typically 100-500 µm thick.  

 

 
 

Figure 2.20 Formation of coating by a thermal spray process 
 

This work uses two processes, HVOF and APS. The benefits of HVOF over APS are 

lower porosity, higher bond and cohesive strength, lower oxide content where required, 

better retention/control over particle chemistry and phases, and the ability to produce 

thicker coatings. Typical values of thermal spray process variables for HVOF Spray and 

APS are shown in Table 2.9. 

 
Table 2.9 Thermal spray process variables [137] 

Variants HVOF Spray Air Plasma Spray 

Heat Source Oxy-fuel combustion Plasma flame 

Flame Temperature (˚C) 3000-3500 10000-15000 

Gas Velocity (m/s) 1500-2000 400-500 

Particle Temperature (˚C) 1500-2000 2700-3500 

Powder Particle Velocity (m/s) 600-800 100-200 

 

2.3.2 High Velocity Oxy-Fuel (HVOF) spraying and HIPing 

The HVOF processes [136-137, 140] rely on continuous internal combustion of a fuel 

gas with oxygen to produce a high temperature, high velocity exhaust gas stream into 

which powder particles are delivered. Propylene, propane and hydrogen are the most 

commonly used fuel gases. Flame temperatures are around 3000˚C, the flame velocity is 

hypersonic (in the range 1500-2000 m s-1) and it is reported [32] that uniform heat input 

Coating 
substrate 

Thermal Spraying 
system 

Splat cooling rate: 100 - 600 K µs-1 

Powders at high 
velocity Flame  

Particles at high 
temperature 

Spray spot  

AE Monitoring 
System, PC 

AE Sensor 
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and acceleration are available over almost a 12" distance. The powder material to be 

used for coating is injected into a carrier gas (nitrogen, argon or helium) and delivered 

to the process system using a pressurised powder feeder. The powder is partially melted 

and propelled by the combustion gases to impact the substrate at very high speeds 

producing highly adherent and dense coatings. The quality of thermal spray coatings is 

governed significantly by the coating powder characteristics as well as other factors like 

the spray process, operating variables and substrate surface preparation. The spray 

parameters most commonly varied are oxygen and fuel flow rate, powder carrier gas 

flow rate, powder feed rate, spray distance, and gun scan speed. There are a number of 

commercial HVOF spraying systems (JetKote, DiamondJet, JP-5000, THETA), and 

coated samples from JetKote, JP5000 and THETA-gun HVOF spraying systems are 

used in this study.  

 

In thermal spray coating technology, the term Hot Isostatic Pressing (HIPing) refers to a 

post spray treatment of the coatings. HIPing has the advantage of uniform densification 

in all directions and can thus offer homogenous microstructures. It involves the 

application of a hydrostatic gas pressure up to 300 MPa and heating to a temperature of 

up to 2300 K [32]. HIPing greatly reduces porosity and the hardness and wear resistance 

of the coating are improved [31-32, 48-49].  

 

2.3.3 Air Plasma Spraying (APS) 

A Plasma is a partially ionized state of gas, produced either by passing a plasma 

generating gas through a high intensity arc struck between two electrodes (arc plasma) 

or by high radio-frequency excitation of the plasma gas (RF plasma). In APS, the 

plasma serves as a heat source to melt the injected powder, which is then propelled as 

spray onto the substrate where it deposits and forms the coating. Typical arc gases 

include argon, helium hydrogen and nitrogen, which can be used independently or in 

combination. Usually a mixture of monoatomic gases (e.g. He, Ar) is used to provide a 

good combination of high velocity and high temperature in the plasma flame. Typical 

plasma temperatures are in the range of 10000 to 15000 °C, whereas typical velocities 

in the range of 400-500 m s-1 at the nozzle exit have been reported [137]. The spray 

parameters generally varied are electrical current, voltage, working gas flow rate, spray 

distance, powder carrier gas flow rate, powder feed rate, and gun scan speed.  
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2.3.4 AE monitored thermal spraying process 

On-line AE monitoring during spraying of thermally sprayed coatings has an advantage 

over current conventional coating quality testing techniques which are all off-line (e.g. 

mechanical testing procedures such as indentation, bending and residual stress analysis). 

There has been some research undertaken on AE monitoring of the thermal spray 

process such as arc spraying [141] and atmospheric plasma spraying [142-144]. In their 

introductory work, Bohm et al. [141] found the energy of the AE signal calculated using 

an auto-correlation function to be proportional to the kinetic energy of the impacting 

particles. Crostack et al. [142] and Lugscheider et al. [143] developed a model which 

relates the particle velocity and diameter of powder particles with the amplitude of AE 

signals. Most recently Nishinoiri et al. [144] used a laser-based AE technique to study 

microfracturing, delamination and cooling process during spraying. If AE features can 

be successfully correlated with spray process parameters and coating properties then it 

may be possible to use AE as a process control parameter to improve cohesive and 

adhesive strength, hardness, porosity and tribo-mechanical properties of thermal spray 

coatings using this technique.  

 

2.4 Identification of thesis topic 

AE monitored indentation testing has provided insights into the fundamental 

mechanisms involved in fracture of brittle materials. It considerably enhances the 

information on a material’s AE response, particularly when using instrumented 

indentation systems. Currently, there appears to exist no comparable experimental 

evidence concerning force, displacement and AE characteristics during Vickers 

indentations of thermal spray coatings. Some relationships have been observed between 

parameters of indentation deformation, fracture and the AE signal but none of these 

have been applied to thermal spray coatings. Finally, there is much to be learned about 

the behaviour of multi-phase brittle materials under indentation, and monitoring of the 

AE could considerably enhance this understanding.  
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Chapter 3 

EXPERIMENTAL METHODS 

This chapter describes the experimental apparatus, materials and methods used for the 

research. Two distinct types of experiments are described, the first related to AE 

monitoring of the Vickers indentation behaviour of metals and thermally sprayed 

ceramic coatings, and the second related to AE monitoring of the thermal spraying 

process itself. First, the materials are described, along with the various characterisation 

tools used. Next, the AE monitoring apparatus and signal processing technique is 

described, followed by the basic Vickers indentation apparatus and its instrumentation 

for obtaining time-correlated measurement of force and depth during indenter loading. 

The analysis techniques for crack length measurement including the classical approach 

and the AE-based indentation fracture toughness measurement model are also 

described. Finally, the apparatus and procedure for AE monitoring of the thermal 

spraying process is presented, followed by a summary of all experiments.  

 

3.1 Material selection, specimen details and characterisation tool 

Three metals and six thermally sprayed coatings were selected for indentation testing 

(Table 3.1), although the full range was only tested for the preliminary experiments. 

The materials were chosen to give a range of accommodation mechanism from purely 

plastic deformation through a combination of plastic deformation and hard particle 

fracture to fracture with little or no plastic deformation. For the main tests, two types of 

thermally sprayed thick coatings were chosen, one single phase (Al2O3) and the other 

multi-phase (metal carbides), each coating having a variation in the deposition 

conditions and/or post-deposition treatment. Most of the coated specimens used in this 

study were prepared by thermal spraying onto one side of a substrate consisting of an 

AISI 440C martensitic stainless steel disc of diameter 31 mm and thickness 8 mm. Prior 

to spraying, the substrate was grit-blasted and cleaned according to international 

standards [145], and the spraying process parameters were those which had been 

industrially optimized for the relevant coating material. There are a number of factors 

which dictate the residual stress profile in thermal spray coatings [48-49], but the final 

pass is always different in its residual stress profile due to the absence of the shot-
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penning effect, which is caused by the high velocity of impacting particles on the 

underlying deposit. 

 
Table 3.1 Vickers indentation test specimens  

Materials 
(*Industrially 

optimized coatings 
[Appendix B]) 

Specimen details Coating 
thickness 

(µm) 

Surface 
roughness 
(Ra, µm) 

Microhardness 
values  

(HV1.96 N) 
 

Metals 
Copper metal 99.99% pure - 0.021±0.01 93±5 HV 
Aluminium metal 99.99% pure - 0.034±0.03 108±2 HV 
Hardened steel  Martensitic (high carbon) - 0.023±0.05 771 ± 19 
Carbide coatings 
*WC-12%Co  As-sprayed  

(HVOF, JP5000) 
300-325 0.043±0.01 1002±159 

*WC-12%Co As-sprayed  
(HVOF, Jet-kote) 

300-325 0.045±0.03 1050±70 

*WC-12%Co  HIPed 
(1123K/150 MPa/1 hr) 
(HVOF, Jet-kote) 

300-325 0.047±0.03 1018±177 

WC-10%Co-4%Cr  
 

As-sprayed  
(HVOF, JP5000) 

50-60 0.134±0.07 1097±110 
990±18 

Ceramic coatings 
*Conventional 
Al2O3 (> 98% pure)  

 APS (Metco 9MB) 250-260 0.27±0.02 683±38 
(Gold Sputtered) 

*Fine powder Al2O3 
(> 98% pure)  

HVOF (Theta-gun) 250-260 0.096±0.02 632±29 
(Gold Sputtered) 

 

X-ray diffraction (XRD) analysis was used to identify the crystalline phases present in 

the coatings. A Bruker AXS, Model D8 ADVANCE X-Ray diffractometer was used 

operating at 40 kV and 40 mA. Cu-Kα radiation was used (wavelength, λ = 0.1542 nm) 

and the goniometer was run from 5.000° to 84.997° with a step size of 0.009° (2θ) at 

15.4 seconds per step. Data were collected at room temperature.  

 

In preparation for the indentation tests, specimens surface were ground and polished 

using, consecutively, 15, 6 and 1 µm diamond paste in order to reduce surface residual 

stresses which can affect crack lengths during indentation [2], and also to remove any 

obvious asperity effects.  It is possible that such polishing can still induce stresses [146] 

and cause pull-outs of hard particles in a metallic matrix, and that scratches could act as 

initiation sites, perhaps giving rise to more surface cracking during indentations than if 

the surface were unprepared. However, any effect was expected to be broadly similar 

for all specimens and to give more consistent results than an unprepared surface would. 

The microhardness of the polished specimens was measured in order to assess the 

microstructural uniformity and for comparison with the macroscale values. The Vickers 

microhardness was obtained using a calibrated Mitutoyo, MVK-H1 machine for five 
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indentations applied to the surface of specimens at 1.96 N (or 200 g) load. Before each 

set of microhardness measurements the calibration system was checked using a test 

block of hardness 304HV.  

 

The microstructure of the specimens, the surfaces for indentation, the cross-sections and 

pyramidal surfaces of the indentations, the powders and the tip of the diamond Vickers 

indenter were all examined using an optical microscope (Nikon, with N50 monochrome 

camera), at various magnifications and, where necessary, using a Scanning Electron 

Microscope (Hitachi: S-2700) or Environmental Scanning Electron Microscope 

(Philips: XL30). Before the indentation tests, the coated specimens were examined 

using the microscope in order to identify the level of contrast of different coated 

specimens. It was found that the microstructure of the HVOF (WC-12%Co: as-sprayed 

and HIPed, WC-10%Co-4%Cr: as-sprayed) coated specimens could be seen clearly, 

whereas contrast in the APS Al2O3 (conventional powder) and HVOF Al2O3 (fine 

powder) was poor. These specimens were gold sputtered (~10-20 nm thin layer) to 

increase the surface contrast level to allow focussing of the specimen surface using the 

optical lens of the indentation testing machine. To provide additional metallographic 

information, a small section of each coated specimen (APS and HVOF Al2O3 coatings) 

was crushed to remove some coating from the substrate as flakes, and flakes 

refrigerated in liquid nitrogen, placed in a vice and broken by bending (cryogenic 

fracture). The broken flakes were warmed to room temperature and rinsed with acetone 

and dried, before microscopic examination of the fracture, porosity and splat 

morphology.  

 

3.2 Acoustic Emission testing and measurement 

3.2.1 AE apparatus 

The AE acquisition system and set-up are shown in Figure 3.2a. The system was 

assembled in-house and comprised; AE sensors with preamplifiers, a signal 

conditioning unit, a connector block, a data acquisition card, and a computer with 

LabVIEW software for controlling the acquisition and storage of data in the PC.  

 

The AE sensors were of type Physical Acoustics (PAC, see Appendix-C), Micro-80D, 

based on lead zirconate titanate (PZT). These are broadband differential AE sensors 
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producing a frequency response between 0.1 and 1 MHz with a 340 kHz resonant 

frequency, and an operating temperature range from − 65 to +177ºC.  

 

  

  

Figure 3.2 Acoustic Emission testing apparatus (a) PC and AE system, (b) Broadband 
PZT AE sensor (PAC, Micro-80D), (c) Pre-amplifier (PAC series 1220A) and (d) 
Signal Conditioning Unit, connector block and gain programmer 
 

The AE sensor converts elastic waves propagating through the material under 

examination into a time varying voltage signal, which is known to be reproducible 

although the possibility of reflection of AE waves at the edge of the specimens exists. 

The sensors (Figure 3.2b) are 10 mm in diameter and 12 mm high and were held onto 

the flat test specimen surface using 100 µm thick aluminium tape and custom made 

magnetic clamps. In order to obtain good transmission of the AE signal, the surface was 

kept smooth and clean and silicone high vacuum grease was used as couplant to fill any 

gaps caused by surface roughness and to eliminate air which might otherwise impair 

wave transmission. Before every test, the sensitivity of the sensor was checked by 

breaking a lead pencil close to it to ensure signal detection. 

 

Preamplifiers of type PAC series 1220A (Figure 3.2c) were used to amplify the AE 

signal to a level that can be carried by a BNC cable and converted by an Analogue to 

Signal 
Conditioning 

Unit (SCU) (d) 

AE sensor with 
clamp (b) 

AE pre-amplifier (c) 

PC and AE system (a) (b) 

(c) (d) 
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Digital Converter (ADC). The amplifier had a switchable 40/60 dB gain and an internal 

band pass filter between 0.1-1 MHz. The preamplifier was powered by a + 28 V (0.2 A) 

power supply and used a single BNC connection for both power and signal. The 

programmable 4-channel signal conditioning unit (SCU) and gain programmer (high-

high: +6, high-low: 0, low-high: -6 and low-low: -12 dB) were of in-house construction 

and were used to power the AE sensors and pre-amplifiers, as shown in Figure 3.2d. 

Table 3.2 shows the amplification level used for different studies.  

 

A National Instruments BNC-2120 connector block (Figure 3.2d) was used was to 

carry signals from the sensor to the data acquisition system. This was a shielded 

connector block with signal-labelled BNC connectors and included an LED so that it 

can test the functionality of the hardware. Signals from the PZT AE sensor, linear 

variable differential transducer (LVDT) and load cell were acquired through this 

connector block.  

 

Table 3.2 Amplification levels of AE signals  

Amplification (dB) AE monitoring 
during 

Material 
type 

Materials 
@ Pre-amplifier @ SCU 

Hardened martensitic steel (high C) 60 +6 
Aluminium 60 +6 

Metals 

Copper 60 +6 
HVOF (JP5000) as-sprayed WC-12%Co 60 0/+6 
HVOF (JetKote) as-sprayed WC-12%Co 60 +6 
HVOF (JetKote) HIPed WC-12%Co 60 +6 
HVOF (JP5000) as-sprayed WC-10%Co-
4%Cr 

40 +6 

APS (Metco 9MB) conventional Al2O3 60 -12 

Vickers 
indentation  

Carbide/ 
Ceramic 
coatings 

HVOF (theta-gun) fine powder Al2O3 60 +6 
Thermal spraying Carbide 

coatings 
HVOF (JP5000) WC-10%Co-4%Cr 40 0 

 

The acquisition of raw AE signals requires high performance data sampling and 

compatible computer systems, so a National Instruments (NI), PCI-6115 board data 

acquisition card (DAQ) which has 12 bit resolution was used, assembled into an in-

house built desktop PC as shown in Figure 3.2a. The board can be used to acquire 

simultaneously the raw signal at up to 10 M samples/s for up to four channels (i.e. 2.5 

M samples/channel) and uses a full length PCI slot. The DAQ voltage input range was 

set at ± 42 V on the total on-board memory of 64 MB per channel. The board supports 

only a 4-pseudodifferential input configuration and has maximum voltage protection of 

42 V (channel-to-earth and channel-to-channel). LabVIEW software from National 

Instruments was used to control and to obtain the raw signals from the PCI-6115 board 
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and in-house developed LabVIEW code [23] was used to control sampling frequency, 

number of acquired samples per channel, number of records, input range, pre-trigger 

data, trigger channel and trigger level. The data in this study were acquired at 2.5 M 

samples/s for two seconds, unless otherwise stated.  

 

3.2.2 AE signal processing techniques 

Generally, AE waveforms (amplitude-time) are very complex and difficult to use 

directly to determine the condition of a system under test. A number of conventional 

features [20] have been developed specifically (see Figure 3.3) to describe non-

continuous AE, characterized by time-series burst signals, where the amplitude usually 

rises rapidly to a maximum value and decays nearly exponentially to the background 

noise level.  

 

 
Figure 3.3 Schematic diagram showing calculation of the AE features: ring-down count 
R, energy E and event duration T 

 

In practice, even at 2.5 MHz sampling rate, the AE associated with individual cracking 

events may well overlap and the specimen is small enough that a given event will 

probably be recorded, because of reflections from the specimen boundaries. Thus the 

AE must be regarded as representing the cumulation of a number of events within a 

given time window and so only an averaged energy can be obtained in the time window.  

 

For the purposes of making an assessment of the correlation between AE and cracking, 

one can suppose that the energy associated with the significant AE is approximately 

proportional to the area of new crack surface formed. Continuous background noise 

amplitude was found throughout the study at all indentation loads, so an automatic 

Time (sec) 

Amplitude 
 V(t) 

1. Bipolar raw AE signal 2. Processed Signal:  AE signal after taking 
absolute of bipolar raw AE signal 

Background noise 

Threshold level (Vt) 

Ring-down count, R = 5 

t1 t2 t3 t4 t5 

Vabs 

Event duration,  
T = t1+t2+t3+t4+t5 

Energy, E = Grey shaded 
area of signal above threshold 

(Vabs-Vt)>0 
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analysis threshold level of 15% above the continuous background noise level was 

chosen to define significant AE activity. An AE ring-down count (R) was obtained from 

the number of times that the signal amplitude crossed the preset threshold in the positive 

direction. The AE energy was calculated as the area under the absolute of the signal 

above threshold: 

( )
0

t

abs t

t

E V V dt
=

= −∫   if  ( ) 0abs tV V− >     (3.1) 

where Vabs is the absolute voltage, Vt is threshold voltage and t is the time (above 

threshold) from the beginning of the event, as illustrated schematically in Figure 3.3. 

The event duration (T) is the total time that the signal spends above threshold was 

calculated as follows: 

1

R

i
i

T t
=

=∑          (3.2) 

where ti is the individual time duration for each of the excursion above threshold, R 

(Figure 3.3). In such analysis, overlapping events are not distinguished from each other, 

although this will only have an effect on ring-down count and event duration, and not 

on energy. The frequency spectrum of the raw AE signal was also calculated (using 

Welch’s power spectral density method [23-25]) to establish any frequency 

characteristics of the AE generated. Prior to any signal processing all data were 

corrected for gain in the data acquisition system using Equation 3.3 [25].  







=

iU
UA 0log20         (3.3) 

where A is signal gain expressed in dB and U0/Ui is the ratio of output to input signal 

amplitudes.  

 

3.2.3 AE transmission in small test specimens 

Since the test specimens are relatively small and the indentation process is continuous, 

it is necessary to determine the characteristics of AE wave propagation in the coated 

AISI 440C stainless steel discs of diameter 31 mm and thickness 8 mm. Such a 

calibration allows an assessment of the approximate temporal resolution with which AE 

events can be determined, as well as understanding any time or frequency domain 

characteristics introduced by the specimen.   

 

The characteristics were determined by placing an AE sensor near the circumference of 

the specimen on the coated surface, much as it is placed during the experiments, and 
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recording AE from a simulated source. A pencil with an in-house machined guide was 

used to generate simulated AE sources by breaking a 0.5 mm diameter and 2-3 mm 

length 2H pencil lead [147] (the so-called Hsu-Nielsen source) at three different 

locations as shown in Figure 3.4, and data were sampled at 2.5 MS/s for two seconds 

for each test, and a total of 5 tests were done at each location.  

 

 
Figure 3.4 AE characteristics in small test specimen using a point impulse source 
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Figure 3.5 AE signal for pencil lead break at location 2 [amplification 60/0 dB]: (a) raw 
AE signal, (b) power spectrum of first 12 milli-seconds, (c) magnified raw AE signal 
showing the rise-time of 20 µs, and (d) AE energy and decay time at all three locations  
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Figure 3.5a shows the key features of the recorded AE signals for a typical pencil lead 

break at location 2 (which did not vary much for the other tests). The power spectrum 

(Figure 3.5b) shows responses between 200 and 400 kHz, with the largest peak at 340 

kHz (resonant frequency) which reflects the characteristics of the sensor (as shown in 

the calibration certificate, Appendix C). The AE signal rise time varied between 20 and 

30 µs (Figure 3.5c) whereas the decay time varied between 8 and 10 ms (Figure 3.5d) 

and the variation in total AE energy and AE decay time was small.  Given that the 

pencil break represents a step unload, its frequency content and decay characteristics 

can be used to establish a datum for the spectrum and time resolution.  

 

3.3 Vickers indentation tester and instrumentation  

A conventional Vickers macrohardness testing machine was used with loads ranging 

from 49 to 490 N, applied to a diamond Vickers indenter. It was found that debris from 

the coated specimens adheres to the area around the tip (Figure 3.6a) and so the 

indenter was cleaned after each indentation by pressing it into a weak proprietory 

adhesive (Figure 3.6b).   

 

  

Figure 3.6 SEM image (top view of tip) of new diamond Vickers indenter: (a) debris 
concentrated and spread around tip after indenting as-sprayed HVOF (JP5000) WC-
12%Co coatings at 490 N load, and (b) indenter after cleaning with mild adhesive. 
Arrow shows the indenter tip 
 

The Vickers indentation testing machine is shown in Figure 3.7 (W&T Avery Ltd.), 

and its instrumentation is shown in Figure 3.8. The machine was designed to work open 

loop according to international standards [134-135] using a constant dead-weight, the 

load being selected by adding weights to a stack. A sequence of levers and cams picks 

up the stacked weight(s), and a dashpot smoothes the descent of the indenter once the 

weight is released manually. As with all indentation tests, the specimen surface is 

(a) (b) 
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focussed using a microscope objective lens prior to loading, which ensures a fixed small 

initial gap between the indenter and specimen surface. A 15 second dwell time was used 

before unloading as specified by international standards [134-135].  

 

  

Figure 3.7 Instrumented Vickers indentation experimental set-ups 

 

A load cell based on a strain gauge transducer with a capacity of 2.45 kN in tension or 

compression (Model RLU, RDP Electronics Ltd, UK) was used to measure the reaction 

force in the specimen as the indenter descends. A low noise, high precision strain gauge 

amplifier (Model: S7DC, RDP Electronics Ltd, UK) was used to convert the load cell 

output to voltage. The load cell was laid on the bottom anvil of the indentation machine, 

and the specimen was laid on the top surface of the load cell, leaving a clearance of 0.2 

mm to bring in the indenter.  The load cell was calibrated by loading and unloading a 

range of dead-weights and the resulting curve is shown in Figure 3.9.  
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LVDT 

Objective lens Objective lens image 
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Figure 3.8 Schematic of the above experimental set-up for load, depth and AE 
monitoring during Vickers indentation 
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Figure 3.9 Load cell calibration 

 

A calibrated spring return inductive displacement transducer (LVDT, Model: GT 1000-

1.25, RDP Electronics Ltd, UK was used to measure the indenter head vertical 

displacement. The LVDT had a range of ±1.0 mm, linearity of 0.25% and uncertainty of 

calibration of 1.25 µm). It was mounted in a holder to present the armature to a 

cantilever bar attached to the indenter head as shown schematically in Figure 3.10. 

Power was supplied to the LVDT from a ±15 V DC/500 mA (Model: TML 15215C, 
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Traco Power, UK) unit and a calibrated in-line DC amplifier (Model: S7AC, RDP 

Electronics Ltd, UK) was used to provide the signal proportional to indenter 

displacement.  

 

 

Figure 3.10 Design and set-up of LVDT holder  

 

3.4 Vickers indentation measurements 

All the indentation tests were carried out open loop with an AE sensor mounted on the 

specimen surface. In a sub-set of the tests, the indentation was instrumented to include a 

measurement of the force and the displacement. In open loop indentation tests no 

feedback is used between force and depth (or displacement) during loading cycle. The 

approach taken here was to measure the AE signal and use the force and depth against 

time during the indentation to understand the processes that might occur in a production 

environment using a simple open-loop test. The apparatus was assembled as shown in 

Figure 3.7. Data acquisition software as described in Section 3.2.1 was used to record 

the stream of data from up to three input channels (force-F: channel 1, displacement-h: 

channel 2 and acoustic emission-V: channel 3) as a function of time (t). For fullly 
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instrumented tests, the LVDT (channel 2) was used as a trigger channel and, otherwise, 

data acquisition was triggered through the AE channel with 40 ms pre-trigger.  

 

 

Figure 3.11 Principle used to measure the indentation displacement and force 

 

For AE based instrumented testing, the specimens were placed directly on to the inbuilt 

plinth and the AE sensor placed on the coated surface. Five indentations were carried 

out at each of the ten loads and the AE signals recorded during loading of the indenter.  

No AE signal was detected during indenter unloading for any of the specimens at any of 

the indentation loads. The duration of the application of the test force was 15 seconds 

but AE was only observed during the first two seconds for all loads tested.  

 

The principle used for measuring the indentation displacement and force during loading 

is illustrated in Figure 3.11. The inbuilt microscope was used to focus the surface and 

the image focussing gap (hf) and maximum depth (hm) was measured using the LVDT 

transducer. Release of the load following the image focussing process triggered the 

LVDT transducer as the indenter passed the surface focussing plane (S). The load cell 

time history starts when the indenter touches the specimen (at C) and ends when the 

indenter stops (at E), although some oscillation was detected in the load cell at this 

position. Consequently, the indentation depth (hm) could be determined from the load 

and displacement time histories.  

 

In the fully instrumented tests, data from the three sensors (load cell, LVDT and AE) 

data were acquired synchronously at 2.5 MS/s for 2 seconds. The data from the load cell 
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and the LVDT did not need to be sampled at such a high sampling rate, which was 

dictated by the need to record raw AE data. Therefore, the load-displacement data were 

low-pass filtered digitally at 1 kHz for the load cell and 0.1 kHz for the LVDT.  

 

As mentioned earlier, the indentation force was observed to oscillate at the end of the 

descent, with the oscillations damping over a time of around 1 second. Dead-weight 

indentation can be modelled using a 2nd order differential equation where solution is a 

damped oscillation (Appendix F). A measure of the contact stiffness could be made 

from the overall slope of the loading force-displacement (P-h) curve.  

 

The mechanical loading energy (Em) of indentation was assessed from the area under 

the force-displacement loading curve (Equation 3.4):  

0

mh h

m

h

E Fdh
=

=

= ∫          (3.4) 

where F is the loading force and h is the displacement from the beginning of the loading 

(i.e. after the indenter contacts the surface), as illustrated schematically in Figure 3.11.  
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Figure 3.12 Displacement of indenter with no specimen in place 

 

The indenter displacement curve has two phases during the loading cycle, one between 

release and contact and one between contact and final settling. Figure 3.12 shows 

displacement-time curves with no specimen beneath the indenter and the average 

velocities ranged from 225 to 630 µm s-1 depending on the load. With the specimens 

beneath the indenter the average approach velocity at the specimen surface was 
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measured at 85 to 385 µm s-1, depending on the load. Table 3.3 shows the international 

standards for the approach velocity of indenters. The main consequence of this analysis 

is that the approach speed of the indenter will vary significantly with load and this may 

affect the response, particularly for more brittle materials.  

 

Table 3.3 Requirements and standards on Vickers hardness tests  
Standards Indenter approach velocity, Load Time of application of 

the full test load 
Ref. 

JIS R 1610 Gradual contact  --- [58] 
DIN 51-225 F < 49.03 N 0.3-8 sec [58] 
-- 300 µm sec-1 --- [64] 
BS EN ISO 6507-3: 1998 50-200 µm sec-1: (F < 1.96 N) 

50-200 µm sec-1: (1.96 < F < 49.03 N) 
50-1000 µm sec-1: (F >= 49 to 981 N) 

<=10 sec 
6-8 sec 
13-15 sec 

[134] 

BS EN ISO 6507-1: 1998 200 µm sec-1 2-8 sec  [134] 
ASTM: E-384-89  15-70 µm sec-1 10-15 sec [148] 
BS 5411-6: 1981 
ISO 4516: 1980 

15-70 µm sec-1 10-15 sec [149] 

 

Experimentally, there are two ways to measure indentation depth, one using 

instrumentation techniques (e.g. LVDT), which measures the actual maximum depth (or 

experimental depth, hm, Figure 3.13) at peak load. The second way is to measure the 

impression diagonals (geometrically measured depth, hr, Figure 3.13) using an optical 

microscope after complete indenter removal relying on the known geometry of the 

indenter to infer the depth. 

 

Figure 3.13 Vickers indentation depths where hm is maximum indentation depth and hc 
is contact depth  
 

As shown in Figure 3.13, the contact depth (hc) is lower than the actual maximum depth 

(hm) in ‘sinking-in’ and vice-versa in a ‘piling-up’ mechanism. The residual geometrical 

depth was measured from the geometry of the impression using Equation 3.5 [38]: 

2

7r

a
h =          (3.5) 

hm 
hm 

hc 

hc 

Piling-up Sinking-in 

Residual diagonal, 2a 
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where, 1 22 2
2

2

a a
a

+=  is the average diagonal size. The geometrical measurement 

technique of indentation depth is also subject to additional error due to elastic recovery 

in some materials leading to reduced impression size of indent. The percentage 

difference between actual maximum depth (hm) and geometrically measured depth (hr) 

was calculated using Equation 3.6:  

% 100m r

r

h h

h

 −∆ = × 
 

        (3.6) 

At least five indentations were made for each load and the macrohardness (HV) was 

determined by measuring the two diagonals of the impression after indenter removal 

(indentation hardness), excluding any diagonal cracks, and using Equation 3.7 [134]:  









=

2)2(
1891.0

a

P
HV         (3.7) 

where P is the applied load in Newtons. Indentations were spaced greater than 2.5 times 

the diagonal apart [135], to avoid any interaction between the surface and sub-surface 

fractures of neighbouring indentations. Before each set of indentation testing the 

calibration system of the indentation machine was tested using a standard test block (35 

mm × 20 mm × 10 mm) which had a hardness of 762/792HV.  

 

3.5 Surface crack length measurement and sub-surface damage assessment 

The conventional method of measuring the crack length around indentations is to take 

the average of the radial crack lengths at corners using a direct straight-line method. The 

method simply determines the average diagonal size (including radial cracks, 2c) and 

subtracts half the average impression diagonal size 1 2(2 2 ) / 4a a a= + , so that l
a
, the 

average of the radial crack lengths at the four indent corners, is given by: acl a −= . 

Because the cracks were branched in all cases a profiling method was used in this study 

as shown in Figure 3.14 on the basis that it is the overall extent of cracking during 

indentation that is indicative of the volumetric damage and reflects the brittleness of the 

surface region. This is a particularly important distinction in less homogeneous 

materials where the corners of the impression may coincide with relatively tough or 

relatively brittle parts of the microstructure.  
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Figure 3.14 Scheme for measuring the total surface crack length 

 

Accordingly, the surface crack length was measured, including radial cracks at corners, 

edge cracks, ring-shaped cracks and other small cracks around the indentation as shown 

in the schematic diagram in Figure 3.14. As illustrated in Figure 3.14 (left), crack 

lengths in the surface plane between points A and B were assessed using a profiling 

method by adding together the serrated crack path unit lengths, 

nnyn xxxxl ++++= −121 .... . The minimum unit length was determined by the 

resolution of the micrograph (here 2 - 3 µm). The total surface crack length was then 

obtained from the sum of the two diagonal sizes plus all the n resolvable crack lengths:  

∑=
n

yntotal lL        (3.8)  

Also, for comparison with conventional approaches, la, the average of radial crack 

lengths at the four indent corners was determined and the dimension, c, calculated from 

[7]:  

alc a +=        (3.9)  

There are, of course, other sub-surface cracks which are not measurable using the 

optical microscope without sectioning and are therefore not included in the above 

technique. However, since the primary purpose of measuring surface crack length is to 

correlate it with indentation load and AE features this is not an insurmountable 
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difficulty. Surface crack length measurements were made on an optical microscope 

(Nikon, with N50 monochrome camera) at various magnification levels (5×, 10×, 20×, 

40×) appropriate to the size of indentation. The crack length measurements were made 

just after each set of indentations, as some cracks can close up with time (called time-

aging).  

 

Whereas it was not a primary measurement, some indentations (e.g. as-sprayed HVOF 

WC-12%Co) were cross-sectioned using a low speed diamond saw to provide an 

assessment of the sub-surface damage in order to enhance understanding of the way in 

which the material accommodates the indentation. Specifically, cross-sectioning should 

help identify if classical indentation crack regimes as described in Section 2.1, such as 

‘surface-radial or Palmqvist cracks’ and ‘sub-surface radial-median or Half-Penny 

cracks’ were present and to what extent surface observations can serve as a measure of 

the total amount of cracking [11, 17].  

 

An example position for the cross sectioning is shown schematically in Figure 3.15. 

The samples, which included many indentations on one side of the coated surface, were 

mounted using cold embedding resin, sectioned and polished, and, whereas it was not 

possible to section a specific cross section of any single indentation, it was possible to 

view a number of indentations in each section. Thus, inspection of the sections 

permitted a semi-quantitative assessment of the effects of loading on the three-

dimensional crack distribution and an observation of other ways in which the 

microstructure accommodates the indentation, such as densification by reduction in the 

amount of porosity.  

 

 
Figure 3.15 Schematic diagram of Vickers indentation cross-sectioning  
 

Edge cracks  
 

Sink-in zone 

Radial cracks  

Cross-section plane 
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The sample was vacuum impregnated in a Struers Epovac system using a transparent, 

low viscosity Struers Epofix resin and then cut very near to an indentation at a given 

load using a low speed diamond saw, cutting in the direction from the coating towards 

the substrate, to avoid delamination. Polishing was done carefully to reach the 

indentation cross-section using increasingly fine grit [with 220 (or, 68µm), 600 (or, 26 

µm) and 1200 (or, 15µm) size, Struers MD-Piano system] and a diamond grinding disc. 

Once the required indentation was reached, the section was finally polished with 

diamond paste (6, 1 and 0.5 µm) to enable a sharp cross-sectional view of the 

indentation sub-surface zone. The vacuum impregnation technique [150-151] enables 

the low viscosity resin to reach most of the surface-linked cracks and pores, and, upon 

solidification, the resin acts as reinforcement before, during and after sample 

preparation and reduces the possibility of further damage during cutting and polishing 

of the area of interest. The diamond bond used in MD-Piano ensures an even material 

removal from both hard and soft phases and avoids smearing of soft phases or chipping 

of brittle phases during grinding. Following grinding and during polishing, the cross-

sections were regularly monitored under an optical microscope. Finally, the cross-

sections were examined using a Scanning Electron Microscope (SEM).  

 

3.6 Vickers indentation fracture toughness measurement 

As explained in Section 2.1.1, there are two main classical models (‘Half-penny’ and 

‘Palmqvist’) which underlie the determination of Vickers indentation fracture. In this 

study, an analysis has been carried out based on these classical models and an 

alternative approach has been identified.  

 

3.6.1 Classical approach 

According to the various published analyses of the indentation of brittle materials, the 

main types of cracking observed are either surface-radial cracks (Palmqvist cracks), or 

radial-median cracks (Half-penny cracks). Nihara et al. [7] have distinguished between 

the two in terms of the classical dimensions a, la and c described in Section 2.1.1: 

Palmqvist cracks, la /a ≤ 2.5 or c/a ≤ 3.5 and half-penny cracks, c/a ≥ 2.5 [11]. In this 

study, the average value of la /a and c/a were well within the Palmqvist régime, and this 

was also supported by the absence of sub-surface radial-median cracks. Shetty et al. 

[10] have devised an empirical model for Palmqvist cracks, which allows the fracture 
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toughness (in units MPa.m1/2) of the coating to be determined from the load and crack 

dimensions: 












=

a

c
la

P
K 0319.01         (3.10) 

where P is the indentation load (in Newtons), a is the average indent half-diagonal size 

and la is the average of the radial corner crack lengths, both in metres. The above 

formula for the determination of fracture toughness assumes that the surface is initially 

stress free.  

 

3.6.2 Alternative approach 

In their review on the formulation of standardised indentation fracture toughness 

equations Ponton and Rawlings [33] have developed a series of generic fracture 

toughness equations (based on Palmqvist and Half-penny crack models), to describe the 

relationship between the surface radial crack length, l, indent half diagonal, a, and 

indentation load, P. They recommended ‘generic equations’ (GEs) which summarise 

much of the practice observed, but all essentially use a crack length measurement and, 

implicitly utilise the relationship cK AI ψσ=  [4]. Here, the GE has been modified to 

replace the average radial-corner crack length la, with either the total surface crack 

length L, the AE ring-down count R, the total AE energy E or the total AE event 

duration T to give a modified generic equation for AE-based fracture toughness 

estimation (K1c) for Palmqvist type cracks: 
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c AE
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K k

a X

 =  
 

          (3.11b) 

where X is one of variables, R, E or T and kL and kAE are empirical constants which can 

be determined for any given indenter/specimen/AE system combination.  The 

dimension of kAE depends on the dimension of X; a is in metres, L is in metres, R is a 

number, E is in Volt.seconds and T is in seconds. As mentioned in the introduction, it is 

expected that the AE arises from crack extension process and therefore it might be 

expected that the AE record and total crack length will be correlated. 
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3.7 AE monitoring during HVOF thermal spraying  

This experiment involved an HVOF (TAFA JP-5000, Monitor Coatings Ltd., UK) 

thermal spraying system using spherical and porous WC-10%Co-4%Cr powders 

(AMPERIT® 558.074) of size 45/15 µm (see Figure 3.16), an AE sensor, data 

acquisition system (discussed in Section 3.2) and an experimental rig for in-process AE 

monitoring shown in Figure 3.17 and Figure 3.18.  

 

  

Figure 3.16 SEM images of WC-10%Co-4%Cr powders 

 

Table 3.4 HVOF spraying parameters 
Spraying system Oxygen flow 

(l min-1) 

Kerosene flow 

(l min-1) 

Spraying 

distance (mm) 

Spraying rate  

(g min-1) 

JP5000/HVOF 920 0.27 and 0.20  380 80 

 
 

Table 3.5 Experimental matrix (AE monitoring of HVOF thermal spraying process) 
Fuel Pr. High Pressure (P1): 0.27 litre min-1 (fuel) Low Pressure (P2): 0.20 litre min-1 (fuel) 

Slit width A 
(3 mm) 

B 
(2 mm) 

C 
(1 mm) 

D 
(0.5 mm) 

A 
(3 mm) 

B 
(2 mm) 

C 
(1 mm) 

D 
(0.5 mm) 

HVOF  
gun speed 
(mm/sec) 

250 
500 
750 

250 
500 
750 

250 
500 
750 

250 
500 
750 

250 
500 
750 

250 
500 
750 

250 
500 
750 

250 
500 
750 

 

The test was devised to observe whether or not a clear signal could be recorded while 

the substrate material is being coated, and whether this signal is distinguishable from 

that associated with the continuous background noise. A fixed set of parameters with no 

air jet cooling for the HVOF spraying system was chosen (Table 3.4), and the process 

parameters were varied as summarised in Table 3.5: four spray gun lateral speeds (250, 

500, 750 mm sec-1) and two kerosene fuel flow rates, 0.27 and 0.20 litre min-1 

corresponding to two levels of fuel pressure, P1 and P2. The spray was directed through 

a series of slit arrangements (Appendix D) labelled as follows; A: 3 mm × 10 mm, B: 2 



 75 

mm × 10 mm, C: 1 mm × 10 mm, D: 0.5 mm × 10 mm, and discussed in more detail 

below. 

  

 

Figure 3.17 Experimental set-up: AE monitoring during JP5000 HVOF WC-10%Co-
4%Cr thermal spraying in coating chamber (Monitor Coatings Ltd, UK) 
 

 
 

Figure 3.18 Schematic diagram of AE monitoring during thermal spraying process  

 

The masking sheet, coating substrate and holder were made of mild steel sheet of size 

300 mm × 500 mm × 3 mm thick and the mask had an array of varying width slits of 

height 10 mm cut into it using a Ferranti MF600 CO2 laser CNC machine tool. Each 

row of the array consisted of a set of one particular width of slit, equally spaced with a 

27 mm edge-to-edge gap across the width of the mask (Appendix D). The substrate and 

holder were both securely clamped to a stand as shown in Figure 3.19a, and an AE 

sensor was located in the middle of the grit-blasted substrate on the reverse side to that 

being sprayed as shown in Figure 3.19b, and held in place using a magnetic holder with 

Coating substrate 
Thermal Spraying system 

AE Sensor 

12 bit NI, PCI-6115 DAQ, 
and AE 4-channel system, 

SCU; 
Sampling rate 2.5MHz/2 sec 

 

PAC Broadband PZT sensor:  
PAC Micro-80-D 

 (0.1-1.0 MHz), Rf = 332kHz; 
Pre-amplifier (PAC 1220A) 

Computer  

Thermal Spray Coating Chamber 

Mask/Slit 

AE sensor 
with clamp 

AE pre-amplifier 

Masking-sheet 
with slits 

HVOF gun scanning 
direction on lathe guide 

HVOF gun  
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silicone grease. It was verified that no measurable AE was transmitted from the mask to 

the substrate using a simulated source (pencil lead break test [151]).  

 

  
Figure 3.19 (a) Fixture of masking-sheet, stand, coating substrate with rubber bush and 
nut-bolt (2.5 mm gap between sheets) and (b) Location of AE sensor behind coating 
sheet 
 

Apart from the above-mentioned experimental matrix (spraying through slits), an 

experiment was carried out using continuous multilayer HVOF thermal spraying to 

compare with the AE signal through slits, and give a more industrially realistic 

assessment. To this end, a brief test was carried out by spraying with 200 mm sec-1 gun 

scanning speeds on a flat mild-steel substrate for 5 layers. From the multilayer 

experiments, two rectangular specimens of sizes 72 mm × 58 mm (100 mm sec-1 gun 

speed) and 72 mm × 27 mm (200 mm sec-1 gun speed) each of thickness 3 mm were cut 

for indentation testing. In preparation for the indentation test, both specimens were 

ground and fine polished to a mirror finish. After fine polishing, the coating thickness 

was between 50 and 60 µm. 

 

3.8 Summary of experiments 

Overall three types of measurement were performed. Fully instrumented indentations, 

AE monitored indentations and thermal spray process monitoring. Fully instrumented 

indentation was carried out on copper, aluminium, hardened steel, as-sprayed HVOF 

(JP5000) WC-12%Co coatings. AE monitored indentation was carried out on five 

coating types: as-sprayed HVOF (JetKote) WC-12%Co, HIPed HVOF (JetKote) WC-

12%Co, as-sprayed HVOF (JP5000) WC-10%Co-4%Cr, APS (Metco, 9MB) Al2O3 

(conventional powder) and HVOF (theta-gun) Al2O3 (fine powder). AE monitored 

HVOF (TAFA JP5000) thermal spray process monitoring was carried out using WC-

(a) (b) 
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10%Co-4%Cr powders. The experimental matrix for the indentation tests is shown in 

Table 3.6.  

 

Table 3.6 Vickers indentation experimental matrix 

No. Materials/ 
Indentation surface 

 

Experimental 
variables, P 
(indentation 

loads, N) 

Number of 
repeats per 

load 

Measured quantities (force, 
displacement, AE, surface 

crack length) 

1 Hardened steel  49, 98, 147, 196, 
245, 294, 343, 392, 
441 and 490 

5 Force, displacement and AE 

2 Aluminium 292 and 490 5 Force, displacement and AE 
3 Copper metal 292 and 490 5 Force, displacement and AE 
4 as-sprayed HVOF/JP5000 

WC-12%Co coating  / 
coating surface 

49, 98, 147, 196, 
245, 294, 343, 392, 
441 and 490 

5 Force, displacement and AE, 
surface crack length 

5 as-sprayed HVOF/JetKote 
WC-12%Co coating / 
coating surface 

49, 98, 147, 196, 
245, 294, 343, 392, 
441 and 490 

5 AE, surface crack length 

6 HIPed HVOF/JetKote WC-
12%Co coating / coating 
surface 

49, 98, 147, 196, 
245, 294, 343, 392, 
441 and 490 

5 AE, surface crack length 

7 as-sprayed HVOF/JP5000 
WC-10%Co-4%Cr coating / 
coating surface 

49, 196 and 343 1 AE 

8 Conventional Al2O3 coating 
(APS/Metco, 9MB) / 
coating surface 

98, 147, 196, 245, 
294, 343, 392, 441 
and 490 

5 AE, surface crack length 

9 Fine powder Al2O3 coating 
(HVOF/theta gun) / coating 
surface 

98, 147, 196, 245, 
294, 343, 392, 441 
and 490 

5 AE, surface crack length 
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Chapter 4 

EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter presents the experimental results, mostly on the AE response from open 

loop dead-weight Vickers indentation testing of thermal sprayed ceramic coatings. First, 

general observations are made from the fully instrumented indentation tests on coated 

and uncoated specimens using load and displacement transducers alongside an AE 

sensor. General observations include the microstructure, indentation deformation and 

fracture, surface crack lengths, indentation sub-surface damage assessment and raw AE 

signal analysis (frequency and time domain) and its derived features. These 

observations inform the handling of the AE data from the main set of experiments. 

Finally observations from AE monitoring during thermal spraying of one of the sample 

sets are also presented.  

 

The chapter is arranged into four main sections, dealing, respectively with:  

• Fully instrumented indentation of as-sprayed HVOF (JP5000) WC-12%Co 

coatings, hardened steel, copper and aluminium 

• AE monitored indentation of HVOF (JetKote) WC-12%Co in the as-sprayed and 

HIPed conditions and HVOF (JP5000) WC-10%Co-4%Cr coatings in the as-

sprayed condition 

• AE monitored indentation of APS (Metco, 9MB) and HVOF (theta gun) sprayed 

Al2O3 coatings 

• AE monitoring of the thermal spray process for HVOF (JP5000) WC-10%Co-

4%Cr 

Finally, the results are summarised in preparation for the discussion.  

 

4.1 Fully instrumented indentation testing 

The purpose of this set of experiments was to establish the relationship between load, 

displacement and AE during indentation of metals and metal-ceramic combinations. 

Accordingly, four materials were chosen for examination; commercially pure 

aluminium and pure copper (99.99%), a high hardness steel (762-792 HV) and an as-

sprayed HVOF (JP5000) WC-12%Co coating of the type studied in detail in Section 

4.2. The Cu and Al were both considerably softer and more uniform than the other two 
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specimens, and were of similar macrohardness. Also, the only accommodation 

mechanism expected in the pure metals was plastic deformation, whereas, for the other 

two specimens, other accommodation mechanisms are possible, including fracture at the 

micro-scale and macro-scale. The microstructure of the as-sprayed HVOF (JP5000) 

WC-12%Co coatings is described in detail in Section 4.2, but for the present purpose, 

these can be considered as two-phase materials containing hard WC and W2C particles 

of approximate size 1-6 µm. Figure 4.1 contains various micrographs of a polished and 

etched surface of the hardened steel showing roughly spheroidal carbide particles of 

approximate diameter 1-2 µm and volume fraction around 0.15 dispersed in a martensite 

matrix, which itself probably probably contains some smaller temper carbides.  

 

  

  

Figure 4.1 Surface of hardened steel showing martensitic laths and coarse carbides: (a) 
unindented area, (b) Vickers indentation at 490 N load, (c) and (d) corresponding back 
scattered ESEM images of boxed area in indentation showing the dark separation zone 
(microvoids) between carbide particles and martensitic matrix due to indentation  
 

4.1.1 Loading force-displacement profile  

Figure 4.2 and Figure 4.3 show sample force-displacement profiles for the as-sprayed 

HVOF WC-12%Co coatings and hardened steel over the range of indentation loads 

tested. These profiles are essentially bi-curvilinear with two characteristic slopes 

separated by an arrest (‘knee’) which occurs at a depth after contact of around of 25 µm 

for the harder materials and 45 µm for the softer materials, and a force of around 100 N 

(a) (b) 

(c) (d) 
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(Figure 4.4). The two slopes (around 3.5 N/µm and 8 N/µm, shown in Figure 4.5) 

correspond to the effective indentation stiffness, slope 1 being reasonably constant 

irrespective of load, and slope 2 being rather more variable for different indentations.  
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Figure 4.2 Vickers indentation force-displacement curves for as-sprayed HVOF 
(JP5000) WC-12%Co coatings at (a) 49 N (b) 147 N (c) 245 N (d) 294 N (e) 392 N and 
(f) 490 N Indentation load 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.3 Vickers indentation force-displacement curves for hardened steel at (a) 49 N 
(b) 147 N (c) 245 N (d) 294 N (e) 392 N and (f) 490 N indentation load.  
 

Sample force-displacement curves for the hardened steel are shown in Figure 4.3. Apart 

from the somewhat anomalous result for the 147 N indentation load, these are rather 

similar to the curves for as-sprayed HVOF (JP5000) WC-12%Co coatings except that 

the arrest is of a generally different shape and occurs at a slightly higher force of around 

94 N, although similar displacement of around 25 µm. The slopes of the two lines (4 

N/µm and 8 N/µm) are broadly similar to those for the as-sprayed HVOF (JP5000) WC-

12%Co coatings, Figure 4.5.  

 

(b) 

(c) (d) 

(e) (f) 

(a) 
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Generally, the nature of the arrest is fairly consistent, corresponding to a step increase in 

force at the 25 µm displacement, of magnitude about 30 N (Figure 4.6) remaining 

relatively constant at all loads, and being somewhat smaller and more consistent for the 

softer materials. The damped oscillatory motion of the indenter at the end of each load-

displacement curve is discussed in more detail later in this section. It might be noted 

that the 49 N curve does not show an arrest as the force and displacement never reach 

the critical values of 90 N and 25 µm, respectively.  

 

Figure 4.7 shows the force-displacement curves for the two soft metals which were 

only tested at 294 and 490 N indentation loads. The most striking difference between 

these curves and the ones for the harder materials is the lower slopes of the two lines 

(Al: 2.0 N/µm and 4.5 N/µm and Cu: 1.9 N/µm and 4.0 N/µm) and the fact that the 

arrest occurs at a larger depth (Al: 45 µm and Cu: 47 µm).  
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Figure 4.4 Loading depth and force arrest at arrest point 
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Figure 4.5 Comparison of force-displacement slopes  
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Figure 4.6 Comparison of force step at arrest in force-displacement curves 
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Figure 4.7 Vickers indentation force-displacement curves for soft metals (Al and Cu) at 
294 N and 490 N indentation load 
 

Figure 4.8 shows magnified views of the loading arrest for all materials at 294 and 490 

N loads. Taken with the observations above, these suggest that, at a force of around 90 

N (almost independent of the material type), there is an instability which results in a 

sharp increase in force, sometimes accompanied by a reduction in displacement. 

Because the reduction in displacement, if it occurs, is rather small (1-2 µm) and, 

because the force is a fixed one, it is possible that the arrest is something to do with the 

load placement mechanism in the machine. Irrespective of this, the material response 

before and after the arrest is clearly different.  
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Figure 4.8 Comparison of force-displacement profiles at the arrest at 294 N and 490 N  

 

Figure 4.9 summarises a schematic model, based on the observations above, which 

allows the identification of three distinct stages of indentation and the energy associated 

with each. In Stage I, load and displacement are curvilinear and the curve terminates at 

PI, hc. Stage III commences at PIII , hc and continues until the indenter settling point Pm, 
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hm. The approximate overall work associated with Stage I is therefore 
2
I c

I

P h
W = and 

that associated with Stage III is 
( ) ( )

2
m III m c

III III c

P P h h
W P h

− −
= + . The total energy 

involved in forming the impression is thereforeI IIIW W+ , although it does not 

necessarily follow that all of this energy is manifest as acoustic emission, or that the 

proportion of the mechanical energy converted to AE will be constant within or between 

indentations. Specifically, it is expected that accommodation mechanisms which 

involve plastic deformation will generate little AE, whereas those which involve 

fracture or micro cracking will generate significant AE.  

 

 
Figure 4.9 Schematic models for an open loop dead-weight Vickers indentation: (a) 
force-displacement (P-h) curve during loading, where Pm is the terminal force and hm is 
the maximum depth, and (b) measurement scheme for total mechanical energy 
 
Since the arrest is distinct, the values of PIII  and PI are determined, for all force-

displacement curves by fitting two straight lines on the two distinct bilinear curves on 

either side of the arrest and determining the step force ( F∆ ) between these two curves at 

the arrest. The intersection point of one end of the straight lines on either side of arrest 

(Figure 4.10) with the force-displacement curve determines the co-ordinates of force 

and displacement.   

 

Figure 4.11 shows a typical force-time and displacement-time curve, in which it can be 

seen that the final stages of indentation are associated with damped oscillation of the 

force and the displacement. The small amplitude of the displacement oscillations make 

these difficult to analyse, but Fourier analysis of the oscillating part of the force curve 
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yielded the main harmonic frequency for each curve, shown in Figure 4.12, plotted 

against P-1/2. The slope of this curve yields an indentation stiffness for each material 

indicative of its terminal settling position (Appendix F).  
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Figure 4.10 Measurement schemes of different features from typical P-h curve 
[example curve shown for as-sprayed HVOF (JP5000) WC-12%Co coatings at 392 N 
load] 
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Figure 4.11 Vickers indentation loading curve showing the damped oscillation (a) 
force-time and (b) displacement-time [as-sprayed HVOF (JP5000) WC-12%Co coatings 
at 392 N load]  
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Figure 4.12 Angular frequency of damped oscillation (during indenter settling) 

 

4.1.2 Indentation depths 

Figure 4.13 shows experimental and geometrical indentation depths (as described in 

Section 3.4) for each material and each load, each point showing the average and the 

range over the five indentations.  
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Figure 4.13 Comparison of experimental and geometrical indentation depths  

 

The geometrical depth was determined from the impression size using Equation 3.5 and 

is compared with the experimental maximum depth measured from the force-
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displacement curve (Figure 3.13). Two types of material accommodation can be 

identified (Figure 3.13), according to whether values fall above or below the line y = x, 

which indicates neither ‘piling-up’ nor sinking-in’. As expected, the soft metals (Al, Cu) 

show piling-up, whereas, the two hard materials (WC-12%Co coatings and hardened 

steel) show sinking-in as can be seen in the micrograph in Figure 4.14. Figure 4.15 

shows the percentage difference between experimental depth and geometrical depth for 

WC-12%Co and hardened steel, which increases with load. As can be seen, there is a 

general increase in the difference with load although some results (e.g. 147 N for 

hardened steel) fall outside the trend.  

 

  

 
  

Figure 4.14 Vickers indentations at 490 N load showing piling-up in (a) aluminium and 
(b) copper; sinking-in (c) hardened steel and (d) as-sprayed HVOF (JP5000) WC-
12%Co coatings 
 

(a) (b) 

(c) (d) 



 90 

-20

-10

0

10

20

30

40

50

60

70

80

0

10
0

20
0

30
0

40
0

50
0

60
0

Indentation load, P (Newton)

D
iff

er
en

ce
 b

et
w

ee
n

 m
ea

su
re

d
 a

n
d

 
g

eo
m

et
ri

ca
l d

ep
th

s 
(%

)

As-sprayed HVOF (JP5000) WC-12%Co

Hardened steel

 
Figure 4.15 Percentage difference between Vickers indentation depths  

 

4.1.3 Relationship between work of indentation and AE energy  

Figure 4.16 shows that, for a given load, the mechanical work (using Equation 3.4) 

associated with the indentation loading process (Stage I and Stage III, Figure 4.9) is 

similar for the as-sprayed HVOF (JP5000) WC-12%Co coatings and hardened steel 

specimens for both Stages I and III and that Stage III generally increase with load. For 

the two soft metals, the work is similar and Stage I generally has lower energy and 

Stage III higher energy than the harder materials at a given load.  

 

Figure 4.17 shows the total AE energy plotted against the total mechanical indentation 

work for each load. As can be seen, the AE energy is significantly greater for the hard 

materials and these show a general increase in AE energy with indentation work, 

although there is considerable scatter within this. Other features of the AE, e.g. total 

duration, show similar evolution with work of indentation.  
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Figure 4.16 Indentation mechanical energy (P-h area, Stage I and Stage III) during 

loading 
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Figure 4.17 Indentation mechanical energy (P-h area) plotted against total AE energy 
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4.1.4 Loading force, depth and AE relationship 

Because the total indentation work and total AE energy are not closely related and the 

sequence of AE during loading was examined more closely. To do this, representative 

examples have been chosen to show typical time evolution features which are then 

calculated for all data.  Since very little or no AE was detected for the two soft metals, 

only examples of the two other hard materials are discussed here. The analysis takes 

into account optical micrographs of the Vickers indentations (Figure 4.18) and the 

relevant time evolutions of load, displacement and raw AE.   

 

As-sprayed HVOF (JP5000) WC-12%Co coatings  Hardened steel 

  

  
Figure 4.18 surface views of Vickers indentations on as-sprayed HVOF-JP5000 WC-
12%Co coatings (a) 245 N, (b) 392 N, and hardened steel (c) 294 N and (d) 490 N 
 

In all the following figures in this section, the point where the indenter touches the 

specimen is shown with a red down-arrow (↓) and at the point where the indenter 

reaches its lowest point is shown with a red up-arrow (↑). The displacement-time 

history records when the indenter load was released, and this is shown with a green 

down-arrow (↓), and the arrest which indicates Stage II is shown with a blue up-arrow 

(↑). Figures 4.19 and 4.20 show detailed representations of the force, displacement, AE 

amplitude time evolution along with a magnified view of the ‘knee’ for 245 N and 392 

N loads on the as-sprayed HVOF (JP5000) WC-12%Co specimen. The micrograph 

(a) 
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(c) 

(d) 
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(Figure 4.18) shows sinking-in with macro-scale cracking and edge cracking, with 

generally larger corner cracks in the 392 N indentation. It should be noted that the 

indentations shown in Figure 4.18 do not necessarily correspond to those shown in 

Figures 4.19 and 4.20. Figures 4.21 and 4.22 show the corresponding AE, force and 

displacement data for 294 N and 490 N loads for the hardened steel. The micrographs 

also show a sinking-in mechanism although, in contrast with the as-sprayed HVOF 

(JP5000) WC-12%Co, there is no macro-scale cracking.  
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Figure 4.19 Vickers indentation of as-sprayed HVOF (JP5000) WC-12%Co coatings at 
245 N load: (a) force-time, displacement-time and AE voltage-time signal, (b) P-h 
curve, (c) AE voltage-force, (d) magnified view of P-h curve showing three stages, (e) 
magnified view in time series 
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Figure 4.20 Vickers indentation of as-sprayed HVOF (JP5000) WC-12%Co coatings at 
392 N load: (a) force-time, displacement-time and AE voltage-time signal, (b) P-h 
curve, (c) AE voltage-force, (d) magnified view of P-h curve showing three stages (e) 
magnified view in time series  
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Figure 4.21 Vickers indentation of hardened steel at 294 N load: (a) force-time, 
displacement-time and AE voltage-time signal, (b) P-h curve, (c) AE voltage-force, (d) 
magnified view of P-h curve showing three stages, (e) magnified view in time series 
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Figure 4.22 Vickers indentation of hardened steel at 490 N load: (a) force-time, 
displacement-time and AE voltage-time signal, (b) P-h curve, (c) AE voltage-force, (d) 
magnified view of P-h curve showing three stages, (e) magnified view in time series  
 

A comparison of Figure 4.19(a), 4.20(a), 4.21(a) and 4.22(a) shows the distribution of 

AE to be quite variable both in time and magnitude although, in most cases, there is 

relatively little AE in Stage I and almost none after indenter settling. The magnified 
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views (Figure 4.19(d), 4.20(d), 4.21(d) and 4.22(d) show Stage II, as defined by the 

load step, mapped onto the magnified AE time series, and it can be seen that, in some 

cases at least, there is concentration of AE around Stage II, itself characterised by a 

flattening of the displacement-time graph.   

 

It is also evident from Figures 4.19 to 4.22 that AE is rather sparse on first contact of 

the indenter with the specimen. In order to quantify the effect, the time gap was 

measured (Figure 4.23) for each AE record by identifying the point of contact, C1, as 

determined by the first appearance of a load signal above a threshold of 0.1% above the 

specimen holding force and the first appearance of AE above a threshold level of 15% 

above the continuous background noise level at C2. Figure 4.24 shows this time gap 

measured for all indentations at all loads, and shows that, despite considerable scatter, 

AE appears generally earlier in the as-sprayed HVOF (JP5000) WC-12%Co coating 

than in the hardened steel, at low loads, whereas the time gap is similar at high loads.    
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Figure 4.23 Measurement scheme of the time gap: Vickers indentation of hardened 
steel at 196 N load showing the indenter touching the specimen at point C1 and the 
occurrence of first AE above threshold at point C2. 

Time gap = 0.09 sec 
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Figure 4.24 Time gap against indentation load 

 

The stages identified for the force-displacement curve (Figure 4.10) were used to divide 

up the AE record into three separate sections (e.g. Figure 4.25), using the stage 

sectioning algorithm described in Figure 4.26 and the AE features calculated within 

each of the Stages (I, II and III).  
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Sectioning example 
(Stages): 
 
 
Timeindex(P1=94N)=790164 
 
Timeindex(P3=122N)=816991 
 
 
 
 
 
 
stage I = 1:790164; 
 
stage II = 790164:816991; 
 
stage III = 816991:end; 

Figure 4.25 Example of separation of Stages (I, II and III) from the force-time signal 
[as-sprayed HVOF (JP5000) WC-12%Co coating at 392 N load] 
 

In the main series of experiments, there is no record of force and displacement and so a 

means needs to be found to analyse the AE without the use of a force-displacement 

I II III 
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record. In many cases, three clear zones can be identified in the AE record and, where 

they can, these zones appear to be associated with the stages identified above (e.g. 

Figures 4.20 and 4.22). The zone boundaries were identified (Figure 4.26) 

automatically by first smoothing the absolute raw AE signal using an average of 2000 

data points and then applying an automated threshold of 60% below the peak AE 

amplitude of the total 2 second record, chosen so that its upward crossing (upcross time 

index, tu) identified the Zone A – Zone B boundary and its downward crossing 

(downcross time index, td) the Zone B – Zone C boundary. If there is more than one 

upcross and downcross, then no distinct zones are identifiable.  

 

Figure 4.27 and 4.28 show the operation of the algorithm for examples where zones can 

and cannot be identified. Where three separate zones could be identified, AE features 

were calculated within each of the AE zones (A, B and C). Figure 4.29 shows the 

numbers of indentations which exhibited clear AE zones, and it is clear that hardened 

steel showed zones for many more of the indentations (33 of 50) compared to as-

sprayed HVOF (JP5000) WC-12%Co coatings (9 of 50).  
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Figure 4.26 Main algorithm and scheme used to section the AE record by stages and 
zones  
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 (i) Raw AE signal (ii) Corresponding smoothed AE signal (i) 
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Figure 4.27 Absolute AE signal time series from Figures 4.19 and 4.20 (both as-
sprayed HVOF-JP5000 WC-12%Co coatings): (a) 245 N (no distinct zones, criteria of 
distinct zones broken due to more than one crossings of the threshold), (b) 392 N 
(showing all three zones: A, B and C) 
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 (i) Raw AE signal (ii) Corresponding smoothed AE signal (i) 

(a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-4

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

A1-30kgf030000.bin

 
7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

x 10
5

2

4

6

8

10

12

x 10
-6

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

A1-30kgf030000.bin

 
(b) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

A3-50kgf030000.bin

 
4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

x 10
5

0

1

2

x 10
-4

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

A3-50kgf030000.bin

 tu= 556233     td=579098 

 
Figure 4.28 Absolute AE signal time series from Figures 4.21 and 4.22 (both hardened 
steel): (a) 294 N (no distinct zones, criteria of distinct zones broken due to more than 
one crossings of the threshold), (b) 490 N (showing all three zones: A, B and C) 
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Figure 4.29 Number of indentations with distinct AE zones A, B and C 
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Figures 4.30 and 4.31 show the AE energy and duration, respectively, analysed per 

stage and per zone. It is clear that, in the cases where clear zones can be identified, the 

zone and stage analyses coincide reasonably well.  
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Figure 4.30 Zone AE energy plotted against stage AE energy 
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Figure 4.31 Zone AE duration plotted against stage AE duration 
 

Figure 4.32 (i) show the AE energy and duration partitioned per zone for those cases 

where sectioning was possible. Figure 4.32 (ii) shows the AE energy and duration 

Zone AE energy = Stage AE energy 

Zone AE duration = Stage AE duration 
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sectioned per stage for each case. Comparing with Figure 4.17, it would appear that 

Zone C for steel gives a more consistent evolution with mechanical energy. Little can be 

observed for as-sprayed HVOF (JP5000) WC-12%Co coatings since those signals 

which could be partitioned were confined to two loads.  
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Figure 4.32 Zone and stage AE features: (i) zones and (ii) stages vs total P-h area  
 

4.2 AE monitored Vickers indentation testing of WC-Co coatings  

The coatings investigated were; as-sprayed HVOF (JetKote) WC-12%Co, HIPed HVOF 

(JetKote) WC-12%Co and as-sprayed HVOF (JP5000) WC-10%Co-4%Cr. This section 

presents the results for the microstructure, the surface and subsurface fracture patterns, 

and analysis of the raw AE signals. The analysis of the AE signals follows the findings 

of Section 4.1 in that AE features are calculated per zone in cases where zones can be 

identified and the total AE features are calculated for all indentations.  

 

4.2.1 Microstructural characterisation 

For WC-12%Co, the raw powder particles exhibited the typical angular shape of 

sintered and crushed powders with a size distribution between 15 and 50 µm and mean 

(a) 

(b) 

(a) 

(b) 
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particle size of about 30 µm [32]. For WC-10%Co-4%Cr, the raw powder particles were 

typically of spherical shape with a size distribution between 15 and 45 µm. As shown in 

the SEM images taken at random locations (Figure 4.33), the polished surfaces are 

quite smooth, with a homogeneous microstructure and little surface connected porosity, 

and no evidence of non molten or semi molten particles. The carbide particles are 

relatively angular. Notwithstanding the poor contrast, the HIPed WC-12%Co does not 

appear much different to the as-sprayed, although other coatings with similar materials 

[32] have noted lower porosity, and a greater level of homogeneity in the HIPed 

microstructure. The WC-10%Co-4%Cr material is not generally distinguishable from 

the WC-12%Co.  

 

XRD analysis of the both as-sprayed HVOF (JP5000, JetKote) WC-12%Co coatings 

(Appendix E: Figure E.2 and E.4) showed then predominantly to contain the primary 

tungsten carbide (WC) phase with some of the harder secondary phase tungsten carbide 

(W
2
C) and a very small amount of metallic tungsten (W). The HIPed HVOF WC-

12%Co coatings (Appendix E: Figure E.5), exhibited significant changes from the 

pattern of the as-sprayed coating. Although the main phase was again primary tungsten 

carbide (WC), some eta-carbides (Co
6
W

6
C) formed by the interaction of the Co matrix 

and WC. None of the recorded peaks could be related to the secondary tungsten carbide 

(W
2
C) phase or metallic tungsten (W). The as-sprayed HVOF WC-10%Co-4%Cr 

coatings (Appendix E: Figure C.6) predominantly contained WC with small amounts of 

W
2
C, chromium (Cr) and cobalt (Co), and therefore had more in common with the as-

sprayed WC-12%Co than the HIPed material.  
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Figure 4.33 The surface morphology of WC-Co coatings: (a) as-sprayed HVOF 
(JP5000) WC-12%Co (coating material in Section 4.1), (b) as-sprayed HVOF (JetKote) 
WC-12%Co, (c) HIPed HVOF (JetKote) WC-12%Co, and (d) as-sprayed HVOF 
(JP5000) WC-10%Co-4%Cr  
 

4.2.2 Vickers indentation derived properties 

Figure 4.34 shows the cracking patterns around typical indentations for a representative 

selection of loads and coating type. The surface fracture pattern includes radial cracks at 

the four corners, edge cracks (or edge chipping), ring cracks and other small cracks 

around the indentation, as illustrated in the schematic diagram Figure 3.15. All cracks 

visible were measured according to the scheme described in Section 3.5.  

 

For as-sprayed HVOF (JetKote) WC-12%Co coatings (Figures 4.34a, b), radial 

cracking from all or any of the four corners of the indentation was seen for loads of 98 

N upwards, whereas, at 49 N (Figure 4.34a), only minor cracks around the perimeter 

(edge cracks) and on the surface of the indentation were found. In contrast, the HIPed 

HVOF (JetKote) WC-12% Co coating showed only measurable edge cracks and other 

small cracks around the indentation with no visible radial cracking for any of the 

indentations at any of the loads (Figures 4.34c, d). Similarly, the as-sprayed HVOF 

(JP5000) WC-10%Co-4%Cr coatings showed only measurable edge cracks with no 

radial cracks being observed at any of the loads (Figures 4.34e, f).  

(a) (b) 

(c) (d) 
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Figure 4.34 Typical Vickers indentation cracking patterns for HVOF WC-Co coatings 
(a) as-sprayed WC-12%Co 49 N, (b) as-sprayed WC-12%Co, 490 N, (c) HIPed WC-
12%Co, 49 N, (d) HIPed WC-12%Co, 490 N, and (e) at high pressure, P1 at gun speed 
100 mm s-1 and (f) low pressure, P2 at gun speed 200 mm s-1, as-sprayed WC-%10Co-
4%Cr both at 343 N 

 

Since the contact of the Vickers indenter is spread over four planar surfaces and, since 

the indenter takes a finite amount of time to come to rest during indentation, the 

possibility of AE emanating from cracks propagating below the surface needs also to be 

considered as well as how the surface cracks might be expected to grow with time 

during the indentation. The fracture pattern in all WC-Co coatings studied here also 

tends to be asymmetric, which is attributed to a macroscopic variation in relative 

density (i.e. the presence of pores or other defects around the contact) [53] and the 

(a) (b) 

(c) (d) 

(e) (f) 
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relative coarseness of the microstructure. In particular, the propagation of cracks does 

not emanate equally from all four corners (e.g. Figure 4.34a) as is generally observed in 

homogeneous glass and ceramic materials.  

 

Figure 4.35 shows cross-sectional views around indentation for the as-sprayed HVOF 

(JetKote) WC-12%Co coating, one at each of the loads 245 N and 441 N, where areas 

with sub-surface densification and lateral cracks can be seen. The cross-sectional image 

at 147 N load also showed lateral cracks with little densification.  

 

The regions beneath the indenter (densified region) and away from indentation zone can 

be compared using the rectangular areas identified in the micrographs, the porosities 

immediately under the indenter being 0.15% for the 245 N and 0.80% for 441 N loads. 

The corresponding average porosities in the areas just away from the indentation were 

4.5% and 3.5% for the 245 and 441 N loads, respectively. The densified zone (which 

can be imagined to be approximately spherical in three dimensions) corresponds with 

the compressive stress lobe as discussed by Lawn and Swain [2] and, whereas the 

degree of densification does not account for all of the visible surface depression 

produced by the indenter in these cross-sections, it could contribute to the 

accommodation and densification could generate AE. The extent and orientation of the 

lateral cracks appears to vary with load, judging from the limited evidence that can be 

seen in Figure 4.35. For the 245 N load, the lateral crack has multiple branches both in 

the lateral and vertical directions and the overall length is almost the size of the indent 

half diagonal. For the 441 N load, the lateral delamination crack can be seen to emerge 

onto the surface at a distance over twice the indent diagonal, running at a depth almost 

equal to the indentation depth.  
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 SEM images of indent cross-sections  Magnified view 
 
 
 
 
 
 

(a) 

  
   
 
 
 
 
 
 

(b) 

  
Figure 4.35 SEM images of Vickers indentation cross-sections of as-sprayed HVOF 
(JetKote) WC-12%Co coatings showing the ‘sinking-in’ and mesh of lateral cracks 
around the indenter and sub-surface damage, (a) 245 N and (b) 441 N.  
 

Once the indenter has landed, the surface of the coating bends plastically (“sink-in” 

zone) around the periphery of the indenter, the displacement of material being taken up 

by plastic flow around hard particles accompanied by a certain amount of cracking of 

the particles under the tensile stresses (Figure 4.35a). The other mechanism clearly 

visible in Figure 4.35 is sub-surface lateral cracking, not dissimilar in its morphology to 

the edge cracks seen on the upper surface. The partially developed sub-surface lateral 

cracks for both loads appear to originate at the base of a surface layers extend in a plane 

parallel to the surface [53] and may eventually emerge some distance from the 

indentation.  

 

Other events which may appear in the AE record include fracture of hard phase particles 

[35] beneath the pyramidal surface of the indenter, and a typical case at 441 N load is 

shown in Figure 4.36. It may be that crushing and cracking of hard phase particles [35] 

is the initiating event for the development of sub-surface lateral cracks of the type seen 

in Figure 4.35.  

 

Mesh of 
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Figure 4.36 SEM images of top view of pyramidal surface of indentations of WC-Co 
coatings: (a) at 441 N load showing indent diagonal at tip, and (b) at higher 
magnification showing a WC particle (d ~ 6µm) crushed under the load; (c) at 441 N 
showing full view of indent corner and edge shown with arrow, and (d) showing edge 
crushed under the load; (e) at 196 N (100 mm s-1 gun speed, high pressure, P1), and (f) 
343 N (at 200 mm s-1 gun speed, low pressure, P2)  
 

The effect of microstructural variation can be seen in the micro- and macro-hardness 

values (Table 4.1). The average macrohardness (five indentations at each load) was 

highest for the WC-10%Co-4%Cr coatings, and least for the as-sprayed WC-12%Co. 

The microhardness values (again five indentations) show, as expected, a wider 

variation, especially taking account of the fact that the load is constant. It is a little 

surprising that the values do not rank in the same way as the macro-hardness tests, but 

this may not be significant.  

Lateral crack opening at 
the indent diagonal 

(b) 

d 

(a) 

(c) (d) 

(e) (f) 
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Table 4.1 Vickers indentation hardness of HVOF WC-Co coatings 

Materials Microhardness 
(HV1.96 N) 

Macrohardness  

As-sprayed HVOF (JetKote) WC-12%Co  1050±70 759 ± 28 HV49-490 N 
HIPed HVOF (JetKote) WC-12%Co  1018±177 839± 48 HV49-490 N 
As-sprayed HVOF (JP5000) WC-10%Co-4%Cr (high pressure, P1) 
As-sprayed HVOF (JP5000) WC-10%Co-4%Cr (low pressure, P2) 

1097±110 
990±18 

977± 19 HV49-343 N  
915± 79 HV49-343 N  

 

4.2.3 AE signals  

This section presents AE signals of as-sprayed HVOF (JetKote) WC-12%Co, HIPed 

HVOF (JetKote) WC-12%Co and as-sprayed HVOF (JP5000) WC-10%Co-4%Cr 

coatings, and the analysis follows the findings of Section 4.1 in that AE features are 

calculated per zone in cases where zones can be identified. Figure 4.37 shows the 

number of indentations which exhibited clear AE zones (criteria described in Figure 

4.26), and the most striking aspect is that HIPed HVOF (JetKote) WC-12%Co and as-

sprayed HVOF (JP5000) WC-10%Co-4%Cr coatings showed no distinct zones at any of 

the loads. The as-sprayed HVOF (JetKote) WC-12%Co showed distinct zones for most 

of the loads (43 of the 50 indentation in stark contrast to the behaviour of nominally 

similar material in the fully instrumented tests (Figure 4.29).  
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Figure 4.37 WC-Co coatings: Number of indentations with distinct AE zones A, B, C 
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Figure 4.38 shows typical time- and frequency-domain plots for as-sprayed HVOF 

(JetKote) WC-12%Co coatings, showing the clear zones evident at most of the loads. 

The spectra show most of the power to be in the two bands at 100 kHz to 250 kHz and 

300 kHz to 400 kHz with a minor component discernible between 550 kHz to 650 kHz. 

Other than this, little can be seen immediately to distinguish the spectra apart from a 

series of high frequency spikes at 49 N load which is attributed to noise and corresponds 

to a long period in the 2-second record where no events are perceptible above the noise.  
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Figure 4.38 Typical AE signal structures (amplitude and frequency) during indentation 
at loads: (a) 49 N (b) 196 N (c) 343 N and (d) 490 N [as-sprayed HVOF (JetKote) WC-
12%Co coatings] 
 
Figure 4.39 shows a more detailed representation of the AE time series for one case 

where the signal did not (Figure 4.39a) and one case where the signal did (Figure 
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4.39b) meet the zoning criteria in as-sprayed HVOF (JetKote) WC-12%Co coatings. 

Clearly, the dispersion of the signal in Figure 4.39a is not as widespread as it is in other 

signals (i.e. Figure 4.19) which do not meet the criteria.  
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Figure 4.39 Absolute AE signal in time series (as-sprayed HVOF-JetKote WC-12%Co 
coatings): (a) 245 N (criteria of distinct zones broken due to more than one crossings of 
the threshold), (b) 490 N (showing all three zones-A, B and C from Figure 4.38d) 
 

Figure 4.40 shows examples of frequency spectra for each of the three zones, while 

Figure 4.41 shows the ratio of power in the low frequency band (0-250 kHz) to the 

power in the high frequency band (250-750 kHz) for each of the zones for each of the 

loads. This ratio does not show any particular pattern between loads or zones.  
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Stage  (196 N load)  (490 N load) 
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Figure 4.40 AE spectra for the distinct zones (A, B and C) of indentation identified in 
Figure 4.38 for indentations at 196 and 490 N [as-sprayed HVOF (JetKote) WC-12%Co 
coatings] 
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Figure 4.41 Power ratio in as-sprayed HVOF (JetKote) WC-12%Co coatings 

 

For HIPed HVOF (JetKote) WC-12%Co, as-sprayed HVOF (JP5000) WC-10%Co-

4%Cr coatings (Figure 4.42 to 4.44), AE activity is not evenly spaced in time, and 

similar behaviour was seen for all loads, with no distinct zones of AE being separable at 

any of the loads.  
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Figure 4.42 Typical AE signal structures (amplitude and frequency) during indentation 
at loads: (a) 49 N (b) 196 N (c) 343 N and (d) 490 N [HIPed HVOF (JetKote) WC-
12%Co coatings].  
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Figure 4.43 Typical AE signal structures (amplitude and frequency) during indentation 
of as-sprayed HVOF (JP5000) WC-10%Co-4%Cr coatings at loads: (a) 49 N  and (b) 
343 N [100 mm s-1 gun speed at high pressure, P1] 
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Figure 4.44 Typical AE signal structures (amplitude and frequency) during indentation 
of as-sprayed HVOF (JP5000) WC-10%Co-4%Cr coatings at loads: (a) 49 N and (b) 
343 N [200 mm s-1 gun speed at low pressure, P2] 
 

Figure 4.45 shows a more detailed representation of the AE signal time series for 

HIPed HVOF (JetKote) WC-12%Co and as-sprayed HVOF (JP5000) WC-10%Co-

4%Cr coatings, both examples breaking the zoning criteria due to multiple crossings of 

the threshold. These signals are a contrast even to the example of as-sprayed coatings 

which does not meet the zoning criteria (Figure 4.39a).  

 

Figure 4.46 shows the ratio of frequency power for HIPed HVOF (JetKote) WC-

12%Co and as-sprayed HVOF (JP5000) WC-10%Co-4%Cr and it can be that the HIPed 

coating (and, possibly, the WC-10%Co-4%Cr) has a significantly higher high frequency 

component than other coatings (Figure 4.41). The ratio of low to high AE frequency 

does not show any pattern with indentation load.  
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 (i) Raw AE signal (ii) Corresponding smoothed AE signal (i) 
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Figure 4.45 Absolute AE signal in time series from Figures 4.42 and 4.44: (a) 490 N 
(HIPed HVOF-JetKote WC-12%Co coatings) (b) 343 N (as-sprayed WC-10%Co-
4%Cr, 200 mm s-1 gun speed at low pressure, P2), criteria of distinct zones broken due 
to more than one crossings of the threshold 
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Figure 4.46 Power ratio [HIPed HVOF (JetKote) WC-12%Co, as-sprayed HVOF 
(JP5000) WC-10%Co-4%Cr]  
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4.2.4 AE features and total surface crack length  

Figure 4.47 shows total surface crack length (L), total AE ring-down count (R), total 

AE energy (E) and total AE event duration (T) plotted against indentation load for as-

sprayed HVOF (JetKote) WC-12%Co coatings. As can be seen, each of these features 

increases in roughly the same way with load.  

 

Figure 4.48 shows the same AE features calculated for each of the three zones for each 

of the individual indentations. As can be seen from Figures 4.48a, b, c, it is zone C 

which shows the clearest increase in AE features with load. Focussing on AE energy, it 

can be seen, in particular, that the zone C energy increases quite steeply with load, and 

that it becomes the largest part of the AE indentation energy at loads above about 245 

N. Figure 4.48d shows the total AE energy, and those for zones A, B and C plotted 

against total surface radial crack length, and again, it is clear that zone C energy gives 

the sharpest indication of radial crack length.  
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Figure 4.47 Effect of indentation load (P) on total surface crack length (L) and AE 
features [as-sprayed HVOF (JetKote) WC-12%Co coatings] 
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Figure 4.48 Zone AE features: (a) ring-down, R, (b) energy, E and (c) event duration, T 
vs indentation load for the zones shown in Figure 4.31, (d) AE energy of zone-A, B and 
C against total surface radial crack lengths [as-sprayed HVOF (JetKote) WC-12%Co 
coatings] 
 

Figure 4.49 shows total surface crack length (L), total AE ring-down (R), total AE 

energy (E) and total AE event duration (T) against indentation load for HIPed HVOF 

WC-12%Co coatings and, as can be seen, all of the AE features broadly remain constant 

with load but increase between 343 N and 392 N, remaining roughly constant thereafter 

but with significant scatter.  

 

Figure 4.50 shows total AE energy plotted against total surface crack length for HIPed 

HVOF (JetKote) WC-12%Co coatings, which shows a general positive correlation, 

although there is considerable scatter in each parameter for a given indentation load.  

 

(a) (b) 

(c) (d) 
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Figure 4.49 Effect of indentation load (P) on total surface crack length (L) and AE 
features [HIPed HVOF (JetKote) WC-12%Co coating] 
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Figure 4.50 Total AE energy plotted against total surface crack lengths; (49 to 490 N) 
[HIPed HVOF (JetKote) WC-12%Co coating] 
 

Figure 4.51 shows total AE energy (E) against indentation load for as-sprayed HVOF 

(JP5000) WC-10%Co-4%Cr coatings (only one indentation at each load and surface 

crack length was not measured). From the limited information, it seems that these 

coatings do not show any behaviour which can be distinguished from either the as-

sprayed or HIPed WC-12%Co coatings.  
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Figure 4.51 Effect of indentation load (P) on total AE features [as-sprayed HVOF 
(JP5000) WC-10%Co-4%Cr coatings]: (a) high pressure, P1 (with 100 mm sec-1 gun 
speed), (b) low pressure, P2 (with 200 mm sec-1 gun speed) 
 

4.3 AE monitored Vickers indentation testing of Al2O3 coatings  

This section presents the results for the microstructure, fracture pattern, and analysis of 

the raw AE signals and frequency spectrum of the APS (Metco, 9MB) Al2O3 and HVOF 

(theta gun) Al2O3 coatings.  The analysis of the AE signals again follows the findings of 

Section 4.1 in that AE features are calculated per zone in cases where zones can be 

identified and the total AE features are calculated for all indentations. 

 

4.3.1 Microstructural characterisation 

The processed powders used had size ranges of 10-45 µm for the APS Al2O3, and 1-5 

µm for the HVOF Al2O3 coatings. Both of the powders had an angular and irregular 

morphology Figures 4.52a, b. The SEM images of the sprayed surface (Figures 4.52c, 

d) show that the molten alumina droplets have spread significantly and it is not possible 

to distinguish any non molten or semi molten particles. The coating cross-sections 

(Figures 4.52e, f) show a higher porosity for the APS Al2O3 (conventional) than HVOF 

Al2O3 (fine powder). The liquid nitrogen freeze fracture images (Figures 4.52g, h) 

show the splats, porosity, and some through thickness linear cracks in the coating. The 

splat size appears to be similar in the two coatings despite the very different powder 

sizes, and the splats appear more lamellar but less cohesive in the APS material.   

 

XRD analysis (Appendix E: Figures E.7 and E.9) shows the two alumina powders to 

consist essentially of corundum (α -Al2O3). The pattern of the APS Al2O3 (conventional 

(a) (b) 
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powder) coating (Appendix E: Figure E.8) shows it predominantly to contain γ -Al2O3 

(due to rapid solidification) with some corundum, presumably due to partial melting of 

the powder. The pattern of the HVOF Al2O3 (fine powder) coating (AppendixE: Figure 

E.10) shows it predominantly to contain corundum with very little γ -Al 2O3.  
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 APS-Metco, 9MB Al2O3 (conv. powder)  HVOF-theta gun Al2O3 (fine powder)  
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Figure 4.52 Al 2O3 powder and coatings: (a) and (b) powders, (c) and (d) typical surface 
topographies exhibiting definite splat morphologies with densely packing splats, (e) and 
(f) through thickness coating cross-sections (g) and (h) liquid nitrogen freeze fracture 
image of coating splat morphologies, revealing splats, presence of porosity, and through 
thickness linear cracks 
 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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4.3.2 Vickers indentation derived properties 

SEM observation of the indentations of the Al2O3 coatings revealed two strikingly 

different responses, Figure 4.53. The indentations of the APS Al2O3 (conventional) 

coatings showed a high degree of crushing fracture and spallation and the pyramidal 

impressions were barely discernible in contrast to all the other coated specimens 

examined. Because of the nature of the cracks (meshed and spalled asymmetrically 

around indentations), it was not possible to measure crack lengths either using the direct 

straight line or profiling method for the APS Al2O3 coatings. In contrast, the HVOF 

coated indented samples showed visible radial cracking from all four corners at all 

loads, and the surface fracture pattern included edge cracks around the indentation. 

Surface crack lengths were measured as described for the other coatings.  
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APS-Metco, 9MB Al 2O3 (conventional 

powder) coatings 
HVOF-theta gun Al2O3 (fine powder) 

coatings 
(a) 

  
(b) 

  

(c) 

  

(d) 

  
Figure 4.53 SEM images showing typical Vickers indentation cracking patterns of 
Al2O3 coatings at loads (a) 98 N (b) 245 N (c) 392 N and (d) 490 N [Arrows indicate 
centre of indentation for APS coatings and red dotted rectangles indicate area of 
spallation]  
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Although the quality of the image was poor under the optical microscope, indentation 

diagonals could be measured sufficiently to determine the macrohardness values. The 

resulting average values of the five indentations at each load along with the 

microhardness (five indentations) as shown in Table 4.2. As can be seen, the hardness 

values are essentially the same for both coatings and, as before, the macrohardness is 

somewhat lower than the microhardness and this is consistent with a decrease in 

hardness with increasing load.  

 

Table 4.2 Vickers indentation hardness of Al2O3 coatings 

Materials Microhardness (HV1.96 N) 
(Gold Sputtered) 

Macrohardness  
(Gold Sputtered) 

APS-Metco, 9MB conventional Al2O3 coatings  683±38  588 ± 42 HV98-490 N 

HVOF-theta gun fine powder Al2O3 coatings 632±29  584 ± 64 HV98-490 N 
 

4.3.3 AE signals  

Figure 4.54 shows the number of indentations which exhibited clear AE zones (criteria 

described in Figure 4.26), with 32 of the 45 APS and 39 of the 45 HVOF indentations 

showing zoning.  
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Figure 4.54 Al2O3 coatings: Number of indentations with distinct AE zones A, B and C 

 

Figures 4.55 and 4.56 and Figures 4.57 and 4.58 show time series and spectra for 

example indentations on the APS and HVOF Al2O3 coatings, respectively. These data 
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were treated in the same way as those for the other coatings and the summary plots of 

AE features are shown later in the section.  
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Figure 4.55 Example AE signal structures (amplitude and frequency) during 
indentation of APS-Metco, 9MB Al2O3 (conventional) coatings at loads: (a) 98 N (b) 
245 N (c) 392 N and (d) 490 N  
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Figure 4.56 Absolute AE signal time series (APS-Metco, 9MB Al2O3 conventional 
coatings): (a) 392 N (criteria of distinct zones broken due to more than one crossings of 
the threshold), (b) 392 N (showing all three zones-A, B and C from Figure 4.55c) 
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Figure 4.57 Example AE signal structures (amplitude and frequency) during 
indentation of HVOF-theta gun Al2O3 (fine powder) coatings coatings at loads: (a) 98 N 
(b) 245 N (c) 392 N and (d) 490 N 
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 (i) Raw AE signal (ii) Corresponding smoothed AE signal (i) 
(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

1

2

3

4

5

6

7

8
x 10

-4

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

NanoAlumina50-5010000.bin

 
0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
-5

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

NanoAlumina50-5010000.bin

 
(b) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

NanoAlumina25-2010000.bin

 
0 2 4 6 8 10 12 14 16

x 10
5

0

0.5

1

1.5

2

2.5

x 10
-4

Time index (number)

A
bs

ol
ut

e 
am

pl
itu

de
 (

V
)

NanoAlumina25-2010000.bin

tu=44253

td=169276

 
Figure 4.58 Absolute AE signal time series (HVOF-theta gun Al2O3 fine powder 
coatings): (a) 490 N (criteria of distinct zones broken due to more than one crossings of 
the threshold), (b) 245 N (showing all three zones-A, B and C from Figure 4.57b) 
 

Figures 4.59 and 4.60 show the ratio of power in the low frequency band (0-250 kHz) 

to the power in the high frequency band (250-750 kHz) for APS and HVOF Al2O3, 

respectively. Again, the ratio for the whole AE series remains around unity and does not 

show any particular pattern with load, except for a possible trend towards increasing 

ratio with load in the APS coating.   
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Figure 4.59 Power ratio in APS-Metco, 9MB  Al2O3 (conventional) coatings  
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Figure 4.60 Power ratio in HVOF-theta gun Al2O3 (fine powder) coatings  

 

Figure 4.61 shows total AE ring-down count (N), total AE energy (E) and total AE 

event duration (T) against indentation load for APS Al2O3 (conventional) coatings and, 

as can be seen, each of these features shows a rather complex variation with load. The 

pattern for AE energy for those signals which could be zoned (Figure 4.62) was not 

much clearer.  
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Figure 4.61 Effect of indentation load AE features [APS-Metco, 9MB Al2O3 
(conventional) coatings] 
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Figure 4.62 Zone AE features: (a) ring-down, R, (b) energy, E and (c) event duration, T 
vs indentation load [APS-Metco, 9MB Al2O3 (conventional) coatings] 
 

4.3.4 AE features and total surface crack lengths 

Figure 4.63 shows total surface crack length (L), total AE ring-down count (R), total 

AE energy (E) and total AE event duration (T) against indentation load for the HVOF-

theta gun Al2O3 (fine powder) coatings and, as can be seen, none of the AE features 

show a particular pattern with load, although the total surface crack length increases in 

an approximately linear fashion.  
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Figure 4.63 Effect of indentation load on total surface crack length (L) and AE features 
[HVOF-theta gun sprayed Al2O3 (fine powder) coatings] 
 

Figure 4.64 shows the AE energy separated between the three zones. Again, the AE 

energy does not show a particular pattern with load, but, in common with other 

materials, the zone C energy becomes the largest part of the AE indentation energy at 

higher loads. 
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Figure 4.64 Zone AE energy: (a) zone energy, E vs indentation load, and (b) zone 
energy, E vs total surface radial crack length [HVOF-theta gun Al2O3 (fine powder) 
coatings] 
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4.4 AE monitoring of HVOF thermal spraying process  

This section deals with the AE signals recorded during HVOF (TAFA JP5000) spraying 

of WC-10%Co-4%Cr powder. As with the monitoring of indentations, the AE signals 

were acquired at full bandwidth so that spectral analysis could be carried out on the raw 

signal and also so that time domain characteristics could be examined up to the 

waveform resolution.  

 

4.4.1 AE noise during spraying process 

To differentiate between the signals generated due to flame noise and powder particle 

impact, three reference conditions were used, those being (a) spraying with flame and 

powder particles not directed at the sample (b) spraying with flame only onto the 

sample (no powder), and (c) spraying with flame only not directed at the sample. 

Figure 4.65 shows time and frequency domain plots of a 2-second record taken under 

each conditions (a), (b) and (c). The raw AE spectra all show similar characteristics with 

distinct spikes below the analogue filter frequency of 100 kHz. To investigate the low 

frequency characteristics of the signals, it was averaged over 10000 points using a root-

mean square (rms) algorithm (i.e demodulation). The results (Figure 4.66) show a 

characteristic frequency of 100 Hz.   The rms values of entire 2 second records for 

conditions (a), (b) and (c) were 5.579×10-4 V.s, 5.387×10-4 V.s and 5.642×10-4 V.s. The 

similarity of the characteristics of the three conditions suggests that the background 

noise is largely airborne.  

 

Accordingly, the remaining analysis is carried out on data which has been high-pass 

filtered at 200 kHz. The effect of this filtering can be seen in Figure 4.67, which show 

averaged (rms averaging time of 0.004 s) signal spraying through a slit alongside inter-

pass background before and after filtering. The 100 Hz periodicity is clearly visible in 

the filtered signal and filtering breaks down the periodicity and reduces the rms noise by 

a factor of about 3 whilst only reducing the signal by a factor of about 0.8 (i.e. about a 

factor of 2.5 improvement in signal-to-noise ratio, SNR).  
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Figure 4.65 AE signal structure (amplitude and frequency) for 2 seconds noise record 
during HVOF WC-10%Co-4%Cr spraying: (a) spraying with flame and powder 
particles not directed at the sample (b) spraying with flame only onto the sample (no 
powder), and (c) spraying with flame only not directed at the sample. 
 

 

 

 

 

 

 



 140

RMS signal Frequency spectrum 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

-4 powderbesidesample010000.bin

Time (s)

R
M

S
 a

m
pl

itu
de

 (
V

)

 
0 50 100 150 200 250

0

1

2

3

4

5

6

7
x 10

-8 powderbesidesample010000.bin

Frequency (Hz)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

 
Figure 4.66 RMS signal structure (amplitude and frequency) for 2 second noise record 
during HVOF WC-10%Co-4%Cr spraying with flame and powder particles not directed 
at the sample (from Figure 4.65a) 
 

(a) Before filtering (b) After high-pass filtering at 200 kHz 
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Figure 4.67 AE signal recorded during HVOF WC-10%Co-4%Cr full spraying (both 
flame and powder) onto substrate through slit-A (3 mm × 10 mm) at 500 mm sec-1: (a) 
RMS signal before filtering, and (b) RMS signal after high-pass filtering at 200 kHz.  
 

4.4.2 AE from thermal spraying through slits 

Figure 4.68a shows two examples of high-pass filtered signals for spraying directly 

onto the substrate through a set of slits. Pulses of amplitude around 0.6-0.7 mV (high 

pressure, P1) and 0.3-0.4 mV (low pressure, P2), are clearly visible above an inter-pass 

background of amplitude around 0.2 mV.  
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Figure 4.68 AE signal recorded during HVOF WC-10%Co-4%Cr full spraying (both 
flame and powder) onto substrate through slit-A (3 mm × 10 mm) at 500 mm sec-1, 
(Background section-BGN, PULSATILE sections) 
 

As expected, different temporal structures for the AE were detected when spraying 

through slits of different size, the example of slit-A (3 mm wide) is being shown in 

Figure 4.68a. Every pulse in the AE signal corresponds to the position of a slit, there 

being 14 pulses per traverse of the specimen. Because the record length is 2 seconds 

(i.e. 2 layers at 500 mm sec-1 gun speed), the second group of pulses is associated with 

the return of the gun on its subsequent traverse, the gap between the two groups being 

associated with the slit offset distance of 150 mm. Each pulse also shows a gradual 

increase in amplitude followed by a fall associated with the passage of the circular spray 

spot across the slit. Figure 4.68a (column ii) also shows that the AE amplitude 

BGN-2 BGN-1 

PULSATILE-2 PULSATILE-1 

BGN-1 

PULSATILE-1 PULSATILE-2 

Slit passing frequency = 15 Hz 
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frequency = 12 Hz 
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decreases by almost half when spraying across the same 14 slits if the pressure is 

reduced by 25%. Figure 4.68b shows the corresponding rms signals (10000-point 

average) and Figure 4.68c shows the slit-passing frequency determined from the 

pulsatile sections.  

 

4.4.3 Correlation between process parameters and signal-to-noise ratio 

Varying the gun transverse speed should alter the sprayed particle flux per unit area 

(given slit width) landing on to the substrate, and increasing the slit width should 

increase the total flux landing on the substrate in one pass. In order to examine the 

strength of the high-pass filtered signals and its variation with process parameters, the 

signal-to-noise ratio (SNR) was calculated using equation: 

pulsatile

pulsatile noise pulsatile

RMS
SNR

RMS RMS+

=
−

, where RMSpulsatile and RMSpulsatile+noise correspond 

to RMS of slit-passing sequences and overall signal, respectively. The SNR shown in 

Figure 4.69 plotted against slit width for each of the process parameters. As expected, 

the SNR increases with increase in the width of the slit, spraying pressure and decreases 

with increasing gun transverse speed.  
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Figure 4.69 Signal-to-noise ratio against slit width for varying speed and pressure 
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4.5 Summary of the experimental test results 

4.5.1 Fully instrumented indentation of materials 

Force-displacement profiles are essentially bilinear with two characteristic slopes 

separated by a distinct arrest for all loads above 98 N. Comparison of experimental and 

geometrical indentation depths is useful in identifying the material accommodation 

mechanism (i.e. ‘piling-up’ or ‘sinking in’). The force-displacement curve indicates 

three distinct loading stages (I, II and III) and the stage III mechanical energy increases 

with loads. Plastic deformation in copper and aluminium produced little or no AE, 

whereas hardened steel and thermally sprayed ceramic coatings produced significant 

amounts of AE, which generally increased with total indentation mechanical energy. 

About 66% of the hardened steel indentations but only about 18% of the as-sprayed 

HVOF (JP5000) WC-12%Co indentations exhibited an AE record that could be 

separated into distinct zones. Where zoning was possible the AE corresponding to a 

zone correlated well with the AE associated with a loading stage.  

 

4.5.2 AE signal during Vickers indentation of thermally sprayed coatings 

Those indentations exhibiting clear zones (A, B and C), the AE features in zone C 

becomes the largest part of the AE at higher loads for coating materials such as as-

sprayed HVOF (JetKote) WC-12%Co, APS (Metco, 9MB) Al2O3 (conventional 

powder), HVOF (theta gun) Al2O3 (fine powder). For HIPed HVOF (JetKote) WC-

12%Co, as-sprayed HVOF (JP5000) WC-10%Co-4%Cr coatings, individual AE peaks 

are not evenly spaced and are all of irregular amplitude, and similar characteristics was 

seen for all loads, and no distinct zones were separable at any of the loads. The ratio of 

power in the low frequency band (0-250 kHz) to the power in the high frequency band 

(250-750 kHz) for the whole AE series and for each of the zones largely remains 

constant with loads. HIPed HVOF (JetKote) WC-12%Co as well as as-sprayed HVOF 

(JP5000) WC-10%Co-4%Cr has significantly higher high frequency component than 

other carbide coatings. . 

 

4.5.3 Vickers indentation fracture pattern of thermally sprayed coatings 

The surface fracture pattern of as-sprayed HVOF (JP5000) WC-12%Co, as-sprayed 

HVOF (JetKote) WC-12%Co and HVOF (theta gun) Al2O3 (fine powder) includes 

radial cracks at the four corners, edge cracks, ring cracks and other small cracks around 
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the indentation. In contrast, the HIPed HVOF (JetKote) WC-12% Co and as-sprayed 

HVOF (JP5000) WC-10%Co-4%Cr coatings showed only edge cracks and other small 

cracks around the indentation with no visible radial cracking at any of the loads. The 

surface fracture pattern APS (Metco, 9MB) Al2O3 (conventional powder) coatings 

showed a high degree of crushing fracture and spallation and its pyramidal impression 

was badly discernible in contrast to all the other coated specimens examined. Those 

coating materials with visible surface cracks measured show approximately linear 

increase with loads. Cross-sectional views around indentation for the as-sprayed HVOF 

(JetKote) WC-12%Co coating produced, there appears to be areas with sub-surface 

densification, lateral mesh of cracks and lateral delamination cracks.  

 

4.5.4 AE monitoring during HVOF thermally spraying  

The raw AE spectra of background noise during HVOF (JP5000) WC-10%Co-4%Cr 

thermal spraying show similar characteristics with distinct spikes below the analogue 

filter frequency of 100 kHz, and the characteristic frequency for air borne noise record 

at 100 Hz. The SNR increases with increase in the width of the slit, spraying pressure 

and decreases with increasing gun transverse speed.  
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Chapter 5 

DISCUSSION 

This chapter provides an analysis and interpretation of the experimental results covering 

AE based monitoring of the indentation behaviour of coatings and of the thermal 

spraying process. The foregoing chapter has established the key features of the AE 

record and the observed post-test cracking patterns and this chapter is mainly concerned 

with assessing the extent to which AE can be used as a more convenient measure of 

mechanical behaviour and fracture toughness of coatings than conventional means. It 

starts with discussing the interaction of the Vickers indenter with the materials studied 

and the information that this generates about mechanical properties. Next, the place of 

AE in monitoring the indentation process is discussed. Finally, the role of AE 

monitoring the quality of coatings during the spraying process is assessed.  

 

5.1 Vickers indentation behaviour and fracture toughness 

This section is confined to assessing the extent to which the indentation residual 

impression can be used as a conventional and alternative means of fracture toughness 

measurement of coatings both of which techniques which rely heavily upon 

metallographic assessment. It is clear from the surface metallographic evidence and also 

the comparison between measured and geometrical depth (Section 4.1) that piling-up is 

the dominant accommodation mechanism at all indentation loads for copper and 

aluminium whereas sinking-in is the dominant process for thermal sprayed ceramic 

coatings. The hardened steel sample occupies a position between the two extremes. In 

the most brittle materials, accommodation is by crumbling of the surface to the extent 

that cracking cannot be entirely be quantified by metallographic means.  

 

These findings are summarised in Figure 5.1. Clearly, in the materials studied, the 

cracking behaviour is generally much more complex than is assumed for either the 

classical models of Palmqvist (Nihara [8]) or median (Lawn and Fuller [9]) cracking. 

Figure 5.2 summarises the behaviour of the materials studied under indentation, along 

with the metallographic observations and literature values of the fracture toughness and 

also the measured hardness. Clearly, there is no simple relationship between hardness 

and cracking pattern, although the amount of cracking is probably related to toughness 
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and its distribution depends both on toughness and homogeneity. In the hard, multi-

phase materials, inhomogeneity means that the areas of highest fracture toughness do 

not always correspond to the areas where cracking occurs and the size and distribution 

of the phases, their respective K1c values, and the existence of brittle surfaces (e.g. splat 

boundaries) will all influence the cracking pattern.  

 

Figure 5.1 Category of Vickers indentation residual impressions 

In the high-carbon steel, the carbides are much harder than the tempered martensitic 

matrix so that any plastic deformation gets concentrated in the matrix and is impeded by 

the carbides [152], leading to an accommodation mechanism including plastic 

deformation and carbide cracking [111]. The details of this mechanism are not visible at 

the magnifications used in this work, although some evidence of cracking at the carbide-

matrix interface is visible for some of the larger particles (e.g. Figure 4.1). Since no 

macro cracks (other than those referred above) were visible on the surface around the 

indentation edges or corners, it is supposed that the very fine distribution of the brittle 

phase leads to generate micro-cracking in the areas of highest tensile stress. Since the 

stress is tensile over the entire indentation edge (Section 2.1), and the maximum 

principal stress at the indentation corner is tensile, it is expected that micro-cracking 

will be present in these areas.  
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Figure 5.2 Summary of metallographic observations and relevant mechanical properties  
 

Based on the surface and cross-sectional microscopic observations of the indentations 

on the various coatings (Chapter 4), the probable evolution of cracking during an 

indentation can be summarised in Figure 5.3. It is reasonable to expect that the finer 

surface cracking patterns at higher loads are representative of the early stages of 

cracking at heavier loads. Taking this information into account allows the identification 

of tensile cracking of edges and corners to as the major mechanism in the WC-Co and 
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WC-Co-Cr coatings with varying degrees of inter-splat cracking at its most significant 

in the APS Al2O3.  

 

Figure 5.3 Schematic diagram showing development of an indentation impression in 
ceramic coatings (top: sectional view, bottom: plan view).  
 

As categorized above (Figure 5.1), the Vickers indentations of coatings fracture 

differently and it is by no means certain that the classical approach (Figure 2.9 and 

Section 3.6.1) of using radial crack length to deduce fracture toughness measurement 

will be valid when some (or all) of the cracking is distributed in relatively short edge 

cracks. Figure 5.4a shows the basis of the classical approach to indentation fracture 
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toughness measurement. In this approach, one of the two assumptions is made about the 

sub-surface shape of radial cracks. In the first of these (Nihara [8]), the length of each 

radial crack is taken to be visible length, l, and the depth, h, is assumed to be 

proportional to the impression depth. This ultimately leads to a relationship between 

fracture toughness, crack size, load and impression size,











=

a

pc
la

P
kK1 . In the second 

approach (Lawn and Fuller [9]), the radial cracks are assumed to form part of a single 

crack whose length (2c) includes the impression diagonal and where depth (D) is half 

the length. This leads to proportionality, 




=
2/31

c

P
kK mc .  

 

Figure 5.4 Schematic diagrams of Vickers indentation residual impression for crack 
prone materials: (a) Plamqvist and half-penny models by Nihara [8] and Lawn and 
Fuller [9], (b) edge crack model  
 
Figure 5.4b shows an extension of the fracture mechanics model for edge cracks. Using 

the classical crack régimes in Vickers indentation fracture tests (Section 2.1.1), the 

average crack-to-indent ratio (la/a around 0.43±0.08 for as-sprayed HVOF/JetKote WC-

12%Co, 0.45±0.08 for as-sprayed HVOF/JP5000 WC-12%Co; 0.88±0.21 for HVOF-

theta gun Al2O3 fine powder), suggests Palmqvist rather than median cracks, and this is 

supported by the absence of sub-surface radial-median cracks in the SEM images of as-

sprayed HVOF (JetKote) WC-12%Co (Section 4.2). It is reasonable to assume that 

l l 2a 
2a 

2c 

Palmqvist cracks 
Median cracks 

Surface radial cracks 

TOP VIEW 

CROSS-SECTION VIEW 

CROSS-SECTION VIEW 
(Edge crack depth, m) 

TOP VIEW 

m 

lyn 

SIDE VIEW  
(Semi-elliptical shaped edge crack) 

D 

h/2 

(a) 
(b) 

‘ l’ and ‘c’ measured using straight line method (classical approach, Figure 2.9) 

Edge cracks 
X1 

X2 

Ratio of semi-elliptic crack 
dimension; m/lyn<<1 

‘ lyn’ measured using profiling method 
(alternative approach, Figure 3.14) 



 150

similar mechanics hold for edge cracks with stress being dependent upon the load and 

penetration depth. Using a similar assumption to the Palmqvist model (i.e. that crack 

depth, m, is proportional to impression size), the toughness can be deduced to be given 

by













=

∑ yn

ec
la

P
kK1 . There is no reason to suppose that pe kk =  but, for combination 

of edge and radial cracks, the relationship between load and total surface crack length 

can still be considered to be an indication of fracture toughness.  

 

Figure 5.5 illustrates the application of this analysis to the coatings studied in this work. 

Column A uses the classical Palmqvist approach and the average radial crack length for 

these coatings which exhibited any radial cracking. Using the classical constant of 

proportionality, 0319.0=pk (e.g. Shetty et al. model [10]), a value of fracture 

toughness can be obtained for the as-sprayed HVOF (JetKote) WC-12%Co and as-

sprayed HVOF (JP5000) WC-12%Co coatings as 8.8±0.5 MPa.m1/2 and 9.1±1.0 

MPa.m1/2, respectively. For the same coating material (WC-12%Co as-sprayed 

HVOF/Diamond Jet METCO), Lima et al. [17] have determined a value of 5.1±0.7 

MPa.m1/2 (Palmqvist based Shetty et al. model [10]) and 4±1 MPa.m1/2 (Palmqvist based 

Nihara model [8]), although it might be noted that their indentations were made on a 

cross-section of the sample (as opposed to on its surface) and the fracture toughness for 

sprayed coatings is known to be anisotropic [15, 17, 156]. Furthermore, Lima et al. [17-

18] have mentioned that the fracture toughness for HVOF as-sprayed WC-Co coatings 

determined using an indentation direction perpendicular to the coating-substrate 

interface is considerably higher than that for indentations parallel to the coating-

substrate interface, thought to be the result of weak bonding (cohesive strength) 

between splats and the orientation of inter-splat boundaries relative to opening stresses. 

Finally, Factor and Roman [35] doubt the validity of indentation tests carried out on 

cross-sections of coatings, because the coating thickness is supported by the metallic 

substrate on one side and by mounting resin on the other, leading to an artificially 

constrained system in comparison with likely actual service loadings. For as-sprayed 

WC-10%Co-4%Cr, Mann et al. [154] observed radial cracks and have reported a value 

of 4-5 MPa.m1/2, although they did not indicate the direction of indentation and what 

fracture model they used.  
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Assuming the Palmqvist model, the fracture toughness for the HVOF-theta gun Al2O3 

(fine powder) coatings studied here was 5.5±0.5 MPa.m1/2. For a similar coating 

material (HVOF Al2O3, powder size unknown), Bolelli et al. [155] have given a value 

of 2.5±0.57 MPa.m1/2, although they did not indicate the direction of indentation and 

what fracture model they used. For APS (Metco 9MB) Al2O3 (conventional powder) 

coating, where a measurement of cK1 was not possible in this work, Bolelli et al. [155] 

have given a value of 2.33±0.36 MPa.m1/2, although, again, powder size, indentation 

direction and fracture model were not specified.  

 

Column B in Figure 5.5 shows the application of a combined radial and edge crack 

model to all of the coatings studied (except the APS Al2O3). The upper plot (a) shows 

the relationship between total surface crack length and total surface edge crack length 

and, as can be seen, the ratio of total:edge varies between unity and about 2. More 

importantly, the plot of La against P yields a straight line from which the fracture 

toughness can be determined. In order for totalk  to be comparable with the value of 

pk for Palmqvist cracks, it is necessary to divide the total crack length by 4 (in order to 

normalise per edge or per corner) and Table 5.1 shows the resulting values of cK1 using 

edge and radial cracks (where these exists) and edge cracks only.  

 

For the coatings on which the classical approach could be used (i.e. those which 

displayed radial cracks), the values of cK1 indicated by the alternative approach are 

generally lower and inclusion (or not) of radial cracks makes little difference to the 

indicative cK1 . The alternative approach does not change the ranking of toughness 

between the three coatings and gives values that are rather more compatible with the 

literature values. Finally, the alternative approach accentuates the toughness difference 

between the two versions of as-sprayed WC-Co, a result which helps to explain the 

differences in AE behaviour (see next section).  

 

For the HIPed HVOF (JetKote) WC-12%Co coating, which can be expected to show 

improved fracture toughness over the as-sprayed coating [32], the absence of radial 

cracks, means that the classical approach cannot be used. However, the alternative 

approach gives a value of 7.4 MPa.m1/2 compared with 4.6-5.2 MPa.m1/2 for the 

equivalent as-sprayed coatings.  
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The difficulty in quantifying typical radial crack lengths in APS Al2O3 coatings has also 

been commented on by Luo et al. [51] and Sharma et al. [157]. However, the results 

shown here indicate that total surface crack length can be used to rank fracture 

toughness in coatings. What now needs to be established is whether AE can be used as a 

more convenient measure of total surface crack length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



 153

 

(A) Crack length indicator-1 
Average surface radial crack length  
(classical approach, Section 3.6.1) 

(B) Crack length indicator-2 
Total surface crack length  

(alternative approach, Section 3.6.2) 

  

0 100 200 300 400 500
0.0

5.0x10-5

1.0x10-4

1.5x10-4

2.0x10-4

2.5x10-4

3.0x10-4

A
ve

ra
g

e 
su

rf
ac

e 
ra

d
ia

l c
ra

ck
 (

l a
),

 m
et

re
s

Indentation load, P (Newton)

 As-sprayed HVOF (JetKote) WC-12Co: la
 As-sprayed HVOF (JP5000) WC-12Co: la
 HVOF (theta gun) Al2O3 (Fine powder): la

 

0 100 200 300 400 500
0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

1.0x10-3

1.2x10-3

1.4x10-3

1.6x10-3

1.8x10-3

2.0x10-3

2.2x10-3

2.4x10-3

T
o

ta
l s

u
rf

ac
e 

cr
ac

k 
le

n
g

th
, L

 (
m

et
re

s)
 &

T
o

ta
l s

u
rf

ac
e 

cr
ac

k 
ex

cl
u

d
in

g
 r

ad
ia

l c
ra

ck
s 

(m
et

re
s)

Indentation load, P (Newton)

 As-sprayed HVOF (JetKote) WC-12Co: L
 HIPed HVOF (JetKote) WC-12Co: L
 HVOF (theta gun) Al2O3 (Fine powder): L
 As-sprayed HVOF (JP5000) WC-12Co: L
 As-sprayed HVOF (JetKote) WC-12Co: excluding radial
 HVOF (theta gun) Al2O3 (Fine powder): excluding radial
 As-sprayed HVOF (JP5000) WC-12Co: excluding radial

 

0 100 200 300 400 500
0.0

5.0x10-7

1.0x10-6

1.5x10-6

2.0x10-6

2.5x10-6

3.0x10-6

3.5x10-6

4.0x10-6

B = 5.98215E-9, R = 0.98574

Y = B * X

R
ad

ia
l c

ra
ck

 le
n

g
th

 in
d

ic
at

o
r

[a
.l a1/

2 ],
 a

 a
n

d
 l a 

in
 m

et
re

s

Indentation load, P (Newton)

 HVOF (theta gun) Al2O3 (Fine powder)

 As-sprayed HVOF (JetKote) WC-12Co
B = 3.49151E-9, R = 0.98792 

B = 3.52199E-9, R = 0.99471
 As-sprayed HVOF (JP5000) WC-12Co

 

0 100 200 300 400 500
0.0

2.0x10-6

4.0x10-6

6.0x10-6

8.0x10-6

1.0x10-5

1.2x10-5

B = 8.61376E-9, R = 0.98399

B = 1.04381E-8, R = 0.99735

B = 1.30475E-8, R = 0.9938

T
o

ta
l s

u
rf

ac
e 

cr
ac

k 
le

n
g

th
 in

d
ic

at
o

r

 [a
.L

1/
2 ], 

a 
an

d
 L

 in
 m

et
re

s

Indentation load, P (Newton)

 As-sprayed HVOF (JetKote) WC-12Co

 HIPed HVOF (JetKote) WC-12Co

Y = B * X

B = 1.90202E-8, R = 0.99161
 HVOF (theta gun) Al2O3 (Fine powder)

 As-sprayed HVOF (JP5000) WC-12Co

 

Figure 5.5 Two approaches in Vickers indentation fracture toughness assessment; 
Column A: crack length indicator-1 (classical approach), and column B: crack length 
indicator-2 (alternative approach)  
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Table 5.1 Summary of classical and alternative approach fracture toughness of coatings  

Materials Classical approach 
(using average surface 
radial crack length) 

K1c (MPa.m1/2) 

 Alternative approach 
(using total surface crack 

length) 
K1c (MPa.m1/2) 

Alternative approach 
(using total surface crack 

length excluding total surface 
radial cracks) 
K1c (MPa.m1/2) 

As-sprayed HVOF 
(JetKote) WC-12%Co 

8.81±0.47 4.6±0.3 5.2±0.3 

As-sprayed HVOF 
(JP5000) WC-12%Co 

9.07±1.02 7.1±0.1 7.4±0.5 

HIPed HVOF (JetKote) 
WC-12%Co 

No radial cracks 7.4±0.2 7.4±0.2 

APS (Metco, 9MB) Al2O3 

(conventional powder) 
Cracks not measureable Cracks not measureable Cracks not measureable 

HVOF (theta gun) Al2O3 

(fine powder) 
5.50±0.53 

 

3.4±0.1 4.3±0.1 

 

5.2 AE based crack and fracture toughness measurement 

As was seen in Section 5.1, the total surface crack length provides a ranking of fracture 

toughness for all of the materials in which a measure of crack length can be obtained at 

the micrscopical resolution chosen. As cracking becomes more distributed into smaller 

and smaller units, measurement of total crack length rapidly becomes impractible. 

Furthermore, the measurement of surface cracking patterns at the end of a test is not 

necessarily indicative of all of the cracking, particularly as the modes become more 

complex. Therefore, this section is confined to assessing the extent to which AE can be 

used as a more convenient measure of fracture toughness than the classical and 

alternative crack-length based approaches discussed above.  

 

The fully instrumented indentation tests clearly helped in associating the AE events 

with the spatial location of the indenter. AE events may or may not be focussed onto 

particular parts of the indentation, but a systematic investigation using load-based 

staging and AE-based zoning criteria indicate two types of AE time evolution; where no 

clear zones can be identified and where clear zones can be identified. When zones are 

identifiable, these can be mapped onto the load-based stages, although the presence of 

stages does not necessarily indicate the presence of zones.  

 

Table 5.2 summarises the percentage appearance of zones for each of the materials 

investigated. For the cases where cracking can be measured, it appears that zoning is 

associated with a large total crack length and the appearance of radial cracks. The fact 

that zoning also appears in the two samples where the crack length could not be 
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measured suggests that it is the presence of a significant amount of cracking that leads 

to zoning of the AE. This is consistent with cracking being a discontinuous 

accommodation process, unlike plastic deformation which is more continuous, and is 

also consistent with the literature on homogeneous materials [e.g. 77-81] where the 

radial cracking is seen to be discontinuous and that it leads to burst-type AE at 

particular critical loads.  

 

Table 5.2 Summary of qualitative and quantitative indentation category 

Materials 
 

Indentation 
residual impression 

category & main 
cracking type  

(ref. Figure 5.1) 
 (Qualitative) 

Statistics showing 
% of indentation 
with distinct AE 

zone A, B, C  
(Ref. chapter 4) 

Prevalence of radial 
cracking  

(slope of line in m/N, 
ref. Figure 5.5a, 

column A) 

Prevalence of edge 
cracking  

 (slope of line in 
m/N, ref. Figure 
5.5a, column B) 

Prevalence of total  
(slope of line in 
m/N, ref. Figure 
5.5a, column B) 

Hardened steel  Category 2 
Not measurable 

33/50 = 66% Not measurable Not measurable Not measurable 

WC-12%Co (as-
sprayed 
HVOF/JP5000) 

Category 4 
Radial & edge 9/50 = 18% 2.04×10-7 

(3rd largest) 
1.18×10-6 

 (3rd largest) 
1.80×10-6  

(3rd largest) 

WC-12%Co (as-
sprayed 
HVOF/JetKote) 

Category 4 
Radial & edge 43/50 = 86% 2.60×10-7 

 (2nd largest) 
2.19×10-6 

(2nd largest) 
2.79×10-6 

(2nd largest) 

WC-12%Co (HIPed 
HVOF/JetKote) 

Category 3 
Edge only 

0/50 = 0% None 1.32×10-6 
(4th largest) 

1.32×10-6 
(4th largest ) 

WC-10%Co-4%Cr 
(as-sprayed 
HVOF/JP5000) 

Category 3 
Edge only 0/6 = 0% None Not measured Not measured 

Conventional Al2O3 
(APS/Metco, 9MB)  

Category 5 
Spallation 32/45 = 71% Not measurable Not measurable Not measurable 

Fine powder Al2O3 
(HVOF/theta gun)  

Category 4 
Radial & edge 

39/45 = 86% 4.09×10-7 
 (1st largest) 

2.48×10-6 
(1st largest) 

4.12×10-6  
(1st largest ) 

 

Of the records that exhibited AE zoning, Figure 5.6 shows that zone A always 

represents a small proportion of the total AE energy (also of the other measures, ring-

down count and event duration), and that zone B contains the highest proportion at low 

loads, with zone C containing the highest at moderate to higher loads. The fact that zone 

C shows the biggest change with load would suggest that cracking during indentation is 

better discriminated using zone C, although zone B often contains the highest intensity 

of cracking events. The zoning of AE signals, and the associated energy (Figure 5.6) 

might be useful in understanding the evolution and nature of cracking events but the 

fact that it has been observed in less than half of the records examined makes it difficult 

to form general conclusions.  
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Figure 5.6 Comparison of zone AE energy: (a) zone A, (b) zone B and (c) zone C 
 

The fracture energy, Gc, associated with a unit area of new fracture surface is given 

by:
2

1c
c

Y

K
G

E
= , where EY is Young’s modulus. It is therefore reasonable to expect that 

cumulative AE energy throughout the indentation is a measure of total crack area 

(a) 

(b) 

(c) 
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produced multiplied by the (constant) value of 
2

1c

Y

K

E
for the material. Figure 5.7 shows 

the total AE energy plotted against total surface crack length for those materials on 

which a measurement could be made, each labelled with the fracture toughness 

determined from the alternative approach (Table 5.1). As can be seen, the lowest 

toughness material shows the lowest slope, but that the ratio of slopes of the two quality 

zones is not in proportion to 
2

1c

Y

K

E
 nor to cK1 . This is almost certainly due to the fact that 

the overall slope of cracks in the Al2O3 is much simpler than in the WC-Co material and 

a far broader range of materials, including some homogeneous ceramics would need to 

be studied to in order to elucidate this fully.  
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Figure 5.7 Quality zone map of coating fracture properties: total surface crack length 
plotted against total AE energy (EY for HVOF Al2O3 = 138 GPa [155], EY for HVOF 
WC-12%Co = 230 GPa [48]) 
 

The above analysis suggests that total AE energy may make a useful proxy measure for 

total crack area for material of a given fracture toughness and Young’s modulus. 

Supposing that crack depths are approximately constant, AE could then be supposed to 

give a measure of total surface crack length, so that the equation given in Figure 5.5, 

column B can be modified to1c AE

P
K k

a E

 =  
 

 (Section 3.6.2). Figure 5.8 shows plots 

of a E against indentation load along with the associated best-fit straight lines and 

 K1c ~ 4.6±±±±0.3 
MPa.m1/2 

 

 K1c ~ 3.4±±±±0.1 
MPa.m1/2 

 

 K1c ~ 7.1±±±±0.1 
MPa.m1/2 

 

 K1c ~ 7.4±±±±0.2 
MPa.m1/2 

 

 K1c/EY ~ 9.2×10-5 
 

 K1c/EY ~ 8.7×10-5 
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Table 5.3 shows the values of the slopes and their correlation coefficients alongside the 

corresponding values for the AE ring-down count. The fact that these correlations are 

reasonably good indicates that the AE approach can be calibrated against the crack-

length based assessment to allow an assessment of the toughness for the materials where 

an AE record is available and crack length could not be measured. Figure 5.9 shows 

toughness values from Table 5.1 (total surface crack length) plotted against the inverse 

of the slope of the AE ring-down count or AE energy, 1
RB and 1

EB , along with the 

associated best-fit calibration (notably higher for AE energy) between 1cK and ring-

down count and energy, respectively. For the Al2O3 material, a different calibration was 

expected and this was achieved by simple proportion. Table 5.4 summarises the results, 

indicating the values of 1cK determined from crack length (where this was possible) and 

from AE ring-down count or AE energy. The values of 1cK determined from AE energy 

show the expected ranking of the fracture toughness of the materials. Those from AE 

ring-down count show a similar ranking.  
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Figure 5.8 AE based (using modified generic equation) indentation fracture toughness 
estimation (KAE) using AE energy (E): (a) WC-Co and (b) Al2O3 coatings [lower the 
slope of best fit line, higher the fracture toughness] 
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Table 5.3 AE based fracture toughness measurement of materials 

Materials Slope B when X = 
R (ring-down) 

Correlation 
coefficient (r) 

 Slope B when X 
= E (energy) 

Correlation 
coefficient (r) 

Carbide coatings 
As-sprayed HVOF (JetKote) 
WC-12%Co 

8.07x10-5 0.9910 3.49x10-10 0.9743 

As-sprayed HVOF (JP5000) WC-
12%Co 

8.57x10-5 0.9570 1.41x10-10 0.8887 

As-sprayed HVOF (JP5000) WC-
10%Co-4%Cr (100 mm/s, P1); 
As-sprayed HVOF (JP5000) WC-
10%Co-4%Cr (200 mm/s, P2) 

6.33x10-5 
 
4.57x10-5 

0.9656 
 
0.8262 

1.94x10-10 
 
1.15x10-10 

0.9177 
 
0.9757 

HIPed HVOF (JetKote) WC-
12%Co 

3.81x10-5 0.8982 

 

1.04x10-10 0.8891 

Ceramic coatings 
APS (Metco, 9MB) Al2O3 

(conventional powder) 
1.17x10-4 0.9501 2.30x10-10 0.7805 

HVOF (theta gun) Al2O3 (fine 
powder) 

6.94x10-5 0.8435 

 

1.82x10-10 0.8509 

Metal 
Hardened steel 8.65x10-5 0.9739  1.77x10-10 0.7965 
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Figure 5.9 Calibration for WC-Co coatings: Fracture toughness values plotted against 
the inverse of the slope of the (a) AE energy, (b) AE ring-down count  
 

Table 5.4 AE based fracture toughness measurement of thermally sprayed coatings  

Material K1c (MPa.m1/2) 
when X = R  

K1c (MPa.m1/2) 
when X = E 

K1c (MPa.m1/2) 
when X = L 

As-sprayed HVOF (JetKote) WC-12%Co 3.72 2.58 4.6 

As-sprayed HVOF (JP5000) WC-12%Co 3.50 6.38 7.1 
As-sprayed HVOF (JP5000) WC-10%Co-
4%Cr (100 mm/s, P1); 
As-sprayed HVOF (JP5000) WC-10%Co-
4%Cr (200 mm/s, P2) 

4.74 
 
6.56 

4.64 
 
7.83 
 

- 
 
- 

HIPed HVOF (JetKote) WC-12%Co 7.87 8.65 7.4 

APS (Metco, 9MB) Al2O3 (conv. powder) 2.02 2.62 - 

HVOF (theta gun) Al2O3 (fine powder) 3.40 3.30 3.4 

 

As pointed out in the literature review, a number of authors [e.g. 79] claim that the AE 

frequency spectrum can be used to distinguish between cracking and deformation 
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during indentation. In the current work, the ratio of power in the low frequency band (0-

250 kHz) to the power in the high frequency band (250-750 kHz) did not show any 

pattern between loads. The HIPed HVOF-JetKote WC-12%Co and, to a lesser extent, 

the as-sprayed HVOF (JP5000) WC-10%Co-4%Cr coating, exhibited stronger high 

frequency components than other coatings (Figure 5.10), and it may not be coincidence 

that these two coatings did not contain and radial cracks, nor did they AE show any 

zoning. This area clearly needs further work before any conclusions can be drawn.  
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Figure 5.10 Comparison of frequency power ratio for all coating materials 
 

5.3 AE based thermal spray process monitoring 

This section discusses an AE-based approach to monitoring coating formation during a 

continuous thermal spraying process. As was seen in Chapter 4 (Section 4.4), the slit 

experiments have demonstrated that spray-substrate interaction generates measurable 

AE, although it is by no means certain that individual particle impacts will be 

observable either by the time- or amplitude-resolution of the method. It is therefore of 

interest to develop a model (Appendix G) describing the approaching particle density, 

size and velocity distributions as an aid to analysing the data from slit and slit-free 

experiments.  

 

A cross-section of the spray can be assumed to contain a constant density of particles of 

constant size, travelling at constant velocity towards the surface and the total particle 
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kinetic energy passing through a slit determined as a function of time. Based on these 

assumptions the energy rate,E
•

, associated with the kinetic energy of particles 

impinging on the substrate through the slit can be calculated from a simple kinematic 

model, Appendix G. Using the model, the energy rate is given by:  

( ) ( )21

2
s

powder
A t

E t m V
A

• •  
=  

 
        (5.1) 

where powderm
•

is the powder mass flow rate, V is the average particle speed, A is the 

spray spot area and ( )sA t is a trigonometric function of time given in Appendix G.  

 

A representative AE record is compared with the calculated kinetic energy rate in 

Figure 5.11. In the calculation; the diameter of the spray spot was taken as 10 mm, the 

gun transverse speed 250 mm sec-1, the powder flow rate 80 g min-1 and the velocity of 

sprayed powder particles 800 m sec-1. The length of time taken for the spray gun to pass 

a slit at the speed of 250 mm sec-1 is 0.052 sec. It is clear from Figure 5.11a, that the 

pulse is, in fact, wider than the calculated time, Figure 5.11b. This could be due to 

fanning of the spray, i.e. a non-uniform particle density distribution over a wider spot 

size and/or diffraction effects at the slits.  

 

The AE energy was calculated as the area under the absolute of the signal above 

threshold using Equation 3.1. Since the continuous background noise amplitude was 

present throughout the process at all spraying conditions, an automatic analysis 

threshold level of 15% above the continuous background noise level was chosen to 

define significant AE activity due to coating formation. Figure 5.12 compares the total 

kinetic energy of particle impact with the AE energy through slits of various sizes and 

spray gun transverse speeds, suggesting that, notwithstanding the fanning/diffraction 

effect, the model gives a reasonable approximation to the measured AE energy (i.e. that 

the calculated kinetic energy is proportional to the measured AE energy).  
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Figure 5.11 (a) AE signal at a single slit of width 3mm when HVOF (TAFA JP5000) 
WC-10%Co-4%Cr is sprayed at 250 mm sec-1 gun speed, high pressure, P1, (b) 

calculated kinetic energy rateE
•
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Figure 5.12 Calculated kinetic energy of particle impact plotted against measured AE 
energy with spray gun transverse speed for each slit sizes at high pressure, P1 
 
The use of AE for monitoring the thermal spraying is complicated due to overlapping 

impact signals and noise within the coating chamber [141-144]. Nevertheless, it is 

obvious that the model, with appropriate modifications, will serve as a useful analytical 

aid for continuous in-situ quality monitoring, since the incident impact energy of the 

powder particle helps facilitate the bonding of the coating inter-splat cohesion. The 

complimentary nature of the information available from process monitoring and from 

semi-destructive testing (i.e. indentation) adds a dimension to the use of the technique.  

 

Figure 5.13 shows a record of AE produced in continuous multilayer spraying without 

the use of slits. As can be seen, the AE energy within a layer goes through a maximum 

(circled in Figure 5.13) as the spray spot passes over the sensor position in the middle 

(b) (a) 
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of the back of the sample. As well as this, there is a general increase in AE energy for 

the first three layers which then remains constant as the number of layers builds up and 

this cannot be attributed to changes to sensor sensitivity as the back face of the substrate 

warms up.  
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Figure 5.13 AE energy distribution during 5-layer continuous spraying with no air jet 
cooling (JP5000 HVOF WC-10%Co-4%Cr, lower pressure P2) on a flat 3 mm thick and 
500 mm long mild-steel substrate at 200 mm sec-1 transverse gun speed for a series of 4 
ms record lengths; 0.5 mm maximum coating thickness [2.5 s scanning time per layer] 
 

On the basis of the foregoing, it seems that particle impingement on the substrate 

constitutes a significant source of AE but this would be expected to be around the same 

intensity for each of the passes. The physical difference between the surface with single 

pass and multi-pass spraying is shown in Figure 5.14. The relevant differences are:  

• the substrate is thicker 

• the substrate has a higher temperature 

• the substrate is of a different material 

 

The main source of residual stress during deposition is, qσ , the so-called ‘quenching 

stress’ [158]:  

csmcq ETT )( −≈ ασ          (5.2) 

where cα , mT , sT and cE are the deposit coefficient of thermal expansion, lamella 

melting temperature, substrate temperature and deposit stiffness, respectively. This 

quenching stress could conceivably cause cracking in the layer being deposited which 

would be manifest as AE during the pass. However, this contribution would be expected 

1 2 3 4 5 layer 
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to decrease as the substrate warms up, and is therefore not the explanation for the 

increased AE in multi-layer deposition, seen in Figure 5.13.  

 

 

Figure 5.14 Diagram showing difference in substrate for single pass and multi-pass 
thermal spraying 
 
Bansal et al. [159] have taken a typical value of flame heat flux (1 MW/m2) and 

calculated (amongst other things) the thermal gradient in the substrate during HVOF 

deposition. This calculation suggests that the skin of the substrate is heated significantly 

over the ambient to a depth of around 50 µm. Assuming a similar penetration in the 

current process would mean that thermal mismatch stresses in the substrate associated 

with shock flame heating in the depositing layer would affect most of the immediate 

underlying HVOF layer, but relatively little of any deeper layers. It can therefore 

tentatively be suggested that the additional AE in multi-layer deposition is associated 

with thermal shock of the underlying deposition layers, an effect that might be expected 

to get greater for the first few layers and cease to grow thereafter. It is therefore possible 

that AE monitoring may, as well as providing information on the particle-surface 

encounter mechanism, might also offer some information on the quality of the coating 

through its response to shock heating.  

 

 

 

Layer being deposited 

Substrate 

Substrate 

3
 m

m
 

0
.1

 m
m

 

Up to 4 
layers, each 

0.1 mm 
thick 

(a) (b) 

 Layer being deposited 
 

3
.1

-3
.4

 m
m

 



 165

Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

In this work two types of tests were conducted, AE monitoring during Vickers 

indentation and during thermal spraying. Of these, the more significant contribution is 

in the understanding of indentation behaviour through analysis of AE measurements for 

which the large body of work cited in the literature review provided a sound technical 

basis. Although the work on AE monitoring during thermal spraying is of a preliminary 

nature, a novel approach using AE sensor to monitor thermal spray process has been 

demonstrated. The main conclusions are given below, followed by recommendation for 

future work.  

 

6.1 Conclusions 

 

Main conclusions from indentation fracture, crack length and fracture toughness 

• Total surface crack length provides as good an indication of fracture toughness 

as the classical approach based on radial crack length. This provides a way 

forward for determining the fracture toughness of brittle materials where no 

radial cracks are developed.  

• An alternative approach for determining fracture toughness for coating materials 

has been developed. Using this approach, the following values are suggested:  

3.4±0.1 MPa.m1/2 for HVOF (theta-gun) Al2O3 

4.6±0.3 MPa.m1/2 for as-sprayed HVOF (JetKote) WC-12%Co 

7.1±0.1 MPa.m1/2 for as-sprayed HVOF (JP5000) WC-12%Co 

7.4±0.2 MPa.m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings 

  

These figures are in good agreement with the few available published values.  

 

Main conclusions from fully instrumented Vickers indentation tests  

• Plastic deformation in the form of ‘piling-up’ residual impressions in soft metals 

(copper and aluminium) produced little or no AE, whereas brittle fracture in the 

form of ‘sinking-in’ residual impressions in hardened steel and as-sprayed 

HVOF (JP5000) WC-12%Co coatings produced significant AE.  
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• AE may or may not be focussed onto particular stages of the indentation as 

defined by the force-displacement record. The brittle hardened steel showed a 

higher degree of zoning of AE than did the WC-12%Co coatings and this is 

attributed to its finer microstructure and the distribution of hard particles in a 

more ductile matrix.  

 

Main conclusions from AE based crack and fracture toughness measurement 

• All of the AE features can be used as a surrogate for total surface crack length 

and total surface crack length (using profiling method at fixed resolution) offers 

an improved measure of crack prevalence than traditional approaches for the 

coatings studied.  

• For materials where cracks are not visible at the fixed resolution chosen (e.g. 

APS Al2O3 coatings and hardened steel), a full measure of crack prevalence 

would require fractal dimension analysis which is time consuming offering a 

motivation for AE-based crack monitoring.  

• By using AE features (notably energy) as a surrogate for total surface crack 

length the system can be calibrated against the toughness values obtained from 

crack lengths, giving the following AE based fracture toughness values:  

3.3 MPa.m1/2 for HVOF (theta-gun) Al2O3 

2.6 MPa.m1/2 for APS (Metco, 9MB) Al2O3 

2.5 MPa.m1/2 for as-sprayed HVOF (JetKote) WC-12%Co 

6.3 MPa.m1/2 for as-sprayed HVOF (JP5000) WC-12%Co 

4.6 MPa.m1/2 for as-sprayed HVOF (JP5000) WC-10%Co-4%Cr, 100 mm/s, P1 

7.8 MPa.m1/2 for as-sprayed HVOF (JP5000) WC-10%Co-4%Cr, 100 mm/s, P2 

8.6 MPa.m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings 

• The ratio of low to high AE frequency bands does not show any pattern with 

indentation load, although it is possible that AE frequency changes with the type 

of cracking present, as claimed by other researchers.  

 

Main conclusions from the AE monitored HVOF thermal spray process 

• For spraying through slits, the measured AE energy is correlated with the 

calculated kinetic energy of particles, showing that the signal associated with 

particle impingement can be seen in the face of considerable airborne noise.  

• For continuous multi-layer spraying the general level of AE energy increases as 

the number of layers (and sample temperature) increases. A feature which can be 
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drawn that the difference is due to cracking or delamination in underlying layers, 

which may give an additional measure of coating quality.  

 

6.2 Future work recommendations 

 

Future work should be aimed at refining the investigations carried out during this 

project 

• Whereas, the calibration approach relating surface crack size to AE energy was 

successful, its validation would benefit from a detailed study including surface 

and sub-surface examination at a variety of magnifications in a set of model 

materials with closely-controlled microstructures.  

• A more closely-controlled indentation process, including AE monitoring may 

help to resolve some of the anomalies between load stages and AE zones.  

• The work on thermal spray monitoring is in its infancy and more experiments on 

spraying through masks where the number of particles landing is limited, 

coupled with detailed metallography of the surface will help to establish more 

clearly the relationship between AE signature and splat formation.  
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Appendix A 

Appendix A: AE systems used to study indentation 

Table A.1 AE system used to study indentations on ceramics  
 

AE data acquisition system AE sensor No. of sensor(s), Sensor 
location 

Sensor frequency 
band / *Resonant 

Gain: Pre-
amp/*SCU 

Ref. 

Piezoelectric transducer (Brüel 
& Kjaer) 

Piezoelectric 
 

1, indentation surface 
 

0-0.2 MHz/*200-300 
kHz 

40 dB/*0/50 dB 
 

[71] 

Piezoelectric transducer (Brüel 
& Kjaer) 

Piezoelectric 
 

1, indentation surface 
 

210 kHz 
 

40 dB/*20 dB 
 

[74] 

- AE sensors 
 

2, near sample but on base 
plate 

- - [75] 

D/E 3000 system - 1, indentation surface - - [76] 
HIFREACE / Tektronix DSA 
601A 
 

Broadband 
ultrasonic point 
focus transducer 
of Panametrics 
V390, V3194 

1, opposite to indentation 
surface 
 

50 & 100 MHz 
 

- [77] 

LOCAN 320 system from PAC PZT, 
AE sensor 

1, indentation surface *150 kHz 40 dB [78] 

AE system from NF Corp. 
 

Piezoelectric 
 

1, opposite to indentation 
surface 

0-1 MHz/*140 kHz 
 

40 dB/*60 dB 
 

[79] 

Spartan AT 
 

Piezoelectric 
 

1, indentation surface 
 

0.1-1.0 MHz/*125 kHz 40/60 dB 
 

[80] 

AE Fracture Wave Detector 
(FWD, Model FM-1) 
 

Broadband 
transducer 
(DWC B1025) 

- - 40 dB 
 

[81] 

Locan 320 system from PAC - - - - [82] 

 

Table A.2 AE system used to study indentations on crystals 
 

AE data acquisition system AE sensor No. of sensor(s), Sensor 
location 

Sensor 
frequency 
band / 
*Resonant 

Gain: Pre-
amp/*SCU 

Ref. 

HIFREACE / Tektronix DSA 
601A 
 

Broadband 
ultrasonic point 
focus transducer of 
Panametrics V390, 
V3194 

1, opposite to indentation 
surface 
 

50 & 100 MHz 
 

- [77] 

Locan 320 system from PAC Piezoelectric 
 

1, indentation surface 
 

- - [83] 

AECL105, UK /Digital 
Oscilloscope 
 

AE sensor, M304A 
(Fuji Ceramics) 

1, opposite to indentation 
surface 
 

10 kHz-1 
MHz/*300 kHz 
 

40 dB/*60-75 dB 
 

[84] 

Mistras 2001 AEDSP-32/16, 
PAC 

- - - - [85] 

- Piezoelectric  1, indentation surface 
 

100 kHz-1 
MHz/*160 kHz 

- [86] 

Locan 320 system, PAC 
 

Piezoelectric 
 

1, indentation surface 
 

3 kHz-1.2 MHz 
 

- [89] 

Tektronics digital storage 
scope 

Piezoelectric 
 

1, opposite to indentation 
surface 

10 kHz-1 MHz 
 

*250 times 
amplitude 

[90] 

TriboAE system, Hysitron 
Inc. 

Hysitron AE 
indenter sensor 

1, indentation surface 
 

0.1-1.1 MHz - [91-93] 

AMSY-5 
 

AE sensor 1, underneath the specimen 100-400 kHz - [94] 

Tektronics digital storage 
scope 

PAC S9229 
 

1, indenter is a sensor 
 

625 kHz 
 

100/1000 dB [95] 
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Table A.3 AE system used to study indentations on glass 
 

AE data acquisition system AE sensor No. of sensor(s), 
Sensor 
location 

Sensor frequency 
band / *Resonant 

Gain: Pre-
amp/*SCU 

Ref. 

AE Fracture Wave Detector 
(FWD, Model FM-1) 

Broadband 
transducer (DWC 
B1025) 

- - 40 dB 
 

[81] 

AMSY-5 
 

AE sensor 1, underneath the 
specimen 

100-400 kHz - [94] 

- Broadband sensor 
 

1, opposite to 
indentation surface 

20 kHz-1 MHz 
 

80 dB 
 

[96] 

- AE sensors 
 

2, near sample but 
on base plate 

- - [97] 

AET-5000 Piezoelectric 1, indentation 
surface 

125-250/*175 
kHz 

*80 dB [98] 

Digitizing Oscilloscope, HP 
model no. 54501A 
 

Piezoelectric 
translator (model: 
8152A2, Kistler, 
Amherst, NY) 

1, indenter mounted 
in a fixture on the 
end of PZT  
 

100-900/*200 
kHz 
 

- [99] 

- Broadband sensor 
 

8, opposite to 
indentation surface 

10 kHz-2 MHz 
 

60 dB  
 

[100] 

- Broadband sensor 
 

8, opposite to 
indentation surface 

- 60 dB 
 

[101] 

 

Table A.4 AE system used to study indentations on composites 
 

AE data acquisition system AE sensor No. of sensor(s), Sensor 
location 

Sensor frequency 
band / *Resonant 

Gain: Pre-
amp/*SCU 

Ref. 

SPARTAN AT 
 

Piezoelectric 
 

1, indentation surface 
 

0.1-1.0 MHz/*125 
kHz 

40/60 dB; *30 dB  [80] 

AE Fracture Wave Detector 
(FWD, Model FM-1) 

Broadband 
transducer 
(DWC 
B1025) 

- - 40 dB  
 

[81] 

LOCAN 320 system from 
PAC 

Piezoelectric 
 

1, indentation surface 
 

3 kHz-1.2 MHz 
 

*0/60 dB  
 

[89] 

In-house built AE apparatus, 
Univ. of Surrey 

- - - - [102] 

- AE 
Piezoelectric 
sensor 

1, sensor mounted on 
indenter mandrel 

- - [103] 

SPARTAN-AT, PAC 
 

R15, PAC  
 

1, indentation surface 
 

- *40 dB  
 

[104-105] 

MD-1100S AE system 
 

AE sensors 
 

1, sensor mounted on 
indenter 

- - [106] 

PAC PCI-DSP4 AE system  Piezoelectric 
PAC R15 
sensor 

4, indentation surfaces 
 

- - [107] 

AET-5000 PAC type 
WD 

1, indentation surface 100-1000 kHz 60 dB/*0/40 dB  [108] 

LOCAN AT6  
 

- 1, opposite to 
indentation surface 

50-1000 kHz 
 

40 dB, *20 dB 
 

[109] 

- - 1, opposite to 
indentation surface 

- - [110] 

 
Table A.5 AE system used to study indentations on metals and metallic foams 

 
AE data acquisition 
system 

AE sensor No. of sensor(s), Sensor 
location 

Sensor frequency 
band / *Resonant 

Gain: Pre-
amp/*SCU 

Ref. 

System calibration by 
Frank Breckenridge  
 

Piezoelectric  
 

1, opposite to 
indentation surface 
 

- *76 dB 
 

[112] 

DAKEL-XEDO-3 AE 
system 

LB10A AE 
transducer 
 

1, indentation surface 
 

100-600 kHz 
 

*94, *90 & 
*70 dB 
 

[113-114] 
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Table A.6 AE system used to study indentations on thin solid films 
 

AE data acquisition 
system 

AE sensor No. of sensor(s), Sensor 
location 

Sensor frequency 
band / *Resonant 

Gain: Pre-amp/*SCU Ref. 

TriboAE system, 
Hysitron Inc. 

Hysitron AE 
indenter sensor 

1, indenter is a sensor 
 

100-2000 kHz/*130 
kHz 

- [70] 

ASCO: AE system 
from Vallen 

Piezoelectric 
 

- - - [72] 

Tektronics digital 
storage scope 

Piezoelectric 
 

1, opposite to 
indentation surface 

10 kHz-1 MHz  
 

*250 times amplitude [90] 

AECL105, UK 
/Digital Oscilloscope 
 

AE sensor, 
M304A (Fuji 
Ceramics) 

1, opposite to 
indentation surface 
 

10 kHz-1 MHz/*300 
kHz  
 

40 dB/*60-75-100 dB 
 

 [84] 
[115] 
 

HP 54501A 
Digitizing 
Oscilloscope 
 

Piezoelectric 
translator : 
Kistler 
8152A2 

1, sensor mounted to 
moveable cross-head 
 

100-900 kHz/*200 
kHz  
 

*40 dB 
 

[116] 

Vallen AMSY4 AE 
system  

AE sensor 
 

- - - [117] 

Compu Scope, 
CS12100 Gage 
Applied Science 

Piezoelectric, 
PAC, Type 
PICO 

4, mounted on four end 
surfaces 

- 60 dB 
 

[118] 

GAGE Applied, Inc. 
 

PICO: PAC 
 

4, opposite to 
indentation surface 

*450 kHz 
 

60 dB 
 

[120] 

NanoScope III, 
Digital Instruments 
Co. 
 

Bandwidth AE 
sensor 
 

1, indenter mounted in a 
special holder with a 
miniature AE sensor 

0.1-2 MHz 
 

*60 dB 
 

[122] 

AE analyzer AE sensor 1, indenter is a sensor - - 123] 
Piezoelectric 
transducer (Brüel & 
Kjaer, Denmark) 

- - - - [125] 
[124] 

ANSY 4, AE system 
from Vallen 
 

Broad band 
piezoelectric, 
DECI / SE 
150-M 

1, sensor on indenter 
shaft  
 

*160 kHz 
 

40 dB 
 

[128] 

 
Table A.7 AE system used to study indentations on thermal spray coating 

 
AE data acquisition 
system 

AE sensor No. of sensor(s), Sensor 
location 

Sensor frequency 
band / *Resonant 

Gain: Pre-
amp/*SCU 

Ref. 

AC 175L AETC Piezoelectric 1, indentation surface  - *94 dB [27] 
AET-5000  
 

Broad band piezoelectric 1, opposite to 
indentation surface  

- - [28] 
 

AET-5500 Piezoelectric PICO transducer, PAC 1, indentation surface - - [29] 
AET-5500 
 

- 1, indentation surface 
 

10 kHz-1 MHz / 
*250 kHz 

*40 dB 
 

[30] 
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Appendix B 

Appendix B: Thermal spray process parameters 

Table B.1 Thermal spray process parameters (Vickers indentation test specimens) 
 

Thermal Spraying Gun Industrially optimized spray conditions and powders 
JP5000 HVOF 
(as-sprayed) [32] 

Spray material WC-12%Co (sintered and crushed) 

 Oxygen flow 940 l/min 

 Powder size 15-50 µm 

 Kerosene flow 0.37 l/min 
 Spray distance 380 mm 
JetKote HVOF 
( as-sprayed & HIPed)  

Spray material WC-12%Co 

 Spray conditions Coatings studied were industrially optimized by 
Deloro Stellite, UK. Spraying process parameters 
are not available due to propriety reason.  

9-MB Metco Air Plasma 
Spraying (APS) [160] 

Spray material Conventional alumina (Al2O3 > 98.0%) 

 Powder size 10-45 µm 
 Arc current 500 A 
 Arc voltage 70 V 
 Primary gas 37.6 l/min (Ar) 
 Secondary gas 7.1 l/min (H2) 
 Spray distance 80 mm 
   
Theta-gun High Velocity 
Oxy-Fuel (HVOF) [160] 

Spray material Fine powder alumina (Al2O3 > 98.0%) 

 Powder size 1-5 µm 
 Oxygen flow rate 893 l/min 
 Kerosene flow rate 0.32 l/min 
 Acetylene flow rate 43 l/min 
 Spray distance 150 mm 
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Appendix C 

Appendix C: AE sensor calibration certificate 
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Appendix D 

Appendix D: Thermal spray masking sheet with slits 

 

 

 

 

 

 

 

Slit A:  
3 mm × 10 mm 

Slit B:  
2 mm × 10 mm 

 

Slit C:  
1 mm × 10 mm 

 

Slit D:  
0.5 mm × 10 mm 

 

500 mm 

30
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m
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Spraying gun scanning direction over 14 slits 
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Appendix E 

Appendix E: XRD patterns of thermal spray powders and coatings 
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Figure E.1 XRD pattern of WC-12%Co (JP5000) powder [32] 
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Figure E.2 XRD pattern of as-sprayed HVOF (JP5000) WC-12%Co coatings [32] 
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Figure E.3 XRD pattern of HVOF (JetKote) WC-12%Co powders [32] 
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Figure E.4 XRD pattern of as-sprayed HVOF (JetKote) WC-12%Co coatings [32] 
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Figure E.5 XRD pattern of HIPed HVOF (JetKote) WC-12%Co coatings [32] 
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Figure E.6 XRD pattern of as-sprayed HVOF WC-10%Co-4%Cr (JP5000) coatings 
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Figure E.7 XRD pattern of Al2O3 conventional powders 
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Figure E.8 XRD pattern of the APS (Metco, 9MB) Al2O3 (conventional powder) 
coatings 
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Figure E.9 XRD pattern of Al2O3 fine powders 
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Figure E.10 XRD pattern of as-sprayed HVOF (theta-gun) Al2O3 (fine powder) 
coatings 
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Appendix F 

Appendix F: Dynamic indentation model 

 
 

Figure F.1 A mechanical model of open loop indentation systems after landing the 
specimen surface (under-damped linear vibrations of a one-degree-of-freedom system 
 
An open loop indentation system shown in Figure F.1 has mainly three mechanical 

components. Those components are dashpot, mass and the spring which are arranged in 

series. Damping that produces a damping force proportional to the mass's velocity is 

referred to as viscous damping, and is graphically represented by a dashpot. Mass 

represents the load applied through indenter and spring represents the stiffness of 

material on which the indenter is landing during indentation process. To study the 

displacement and load profile as a function of time, the dynamic response of constant 

dead-weight type macrohardness indentation system has to be determined during 

loading phase of the indenter (i.e. after the indenter lands on the specimen).  

 
The damping forces of these types are proportional to the velocity of the load and act 

opposite to the direction of motion. As the indenter lands on the specimen surface (i.e. 

during loading stage), the velocity of the indenter goes from the approach velocity to 

zero, being decelerated by the ploughing resistance of the material.  

 

The final settling of the indenter can be regarded as a damped system, governed by the 

equation of motion:  

 
)('.)(.)(". tyctyktym −−=         (F1) 

 

Dashpot, c 
Spring, k 

Mass, m y(t) 
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where m is the indentation mass in kilogram, c is a damping constant (characteristic of 

the flow properties of the material in Ns m-1), k is the spring stiffness (characteristic of 

the elastic properties of the material in N m-1) and y(t) is the indenter penetration depth 

into the specimen. Both c and k will depend on the geometrical form of the indenter 

[59]. The equation of motion can be written using the analogy of a simple harmonic 

oscillator:  

0)(.)('...2)(" 2 =++ tytyty nn ββξ        (F2) 

where 
m

k
n =β , 

km

c

2
=ξ  and the characteristic roots are: 

( )12
2,1 −±−= ξξβnr         (F3) 

When 1ξ < , the roots are complex conjugates, ( )2
2,1 1 ξξβ −±−= ir n , and the system 

is said to be underdamped, and the motion contains a harmonic component. 

 

The general solution of the differential equation for the underdamped case is:  

[ ]4 5( ) . ( . ) . ( . )nt
d dy t e C Cos t C Sin tξβ β β−= +       (F4) 

Using the initial conditions:  

0 0( )ty t y= = ; (i.e. displacement of indenter in material at 0=t  is y0)  (F5) 

[ ] 00)( Vty
dt

d
t == ; (i.e. initial velocity of indenter at 0=t  is 0V )   (F6) 








 +
+= − ).(.

..
).(.)( 00

0 tSin
yV

tCosyety d
d

n
d

tn β
β

βξβξβ     (F7) 

which is a sinusoidal of frequency 21 ξββ −= nd , whose amplitude shows a 

characteristic decay time of 
nξβ

1
. Translating this into material terms, the indenter 

would be expected to settle with an oscillation frequency proportional to P-1/2.  
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Appendix G 

Appendix G: Kinematic model of particle impact through slit 

As was seen in Chapter 4 (Section 4.4), the slit experiments have demonstrated that 

spray-substrate interaction generates measurable AE, although it is by no means certain 

that individual particle impacts will be observable either by the time- or amplitude-

resolution of the method. It is therefore of interest to develop a model describing the 

approaching particle density, size and velocity distributions as an aid to analysing the 

data from slit and slit-free experiments. A cross-section of the spray can be assumed to 

contain a constant density of particles of constant size, travelling at constant velocity 

towards the surface and the total particle kinetic energy passing through a slit 

determined as a function of time. A formulation for the effective spraying area through 

a slit and the distribution of kinetic energy of particles landing on the substrate are 

described below.  

 

Figure G.1 illustrates a spray spot of radius, R, passing over a fixed slit at a given 

lateral speed, Vs. In any time interval the increase and decrease in ‘effective area’, of the 

thermal spray spot overlapping the slit determines the number of sprayed particles 

landing on the substrate in the time step.  

 

 
 

Figure G.1 Kinematics of the spray spot scanning a slit 
 

As shown in Figure G.1, the effective area of spray passing through the slit increases 

after the spray spot leading circumference crosses the Edge-1 of the slit until the centre 

R R 

y 
Vg 

Edge-1 Edge-2 

Slit 

Spray spot 

Centre of slit 

z 

T = (2R+y)/Vg 

Reference 
starting point Reference 

end point 

O O' 
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of the spray spot (O) is at the centre of the slit (z). Thereafter, the effective area starts 

decreasing until the trailing circumference of the spray spot passes Edge-2 of the slit. 

The increment and decrement in the ‘effective area’ will therefore be a symmetric 

function, and can be formulated using the schematic diagram shown in Figure G.2. The 

angle of arc subtended at the slit Edges 1 and 2 are θ &  δ, respectively, and each is a 

function of time, or of the position of the spray spot with respect to the fixed slit.  

 
Figure G.2 Kinematics of the spray spot scanning a slit and its formulation 
 

In the general case where the leading circumference has passed Edge-2, the effective 

area, As(t), is given by the shaded area illustrated in Figure G.2. This area can be 

expressed as the difference between two circular caps where the chords are BB' and 

B1B'1 in Figure G.2. Therefore, the effective area:  

( ) ( ) ( )( ) ( ) ( )( )21
{2 2 2 }

2sA t R t t sin t sin tθ δ θ δ   = − − −    
    (G1) 

The functions θ(t) and δ(t) can be obtained by recognising that the angle (θ and δ) 

increase from 0 to π as the spray area centre traverses the Edge-1 and Edge-2.  

 

Setting a time datum (t1 = 0) when the spot encounters Edge-1 (at θ = 0) and passes (at 

θ = π) in time, Tθ , it is possible to determine the angle θ(t) from the gun transverse 

speed, Vg, the slit width and the spot radius (see Figure G.1):  
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R
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;         (G2) 
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for
gg V

R
T

V

R
t

2
,

2
0 1 =≤≤ θ         

 

The angle δ(t) can be written in an exactly analogous fashion, except that the position 

trails that for θ(t) by an amount equal to the slit width, i.e. a time 
g

y V

y
t = : 









−








=

θθ

ππδ
T

t

T

t
t y1)(         (G3) 

for
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V

y
t

V

y 2
         

For formulating the number of sprayed powder particles passing through the slit, it is 

assumed that the powder particles are sprayed through the gun with a constant flux, the 

powder is of uniform diameter and density and the incident particle density across the 

spot is uniform. Thus, the number of sprayed particles passing through the slit depends 

on the slit width (y), gun speed (Vg), the powder mass flow rate, the flame spray spot 

area (A) and the powder particle kinetics [density (ρ), radius (r), and velocity (V)].  

 

If the powder mass flow rate (g sec-1) is powderm
•

, and the mass of one 

particle 34

3pm rπ ρ= , then the number of particles approaching the slit per second 

is:
powder

p

m
N

m

•
•

= . The number of particles passing through the slit per second is 

therefore ( ) ( )s
s

A t
N t N

A

• •
= , where ( )sN t

•
is a function of time, and this can be converted 

to a mass flow rate impinging on the target, m
•

, of ( ).s pm N t m
• •

= , and so the energy 

rate, E
•

associated with the kinetic energy of the particles is:  

( ) ( ) ( )2 2 21 1 1

2 2 2
powders s

powderp
p

A t A tm
E t mV m V m V

A m A

•
• • •  

= = =  
 

   (G4) 

 

Assuming that a constant proportion of this kinetic energy is recorded at the sensor, the 

function ( )E t
•

 ought to be of similar shape to the AE energy pulse observed as the 

spray passes over a slit.  

 



 184

REFERENCES 

[1] D. Tabor, 1951, The hardness of metals, Clarendon Press, Oxford  

[2] B. R.  Lawn and M. V. Swain, Microfracture beneath point indentations in brittle 
solids, Journal of Materials Science, 10, 1975, 113-122 

[3] B. R. Lawn and R. Wilshaw, Review, Indentation fracture: principles and 
applications, Journal of Materials Science, 10, 1975, 1049-1081 

[4] B. R. Lawn, 1993, Fracture of Brittle Solids, 2nd Edition, Cambridge Solid State 
Science Series, Cambridge 

[5] J. Lankford, Indentation microfracture in Plamqvist crack regimes: implications for 
fracture toughness evaluation by the indentation method, Journal of Materials Science 
Letters, 1, 1982, 493-495 

[6] B. R. Lawn and A. G. Evans, A model for crack initiation in elastic/plastic 
indentation fields, Journal of Materials Science, 12, 1977, 2195-2199 

[7] K. Nihara, R. Morena and D. P. Hasselman, Evaluation of K1c of brittle solids by the 
indentation method with low crack-to-indent ratios, Journal of Materials Science 
Letters, 1, 1982, 13-16 

[8] K. Nihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in 
ceramics, Journal of Materials Science Letters, 2, 1983, 221-223 

[9] B. R. Lawn, E. R. Fuller, Equilibrium penny-like cracks in indentation fracture, 
Journal of Materials Science, 10, 1975, 2016-2024 

[10] D. K. Shetty, I. G. Wright, P. N. Mincer and A. H. Clauer, Indentation fracture of 
WC-Co cermets, Journal of Materials Science, 20, 1985, 1873-1882 

[11] K. M. Liang, G. Orange and G. Fantozzi, Evaluation by indentation of fracture 
toughness of ceramic materials, Journal of Materials Science, 25, 1990, 207-214 

[12] C. K. Lin, C. C. Lin and C. C. Berndt, Simulation of hardness on plasma-sprayed 
coatings, Journal of American Ceramic Society, 78(5), 1995, 1406-1410  

[13] C. K. Lin and C. C. Berndt, Statistical analysis of microhardness variations in 
thermal spray coatings, Journal of Materials Science, 30, 1995, 111-117 

[14] S. Ghosh, S. Das, T. K. Bandyopadhyay, P. P. Bandyopadhyay and A. B. 
Chattopadhyay, Indentation responses of plasma sprayed ceramic coatings, Journal of 
Materials Science, 38, 2003, 1565-1572 

[15] E. L. Cantera and B. G. Mellor, Fracture toughness and crack morphologies in 
eroded WC-Co-Cr thermally sprayed coatings, Materials Letters, 37, 1998, 201-210 

[16] J. Lesage and D. Chicot, Role of residual stresses on interface toughness of 
thermally sprayed coatings, Thin Solid Films, 415, 2002, 143-150 

[17] M. M. Lima, C. Godoy, J. C. Avelar-Batista and P. J. Modenesi, Toughness 
evaluation of HVOF WC-Co coatings using non-linear regression analysis, Materials 
Science and Engineering A, 357, 2003, 337-345 

[18] M. M. Lima, C. Godoy, P. J. Modenesi, J. C. Avelar-Batista, A. Davison and A. 
Matthews, Coating fracture toughness determined by Vickers indentation: an important 
parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings, 
Surface and Coatings Technology, 177-178, 2004, 489-496 



 185

[19] C. M. Nygards, K. W. White and K. Ravi-Chandar, Strength of HVOF coating-
substrate interface, Thin Solid Film, 332, 1998, 185-188  

[20] C. B. Scruby, An introduction to acoustic emission, Journal of Physics E: Sci. 
Instrum. 20, 1987, 946-953 

[21] R. L. Reuben, The role of acoustic emission in industrial condition monitoring, 
International Journal of COMADEM, 1(4), 1998, 35-46 

[22] J. A. Steel and R. L. Reuben, Recent developments in monitoring of engines using 
acoustic emission, J. Strain Analysis, 40(1), 2005, 45-57 

[23] P. Nivesrangsan, Multi-source, multi-sensor approaches to diesel engine 
monitoring using acoustic emission, PhD thesis, Heriot-Watt University, Edinburgh, 
UK, December 2004.  

[24] M. F. Shehadeh, Monitoring of Long Steel Pipes using Acoustic Emission, PhD 
thesis, Heriot-Watt University, Edinburgh, UK, December 2004.  

[25] R. M. Douglas, Monitoring of the piston ring-pack and cylinder liner interface in 
diesel engines through acoustic emission measurements, PhD thesis, Heriot-Watt 
University, Edinburgh, UK, July 2007.  

[26] J. Miettinen, Condition Monitoring of Grease Lubricated Rolling Bearings by 
Acoustic Emission Measurements, PhD thesis, Tampere University of Technology, 
Tampere, Finland, 2000 

[27] S. Safai, H. Herman and K. Ono, Acoustic emission study of thermal-sprayed oxide 
coatings, American Ceramic Society Bulletin, 58, 1979, 624 

[28] S. L. Ajit Prasad, M. M. Mayuram and R. Krishnamurthy, Response of plasma-
sprayed alumina-titania composites to static indentation process, Materials Letters, 41, 
1999, 234-240 

[29] K. Vijayakumar, A. K. Sharma, M. M. Mayuram and R. Krishnamurthy, Response 
of plasma-sprayed alumina-titania ceramic composite to high-frequency impact 
loading, Materials Letters, 54, 2002, 403-413 

[30] U. Senturk, R. S. Lima, C. R. C. Lima, C. C. Berndt, Deformation of plasma 
sprayed thermal barrier coatings, Transactions of the ASME, Journal of Engineering 
for Gas Turbines and Power, 122, 2000, 387-392     

[31] V. Stoica, R. Ahmed, T. Itsukaichi and S. Tobe, Sliding wear evaluation of hot 
isostatically pressed (HIPed) thermal spray cermet coatings, Wear, 257, 2004, 1103-
1124 

[32] V. Stoica, Sliding wear of post-treated thermal spray cermet coatings, PhD thesis, 
Heriot-Watt University, Edinburgh, UK, 2005.  

[33] C. B. Ponton and R. D. Rawlings, Vickers indentation fracture toughness test: Part 
1. Review of literature and formulation of standardised indentation toughness 
equations, Materials Science and Technology, 5, 1989, 865-872  

[34] M. Factor and I. Roman, Use of microhardness as a simple means of estimating 
relative wear resistance of carbide thermal spray coatings: Part 2. Wear resistance of 
cemented carbide coatings, Journal of Thermal Spray Technology, 11(4), 2002, 482-
495 

[35] M. Factor and I. Roman, Microhardness as a simple means of estimating relative 
wear resistance of carbide thermal spray coatings: Part 1. Wear resistance of cemented 
carbide coatings, Journal of Thermal Spray Technology, 11(4), 2002, 468-481 



 186

[36] ASM Handbook Volume 8: Mechanical Testing and Evaluation (Hardness 
Testing), ASM International, Metals Park, Ohio, 2000. 

[37] J. H. Westbrook and H. Conrad, The Science of Hardness Testing and Its Research 
Applications, American Society of Metals, 1973 

[38] N. K. Mukhopadhyay and P. Paufler, Micro- and nanoindentation techniques for 
mechanical characterisation of materials, International Materials Reviews, 51(4), 2006, 
209-245 

[39] R. Hill, The mathematical theory of plasticity, Clarendon Press, 1950 

[40] W. Lee and B. Derby, Hertzian Testing of Ceramics, British Ceramic Proceedings, 
59, 1999, 45-60 

[41] A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical 
Transaction: Royal Society of London A, 221,1920, 163-198 

[42] F. C. Frank and B. R. Lawn, On the theory of Hertzian fracture, Proc. of Royal 
Soc. Of London A, 299, 1967, 291-306 

[43] T. R. Wilshaw, The Hertzian fracture test, Journal of Physics D: Applied Physics, 
4, 1971, 1567-1583  

[44] D. J. Greving, J. R. Shandley and E. F. Rybicki, Effects of coating thickness and 
residual stresses on the bond strength of ASTM C633-79 thermal spray coating test 
specimens, Journal of Thermal Spray Technology, 3(4) 1994, 371-378 

[45] T. W. Clyne and S. C. Gill, Residual stresses in thermal spray coatings and their 
effect on interfacial adhesion: a review of recent work, Journal of Thermal Spray 
Technology, 5(4), 1996, 401-418 

[46] W. Fischer, H. Gruhn and W. Mallener, Residual stress in plasma-sprayed ceramic 
coatings, Materials Science Forum, 228-231, 1996, 481-486 

[47] F. Kroupa, Residual stresses in thick nonhomogeneous coatings, Journal of 
Thermal Spray Technology, 6(3), 1997, 309-319 

[48] R. Ahmed, H. Yu, S. Stewart, L. Edwards, J. Santisteban, Residual strain 
measurement in thermal spray cermet coatings via neutron diffraction, ASME Journal 
of Tribology, 129, 2007, 411-418. 

[49] R. Ahmed, H. Yu, V. Stoica, L. Edwards, J.R. Santisteban, Neutron diffraction 
residual strain measurements in post-treated thermal spray cermet coatings, Materials 
Science and Engineering A, 498, 2008, 191–202 

[50] D. B. Marshall, B. R. Lawn, P. Chantikul, Residual stress effect in sharp contact 
cracking, Journal of Materials Science, 14, 1979, 2225-2235 

[51] H. Luo, D. Goberman, L. Shaw and M. Gell, Indentation fracture behaviour of 
plasma-sprayed nanostructured Al2O3-13wt. %TiO2 coatings, Materials Science and 
Engineering A, 346, 2003, 237-245 

[52] A. Roman, D. Chicot and J. Lesage, Indentation test to determine the fracture 
toughness of nickel phosphorus coatings, Surface and Coatings Technology, 155, 2002, 
161-168 

[53] P. Ostojic and R. McPherson, Indentation toughness testing of plasma sprayed 
coatings, Materials Forum, 10(4), 1987, 247-255 



 187

[54] X. Lin, Y. Zeng, S. W. Lee and C. Ding, Characterization of alumina-3 wt. % 
titania coating prepared by plasma spraying of nanostructured powders, Journal of 
European Ceramic Society, 24, 2004, 627-634 

[55] H. Luo, D. Goberman, L. Shaw and M. Gell, Indentation fracture behaviour of 
plasma-sprayed nanostructured Al2O3-13wt. %TiO2 coatings, Materials Science and 
Engineering A, 346, 2003, 237-245 

[56] A. P. Buang, R. Liu, X. J. Wu, M. X. Yao, Cracking analysis of HVOF coatings 
under Vickers indentation, Journal of Coatings Technology and Research, 5(4), 2008, 
DOI 10.1007/s11998-008-9106-8 

[57] X. Cai, Finite-element method for simulation of elasto-plastic indentations for 
various indentors, Journal of Materials Science Letters, 11(22), 1992, 1527-1531 

[58] G. D. Quinn, P. J. Patel and I. Lloyd, Effect of loading rate upon conventional 
ceramic microindentation hardness, Journal of Research of the National Institue of 
Standards and Technology, 107(3), 2002, 299-306  

[59] N. M. Vriend and A. P. Kren, Test Method-Determination of the viscoelastic 
properties of elastomeric materials by the dynamic indentation method, Polymer 
Testing, 23, 2004, 369-375 

[60] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement 
technique and its application, Materials Characterization, 48, 2002, 11-36 

[61] M. R. VanLandingham, Review of instrumented indentation, Journal of Research of 
the National Institute of Standards and Technology, 108(4), 2003, 249-265 

[62] B. Bhushan, A. V. Kulkarni, Nanoindentation and picoindentation measurements 
using a capacitive transducer system in atomic force microscope, Philosophical 
Magazine A, 74(5), 1996, 1117-1128 

[63] B. Bhushan, X. Li, Nanomechanical characterization of solid surfaces and thin 
films, International Materials Reviews, 48(3), 2003, 125-164 

[64] S. G. Sheshadri, M. Srinivasan, L. King, Indentation Fracture Testing of Ceramics, 
Ceramic Eng. Sci. Proc., 4(9-10), 1983, 853-863 

[65] Wilson Wolpert, Micro/Vickers hardness tester, Tukon 2100  

[66] Wilson Instruments, Hardness Testing with a Closed Loop Control System  

[67] Struers Ltd., Hardness tester, Duramin-A300  

[68] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Minor and Y. L. Shen, 
Indentation across size scales and disciplines: recent developments in experimentation 
and modelling, Acta Materialia, 55, 2007, 4015-4039   

[69] Private communication, Professor Sam Zhang, Nanyang Technological University, 
Singapore; Principal Editor: Journal of Materials Research, 2005 

[70] J. M. Jungk, B. L. Boyce, T. E. Buchheit, T. A. Friedmann, D. Yang and W. W. 
Gerberich, Indentation fracture toughness and acoustic energy release in tetrahedral 
amorphous carbon diamond-like thin films, Acta Materialia, 54(15), 2006, 4043-4052 

[71] S. Bouras, I. Zerizer, F. Gheldane, M. T. Bouazza and B. Bouzabata, Study of the 
resistance to crack propagation in alumina by acoustic emission, Ceramics 
International, 34, 2008, 1857–1865  

[72] J. von Stebut, Multi-mode scratch testing-a European standards, measurements 
and testing study, Surface and Coatings Technology, 200(1-4), 2005, 346-350 



 188

[73] J. Lankford, Compressive microfracture and indentation damage in Al2O3, Fracture 
Mechanics of Ceramics, 3, 1978, 245-255  

[74] S. Bouras and B. Bouzabata, Study of Hertzian indentation on a transparent 
vitroceramic and on an alumina, Materials Chemistry and Physics, 43, 1996, 127-134 

[75] H. Usami, T. Kadomae, D. Igimi and M. Mizuno, Effect of indenter materials on 
indentation fracture of alumina ceramics, Key Engineering Materials, 290, 2005, 23-30 

[76] Z. Xiaoli, W. Chongmin and Z. Hongtu, Fracture toughness and acoustic emission 
in silicon carbide, Journal of Materials Science Letters, 6, 1987, 1459-1462 

[77] F. Bergner, High-frequency acoustic emission induced by indentation fracture in 
brittle materials, Acustica, 82, 1996, 498-503 

[78] K. Kapoor, A. Ahmad, A. Laksminarayana and G. V. S. Hemanth Rao, Fracture 
properties of sintered UO2 ceramic pellets with duplex microstructure, Journal of 
Nuclear Materials, 366, 2007, 87-98 

[79] J. Akbari, Y. Saito, T. Hanaoka and S. Enomoto, Acoustic emission and 
deformation mode in ceramics during indentation, JSME International Journal, Series 
A: Mechanics and Material Engineering, 37(4), 1994, 488-494 

[80] A. K. Ray, G. Das, N. K. Mukhopadhyay, D. K. Bhattacharya, E. S. Dwarakadasa 
and N. Parida, Studies on indentation fracture toughness on ceramic and ceramic 
composite using acoustic emission technique, Bulletin of Materials Science, 22(1), 
1999, 25-32 

[81] S. H. Ahn, K. W. Nam and K. Ando, The bending strength of brittle materials and 
the characteristics of the elastic wave signal by Vickers indentation, Key Engineering 
Materials, 261-263, 2004, 1635-1641 

[82] A. L. Yurkov, E. Breval and R. C. Bradt, Cracking during indentation in Sialon-
based ceramics: kinetic microhardness and acoustic emission, Journal of Materials 
Science Letters, 15, 1996, 987-990 

[83] F. Guiberteau, N. P. Padture and B. R. Lawn, Effect of grain size on Hertzian 
contact damage in alumina, J. of American Ceramic Society, 77(7), 1994, 1825-1831 

[84] M. V. Swain and M. Wittling, Comparison of acoustic emission from pointed and 
spherical indentation of TiN films on silicon and sapphire, Surface and Coatings 
Technology, 76-77, 1995, 528-533 

[85] B. A. Latella, T. Liu and A. J. Atanacio, Effect of grain size on Hertzian contact 
damage in 9 mol% Ce-TZP ceramics, Journal of European Ceramic Society, 22, 2002, 
1971-1979 

[86] J. Lankford and D. L. Davidson, The crack-initiation threshold in ceramic 
materials subject to elastic/plastic indentation, Journal of Materials Science, 14, 1979, 
1662-1668 

[87] R. P. Zhitaru and V. A. Rahvalov, Peculiarities of prolonged plastic deformation of 
MgO crystals in the stress field of concentrated load, Materials Science and 
Engineering B, 98, 2003, 94-98 

[88] Yu. S. Boyarskaya, R. P. Zhitaru, D. Z. Grabko and V. A. Rahalov, Prolonged 
plastic deformation related to the micro-indentation of MgO single crystal, Journal of 
Materials Science, 33, 1998, 281-285 



 189

[89] E. Breval, V. Srikanth and E. C. Subbarao, Acoustic emission and microcracking in 
sapphire, sintered Al2O3, Al/Al2O3 composite, and aluminum, Journal of American 
Ceramic Society, 78(9), 1995, 2541-2544 

[90] T. P. Weihs, C. W. Lawrence, B. Derby, C. B. Scruby and J. Pethica, in W. D. Nix, 
J. C. Bravman, E. Artz and L. Ben Freund (eds.), Thin Films: Stresses and Mechanical 
Properties III, Materials Res. Society Symp. Proc., Pittsburgh, PA, 239, 1992, 361-366 

[91] N. I. Tymiak, A. Daugela, J. T. Wyrobek and O. L. Warren, Highly localized 
acoustic emission monitoring of nanoscale indentation contacts, Journal of Materials 
Research, 18(4), 2003, 784-796 

[92] N. I. Tymiak, A. Daugela, J. T. Wyrobek and O. L. Warren, Acoustic emission 
monitoring of nanoindentation-induced slip and twinning in sapphire, Mater. Res. Soc. 
Symp. Proc. 2003, 750, Y2.3.1-Y2.3.6 

[93] N. I. Tymiak, A. Daugela, T. J. Wyrobek and O. L. Warren, Acoustic emission 
monitoring of the earliest stages of contact-induced plasticity in sapphire, Acta 
Materialia, 52, 2004, 553-563 

[94] P. Dyjak and R. P. Singh, Acoustic emission analysis of nanoindentation-induced 
fracture events, Mater. Res. Soc. Symp. Proc., 841, 2005, R8.10.1-R8.10.6 

[95] D. F. Bahr and W. W. Gerberich, Relationships between acoustic emission signals 
and physical phenomena during indentation, Journal of Materials Research, 13(4), 
1998, 1065-1074 

[96] K. Y. Kim and W. Sachse, Characteristics of acoustic emission signals of Hertzian 
and unloading cracks in glass, Journal of Applied Physics, 55(8), 1984, 2847-2856 

[97] H. Usami, J. Sugishita, H. Kanie and K. Ohashi, In-situ observation of Hertzian 
cracks in indentation damage of brittle materials, Key Engineering Materials, 223, 
2002, 39-46 

[98] S. H. Lee and H. C. Kim, Acoustic emission during indentation fracture of soda-
lime glass, Journal of Materials Science Letters, 3, 1984, 907-910 

[99] B. V. Tanikella and R. O. Scatterwood, Acoustic emission during indentation 
fracture, Journal of American Ceramic Society, 78(6), 1995, 698-702 

[100] K. Y. Kim and W. Sachse, Acoustic emission from penny-shaped cracks in glass. 
I. Radiation pattern and crack orientation, Journal of Applied Physics, 59(8), 1986, 
2704-2710 

[101] K. W. Kim and W. Sachse, Acoustic emissions from penny-shaped cracks in 
glass. II. Moment tensor and source-time function, Journal of Applied Physics, 59(8), 
1986, 2711-2715  

[102] R. J. Kent, K. E. Puttick and J. G. Rider, Indentation fracture testing of 
polystyrene injection mouldings, Plastics and Rubber Processing and Applications, 1, 
1981, 55-61 

[103] Y. Wang and B. W. Darvell, Failure mode of dental restorative materials under 
Hertzian indentation, Dental Materials, 23, 2007, 1236-1244 

[104] Y. C. Yang and K. S. Han, Damage monitoring and impact detection using 
optical fiber vibration sensors, Smart Materials and Structures, 11, 2002, 337-345 

[105] Y. C. Yang and K. S. Han, Damage and failure monitoring of fiber-metals 
laminates using optical fiber sensors, Key Eng. Materials, 270-273, 2004, 690-695 



 190

[106] T. Kawaguchi, H. Nishimura, K. Ito, H. Sorimachi, T. Kuriyama and I. Narisawa, 
Impact fatigue properties of glass fiber-reinforced thermoplastics, Composite Science 
and Technology, 64, 2004, 1057-1067 

[107] F. Cesari, V. Dal Re, G. Minak and A. Zucchelli, Damage and residual strength 
of laminated carbon-epoxy composite circular plates loaded at the centre, Composites: 
Part A, 38, 2007, 1163-1173 

[108] C. Baudin, F. Cambier and L. Delaey, Fractographic and acoustic emission of 
mullite-alumina-zirconia composites prepared by reaction sputtering, Journal of 
Materials Science, 22, 1987, 4398-4402 

[109] P. S. Form, R. Pyrz, B. Clausen and E. Ǿ. Nielsen, Indentation and acoustic 
emission in filtration processed platelet reinforced ceramics, Materials Science and 
Engineering A, 197, 1995, 231-236 

[110] D. Rouby and H. Osmani, Characterization of interface debonding in a ceramic-
ceramic fibre composite using the indentation method and acoustic emission, Journal of 
Materials Science Letters, 7, 1998, 1154-1156 

[111] D. Girodin, L. Manes, J-Y. Moraux, J-M. De Monicault, Characterisation of the 
XD15N high nitrogen martensitic stainless steel for aerospace bearings, 4th 
International Conference on Launcher Technology ‘Space Launcher Liquid Propulsion’, 
3-6 December 2002, Liege, Belgium 

[112] R. B. Clough and J. A. Simmons, Reproducible acoustic emission signatures by 
indentation in steels, Materials Evaluation, 39, 1981, 1026-1031 

[113] C. Kádár, F. Chmelik, J. Lendvai, N. Babcsan and Z. Rajkovits, Acoustic emission 
response of metcomb foams during indentation, Kovové Materiály, 42, 2004, 265-274. 

[114] C. Kadar, F. Chmelik, Z. Rajkovits and J. Lendvai, Acoustic emission 
measurement on metal foams, Journal of Alloys and Compounds, 378, 2004, 145-150 

[115] M. Shiwa, E. R. Weppelmann, A. Bendeli, M. V. Swain, D. Munz and T. Kishi, 
Acoustic emission and precision force-displacement observations of spherical 
indentations into TiN films on silicon, Surface and Coatings Technology, 68-69, 1994, 
598-602 

[116] B. V. Tanikella, K. A. Gruss, R. F. Davis and R. O. Scatterwood, Indentation and 
microcutting fracture damage in a silicon carbide coating on an Incoloy substrate, 
Surface and Coatings Technology, 88, 1996, 119-126 

[117] M. Walter, S. Nekkanty, E. Cooke and G. Doll, Instrumented-indentation for 
mechanical characterisation of boron carbide nano-composite coatings, Mater. Res. 
Soc. Symp. Proc., 697, 2002, P2.8.1-P2.8.6 

[118] R. Ikeda, M. Hayashi, A. Yonezu, T. Ogawa and M. Takemoto, Fracture 
observation of polycrystalline diamond film under indentation test, Diamond and 
Related Materials, 13, 2004, 2024-2030 

[119] A. Yonezu, H. Cho, T. Ogawa and M. Takemeto, Advanced indentation technique 
for strength evaluation of hard thin film, Science and Technology of Advanced 
Materials, 7, 2006, 97-103 

[120] A. Yonezu, T. Ogawa and M. Takemoto, Evaluations of elasto-plastic properties 
and fracture strength using indentation technique, Key Engineering Materials, 353-358, 
2007, 2223-2226 

[121] A. Daugela and J. T. Wyrobek, Thin film characterization by acoustic emission 
monitoring of nanoindentation, IEEE Transaction on Magnetics, 581, 2000 



 191

[122] X.-G. Ma, K. Komvopoulos and D. B. Bogy, Nanoindentation of polycrystalline 
silicon-carbide thin films studied by acoustic emission, Applied Physics Letters, 85(10), 
2004  

[123] Y. Tsukamoto, H. Kuroda, A. Sato and H. Yamaguchi, Microindentation 
adhesion tester and its application to thin films, Thin Solid Films, 213(2), 1992, 220-
225  

[124] M. Belmonte, A. J. S. Fernandes, F. M. Costa, F. J. Oliveira and R. F. Silva, 
Acoustic emission detection of macro-indentation cracking of diamond coated silicon, 
Diamond and Related Materials, 12, 2003, 1744-1749 

[125] M. Amraval, F. J. Oliveira, M. Belmonte, A. J. S. Fernandes, F. M. Costa, R. F. 
Silva, Tailored Si3N4 Ceramic Substrates for CVD Diamond Coating, Surface 
Engineering, 19(6), 2003, 410-416. 

[126] Q. H. Fan, J. Gracio and E. Pereira, Comparison of the adhesion of diamond 
coatings using indentation tests and micro-Raman spectroscopy, Journal of Applied 
Physics, 86(10), 1999, 5509-5514 

[127] Q. H. Fan, J. Gracio, N. Ali and E. Pereira, Comparison of the adhesion of 
diamond film deposited on different materials, Diamond and Related Materials, 10, 
2001, 797-802 

[128] J. von Stebut, F. Lapostolle, M. Bucsa and H. Vallen, Acoustic emission 
monitoring of single cracking events and associated damage mechanism analysis in 
indentation and scratch testing, Surface and Coatings Technology, 116-119, 1999, 160-
171  

[129] A. N. Netravali, D. Stone, S. Rouff and L. T. T. Topoleski, Continuous micro-
indenter push-through technique for measuring interfacial shear strength of fiber 
composites, Composite Science and Technology, 34, 1989, -303 

[130] N. Ali, Q. H. Fan, J. Gracio, E. Pereira and W. Ahmed, A comparison study of 
diamond adhesion on ductile metals, Thin Solid Films, 377-378, 2000, 193-197 

[131] M. A. Hamstad, A. O'Gallagher and J. Gary, Effects of lateral plate dimensions on 
acoustic emission signals from dipole sources, Journal of Acoustic Emission, 19, 2001, 
258-274 

[132] C. K. Lee, P. D. Wilcox, B. W. Drinkwater, J. J. Scholey, M. R. Winsom, M. I. 
Friswell, Acoustic emission during fatigue crack growth in aluminium plates, ECNDT 
2006-Mo.2.1.5, 1-8 

[133] DD ENV 843-4 (1995), Advanced technical ceramics-Monolithic ceramics-
Mechanical properties at room temperature; Part 4: Vickers, Knoop and Rockwell 
superficial hardness tests 

[134] BS EN ISO 6507-1, 2, 3: Metallic materials-Vickers hardness test, BSI, London, 
1998 

[135] ASTM E 92-82 (1992), Standard test method for Vickers Hardness of Metallic 
Materials 

[136] L. Pawlowski, 1995, The Science and Engineering of Thermal Spray Coatings, 
John Wiley & Sons Publisher, New York   

[137] Surface Engineering, Process Fundamentals and Applications, Lecture Notes of 
SERC School on Surface Engineering, 16-23 July 2003, Vol. 1, Dept. of Science & 
Technology, Govt. of India, Hyderabad, India 



 192

[138] I. M. Hutchings, Strain Effects in Microparticle Impact, Journal of Physics D: 
Applied Physics, 10, 1977, 179-184 

[139] P. Fauchais, M. Fukumoto, A. Vardelle, M. Verdelle, Knowledge Concerning 
Splat Formation: An Invited Review, Journal of Thermal Spray Technology, 13(3), 
2004, 337-360 

[140] E. Turunen, Diagnostic tools for HVOF process optimization, PhD thesis, 
Helsinki University of Technology, Finland, December, 2005 

[141] P. Bohm, H. A. Crostack, M. Dvorak and H. D. Steffens, Monitoring the thermal 
coating process by means of acoustic emission analysis, Non-Destructive Testing, 
Proceedings, 12th World Conference, Amsterdam, 1, 23-28 April, 1989, 447-452 

[142] H. A. Crostack, G. Reuss, T. Gath, and M. Dvorak, On-line quality control in 
thermal spraying using acoustic emission analysis, TS93 Thermal Spraying Conference, 
Proceedings, DVS Berichte, No.152, Aachen, Germany; 3-5 March, 1993, 208-211 

[143] E. Lugscheider, F. Ladru, H. A. Crostack, G. Reuss, T. Haubold, On-line process 
monitoring during spraying of TTBCs by acoustic emission analyses, Proceedings, 
United Thermal Spray Conference and Exposition UTSC ’99, Dusseldorf, 17-19 March, 
1999, 312-317 

[144] S. Nishinoiri, M. Enoki and K. Tomita, In situ monitoring of microfracture during 
plasma spray coating by laser AE technique, Science and Tech. of Adv. Materials, 4, 
2003, 623-631 

[145] BS EN ISO 14921, Thermal spraying—Procedures for the application of 
thermally sprayed coatings for engineering components, BSI, London, 2001.   

[146] J. F. Li, C. X. Ding: ‘Polishing-induced pull outs of plasma sprayed Cr3C2-NiCr 
coating’, Journal of Materials Science Letters, 18, 1999, 1719 – 1721 

[147] ASTM, "ASTM E976-99: Standard guild for determining the reproducibility of 
acoustic emission sensor response," Annual Book of ASTM Standards, Vol. 3.03, 1999, 
pp. 395-403. 

[148] ASTM E 384-89 (1997): ‘Standard test method for microhardness of materials. 

[149] BS 5411-6: 1981/ISO 4516: 1980: Methods of test for Metallic and related 
coatings-Part 6: Vickers and Knoop microhardness tests 

[150] M. Rϋckert, J. Wigren and K. W. Couch, How to define the true structure of 
88/12 WC/Co and how to find the correct preparation method, A paper based on results 
achieved after the Plasma Spray Coatings Symposium at STRUERS, Copenhagen, May 
25-27th, 1988 (Copenhagen, November 1988), 1-13 

[151] J. Karthikeyan, A.K. Sinha, and A.R. Biswas, Impregnation of thermally sprayed 
coatings for microstructural studies, Journal of Thermal Spray Technology, 5(1), 1996, 
74-78  

[152] J. Blaha, C. Krempaszky and E. A. Werner, Carbide distribution effects in cold 
work tool steel, 6th International Tooling Conference, 289-298 

[153] K. Firth, R. D. Garwood, Fractography and fracture toughness of 5% Cr-Mo-V 
ultra-high-strength steel, Proceedings of the conference-Fracture toughness of high-
strength materials: Theory and practice, Dept. of Metallurgy, University of Sheffield, 
27-29 March 1968, The Iron and Steel Institute, London, ISI Publication 120, 1970, 81-
89  



 193

[154] B.S. Mann, V. Arya, A.K. Maiti, M.U.B. Rao, P. Joshi, Corrosion and erosion 
performance of HVOF/TiAlN PVD coatings and candidate materials for high pressure 
gate valve application, Wear, 260, 2006, 75–82 

[155] G. Bolelli, L. Lusvarghi, T. Varis, E. Turunen, M. Leoni, P. Scardi, C. L. Azanza-
Ricardo, M. Barletta, Residual stresses in HVOF-sprayed ceramic coatings, Surface & 
Coatings Technology, 202, 2008, 4810–4819 

[156] P .S. Babu, B. Basu, G. Sundararajan, Processing-structure-property correlation 
and decarburization phenomenon in detonation sprayed WC-12Co coatings, Acta 
Materialia, 56, 2008, 5012-5026 

[157] A. K. Sharma, S. Aravindhan and R. Krishnamurthy, Microwave glazing of 
alumina-titania ceramic composite coatings, Materials Letters, 50, 2001, 295-301 

[158] J. Stokes and L. Looney, Residual stress in HVOF thermally sprayed thick 
deposits, Surface and Coatings Technology, 177-178, 2004, 18-23 

[159] P. Bansal, P. H. Shipway and S. B. Leen, Effect of particle impact on residual 
stress development in HVOF sprayed coatings, Journal of Thermal Spray Technology, 
15(4), 2006, 570-575  
[160] T. Morishita, S. Osawa and T. Itsukaichi, HVOF ceramic coatings, Thermal 
Spray 2004: Thermal Spray Solutions – Advances in Technology and Application, 
ASM International, Materials Park, OH, USA; Proceedings CD, Section: HVOF-
Processes and Materials I, 1–4. 

 


