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ABSTRACT 

The thermal and non-thermal desorption of C6H6 has been investigated as a model for 

the behaviour of other aromatic hydrocarbons existing in the condensed phase in the 

interstellar medium. An interstellar dust grain mimic based on amorphous SiO2, to 

represent the interstellar silicate grain population, has been developed for use as a 

substrate in these experiments. Temperature programmed desorption experiments reveal 

a broad distribution of binding sites on this surface, with C6H6 desorbing thermally over 

a wide temperature range. The desorption from compact amorphous solid water displays 

simpler desorption kinetics with evidence for the formation of C6H6 islands on the water 

surface, demonstrating the importance of using realistic interstellar grain mimics in 

experiments probing surface sensitive interstellar processes. Kinetic parameters have 

been obtained for these systems, along with those for thicker multilayer films of ice. 

Photon irradiation of C6H6 / H2O layered ice systems at 250 nm results in the desorption 

of both species as observed using time-of-flight mass spectrometry. The molecules 

desorb with high translational energies which would represent a significant energy 

injection into the cold interstellar gas phase. Three desorption processes, desorption via 

direct adsorbate-, indirect adsorbate- and substrate-mediated desorption, are proposed 

for the observed desorption profiles. The desorption of H2O relies on energy transfer 

following photon absorption by a C6H6 molecule bound to a surface (H2O)n cluster, 

which results in the unimolecular decomposition of the complex. Kinetic simulations 

indicate that such processes may lead to an enhancement of photon-induced desorption 

at the edges of dense interstellar clouds. 

Experiments have also been performed to study the electron-stimulated desorption of 

molecules from C6H6 adsorbed on top of a water ice film. A highly efficient desorption 

channel with a cross-section in excess of 10
-15
 cm

2
 is in operation for low coverages of 

C6H6 and is attributed to the migration of excitons formed within the bulk of the H2O 

ice to the vacuum interface. A slower desorption component was also observed, which 

is attributed to a diffusion limited desorption step. These observations imply that 

electron stimulated desorption is likely to be an important non-thermal desorption 

process within dense clouds. No evidence for any chemical reaction products was 

observed through IR spectroscopy. 
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GLOSSARY 

AES – Auger electron spectroscopy 

AFM – Atomic force microscopy 

ASW – Amorphous solid water 

CEM – Channel electron multiplier (channeltron) 

DEA – Dissociative electron attachment 

DIB – Diffuse interstellar band 

DPRF – Differentially pumped rotary feedthrough 

EI – Electron impact 

ESD – Electron stimulated desorption 

GMC – Giant molecular cloud 

HOMO – Highest occupied molecular orbital 

HOPG – Highly oriented pyrolytic graphite 

HREELS – High resolution electron energy loss spectroscopy 

HV – High vacuum 

IR – Infrared 

ISM – Interstellar medium 

ISRF – Interstellar radiation field 

ISO – Infrared space observatory 

FTIR – Fourier transform infrared 

LEED – Low energy electron diffraction 

LoS – Line-of-sight 

LUMO – Lowest unoccupied molecular orbital 

MCS – Multichannel scaler 

MCT – Mercury cadmium telluride 

MCP – Microchannel plate 

MO – Molecular orbital 

OFHC – Oxygen free high conductivity 

PAH – Polycyclic aromatic hydrocarbon 

PEM – Photoelastic modulator 

PHD – Pulse height distribution 

PM – Polarization modulation 

PSD – Photon stimulated desorption 

PTFE – Polytetrafluroethylene 

QCM – Quartz crystal microbalance 

QMS – Quadrupole mass spectrometer 

RAIRS – Reflection-absorption infrared spectroscopy 

REMPI – Resonance enhanced multiphoton ionization 

SEM – Secondary electron multiplier 

SHG – Second harmonic generation 

ToF-Time-of-flight 

TPD – Temperature programmed desorption 

TTL – Transistor transistor logic 

UHV – Ultrahigh vacuum 

UIR – Unidentified infrared band 

UPS – Ultraviolet photoelectron spectroscopy 

UV – Ultraviolet 

Vis. – visible 

VUV – Vacuum ultraviolet 

XPS – X-ray photoelectron spectroscopy 
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CHAPTER 1 - Introduction 

1.1 Introduction 

This thesis describes experiments performed to investigate the thermal and non-

thermal processing of interstellar ices containing aromatic hydrocarbons. In order 

to put the chemistry and physics studied into context, it is appropriate to introduce 

some simple aspects of astronomy and astrophysics that are relevant to this work. 

This chapter begins with an introduction to the interstellar medium, outlining the 

conditions found in that environment. Following this, a brief history of 

astrochemistry is provided, considering observations of molecules in astrophysical 

environments and the application of gas phase chemical models to explain these 

observations. The motivation behind the study of surface chemical and physical 

processes is introduced, before a more detailed discussion of polycyclic aromatic 

hydrocarbons (PAHs), the molecular family primarily investigated in this thesis, 

and a brief overview of relevant laboratory based studies. There are several good 

texts [1-3] that introduce the basics of astrochemistry, and an overview of the 

important concepts drawn from the relevant chapters in these will be provided 

here. Finally, the subsequent chapters are outlined. 

1.2 The interstellar medium 

The Interstellar Medium (ISM) is the name given to the regions of space situated 

between stars within our galaxy, the Milky Way. It has been estimated, that stars 

and planetary systems occupy no more than around 3×10-8% of the volume 

available in the galaxy. These vast regions contain a mixture of dust and gas, 

comprising a surprisingly rich variety of atomic and molecular species. However, 

compared to the density of molecules at the bottom of the Earth’s atmosphere, 

which is around 3×1025 m-3, the density of the densest clouds in interstellar space 

is only around 109 m-3. Nevertheless, it is this reservoir of material that ultimately 

forms stars and associated planetary systems, and to where this material returns 

once a star reaches the end of its life. 
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Different regions of the ISM can be classified by their physical and chemical 

properties. The lowest density structures are known as diffuse clouds which are 

dominated by atomic hydrogen at a density of 3×107 m-3. Extensive observations 

of atomic hydrogen were made during the 1950s and 1960s with the use of radio 

telescopes [4,5]. H is detected through the 21 cm emission line associated with a 

hyperfine transition in the ground electronic state. This transition is extremely 

weak, and detection is only possible given the large amount of H present in the 

universe. Regions that contain large amounts of neutral atomic hydrogen are 

referred to as HI regions. Diffuse clouds typically have temperatures in the range 

80-100 K and spatial dimensions of the order of 10 light years1. Denser clouds 

such as translucent and dark clouds also exist in the ISM. Some are formed by the 

compression of diffuse clouds by shocks resulting from supernovae, while most 

are held together by the increased gravitational attraction that arises as a result of 

their greater mass. These Giant Molecular Clouds (GMCs) are thought to be 

formed by collisions between diffuse clouds. The increased density leads to dark 

clouds being dominated by molecular hydrogen (H2), rather than H. Increased 

molecular abundance arises due to the increased density, resulting in a higher 

probability for chemical reaction and the attenuation of radiation that would lead 

to the photodestruction of formed molecules. The H2 density is typically 109 m-3 

and temperatures are lower, 10-50 K, as a result of the attenuation of radiation. 

The Orion nebula (see Figure 1.1) is a well-known example of a GMC. It is 

within these regions that new stars are formed. Star formation begins when 

clumps within a dark cloud collapse further, probably as a result of collisions 

between clumps or shocks from nearby supernovae. As the collapse continues, 

gravitational potential energy is converted to kinetic energy and the centre of the 

clump becomes a core with a temperature of the order of a few 100 K. Eventually, 

the thermal expansion becomes sufficient to balance gravitational attraction and 

collapse ceases, resulting in a protostar. In order for a clump to collapse further to 

form a protostar, and hence a small star such as the Sun, some of the thermal 

energy must be radiated out of the clump. It is now thought that molecules present 

in the collapsing clump provide a mechanism for this by emitting energy through 

rotational, vibrational and, as the temperature rises, electronic transitions [6]. 

                                                           
1 1 light year (ly) = 9.5×1015 m 
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Figure 1.1: View of the Orion Nebula, an example of a GMC, observed with the Hubble Space 
Telescope. From [7]. 

This further collapse causes the temperature to rise to around 2000 K resulting in 

a hot core. This temperature is high enough for H2 to be dissociated and as the 

temperature rises further the H atoms are ionized. Finally, at around 106 K, 

collisions between protons are sufficiently energetic for nuclear fusion to begin. 

During the later stages of star formation, some material accretes into a disk around 

the protostar. Some of this is lost through outflows from the poles of the forming 

star, but that which remains provides the material for the formation of a planetary 

system. An example of a forming star showing the outflows and disk is shown in 

Figure 1.2 along with a schematic representation. Ultimately, the material in a 

star and planetary system is recycled when a star reaches the end of its life. In the 

case of large stars, the resulting supernova carries material back into the ISM 

where it may be involved in the formation of the next generation of stars. It is 

clear that there are a wide variety of different astrophysical environments, and 

molecules play an important role in many of these. The study of these molecules, 

how they are formed and evolve, along with their involvement in processes such 

as star formation, forms the basis of the relatively new field of astrochemistry. 
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Figure 1.2: (a) Disk and outflow associated with the forming star HH-30 [8]. (b) A schematic of a 
forming star showing the disk and outflow. 

1.3 Astrochemistry 

Astrochemistry has its roots in the early 20th century with the detection of simple 

chemical species in the ISM of the Milky Way. The first detection that suggested 

the presence of interstellar gas was that of Ca+ in the visible by Hartmann in 1904 

[9]. In the 1930s, the first detection of the molecular species CH, CH+ and CN 

was confirmed [10-12]. Following the detection of H in 1951, the development of 

millimetre wavelength astronomy led to the observation of important species such 

as OH, NH3, H2O and H2CO. However, it was the detection in 1970 of 12CO in the 

Orion Nebula through its R(0) transition at 115 GHz [13] that led the way to large 

scale mapping of molecules in the ISM. The detection of H2 has proved 

particularly difficult. It possesses no permanent dipole moment, so there are no 

allowed rotations or vibrations limiting IR detection to the weak emission that 

results from forbidden quadrupolar transitions [14], though this requires gas 

temperatures in excess of 500 K for the required excited states to be occupied. H2 

can however be detected through its electronic transitions, though the UV 

wavelengths required are absorbed by the Earth’s atmosphere and such 

observations [15,16] must be made from above the atmosphere. CO is much more 

readily detected, having both allowed vibrations and rotations. Indeed, CO has 

frequently been used as tracer for H2, assuming a constant value for the CO/H2 

ratio. 
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To date, over 120 molecules have been detected in interstellar and circumstellar 

space [17] (see Table 1.1). These molecules have been detected through 

observations at wavelengths across the electromagnetic spectrum. This list 

represents a lower limit on the range of molecules present, with the presence of 

many others being inferred from those that have been observed. It is also 

necessary to consider also ionic species, present in exposed regions as a result of 

photon and cosmic ray induced ionization. Furthermore, radicals and short-lived 

reaction intermediates are difficult to detect as a result of low abundances. 

 

2 

atoms 

3 

atoms 

4  

atoms 

5  

atoms 

6  

atoms 

7  

atoms 

≥ 8  

atoms 

H2 C3 c-C3H  C5 C5H  C6H  CH3C3N  
AlF  C2H l-C3H  C4H l-H2C4 CH2CHCN  HCOOCH3 
AlCl  C2O C3N  C4Si C2H4  CH3C2H  CH3COOH?  
C2 C2S C3O  l-C3H2 CH3CN HC5N  C7H  
CH  CH2 C3S  c-C3H2 CH3NC  HCOCH3  H2C6 
CH+  HCN C2H2 CH2CN CH3OH NH2CH3 CH2OHCHO  
CN HCO CH2D

+?  CH4 CH3SH  c-C2H4O  CH2CHCHO    
CO HCO+ HCCN  HC3N HC3NH+  CH2CHOH  CH3C4H  
CO+ HCS+ HCNH+  HC2NC HC2CHO   CH3CH2CN  
CP  HOC+ HNCO HCOOH NH2CHO  (CH3)2O  
CSi  H2O HNCS  H2CHN C5N   CH3CH2OH  
HCl  H2S HOCO+  H2C2O HC4N   HC7N  
KCl  HNC H2CO H2NCN   C8H  
NH HNO H2CN  HNC3   CH3C5N?  
NO  MgCN H2CS SiH4   (CH3)2CO  
NS  MgNC H3O

+ H2COH+   CH3CH2CHO    
NaCl  N2H

+ NH3    HC9N  
OH N2O SiC3    CH3OC2H5 
PN  NaCN C4     HC11N 
SO OCS      
SO+  SO2      
SiN  c-SiC2      
SiO  CO2      
SiS  NH2      
CS H3

+      
HF       
SH       

Table 1.1: Detected IS and circumstellar molecules as of 2005. Adapted from 
http://www.cv.nrao.edu/~awootten/allmols.html. ? indicates a tentative detection. c- and l- 
indicate cyclic and linear species respectively. 
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This list also makes no reference to the many polycyclic aromatic hydrocarbons 

(PAHs) that are thought to account for up to 20% of galactic carbon, with up to 

70% of these being present in carbonaceous grains [18,19]. Given the wide range 

of species detected, it is clear that there is a rich chemistry in the ISM. The 

majority of this must occur within molecular clouds where number densities are 

sufficiently high. However, the number densities are still extremely low compared 

to the terrestrial environment which, when combined with low temperatures, puts 

severe constraints on the range of chemical reactions that are likely to occur. The 

common types of reactions will now be outlined. 

1.3.1 Gas phase chemistry 

The early universe contained only H and H+ and thus H2 formation was important 

at this time. However, two neutral H atoms colliding must lose energy in order to 

form H2 in a bound state. Energy could be removed from the system by a third 

collision partner, but with number densities so low, three-body collisions would 

be extremely rare events. Radiative association reactions provide a means to 

remove excess energy from the collision partners during reaction: 

νh+→+  ABBA      Equation 1.1 

 

However, as H2 has no permanent dipole moment, relaxation to the ground state is 

extremely inefficient. H2 was therefore formed by a combination of electron and 

proton attachment to neutral H, followed by reaction with another H to yield H2. 

(g)HeH(g) −− →+      Equation 1.2 

−− +→+ e(g)HH(g)(g)H 2     Equation 1.3 

(g)H(g)HH(g) 2

++ →+     Equation 1.4 

(g)H(g)HH(g)(g)H 22

++
+→+    Equation 1.5 

 

H and H2 were important coolants during the formation of the first generation of 

stars. Highly energetic collisions were sufficient to ionize some of the H atoms, 

with radiation being emitted upon recombination. Collisions between H2 



8 

molecules and H atoms can excite H2 to an excited vibrational state. In returning 

to the ground state via a quadrupolar transition, radiation is emitted. In both cases, 

the result is that the overall kinetic energy, and hence temperature, of the gas is 

reduced. The first generation of stars were large and short-lived as they formed 

from only H and H2, with no other coolant molecules being present. However, 

they produced heavier elements through thermonuclear fusion which naturally led 

to a wider range of elements, and subsequently molecules, being present during 

the formation of subsequent generations of stars. These provided the cooling 

mechanism required for the formation of small long-lived stars, such as the Sun. 

The chemistry occurring in dark clouds is far more varied as a result of the 

presence of a wider range of chemical elements. However, the conditions are still 

sufficiently harsh that the range of possible reactions is limited. Three-body 

reactions are again highly unlikely and the low temperatures of down to 10 K 

preclude any reactions with all but the most modest of activation barriers. The 

important reactions along with typical rates are shown in Table 1.2. This 

highlights the inefficiency of three body collision association reactions. 

Photodissociation reactions play a more important role in diffuse clouds, where 

the attenuation of the interstellar UV field is much less.  

 

Reaction type Typical form Typical rate 

Photodissociation BAAB +→+ νh  10-9 s-1 

Neutral-neutral DCBA +→+  10-11 cm3 s-1 

Ion-molecules DCBA +→+ ++  10-9 cm3 s-1 

Charge transfer ++ +→+ BABA  10-9 cm3 s-1 

Radiative association νh+→+ ABBA  Reaction dependent 

Dissociative recombination DCeA +→++  10-7 cm3 s-1 

Collisional association MABMBA +→++  10-32 cm6 s-1 

Associative detachment -eABBA +→+−  10-9 cm3 s-1 

Table 1.2: General forms of some important gas phase chemical reactions occurring in the ISM 
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Whilst UV photons may cause photodissociation close to the edge of a dark cloud, 

primary electrons from cosmic rays provide the only dissociation mechanism deep 

within such a cloud. However, protons account for around 90% of cosmic rays, 

and these are extremely important in providing a route for the formation of 

hydrogenated species. Reaction of H2 with O, C, and N are forbidden, and 

reaction relies on the 
+

3H  ion. 
+

3H  is formed by collisions between cosmic ray H+ 

and H2 and readily donates a proton to other species, reforming H2 in the process. 

The importance of this ion and its detection have been discussed elsewhere [20]. 

In summary, it provides gas phase routes to species such as OH, H2O,
+

3CH , and 

importantly CO through the following reaction sequence: 

)g(H)g(HCOO(g))g(CH 23 +→+ ++

  Equation 1.6 

H(g)CO(g)e)g(HCO +→+ −+
   Equation 1.7 

 

The abundance of any particular species will depend on a range of reactions 

including formation, destruction and interconversion. It is therefore necessary to 

consider a large number of species and reactions together when comparing 

calculated abundances with observations. This is achieved through the use of 

chemical reaction networks which contain large numbers of species and chemical 

reactions. Examples include the model developed at the Ohio State University 

[21] and the UMIST astrochemistry database [22-24] developed at the University 

of Manchester. The most recent version of the latter includes 420 species and 

4572 gas phase reactions. These reaction networks are able to describe well the 

observed abundances in many astrophysical environments. The calculated 

abundances of typically up to 80% of species are in agreement with observations. 

It is clear that gas phase reactions are important for the formation of many 

observed molecules, and further refinements in rate constants and appropriate 

conditions will lead to better agreement. However, there are some species for 

which formation in the gas phase cannot be sufficiently efficient to account for the 

observed abundances. Examples of these include the three highly abundant 

molecules H2, H2O and CH3OH. The inefficiency of H2 formation in the gas 

phase, resulting from it possessing no allowed vibrations and rotations to radiate 
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collision energy, has already been highlighted. Thus it has been found necessary 

to invoke surface chemistry in order to properly account for the formation of these 

and other species on the surfaces of interstellar dust grains. Before considering 

some typical surface process, it is appropriate to consider the evidence for and 

nature of interstellar grains. 

1.3.2 The evidence for interstellar grains 

There are several good reviews on the presence and nature of interstellar dust 

[25,26], though the key points will be highlighted here. Interstellar dust accounts 

for only around 1% by mass of the material in the ISM. However, light can 

interact with grains in a number of ways, revealing their presence. Trumpler [27] 

is credited with the first definitive identification of dust within the ISM with his 

suggestion that obscuration of star light might occur as a result of absorption and 

scattering. This leads to an apparent reddening of stars situated behind a region 

containing dust, an effect known as interstellar extinction. As such, the apparent 

magnitude of a star, ( )λm , is dependent on both the distance of the star from the 

observer, d, and the extinction due to dust, )(λA : 

( ) ( ) )(]log[5 λλλ AdMm ++=   Equation 1.8 

 

where ( )λM  is the absolute magnitude of the star. It is usual to express the 

extinction at a particular wavelength relative to some reference wavelength, V, 

usually in the visible, i.e. ( ) ( )VAA λ [28]. The observed extinction curve shows a 

general trend of decreasing extinction towards the red end of the spectrum, which 

is what gives rise to the reddening of stars situated behind a region containing 

dust. Scattering of light is most efficient for light having wavelengths comparable 

to the dimensions of the scattering particles. This means that typical grain sizes 

can be estimated from the curve. In general the curve is fairly featureless, with the 

exception of a sharp “bump” around 217 nm as shown in Figure 1.3. It is possible 

to obtain estimates for grain sizes by using dust models and fitting to the observed 

extinction curves, with such models suggesting three contributions [30]. 
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Figure 1.3: The interstellar extinction curve showing contributions from different grain 
populations. Adapted from [29]. 

Grains with dimensions of the order of 0.1 µm account for the extinction at longer 

wavelengths and into the visible, though this contribution levels off for shorter 

wavelengths. The “bump” feature is therefore thought to be a result of the 

presence of much smaller particles having a mean radius of around 0.003 µm. 

Large molecules, in particular large polycyclic aromatic hydrocarbons (PAHs), 

have the required size to account for the rise in extinction at shorter wavelengths. 

The origin of the “bump” feature has been the subject of much debate. It is 

thought to arise from small carbonaceous particles, though the morphology of 

these is unclear with a range of structures including graphite, amorphous carbon 

and carbon “onion” structures being suggested. For all of these, absorption around 

220 nm can be accounted for by *ππ →  transitions, which occur in materials 

where carbon forms delocalized sp2 hybrid bonds [31]. 

As well as absorbing starlight, dust grains can also scatter light. This scattering 

can be observed in reflection nebulae through the scattering cross-section, or 

albedo. For small particles of diameter r, where r<λ, the process can be described 

by Rayleigh scattering where the scattering efficiency varies inversely with the 

fourth power of the wavelength. As a result, scattering is most efficient at shorter 
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wavelengths, which gives rise to reflection nebulae having a characteristic blue 

colour. Typically, a strong decrease in albedo is observed around 217 nm, 

confirming that this feature in the extinction curve arises as a result of absorption. 

Further evidence for dust comes from the polarization of starlight. This indicates 

that grains are non-spherical and aligned by the interstellar magnetic field. This 

results in selective extinction of one plane of polarization leading to linear 

polarization. 

1.3.3 The composition of grains 

Though they reveal the presence and physical nature of interstellar grains, none of 

the effects described so far provide much insight into the chemical nature and 

composition of these grains. Some evidence for grain composition comes from 

observations of gas phase species within clouds, which reveal significant 

depletion of some elements, which results from them being locked up in the solid 

phase [32]. Importantly, the depletion of C and Si is thought to indicate the 

presence of the two main populations of grains, those composed of carbonaceous 

particles, and those derived from silicates. The carbonaceous grain population is 

thought to account for the 217 nm feature in the interstellar extinction curve, with 

graphitic materials generally taken as being representative of these grains. Much 

information regarding the composition of grains has been obtained by utilizing 

infrared observations carried out from above the Earth’s atmosphere. In particular, 

the Infrared Space Observatory (ISO) mission has provided valuable evidence for 

the presence of both amorphous and crystalline silicates along with a range of 

molecular ices [33]. The presence of silicates is revealed by a strong absorption 

band at ca. 9.7 µm, characteristic of the Si-O stretch typically found around 10 µm 

in silicates, see Figure 1.4. A broad absorption feature centred around 18 µm is 

thought to be associated with the O-Si-O bending mode [34], providing further 

support for a silicate grain population. These features tend to be found in the 

outflows from cool oxygen-rich stars where silicate dust is thought to condense, 

and are absent in the outflows from carbon rich stars, where the oxygen tends to 

be locked up in CO [31]. The interstellar 9.7 µm feature tends to be rather broad 

and featureless when compared with laboratory absorption spectra of crystalline 

silicates, suggesting that grains are dominated by amorphous silicates. The 
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observed depletions of Mg and Fe suggest that these are likely to be the primary 

metallic components of interstellar silicates. Magnesium silicates such as olivine, 

which has the general formula 42x22x SiOFeMg
−

, are frequently thought to be 

representative of interstellar silicates, and laboratory spectra [35] of both the 

olivine forsterite, Mg2SiO4, and enstatite, MgSiO2, provide a good match to the 

interstellar 9.7 µm feature. There is some evidence for crystalline silicates, though 

estimates for the fraction of silicates that are crystalline vary widely. A recent 

study [36] has suggested that no more than 5% of interstellar silicates are 

crystalline when adsorbed ice mantles are taken into consideration.  

1.3.4 Grain mantles 

The depletion of other elements suggests the presence of a range of molecular ices 

frozen onto the grain surfaces. Typical grain temperatures in dense clouds are 10 

K, sufficient for the majority of atomic and molecular species to reside on the 

grain surface for significant periods of time. Even in warmer, more diffuse 

regions, mantles of less volatile species such as H2O can form. The first detection 

of H2O ice was made in 1973 [37] through IR absorption at 3.1 µm. This 

absorption band is characteristic of the OH stretch of adsorbed bulk ice [38,39]. 

More recently, the ISO mission has been extremely valuable in elucidating the 

nature of these adsorbed ices, revealing the presence of around 40 species [40]. 

The ices have predominantly been observed through absorption in the cold outer 

envelopes surrounding high mass protostars, though there have also been some 

observations of ices around low mass objects. An example of the former is the 

embedded massive protostar, W33A, observations of which demonstrate the wide 

range of ice features typically observed [41]. An example ISO spectrum for a line 

of sight towards this source is shown in Figure 1.4. 

H2O is by far the most abundant ice, its absorptions dominating the spectra with 

the optical depth often exceeding that of the silicate feature at 10 µm. Apart from 

H2O, the ices appear to contain significant amounts of CO, CO2 and CH3OH, with 

other species being present in much smaller concentrations. 
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Figure 1.4: ISO spectrum showing absorptions by ices around the massive embedded protostar, W 
33A [41]. 

The abundance of H2O is typically around 10-5-10-4 relative to that of H2, with CO 

and CO2 together accounting for 10-30% of the ices, though this may be 

significantly higher depending on the environment [40]. Other carbon containing 

species such as CH3OH, HCOOH, CH4 and H2CO may also contribute 20-30 %, 

giving a typical ratio of 50% H2O ice to 50% other species. It is important to note 

that whilst N2 and O2 detection is difficult as a result of these molecules 

possessing no permanent dipole moment, they can be detected when the 

transitions become weakly allowed due to the presence of other molecules. 

However, a strong CO2 stretching mode overlaps with this transition in N2. It is 

however generally accepted that O2 and N2 molecules exist as ices, though 

probably in relatively low concentrations. The obtained ISO spectra for 23 sources 

have been analyzed in detail [42] providing a valuable summary of the data 

obtained during the mission. 

The shifts and lineshape variations imposed on the spectral features of ice 

molecules by the presence of other ices have indicated that ices are frequently 

non-homogenous, with layering of ices occurring [43]. Layers of ice dominated 

by H2O, sometimes referred to as polar layers, are thought to form when the rate 

of H accretion is high. As well as forming H2O, any accreted CO will react 

forming HCO, resulting in a layer that is poor in CO. So called non-polar layers, 
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rich in CO and CO2, form when H accretion is much lower and hydrogenation 

reactions are much less important. This highlights the importance of cloud 

conditions on the formation of ice mantles. 

Some species, including atomic H and O along with CO, within the ices are 

accreted from the gas phase. However, the gas phase abundances of some species 

cannot be sufficient to account for the observed amounts of ice. H2O can be 

formed in the gas phase by a number of routes. In warm regions, neutral-neutral 

reactions between H2 and O can form H2O via OH [44]. However, these reactions 

have non-negligible activation barriers and are not viable at temperatures below 

300 K. At lower temperatures, H2O can be formed through the following ion-

molecule scheme with H3O
+ subsequently forming OH or H2O via recombination 

with an electron [1]. 

(g)OH  (g)OH  (g) OH  (g) O 3

(g)H

2

(g)H(g)H 222 ++++  → → →  Equation 1.9 

 

However, the freeze-out of atomic O onto grain surfaces is likely to limit H2O in 

the gas phase by this route. Models have shown that the low gas phase abundance 

of H2O in dark clouds can be reproduced by incorporating grain surface 

mechanisms [45]. Grain surface reactions also provide a route to forming H2 

which, as has been discussed earlier, cannot be formed efficiently in the gas 

phase.  

The formation of species on grain surfaces was first postulated by van de Hulst in 

the 1940s [46]. This was further developed in relation to the problem of H2 

formation during the 1960s [47]. At this time it was suggested that grain surface 

reactions could produce H2 at a rate >105 times that possible in the gas phase. A 

model was constructed based on the assumption that every H atom striking a grain 

sticks to it. The migration of H atoms across the surface, recombination with a 

second H atom  and evaporation of H2 were considered. Recombination was 

considered to occur if two hydrogen atoms approached each other closer than two 

lattice spacings on a given surface. It was also demonstrated that at low grain 

temperatures of around 10 K quantum mechanical tunnelling through barriers 

between surface sites is required, as thermal diffusion is relatively inefficient. 
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Initial calculations suggested a maximum in recombination efficiency at surface 

temperatures of between 5 and 15 K. This approach, though considering an ideal 

surface, was useful in indicating the important parameters in grain surface 

reactions. It highlighted the need for experimental studies of the formation 

processes themselves, and in obtaining detailed values for quantities such as 

adsorption energies. Some examples of laboratory experiments will be provided in 

subsequent sections. However, from an astrophysical viewpoint, it is useful to 

consider the ways in which the ices, once formed, can be processed through both 

thermal and non-thermal mechanisms in the interstellar environment. 

1.3.5 Processing of ices 

Ices can be processed in a number of ways in the interstellar environment as a 

result of energy being deposited within the mantle. Physical processes include 

desorption of molecules from icy mantles, and structural changes such as mixing, 

segregation and phase changes. Chemical processing is also possible, which can 

lead to the formation of more complex molecules. The mechanisms that drive 

these processes can be classified as being thermal or non-thermal. The most 

obvious cause of thermal processing is the warm-up of a molecular cloud during 

star formation. It has been suggested that the time for a cloud to warm-up to above 

the temperature required for H2O desorption is determined by the time taken for a 

forming star to reach the main sequence, which is of the order of 104-106 years 

[48]. This results in typical heating rates of 0.1-1 K century-1. Non-thermal 

processing can arise as a result of the irradiation of ices with photons and charged 

particles. Photons are generally present in the ISM in the form of the interstellar 

radiation field (ISRF) which typically contains contributions from nearby stars 

and emission both from dust and molecules such as PAHs [2]. The ISRF has been 

calculated, taking different galactocentric distances, DG and stellar contributions 

into account [49]. The intensity within a cloud is reduced as a result of attenuation 

by scattering and absorption by grains as shown in Figure 1.5. Astrochemical 

models have shown photoprocessing to be particularly important in protoplanetary 

disks [50], where the UV flux consists of both stellar and interstellar components. 



17 

 

Figure 1.5: Interstellar radiation field at a DG value of 5 kpc and 
within a GMC having a visible extinction of 200 magnitudes at 
its centre2. Individual curves show the intensity at a particular 
visual extinction corresponding to a particular distance from the 
centre of the cloud. From [49]. 

 

However, processing by interstellar photons is likely to be important close to the 

surface of a wide range of objects. Indeed, photodesorption and photodissociation 

of H2O by UV photons from the ISRF have been shown to be efficient in the outer 

layers of both protoplanetary disks [51] and molecular clouds [52]. In all cases, 

photodesorption was used to explain the observed relatively high gas-phase 

abundances of species normally expected to be strongly depleted through 

adsorption on grain surfaces. 

 

The major primary sources of charged particles are cosmic rays. Some particles 

may have energies exceeding 100 MeV which provides a significant contribution 

to the energy density of the ISM. The highest energy cosmic rays lead to the 

emission of gamma rays upon collision with gas molecules. Lower energy cosmic 

rays can lead to the generation of secondary electrons through cosmic ray 

ionization of species, which will be most pronounced in the outer regions of dense 

clouds. Low energy electrons with energies up to a few thousand eV are 

                                                           
2 1 erg = 10-7 J 
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particularly important for the chemistry within dense clouds as these energies 

correspond to those required to excite valance and core electrons in molecules. It 

is clear that given the typical lifetimes of molecular clouds, the effect of photon 

and low energy electron irradiation on interstellar ices must be considered.  

1.4 Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs) are a class of planar carbon bearing 

molecules that are made up of fused benzene rings. They possess many properties 

that arise as a result of their aromaticity. In all cases this results from the 

delocalization of electrons in planes that are parallel to the plane of the molecule. 

As the molecules are planar, the carbon atoms can be considered to bond through 

sp2 hybrid orbitals, with the remaining pz orbitals overlapping to form a 

delocalized system. For benzene, molecular orbital theory indicates that the six pz 

orbitals give rise to six molecular orbitals (MOs), three of which are bonding (π) 

and three of which are anti-bonding (π*). The six electrons from the pz orbitals fill 

the π orbitals, leading to a closed-shell configuration that is particularly stable. 

The same concepts also apply to PAHs, which become increasingly stable as a 

result of the increase in the size of the delocalized electron system. The structures 

of some simple PAHs, along with benzene, are shown in Figure 1.6. 

 

Figure 1.6: Structures of (a)benzene (C6H6), (b) 
naphthalene (C10H8), (c) anthracene (C14H10), (d) pyrene 
(C16H10) and (e) coronene (C24H12). 
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1.4.1 PAHs in the ISM 

PAH molecules are a particularly important class of molecule in many 

astrophysical environments. As has already been indicated, it is thought that they 

account for a significant proportion of the carbon in the galaxy. The photophysics 

of PAHs is particularly important and a good overview is provided elsewhere [2] 

along with an extensive review [53]. PAH molecules can be detected through both 

absorption and emission, with the principles described here being generally 

applicable to other molecules. If a neutral PAH molecule in its ground singlet 

state S0 absorbs a UV photon it can be excited to an excited electronic state e.g. 

S2, S3 etc. Internal conversion to excited vibrational states in S1 can then occur, 

followed by intersystem crossing which populates a range of vibrational states in 

T1; the lowest lying triplet electronic state. 

 
 

 

Figure 1.7: Jablonski diagram to illustrate the photophysics 
that drives IR and visible emission by PAH molecules. Taken 
from [53]. 
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If collisions are negligible, deactivation can only occur as a result of IR emission 

resulting from vibrational relaxation in T1 and visible emission as a result of an 

electronic transition to S0 (phosphorescence). In the case of ionized PAHs, 

internal conversion to the ground state D0, which is a doublet state, is dominant 

resulting in only IR emission during deactivation. A Jablonski diagram for the 

case of neutral PAHs is shown in Figure 1.7. 

PAHs are commonly thought to be the carriers of a series of broad emission 

features in the IR known as the Unidentified IR bands (UIRs) as a result of them 

not being identified for around a decade after they were first observed. They were 

first observed in the 1970s [54] and have since been found towards a large number 

of objects including stars, nebulae and even extragalactic sources. These features 

are observed at 3.3, 6.2, 7.7, 8.6 and 11.3 µm and are sometimes now referred to 

as the aromatic infrared bands as it is reasonably well accepted that they are of 

aromatic origin. These emission features have been discussed in detail, and 

compared to laboratory IR spectra of PAHs [55].  PAHs were first suggested as 

carriers of the UIRs in the mid-1980s [56] when several of the bands were 

compared to the calculated emission spectrum of coronene heated to 600 K.  It 

was concluded that PAH molecules with ca. 50 carbon atoms would result in the 

observed peak intensity ratio. Allamandola et al. [53] suggested that PAH 

molecules with between 20 and 40 carbon atoms would result in the observed 

sharp emission features, whilst larger PAHs with up to 500 carbon atoms could 

lead to the broader emission background. Larger PAHs are likely to exist as van 

der Waals clusters. The difficulty in obtaining an exact match between laboratory 

spectra and the observed emission lies not only with uncertainty of the size of the 

molecules, but also their nature. Ionization, hydrogenation, de-hydrogenation and 

excitation energy will all affect the observed spectra. The observed IR features 

can to some extent be correlated with the known vibrational modes of generic 

PAH molecules and ions. For example, bands in the 3 µm region correspond to C-

H stretching modes, those in the 6 µm region to C-C stretching modes, those in 

the 8 µm region to C-H in plane bends whilst out of plane C-H bends can account 

for emission between 11 and 15 µm. The likely variety of PAH species present in 

the ISM presents a significant challenge to identifying any individual species 
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definitively. PAHs are also thought to be responsible for some of the so-called 

diffuse interstellar bands which were first observed in the 1930s. These UV-Vis. 

absorption features, which have been discussed in detail [57], are generally 

attributed to electronic transitions in molecules and are typically observed towards 

dusty regions. It is thought that carbon bearing molecules including carbon chains, 

PAHs and fullerenes are the most likely candidates for many of the bands [58]. 

The wealth of observations of spectroscopic features that can be attributed to 

PAHs strongly suggests that PAH molecules are ubiquitous in the ISM. It is 

therefore reasonable to assume that to some extent they are also present in the 

solid phase. It has been noted that solid state absorption features of PAHs are 

significantly weaker than those in the gas phase, which makes direct observation 

difficult [59]. In addition, in dense clouds, PAHS will be shielded from the UV 

irradiation required for the excitation that would lead to observable emission, 

resulting in an expectation that detection can only be made through absorption. In 

order to aid these observations, the IR spectra of a series of PAHs within a H2O 

ice matrix have been obtained using laboratory experiments [60]. Examples of the 

IR spectra obtained are shown in Figure 1.8. These spectra suggest that, 

compared to matrix isolation experiments performed with Ar, the presence of the 

H2O matrix results in peak broadening, a small degree of peak shifting and some 

variable changes in relative band strengths. All shifts were interpreted as being the 

result of PAH-PAH and PAH-H2O interactions, as were the modest variations in 

relative band strengths. The broadening was attributed to PAH-H2O interactions 

and the presence of a range of PAH adsorption geometries within the amorphous 

ice matrix. The spectra were observed to be relatively insensitive to both the PAH 

concentration and ice temperature up to the amorphous to crystalline phase 

transition. Given the relatively minor effects of the presence of the H2O matrix on 

the IR spectra, it was suggested that IR spectra obtained through matrix isolation 

experiments using inert species, such as Ar or N2, are likely to be useful in initial 

interpretations of interstellar PAH spectra. It was however stressed that the band 

strength variations mean that experiments conducted in an H2O matrix would be 

crucial for the determination of column densities.  
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Figure 1.8: Comparison between IR spectra for several PAHS 
obtained in Ar and H2O matrices [60]. 

In the experiments described in this thesis, benzene, C6H6, was used to study the 

thermal and non-thermal processing of PAHs. This was primarily for 

experimental convenience. However, C6H6 is also important in its own right as it 

has been detected around the protoplanetary nebula CRL 618 [61]. However, the 

reduction in size of the aromatic network compared to larger PAHs results in a 

much shorter lifetime in more exposed regions of the diffuse ISM [62] where 

photon irradiation rapidly destroys C6H6 molecules. There is evidence that the 

lifetime in dense clouds may be significant, but there have been to date no 

definitive identifications. Nevertheless, C6H6 is thought to be an important 

molecule in the interstellar carbon cycle in being a key intermediate in the 

formation of PAHs from acetylene [63-66]. 

In summary, it is clear that PAHs are an extremely important class of carbon 

bearing molecule in a wide range of astrophysical environments. Further work is 

needed, both in terms of observing PAH molecules through comparison with 
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laboratory spectra and in understanding how they interact with their local 

environment. 

1.5 Overview of relevant laboratory astrophysics 

Laboratory experiments can provide a range of data that are of use in better 

understanding the chemistry and physics of the interstellar medium. Studies of gas 

phase reactions have been used to provide experimental rate constants for many of 

the reactions in the reaction networks that have previously been discussed. As the 

focus of this thesis is on surface chemistry, these will be discussed no further here, 

though it is important to stress their importance. A wide range of research, both 

experimental and theoretical, has been conducted into relevant surface processes. 

Examples include the formation of simple molecules on grain surfaces, the 

properties of adsorbed ices, thermal desorption of ices, chemical reactions within 

ices to form more complex species and non-thermal processing of ices. A brief 

overview of some of the work conducted in these areas will be presented here. 

1.5.1 Formation of simple molecules on grain surfaces 

As has already been discussed, the formation of H2 on grain surfaces is of 

particular interest. Laboratory experiments provide the opportunity to probe the 

reaction mechanisms involved, and the efficiency of formation under a range of 

conditions, and on different surfaces. An understanding of how the energy 

released during H2 formation is partitioned is extremely important when 

considering the low temperature environment of the ISM. H2 formation will be 

used here as an example of the types of laboratory experiments that can be 

conducted, and it should be noted that work has also been conducted into the 

formation of other simple molecules such as H2O. 

Three mechanisms are possible for the formation of H2 and other molecules on 

surfaces, (1) the Langmuir-Hinshelwood mechanism, (2) the Eley-Rideal 

mechanism and (3) the hot atom mechanism. In (1) atoms are adsorbed and are 

thermally accommodated. Reaction then occurs as a result of encounters between 

atoms that are diffusing across the surface. In (2) an atom hits the surface close to 

a previously adsorbed atom and reaction occurs without thermal accommodation. 
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Finally, in (3) an atom hits the surface and travels across the surface without being 

accommodated with reaction occurring when it encounters an adsorbed atom. The 

observed efficiencies of these mechanisms are therefore expected to be sensitive 

functions of surface morphology, surface temperature, H atom flux and gas phase 

H temperature. 

The first dedicated experimental study into interstellar H2 looked at the formation 

of HD on an olivine substrate from atomic beams of H and D atoms formed by 

radio frequency dissociation of the precursor molecular species [67,68]. HD that 

was formed was detected by a quadrupole mass spectrometer, both during the 

irradiation and afterwards in a TPD experiment. The key findings were that HD 

formation efficiency decreases as substrate temperature is increased as a result of 

decreased residence time and that the HD detected during the TPD was formed 

during the warm-up, as evidenced by second order desorption kinetics. 

Subsequently, recombination on amorphous carbon and water ice surfaces were 

also considered [69]. It was concluded that recombination is activated, occurring 

predominantly during warm-up. A study by Hornekaer et al. [70] however 

demonstrated efficient formation of HD at temperatures as low as 10 K, with TPD 

yields of HD with sequential H and D dosing much reduced compared to those 

obtained with simultaneous dosing. This indicates rapid diffusion of H and D 

atoms across the surface even at 8 K. The importance of the morphology of the ice 

was also demonstrated in terms of the partitioning of the 4.5 eV released. HD 

formed on porous water ice is accommodated within the pores and subsequently 

thermally desorbed. On non-porous ice, the HD cannot be thermalized in this way, 

and the HD desorbs during irradiation. It was concluded that the HD is formed at 

low temperatures via the Langmuir-Hinshelwood or hot atom mechanisms. 

Experiments have also been conducted to explore the quantum state of formed H2 

molecules [71,72]. Some of the 4.5 eV released during the H-H bond formation 

will be transferred to the substrate. However, it is likely that the H2 molecules will 

be formed in excited rovibrational states. Resonance Enhanced Multiphoton 

Ionisation (REMPI) experiments have been conducted in which H2 molecules 

formed under astrophysically relevant conditions are state-selectively ionized by a 

pulsed laser. The resulting +

2H  ions were then detected by time-of-flight mass 
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spectrometry. The results indicated that excited state formation may contribute to 

the population of excited H2 molecules in the ISM, previously attributed to direct 

UV pumping of ground state H2 molecules. 

At higher grain temperatures, H atoms must be chemisorbed in order to remain on 

the surface long enough for reaction to occur. Under such conditions, H2 

formation following chemisorption of H atoms on carbonaceous surfaces has been 

proposed. This has been studied experimentally and theoretically on a graphite 

surface [73,74], and theoretically on a series of PAH surfaces [75]. The results 

indicate that a range of pathways are available for H2 formation with the 

energetics being determined by the chemisorption sites in which H atoms are 

adsorbed. 

1.5.2 The morphology of water ice 

A significant amount of attention had been focused on the properties and thermal 

desorption of H2O. The phase of H2O is known to be very sensitive to deposition 

conditions and the thermal history of ices. There is some uncertainty regarding the 

morphology of H2O ice as formed in situ on grain surfaces, though analogous 

experiments to those performed for studying H2 formation should provide useful 

information. It is generally accepted that vapour deposition of H2O onto a cold 

substrate under high or ultrahigh vacuum conditions produces a film that is a 

reasonable approximation to that existing on cold dust grains [76]. This is based 

on the good agreement between the IR spectra of H2O films prepared in this 

manner and those of ice in interstellar clouds. Electron diffraction studies [77] 

have been used to probe the changes in ice morphology as ice deposited at 15 K is 

warmed up. H2O deposited below 130-140 K forms an amorphous ice film, 

commonly referred to as amorphous solid water (ASW). When deposited at 

temperatures lower than 38 K the ice is extremely porous with a high local density 

of around 1.1 g cm-3 and is referred to as porous ASW (p-ASW) or high density 

ASW (Ihda). It should be stressed that the density refers to the local density rather 

than the bulk density which is low as a result of the porosity. Annealing Ihda to 

temperatures above 38 K results in a gradual conversion to low density (ca. 0.94 g 

cm-3), compact ASW (Ilda or c-ASW) which is complete by around 68 K. When 
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heated above 140 K the ice crystallizes into a cubic crystalline morphology (Ic) 

and eventually a hexagonal crystalline phase (Ih) above 170-180 K. The latter is 

not of particular relevance under astrophysical conditions where the relatively thin 

layers of ice will be lost through thermal desorption before significant Ih is 

formed. The porosity of low temperature deposited ASW has been demonstrated 

by its ability to trap volatile species such as N2 [78], CO [79] and CCl4 [80] to 

temperatures far in excess of their expected desorption temperatures. This has 

been interpreted in terms of migration of adsorbed species into the pore network 

as the film is heated up. As the film is heated above 35 K the pores begin to seal 

off, trapping the volatiles within. A sharp desorption feature is observed above 

140 K, coincident with the change in H2O desorption rate associated with the 

formation of Ic. This restructuring of the ice film opens pathways for the trapped 

volatiles to escape from the pore network resulting in the so-called “molecular 

volcano”. Any remaining volatiles not desorbed during the crystallization co-

desorb with the H2O film at higher temperature. This trapping has been used to 

demonstrate how the porosity of ASW varies with deposition conditions [78]. For 

background vapour deposition, the porosity decreases rapidly with increasing 

temperature, with films deposited above 90 K being considered non-porous or 

compact (c-ASW). There is also a strong dependence on incidence angle which 

has been revealed using molecular beam deposition. When the beam is incident at 

high angles to the surface normal, shadowing effects result in a high degree of 

porosity, which decreases as the incidence angle is reduced. If the beam is at close 

to normal incidence compact ASW is formed, even at the lowest substrate 

temperatures. Another important finding is that both the initial phase of deposited 

H2O and the subsequent crystallization kinetics during warm-up are independent 

of the kinetic energy of the incoming H2O molecules during adsorption [81]. 

Therefore, deposition of H2O from a reservoir at ambient temperature is likely to 

have a negligible effect on the ice morphology compared to the substrate 

temperature and angle of incidence. The thermal desorption of H2O ice under 

astrophysical conditions has been studied and revealed zero-order [82] or close to 

zero-order desorption kinetics [83] which is characteristic of the desorption from 

bulk ice. In the former study, conducted on a polycrystalline Au surface, no 

distinct monolayer feature was observed, which was attributed to the H2O-H2O 



27 

interaction being dominant. For deposition on a highly oriented pyrolitic graphite 

(HOPG) surface [83] it was concluded that H2O forms two- and three- 

dimensional islands. In both cases the change in the rate of desorption at 

temperatures of 145-150 K as a result of ice crystallization were observed.  

1.5.3 Thermal desorption studies 

Thermal desorption has been studied using temperature programmed desorption 

(TPD) experiments under UHV conditions for many years. However, only 

recently have such experiments been performed using interstellar ice mimics. 

Probably most important is the desorption of H2O ice, the dominant species in the 

icy mantles found in dense interstellar clouds. TPD experiments demonstrated that 

the desorption of H2O from grain mantles obeys close to zero order desorption 

kinetics [82-84], in contrast to first order desorption as previously assumed by the 

astronomy community. As well as the desorption order, the pre-exponential factor 

and desorption energy can be obtained through TPD experiments. Knowledge of 

these parameters can then be used within physical models of dense clouds to 

include the effect of grain mantle desorption. In the laboratory TPD profiles, for 

H2O deposited under conditions where it forms an amorphous ice, a characteristic 

bump in the leading edge is present. This is attributed to the amorphous to cubic-

crystalline phase transition and arises as a result of competition between 

desorption and crystallization of amorphous ice, along with small differences in 

desorption energies between the two phases.  

H2O ice formed under low temperature conditions where p-ASW is formed, 

thought to be characteristic of the ice formed on grain surfaces, has been shown to 

be able to trap volatile molecules such as CO to temperatures far above their 

normal sublimation temperatures [85]. Experiments where CO was adsorbed on 

top of a p-ASW film showed three desorption regimes; the first of these was at 

around 30-40 K and can be attributed to the desorption in CO from the surface of 

the p-ASW film. This desorption temperature is only slightly higher than that 

observed for the desorption of multilayers of CO. A further CO desorption 

occurred at the same temperature as the H2O amorphous to crystalline phase 

transition, with a small amount of CO desorbing simultaneously with the H2O 
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film. This was interpreted as being due to the diffusion of CO into the pores of the 

p-ASW at around 30 K, in competition with desorption. During the conversion 

from Ihda to Ilda the pores are effectively sealed off, trapping the CO within. Only 

when the film restructures during crystallization are sufficient passages to the 

vacuum re-opened, allowing the sharp desorption observed at higher 

temperatures, referred to as a molecular volcano. The highest temperature 

desorption is then attributed to that of residual CO that does not desorb during the 

molecular volcano. This has important consequences for astrochemical models 

where, previously, the desorption of CO was assumed to be complete by 30 K.  

Subsequently, the thermal desorption of a wide range of species adsorbed on and 

in p-ASW was studied [86]. The molecules studied were N2, O2, CO, H2S, OCS, 

CO2, C2H2, SO2, CS2, CH3OH, CH3CN and HCOOH, all of which have been 

identified as being important in the chemistry of hot cores. The molecules were 

classified according to their thermal desorption behaviour. N2, O2 and CO all 

displayed the trapping behaviour described for CO, whilst a second class of 

molecules including NH3, CH3OH and HCOOH were shown to desorb in a very 

similar manner to that observed when they were deposited on a weakly interacting 

polycrystalline Au substrate. No molecular volcano was observed indicating that 

these molecules are unable to diffuse into the pore of the p-ASW. Significant co-

desorption with H2O was observed, indicating the presence of hydrogen-bonding 

interactions between these molecules and H2O. The remaining molecules were 

classified as being intermediate between these two extremes. However, in 

contrast, Wolff et al. [87] saw evidence for a molecular volcano when a thicker 

layer of CH3OH was adsorbed on top of an ASW film. These experiments were 

conducted with a base temperature of 97 K, and therefore the ASW deposited 

would have been relatively compact. It was therefore suggested that the observed 

trapping was the result of thermally induced mixing of the two components of the 

ice. 

It is clear from these experiments that a full understanding of the desorption 

process requires a systematic study of the desorption of initially pure ices before 

considering from more complex ice mixtures that are more realistic analogues of 

interstellar ice mantles. The study of mixtures requires experiments performed 
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over a wide range of layer thicknesses and relative concentrations in order to 

ascertain how a particular species might desorb under a given set of conditions. In 

summary, although thermal desorption might at first sight seem to be a relatively 

simple process, the complex interactions that occur between different species in 

realistic ice mixtures have a significant impact on the desorption process. Further 

experimental studies are therefore crucial for future development of astrochemical 

models that include the thermal desorption of species from grain surfaces. 

1.5.4 Photon irradiation of ices 

Photochemistry, and photon driven physical processing such as desorption, 

induced on metal surfaces have been studied since the early years of surface 

science. However, much of the chemistry relies on the formation of hot electrons 

within the metal substrate, which is clearly not relevant in an astrophysical 

context. Rather it is the direct interaction of photons with the electronic structure 

of adsorbate molecules that is important. The discussion here will therefore be 

limited to those experiments performed using bulk ices. The case of relevant 

photodesorption studies will be considered first. The photon induced desorption of 

H2O in an interstellar context has been studied by several groups. Westley et al. 

[88,89] have demonstrated efficient H2O desorption during irradiation with 

Lyman-α photons (121.6 nm). This photon energy is above the 7 eV threshold for 

absorption by H2O molecules, which was sufficient to cause dissociation forming 

H, and OH, H2 and O, which subsequently reacted to form H2O, HO2, O2 and 

H2O2. An overall H2O desorption cross-section of 8×10-18 cm2 was determined, 

though with significant uncertainties. Nishi et al. [90] studied the two-photon 

desorption mechanism using photons at 248 nm, though multi-photon processes 

are unlikely to be significant in the ISM where photon fluxes are extremely low 

compared with those obtainable in the laboratory. Further multi-photon channels 

were observed by Bargeld et al. [91] at a range of wavelengths between 270 and 

670 nm for H2O adsorbed on graphite. This work also revealed an enhanced 

desorption yield for amorphous ice, indicating the preferential desorption of more 

weakly bound H2O molecules from defect sites. It was therefore suggested that 

excitons (bound electron-hole pairs), which are formed more efficiently at defects, 

were responsible for desorption. In this mechanism the excitons propagate 
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through the ice, dissipating their energy to weakly bound “edge” H2O molecules, 

which are also more numerous in amorphous ice. More recently, the Leiden 

Astrophysics Laboratory have used RAIRS to study the desorption of H2O during 

photon irradiation with broadband VUV centred around 121 nm [92]. Desorbing 

species were detected with a QMS. They were able to separate the processing into 

photodissociation of bulk H2O molecules, and desorption of surface bound H2O 

molecules. OH, H2 and O2 photoproducts were also detected with the QMS. The 

photodesorption yield was found to increase to 8 ML, with no increase for thicker 

H2O films, confirming that photodesorption occurs only in the surface region. It 

was suggested that photodissociation products would desorb directly, result in 

H2O desorption through recombination or kick-out, freeze-out (i.e. become 

thermalized) within the ice or recombine and freeze-out. These mechanisms have 

also been observed in molecular dynamics simulations [93] where the majority 

H2O desorption was shown to result from recombination. Irradiation at 157 nm 

has, however, indicated that the kick-out mechanism might be dominant [94]. 

These experiments also probed the dynamics of desorbing molecules, indicating a 

translational temperature of around 1800 K and a rotational temperature of around 

300 K. Only H2O (v=0) was monitored, but it was indicated that vibrational 

excitation cannot be ruled out. Related experiments [95] have shown that 

photoproduced H2 can be desorbed translationally and internally hot when it is 

formed by reaction of two H atom photoproducts. The endothermic abstraction of 

H from H2O by H atoms was shown to result in the desorption of internally cold 

H2 molecules.  

Apart from water, the photodesorption of the more volatile species, CO, N2 and 

CO2 has been investigated [96,97]. The desorption of CO during irradiation using 

broadband VUV centred around 121 nm was shown to result from the surface 

layer, and was as efficient as H2O desorption. The efficiency of N2 desorption was 

around an order of magnitude lower, and it is thought that this is related to the 

presence of adsorbed contaminant H2O and there is no direct desorption channel 

for N2. Experiments with layered and mixed ices of CO and N2 resulted in an 

increased N2 yield further suggesting that absorption by one molecule can lead to 

desorption of a neighbouring molecule. Whilst no CO or N2 dissociation was 
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possible at the energy used, CO2 dissociation into CO and O was observed to 

occur, which also resulted in the formation of CO3. Recombination of 

photoproducts leading to CO2 desorption, analogous to the mechanism for H2O 

desorption, was suggested as being responsible for the observed CO2 desorption, 

which occurred with an efficiency of the same order of magnitude as that 

observed for H2O. 

There have been many studies of UV irradiation of bulk ices that have considered 

the formation of more complex organic species. For example, irradiation of H2O 

ice containing CH3OH, CO and NH3 resulted in the formation of a whole series of 

compounds including CO, CO2, CH4, HCO, H2CO, CH3CH2OH, HC(=O)NH2 and 

other more complex species still [98]. Similar studies have also been performed 

with PAH molecules where the formation of aromatic alcohols, quinones and 

ethers has been observed [99]. It was noted that chemical reactions induced in 

PAHs might play a significant role in the formation of more complex species 

given that up to 20% of the galactic carbon is thought to be locked up in these 

molecules. Mixed H2O ices with H2O/PAH ratios of between 800 and 3200 were 

irradiated with broadband UV light centred around 160 nm. The loss of PAHs was 

observed through infrared spectroscopy whilst the detection of newly formed 

species also confirmed using microprobe laser desorption laser ionization mass 

spectrometry. The mass spectral data obtained indicated the addition of O and/or 

H atoms to the PAH molecules. The IR data confirmed the presence of C=O 

stretching modes, indicating the formation of ketones. Addition of H resulted in 

the formation of aliphatic regions, and both aliphatic and aromatic alcohols were 

detected through OH stretching and bending modes. The use of perdeuterated 

coronene demonstrated that hydrogen exchange between PAH and H2O molecules 

is also efficient. 

While these experiments clearly suggested that functional groups can be added, no 

evidence of breaking of the aromatic skeleton of the PAH molecules was 

observed. This is consistent with the known stability of these aromatic systems. It 

was noted that the molecules that were formed, some of which are important 

biologically, were similar to those that have been detected in meteorites such as 

the Merchison meteorite. 
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Figure 1.9 UV irradiation of ices involving both simple and more complex molecules including 
PAHs has been shown to result in a rich chemistry. From [100]. 

 

However, it should be noted that this experiment was performed using a relatively 

small wavelength range and other processes occurring at other energies such as 

photodesorption cannot be ruled out. The presence of other species within the ice 

may also impact on the possible reactions. Two studies have indicated the 

possible formation of amino acids in UV irradiated interstellar ice mimics 

[101,102]. These indicated that the molecules formed are extremely sensitive to 

the initial ice composition. However, the importance of interstellar formation of 

biologically important molecules has been questioned. Ehrenfreund et al. [103] 

pointed out that the UV field within clouds is likely to be insufficient to result in 

the chemistry observed when using much higher experimental photon fluxes, and 

that if they were to form they tend to be rapidly degraded by UV photons. It was 

suggested that the organic species typically found within meteorites might more 

reasonably have been formed during the formation of the solar system. Indeed, the 

irradiation of molecules as complex as amino acids has been explored, with 

results indicating that such molecules are extremely susceptible to destruction by 

UV photons [104].  

The value of performing bulk ice experiments such as these, with assumed ice 

mixtures has been questioned [105]. It was indicated that it would be more useful 

to adopt a more systematic and fundamental approach. Such experiments would 

consider simple systems such as pure ices, and binary mixtures and layered 
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systems. Quantitative data such as reaction rates and an understanding of reaction 

mechanisms would enable astrophysically relevant routes to be determined. These 

experiments have only considered reaction products formed within the ice, and 

have made no attempt to study any products, or indeed unprocessed molecules, 

that desorb during the irradiation. For a full understanding, different loss channels 

such as reaction, and desorption need to be studied independently. Furthermore, 

the majority of these experiments used thick ices deposited in high vacuum 

chambers pumped with un-trapped diffusion pumps. The associated high 

background H2O concentration, which will affect the ice composition, and the 

ever present risk of contamination by pump oils, make experiments performed 

within clean, ultrahigh vacuum systems highly desirable. It is also worth noting 

that whilst many of these experiments suggest that UV irradiation is a viable route 

to forming complex organics, the UV field deep within molecular clouds is 

extremely weak. Here the UV field is dominated by photons emitted during 

radiative association reactions, rather than the ISRF which is strongly attenuated. 

In such regions, chemistry is more likely to be initiated by the passage of 

energetic cosmic ray particles as well as low energy secondary electrons produced 

as a result of cosmic ray ionization within clouds. Experiments considering the 

ion irradiation of interstellar ice mimics will now be considered. 

1.5.5 Ion irradiation of ices 

Cosmic ray irradiation of interstellar ices can be studied in the laboratory by 

bombarding ice mimics with energetic protons and other charged species. 

Palumbo [106] performed experiments where ice mixtures consisting of H2O, 

CH3OH, CH4, CO2, CO, O2 and N2 were bombarded with 3 keV He+, 1.5 keV H+ 

and 15 keV O+ ions. The formation of CO and CO2 was observed in all mixtures 

(the species under investigation was not present in the initial ice mixtures), 

independent of the ion used. The product yields depended only on the energy 

released into the sample. This demonstrates the ability of energetic ions to break 

chemical bonds, with products forming from the recombination of the resulting 

fragments. 3 keV He+ ion irradiation of C6H6 [106] has been shown to initiate a 

complex chemistry in which C2H2 was formed, along with an organic residue, 

although no detailed analysis of this was made at the time. Similar results were 
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obtained by irradiating CH4, CH3OH and C6H6 with 200 eV H+ and Ar+ ions, and 

400 keV Ar2+ ions [107]. In a more detailed study, the 3 keV He+ ion irradiation 

of pure CH3OH ice [108] resulted in the formation of CO, CO2, H2CO, (CH3)2CO, 

H2O and CH4. As well as chemical changes, physical processing was also 

apparent as evidenced by variations, other than a simple decrease in integrated 

absorbance, in the CH3OH IR absorption bands following irradiation. This 

indicated that integrated absorbances of unirradiated ices may not be appropriate 

for the determination of column densities in astrophysical environments. 0.8 MeV 

H+ irradiation of solid C6H6, C6H6 isolated in an Ar matrix and C6H6 within a H2O 

film has also been studied [62]. The observed products were dehydrogenated 

benzene, methylacetylene and acetylene. Comparison with experiments performed 

with UV photons showed a significantly higher C6H6 destruction cross-section for 

the ion irradiation experiments. Some evidence of CO and CO2 formation when 

H2O presence indicated the oxidation of C6H6 fragments, although these species 

were also formed in pure ices where their presence was attributed to contaminants 

within the vacuum chamber. It was concluded that C6H6 would be destroyed on a 

relatively short timescale, and that subsequent chemistry involving intact C6H6 

molecules can only occur in dense regions of the ISM where the UV field is 

strongly attenuated. 

Further evidence for physical changes induced in interstellar ices by the passage 

of ions has been provided by studies of the ion irradiation of pure H2O ice 

[109,110]. These experiments have demonstrated that irradiation with H+ or Ar+ 

of p-ASW can cause compaction and loss of porosity. This was implied by both a 

decrease in the ability of the ices to trap CO, used as a probe of porosity, and by a 

decrease in the dangling OH stretch vibration at around 3700 cm-1 associated with 

H2O molecules on internal pore surfaces that are not fully coordinated. It was 

suggested that the lack of detection of this dangling bond feature might result 

from this compaction, bringing into question the porosity of interstellar ices. 

However, experiments on ice mixtures containing CO, CO2 and CH4 

demonstrated a much slower rate of compaction, and it was suggested that full 

compaction may not occur even during the lifetime of an interstellar cloud. A lack 

of porosity is a possible explanation for the 2152 cm-1 CO band associated with 
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CO adsorbed on dangling OH sites. However, the lack of this feature has also 

been interpreted as being due to the adsorption of other species on the dangling 

bonds, effectively blocking the adsorption of CO [111].  

1.5.6 Electron irradiation of ices 

Electron stimulated desorption experiments using single crystal metal substrates 

have been conducted for a considerable period of time. The focus of this 

discussion will be on experiments conducted with the aim of stimulating physical 

and/or chemical processing within ice films of astrophysical relevance. The low 

energy electron irradiation of H2O ice has been shown to result in the desorption 

of a wide range of species. The desorption of H- and D- from adsorbed H2O and 

D2O films has been observed [112] and shown to result from dissociative electron 

attachment (DEA). The threshold for anion desorption was 5.5 eV, with a 

maximum anion yield for an electron energy of 7.4 eV which indicated the 

formation of the 1

2 B  and 1

2 A  anion states. The parent triplet states are formed by 

the excitation to the 4a1 orbital of an electron from the non-bonding 1b1 orbital 

(HOMO) and the H-O bonding 3a1 (HOMO-1) orbital respectively. The relevant 

molecular orbitals are shown schematically in Figure 1.10. These representations 

were obtained from ab initio calculations using the 6-31G(2p,2d) basis set 

performed using the 2008 version of the GAMESS-US software suite [113]. 

Molecular orbitals were viewed using the GABEDIT software package [114]. 

Subsequent studies have indicated the desorption of a wide range of species 

including H and O(3P, 1D)[115] and ionic species. The formation of H2[116] and 

O2[117] have also been observed, where trapping within porous amorphous ice 

has been shown to significantly enhance the yield of both species [118]. 

Protonated water clusters, H+(H2O)n have also been detected [119,120]. In 

general, product yields increase with energy as a wider range of excited states 

become accessible. H2O desorption has been shown to result from both direct 

electron stimulated desorption of neutral molecules and recombination of electron 

stimulated reaction products [121]. 
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Figure 1.10: Some of the molecular orbitals of H2O. 

 

Finally, H2O2, which is thought to be an important intermediate in O2 formation, 

and HO2 have also been observed [122]. Where trapping occurs, the products of 

the low energy electron irradiation of H2O ice are likely to be important in the 

processing of other species that are mixed within the H2O matrix. 

Examples of other reactions include the low energy electron irradiation of CO and 

H2O ice in a layered H2O/CO/H2O film, which has been studied for electron 

energies up to 50 eV [123]. The reaction products CO2, CHO, H2CO and CH3OH 

were detected using post-irradiation infrared spectroscopic measurements. A 

mechanism involving first the dissociation of H2O leading to reactive OH, H and 

O species followed by subsequent reaction was invoked. At 25 K only CO2 and 

CHO were formed, representing the simple oxidation and reduction of CO. 

Heating the ice up to 60 K during irradiation resulted in the formation of H2CO 

and CH3OH. This was attributed to increased thermally induced migration of 

reactants. The formation of CO2 was also enhanced at higher temperature.  
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CH3OH formation has also been observed during the irradiation of H2O/CH4 ice 

with 100 eV electrons at low temperature [124]. The reaction products CH3OH, 

H2CO, C2H6 and C2H2 were observed using in situ IR studies. The product yield 

was observed to increase with increasing H2O/CH4 film thickness, levelling off 

above 20 monolayers, in agreement with the expected electron penetration depth. 

CO2 formation was observed, although this was also the case following the 

irradiation of pure H2O ice, suggesting that the electron induced oxidation of 

hydrocarbon contaminants may be in part responsible. The same products were 

also observed in post irradiation TPD studies. There was also some evidence for 

CH4 and H2O desorption during irradiation. The CH3OH yield was observed to 

increase monotonically with electron energy in the range 10-300 eV. The reaction 

was largely independent of temperature up to 30 K. Recombination of CH3 and 

OH and the insertion reaction between CH2 and H2O were found to be equally 

important.  

Similar experimental studies have confirmed the electron induced formation of 

other species. Bennett et al. [125] observed the formation of CH3CHO, c-C2H4O, 

CH2CHOH resulting from the 5 keV electron irradiation of a CO2/C2H4 (2:1) ice 

mixture at 10 K . Irradiation of CH4 at these higher energies has been shown to 

result in the formation of C2H6, C2H5 and C2H4 with subsequent irradiation 

leading to C2H3 and C2H2 [126]. Work by the same group has also demonstrated 

the formation of O3 [127] along with H2, O2 and H2O2 from the irradiation of H2O 

ice with 5 keV electrons. Similar experiments have revealed the formation of 

CH3COOH from CH4/CO2 [128] and HCOCH2OH and HCOOCH3 from 

CH3OH/CO [129]. These higher energy experiments are useful in revealing a 

wide range of possible chemical reaction mechanisms. However, these higher 

energy electrons are likely to result in a cascade of low energy electrons as a result 

of ionization of H2O molecules as will be discussed in Chapter 5. Therefore, 

experiments probing lower electron energies are crucial to obtain a full 

understanding of the possible mechanisms for electron stimulated chemical and 

physical processing. It is also worth noting that the presence of the H2O ice, which 

frequently dominates grain mantles in the dense ISM, is likely to have a 
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significant impact on the reaction mechanisms through the necessary formation of 

reactive species such as OH.  

To conclude this section, it is worth considering an overview of the general 

mechanisms by which low energy electrons can initiate reactions in ices. At high 

energies the dominant channel is ionization of adsorbed species. This leads to the 

desorption of ions, and the possibility of reaction between ionic species. 

Electronic excitations are also important in this regime, becoming dominant for 

electron energies of a few tens of eV. In general, there is a gradual increase in the 

cross-section for electron induced processes for increasing energy above around 

20 eV, simply as a result of increased energy input to the system. Resonance 

features related to the electronic excitations may also be superimposed on the 

monotonically increasing background. Below 20 eV there is frequently a 

significant increase in cross-sections as a result of electron attachment processes. 

The nature of these excitations have been discussed in detail by Bass and Sanche 

[130], and have already been discussed briefly in relation to the anion yields 

obtained during low energy electron irradiation of H2O ice. The low energy 

electron attachment to a molecule, often referred to as a resonance, leads to the 

formation of a transient negative ion. A single particle resonance results when the 

electron occupies a previously unfilled molecular orbital of the molecule, whilst a 

core-excited resonance is when electronic excitation occurs simultaneously with 

electron attachment. This leads to the occupation of two, previously unoccupied, 

molecular orbitals and is the mechanism by which the anion formation in H2O 

described previously occurs. Once the transient negative ion has formed, it may 

dissociate with the process then being referred to as dissociative electron 

attachment (DEA). DEA requires the anion state to be dissociative, the electron to 

be localized for at least the dissociation time scale and one of the resulting 

fragments to have a positive electron affinity. The cross-section for DEA is 

proportional to the electron capture-cross section and the probability of the anion 

surviving without autodetachment of the electron occurring. DEA can result in the 

formation of both ionic and neutral species that are reactive and therefore provide 

an efficient route to complex chemical reactions for very low energy electrons. 

This means that even the very lowest energy electrons resulting from ion 
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irradiation of interstellar ices have the potential to initiate significant chemical 

change within the ices.  

1.6 Outline of this thesis 

This thesis considers the thermal and non-thermal processing of interstellar ice 

mimics, with a particular emphasis on C6H6, both adsorbed alone and on top of a 

pre-adsorbed H2O ice film. C6H6 has been used as an experimentally convenient 

model system for more complex PAHs, which by virtue of their lower vapour 

pressure are more difficult to handle under UHV conditions. Chapter 2 discusses 

the experimental systems used in the experiments described in this thesis along 

with discussions of the techniques employed.  

Chapter 3 considers the thermal desorption of C6H6 beginning with the 

desorption of C6H6 from a flat stainless steel substrate. The results of this 

experiment were used as a reference for subsequent TPD experiments. The 

development of an interstellar grain mimic based on amorphous SiO2 is then 

discussed with details of characterization by both atomic force microscopy (AFM) 

and IR spectroscopy. Results of the thermal desorption of C6H6 from the 

amorphous SiO2 are then presented and compared with those obtained using the 

stainless steel reference substrate. A model based on a distribution of binding sites 

is then developed to describe the observed desorption behaviour. RAIR spectra 

are also used to gain further insight into the adsorption of C6H6 and to provide a 

set of reference spectra for subsequent non-thermal processing experiments. The 

thermal desorption of C6H6 from c-ASW is also discussed in this chapter. The 

chapter concludes with a discussion of the astrophysical implications of the 

different thermal desorption behaviour observed from the two substrates.  

Chapter 4 considers the non-thermal desorption of C6H6 and H2O from layered 

systems of the two species as a result of photon irradiation using photons that are 

on resonance with an electronic transition in the C6H6 molecule. The dynamics of 

the desorption process is explored using time-of-flight (ToF) mass spectrometry to 

obtain the translational temperatures of the desorbing molecules. Possible 

mechanisms for the desorption process are then discussed in detail. The discussion 
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then turns to the non-thermal desorption kinetics in which the desorption cross-

sections for both C6H6 and H2O are obtained. 

Chapter 5 continues the discussion of non-thermal processing by considering the 

irradiation of C6H6 adsorbed on both SiO2 and c-ASW with low energy electrons 

in the range 100-350 eV. The lack of any observable desorption from the SiO2 is 

first discussed along with a determination of the cross-section for C6H6 loss. 

Possible destruction routes C6H6 are considered. The remainder of the chapter 

considers the electron irradiation of C6H6 adsorbed on a thick c-ASW film. 

Significant desorption is observed and the electron stimulated desorption (ESD) 

traces are used to obtain desorption cross-sections that can be attributed to two 

distinct desorption mechanisms, both of which depend on the presence of H2O 

molecules. RAIR spectra are used to obtain the cross-section for total C6H6 loss 

which confirms that the observed ESD results from a limited population of C6H6 

molecules that are in close proximity to the H2O film. This chapter concludes with 

a discussion of the astrophysical implications of these observations.  

An overview of all of the results along with a discussion of the overall 

astrophysical implications is presented in Chapter 6. This chapter concludes with 

possible future work. 
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CHAPTER 2 - Experimental 

2.1 Introduction 

In this chapter, the experimental techniques used in this work will be described.  

The use of ultrahigh vacuum (UHV) in surface science will be explained, 

followed by a discussion of the UHV systems employed in the work presented in 

this thesis.  The background behind the techniques will be presented, along with a 

discussion of how these were implemented with the apparatus described here. 

2.2 Surface science and ultrahigh vacuum 

The study of physical and chemical processes occurring at solid surfaces was 

originally motivated by the need for an understanding of heterogeneous catalysis 

[1], where two or more phases are present.  A large number of processes, such as 

the Haber-Bosch process through to the conversion of exhaust gases from the 

internal combustion engine rely on the presence of a catalytic solid surface.  

Whilst these processes usually employ a catalyst in a finely divided form such as 

nanoparticles dispersed on an oxide support, to understand the details of the 

catalytic activity, it was soon realized that a simpler approximation to the catalytic 

surface was required.  This resulted in attention being focused on single crystal 

metal surfaces; those in which a particular crystal face has been exposed. The 

development of the semiconductor industry also required a detailed understanding 

of solid surfaces, and many of the techniques and practices developed in surface 

science, including the use of ultrahigh vacuum, have been essential to its growth.  

One of the great difficulties in studying processes occurring at such a surface is to 

maintain surface cleanness for a sufficiently long period of time for an experiment 

to be conducted.  This can be demonstrated by considering the rate, Zw, at which 

molecules, having temperature T and molecular mass m, collide with a surface 

exposed to a pressure P: 

1-2- s m 
2 Tmk

P
Z

B

w

π
= .  Equation 2.1 
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It is clear that the surface must be mounted within a vacuum chamber in order to 

reduce the collision frequency.  If it is assumed that every molecule that collides 

with the surface sticks to it, i.e. the sticking probability is unity, then Zw can be 

equated to the rate at which molecules are adsorbed onto the surface per unit area.  

In order to ascertain how long a surface will remain clean, one can consider the 

time taken for a complete monolayer of adsorbed molecules to form.  This value 

will depend on the number of adsorption sites available on the surface, which is 

typically of the order of 10
15

 cm
-2

.  High vacuum (HV) is used widely throughout 

the physical sciences, with pressures of 10
-7

 mbar being typical in many 

experimental chambers.  However, by use of Equation 2.1 such a pressure yields 

a monolayer formation time of ca. 10 s, insufficient for most experiments.  In 

order to conduct an experiment on a clean surface, a monolayer formation time of 

the order of a few hours is required.  Such a timescale is obtained when the 

pressure, P, is less that 10
-9

 mbar, which is defined as UHV.  Obtaining UHV is 

not straight forward and requires a combination of pumping technologies and a 

consideration of the nature of the residual gas in the HV chamber. Use of a simple 

residual gas analyser (RGA) reveals that the residual gas background in such a 

HV chamber is dominated by H2O vapour.  This H2O results from the gradual 

desorption of H2O that adsorbs onto internal surfaces within the chamber whilst at 

atmospheric pressure. The rate of desorption of this H2O is high enough to yield 

the observed background, but sufficiently slow that it would require many months 

of pumping to reduce the partial pressure of H2O to an acceptable level.  In order 

to obtain UHV, it is necessary to increase the desorption rate of H2O for a period 

of time in order to reduce the surface concentration significantly.  This is achieved 

by heating the chamber to an elevated temperature (120-250 °C depending on 

attached apparatus) for up to 60 hours. Once cooled, the desorption rate of H2O 

will be significantly lower than before heating, hence resulting in a reduction in 

chamber pressure.  The process of heating the chamber whilst the vacuum pumps 

are operating is known as bake-out.  Figure 2.1 shows typical pre- and post-bake 

RGA traces. 
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Figure 2.1: Residual gas analyses of a typical UHV chamber (a) before 

and (b) following bakeout at 120 °C for 48 hours. Note that the m/z=2 

signal has been cropped from 2500 counts/s in (b) to improve clarity. 

The features labelled in (a) are at m/z=2,16,17,18,28 and 44. 
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Another important consideration is the mean free path of molecules and other 

particles such as electrons in the UHV chamber. For example, some experiments 

require the use of low energy electrons or ions which need to reach the surface 

without significant gas-phase scattering. For example, the mean free path, λ, for a 

neutral molecule is given by: 

σ
λ

P

Tk
B

2
=    Equation 2.2 

where T is the gas temperature, P the gas pressure and σ the collision cross 

section. Under UHV conditions, and assuming a typical molecular collision cross 

section of ca. 10
-15

 cm
2
 this yields a mean free path of the order of tens of km. 

Thus, UHV conditions allow both surface cleanness over sufficiently long periods 

of time and also maintain suitably low collision rate conditions necessary for 

many experiments. 
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2.3 Experimental Systems Used 

2.3.1 UHV chamber 1  

This UHV system was originally designed for work utilizing single crystal 

surfaces, particularly focusing on the interaction between supersonic molecular 

beams and the surface of interest.  Details of the original experimental 

arrangement for this system can be found elsewhere [2].  Several modifications 

have been made to this system in order to perform these experiments, and these 

will be outlined during the subsequent discussion. 

Vacuum system and pumping 

This system comprised a 40 cm diameter stainless steel chamber (Leisk 

Engineering) pumped by a liquid nitrogen trapped 9” oil diffusion pump (Edwards 

High Vacuum E09) charged with polyphenyl ether fluid (Santovac 5) and backed 

by an oil sealed mechanical rotary vane pump (Edwards High Vacuum E2M40).  

Additional pumping was provided by a titanium sublimation pump (Leisk 

Engineering) mounted between the chamber and main diffusion pump. 

  

Figure 2.2: Photograph of UHV chamber 1. 
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The pressure in the main chamber was measured by an uncalibrated, hot cathode 

ion gauge (Caburn MDC Ltd.). Backing pressures were measured using pirani 

gauges (Vacuum Generators) controlled by the same controller (Vacuum 

Generators IGP3) as the ion gauge. 

The second differential pumping stage of the molecular beam system was integral 

to the main chamber, separated by internal walls, and with a line-of-sight to the 

substrate via an orifice with variable diameter.  This chamber was pumped by a 

liquid nitrogen trapped 6” oil diffusion pump (Edwards High Vacuum E06) 

charged with polyphenyl ether fluid (Santovac 5) and backed by an oil sealed 

mechanical rotary vane pump (Edwards High Vacuum E2M18). No pressure 

gauge was fitted to this chamber; however, without a gas load from the molecular 

beam system, is was reasonable to assume a base pressure of < 1×10
-9

 torr.  In 

order to obtain UHV, it was necessary to bake the system at a temperature of 120 

°C for 48-60 hours to increase the desorption rate of H2O adsorbed on internal 

surfaces.  After the system had cooled and any filaments and the substrate had 

been sufficiently degassed the liquid nitrogen traps were filled. Following this 

procedure, a base pressure of <2×10
-10

 torr was routinely obtainable. A schematic 

of the pumping on this system is shown in Figure 2.3. 

The molecular beam source was housed in a separate high vacuum (HV) chamber 

attached to the main UHV system via a DN38CF flange to the integral second 

differential chamber. The source could be isolated from the UHV chamber by 

means of a gate valve (Edwards High Vacuum) and remained outside the bakeout 

region. The source consisted of two chambers; the source chamber and the first 

differential chamber. These were separated by a 5 mm diameter orifice onto which 

a skimmer could be mounted. For the experiments described here, no skimmer 

was used as the other orifices present provided sufficient collimation. This orifice 

could be moved using two linear drives in order to align the beam with the 

substrate in the main chamber.  
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Figure 2.3: Schematic of the pumping arrangement for chamber 1. 
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Pumping was provided by a 9” oil diffusion pump (Edwards High Vacuum E09) 

and a 6” oil diffusion pump (Edwards High Vacuum E06) in the source and 

differential chambers respectively. The diffusion pumps were charged with 

silicone fluid (Dow Corning DC-704). The 9” diffusion pump was backed by an 

oil sealed rotary vane pump (Edwards High Vacuum E2M40) which was aided by 

a mechanical booster (Edwards High Vacuum EH250) to provide a sufficient 

pumping speed when the source was in operation. The 6” diffusion pump was 

backed by an Edwards High Vacuum E2M18 rotary vane pump. Chamber 

pressures were measured with Penning gauges (Edwards High Vacuum CP25-K) 

and backing pressures with Pirani gauges (Edwards High Vacuum PRL10). 

Pressure gauges were controlled by two Edwards High Vacuum Pirani Penning 

1005 controllers. Base pressures in the low 10
-7

 mbar region were routinely 

obtained in both chambers, rising to the low 10
-4

 mbar range and low 10
-6

 mbar 

range in the source and differential chambers respectively during beam operation. 

During continuous H2O beam operation with the substrate out of line-of-sight 

with the beam the pressure in the main chamber rose to around 8×10
-10

 torr. The 

species of interest entered the source chamber through a 6 mm diameter glass 

nozzle having a hole approximately 0.5 mm in diameter. The nozzle was attached 

to a stainless steel tube using compression fittings and a graphite ferrule. The 

nozzle assembly was mounted on an x-y translation stage to allow the beam to be 

aligned with the other orifices in the system. This in turn was mounted through 

edge-welded flexible bellows such that the end of the nozzle could be positioned 

near to the orifice to the differential chamber. The system was also equipped with 

a mechanical chopper to provide a pulsed molecular beam in order to obtain the 

time-of-flight (ToF) of molecules in the molecular beam. This was not used in 

these experiments where an effusive beam was produced. A schematic of the 

pumping arrangement for the molecular beam source is shown in Figure 2.4. 
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Figure 2.4: Schematic of the pumping arrangement for the molecular beam source. 

 

 

 

 

Figure 2.5: Photograph of the molecular beam source. 
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Instrumentation 

Much of the instrumentation on the system was for use with single crystal 

substrates and was not used in this work and so will be discussed briefly.  The 

system was equipped with an ion sputter gun for cleaning.  An electron gun and 

hemispherical electron energy analyzer (VG Microtech CLAM 100) were 

provided for Auger electron spectroscopy (AES) to ascertain substrate cleanliness.  

In order to examine surface order, rear view low energy electron diffraction 

(LEED) optics (VG Microtech RVL 640) with integral electron gun were fitted to 

the chamber.  In previous experiments a twin microchannel plate (MCP) detector 

(Photek VPM 218) was used to collect ions produced during resonance enhanced 

multiphoton ionization (REMPI) experiments.  During the experiments described 

here, both the LEED optics and MCP were removed from the system.  A low 

energy electron gun (Kimball Physics ELG-2) was mounted in place of the MCP 

for the electron irradiation experiments described here.  This was capable of 

producing 2-2000 eV electrons with an energy spread of 0.5 eV.  A cross-beam 

source quadrupole mass spectrometer (QMS; VG Microtech PC300D) for TPD 

and electron stimulated desorption experiments was mounted on a table in the 

base of the chamber. The QMS had been modified from the original design 

(European Spectrometry Systems) to allow operation in pulse counting mode. 

This could be rotated about the sample using a gear system mounted through a 

differentially pumped rotary feedthrough.  The QMS was contained within a 

differentially pumped chamber that was pumped via a connection to the 6” 

diffusion pump and an 8 l s
-1

 diode ion pump (Varian VacIon).  A 5 mm tube 

protruding from the wall of this chamber provided a direct line-of-sight between 

the sample and the ion source of the QMS.  This reduced the detection of 

molecules desorbing from any surfaces other than the substrate itself, such as the 

sample mount.  The instrumentation was mounted in two distinct levels within the 

main chamber, with the upper preparation level for cleaning and AES.  Two fine 

leak valves were also situated within the upper level, through which gases could 

be introduced into the chamber in a controlled manner.  The lower experimental 

level contained the low energy electron gun and two differentially pumped KBr 

windows through which the IR beam for conducting RAIRS experiments entered 

and exited the chamber.  The ion source of the QMS and line-of-sight tube were 
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also situated in this level. A second QMS (VG Quadrupoles Q7) was fitted to the 

chamber directly opposite to the orifice through which the molecular beam 

entered the chamber. This could be used to assess the purity and stability of the 

molecular beam, as well as compare relative fluxes between experiments. RAIR 

spectra were obtained with a Fourier Transform Infrared (FTIR) spectrometer 

(BioRad FTS-60A). The external IR beam from the spectrometer was first 

directed into a box clamped onto one of the KBr window ports on the UHV 

chamber. The beam was directed into the chamber and focused onto the sample at 

an angle of 6° to the plane of the surface using a combination of a plane mirror 

and a parabolic mirror. The reflected beam was directed and focussed onto the 

detection element of a mercury cadmium telluride (MCT) detector using a second 

plane mirror and an ellipsoidal mirror. These optics were housed in a second box 

clamped to the exit KBr window port. Both optics housings were purged with dry 

CO2 free air to reduce absorption due to atmospheric H2O and CO2. The 

experimental level of the chamber is shown schematically in Figure 2.6. 

 

Figure 2.6: Schematic showing the experimental level of UHV Chamber 1. 
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Sample mounting 

The sample mounting arrangement is shown in Figure 2.7. The substrate used 

was a 10 mm diameter, 2 mm thick stainless steel disc with 1 mm holes drilled 

through at the top and bottom such that it could be suspended on several 0.25 mm 

diameter tantalum wires. These were spot-welded to 0.075 mm thick nickel foil 

that had been wrapped around and spot-welded to 2 mm diameter molybdenum 

heating rods. Each of the rods was attached to an oxygen free high conductivity 

(OFHC) copper semi-circular block. The two semi-circles were bolted to a 

circular OFHC copper block with a sapphire insulator inserted between. This, 

along with a small gap between the two semi-circular pieces meant that it was 

possible to pass a current through the tantalum wires in order to heat the substrate. 

The electrical isolation provided by the sapphire insulator also made it possible to 

float the substrate relative to the chamber. This meant that it was possible to apply 

a bias to the substrate in order to attract electrons or ions or to reduce their energy, 

depending on the polarity of the bias. It is important to note that in order to 

properly float the substrate, it was necessary to remove all external wiring 

connected to the heating wires and thermocouple, which would otherwise provide 

a route to ground. The upper OFHC copper block had a tapped hole in the centre, 

such that it could be screwed onto a threaded stud on the end of a liquid nitrogen 

dewar. A K-type thermocouple was spot-welded to the edge of the substrate for 

temperature monitoring. This type of thermocouple consists of chromel (90% Ni, 

10% Cr) and alumel (95% Ni, 2% Mn, 2% Al, 1% Si) wires. Both heating and 

thermocouple wires were wrapped around the dewar and connected to appropriate 

feedthroughs at the top of the manipulator. It was important to check at all times 

that there were no shorts between the heating wires, thermocouple wires and 

chamber. All wires were insulated using glass fibre sleeving that had been 

thoroughly cleaned in isopropyl alcohol prior to use to remove any residual 

organic contaminants. 
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Figure 2.7: The sample mounting arrangement used in UHV chamber 1. 

 

The substrate could be moved by means of a precision xyz manipulator (Leisk 

Engineering) mounted on the top flange of the main chamber. The entire substrate 

mounting and control assembly was mounted through the manipulator. The 

position of the sample in the x,y plane could be adjusted by means of a platform 

moved by using a micrometer scale. The assembly could be raised and lowered 

using both a coarse control hand wheel, and a fine micrometer control, moving the 

upper platform of the manipulator which was connected to the lower platform via 

flexible edge welded bellows. In order to facilitate rotation of the sample, a 

precision differentially pumped rotary feedthrough (DPRF; Vacuum Generators 

DPRF25) was mounted on the top of the manipulator. This was sealed using two 

PTFE ring seals, with a cavity between that was pumped via a suitable connection 

to one of the rotary pumps. The resulting pressure gradient reduces the leak rate 

during rotation. The manipulator assembly is shown schematically in Figure 2.8. 
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Figure 2.8: Schematic of the manipulator assembly on UHV chamber 1. 
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Temperature control system 

The substrate could be heated by passing a current through the tantalum support 

wires. As the thin tantalum wires have a significantly higher resistance than the 

copper wires used in the rest of the heating circuit, they heat up when a current is 

passed through them. The current was provided by a power supply capable of 

providing up to 50 A (Farnell Type H60/50). As well as manual temperature 

control using the current adjustment on this supply, automatic control was 

provided by a controller (Eurotherm 815S)  capable of maintaining set-points 

down to -150°C. This was interfaced to both the power supply and the K-type 

thermocouple spot-welded to the edge of the substrate. With this arrangement it 

was also possible to achieve heating ramps of 0.1 K s
-1

 with good linearity for 

TPD experiments. When conducting TPD experiments it is necessary to record the 

thermocouple voltage along with the ion signals for the fragments being 

monitored with the QMS. The QMS could record this voltage using one of the 0-

10 V auxiliary input channels provided. A K-type thermocouple generates an emf 

of a few millivolts, with 0 V centered at around 0 °C, thus it was necessary to 

amplify the raw thermocouple voltage and offset it sufficiently that the region of 

interest was within the 0-10 V limits. Amplification was achieved using a 

commercially available integrated circuit (Analog Devices AD595) and offset by 

+2.5 V using a voltage reference integrated circuit (Analog Devices AD680JTZ). 

The voltage was then calibrated by making a measurement of raw thermocouple 

voltage at base temperature (ca. 115 K) with the substrate cooled with liquid 

nitrogen. This was corrected for the room temperature junction at the vacuum 

feedthrough using values from a standard K-type thermocouple calibration chart. 

The substrate was then heated at a rate of 0.1 K s
-1

 to 273 K and the raw voltage 

again recorded and corrected. During the heating the voltage channel in the QMS 

was recorded, along with a series of readings from the Eurotherm controller, 

which were adjusted to agree with the corrected raw voltage values. The recorded 

amplified voltage was then plotted against the recorded temperatures and fitted 

with a 6
th

 order polynomial. A typical calibration curve is shown in Figure 2.9 

and the associated polynomial coefficients in Table 2.1.  
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Figure 2.9: Calibration curve for the K-type thermocouple of chamber 1. 

 

 

 

Coefficient for polynomial 

AV
6
+ BV

5
+ CV

4
+ DV

3
+ EV

3
+ FV+ G 

Coefficient value
 

A 208.6 K V
-6 

B -2391.3 K V
-5

 

C 11298.3 K V
-4

 

D -28126.4 K V
-3

 

E 38848.5 K V
-2

 

F -28032.2 K V
-1

 

G 8301.4 K 

Table 2.1: Coefficients for 6
th

 order polynomial calibration curve for K-type thermocouple. 

 

Gas dosing 

In addition to using the molecular beam, dosing could also be performed by back 

filling the chamber to a pressure as measured using the ion gauge on the main 

chamber. Gases could be introduced into the chamber via two fine control leak 

valves (Vacuum Generators MD95) situated in the experimental level. These were 

connected to two independent gas handling manifolds. Each of these consisted of 

four DN16CF ports to which vessels containing the species to be dosed could be 

attached. Typically this was achieved using glass ball and cup joints attached to 
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the port using a glass to metal transition. Liquids and gases were contained within 

test tubes and bulbs respectively which were connected to the transition via a 

valve. Further isolation from the manifold was provided by a DN16CF bellows 

valve on each port. One manifold was used for dosing species of experimental 

interest whilst the other was set aside for CO, H2 and O2 for use in single crystal 

cleaning cycles. Both manifolds were pumped by an oil diffusion pump (Edwards 

High Vacuum E02) backed by a mechanical rotary pump (Edwards High Vacuum 

E2M5). The manifolds could be isolated from the pumping system using a pair of 

right angle valves (Caburn MDC). Pressure measurement within the dosing 

system was limited to a pirani gauge, though preliminary tests with an ion gauge 

demonstrated that base pressures in the 10
-8

 torr range or better could be achieved.  

2.3.2 Calibration of molecular beam 

Before using the molecular beam to deposit H2O films it was necessary to conduct 

some simple calibration experiments in order to obtain the optimum beam, in 

terms of both flux and profile. For this the beam was operated without being 

incident on the sample.  H2O molecules were detected using the QMS in line-of-

sight with the beam. The source chamber pressure was adjusted by carefully 

opening the valve to the bulb containing H2O that had previously been purified by 

several freeze-pump-thaw cycles. The source pressure was then stabilized at a 

value that resulted in the maximum flux as observed by the maximum signal at 

m/z=18. The source pressure varies as a function of nozzle pressure which will be 

somewhat higher. A Baratron gauge is present for monitoring the nozzle pressure, 

but with a 0.5 mm diameter hole the optimum pressure is reached at a pressure 

below the lower limit that this gauge can read. If the nozzle pressure is too low, a 

beam will be formed, but will have a low flux. As the pressure is increased the 

flux will also increase until collisions between molecules within the nozzle begin 

to cause the beam to break down. The maximum flux was obtained with a source 

pressure of (2.0±0.2)×10
-4

 mbar which likely corresponds to a nozzle pressure 

somewhere in the low 10
-2

 mbar range. After optimizing the flux the nozzle was 

moved using the x,y translation stage on which it was mounted to maximize the 

signal at the QMS. This was to ensure that the beam passed through the centre 

point of the chamber. The nozzle was also moved forwards, close to the orifice to 
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the first differential pumping stage, to ensure maximum flux through the 

collimating orifice between the two chambers.  

It was also necessary to align the sample properly such that the beam was centered 

upon it. As the beam had been aligned to pass through the centre of the chamber, 

this ensured that the beam position is also suitable for performing RAIRS 

experiments without having to move the sample. The line-of-sight QMS was 

again used and the sample moved in both the Y and Z planes, which are 

perpendicular to the beam. The area under the m/z=17 and 18 peaks was 

calculated using the oscilloscope (Lecroy 9420) used to observe the QMS signal. 

The integrated signal then was recorded for each Y and Z position, with minimum 

signals being obtained with the sample in optimum position, blocking the beam. 

By comparing the recorded signal to that obtained with the sample well out of the 

beam, the fraction of the beam intercepted could be calculated. The variation of 

beam interception with Y and Z position is shown in Figure 2.10. The sample was 

then positioned at the centre of the relatively flat region in the uptake plot. The 

features at Y and Z values far from the centre can be attributed to varying amounts 

of beam blocking by support and thermocouple wires. 

In order to obtain an estimate of the beam flux for an H2O beam, H2O films were 

deposited by using both background dosing and beam dosing. The surface 

concentration was calculated for background doses using simple collision theory, 

where the sticking probability was assumed to be unity. This procedure will be 

described in subsequent chapters. By comparing the areas under TPD profiles 

(TPD yield) for films deposited using the two dosing methods it was possible to 

calculate surface concentrations for the beam deposited films. These were then 

converted into fluxes using the known beam dosing times. This approach gave 

(3±1)×10
13

 molecules cm
-2 

s
-1

 with the error being derived from variations in the 

value obtained for different beam dose times. Figure 2.11 shows the comparison 

between a 10 L background dosed H2O film and a 100 s beam dosed film which 

was found to correspond to an effective dose of 7 L. 
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Figure 2.10: Fraction of the molecular beam that is incident on the 

sample for different positions in both the Y and Z directions. 
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Figure 2.11: Comparison between H2O TPD profiles 

used for calculation of the molecular beam flux. A heating 

rate of 0.1 K s
-1

 was used. The traces have been offset for 

clarity. 
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2.3.3  UHV chamber 2 

Vacuum system and pumping 

This UHV chamber was used for those experiments involving the irradiation of 

ices with photons. It was designed for use in both traditional single crystal surface 

science and astrochemistry experiments. The 30 cm diameter stainless steel 

chamber (Instrument Technology Ltd.) was pumped by a liquid nitrogen trapped 

6” oil diffusion pump (Edwards High Vacuum E06), with additional pumping 

provided by a liquid nitrogen cooled titanium sublimation pump (Instrument 

Technology Ltd.) with associated controller (AML TSP2). A liquid nitrogen 

trapped 4” oil diffusion pump (Edwards High Vacuum E04) provided differential 

pumping for a pulsed dosing valve (Parker Instrumentation Iota One), which was 

mounted on a precision x, y, z manipulator (Vacuum Generators Miniax), and the 

quadrupole mass spectrometer. The pulsed dosing valve was not used in these 

experiments and will not be discussed further. The UHV chamber pressure was 

measured with a nude hot cathode ionization gauge (Instrument Technology Ltd.), 

whilst the pressure in the differential chamber of the pulsed dosing valve was 

measured with a cold cathode inverted magnetron ionization gauge (Edwards 

High Vacuum AIM). 

 

Figure 2.12: Photograph of UHV chamber 2. 
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All backing pressures were monitored with Pirani gauges (Edwards High Vacuum 

APG-L). All gauges were interfaced to two gauge controllers (Edwards High 

Vacuum Active Gauge Controller). A base pressure of <2×10
-10

 mbar was 

routinely obtained following bakeout at 100°C for 60 hours. A schematic diagram 

of the UHV chamber pumping arrangement is shown in Figure 2.13. 

Instrumentation 

As this system was designed for both single crystal surface science and 

astrochemistry experiments, a wide range of instrumentation was available on this 

UHV chamber. For determination of surface order and cleanliness, rear view 

combined LEED/AES optics (SPeCS ErLEED 150) with integral electron gun 

were fitted to the chamber, though not used in the experiments described here. 

Single crystal cleaning through sputtering was possible using an Ar
+
 sputter gun 

(Vacuum Science Instruments IS2000) through which Ar gas was introduced via a 

fine control leak valve (Vacuum Generators). Gases could be introduced into the 

background via a second fine control leak valve (Vacuum Generators). The system 

was equipped with two quadrupole mass spectrometers. For assessing the purity 

of species dosed into the chamber a residual gas analyzer (Stanford Research 

System RGA-200) quadrupole mass spectrometer with a m/z range of 1-200 was 

used. TPD and photon irradiation experiments were performed using a pulse 

counting quadrupole mass spectrometer with a m/z range of 1-300 (Hiden 

Analytical HAL IV RC PIC-RGA 301). This device was equipped with a channel 

electron multiplier and provided detection of species down to partial pressures in 

the 10
-13

 mbar range. Auxilliary input channels on the control unit allowed the 

simultaneous recording of ion counts and, for example, thermocouple voltages. A 

transistor transistor logic (TTL) output was also available for use with additional 

pulse counting electronics such as a multichannel scaler. The TTL pulse output 

was fed into a multichannel scaler (Stanford Research Systems SR430) for the 

acquisition of Time-of-Flight profiles. The experimental level also contained two 

fused SiO2 viewports through which the UV laser beam could be directed during 

irradiation experiments. 
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Figure 2.13: Schematic of the UHV chamber used for photon irradiation experiments. 
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These were positioned such that the beam was incident at an angle of 45° to the 

surface normal when the sample was rotated to face the mass spectrometer line-

of-sight tube. Differentially pumped mountings were also fitted for KBr windows 

for performing IR experiments. The design of the flange for this mounting 

arrangement allowed two configurations to be adopted by rotating the flange 

through 180°. This allowed experiments with the beam either incident at a grazing 

angle to the sample for RAIRS experiments, or along the surface normal for 

transmission experiments. Spectra were obtained using a FTIR spectrometer 

(Thermo Nicolet Nexus 470) equipped with a KBr beamsplitter and an external 

liquid cooled mercury-cadmium-telluride (MCT) detector. The beam was steered 

by a plane mirror (50 × 50 mm) towards a 90
o
 off-axis parabolic mirror (∞:330 

mm, Aero Research Associates Inc.) to focus the IR beam onto the sample. Upon 

leaving the chamber, the beam was steered and focussed onto detector with a 90
o
 

off-axis ellipsoidal mirror (330:33 mm, Aero Research Associates Inc.). All 

steering optics and the detector were housed in custom built boxes mounted on 

either side of the UHV chamber. These were purged with dry nitrogen, along with 

the FTIR spectrometer to reduce absorption by atmospheric H2O and CO2 along 

the beam path. The two arrangements for IR experiments are shown in Figure 

2.14. A schematic of the experimental level of the chamber used for photon 

irradiation experiments is shown in Figure 2.15. 

As this system was specifically designed for studying the interaction of species 

with extremely cold dust grains in the interstellar medium, it was equipped with a 

closed cycle helium cryostat (SHI-APD DE-202B) in order to cool the sample. 

This, in principle, allows the sample to be cooled to around 10 K, enabling more 

volatile species such as CO, N2, and NH3 to be adsorbed. However, during these 

experiments technical problems limited the base temperature to around 80 K. This 

type of cryostat utilizes the expansion of a compressed gas to cool an OFHC Cu 

cold finger. A compressor compresses CP grade Helium (BOC) to 320 psi which 

passes into the cryostat head mounted on the top of the sample manipulator. This 

contains a displacer, moved up and down within a closely fitted housing. Initially 

the helium enters with the displacer in the down position.  
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Figure 2.14: Arrangement for (a) RAIRS and (b) transmission 

IR experiments. 

 

 

Figure 2.15: Schematic of the experimental level of the UHV 

chamber used for photon irradiation experiments. 
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The displacer then moves up, increasing the volume occupied by the helium. Heat 

is then transferred from the housing to the helium in order that it can expand to fill 

the volume. As this process is repeated, the housing and the OFHC copper cold 

finger which is attached to it gradually cools down. The cold finger and lower 

section of the cryostat assembly were surrounded by a gold plated OFHC copper 

cryoshield to reflect incident radiation that may present an additional heat load. 

All thermocouple and heating wires were tightly wound around the cold finger in 

order to reduce any heat load that they might otherwise provide. 

Sample mounting 

The sample mount used for these experiments was designed for mounting either a 

single crystal or interstellar grain mimic, depending on the experiments being 

conducted. This requirement poses the challenge of being able to rapidly heat a 

single crystal to ca. 1000 K for annealing during single crystal cleaning cycles, 

and then cool to 10 K for experiments. Unfortunately, the full capability of the 

mount was not realized due to difficulties with the closed-cycle helium cryostat. 

The mounting arrangement is shown in Figure 2.16. The mount assembly was 

constructed from OFHC copper and was attached to the end of the cryostat cold 

finger using an M6 bolt with electrical isolation provided by a cylindrical ceramic 

insulator. The mount was electrically isolated from the cold finger by a sapphire 

spacer (25 mm diameter × 1 mm thickness). In order to maximize thermal contact, 

polished silver gaskets (thickness 0.1 mm) were inserted between all components. 

The substrate could be heated by means of a customized “button” style resistive 

heating cartridge (HeatWave Labs Inc.) contained within a Mo thermal shield. 

The heater assembly was held in place by clamping it within a hole at the lower 

end of the mount. Electrical isolation of all components was achieved using 

appropriate ceramic pieces. The substrate itself was clamped onto the front face of 

the heater by small pieces of Ta which were bolted onto the mount. Temperature 

measurements were made using three thermocouples. The first was a K-type 

(NiCr/NiAl) thermocouple inserted into the rear of the heater such that the 

junction was positioned on the rear of the heater’s front face, on which the 

substrate was mounted. A further K-type thermocouple and a KP-type (0.7% Fe in 

Au/Cr) thermocouple were attached to the sample mount itself. 
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Figure 2.16: Sample mounting arrangement for photon irradiation experiments. 

 

The junctions of these thermocouples were spot-welded onto small washers that 

were pressed against the side of the mount by the bolt used to clamp the heater in 

place. A maximum substrate temperature of 1500 K was possible, which is more 

than adequate for routine single crystal cleaning. 

The entire cryostat assembly was mounted on a precision xyzθ manipulator 

assembly to allow full control of sample positioning within the chamber for a 

range of experiments. The xyz manipulator (Vacuum Generators Centiax) had x 

and y motions of ±25 mm with 5 µm precision. Translation in the z-direction of 

150 mm was adjusted using a hexagonal drive nut, giving 4 mm motion per 

revolution. Unlimited rotation with 0.05° resolution was possible using a two 

stage differentially pumped rotation stage (Vacuum Generators RP100). 

Appropriate thermocouple feedthroughs and connections for the substrate heater 

were mounted on flanges close to the top of the cryostat assembly. 

Line-of-sight QMS 

The design of the sample mount meant that during TPD experiments with large 

temperature ranges, significant desorption would occur from other parts of the 

sample mount. In order to constrain the detection of desorbing molecules to those 
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originating from the sample surface, a Line-of-Sight (LoS) design based on that of 

Jones and Turton [3,4] was used. In this design the QMS was mounted within a 

liquid nitrogen cooled shroud. This was connected by flexible bellows to the main 

chamber diffusion pump to provide differential pumping. An OFHC copper tube 

(inner diameter, 10 mm) was attached to the end of the shroud such that the entire 

tube would reach ca. 80 K when the shroud was filled with liquid nitrogen. This 

provided a line-of-sight between the sample surface and the ion source of the 

QMS. Consequently any molecules desorbing from surfaces other than that 

defined by the line-of-sight would collide with and freeze out onto the surface of 

the tube before reaching the ion source. This would only be the case for species 

that will adsorb at 80 K, and the constraint for more volatile species is reliant on 

the geometrical constraints alone. A schematic of the LoS arrangement is shown 

in Figure 2.17. 

 

Figure 2.17: Arrangement for LoS TPD measurements. 

 

Temperature control system 

The substrate heater was controlled by a programmable controller (Scientific 

Instruments Model 9700) connected to the low voltage DC heater power supply 

(Glassman Europe LP40-30). The power supply was capable of providing a 

maximum current of 10 A at 30 V. The programmable controller had two 

independent thermocouple inputs, and was able to store calibration curves in order 

to convert the thermocouple voltage to temperature. This combination of power 
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supply control and thermocouple feedback allowed the controller to be 

programmed to hold the temperature at a specific set point, and produce heating 

ramps based on a user specified function. Modification of parameters was possible 

directly through the front panel of the controller unit, and also remotely using 

National Instruments LabView software supplied with the unit (LabView driver 

M9700) through a RS232 interface to a desktop PC. The controller also provided 

raw thermocouple voltage outputs. By reading one of these into the auxiliary input 

channel of the pulse counting QMS it was possible to record thermocouple 

voltage simultaneously with ion counts using the QMS software, as required in 

TPD experiments. 

Laser system 

The laser system described here was used for UV irradiation experiments 

performed with wavelengths of 248.8 nm, 250.0 nm and 275.0 nm. The UV 

irradiation beam was generated using a Nd
3+

:YAG pumped dye laser. The pump 

laser (Continuum Powerlite 8000) was operated in the third harmonic (355 nm). 

This output was used to pump the dye laser (Sirah CobraStretch) that was 

operated with Coumarin 307 dye. This dye gives a peak output centred around 

500 nm when pumped at 355 nm. A frequency doubled output was obtained 

through second harmonic generation (SHG), thus allowing the target wavelengths 

to be obtained. The beam was steered to the UHV chamber using UV dichroic 

mirrors (MaxiBrite). The steering system incorporated a periscope to bring the 

beam up to the experimental level of the UHV chamber. Pulse energy was 

measured using a power meter positioned just before the beam entered the 

chamber through the fused SiO2 window. The pump laser was operated at a 

repetition rate of 10 Hz, controlled by a standard pulse generator (Stanford 

Research Systems DG535). Initially, the shutter to let the beam into the chamber 

was controlled manually, though this was replaced in later experiments by control 

from a second pulse generator (Stanford Research Systems DG535).  
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2.3.4 PM-RAIRS system 

The system for performing Polarization Modulation RAIRS (PM-RAIRS) 

experiments was housed in a dry box that was purged with dry, CO2 free, air to 

reduce absorption by atmospheric contaminants such as H2O and CO2. Spectra 

were acquired with an FTIR spectrometer (Nicolet Nexus 870) and an external 

two channel MCT detector (Nicolet MCT-A). The polarization of the IR beam 

was modulated using the PEM-90 photoelastic modulator (Hinds Instruments 

Model II/ZS50) which incorporates a ZnSe crystal. The obtained signal was 

demodulated with a synchronous demodulator (GWC Technology SSD-200). The 

IR beam was steered using a plane mirror and subsequently focused into the PEM 

with a parabolic mirror. The sample was mounted on a rotatable holder for easy 

beam alignment with a reflection angle >75° to the surface normal being used. 

The reflected beam was focused into the window of the MCT detector by use of a 

lens. The experimental arrangement is shown in Figure 2.18. 

 

 

Figure 2.18: Photograph of the PM-RAIRS system. The path of the 

IR beam is shown in red. 
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2.4  Experimental techniques and procedures 

2.4.1 Neutral detection using quadrupole mass spectrometry (QMS) 

Mass Spectrometry has found applications in a great many areas of science and is 

performed using a wide range of different techniques. The general principle 

behind mass spectrometry is to separate molecules according to their molecular 

mass and provide a measure of the abundance of one or more species in the 

medium of interest. In QMS, molecules are first ionized and then mass filtered by 

their mass to charge ratio, m/z. This is due to the inherent difficulty in detecting 

neutral species. The quadrupole mass spectrometers used in this work were 

equipped with electron impact (EI) ion sources. In such a source electrons are 

generated through thermionic emission by passing a current through a filament, 

usually made of tungsten, W, or thoriated iridium. These electrons are then 

accelerated towards the source electrode acquiring an energy of typically 70 eV. 

These electrons will then ionize molecules that enter the source. Ions that are 

produced are then accelerated into the mass filter by the ion focus electrode. The 

quadrupole mass filter lies at the heart of the QMS and consists of four parallel 

rods arranged such that their cross-section forms a square arrangement to which a 

combined RF and DC field is applied. Ions entering the filter from the source will 

tend to spiral down through the filter. Each mass to charge ratio has a specific 

RF/DC amplitude that will allow it to pass stably through the filter. Ions with 

different mass to charge ratios will spiral out of the filter. By increasing the 

RF/DC amplitude gradually, a range of m/z values can be scanned. Once mass 

selected, ions are detected using an appropriate detection system. A Faraday cup 

detector may be used, in which the ion current of a particular mass ion is 

measured directly. This ion current is typically very small (< 1 pA) and so the 

signal must be pre-amplified. This limits the application of this type of detector to 

higher pressure ranges, and is generally not sufficient for use in UHV studies. 

More frequently, a secondary electron multiplier (SEM) is used which can achieve 

much higher sensitivities. The commonly used channel electron multiplier (CEM) 

consists of a curved glass channel constructed out of a special lead silicate glass. 
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This material releases a large number of electrons per incident electron or ion. 

Mass selected ions are deflected into the wide entrance to the CEM held at a large 

negative potential (ca. -2 to -3 kV) by a deflection plate. Upon striking the surface 

of the CEM a large number of electrons are released which move down the 

channel, eventually striking the surface. In this way a cascade of electrons is 

generated giving an overall signal gain of the order of 10
7
. This allows for 

sensitivities down to around 10
-13

 torr. In some systems, the CEM can be operated 

in two modes. In analogue mode the output current from the CEM is amplified 

and recorded in much the same was as with a Faraday cup detector. For analogue 

operation the CEM is operated at a potential of between -1500 and -2000 V, 

calibrated to give the same total pressure reading as, for example, the chamber ion 

gauge. However, in some circumstances it is more desirable to obtain the current 

pulses associated with an ion detection event. In pulse counting mode, the output 

from the CEM displays a characteristic dependence on the applied potential 

whereby it increases rapidly to some potential, then forms a plateau to higher 

voltages. Pulse counting using a CEM has been described previously [5]. The 

potential is chosen to be as low as possible whilst still being in the plateau region. 

Operating at lower potentials reduces the sensitivity, and may result in poor 

stability, given the strong dependence on applied potential. Operating at higher 

potentials will not result in a significant gain in sensitivity, but may increase 

noise, and will ultimately reduce the lifetime of the detector. The output current 

pulses are usually converted to TTL voltage pulses for further processing. A 

discriminator is used to select the largest pulses in the pulse height distribution 

(PHD), such that pulses can be separated from any noise. A typical PHD is shown 

in Figure 2.19 with the dotted line showing where the discriminator voltage 

should be set such that noise is discarded without losing a significant number of 

signal pulses. The resulting detection method gives a highly sensitive, rapid 

response that can be used in time-resolved studies down to intervals of the order 

of 1 µs. 
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Figure 2.19: Pulse height distribution for a CEM operated at 3100 V. 

The dotted line shows where the discriminator voltage that should be 

used to separate the signal from the noise. Adapted from [5]. 

2.4.2 Temperature programmed desorption (TPD) 

Temperature programmed desorption is a simple experimental technique in which 

the desorption rate of molecules from a surface is monitored whilst the surface is 

heated, typically with a linear temperature ramp. Desorbing molecules are usually 

detected using a QMS situated close to the surface of interest. TPD can be used to 

determine the activation energy for desorption of a particular molecular species 

from a surface, yielding an approximate value for the adsorption energy. For 

multilayer systems, the adsorbate-adsorbate interaction energy can be obtained. 

Information on different binding sites and orientation can be also be obtained, and 

the technique is typically combined with RAIRS experiments to obtain 

complementary results. Despite the experimental simplicity, analysis of TPD data 

is frequently complicated, and a good understanding of the kinetics of the 

desorption process is required to fully exploit the potential of the technique. 

Nevertheless, a TPD experiment is a good place to start when studying the 

adsorption of molecular species on solid surfaces. 

The TPD technique has been described previously, along with detailed 

discussions on the analysis of TPD data [6,7]. Here a general overview of the 



84 

technique and general analysis used in this work will be provided. There are 

several important experimental considerations when performing TPD 

experiments. The first concerns the pumping speed of the vacuum chamber. If the 

pumping speed is lower than the rate of desorption, then the desorbed species with 

accumulate in the chamber and the measured ion signal in the QMS will not be 

proportional to the desorption rate. For this reason, TPD experiments are usually 

performed at UHV where the pumping speed is usually sufficiently high that the 

QMS signal is proportional to desorption rate. It is also important to ensure that 

the substrate is, as far as possible, heated uniformly across the surface. Non-

uniform heating can lead to broadening of TPD peaks, which can make analysis 

difficult and less reliable. The resulting TPD traces are also prone to the detection 

of species desorbing from surfaces other than that of interest, leading to additional 

peaks. This is not a problem if the peaks are well separated from the peaks of 

interest, but this is frequently not the case, and TPD experiments may incorporate 

line-of-sight techniques where molecules desorbing from other surfaces are 

prevented from reaching the QMS by a combination of geometric constraints and 

liquid nitrogen trapping. Desorption from heating wires can be reduced by briefly 

flash heating them before conducting the TPD experiment. 

Analysis of TPD data requires a consideration of the kinetics of the desorption 

process, for example the desorption of species A from a surface can be 

represented by: 

A(g)A(ads) →     Equation 2.3 

 

where A(ads) represents the adsorbed species and A(g) represents the gas phase 

species following desorption. The rate of desorption, rdes can be written in terms 

of an Arrhenius equation known as the Polanyi-Wigner Equation: 
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where θ is the coverage, t is time in s, T is the substrate temperature in K, ν(θ) is 

the pre-exponential factor in units appropriate for the desorption order, also 
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known as the frequency factor, n is the order of the desorption process, Edes is the 

desorption energy in J mol
-1

 and R is the gas constant in J K mol
-1

. This 

expression may also be written in terms of a surface concentration N in molecules 

cm
-2

.  

In order to be able to use Equation 2.4 to obtain kinetic parameters from TPD 

data, it must be transformed into a form where the rate is expressed in terms of 

temperature, as it is in an experimental TPD trace. This can be done by 

recognising that the desorption rate can be written in terms of the heating rate, 

β=(dT/dt), yielding: 
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There are several techniques used for the extraction of kinetic parameters from 

TPD data and these have been described in detail elsewhere [6]. One can consider 

the peak in a TPD trace by differentiating Equation 2.5 with respect to 

temperature and setting the result equal to zero to obtain, for the case of n=1 for 

first order desorption: 
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where ν1 is the first order pre-exponential factor and Tmax is the temperature at 

which the peak in the desorption trace occurs. It can be seen that there is no 

dependence on coverage, θ, which indicates that a first order desorption does not 

shift in temperature as coverage is increased. If n=2, then the peak position will 

depend on θ. Most analyses of TPD traces are based on the application of an 

equation of the form of Equation 2.6 appropriate for the order of the desorption 

kinetics. The form of this expression gives an indication of the shape of the 

resulting TPD peaks. For zero order desorption the peak temperature shifts to 

higher temperature with increasing coverage and the traces display coincident 

leading edges. For first order desorption, the peak temperature does not vary with 

coverage and the peak is slightly asymmetric. Second order desorption kinetics 
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display a more symmetric peak. Thus, an approximation can be made for the 

desorption order from inspection of experimental traces. However, it is essential 

to proceed with caution as in many real systems the desorption order may be 

fractional. Methods for obtaining more accurate desorption orders from 

experimental TPD data have also been described [8]. 

The desorption order is indicative of the nature of the desorption process. First 

order desorption typically occurs for the desorption of sub-monolayer coverages 

of adsorbate from a well defined surface. Zero order desorption is characteristic of 

desorption from multilayer coverages, in which the desorption energy is related to 

the interaction between adsorbate molecules. Second order desorption arises from 

recombinative desorption, or desorption where there are strong lateral interactions 

between adsorbate molecules. In the case of first order desorption, a simple 

relationship has been derived to relate the desorption energy to the peak position. 

This analysis was first described by Redhead in 1962 [9] and results in an easily 

applicable expression: 
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This expression must be used with caution, and should only be applied in the case 

of first order desorption. It relies on an appropriate choice of pre-exponential 

factor, ν1, though the sensitivity of this is reduced due to the logarithmic 

dependence. Typically a value of ca. 10
13

 s
-1

 is assumed for simple first order 

desorption. 

2.4.3 Reflection-absorption infrared spectroscopy (RAIRS) 

Probing the vibrations on molecules adsorbed on solid surfaces presents several 

challenges. A range of vibrational spectroscopies have been developed for use 

with surface adsorbed species [10]. Reflection-Absorption Infrared Spectroscopy 

(RAIRS) is the technique used in this work and will be discussed in more detail.  

It is clear that traditional IR spectroscopy in transmission mode is not applicable 

in the case of a thin film adsorbed onto an opaque substrate. It is possible to 
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conduct transmission IR studies using bulk ices adsorbed on transparent, IR 

transmitting surfaces such as KBr. Such studies can provide information relevant 

to thick adsorbed multilayers, but in many cases it is desirable to be able to 

consider the adsorbate-substrate interaction. The development of an alternative to 

transmission IR has been crucial in surface science, where typically, opaque, 

single crystal metal surfaces are studied. It is also important to note that the study 

of adsorbate-substrate interactions alone requires the adsorption of up to one 

monolayer of adsorbate. The path length through such a film is extremely small, 

resulting in very small absorbance values and great difficulty in obtaining useful 

spectra. As will be discussed, it was found that performing IR experiments in 

reflection mode, where the IR beam is reflected off the surface of interest has 

significant advantages. 

The theoretical background of RAIRS was first discussed by Greenler [11] and a 

brief overview will be given here. If light is incident normal to a metal surface the 

incident and reflected beams combine, forming a standing wave. This standing 

wave will have a node at the surface and, for infrared wavelengths, a very small 

amplitude at thicknesses corresponding to a few adsorbed layers. As it is the 

electric field that interacts with the oscillating dipole moments of adsorbed 

molecules, it follows that the absorption signal will also be small. It is clear from 

this that the incident beam needs to be away from the surface normal in order to 

achieve a reasonable absorption signal. This relies on the fact that the phase 

change upon reflection depends on both the angle of incidence and the 

polarization of the light. The relevant electric vectors are shown schematically in 

Figure 2.20. 

 

Figure 2.20: Electric field vectors for light incident on a reflective surface away 

from the surface normal. p and s refer to the polarization of the light and ' is used 

to indicate the reflected component. 
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The phase shift for the s polarized component is close to 180° for all angles of 

incidence. This means that the resultant vector for the s polarized component will 

be close to zero, and no significant absorption observed. However, the p polarized 

component of the incident light experiences a phase shift that is highly dependent 

on the angle of incidence, reaching around 90° for large angles. This means that 

the incident and reflected beams combine to yield a vector with a significant 

component perpendicular to the surface. This is enhanced by up to a factor of two 

compared to the magnitude of the incident vector. The enhanced absorption 

arising from this effect is shown in Figure 2.21, which shows that the maximum 

enhancement is achieved with an angle of incidence of ca. 88°. The component 

parallel to the surface will however be much weaker. As well as providing a 

significant enhancement in the absorption signal at high angles of incidence, an 

important condition arises; the surface selection rule. The p component is able to 

interact strongly only with vibrational modes that have a dipole orientated 

perpendicular to the surface. This means that any vibrations that have no 

perpendicular component will not be observed in the IR spectrum. Thus RAIRS 

can be used to obtain information of the orientation of adsorbed molecules by an 

analysis of which modes are present in the obtained spectrum. 

 

Figure 2.21: The surface intensity function as a function of angle 

of incidence demonstrating the enhancement achieved by using an 

angle close to grazing. 
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RAIR spectra in this work have been obtained using a Fourier transform infrared 

(FTIR) spectrometer. The principles behind both FTIR and dispersion 

spectrometers have been discussed at length elsewhere [12], nevertheless a brief 

overview of the principle of operation for an FTIR spectrometer will be provided 

here. With an FTIR spectrometer, experimental time is reduced compared the use 

of dispersion spectrometers as a result of all wavelengths being collected 

simultaneously. They can therefore achieve a higher signal-to-noise ratio in a 

shorter time than dispersion spectrometers. As an FTIR spectrometer requires no 

slits, which reduce the beam intensity in dispersion spectrometers, the optical 

throughput is much higher, which also increases the signal-to-noise ratio. Further 

signal improvements can be brought about by the co-addition of scans. This is 

made possible by the accuracy of the frequency scale which results from the use 

of a fixed frequency from the reference laser and the FT technique. Dynamic 

alignment of the IR beam within the FTIR spectrometer allows a high degree of 

stability over extended periods of time. The FTIR spectrometer is designed around 

the Michelson interferometer. In this arrangement IR radiation is provided by a 

heated ceramic source and directed into the interferometer. The interferometer is 

shown schematically in Figure 2.22. The interferometer consists of two mirrors 

and a beam splitter. The beam splitter reflects 50 % of the incident light, and 

transmits the remaining fraction. The transmitted fraction is incident on one of the 

mirrors, which is fixed, while the reflected fraction is directed onto the second 

mirror which moves back and forth over a small distance with a well defined 

frequency. Light from the two mirrors is then recombined at the beamsplitter, with 

the two components having a varying phase difference as a result of the varying 

path length of one of the beams. The resulting recombined beam will therefore 

produce an interference pattern. 

The interferogram for a monochromatic beam can be expressed mathematically as 

the function Imono(d): 

)~2cos()~()(
mono

dIdI νπν=   Equation 2.8 

where d is the path difference, ν~  is the wavenumber of the radiation, with 

λν /1~ =  for the wavelength λ , and )~(νI  is the intensity of the source. 
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Figure 2.22: The Michelson interferometer as employed in a typical FTIR. 

 

In an FTIR a broad band IR source emitting radiation over a range of 

wavelengths. The expression for the interferogram resulting from such a 

polychromatic source is given by an integral over all frequencies: 

∫
∞

=
0

poly
d)~2cos()~()( ννπν dIdI .  Equation 2.9 

 

Therefore, the interferogram produced at the IR detector will contain information 

at all wavelengths. In order to obtain an IR spectrum, it is necessary to transform 

from the interferogram which is in the time domain (noting that d is a function of 

time, t, to the frequency domain, typically expressed in terms of wavenumbers. 

This is achieved mathematically be performing a Fourier transformation to obtain 

the single beam spectrum, )~(νI : 

∫
∞

=
0

d)~2cos()()~( ννπν ddII .   Equation 2.10 

 

As only a single beam spectrum can be obtained, it is necessary to obtain a 

background spectrum before conducting experiments. This must be performed 

with the sample under exactly the same conditions (i.e. position and temperature) 

as for spectra obtained during the experiment. This is because the optical 
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properties of metal surfaces are sensitive to temperature. The final spectrum is 

obtained by the following relationship: 
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where Icorr is the background corrected spectrum, Isam is the sample spectrum and 

Ibg is the background spectrum. The resulting spectrum is on a scale of fractional 

absorbance, as defined by log10(∆R/R)). Following background correction is 

usually necessary correct the spectrum for a curved baseline. This arises as a 

result of small variations in the IR source and the experimental arrangement from 

one scan to another. Figure 2.23 shows a 100% line obtained with the IR 

arrangement used in these experiments. This is essentially a spectrum obtained 

with no adsorption between the background and sample collection. Small 

contributions are present as a result of small variations in the concentrations of 

gas phase contaminants in the purge, and a small increase in H2O ice in the MCT 

detector. The overall noise level is of the order of 1.5×10
-4

 which results in a peak 

being defined if it has an absorbance value of greater than 3.0×10
-4

. 

 

Figure 2.23: 100% line obtained with the IR arrangement used in 

these experiments.  
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2.4.4 Polarization modulation RAIRS (PM-RAIRS) 

PM-RAIRS is a variation of RAIRS that can be used to effectively collect the 

sample and background spectrum simultaneously. This has the advantage that the 

IR spectrum of a thin film on a metal substrate can be obtained without obtaining 

a background spectrum prior to deposition of the film. It is therefore useful in 

characterising thin films such as deposited oxide layers or self assembled 

monolayers. The typical experimental arrangement employed is illustrated in 

Figure 2.24. In a PM-RAIRS experiment, the IR beam is double modulated. The 

intensity modulation is provided by the moving mirror within a FTIR 

spectrometer and contributes to the background spectrum in the same way as in 

conventional RAIRS. They key to the advantages of PM-RAIRS lies in the 

modulation of the polarization vector of the IR beam between p and s. The 

polarization modulation is achieved by using a photoelastic modulator (PEM) 

containing a transparent crystal of a birefringent material such as ZnSe [13]. The 

light is initially linearly polarized at 45° to the crystal. A piezoelastic transducer is 

used to induce an oscillating stress on the crystal which results in birefringence as 

illustrated in Figure 2.25 The linear polarizations Ey and Ex travel through the 

crystal at different velocities, with Ey travelling faster when the crystal is stretched 

and Ex travelling faster when the crystal is compressed. By using the modulation 

condition of half-wavelength, R=±λ/2 the polarization can be made to oscillate 

between linear polarizations +45° and -45°. If the beam is directed onto the 

reflecting sample at close to grazing incidence, this effectively results in an 

oscillation between s and p polarization with respect to the surface. As in 

conventional RAIRS, only the p polarization interacts with adsorbed molecules. 

The p component therefore contains contributions from both the background and 

sample whilst the s component only contains those from the background. 

After reflection from the sample surface, the beam is focussed using a lens onto a 

dual channel detector [14]. The first channel removes the polarization modulation 

and calculates an interferogram from the resulting signal. Performing a fourier 

transform of this yields the background spectrum R=Rp+Rs, where Rp and Rs are 

the reflectances of the p and s polarized light respectively. The second channel is 

locked onto the frequency of the PEM such that the signal is collected at the half-
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wavelength retardation condition of R=±λ/2 corresponding to the two linear 

polarizations. The signal whilst the light is circularly or elliptically polarized is 

therefore discarded. The collected signal consists of the differential reflectance of 

light by the adsorbed sample, ∆R=Rp-Rs. The PM-RAIRS differential reflectance 

spectrum is then calculated as the ratio ∆R/R. 

It is important to recognise a caveat that results from the PEM being an 

achromatic polarizer. As such the polarization modulation is most efficient for a 

particular frequency which must be chosen to be within the frequency range being 

investigated. The resulting efficiency curve essentially modulates the differential 

reflectance spectrum in a way that can be described by a second order Bessel 

function, J2. The differential reflectance spectrum is therefore given by [15]: 
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∆ φ
.  Equation 2.12 

The form of J2 results in a sinusoidal variation in modulation efficiency that 

decays as 
0

/1 φ  where 
0
φ is the maximum retardance in radians induced by the 

PEM. The use of PM-RAIRS in characterizing adsorbed monolayers on metallic 

substrates has been described in detail [16] and an example of the form of raw 

spectra obtained is shown in Figure 2.26. 

 

Figure 2.24: Schematic of the arrangement for PM-RAIRS experiments. 
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Figure 2.25: (a) half-wavelength retardation condition results in 

the polarization modulation shown in (b). From [13]. 

 

 

Figure 2.26: Example of a differential reflectance spectrum 

obtained with the PM-RAIRS technique. The effect of the 

modulation efficiency can be clearly seen in the oscillatory 

background. From [16]. 
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CHAPTER 3 - Static Studies of C6H6 Adsorption on Amorphous 

SiO2 and ASW 

3.1 Introduction 

This chapter describes experimental studies of the adsorption of C6H6 on both an 

amorphous SiO2 substrate, and on a pre-adsorbed non-porous amorphous solid 

water (ASW) film. Temperature Programmed Desorption (TPD) experiments and 

Reflection-Absorption Infrared Spectroscopy (RAIRS) experiments conducted on 

these systems will be described.  

3.2 TPD of C6H6 adsorbed on stainless steel 

3.2.1 Introduction 

In order to properly assess the impact of the use of a more realistic grain mimic on 

the adsorption of molecular species, a series of initial experiments were conducted 

on an uncoated, polished stainless steel disc. Such discs were used as the support 

for the amorphous SiO2 thin films subsequently used as grain mimics in UHV 

chamber 1. The experimental procedures employed will be described, followed by 

a qualitative discussion of the results. The quantitative analysis techniques will 

then be described in detail, as they will be important in subsequent sections. 

3.2.2 Experimental procedure 

The stainless steel discs used in these experiments were first lapped to produce a 

flat surface. They were subsequently polished by hand using successively finer 

grades of diamond paste (Kemet), down to a minimum particle size of 1 µm. Such 

a procedure should lead to a flatness of the order of λ/2 for wavelengths in the 

mid-IR region. The substrate was then attached to the sample mount used in UHV 

chamber 1. Following bakeout the UHV chamber was brought to the usual 

operating base pressure of <2×10-10 torr. Prior to experiments being conducted the 

substrate was heated to 500°C and held at this temperature for 15 minutes for 

cleaning purposes. Cleaning cycles of ion sputtering and high temperature 

annealing, as employed with single crystal substrates, were not used in these 
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experiments. The aim was to provide a set of TPD results for a relatively flat 

surface, in order to allow comparison with those obtained for the SiO2 film. 

Differences are likely to arise as a result of the gross morphology of the film, and 

thus extensive sample cleaning was deemed unnecessary. It should be noted that 

following the first few TPD experiments the stainless steel surface would be 

covered to some extent with a layer of carbon contamination resulting from the 

decomposition of C6H6 during heating. Given the cleaning procedure employed, it 

is therefore likely that the TPD results presented here reflect the desorption of 

C6H6 from a reasonably flat, ultra-thin mixed Cr2O3 / graphite film. Several 

experiments were conducted prior to collecting the data presented here, to ensure 

that the effect of increasing carbon coverage over the steel surface on an 

experiment to experiment basis was significantly reduced. 

Following cleaning, the substrate was cooled to a base temperature of 116 K and 

C6H6 deposited using background dosing. In order to reduce the effect of minor 

variations in sample position from experiment to experiment, the substrate was 

positioned in line-of-sight position, approximately 4 mm from the opening of the 

tube to the QMS differential chamber. This position was maintained for both 

dosing and TPD acquisition for these experiments. The substrate heating rate for 

these experiments deviated significantly from linearity as a result of using an 

alternative power supply (Powerline Electronics Lab 710D). The resulting impact 

of this on peak shape and position were taken account of during the analysis. The 

initial heating rate was ca. 0.15 K s-1, dropping to around 0.05 K s-1 towards the 

termination of heating at 160 K. The average heating rate during the C6H6 

desorption was therefore comparable with the 0.1 K s-1 rate used in subsequent 

experiments utilizing the power supply described in Chapter 2. 

3.2.3 Results and discussion 

Figure 3.1 shows TPD traces for the lowest C6H6 exposures. The TPD displays a 

single asymmetric peak that is centred at 141 K for the lowest exposure of 0.1 L. 

This peak will be referred to as Peak A. As the exposure is increased Peak A 

grows in intensity with the peak gradually shifting to lower temperature. This 

peak can be assigned to the desorption of submonolayer quantities of C6H6 from 
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the underlying substrate. The shoulder visible on the high temperature side of 

Peak A at an exposure of 0.7 L can be attributed to desorption from a second layer 

of C6H6. At this exposure, Peak A has saturated, indicating the formation of a 

complete monolayer of C6H6 on the substrate. Therefore, an exposure of 0.6±0.05 

L results in the formation of 1 ML on this surface under these experimental 

conditions. The desorption trace for an exposure of 0.9 L displays significantly 

different behaviour, as shown in Figure 3.2. The desorption is dominated by a 

peak centred at around 140 K with a shoulder at 130 K. This peak can be 

attributed to desorption from multilayers of C6H6. This peak continues to grow as 

the exposure is further increased, indicating the formation of layers of C6H6 ice. 

This behaviour continues for thicker layers of C6H6, with the traces sharing a 

common leading edge for exposures above 5 L as shown in Figure 3.3 and 

Figure 3.4. 

 

 
Figure 3.1: TPD traces for the desorption of submonolayer quantities of 
C6H6 from stainless steel. 
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Figure 3.2: TPD traces for the desorption of C6H6 showing the transition 
from sub-monolayer to multilayer behaviour. 

 
Figure 3.3: TPD traces for the desorption of thin multilayer C6H6 films 
on stainless steel. 
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Figure 3.4: TPD traces for the desorption of thick multilayer C6H6 films on 
stainless steel. 

 

The high temperature tail in the submonolayer desorption traces in Figure 3.1 can 

be attributed to the desorption of C6H6 from high energy binding sites on the 

stainless steel surface. This is analogous to the situation on single crystal surfaces, 

where high temperature desorption features are frequently observed as a result of 

adsorption at defects such as kinks and steps. On the uncleaned surface used in 

these experiments defects will be more pronounced, particularly as the surface is 

not atomically flat which will result in an enhanced defect feature. Adsorbed 

carbon structures will also provide a further range of adsorption sites, leading to 

the observed broad tail. The shift in the desorption peak maximum to lower 

temperatures reflects the filling of binding sites with successively lower binding 

energy. It is reasonable to assume, as the adsorption temperature is close to the 

onset of desorption, that such sequential filling of sites occurs during adsorption. 

At lower temperatures adsorbing molecules will not have sufficient energy to 

diffuse across the surface and locate the most favourable site. Adsorption would 

then be essentially random. The TPD observed would then reflect the competition 

between diffusion and desorption. As the coverage is increased further, Peak A is 

observed to shift more dramatically to lower temperature, retaining the tail. This 
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can be attributed to an increase in intermolecular repulsion between adsorbed 

benzene molecules. This effect has been observed on metal surfaces such as 

Ag(111) [1] and Pd(111) [2]. It has been demonstrated that on graphite, for small 

exposures, the C6H6 molecules are adsorbed such that the molecular plane is 

parallel to the graphite basal plane [3], maximising the interaction overlap 

between the π-system C6H6 molecules and the graphite surface. As the coverage 

increases, intermolecular forces tend to dominate, as a result of a reduction in the 

average intermolecular distance, weakening the interaction with the surface. 

Ultimately, intermolecular repulsion causes the molecules to tend towards being 

orientated with the molecular plane perpendicular to the surface [4]. This results 

in a decrease in adsorption energy, shifting the desorption trace to lower 

temperature.  

It is desirable to determine the desorption kinetics for the desorption traces 

described here. This will provide a basis for quantitative comparison when the 

desorption from an amorphous SiO2 surface is considered. Initially, the kinetics 

for desorption from the films corresponding to the highest exposure, 

corresponding to films of bulk C6H6 ice will be considered. It is clear from the 

experimental traces that the desorption obeys zero order desorption kinetics. 

Desorption energies can be determined by transforming the Polanyi-Wigner 

equation to the following expression [5]:  

RT

Er
nn

desdes lnln +=







ν

θ
    Equation 3.1 

where rdes is the desorption rate, θ is the coverage, n is the desorption order, νn is 

the pre-exponential factor and Edes is the desorption energy. It is possible to use 

relative coverages θrel, and recognising that the recorded trace, I, is proportional to 

desorption rate allows this expression to be used with the the constants of 

proportionality combined into the quantity A: 
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The resulting Arrhenius plot with, in this case, n=0 for zero order desorption, will 

yield a straight line in the leading edge region, the gradient of which yields Edes. It 

should be noted that the use of relative coverages and desorption rates precludes 

the direct determination of ν from the intercept of this line. Figure 3.5 shows the 

best fit lines obtained from the Arrhenius plots for exposures of 500, 200 and 100 

L. Similar plots were obtained for all multilayer exposures. The resulting Edes 

values are presented in Table 3.1. The errors associated with the values of Edes 

obtained with this method are taken as 2 standard deviations. These values 

suggest a value of 50±3 kJ mol-1, which is in good agreement with previous 

studies of the desorption of C6H6 multilayers [6]. 

 
Figure 3.5: Arrhenius plots for the desorption of (a) 500, (b) 200 and (c) 
100 L of C6H6 from stainless steel. The abscissa is reciprocal temperature in 
units of K-1. 

In order to obtain the pre-exponential factor it is possible to utilize the same 

approach by transforming the experimental TPD trace into a plot of absolute 

desorption rate in molecules cm-2 s-1. The pre-exponential factor, ν, could then be 

obtained from the intercept of a best fit line to the appropriate Arrhenius plot. 

However, in this work a kinetic modelling approach was used. This allows direct 

comparison of simulated TPD traces with those obtained experimentally. 
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C6H6 Exposure / L Edes / kJ mol
-1 

2 53.0±3 
5 50.1±3 
10 47.9±3 
20 49.0±3 
50 51.0±3 
100 50.0±3 
200 51.0±3 
500 51.0±3 

Table 3.1: Desorption energies obtained from Arrhenius plots for the desorption of multilayers of 
C6H6 from stainless steel. 

 

This allows both Edes and ν to be varied systematically, using the value of Edes 

obtained from the Arrhenius analysis as a starting point. Such an approach can be 

useful in highlighting deviations from simple kinetics, providing further insight 

into the adsorption and desorption processes. 

Kinetic modelling was performed using the Chemical Kinetics Simulator (CKS) 

software package developed by IBM Almaden Research Center [7]. The 

application of this software to the analysis of TPD analysis has been discussed in 

detail elsewhere [8]. The package allows the construction of a reaction mechanism 

based on a series of steps, each with associated Arrhenius parameters. The 

computational approach employs a stochastic method, rather than integrating the 

relevant rate equations. The method uses a fixed number of particles, representing 

in this case chemical species which are distributed amongst the reactants, 

intermediates and products defined in the reaction mechanism. A time step, ∆t, is 

defined, and the instantaneous rate of any particular step in the mechanism taken 

to be proportional to the probability of that step proceeding during ∆t. As the 

reaction proceeds, steps are selected randomly, and proceed according to their 

weighted probabilities. The resulting changes in populations of the different 

species are then carried forward to the next time step. The CKS package 

incorporates the ability to incorporate the effects of temperature variations, which 

makes it ideal for the study of TPD experiments.  

In order to study the multilayer desorption kinetics of C6H6 adsorbed on stainless 

steel, a simple reaction mechanism containing two steps was used: 
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(g)HC(ads)HC 6666 →   Equation 3.3 

(pumped)HC(g)HC 6666 → .  Equation 3.4 

In this scheme (ads) and (g) indicate adsorbed and gas phase C6H6 respectively, 

with (pumped) indicating C6H6 that has been removed from the UHV chamber by 

pumping. Each of the steps has an associated Arrhenius type reaction rate, each 

with a single reactant having a concentration N : 









−=

RT

E
Nr n

n

aexpν   Equation 3.5 

where ν is the pre-exponential factor, n is the order of the reaction and Ea is the 

activation barrier. The form of this for the desorption step essentially represents 

the Polanyi-Wigner equation with Ea representing the desorption energy Edes. 

In order to run the kinetic simulations, it is necessary to input the starting 

concentrations, which requires conversion of the experimental doses into 

molecular surface concentrations. As the C6H6 was dosed by backfilling the 

chamber to a certain pressure for a period of time, the resulting surface 

concentration was calculated using the collision theory of gases [9]. The collision 

frequency, Zw, in molecules m-2 s-2 between gas phase molecules and a surface of 

unit area at a pressure, P, is given by: 

Tmk

P
Z

B

w
2π

=    Equation 3.6 

where m is the molecular mass of the colliding molecules and T is their 

temperature. In this case T can be assumed to be ca. 298 K as the molecules were 

dosed from thermal reservoirs. The assumption was also made that the sticking 

coefficient for C6H6 at the surface temperature during adsorption was unity at all 

exposures. Figure 3.6 shows plot of TPD yield, i.e. integrated peak area with time 

as the abscissa, versus exposure in Langmuir. This demonstrates a near linear 

behaviour with a no apparent change in uptake rate as exposure is increased, 

indicating a uniform sticking probability. It is reasonable to assume a sticking 

coefficient of unity at the highest exposure, and so this was taken to be applicable 

to all exposures.  
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Figure 3.6: Plot of TPD yield versus exposure in Langmuir for the 
adsorption of C6H6 on stainless steel (black circles). Also shown is a 
least squares linear fit (red line). 

Though the mass spectrometer was used to monitor C6H6 during dosing, its 

position within a differentially pumped chamber means that it does not sample the 

same background environment as the substrate. A further correction needs to be 

made for the sensitivity of the ion gauge to the species being dosed. This is related 

to the ionization cross-section of the species, with a larger cross-section leading to 

a greater sensitivity. Sensitivities are quoted relative to that for N2. In the case of 

C6H6 a value of 6.0 was used in accordance with previous studies [10]. Using this 

procedure, a surface concentration of 1.92×1016 molecules cm-2 was obtained for 

an exposure of 500 L. In order to correct for smaller doses not being exactly the 

quoted value in L, the concentration was calculated by comparison of TPD yields 

with that of the 500 L TPD.  

The saturation of desorption from the monolayer, and appearance of multilayer 

growth occurring at an exposure of 0.7 L corresponds to a surface concentration 

of 2.1×1013 molecules cm-2. This is somewhat lower than that observed for the 

formation of a compact monolayer of C6H6 on Cu(111), where C6H6 has been 

shown to lie plane parallel with the surface [11]. This suggests the formation of 
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islands on the stainless steel surface. This is in agreement with the observed 

fractional order desorption for the first few multilayers as indicated by non-

coincidence of leading edges. The appearance of multilayer desorption at higher 

temperature than monolayer desorption indicates that the C6H6-C6H6 interaction is 

stronger than the C6H6-surface interaction, suggesting that island formation would 

be thermodynamically favourable.  

The order for the desorption step was set to zero, as indicated by the coincidence 

of leading edges in the original data and the order for the pumping step was taken 

to be one. The desorption energy, Edes, was initially set to 50 kJ mol-1 as suggested 

by the Arrhenius plots presented previously. It should be noted that the 

experimental heating curve, T(t) was used, rather than defining a linear function to 

properly account for the non-linearity of the heating in these experiments. The 

pre-exponential for the desorption step was then varied in order to best reproduce 

the leading edge shape of the corresponding experimental trace. Small 

adjustments to the desorption energy were required to ensure that the peak 

remained at the correct temperature. The trailing edge was best fit using a pre-

exponential factor for the pumping step of 0.1 s-1. The resulting simulations are 

compared to the experimental TPD traces in Figure 3.7. At lower multilayer 

coverages the agreement between the simulations and the experimental trailing 

edge gradually becomes less good. This likely reflects the transition from zero 

order to fractional order desorption. 

For smaller exposures there was a marked difference between zero order 

simulations and experimental traces. In order to obtain kinetic parameters it was 

necessary to also vary the desorption order to obtain the best agreement between 

the simulation and the experimental trailing edges. The fractional order 

simulations are shown in Figure 3.8 and the kinetic parameters derived from this 

analysis are summarized in Table 3.2. Error estimates of two standard deviations 

are calculated. In all cases the desorption energies agree within experimental 

error, demonstrating the dominance of C6H6 interactions, which confirms that 

these exposures are in the multilayer regime. The desorption energy obtained for 

the multilayers is slightly lower than that obtained from the leading edge analysis, 

which likely represents the effect of a non-linear heating rate on the latter.  
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Figure 3.7: Experimental (open circles) and simulated (red lines) TPD traces 
for the desorption of 20, 50, 100, 200 and 500 L of C6H6 from stainless steel. 

 

 
Figure 3.8: Experimental (open circles) and simulated (red lines) TPD traces for 
the desorption of 1, 2, 5 and 10 L of C6H6 from stainless steel. 
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As such, the values obtained using the kinetic modelling approach incorporating 

the experimental heating curves are more reliable. 

The sub-monolayer TPD traces suggest more complicated desorption kinetics that 

depend both on a distribution of binding sites on the substrate, and increasing 

intermolecular repulsion as coverage is increased towards monolayer saturation. A 

detailed kinetic analysis was not conducted, though the general form of the TPD 

traces will be used for comparison with those obtained for the desorption of C6H6 

from the amorphous SiO2. 

 
 

Exposure / 

L 

Desorption 

Order n 

Surface 

Concentration / 

molecules cm
-2 

ν / 

molecules 

cm
-2
 s
-1 

Edes / 

kJ 

mol
-1 

500 0 1.9×1016 1030.1±0.6 48.0±1 
200 0 8.8×1015 1030.1±0.6 48.0±1 
100 0 4.5×1015 1030.5±0.6 49.2±1 
50 0 2.1×1015 1030.5±0.6 49.3±1 
20 0 9.0×1014 1029.9±0.6 47.8±1 
10 0.1 5.2×1014 1028.4±0.6 * 47.9±1 
5 0.2 2.2×1014 1027.4±0.6 * 48.0±1 
2 0.3 7.4×1013 1026.0±0.6 * 48.3±1 
1 0.5 4.4×1013 1023.3±10.6 * 48.3±1 

Table 3.2: Kinetic parameters derived from kinetic modelling for the desorption of C6H6 
multilayers from stainless steel. * For fractional order desorption, the general units of   
molecules(1-n) cm2(n-1) s-1 for ν apply. 
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3.3 The amorphous SiO2 substrate 

3.3.1 Introduction 

In order to study chemical and physical processes of relevance to the ISM, it is 

necessary to consider surfaces that provide a reasonable approximation to those in 

interstellar environments. For studies on H2O ice surfaces it is possible to use 

simple polycrystalline metal substrates such as Au or Ag, upon which a thick 

layer of H2O ice can be grown. However, it is important also to consider the 

interaction between molecules and bare grain surfaces, i.e. those not coated in 

multilayers of H2O-dominated ices. As has been discussed, interstellar grains can 

typically be split into two classes; silicates and carbonaceous grains. There is no 

clear understanding of the nature of interstellar grains; in particular it is still not 

certain if the two populations only exist separately, or can coexist in a single 

grain. Therefore a fundamental approach must be taken to understand gas-grain 

interactions with a range of materials considering general trends.  In this work the 

substrate was chosen to represent the silicate grain population. Earlier work 

utilizing thin films of silicate nanoparticles derived from laser ablation of ground 

meteoritic material demonstrated the impact of substrate choice on thermal 

desorption [12]. However, it is advantageous to consider a simpler, more 

reproducible substrate than one containing both morphological and chemical 

complexity. With this in mind, a simple substrate was developed based on thin 

films of amorphous SiO2. This section describes the experimental procedures 

involved in producing this substrate, and the characterization techniques 

employed to understand the nature of the surface. 

3.3.2 Growth of the SiO2 film 

The amorphous SiO2 film was grown by electron beam evaporation of bulk fused 

silica (quartz). This procedure was carried out within a dedicated high vacuum 

system in the Microsystems Engineering Centre at Heriot-Watt University (See 

Figure 3.9). The films were grown on the stainless steel discs used in the 

experiments described in the previous section. These were mounted on a carousel 

above a graphite crucible containing small fused silica pellets (Testbourne 

>99.99% purity). A quartz crystal microbalance (QCM) was situated in view of 
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the source material to obtain an estimate of film thickness. Evaporation was 

achieved by irradiating the silica with 7 keV electrons which were deflected 

towards the centre of the crucible. The electron beam position could be adjusted 

by varying the current through the deflection coils. Whilst the deposition rate was 

set to around 20-30 Å s-1, which was typically obtained with an electron current of 

<25 mA, the carousel was rotated so that the disc was out of line-of-sight to the 

source material. When the deposition rate was stable and the material was 

properly outgassed, the carousel was rotated such that the disc was in line-of-sight 

to the source material. The thickness monitor on the QCM was started and the 

carousel was rotated back to the initial position once the desired thickness had 

been reached. In most cases films of 150 – 200 nm thickness were grown. As the 

substrate was at ambient temperature during the deposition, the film is formed by 

ballistic deposition, which results in an amorphous film. Crystalline films could, 

in principle, be formed by heating the disc to several hundred °C in order to allow 

the solid to relax, resulting in a more energetically favourable polycrystalline 

morphology. The coated disc was removed from the evaporation chamber after 

allowing sufficient time for the source material and electron gun components to 

cool to ambient temperature. 

 
Figure 3.9: High Vacuum Chamber used for growth of amorphous SiO2 thin films 
using electron beam evaporation. 
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3.3.3 Characterization of the amorphous SiO2 substrate by AFM 

The morphology of the deposited films was studied using atomic force 

microscopy. This technique utilizes a small nanoscale tip that is mounted on the 

end of a cantilever. The tip is scanned across the surface by moving the sample 

relative to the tip, and the force between surface atoms and those in the tip cause 

the cantilever to be deflected. This deflection can be measured using a suitably 

positioned laser and array of photodiodes. In these experiments, a silicon nitride 

tip was used, and the microscope was operated in contact, constant force mode. In 

this mode, a constant deflection, and hence force is maintained by moving the 

sample in the z-direction as the x and y directions are scanned. The resulting plot 

of z as a function of x and y provides a topographical image of the sample. Figure 

3.10 shows a 100 × 100 µm AFM image of amorphous SiO2 deposited to a 

thickness of ca. 100 nm as measured by the QCM. The lack of large scale features 

in this image indicates a uniform coverage across the surface. It is interesting to 

note the presence of polishing marks in the form of dark (lower height) lines in 

the image. As the finest grade diamond paste used in polishing was 1 µm this 

confirms that the film does indeed have a sub-micrometer thickness. Figure 3.11 

shows a series of 20 × 20 µm AFM images for three amorphous SiO2 films 

deposited to thicknesses of ca. 200, 150 and 100 nm.  

 

 
Figure 3.10: AFM image of amorphous SiO2 deposited to a thickness of 
ca. 100 nm. The large features to the bottom right are attributed to 
noise. The apparent curve in the film is an experimental artefact. 
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The thicker samples display a higher degree of roughness which would be 

expected for the deposition of an amorphous film in which the molecules are 

immobile on the surface. The apparent increase in overall height in the thickness 

of the film is associated with a relatively small number of tall protrusions. This 

also appears to be the case with the 100 nm film. With this in mind, the average 

height variation increases with film thickness. In summary, thicker films appear to 

produce rougher films with a greater variation in height across the surface, which 

is likely to lead to a higher proportion of high energy binding sites in which 

molecules can adsorb.  

The morphology of the SiO2 film was compared to that of an interplanetary dust 

particle (IDP) (see Figure 3.12) which are thought to be have been processed 

relatively mildly during the formation of the solar system. As such they represent 

the most easily accessible source of material likely to posses a morphology similar 

to the interstellar grains from which the solar system formed. The structures 

observed in the AFM images bear some resemblance to those observed in the IDP. 

However, the gross morphology of the grain cannot be represented by a thin film. 

Nevertheless, the substrate developed for these experiments allows some 

understanding of the importance of the chemical nature (i.e. SiO2) and amorphous 

structure of grain surfaces. It should also be noted that the ice films deposited on 

these grains are typically of the order of a few hundred monolayers thick, which 

corresponds to a maximum thickness of 50-100 nm. 
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Figure 3.11: AFM images of (a) ca. 200 nm, (b) ca. 150 nm and (c) ca. 100 
nm of amorphous SiO2 as deposited by electron beam evaporation. 
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Figure 3.12: Scanning Electron Micrograph of an interplanetary dust particle [13]. 

3.3.4 Characterization of the amorphous SiO2 substrate by PM-RAIRS 

PM-RAIRS was used to confirm the presence of SiO2 on the surface, and to 

indicate the presence of any surface bands that might show up in subsequent 

RAIRS experiments conducted under UHV. Whilst surface bands are normally 

removed when ratioing a scan to a background scan, the situation is more complex 

in the present case as the adsorbate/SiO2/metal system contains three layers as 

opposed to the two in a simple adsorbate/metal system. The appearance of 

substrate bands as negative absorbance features in far-infrared RAIR spectra as a 

result of this has been observed in the case of SnCl4 adsorbed on SnO2, where a 

prominent feature was observed at 355 cm-1[14]. Calculations showed that this 

feature is insensitive to the dielectric properties of the adsorbate, indicating that it 

was indeed due to the underlying SnO2 substrate. It was also shown that 

depending on the dielectric properties of the substrate, the substrate bands could 

appear as positive or negative absorbance features. It was also apparent that such 

features are strongest when the IR beam is incident at a large angle to the surface 

normal. It is therefore anticipated that such substrate related bands might appear 

in the RAIR spectra of adsorbate on the amorphous SiO2 film at the angle used in 

the experiments described in this thesis. Figure 3.13 compares PM-RAIR spectra 

obtained  for  two  thin  films  of  amorphous  SiO2  deposited  on  a stainless steel 
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Figure 3.13: PM-RAIR spectra for two thin films of amorphous 
SiO2 deposited on a stainless steel substrate compared to that 
obtained for a macroscopic film of finely divided SiO2 powder 
electrostatically adhered to a stainless steel substrate. 

 

substrate to thicknesses of  ca. 200 nm and ca. 100 nm as estimated using the 

quartz crystal microbalance. These are compared to a thin film of finely divided 

SiO2 powder that was allowed to adhere electrostatically to another stainless steel 

substrate. From these spectra it is clear that a very strong feature appears at around 

1250 cm-1 which appears to shift to higher frequency with increasing film 

thickness. A weak shoulder around 1150 cm-1 is also visible. The powdered film 

also shows a similar feature, at significantly higher frequency. As the latter case 

represents an effective film thickness far greater than the two deposited films, this 

is in qualitative agreement with the observed shift to higher frequency with 

increasing thickness. However, it should be noted that the powder sample (a) is 

polycrystalline and (b) produces a granular film, both of which are likely to affect 

the spectrum obtained. However, for the purposes of comparison with subsequent 

spectra, these experiments provide a reference for assigning RAIR spectral 

features that might be of substrate origin. 

The observed PM-RAIR features can be assigned to the longitudinal optical and 

transverse optical modes of SiO2. The major vibration in SiO2 occurs at around 
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1100 cm-1 and is attributed to the asymmetric Si-O-Si stretch. Transverse optical 

(TO) and longitudinal optical (LO) modes can be thought of as the onset and 

cutoff of an absorption band respectively. Usually the TO mode dominates the 

observed absorption band, though the LO band can also contribute, depending on 

the properties of the material, and the spectroscopic method employed. LO-TO 

splitting in SiO2 was first observed by Galeener and Lucovsky [15] who suggested 

the presence of  TO and LO bands at 1065 cm-1 and 1200 cm-1 respectively on the 

basis of Raman measurements. In normal incidence measurements, both TO and 

LO components are visible, but at close to grazing incidence the LO mode is 

expected to dominate. This can be interpreted in terms of the surface selection rule 

as TO modes are mainly associated with vibrations parallel to the surface whilst 

LO modes are associated with those perpendicular to the surface. Reflection IR 

experiments have identified two peaks at ca. 1130 cm-1 and 1260 cm-1 which were 

assigned to the TO and LO modes respectively [16].  

This study demonstrated the increasing dominance of the LO mode as the angle of 

incidence of the incident beam is increased above 70° to the surface normal. 

Features attributed to the LO mode of SiO2 have also been observed using RAIRS 

at 1256 cm-1 for a thermally grown oxide films [17,18]. An example spectrum 

from reference [18] for an IR beam incident at 60° is shown in Figure 3.14. The 

dominance of the LO feature in the present experiments can be attributed to the 

higher incidence angle used. This leads to the TO band being only visible as a 

weak shoulder at around 1150 cm-1. 

 
Figure 3.14: IR absorption spectrum for a thermally grown SiO2 film on 
Si(111). The incident IR beam was at 60° to the surface normal. Both LO and 
TO components are visible at this angle. From [18]. 
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3.4 TPD of C6H6 adsorbed on amorphous SiO2 

3.4.1 Introduction 

This section describes a series of experiments conducted to study the thermal 

desorption of C6H6 from the amorphous SiO2 substrate described previously. The 

experiments are described, along with a discussion of both multilayer desorption, 

which reflects the interaction between C6H6 molecules, and desorption from 

submonolayer coverages of C6H6 which are sensitive to the C6H6-SiO2 interaction, 

and the morphology of the SiO2 surface. 

3.4.2 Experimental procedure 

These experiments were conducted in essentially the same way as for the 

uncoated stainless steel substrates. The discs coated with amorphous SiO2 were 

mounted in the UHV chamber and cleaned by heating to 200°C and maintaining 

this temperature for 15 minutes prior to conducting experiments. This lower 

temperature was used to avoid any thermal modifications being made to the SiO2 

that could cause variations in desorption behaviour. C6H6 layers were deposited 

by backfilling the chamber to a particular pressure and recorded in Langmuir. 

TPD experiments were performed using a linear heating ramp of 0.1±0.02 K s-1. 

The substrate was again positioned close to the entrance to the QMS chamber 

throughout the experiments. 

3.4.3 Results 

Figure 3.15 and Figure 3.16 show desorption traces for submonolayer coverages 

of C6H6 adsorbed on the amorphous SiO2 substrate. Compared to the 

corresponding traces for C6H6 adsorbed on stainless steel, desorption extends to 

significantly higher temperatures. This indicates that the surface permits more 

efficient binding of C6H6. It is also clear that the submonolayer regime exists for 

higher exposures than observed with the stainless steel substrate. This reflects an 

increased surface area compared to the geometric surface area of the stainless 

steel disc resulting in an increase in the number of adsorbed molecules required to 

saturate the monolayer. The TPDs also suggest the presence of two distinct 

desorption regimes, with a somewhat sharper desorption component  appearing as  
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Figure 3.15: TPD traces for the desorption of the lowest submonolayer 

coverages of C6H6 from an amorphous SiO2 substrate. 

 
Figure 3.16: TPD traces for the desorption of all submonolayer coverages of 
C6H6 from the amorphous SiO2 substrate showing two kinetic regimes. 
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Figure 3.17: TPD traces for the showing the transition from submonolayer to 
multilayer desorption of C6H6 from the amorphous SiO2 substrate. 

 

the exposure is increased beyond 0.5 L. The appearance of multilayer growth 

occurs between 2 and 3 L as shown in Figure 3.17. This represents a 4-5 fold 

increase in the surface area available for adsorption when compared to the 

monolayer saturation value of ca. 0.65 L observed for C6H6 on stainless steel. 

Beyond the submonolayer regime the desorption appears to be less strongly 

affected by the substrate morphology. Multilayer growth results initially in the 

appearance of a shoulder on the higher temperature side of the monolayer 

desorption feature. As the exposure is increased, this shifts to lower temperature, 

with the monolayer peak being reduced. This again suggests that monolayer 

desorption is rapidly blocked by the adsorption of subsequent layers. This 

indicates the formation of a second layer. Initially, multilayer desorption displays 

fractional order kinetics with non-coincident leading edges as shown in Figure 

3.18. This behaviour is observed at higher exposures than on stainless steel. 

Although the formation of islands of C6H6 would result in fractional order 

kinetics, it is also reasonable that the inherent roughness of the surface results in 

sufficient deviation from bulk ice desorption kinetics. Ultimately substrate effects 
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appear to diminish completely for the desorption from thick layers shown in 

Figure 3.19, demonstrating zero order desorption kinetics with coincident leading 

edges. The desorption traces are very similar to those observed for the desorption 

of thick C6H6 films from stainless steel with the slight increase in desorption 

temperature being attributable to the increase in heating rate at high temperatures 

compared that for the stainless steel experiments where the heating rate dropped 

somewhat at these temperatures. In the next section the desorption kinetics for 

multilayer desorption will be obtained and compared to those for the desorption 

from stainless steel. The desorption of submonolayer coverages will be examined 

in detail in order to understand the effect of substrate morphology on the 

desorption kinetics. 

 

Figure 3.18: TPD traces for the desorption of thin multilayer films of C6H6 from 
the amorphous SiO2 substrate. 
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Figure 3.19: TPD traces for the desorption of thick multilayer films of C6H6 
from the amorphous SiO2 substrate. 

3.4.4 Analysis and discussion 

The TPD results for the desorption of multilayer films of C6H6 adsorbed on the 

amorphous SiO2 substrate were analyzed using the same procedure as for the 

stainless steel substrate which was outlined in Section 3.2.2. In order to obtain an 

estimate for the multilayer desorption energy, leading edge analysis was again 

used. This procedure was carried out for all multilayer exposures down to 10 L, 

i.e. those that displayed typical zero order desorption characteristics. Figure 3.20 

shows the resulting Arrhenius plots for exposures of 500, 200 and 100 L and the 

desorption energy values obtained are summarized in Table 3.3. Errors are again 

calculated as two standard deviations. 
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Figure 3.20: Arrhenius plots for the desorption of (a) 500, (b) 200 and 
(c) 100 L of C6H6 from amorphous SiO2. The abscissa is reciprocal 
temperature in units of K-1. 

 

C6H6 Exposure / L Edes / kJ mol
-1 

10 47.6±4 
20 46.5±4 
50 47.3±4 
100 50.7±4 
200 52.6±4 
500 47.6±4 

Table 3.3: Desorption energies obtained from Arrhenius plots for the desorption of multilayers of 
C6H6 from amorphous SiO2. 

It is clear that the multilayer desorption energies agree within experimental error 

with those obtained using the stainless steel substrate. A value of 48.7±4 kJ mol-1 

is therefore taken as being representative of the desorption of C6H6 from 

multilayer films where the underlying substrate is sufficiently buried that it has no 

appreciable effect on the desorption kinetics. The slightly higher value obtained 

for the 200 L exposure film most likely reflects the sensitivity of the leading edge 

analysis to small variations in the TPD peak shape that arise as a result of 

experimental issues such as heating rate variations. There is no reason to expect 

significant differences in the desorption energy between different exposures in the 

thick film regime. This highlights the importance of using alternative analysis 
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techniques such as kinetic modelling when determining desorption kinetic 

parameters. 

In order to obtain the pre-exponential factor, and to confirm the obtained 

multilayer desorption energy values, kinetic modelling using the CKS package 

was performed. The same simple, two-step, reaction scheme describing zero order 

desorption and first order system pumping was employed, along with initial 

surface concentrations obtained from simple collision theory. The surface 

concentrations were again compared to that obtained for the 500 L exposure, 

which was assumed to be exactly 500 L. The uptake curve in Figure 3.21 shows 

essentially the same trend as that observed for adsorption on stainless steel, with 

TPD yield increasing monotonically with exposure. This strongly suggests a 

sticking probability of close to unity over the exposure range studied. Simulated 

TPD traces for multilayer exposures are shown in Figure 3.22 and the 

corresponding parameters in Table 3.4. It was not possible to obtain realistic 

simulations for C6H6 exposures of 4 and 5 L. It is clear from the peak shape that 

fractional order desorption kinetics dominate reflecting a combination of island 

formation and the presence of an underlying substrate that is rough which results 

in significant variations in film thickness across the surface. However, the 

significantly broadened submonolayer desorption likely also plays a role. It is 

therefore important to understand the desorption kinetics in the submonolayer 

regime.  

 

Exposure / 

L 

Desorption 

Order 

Surface 

Concentration / 

molecules cm
-2 

ν / 

molecules 

cm
-2
 s
-1 

Edes / kJ 

mol
-1 

500 0 1.92×1016 1030.1±0.4 48.1±0.2 
200 0 8.49×1015 1030.1±0.4 48.1±0.2 
100 0 4.90×1015 1030.1±0.4 48.1±0.2 
50 0 1.99×1015 1030.0±0.4 48.0±0.2 
20 0 7.5×1014 1029.9±0.4 47.8±0.2 
10 0 3.2×1014 1030.0±0.4 47.8±0.2 

Table 3.4: Kinetic parameters derived from kinetic modelling for the desorption of C6H6 
multilayers from stainless steel. 
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Figure 3.21: Plot of TPD yield versus exposure in Langmuir for the 
adsorption of C6H6 on amorhous SiO2 (black circles). Also shown is a 
least squares linear fit (red line). 

 

 

Figure 3.22: Experimental (open circles) and simulated (red lines) TPD 
traces for the desorption of 10, 20, 50, 100, 200 and 500 L of C6H6 from 
amorphous SiO2. 
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Initially, the submonolayer desorption kinetics were considered using the same 

approach as for the multilayers, but with an assumed desorption order of one. 

Figure 3.23 shows the leading edge analysis for submonolayer coverages of C6H6 

on amorphous SiO2. A reasonable linear fit to the leading edge region can be 

made with a desorption energy of 44.1 kJ mol-1, though it is clear that there is 

significant deviation from this suggesting that the desorption energy is coverage 

dependent. The kinetic models in Figure 3.24 were constructed using this 

desorption energy value. Though the leading edge regions of the desorption 

profiles are reasonably well reproduced, the high temperature tail is completely 

absent from the simulated TPD profiles. In order to obtain the leading edge 

agreement it was necessary to increase the pre-exponential value from 4×1010 s-1 

to 7×1014 s-1 over the exposure range. Such a large range of  pre-exponential 

values does not seem reasonable, which along with the inability of simple 

desorption kinetics to account for the high temperature tail suggests that models 

incorporating simple desorption kinetics are insufficient to describe the observed 

behaviour. It is clear that the underlying amorphous SiO2 has a significant impact 

on the adsorption of C6H6 and the subsequent desorption kinetics. Comparing the 

submonolayer TPD traces for the two substrates reveals two major differences. On 

stainless steel, multilayers first appear for coverages of around 2.1×1013 molecules 

cm-2, whereas on amorphous SiO2 it requires a coverage of more than 8.8×1013 

molecules cm-2. This corresponds to an approximately four-fold increase in 

surface area available for adsorption. Even more striking is the extent to which the 

desorption extends to high temperature. On stainless steel, desorption is 

essentially complete by 155 K, whereas on the amorphous SiO2 desorption 

continues up to temperatures in excess of 210 K. This observation could be 

explain either by (a) delayed desorption from pores within the SiO2 film, (b) a 

broad distribution of sites and energies on the surface, or a combination of (a) and 

(b). The observed desorption profiles are reminiscent of those observed previously 

for the desorption of CO from a porous ASW film deposited at 10 K [19]. Here 

the CO desorption also displayed a broad tail extending to high temperature. 
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Figure 3.23: Leading edge analysis for submonolayer coverages 
of C6H6 on SiO2 with linear fits for a desorption energy of 44.1 kJ 
mol-1. 

 

 

Figure 3.24: Kinetic models for the desorption of submonolayer coverages of 
C6H6 from amorphous SiO2 using a fixed desorption energy of 44.1 kJ mol-1. 
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The tails showed the same coincidence with increasing exposure as in the present 

case. In this study the observed desorption profiles were attributed to the 

desorption of CO molecules from within pores existing within the ASW film. A 

simple model was developed that considered desorption from the internal surfaces 

of the pores, re-adsorption onto pore surfaces and gas phase escape from the pore. 

Although a reasonable reproduction of the desorption tail was obtained they did 

not display coincidence with increasing exposure. Similar desorption profiles have 

been documented in the case of physisorbed CO on MgO(100) [20] and N2 [21] 

and D2 [22,23] on non-porous ASW. In all cases, the coincident tails in the 

desorption profiles were attributed to a desorption energy that varies as a function 

of coverage. This could arise both as a result of the existence of a range of binding 

sites on the surface that leads to a gradual decrease in binding energy as the most 

efficient sites are filled, and from other effects such as increasing intermolecular 

repulsions between adsorbate molecules.  

In order to extract the desorption energy coverage dependence it is necessary to 

invert the Polanyi-Wigner equation to obtain an expression [20] for Edes in terms 

of Nads: 









−−=

ads

ads

adsads
N

dtdN
RTNE

ν

/
ln)( .   Equation 3.7 

In order to evaluate this expression, the TPD profiles were converted to 

desorption rates in molecules cm-2 s-1. This was achieved by scaling the plot such 

that the time integrated area was equal to the previously determined surface 

coverage. The integral up to each data point then represents the amount desorbed 

up to that time, which can then be inverted to yield remaining coverage, Nads. It 

should be noted that in order to use this expression, a value for the pre-

exponential factor, ν, must be assumed. Typically, simple chemisorbed and 

physisorbed systems can be described with pre-exponential values of 1013 s-1 and 

1012 s-1 respectively. However, the interaction between C6H6 and SiO2 is  

somewhere between the two extremes as a result of possible hydrogen-bonding 

interactions between the π system and OH groups on the SiO2 surface, and 

between C6H6 H atoms and O atoms in SiO2.  
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In order to represent this, a nominal value of 1013 s-1 was used in this analysis, 

although values of 1012 s-1, 1014 s-1 and 1015 s-1 were also considered for 

comparison. The resulting plots of Edes versus Nads are shown in Figure 3.25 and 

demonstrate the applicability of a single desorption energy coverage dependence 

up to an exposure of 0.8 L. The curves for 1 L and 2 L appear to display an offset 

in energy of 1.5 and 3 kJ mol-1 respectively. This can be attributed to the growth 

of a more strongly bound second layer. This results in the observed shifts in 

desorption energy for exposures of 1 and 2 L. It was therefore necessary to obtain 

a universal, smooth curve that could be used in simulating the experimental data. 

An arbitrary choice of a third order exponential decay was used to obtain a 

satisfactory fit to the experimental Edes curves for 1, 2 and 0.8 L. The fitted curve 

for 2 L was then shifted down by 3.0 kJ mol-1 as shown in Figure 3.26. The good 

agreement between the shifted curve and that for an exposure of 0.8 L confirms 

the presence of a desorption energy shift as a result of the formation of a more 

strongly bound second layer. The final universal curve also shows good 

agreement with that obtained for an exposure of 1L. Of course, the excellent 

agreement with the 2 L curve is trivial as the curves are the same. 

As CKS can only simulate the desorption kinetics for a fixed desorption energy, in 

order to generate simulated TPD profiles using a coverage dependent desorption 

energy it was necessary to develop a simple program to evaluate the Polanyi-

Wigner equation. The program was written in Fortran 90 and will be described 

briefly. The program takes experimental time and temperature data as input for the 

calculation. For each time interval ∆t between t and t+∆t as defined by the 

experimental data, the desorption rate is calculated by evaluating the Polyani-

Wigner equation at the temperature T(t) using Edes(Nads), which is calculated using 

the function fit to describe the coverage dependence.. The change in Nads in the 

interval ∆t is then calculated based on the desorption rate. This process is then 

repeated for successive values of t. The resulting output data consists of the 

original input data along with the desorption rate and surface concentration at 

each time step. The source code for the program can be found in Appendix 3A. 

The resulting simulated TPDs are shown in Figure 3.27 and Figure 3.28.  
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Figure 3.25: Edes coverage dependence for C6H6 adsorbed on 
amorphous SiO2 obtained through inversion of the Polanyi-Wigner 
equation. 

 

Figure 3.26: Derivation of a universal Edes coverage dependence 
curve showing agreement with all submonolayer exposures. 
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Figure 3.27: Simulated TPD profiles for all submonolayer 
coverages of C6H6 on amorphous SiO2 assuming a distribution of 
desorption energies. Circles are experimental data and lines are 
simulations. 

 
Figure 3.28: Simulated TPD profiles for the lowest submonolayer 
coverages of C6H6 on amorphous SiO2 assuming a distribution of 
desorption energies. Circles are experimental data and lines are 
simulations. 
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The good agreement with experimental data at all coverages indicates the 

applicability of this technique. Figure 3.29 shows the effect of not shifting the 

Edes curve by 1.5 and 3.0 kJ mol-1 for the 1 and 2 L TPD experiments respectively. 

This demonstrates the shift in desorption energy for these exposures which results 

in a significant translation of the TPD peak. 

 

 
Figure 3.29: Simulated TPD profiles obtained without shifting the 
Edes curve for exposures of 1 and 2 L. 
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3.5 TPD of C6H6 adsorbed on compact ASW 

3.5.1 Introduction 

The aim of these experiments was to compare the thermal desorption kinetics of 

C6H6 adsorbed on the SiO2 surface with those for C6H6 adsorbed on a compact 

ASW surface. The multilayer desorption kinetics are again considered, along with 

those describing the desorption of small amounts of C6H6 from a thick H2O film 

which are sensitive to the C6H6 interaction. This system reflects the situation 

where C6H6 molecules are adsorbed onto a dust grain that is already coated with 

layers of H2O, in contrast to the previous section which is relevant for adsorption 

on a bare silicate grain surface. 

3.5.2 Experimental procedure 

The experimental conditions were the same as for the experiments conducted with 

the SiO2 substrate and the same procedure was followed prior to cooling down the 

substrate. Before C6H6 was deposited, again by backfilling the chamber, a thick 

film of H2O was deposited onto the surface using the molecular beam. The beam 

exposure time was 2000 s, which, by a comparison between beam dosed and 

background dosed TPD profiles, corresponds to ca. 150 L.  

3.5.3 Results and discussion 

TPD profiles for small exposures of C6H6 adsorbed on compact ASW are shown 

in Figure 3.30. A single peak is visible that shifts gradually to higher temperature 

with increasing exposure. At an exposure of 0.5 L, a small shoulder appears on 

the higher temperature side of the peak that increases in intensity and shifts to 

higher temperature with increasing exposure as shown in Figure 3.31. This peak 

continues to grow and shift up to the maximum exposure of 200 L considered in 

these experiments. The high exposure profiles share coincident leading edges 

which strongly suggests zero order desorption kinetics. The low temperature peak 

is therefore attributed to small amounts of C6H6 that exhibit some degree of 

interaction with the underlying H2O surface, with the high temperature peak being 
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associated with the desorption of C6H6 from C6H6 multilayers which continue to 

grow as shown in Figure 3.32. 

The multilayer desorption kinetics were analyzed in the same way as for the 

adsorption of C6H6 on both the stainless steel and amorphous SiO2 substrates. The 

resulting simulated TPD profiles are shown in Figure 3.33. The agreement with 

the trailing edge is not quite as good as in the previous cases which indicates de-

wetting and the formation of C6H6 islands on the H2O surface. A desorption 

energy of 45.8 kJ mol-1 and a pre-exponential factor of 1029.4 molecules cm-2 s-1 

were found to best reproduce the experimental profiles. The pre-exponential factor 

is in good agreement with that obtained for the previous substrates, though the 

desorption energy is slightly lower which may also be the result of de-wetting 

altering the shape of the leading edge. 

 
Figure 3.30: TPD profiles for the desorption of the lowest submonolayer 
coverages of C6H6 from a thick H2O film. 
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Figure 3.31: TPD profiles for the desorption of C6H6 from a thick H2O 
film showing the transition from submonolayer to multilayer behaviour. 

 
 

 

Figure 3.32: TPD profiles for the desorption of thick films of C6H6 from 
a thick H2O film. 
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Figure 3.33: Simulated TPD profiles for the desorption of multilayer 
films of C6H6 from a thick ASW film. The simulated profiles (red lines) 
are compared to the experimental ones (open circles). 

 
 

Further evidence for island formation comes from the observation that H2O 

desorption begins before C6H6 desorption is complete. This is shown in Figure 

3.34. In general, a multilayer C6H6 film acts as a cap which prevents H2O 

desorption until C6H6 desorption is nearly complete. This results in a shift in the 

H2O peak to higher temperatures. As well as a pronounced shift in the H2O peak 

when multilayer films of C6H6 are adsorbed on top of the H2O film, there is also a 

gradual increase in the temperature for the onset of desorption, which correlates 

with the completion of C6H6 desorption. However, this onset is typically at a 

temperature a few degrees lower than that for the completion of C6H6 desorption 

indicating the formation of C6H6 islands which reveals some of the H2O surface. It 

would therefore be reasonable to expect small coverages of C6H6 to form islands 

on the H2O surface, rather than forming a wetting layer. This means that it is 

possible to attribute the low temperature peak observed at low coverage to the 

desorption from islands of C6H6 on the H2O surface, with the high temperature 

peak only appearing with the formation of a complete multilayer film. This is 

consistent with the simultaneous reduction in the intensity of the low temperature  
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Figure 3.34: TPD profiles for the desorption of C6H6 and H2O 
from various coverages of C6H6 adsorbed on a thick H2O film. The 
H2O exposure was the same in all cases. 

 

peak indicating a reduction in the contribution of desorption from islands.  

Bahr and Kempter [24] also observed two TPD peaks in the submonolayer 

coverage regime. They treated the low temperature desorption peak as resulting 

from simple first order desorption kinetics and obtained a desorption energy of 39 

kJ mol-1. However, as is the case with the current data, the peak shifted to higher 

temperature with increasing coverage, indicating that such an analysis is not valid. 

In order to obtain an estimate of the desorption energy, a desorption order of 0.9, 

reasonable for fractional order desorption that is closer to first order rather than 

zero order desorption, was assumed. The inversion technique used previously was 

employed, using a pre-exponential factor of 5×1014 molecules0.1 cm-0.2 s-1. The 

resulting desorption energy curves are shown in Figure 3.35. The curve for an 

exposure of 0.5 L of C6H6 shows unusual behaviour at low coverages as a result 

of the appearance of the multilayer peak. The desorption energy rises as a result of 

the multilayer desorption energy of >45 kJ mol-1. 
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Figure 3.35: Desorption energy plots for the desorption of C6H6 
adsorbed on a thick layer of H2O. A desorption order of 0.9 was 
assumed. The near vertical regions are an artefact of the inversion 
procedure employed. 

In general the desorption energy appears to be around 41±0.5 kJ mol-1, with the 

curved shape of the profile likely resulting from changes in binding during island 

formation. The sharp spikes at the coverage extremes can be attributed to the poor 

signal to noise ratio for low desorption rates. Given the complicated nature of the 

desorption kinetics, coverage dependences of the desorption order and therefore 

the pre-exponential are likely to occur. The desorption energy value should 

therefore be taken as an estimate. 

3.5.4 Comparison with C6H6 desorption from amorphous SiO2 

The significant differences between the submonolayer TPD profiles obtained for 

C6H6 adsorbed on amorphous SiO2 and ASW can be attributed to differences in 

the adsorbate-substrate binding. In both cases, hydrogen-bonding interactions 

between the π-system of the C6H6 ring and either H2O molecules or silanol groups 

on the SiO2 surface are responsible for the binding. Any differences in binding 

can be related to the relative acidities of the OH groups in the two surface 

systems. It is known through ab initio calculations and experiment  that the 
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deprotonation energy for surface bound silanol groups is around 1390 kJ mol-1 

[25]. This shows that the silanol group is more acidic than H2O, which has a 

deprotonation energy of ca. 1630 kJ mol-1 in the gas phase [26]. This is also 

demonstrated by the difference in solution phase pKa values of 7 and 14 for 

surface silanol groups [27] and H2O [9] respectively. This means that the H atoms 

in the case of silanol groups will carry a greater partial positive charge, ca. +0.6e 

[28], than in the case of surface H2O molecules where the corresponding charge is 

+0.4e. As a consequence, the C6H6 bound to the silanol group is significantly 

more polarized, which in turn impacts on the interaction between the first and 

second C6H6 layers, where C6H6 molecules are likely to be bound edge-on to 

those in the first layer through hydrogen-bonding interactions. This explains the 

tendency to form a second layer of C6H6 on amorphous SiO2 at exposures of 1 and 

2 L. The increased binding in this layer will then effectively delay the desorption 

of the first layer, resulting in the observed shift in the TPD profiles at these 

exposures. This would also suggest the formation, initially, of 2-dimensional 

islands on top of the first layer of C6H6 on SiO2. In the case of the ASW substrate, 

the intermolecular forces between C6H6 molecules dominate, resulting in the 

formation of 3-dimensional islands and the observed de-wetting behaviour. 
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3.6 RAIRS of C6H6 adsorbed on amorphous SiO2 and ASW 

3.6.1 Introduction 

RAIRS experiments were performed for C6H6 adsorbed both on the amorphous 

SiO2 surface and on a thick layer of compact ASW. The aims of these 

experiments were to obtain a reference spectrum that could be used in future 

irradiation experiments and to examine the nature of the binding between the 

C6H6 molecules and the two substrates. 

3.6.2 Experimental procedure 

The amorphous SiO2 substrate was cleaned in the usual manner by heating to 

200°C before cooling with liquid nitrogen to a base temperature of 115 K. The 

sample position was adjusted to optimize the interferogram and then left in that 

position for the duration of the RAIRS experiments. C6H6 films were grown using 

sequential background deposition where 1 L was dosed and a RAIR spectrum 

collected, followed by a further 1 L dose, to give a total dose of 2 L for the next 

spectrum. In this way, spectra for exposures of 1, 2, 5, 10, 20, 50, 100, 200 and 

500 L of C6H6 were obtained. No peaks were observed for exposures of less than 

1 L. For the C6H6 on ASW experiments a thick film of H2O was deposited using 

the molecular beam with the sample in optimum RAIRS position. The beam 

exposure time was 2000 s, resulting in a surface concentration of ca. 7×1016 

molecules cm-2 s-1. C6H6 was deposited on top of the H2O in the same way as for 

the SiO2 substrate. In all cases, spectra were calculated by the co-addition of 1024 

scans at a resolution of 2 cm-1. Scans performed at a resolution of 1 cm-1 yielded 

no further information, but did lead to a reduction in signal as a result of the 

reduced beam intensity arising from the smaller aperture used at this resolution. 

Background spectra were collected before deposition, and also following 

deposition. In the latter case the adsorbed multilayers were first desorbed by 

heating and the sample subsequently cooled back down to base temperature 

before background acquisition. Spectra were obtained by ratioing the sample 

spectra to the background spectra yielding the baseline with the least curvature. 

Baselines were subsequently subtracted manually for (a) the entire spectrum for 
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the largest exposure of 500 L and (b) individual regions of interest for all 

exposures. 

3.6.3 Results and Discussion 

Figure 3.36 shows the full range RAIR spectra obtained for a 500 L exposure of 

C6H6 adsorbed on the amorphous SiO2 substrate. Band assignments are made in 

accordance with a previous transmission IR study of C6H6 ice layers deposited on 

a Si(111) crystal [29] and RAIRS of C6H6 ice on a polished Al mirror [30]. The 

comparison is shown in Table 3.5. 

 
Figure 3.36: Full range RAIR spectrum of 500 L of C6H6 
deposited on the amorphous SiO2 film. C6H6 vibrations are 
labelled, along with the SiO2 bands 

The combination bands were assigned by comparison with the work of Tripathi et 

al. [31]. For high exposures the spectrum is dominated by a peak close to 1270 

cm-1 which can be assigned to the longitudinal optical (LO) mode of SiO2. The 

smaller peak at 1114 cm-1 can be attributed to the transverse optical (TO) mode 

which, as has been discussed, is expected to be relatively weak in reflection mode. 

The remaining broad features below 1000 cm-1 are also thought to be associated 

with the SiO2 substrate. Symmetries and vibration numbers are assigned 

according to Herzberg [32]. The normal modes for C6H6 are shown in Figure 

3.37. 
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Assignment This 

work 

Transmission 

IR on Si(111) 
(reference [29]) 

RAIRS on Al 

(reference [30]) 

C-H stretch (ν12) e1u 3082 3088 3095 
Combination 1 (ν2+ν16+ν18) e1u 3065 --- 3075 
Combination 2 (ν13+ν6) e1u 3027 3036 (broad) 3043 
Combination 3 (ν11+ν19) e1u 1973 1980 1957 
Combination 4 (ν18+ν19) e1u 1832 1836 1812 
C-C aromatic stretch (ν13) e1u 1477 1480 1481 
SiO2 LO mode 1270 --- --- 
SiO2 TO mode 1114 --- --- 
C-H in-plane bend (ν14) e1u 1037 1040 1038 
C-H out-of-plane bend (ν4) a2u 690 688 678 

Table 3.5: Assignments for the IR features observed in the RAIR spectra of C6H6 on amorphous 
SiO2. All frequencies are in cm-1. Mode numbers and symmetries are also provided. 

 
 

 

Figure 3.37: Normal modes of C6H6 (point group D6h). Only one component for the doubly 
degenerate vibrations is shown. From [32]. 
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Figure 3.38 shows the full range RAIR spectrum for an exposure of 500 L of 

C6H6 deposited on a thick layer of compact ASW. The same set of C6H6 peaks are 

again observed with no shift in frequency from those observed using the SiO2 

substrate, as expected for C6H6 multilayer growth. The only major difference is 

the addition of bands associated with the H2O layer, namely (i) the O-H stretch at 

3600-3100 cm-1, (ii) O-H bend at 1800-1300 cm-1 and (iii) the libration at 850  

cm-1. The ice spectrum is in good agreement with other studies under similar 

conditions [33,34]. The negative feature at near 2250 cm-1 is due to variations in 

gas phase CO2 in the purge gas. Similarly, the sharp features around 1750 cm-1 

and 3750 cm-1 are due to water vapour in the purge. 

 
Figure 3.38: Full range RAIR spectrum of 500 L of C6H6 
deposited on a thick H2O film on the amorphous SiO2 film. C6H6 
vibrations are labelled, along with the SiO2 bands. H2O bands are 
indicated by (i), (ii) and (iii). 

 

Figure 3.39 shows detailed RAIR spectra for all exposures of C6H6 on amorphous 

SiO2 whilst Figure 3.40 is limited to exposures up to 20 L. In these figures, the 

spectral regions corresponding to the assignments are considered separately, 

though. It should be noted that the C-H stretching mode and the nearby 

combination bands are presented together. There is no significant variation in the 
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appearance of the bands in the high exposure region as would be expected for the 

growth of a reasonably thick film of C6H6 multilayers. The difference in shape 

between the C6H6 bands and the SiO2 features is quite striking, as the SiO2 

originate from bulk phonon modes. At the very lowest exposures the intensity of 

the peaks, when visible, appears to drop off rapidly below 5 L. Exposures below 

this limit correspond to adsorption on the rough surface of the SiO2 itself, and a 

loss of intensity would be expected as a result of shadowing effects caused by the 

surface roughness. This effectively leads to a reduction in IR intensity reaching 

the C6H6. In order to properly assess the C6H6-SiO2 it would be necessary to grow 

a flat, crystalline film of SiO2. There is some evidence for peak shifting at the 

lowest exposure, which would reflect the monolayer adsorption interaction. In 

particular for C-H out-of-plane bend, only the high frequency shoulder is visible 

at low exposures, though it should be noted that the frequency at which this band 

occurs is very close to the low frequency limit of the MCT detector. A small shift 

to lower frequency of ca. 1 cm-1 is apparent for the C-C stretch. This is also 

visible in the combination band ν19+ν8 which has a contribution from the C-C 

stretch. The integrated intensities of each region of interest relative to those 

obtained for an exposure of 500 L are shown in Figure 3.41. The C-H stretching 

mode and the nearby combination are considered together. There is a general 

increase in intensity for all regions, with no strong variations in the trend between 

different vibrations. This is again consistent with a gradual build-up of a 

multilayer film. The curvature at high exposure can be attributed to deviation in 

the linearity of absorption intensity with respect to film thickness which occurs for 

thick films. As the same behaviour is observed for all peaks, this will not be 

discussed further. There is some unusual behaviour for the very lowest exposures, 

but this can be attributed to the extremely small size of these signals and small 

artefacts introduced during the baseline subtraction procedure.  

Finally, the ratio of the integrated intensities of the in-plane and out-of-plane 

bending modes is shown in Figure 3.42. The observed trend shows that the in-

plane contribution increases gradually relative to the out-of-plane contribution, for 

all exposures. This indicates a gradual increase in the number of tilted C6H6 

molecules. 
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Figure 3.39: RAIR spectra obtained for 1-500 L of C6H6 deposited on the 
amorphous SiO2 film. (a)-(e) show C6H6 vibrations whilst (f) shows the SiO2 
bands. 
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Figure 3.40: RAIR spectra obtained for 1-20 L of C6H6 deposited on the 
amorphous SiO2 film. (a)-(e) show C6H6 vibrations whilst (f) shows the SiO2 
bands. The features indicated by * are attributed to gas phase H2O vapour in 
the beam path outside the UHV chamber. 
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Figure 3.41: Band areas relative to 500 L for each of the main 
spectral regions for C6H6 adsorbed on amorphous SiO2. The inset 
is a close-up of the low exposure region. 

 

Figure 3.42: Ratio of the band area for the C-H in-plane bend and 
that of the C-H out-of-plane bend. 
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There is certainly no significant change in this behaviour which would indicate re-

orientation of the C6H6 molecules from a plane-parallel to plane tilted orientation 

as has been observed in single crystals such as Ru(001) [6]. This is consistent with 

there being a fairly random distribution of C6H6 molecule orientations relative to 

the metal surface as a result of the roughness of the SiO2 surface. Detailed RAIR 

spectra for C6H6 adsorbed on compact ASW are shown in Figure 3.43 and Figure 

3.44 for all exposures and small exposures up to 20 L respectively. In these, the 

H2O bands have been removed during the baseline subtraction. The spectra are 

very similar to those obtained for C6H6 on SiO2 including the small shifts at the 

lowest exposures noted previously. This suggests that the C6H6-ASW and C6H6-

SiO2 interactions are similar as might be expected for a silica surface with many 

silanol groups. In order to gain more insight into the small shifts observed at 

submonolayer coverages, simple quantum mechanical calculations were 

performed on the C6H6(H2O) cluster. This simple model is a reasonable approach 

considering that for adsorption on SiO2 and H2O, the interaction is likely to be 

between C6H6 and OH groups. The 6-31G(2p,2d) basis set was used throughout 

the calculations. This basis set includes 2 p polarization functions on H atoms and 

2 d polarization functions on the carbon and oxygen atoms in the calculations. All 

calculations were performed using the 2008 version of the GAMESS-US software 

suite [35]. Geometries and vibrational analyses were viewed using the GABEDIT 

software package [36]. The geometries of isolated C6H6 and H2O molecules were 

first optimized. The optimized molecules were then brought close together, and 

the geometry re-optimized at the same level of theory. The vibrational spectra of 

both the optimized isolated molecules and the C6H6(H2O) cluster were calculated 

using the harmonic oscillator approximation. The total energies of the three 

geometries were then corrected using the harmonic zero point vibrational energy 

to yield a cluster binding energy of 13.7 kJ mol-1 which is in reasonable 

agreement with a value of 11 kJ mol-1 recently reported for calculations using 

density functional theory [37]. 



149 

 
Figure 3.43: RAIR spectra obtained for 1-500 L of C6H6 deposited on a thick 
H2O film on the amorphous SiO2 film. (a)-(e) show C6H6 vibrations whilst (f) 
shows the SiO2 bands. H2O bands have been removed as part of the baseline 
correction. The sharp features in (d) are attributed to gas phase H2O vapour in 
the beam path outside the UHV chamber. 
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Figure 3.44: RAIR spectra obtained for 1-20 L of C6H6 deposited on a thick 
H2O film on the amorphous SiO2 film. (a)-(e) show C6H6 vibrations whilst (f) 
shows the SiO2 bands. H2O bands have been removed as part of the baseline 
correction. The features indicated by * are attributed to gas phase H2O vapour 
in the beam path outside the UHV chamber. 
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This value was not corrected for the ZPVE, and applying the correction made here 

results in a value of ca. 14 kJ mol-1. The geometry of the optimized cluster is 

shown in Figure 3.45. 

 
Figure 3.45: 6-31G(2p,2d) optimized geometry for the C6H6(H2O) cluster. 

The C6H6 vibrations were scaled by a value of 0.90, which was obtained by 

comparing the 1477 cm-1 band position with that obtained by calculation. The 

frequencies for the H2O cluster were scaled by the same factor. The calculated IR 

spectra in Figure 3.46 suggest small frequency shifts of 2-3 cm-1 for the C-C 

stretching and C-H out-of-plane bending modes for the cluster relative to 

spectrum for the isolated C6H6 molecule. The C-H band also shows a small 

frequency increase. However, given the proximity of the experimental band to the 

MCT detector limit, the experimental lineshape is questionable. The C-H 

stretching mode also shows a small frequency increase, though the experimental 

signal is too weak at exposures of less than 5 L to make a comparison. Although 

this analysis is extremely preliminary, it suggests that the small shifts observed in 

the experimental data are consistent with a weak binding interaction between 

C6H6 and the underlying surface, which in both cases is likely to involve OH 

groups. 
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Figure 3.46: Calculated IR spectra for C6H6 and the C6H6(H2O) cluster. 
Each spectrum has been normalized to the largest intensity band. 

3.7 Astrophysical implications and conclusions 

The astrophysical impact of desorption from a substrate that presents a wide range 

of binding sites can be demonstrated by performing kinetic simulations with 

astrophysical heating rates. As was discussed in the Chapter 1, astrophysical 

heating rates are typically of the order of 0.1-1 K century-1, which corresponds to 

3-30×10-11 K s-1. The amounts of C6H6 desorbed as a function of time at these 

heating rates are shown in Figure 3.47 and Figure 3.48 for simple first order 

desorption kinetics with a single desorption energy of 40 kJ mol-1 and first order 

desorption kinetics with the experimentally derived Edes function. These 

simulations were performed by removing the pumping step from simple first order 

desorption kinetic models constructed in CKS and adjusting the heating ramp 

accordingly. It is clear that the broad distribution of desorption energies leads to 

significantly delayed desorption which results in the presence of small amounts of 

adsorbed C6H6 at significantly later times than would be the case for a single 

desorption  energy.  This  observation  is  likely  to  be  valid  for  a  wide range of  



153 

 
Figure 3.47: Simulated desorption profiles for (top panel) simple first order 
desorption and (bottom panel) first order desorption from a substrate with 
the experimentally determined desorption energy distribution using a 
heating rate of 1 K century-1. 
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Figure 3.48: Simulated desorption profiles for (top panel) simple first order 
desorption and (bottom panel) first order desorption from a substrate with 
the experimentally determined desorption energy distribution using a 
heating rate of 0.1 K century-1. 
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molecules adsorbed strongly onto bare grain surfaces. Similar behaviour has also 

been revealed by preliminary TPD experiments for CH3OH, C5H5N and CH3CN. 

The results presented also highlight the marked differences between desorption 

from different substrates and from multilayer films. It is clear that the desorption 

of small amounts of C6H6 from the surface of a bare grain will be very different to 

that from a water ice surface. It is however important to note that the experiments 

conducted probe the two extremes of a bare grain surface and one which is 

completely covered in pure water ice. Real astrophysical ices are likely to be far 

more complex with both mixing and layering occurring. On relatively bare grains 

the population of sites by different molecules will be sensitive to the relative 

binding energies for the different species present, and the amount of thermal 

energy present for site to site diffusion. Given sufficient energy, the most strongly 

binding sites would be expected to be populated by those molecules which bind 

most strongly. At very low temperature, the site population would be essentially 

random, though preferential binding is likely to occur during warm up. In thicker 

ices, the presence of other species and trapping within the ice matrix are also 

likely to play an important role in the observed desorption, and the TPD of C6H6 

from within an ASW film is a necessary future experiment. Nevertheless, these 

experiments provide a basis for understanding the desorption from two relevant 

surfaces and give an insight into the complex nature of desorption from realistic 

grain mimics. 

In summary, a mimic based on a thin film of amorphous SiO2 for interstellar dust 

grains has been developed using electron beam evaporation. AFM has 

demonstrated the presence of a surface morphology that is reminiscent of that of 

interplanetary dust grains in terms of a large surface area resulting from surface 

roughness. PM-RAIRS experiments have confirmed the presence of the SiO2 film 

as well as the presence of solid state LO-TO bands that are present in IR studies 

performed in reflection mode. This was useful in assigning peaks in subsequent 

RAIR spectra, but is not of direct astrophysical relevance as such splitting is not 

observed in transmission IR. 

TPD experiments have demonstrated strong substrate effects in the thermal 

desorption of small quantities of C6H6 from the interstellar grain mimic. The SiO2 
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surface provides a surface area several times larger than the geometric surface 

area. This surface presents a wide range of binding sites which results in a broad 

distribution of binding energies. This indicates that C6H6, and indeed other 

molecules, are likely to be retained on a bare grain to significantly higher 

temperatures than if a single desorption energy is considered. Desorption of C6H6 

from a thick ASW film displays very different desorption kinetics with a much 

narrower range of desorption energies. The desorption of small quantities of C6H6 

display close to first order desorption kinetics, with small deviations from this 

ideal behaviour arising as a result of island formation. Islanding is also evidenced 

by dewetting behaviour during the TPD. 

RAIRS experiments have also been conducted on C6H6 adsorbed on both 

amorphous SiO2 and ASW. Poor sensitivity to low coverages of C6H6 was 

observed and attributed to the effect of surface roughness. It is hoped that future 

experiments conducted on a flat crystalline SiO2 film will enable further 

characterization of these small coverages through RAIRS. The spectra that were 

obtained indicate very little difference between the two systems. For the lowest 

coverage experiments there is some evidence of small shifts in peak positions 

compared to calculation vibrational frequencies, which are tentatively attributed to 

hydrogen-bonding interactions between C6H6 and the underlying H2O or silanol 

rich SiO2 surface. 
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Appendix 3A FORTRAN 90 program to calculate TPD profiles using a 

distribution of desorption energies 
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CHAPTER 4 - Photon Irradiation of C6H6 / H2O Ices 

4.1 Introduction 

This chapter describes experiments performed to study the photodesorption of 

C6H6 and H2O molecules from pure and binary layered systems consisting of the 

two ices. Desorption was induced by exciting an electronic transition in the C6H6 

molecule with laser radiation in a wavelength range at which H2O does not 

absorb. This meant that any desorption detected was due to resonant absorption of 

photons by C6H6 molecules, or thermal processes resulting from absorption by the 

underlying substrate. The electronic spectroscopy of C6H6 will be discussed to 

highlight the chosen electronic transition, followed by a discussion of the 

experimental procedure employed. The absorption properties of the adsorbed 

films will be discussed in relation to calculated film thicknesses, followed by a 

consideration of both the dynamics of desorption observed through time-of-flight 

(ToF) experiments, and the non-thermal desorption kinetics obtained through the 

photon induced desorption decay. Finally the astrophysical implications of these 

observations will be discussed. 

4.2 Electronic spectroscopy of C6H6 

In these experiments, desorption was initiated by exciting electronic transitions 

within the C6H6. The electronic spectroscopy of the C6H6 molecule will therefore 

be considered. For this, and other polyatomic molecules, the book by Herzberg [1] 

is an extremely valuable resource. C6H6 belongs to the D6h point group which 

contains one C6 axis, six C2 axes perpendicular to C6, six σv planes, one σh plane, 

one each of C2, C3 and S6 axes coincident with C6 and a centre of inversion, i. The 

manner in which the C and H atomic orbitals form the molecular orbitals of C6H6 

is shown in the correlation diagram in Figure 4.1. 
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Figure 4.1: Correlation diagram for C6H6. The six π orbitals are highlighted in red. From [1]. 

In this diagram, the core C 1s atomic orbitals are not shown, which results in a 

series of molecular orbitals (MOs) occupied by a total of 30 valence electrons. 

The most important MOs are those formed by the overlap of the C pz orbitals, 

which are the π bonding and π* anti-bonding orbitals in which electron density is 

delocalised above and below the plane of the C6H6 molecule. Hückel theory 

shows that these are formed by the addition of the atomic orbital wavefunctions to 

obtain six orbitals; four of which form two degenerate pairs of orbitals. These 

orbitals are shown schematically in Figure 4.2. The correlation diagram in Figure 

4.1 shows the electron configuration for the ground electronic 1A1g state. This term 

arises as the doubly degenerate e1g orbital is filled, which results in a totally 

symmetric A state. The singlet ground state is also referred to as S0. The lowest 

energy electronic transition is the *ππ →  promotion of an electron from the e1g 

bonding orbital to the e2u antibonding orbital. 
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Figure 4.2: The π orbitals of C6H6. Only the portion of the wavefunction 
above the molecular plane is shown. The functions have opposite sign on the 
other side of the plane. The dashed lines indicate nodal planes. From [1]. 

This leads to two non-equivalent electrons in e1 and e2 orbitals, which for D6h 

symmetry results in the direct product E1g×E2u=B1u+B2u+E1u. This results in six 

possible states, considering both singlets and triplets. The lowest energy state that 

can be accessed from S0 is the 1B2u state, which will be referred to as S1. Therefore 

the 01 SS ←  transition can be written 
gu

AB 1

1

2

1 ← . Electronic transitions are 

allowed when: 

0ˆ ≠∫ τψψ diiiM    Equation 4.1 

where iψ  and iiψ  are the excited and ground state wavefunctions respectively, 

M̂  is the dipole moment operator and τd  indicates integration over spatial 

coordinates. Therefore, the product of the two wavefunctions must contain the 

same species as one of the components of M̂ . However, the direct product of an 

A1g and a B2u state is B2u which is not the same as either of the components of the 

dipole moment operator (which are A2u and E1u for D6h). The transition is 

therefore electronically forbidden. However, if the vibrational part of the 

wavefunction is considered, the transition is weakly allowed through vibronic 

transitions. A transition will then be allowed if the product of the vibrational 

wavefunctions of the two states contains at least one component of the electric 
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dipole moment. Vibrations having symmetry b1g or e2g will therefore result in an 

allowed transition. C6H6 has no b1g vibrations and the transition is thus allowed 

through excitation of the ν18 vibration, which has e2g symmetry (see Chapter 3). 

The observed progression of vibronic absorption features [1] actually indicates 

excitation of the ring breathing mode, ν2, which has symmetry a1g and is forbidden 

unless ν18 is also excited. The allowed transitions are shown in Table 4.1. 

Transition ''

18ν  
'

18ν  
''

2ν  
'

2ν  

1 1 0 0 0 

2 0 0 0 0 

3 0 1 0 0 

4 0 1 0 1 

5 0 1 0 2 

6 0 1 0 3 

7 0 1 0 4 

8 0 1 0 5 

Table 4.1: Vibronic transitions for the S1←S0 transition of C6H6. Transition 2, shown in italics, is 
forbidden as a result of there being no excitation of the ν18 vibration. 

 

The five strongest allowed transitions can be clearly seen in the gas-phase UV 

absorption spectrum in Figure 4.3. 

As the experiments described here were performed using condensed C6H6 films 

deposited at temperatures below 100 K, it is necessary to consider any shifts and 

broadening observed in the condensed phase UV absorption spectrum. 

UV/HREELS has been used to obtain the UV absorption spectrum of both 

multilayer and monolayer films of C6H6 adsorbed on Pt(110) [2] revealing a broad 

multilayer absorption band centred around 4.71 eV (263 nm). This compares well 

with the absorption maximum observed in the gas phase spectrum. However, the 

thickest films were only a few multilayers thick which resulted in limited 

sensitivity to individual vibronic components. 
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Figure 4.3: UV absorption spectrum of gas phase C6H6 showing the 
vibrational structure of the S1←S0 transition. Adapted from [3]. 

It is also possible that the underlying substrate has an effect on such thin films, 

resulting in different absorption properties compared to bulk ice. Therefore 

reference was made to recently obtained UV/VUV absorption spectra of C6H6 

films deposited under similar conditions to those in the present study [4]. From 

the spectra, UV wavelengths of 250.0 nm (4.96 eV) and 248.8 nm (4.98 eV) were 

chosen for on-resonance and near-resonance irradiation, whilst 275.0 nm (4.5 eV) 

was used as an off-resonance reference wavelength. The choice of this vibronic 

component, rather than the larger one to longer wavelength, was made as it lies at 

the maximum efficiency of the Comarin 307 dye used in these experiments when 

pumped at 355 nm. It should be noted that H2O ice has negligible absorption 

below around 7.5 eV (165 nm) [5] and can therefore be considered to be non-

absorbing in the present case.  
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4.3 Experimental procedure 

The experiments described in this chapter were performed using UHV chamber 2. 

The overall system set up was described in Chapter 2. For all experiments the 

sapphire substrate was maintained at its base temperature of ca. 80 K. Ice films 

were grown on the substrate by backfilling the chamber with analytical grade 

C6H6 (Sigma-Aldrich) or deionized H2O. These were introduced via a fine leak 

valve following repeated freeze-pump-thaw cycles to remove dissolved 

impurities. Doses are reported in Langmuir as measured using the uncalibrated hot 

cathode ion gauge. Unless otherwise stated, 200 L doses were used. It should be 

noted that this does not lead to equal C6H6 and H2O film thickness. Dose purity 

was monitored using the residual gas analyzer attached to the system. Four 

different systems were studied, (i) pure C6H6 ice, (ii) pure H2O ice, (iii) C6H6 on 

H2O ice and (iv) H2O on C6H6 ice. 

The deposited ice films were irradiated with UV light from the frequency-doubled 

Nd3+:YAG pumped dye laser arrangement described previously. Three 

wavelengths were used, with 250 nm being used to resonantly excite the required 

vibronic component of the 
gu

AB 12 ←  electronic transition. A second wavelength, 

248.8 nm lies in a local minimum and was used to study near-resonance 

behaviour. In order to clearly separate resonance effects from other processes that 

might occur, an off-resonance wavelength of 275 nm was used. The photon order 

was estimated by performing experiments at two pulse energies, 1.8±0.2 and 

1.1±0.1 mJ pulse-1 with the errors being determined from typical fluctuations in 

pulse energy during irradiation. The focusing of the laser beam resulted in the 

irradiation of a 0.5 mm2 spot on the substrate, thus the irradiances were 360 and 

220 mJ cm-2 pulse-1. The bandwidth of the laser was 6.25×10-4 nm which is far 

narrower than the absorption features of interest. 

Desorbing C6H6 and H2O molecules were detected using the pulse counting 

quadrupole mass spectrometer. The CEM was operated at -2500 V, which was 

shown to be within the plateau region of the detector gain. Time-of-flight profiles 

were obtained using the multichannel scaler. TTL pulses from the auxiliary output 

of the QMS controller were used as the detection signal, with the discriminator set 
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to -85 mV. The MCS was triggered by a 1 V pulse obtained from the laser trigger 

circuit. Data was acquired with 16,000 bins with a bin width of 2.56 µs 

corresponding to an acquisition time of 41 ms, significantly shorter than the 

period between laser pulses ensuring that signals from separate shots did not 

overlap. Data was accumulated for 200 shots unless otherwise stated. In order to 

further increase the data quality, the data was averaged over multiple spots on the 

sample surface. Typically, a grid of 30 points across the surface was used. 

4.4 Results and discussion 

4.4.1 Introduction 

In the experiments described in this chapter, two sets of results were obtained. 

The first of these relates to the dynamics of the process, in particular yielding the 

fraction of the photon energy partitioned into the translational energy of the 

desorbing molecules. In this case it is the ToF distributions of the desorbing 

molecules which contain the relevant information. The other data collected, the 

mass spectrometer response, contains information on the rate of desorption from 

which the non-thermal desorption kinetics of molecules desorbing can be 

determined, and hence the desorption cross-section. These two aspects will be 

discussed in turn. 

4.4.2 Film thickness determination 

Before discussing the details of the results it is important to consider the 

procedure employed for determining estimates of C6H6 and H2O film thicknesses. 

A knowledge of the thickness of an absorbing film is important in determining 

how much of the incident energy is absorbed by a particular species. For both 

C6H6 and H2O, raw exposures of 200 L were used for both species. Correcting for 

the ion gauge sensitivity factors of 1.1 and 6.0 for H2O [6] and C6H6 [7] 

respectively. This results in corrected exposures of 182 L for H2O and 33 L for 

C6H6. It is important to note that in this system, 1 L was defined as 1×10-6 mbar s 

rather than 1×10-6 torr s. This was taken into account when converting to the SI 

units of Pa s. By applying the expression for collision frequency in molecules m-2 
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s-1[8] the adsorbed surface concentrations, Nads in molecules m-2
, can be obtained 

using the following expression: 

Tmk

Pt
N

B

ads
2π

=     Equation 4.2 

where Pt is the exposure in Pa s, m is the molecular mass of the species of 

interest, kB is the Boltzmann constant and T is the gas temperature, assumed to be 

298 K as the gases were dosed from a thermal source. A sticking probability of 

unity was assumed in both cases which is reasonable as 80 K is significantly 

below the onset of multilayer desorption for both H2O and C6H6. The resulting 

surface concentrations are 6.5×1016 molecules cm-2 for H2O and 5.8×1015 

molecules cm-2 for C6H6. In order to determine an approximate film thickness it is 

necessary to know the density, ρ, of the ice film. As densities are typically 

sensitive to the nature of deposition, deposition temperature and thermal history of 

the film it is possible only to obtain estimates in this case. The structure of C6H6 

has been studied over a wide temperature range using neutron powder diffraction 

[9]. The discussion was generally limited to crystalline C6H6, though at the 

deposition temperature used in these experiments this is not an unreasonable 

assumption. The structure consists of four C6H6 molecules per unit cell, with the 

diffraction studies giving a cell parameter, a, of 467 Å3 at a temperature of 80 K. 

This yields a density, ρ, of 8.57×1021 molecules cm-3. It has been shown that the 

porosity, and hence the density of H2O films depends both on the substrate 

temperature, and the angle of incidence of adsorbing molecules [10]. H2O 

deposited by background dosing onto a surface at a temperature of 80 K will lead 

to the formation of a fairly compact amorphous film with limited porosity. 

Ballistic deposition simulations have shown that [11] a density of ~0.87 g cm-3 

results if some thermal relaxation is allowed, which significantly reduces the 

porosity. This corresponds to a density of 2.91×1022 molecules cm-3. From these 

densities and surface concentrations, the film thickness estimates obtained are 22 

nm for H2O and 7 nm for C6H6.  
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4.4.3 Dynamics of desorption products 

Results 

Figure 4.4 shows a ToF profile for the desorption of C6H6 molecules from a 200 

L film of C6H6 deposited on the sapphire substrate. The photon irradiation 

wavelength was 250 nm, and the irradiance 360 mJ cm-2. A strong desorption 

feature is evident with a peak at around 0.6 ms. The raw data is presented, along 

with a smoothed curve obtained by a 54 point adjacent average routine. This is 

provided to increase the clarity of the presented data. Qualitatively the peak 

appears to resemble a Maxwellian distribution of translational energies with a 

single component. In order to observe the resonance behaviour of the desorption, 

and to isolate any mechanisms not related to absorption of the UV radiation by 

C6H6 molecules, the ToF profiles for the irradiation of this system using all three 

wavelengths were compared, as presented in Figure 4.5. It should be noted that in 

this figure, all ToF profiles were obtained with an irradiance of 220 mJ cm-2 pulse-

1 as using the higher irradiance at a wavelength of 275 nm resulted in damage to 

the optics used to steer the UV beam into the UHV chamber. Of course, using the 

same irradiance for the three wavelengths means that there will be small 

differences in the actual photon fluxes in photons cm-2 s-1. These fluxes can be 

obtained by converting the irradiances in terms of energy to units of photons cm-2 

pulse-1. The flux can then be calculated by correcting for the 10 Hz pulse 

frequency. The resulting fluxes for the two pulse energies are shown in Table 4.2. 

It is clear that the small variations in photon flux between the three wavelengths 

are actually within the error limits derived from the observed pulse to pulse 

variation in irradiance. Therefore any differences in desorption can be attributed 

to wavelength dependence and not flux effects. 
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Figure 4.4: ToF profile for the desorption of C6H6 molecules from a 
200 L film of C6H6 deposited on the sapphire substrate. The laser 
wavelength was 250 nm and the irradiance was 360 mJ cm-2 pulse-1. 

 

Figure 4.5: ToF profiles for the desorption of C6H6 molecules 
from a 200 L film of C6H6 deposited on the sapphire substrate for 
the three UV wavelengths used. The irradiance was 220 mJ cm-2 
pulse-1. 
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Photon flux / photons cm
-2

 s
-1 

Wavelength / nm 

1.8 mJ pulse
-1 

1.1 mJ pulse
-1 

250.0 (4.53±0.5)×1018 (2.77±0.3)×1018 

248.8 (4.51±0.5)×1018 (2.76±0.3)×1018 

275.0 (4.98±0.5)×1018 (3.04±0.3)×1018 

Table 4.2: Calculated photon fluxes for the three irradiation wavelengths and the two pulse 
energies. Errors are derived from the observed ±10% pulse to pulse variation in irradiance. 

In discussing the observed ToF profiles, it is important to note that the observed 

size of the ToF peak is likely to reflect the rate of desorption rather than the actual 

amount of C6H6 or H2O desorbed. In all cases the irradiation was continued for a 

significant period of time after the disappearance of the QMS signal, such that it is 

reasonable to assumed complete desorption of molecules underneath the spot 

irradiated. Figure 4.6 illustrates how for small QMS signals as observed during 

the ToF experiments, the size of the peak can be assumed to correlate with the 

rate of the desorption process. For slow desorption more of the desorption yield 

will be below the detection limit of the QMS than for faster desorption. The QMS 

signal is therefore biased towards the rate of desorption. Therefore, the ToF 

profiles in Figure 4.5 indicate that the C6H6 non-thermal desorption rate is 

greatest for a wavelength of 250 nm, on resonance with the intended transition. 

The desorption at 248.8 nm shows a decreased desorption rate in accordance with 

the reduced absorption cross-section at this, near resonance, wavelength. The 

desorption can therefore be considered to arise as a result of direct photon 

absorption by C6H6 molecules. Interestingly, some desorption is also observed at 

the off-resonance wavelength of  275 nm where the absorption cross-section is 

negligible. This indicates that a second desorption channel involving the substrate 

must also be active. In order to appreciate this it is important to obtain estimates 

of the fraction of photons expected to be absorbed by both the C6H6 molecules 

and the sapphire substrate. The absorption cross-section for condensed C6H6 has 

been obtained through VUV experiments [4] and was found to be 4.5×10-18 cm2 at 

the 250 nm peak and 1.2×10-18 cm2 at the local minimum at 248.8 nm. This is in  
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Figure 4.6: An illustration of why a fast desorption process is likely to give 
rise to a larger desorption yield than a slower desorption process when the 
detected signal is close to the QMS detection limit. 

 

reasonable agreement with the observed desorption rates at these two 

wavelengths. These cross-sections correspond to absorption coefficients of 

3.9×104 cm-1 and 1.0×104 cm-1 respectively assuming the previously quoted 

number density for C6H6. The UV absorption coefficient for sapphire over a wide 

wavelength range has been studied using a range of techniques and is fairly flat 

over the range used in these experiments. A typical value of 0.2 cm-1 is taken as 

being representative of absorption over the wavelength range studied [12]. The 

ratio of transmitted light to incident light intensity, )/( 0II , can be calculated 

using the Beer-Lambert Law [8]: 

[ ]l
I

I
α−= exp

0

     Equation 4.3 

where α is the absorption coefficient in cm-1 and l is the total path length through 

the absorbing film in cm. Taking a C6H6 film thickness of 7 nm and a sapphire 

disc thickness of 1 mm yields path lengths of 19 nm and 2.8 mm respectively for a 

beam incidence angle of 45° to the surface normal. In the case of a benzene film, 

this analysis suggests that 7% of the incident light is absorbed by the C6H6 film at 

250 nm  and   around  5%  by  the  underlying   sapphire substrate.  It  is  therefore 

reasonable to assume that some substrate heating and associated thermal 
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desorption will occur. This will be referred to as substrate-mediated desorption, 

and the C6H6 desorption following resonant absorption as direct adsorbate-

mediated desorption. 

Before considering the effect of film morphology on the non-thermal desorption 

process, it is important to consider the photon order of the process. In the 

interstellar medium, photon fluxes are much smaller than those obtained in the 

laboratory. Therefore, only mechanisms involving single photon absorption will 

contribute to the ice processing and multi-photon processes can be neglected. 

Figure 4.7 shows the pulse energy dependence of the desorption signal. The ratio 

of the desorption yields for these two profiles is 1.64, in excellent agreement with 

the irradiance ratio of 1.64±0.2. This confirms that the desorption observed is the 

result of single photon absorption. 

Figure 4.8 and Figure 4.9 show ToF profiles for the desorption of C6H6 and H2O 

respectively from different layered systems. In both cases the desorption from a 

single layer of the observed species adsorbed on the sapphire substrate is 

considered, along with C6H6 adsorbed on top of a pre-adsorbed H2O film, and vice 

versa. For clarity, only the 54 point adjacent averaging curves are plotted for this 

comparison. Considering first the desorption of C6H6 a significant desorption rate 

is observed when C6H6 alone is adsorbed on the sapphire substrate, the direct 

adsorbate-mediated desorption discussed already. If a thick overlayer of H2O is 

adsorbed after the C6H6 film, a large decrease in the desorption rate is observed. 

This can be attributed to the blocking of C6H6 by the thick overlayer. However, 

when C6H6 is adsorbed on top of a previously adsorbed thick layer of H2O the 

C6H6 desorption rate is slightly increased compared to the case of C6H6 alone. 

This can be rationalized by considering likely morphological effects. As has 

already been discussed, a H2O film deposited at 80 K is likely to be compact and 

relatively non-porous and has been shown to have a rough, uneven surface that 

presents a larger surface area than the geometric surface area [13]. A larger 

surface area will inevitably lead to an increase in desorption rate as it effectively 

results in a slight increase in irradiation spot area.  

 



177 

 
Figure 4.7: C6H6 ToF profiles obtained using an irradiation wavelength of 
250 nm and pulse energies of 1.1 mJ and 1.8 mJ to assess the photon order 
of the desorption process. 

 

For the desorption of H2O following irradiation at 250 nm it is clear that very little 

desorption occurs when H2O is deposited alone on the sapphire substrate. This is 

in agreement with the extremely low absorption by H2O in this wavelength range. 

This has been confirmed by Kobayashi [5] who showed that photon absorption by 

H2O is negligible at photon energies below around 7.5 eV, i.e. at wavelengths 

longer than 170 nm. The small H2O desorption observed when it is deposited 

alone can therefore be attributed to substrate-mediated desorption, where 

absorption of photons by the underlying substrate leads to local substrate heating 

and subsequent thermal desorption. As this also seems to play a role in the 

desorption of C6H6 it is reasonable that this should also be the case with H2O. 

When C6H6 is deposited on top of the H2O a significantly higher rate of H2O 

desorption is observed. As direct adsorbate-mediated desorption involving H2O 

has already been discounted, and there is no reason to expect substrate-mediated 

desorption to change as a function of layer configuration, this must be attributed 

to a transfer of energy from C6H6 molecules to the H2O film following resonant 

absorption. This will be referred to as indirect adsorbate-mediated desorption. A 

slightly enhanced H2O desorption rate is also observed when the H2O is deposited  
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Figure 4.8: ToF profiles for C6H6 desorption following irradiation at 250 
nm using a pulse energy of 1.8 mJ. The different profiles relate to the film 
layering depicted schematically. 

 

Figure 4.9: ToF profiles for H2O desorption following irradiation at 250 
nm using a pulse energy of 1.8 mJ. The different profiles relate to the film 
layering depicted schematically. 
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on top of a pre-adsorbed C6H6 layer, though to a far lesser extent. These 

observations can again be attributed to ice morphological effects. The important 

region in the ice is the interface between the H2O film and the C6H6 film as this is 

where energy transfer from one species to the other will be most efficient. 

Considering first the case of C6H6 adsorbed on top of H2O, it has already been 

indicated that the C6H6 film is relatively thin. It is known that H2O does not wet a 

graphite surface [14,15]. It has also already been shown in this thesis that C6H6 

forms islands on a H2O ice film. It therefore follows that (a) the C6H6/H2O 

interface is beneath a relatively thin C6H6 layer which results in the desorption of 

H2O being relatively unhindered by the overlayer and (b) there will be regions 

where the C6H6/H2O interface is exposed to vacuum which would also contribute 

to a higher desorption rate. However, when H2O is deposited on top of the C6H6 

film, the thick overlayer of H2O blocks H2O desorption from the C6H6/H2O 

interface, in the same way as for the desorption of C6H6, resulting in a reduced 

desorption rate. The film morphologies described here are shown schematically in 

Figure 4.10. 

 
Figure 4.10: Cartoon illustrating the morphologies 
of the layered ice systems. The ice morphology has 
a significant effect on the observed desorption rate. 
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The ToF profile for water desorption from the H2O on C6H6 system shown in 

Figure 4.9 shows a series of features at around a flight time of 4 ms. This can be 

more clearly seen in Figure 4.11 which shows the same ToF profiles as Figure 

4.9 but on an expanded time scale of up to 20 ms. An extremely broad desorption 

feature is present in the case of the H2O on C6H6 system which extends from 4 ms 

to over 15 ms. No further desorption was observed at longer times. Interestingly, 

this feature is only present for this particular layer configuration, with no late 

desorption features being observed for the C6H6 on H2O system or when H2O was 

deposited alone. This feature was present for the H2O on C6H6 system at both 

wavelengths where H2O desorption was observed as shown in Figure 4.12, and 

also at both laser pulse energies employed. The late H2O desorption feature is 

attributed to the desorption of H2O clusters from the C6H6/H2O interface region. 

The detection of these clusters via the m/z=18 channel of the QMS then results 

from the disintegration of these clusters within the ionization source of the QMS. 

It is important to note that as no m/z channels corresponding to (H2O)n clusters for 

n>1 were monitored there is no direct evidence for H2O clusters. Nevertheless, it 

is reasonable that H2O clusters of a range of sizes would (a) be produced by the 

adsorbate-mediated desorption mechanism and (b) would be subject to a 

distribution of long flight times reflecting their mass distribution and the energy 

partitioning during fragmentation of the adsorbate-surface complex. No 

equivalent late C6H6 desorption feature was observed, which is interesting 

considering that the presence of C6H6 is required for such a feature to be observed 

in the H2O desorption. Whilst there was some spot to spot variation in the 

intensity of the late H2O ToF feature, it was generally fairly reproducible. For 

improved clarity, full timescale (up to 40 ms) ToF profiles for H2O desorption 

from the H2O on C6H6 system following irradiation at 250.0 and 248.8 nm with a 

pulse energy of 1.8 mJ are shown in Figure 4.13. This clearly demonstrates the 

reproducibility of the shape of the desorption feature and its position, being 

peaked at around 10 ms. Desorption is discernible up to times as late as 30 ms. 

The sharp features observed in this, and previous figures showing this feature, are 

attributed to artefacts introduced during the smoothing procedure, as no fine 

structure is observed in the raw profiles. 
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Figure 4.11: ToF profiles for the desorption of H2O from various 
layer configurations where S, B and W refer to sapphire, C6H6 and 
H2O respectively. The pulse energy was 1.8 mJ and the laser 
wavelength was 250.0 nm in all cases. The grey lines are the 
averaged raw data and the coloured thick lines are smoothed. The 
profiles have been offset for clarity. 

 

Figure 4.12: ToF profiles for the desorption of H2O from the 
S/B/W system at the three laser wavelengths. The pulse energy 
was 1.1 mJ in all cases. The grey lines are the averaged raw data 
and the coloured thick lines are smoothed. The profiles have been 
offset for clarity. 
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Figure 4.13: Full timescale ToF profiles for the desorption of H2O 
from the C6H6 system following irradiation at 250.0 and 248.8 nm 
using a pulse energy of 1.8 mJ. 

 

Analysis and discussion 

In order to gain further insight into the mechanisms behind the desorption 

observed, the ToF profiles were fit with Maxwellian functions in order to obtain 

the translational temperatures of desorbing molecules. The fitting of ToF profiles 

has been discussed at length [16] along with the importance of using the correct 

distribution function for fitting. The expression for a density sensitive detector, 

such as a QMS, where the signal is proportional to the number density of 

molecules in the ionization source, was used: 
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where t is the flight time, m is the molecular mass and T is the translational 

temperature of desorbing molecules. In order to apply this expression to the 

obtained profiles, the following functional form was used: 
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where A is a scaling parameter. In order to perform the required fitting, it was 

necessary to determine the flight path length for desorbing molecules, r, which is 

simply the distance between the surface and the ionization source of the QMS, 

measured as 0.307 m. In order to use this path length it is necessary to account for 

the time taken for the ions generated in the ionization source to reach the 

channeltron where they are detected. These times were calculated for both H2O 

and C6H6 by considering acceleration into the mass filter by a focus voltage, VF of 

90 V and a mass filter entrance to channeltron distance, 'r , of 0.18 m. It was 

assumed that the ions had an initial velocity component of 0 m s-1 in the direction 

of the mass filter. For a singly charged ion, the time correction, 't , is: 
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where e is the electronic charge, 1.60×10-19 C. The associated time corrections for 

C6H6 and H2O were 1.2×10-5 s and 5.8×10-6 s respectively. These corrections are 

relatively minor for the detection system used in these experiments, where the 

long flight path leads to flight times of the order of a few ms. It is clear that in 

experiments where the flight path is only a few mm, which is not uncommon, 

such corrections are essential. Nevertheless, the experimental flight times were 

corrected accordingly. 

Single component fits to the ToF profiles observed for the desorption of C6H6 

from the sapphire substrate at pulse energies of 1.1 and 1.8 mJ are shown in 

Figure 4.14 and Figure 4.15 respectively. The translational temperatures obtained 

support the previous suggestion that two desorption channels, direct adsorbate-

mediated desorption, and substrate mediated desorption play a role in this case. At 

the lower pulse energy of 1.1 mJ the irradiation at the on-resonance wavelength of 

250.0 nm results in the desorption of C6H6 with a translational temperature of 

>1100 K, far in excess of the substrate temperature. It is clear that the direct 

adsorbate-mediated desorption channel is dominant in this case. At the off-

resonance wavelength of 275 nm the translational temperature is significantly 
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lower with a value of ca. 530 K resulting from the fit. This can therefore be 

attributed to localised heating of the sapphire substrate under the laser spot, 

leading to thermal desorption of C6H6. As discussed already, it is reasonable to 

assume that this component is present at all three wavelengths. Therefore at 248.8 

nm, the presence of two components leads to a single component fit translational 

temperature somewhere between the two extremes. At the higher pulse energy of 

1.8 mJ the same general trend is observed, though irradiation at 275 nm was not 

possible, as discussed previously, which means that a translational temperature for 

the substrate mediated component was not obtained at this higher energy. For this 

reason, only the pulse energy of 1.1 mJ will be considered in the subsequent 

discussion. It is worthwhile noting, however, that it is reasonable to expect that 

the increased photon flux would lead to an increased degree of localized heating, 

which would result in an increase in translational temperature for the substrate-

mediated desorption component. This would explain the increased translational 

temperature observed for the irradiation at 248.8 nm compared to that obtained at 

the lower pulse energy.  

In order to properly assess the contributions of the two components, two 

component fits were performed using two strategies. In the first, the two 

translational temperatures, T1 and T2, along with the two scaling factors, A1 and 

A2, were used as fitting parameters: 
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In the second approach, the substrate-mediated desorption component channel 

was fixed at 530 K as obtained from the single component fit for the profile 

obtained with a wavelength of 275 nm. This relies on the reasonable assumptions 

that (a) only this channel is in operation at the off-resonance wavelength and (b) 

the translational temperature resulting from this channel is independent of 

wavelength as a result of the flatness of the sapphire absorption coefficient over 

the wavelength range studied. The contributions of each component, related to A1 

and A2 were still used as fitting parameters. 
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Figure 4.14: ToF profiles and single component fits for the 
desorption of C6H6 from the sapphire under irradiation at all three 
laser wavelengths. The pulse energy was 1.1 mJ in all cases. 
Traces have been offset for clarity. 

 
Figure 4.15: ToF profiles and single component fits for the 
desorption of C6H6 from the sapphire under irradiation at laser 
wavelengths of 248.8 and 250.0 nm. The pulse energy was 1.8 mJ 
in all cases. Traces have been offset for clarity. 
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The expression is modified thus:  
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Two component fits for the desorption of C6H6 from the sapphire substrate with a 

pulse energy of 1.1 mJ in which both translational temperatures were allowed to 

vary are shown in Figure 4.16. In Figure 4.17 the same profiles are fitted using a 

two component scheme in which one component is fixed at 530 K to represent the 

substrate-mediated desorption component. Only this component is present for 

irradiation at 275 nm as it is assumed that only this desorption channel operates at 

this wavelength. The fits in which both translational temperatures were allowed to 

vary demonstrate the general trends revealed by the single component fits i.e. the 

presence of a high temperature and a low temperature component. Clearly the 

high temperature component is dominant when the on-resonance wavelength is 

used, with the low temperature component resulting from the substrate-mediated 

channel is relatively minor. With the off-resonance wavelength the substrate-

mediated channel dominates, though a very small high temperature component is 

present. This may be an artefact of the fitting procedure. Given the small size of 

this component, its impact on the overall desorption is negligible. At 248.8 nm the 

two components are of approximately equal size, though the high temperature 

component appears to have a significantly lower temperature than that obtained at 

250 nm. Given the relatively small difference in photon energy between these two 

wavelengths, such a large difference in translational temperature does not seem 

reasonable. Moreover, there is no reason to expect the observed variation in the 

temperature of the low temperature component given the invariance of sapphire 

absorption coefficient over this wavelength range. It is therefore likely that the 

full two component fits allow too much flexibility, given the quality of the data, to 

yield physically realistic values. Therefore, the approach where the low 

temperature component was fixed at 530 K is considered to be more reliable. 

Using this approach the high temperature components for the profiles  observed  

for  irradiation  at  250  and  248.8  nm  are  1190  and  1032 K respectively. 
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Figure 4.16: Two-component fits to C6H6 ToF profiles obtained 
using a pulse energy of 1.1 mJ. The translational temperatures of 
both components were used as fitting parameters. Individual 
components are shown in green and orange. Traces have been 
offset for clarity. 

 
Figure 4.17: Two-component fits to C6H6 ToF profiles obtained 
using a pulse energy of 1.1 mJ. The translational temperature of 
one component was fixed at 530 K, and used for the single 
component fit to the 275.0 nm profile. Individual components are 
shown in green and orange. Traces have been offset for clarity. 
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The same fitting procedure was employed to fit the C6H6 from the layered 

systems. The obtained components for the desorption of C6H6 from all layer 

configurations for an irradiation wavelength of 250 nm are shown in Table 4.3. 

This results in a translational temperature for the direct adsorbate-mediated 

component of 1150±200 K. Considering the relative error to be the same in the 

case of the substrate mediated component yields a translation temperature of 

500±100 K. 

Layer 

configuration 

Wavelength / 

nm 

Pulse energy 

/ mJ 

T1/K T2/K 

S/B 250.0 1.8 1340 530 
S/B/W 250.0 1.8 1200 530 
S/W/B 250.0 1.8 1190 530 

S/B 250.0 1.1 1190 530 
S/B/W 250.0 1.1 1069 530 
S/W/B 250.0 1.1 901 530 

Table 4.3: Translational temperatures for C6H6 desorption following irradiation at 250 nm 
obtained using fits where a substrate mediated component with a temperature of 530 K was 
assumed to play a role. 

The H2O ToF profiles were also fit using the same form of function. However, the 

desorption at 275 nm was too small to obtain a reliable fit for the substrate-

mediated component. The ToF profiles were therefore fit with a single component 

function to represent the indirect adsorbate-mediated desorption channel where 

resonant absorption by the C6H6 molecule results in desorption of H2O via some 

energy transfer mechanism. The use of single component fit is likely to be valid as 

a result of the dominance of this channel in the desorption of H2O. The resulting 

fits for the two layered systems in which C6H6 was also present are shown in 

Figure 4.18 and Figure 4.19 for pulse energies of 1.1 and 1.8 mJ respectively. 

The data for an irradiation wavelength of 250 nm is shown, though similar fits 

were obtained for the case of 248.8 nm. In all cases, a single component fit with a 

translational temperature of ca. 450 K reproduces the experimental profiles for 

H2O desorption well. A summary of the obtained translation temperatures, Tw, for 

irradiation at 250 nm are shown in Table 4.4. This analysis yields a translational 

temperature for H2O molecules desorbing via the indirect adsorbate-mediated 

desorption channel of 460±60 K. 
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Figure 4.18: Single component fits for H2O desorption from 
layered systems when irradiated at 250 nm. The pulse energy was 
1.1 mJ. Traces have been offset for clarity. 

 
Figure 4.19: Single component fits for H2O desorption from 
layered systems when irradiated at 250 nm. The pulse energy was 
1.8 mJ. Traces have been offset for clarity. 
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Layer 

configuration 

Wavelength / 

nm 

Pulse energy 

/ mJ 

Tw/K 

S/B/W 250.0 1.8 430 
S/W/B 250.0 1.8 510 
S/B/W 250.0 1.1 470 
S/W/B 250.0 1.1 450 

Table 4.4: Translational temperatures for H2O desorption following irradiation 
at 250 nm obtained using single component M-B fits. 

The desorption mechanisms will now be considered in more detail. The 

desorption mechanisms in operation are summarized in Table 4.5. 

 Desorbing 

species 

Secondary 

species 

Substrate-

mediated 

Direct 

adsorbate-

mediated 

Indirect 

adsorbate-

mediated 

C6H6 None � � � 
H2O None � � � 
C6H6 H2O � � � 
H2O C6H6 � � � 

Table 4.5: Summary of desorption channels in operation. 

The substrate mediated desorption channel can be interpreted as arising as a result 

of rapid heating of the sapphire substrate during the irradiation pulse. This heating 

depends on the absorption of energy by and heat flow within the substrate [17]. 

Here, laser heating of metals was considered, though the arguments involve only 

bulk properties of the solid and are therefore applicable in the present non-

metallic case. In general terms, the temperature, T, at a particular position in the 

substrate, defined by x, y and z, as a function of time, t, obeys the heat conduction 

equation, which applies for all materials: 
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ρ    Equation 4.9 

 

where ρ is the substrate material density, c is the specific heat and kT is the heat 

conductivity. A is the fraction of incident energy, I, absorbed by the substrate. In 

the simplest approximation I is assumed to not vary with time and the one-

dimensional solution is obtained where T is obtained as a function of z and t. For 

the top of the surface, where z=0, this solution has the form: 
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where κ is the thermal diffusivity given by: 
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This expression is valid under the semi-infinite solid approximation where the 

sample thickness is significantly greater than the heat wave propagation length, lth: 

pth
l κτ=      Equation 4.12 

which is found to be of the order of a few µm for sapphire. Τp is the pulse 

duration. The one-dimensional approximation is valid when the laser spot radius 

is significantly larger than lth, which is also the case. 

However, the calculation is complicated by the strong temperature dependence of 

the thermal conductivity for sapphire. This is known to decrease from 1100 W m-1 

K-1 to 155 W m-1 K-1 at 150 K [18]. Furthermore the heat capacity also shows a 

strong temperature dependence. At the base temperature of 80 K employed in 

these experiments, c is ca. 0.09 J g- 1K-1 [19]. A was shown previously to be 

approximately 0.05 for sapphire and assuming a pulse length of 10 ns yields a 

value for I of 3.6×107 J s-1 cm-2 during the pulse. Together, these values yield a 

temperature jump of 102 K during the 10 ns pulse. The surface temperature would 

therefore rise to around 180 K. This is somewhat lower than the translational 

temperatures of the desorbing molecules which are ca. 450 K for the substrate-

mediated channel. This is reasonable given the decrease in thermal conductivity of 

the sapphire that would occur during heating. This would result in a larger 

temperature rise at z=0 than obtained via this rather simple calculation. 

Nevertheless, this demonstrates that (a) laser-induced thermal desorption (LITD) 

would be expected to result in a temperature rise of the correct order of magnitude 

to cause the desorption of molecules with translational temperatures of ca. 400 K 

and (b) LITD cannot explain the desorption of molecules with translational 
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temperatures of ca. 1200 K which must therefore be attributed to adsorbate-

mediated processes. 

A good overview of photon-induced desorption mechanisms is given elsewhere 

[16]. One of the most important is the Menzel-Gomer-Redhead (MGR) model 

[20,21]. This, however, requires a metal surface, and is only relevant for the 

desorption of molecules that are in direct contact with the surface. For clarity, the 

principle of this mechanism will be outlined. Following irradiation, the adsorbate-

complex is in an excited electronic state as a result of a Franck-Condon transition. 

Adiabatic time evolution on the excited state potential energy surface will cause 

significant geometry changes in the excited state. The excited state is 

subsequently quenched via a non-radiative Franck-Condon transition to the 

ground state, which results in electronic excitation of the substrate. As a result of 

the geometry modification, the adsorbate molecule in the ground state has gained 

some potential energy, which if greater than the adsorption energy, leads to 

desorption. In the present case, the C6H6 film is sufficiently thick that the 

desorption occurs from multilayers, i.e. the substrate is essentially other C6H6 

molecules. Some insight into the mechanism for C6H6 desorption can be obtained 

by considering the case of impulsive desorption in which all of the excess 

excitation energy goes into the translational energy of the desorbing molecule. In 

this case, the excited C6H6 molecule has a mass mBz and desorbs with a 

temperature TBz. It is considered to desorb from a surface of other C6H6 molecules 

which has a mass of mS and a final velocity of vS. The total available energy 

following desorption is: 

desavl EhE −= ν    Equation 4.13 

where ν is the frequency of the laser radiation and Edes is the multilayer desorption 

energy of C6H6 from a multilayer film, shown in Chapter 3 to be 48 kJ mol-1. 

Momentum conservation applies: 

BzBzSS vmvm =     Equation 4.14 

which, along with energy conservation: 
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yields the following expression for the available energy: 
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  Equation 4.16 

For the desorption of a single C6H6 molecule from an effectively infinite surface 

of C6H6 molecules, the mass ratio term is close to unity, indicating that to a first 

approximation, all of the available energy goes into the translational energy of the 

desorbing molecule: 

2

Bzavl Bz2

1
vmE =    Equation 4.17 

From this expression, a velocity of 3300 m s-1 for desorbing C6H6 molecules can 

be obtained. This can be compared to the experimentally observed velocity of 

desorbing molecules by considering a typical C6H6 molecule time of flight of 0.6 

ms which yields a velocity of 510 m s-1. Whilst this is clearly an approximate 

value, it clearly indicates that not all of the available energy goes into the 

translation of the desorbing C6H6 molecules. It is therefore reasonable to consider 

transfer of energy to the surface i.e. other C6H6 and H2O molecules, and to the 

internal degrees of freedom of the desorbing molecules. It is the former that 

permits the desorption of H2O molecules following resonant absorption by C6H6 

molecules. 

 

Without internal state-resolved studies it is difficult to determine the detailed 

microscopic mechanism that leads to the direct desorption of C6H6. One possible 

mechanism is photoejection, which has been shown to result in the desorption 

from multilayer films of molecules with high translational energies [22]. This 

mechanism can be considered to be an electronic to translational, vibrational, and 

rotational energy transfer (E→T,V,R) process. An electronically excited molecule 

is quenched through collision with a ground state molecule in close proximity. 

The potential energy surfaces of the two molecules mix, and curve crossing 
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results in the formation of ground state products, with the excess energy going 

into the internal degrees of freedom and translation of the product molecules. 

It is also possible to envisage an alternative mechanism in the present case, that 

would also lead to the desorption of internally hot molecules along with the 

desorption of H2O as a result of energy transfer. In this mechanism, desorption 

can be considered to occur following the unimolecular decomposition of a surface 

bound cluster. In the case of the desorption of C6H6 from C6H6 multilayers, the 

cluster can be though of as consisting of other C6H6 molecules in close proximity. 

For C6H6 adsorbed on (and beneath) a H2O film, it is reasonable to consider the 

cluster to consist of a C6H6 molecule bound to a small number, x, of H2O 

molecules, i.e. C6H6-(H2O)x. C6H6 is known to interact with H2O via its π system, 

effectively resulting in a hydrogen bonding interaction [23]. Calculations have 

indicated that the binding energy between C6H6 and the H2O molecules may be as 

much as 17 kJ mol-1 [24,25], in agreement with an experimentally obtained value 

of 18 kJ mol-1 [26]. The interaction between C6H6 molecules and (H2O)x clusters 

up to x=6 have been studied using DFT [27] and observed experimentally [28]. In 

the simple model considered here, absorbed energy is considered to be equally 

distributed amongst the internal degrees of freedom of the cluster. For the 

unimolecular decomposition step: 

x266x266 O)(HHCO)(HHC +→   Equation 4.18 

the activation energy, Ea is therefore considered to be 18 kJ mol-1. For a large 

system such as a cluster, the average kinetic energy release (KER), kE , is given 

by [29]: 

1-s
2 aint

k

EE
E

−
=     Equation 4.19 

where s is the number of vibrational degrees of freedom between which the total 

internal energy Eint is distributed. The possible routes for energy disposal 

following photon absorption are shown in Figure 4.20. Following excitation to an 

excited vibrational level in S1, internal conversion (IC1) to S0 might occur. 

However, Raman lineshape analysis has demonstrated that the vibrational 
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relaxation time of solid C6H6 is of the order of 1 ps [30] and therefore rapid 

collision induced vibrational relaxation (CIVR) to the ground vibrational level in 

S1  is likely to occur prior to internal conversion (IC2) to S0. The energy available, 

Eint can therefore be equated with Eint 2 in Figure 4.20. 

 
Figure 4.20: Energy disposal mechanisms following resonant 
excitation of solid C6H6. Vibrational level spacings are not 
representative of the true energy levels. 

The excitation energy at 250 nm is 478.5 kJ mol-1. The excited vibrational level in 

S1 accessed by the vibronic transition can be shown to be ν18+2ν2 [1]. Using gas 

phase vibrational energies yields an approximate vibrational excitation of 28.2 kJ 

mol-1. Eint therefore takes a value of ca. 450 kJ mol-1. kE  can be estimated from 

the translational temperature of the desorbing C6H6 molecules, which for 

Ttrans=1200 K yields 9.98 kJ mol-1 and s=88. The cluster will have a total of 30+3x 

intramolecular vibrational modes and 3x-3 intermolecular modes, which results in 

27+6x modes in total. However, this analysis neglects the frustrated rotations of 

the individual molecules, which results in low frequency intermolecular 

vibrations. The 3x+3 molecular rotations need therefore to be included, which 

gives a total of 30+9x modes. This is equivalent to considering the cluster as a 

whole to have 3n-6 vibrational degrees of freedom, where the number of atoms, n, 

is 12+3x, which yields s=30+9x. The observed kinetic energy release is therefore 
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consistent with C6H6 being bound to a surface cluster of six or seven H2O 

molecules. 

The microscopic desorption mechanism therefore involves first the absorption of a 

photon by the C6H6 molecule, which results in a redistribution of energy between 

the vibrational degrees of freedom of the surface bound cluster. This results in the 

breaking of the weakest bond in the system, that between the C6H6 molecule and 

the H2O cluster, leading to the translationally and internally hot C6H6 molecules. 

The H2O molecule to which the C6H6 molecule was bound is likely to be less 

strongly bound to the cluster than the rest of the H2O molecules, resulting in the 

desorption of this single H2O molecule, also with significant translational energy. 

These two desorptions describe the fast ToF distributions observed for both C6H6 

and H2O. The long timescale H2O desorption would then arise as a result of the 

desorption of H2O clusters of a range of sizes as a result of further unimolecular 

decomposition of the remaining (H2O)x-1 cluster and destruction of the desorbing 

fragments in the QMS. These could in principle be observed using a ToF mass 

spectrometer. 

4.4.4 Non-thermal desorption kinetics 

The non-thermal desorption kinetics for both C6H6 and H2O are contained within 

the QMS signal obtained simultaneously with the ToF profiles. As with the ToF 

profiles, the signal obtained from the irradiation of a single spot on the sample 

surface displayed a poor signal-to-noise ratio. However, by obtaining the average 

signal from spots over the surface, this was much improved. As very little 

desorption was observed with a laser wavelength of 275 nm, only irradiation at 

250 and 248.8 nm will be considered in this discussion. As such, only those 

experiments performed with a pulse energy of 1.8 mJ will be considered in detail. 

The desorption traces obtained with the lower pulse energy of 1.1 mJ were 

analyzed, but the reduced signal intensity made the fitting procedures employed 

unreliable. The decrease in intensity was however observed to be consistent with 

single photon desorption processes, in agreement with the photon order derived 

from the ToF data. 
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Profiles for the C6H6 desorption from a 200 L film of C6H6 deposited on the 

sapphire substrate during irradiation at 250 and 248.8 nm are shown in Figure 

4.21. The profiles are in agreement with the intensity trend observed in the ToF 

profiles, confirming the enhancement of desorption when the wavelength is tuned 

to be on resonance with the chosen C6H6 transition. With the exception of the 

intensity, the peaks obtained at the two wavelengths are qualitatively the same. As 

irradiation at both wavelengths leads to the same electronic transition in the C6H6, 

this is reasonable. Figure 4.22 shows desorption profiles for the desorption of 

C6H6 from the three layer configurations during irradiation at 250 nm. Again, 

these are in agreement with the observed ToF profiles which indicate similar 

desorption for the cases where C6H6 was adsorbed on either sapphire or H2O. In 

the case where a H2O film was adsorbed on top of the C6H6 film the desorption is 

clearly inhibited. Finally, the desorption of H2O from the three systems is 

considered in Figure 4.23. As with the ToF profiles, no desorption is apparent 

when no C6H6 is present. When C6H6 is deposited on top of the H2O, a very small 

desorption peak is visible upon the commencement of irradiation. This must be 

related to the indirect-substrate mediated component visible in the ToF profiles. 

This signal is not particularly clear as a result of the H2O background which is 

significantly higher than that for C6H6 and results in a higher level of noise than 

observed in the C6H6 traces. Only in the case where C6H6 is deposited first, 

followed by a layer of H2O is a strong H2O desorption signal present. This must 

be related to the slow broad peak in the corresponding ToF profiles which has 

been interpreted as resulting from the desorption of H2O clusters which 

disintegrate to some extent in the ionization source of the QMS. It is clear from 

the intensity of this feature that this is a significant desorption channel. 

In order to make more quantitative comparisons between the desorption traces, the 

desorption cross-sections were obtained. By assuming first order desorption 

kinetics, the desorption signal, S(t), for a particular mass fragment can be 

expressed in terms of the desorption cross-section, σ ,  for that fragment and the 

incident photon flux, F [31]: 

[ ]FtStS σ−= exp)( 0     Equation 4.20 
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Figure 4.21: C6H6 desorption traces during irradiation of 200 L of 
C6H6 adsorbed on the sapphire substrate at 250.0 and 248.8 nm. 
The pulse energy was 1.8 mJ in both cases. Traces have been 
offset for clarity. 

 
Figure 4.22: C6H6 desorption from the three layer configurations 
traces during irradiation. The wavelength and pulse energy were 
250.0 nm and 1.8 mJ respectively. Traces have been offset for 
clarity. 
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Figure 4.23: H2O desorption traces from the three layer 
configurations during irradiation. The wavelength and pulse 
energy were 250.0 nm and 1.8 mJ respectively. Traces have been 
offset for clarity. 
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To obtain the desorption-cross sections, the experimental desorption profiles can 

be fitted with a simple exponential decay function with a decay constant, τ: 






−=
τ
t

StS exp)( 0     Equation 4.21 

from which the cross-section can be obtained: 

Fτ
σ

1
=      Equation 4.22 

For the desorption profiles presented here, a better fit was obtained by using a two 

component exponential decay in which the two cross-sections obtained 

correspond to different desorption mechanisms. The applicability of such two 

component fits is justified by the known presence of two mechanisms in the 

observed desorption. Two-component exponential decay fits to the C6H6 

desorption profiles are presented in Figure 4.24 and Figure 4.25 for all three 

layering systems during irradiation at 250 and 248.8 nm respectively. Single 

component decays were sufficient to fit the H2O desorption from the cases where 

the H2O was adsorbed on top of a C6H6. These are shown in Figure 4.26 for 

irradiation at both 250 and 248.8 nm. The smaller H2O desorption observed when 

C6H6 was adsorbed on top of the H2O film was too small to obtain a reliable fit. In 

order to obtain an order of magnitude estimate of the cross-section the desorption 

profiles at 250 and 248.8 nm were plotted in logarithmic form, such that the time 

constant for the decay could be obtained from a linear fit to the decay region. 

These plots are shown in Figure 4.27. A summary of the obtained time constants 

and cross-sections is provided in Table 4.6 and Table 4.7. In this summary, errors 

are calculated by summation of the relative errors of the flux, as quoted 

previously, and those obtained during the desorption profile fitting procedure.  
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Figure 4.24: Two-component exponential decay fits to C6H6 
desorption profiles during irradiation at 250 nm. The pulse energy 
was 1.8 mJ. Traces have been offset for clarity. 

 

 
Figure 4.25: Two-component exponential decay fits to C6H6 
desorption profiles during irradiation at 248.8 nm. The pulse 
energy was 1.8 mJ. Traces have been offset for clarity. 
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Figure 4.26: Exponential decay fits to H2O desorption profiles 
during irradiation at 250 and 248.8 nm. The pulse energy was 1.8 
mJ and the H2O was absorbed on top of C6H6 film. Traces have 
been offset for clarity. 

 
Figure 4.27: Semilog plots for H2O desorption during irradiation 
at 250 and 248.8 nm. The pulse energy was 1.8 mJ and the H2O 
was absorbed prior to a C6H6 film. The black lines are to 
emphasize the flat region. Traces have been offset for clarity. 
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Desorbing 

Species 

Irradiation 

Wavelength 

/ nm 

Flux / photons 

cm
-2

 s
-1 

System τ1 / s 

σ1 / cm
2 

τ2 / s 

σ2 / cm
2
 

C6H6 250.0 (4.53±0.5)×1018 S/B 0.50±0.01 

(4.5±0.6)×10-19 

3.57±0.3 

(6.2±1)×10-20 

C6H6 250.0 (4.53±0.5)×1018 S/W/B 0.51±0.04 

(4.4±0.8)×10-19 

2.36±0.3 

(9.4±2)×10-20 

H2O 250.0 (4.53±0.5)×1018 S/W/B 2.00±0.3 

(1.1±0.3)×10-19 

--- 

 

C6H6 250.0 (4.53±0.5)×1018 S/B/W 2.52±0.2 

(8.8±2)×10-20 

--- 

 

H2O 250.0 (4.53±0.5)×1018 S/B/W 3.30±0.4 

(6.7±2)×10-20 

--- 

 

Table 4.6: Summary of desorption cross-sections obtained for all systems with an irradiation 
wavelength of 250.0 nm. 

 
 

Desorbing 

Species 

Irradiation 

Wavelength 

/ nm 

Flux / photons 

cm
-2

 s
-1 

System τ1 / s 

σ1 / cm
2 

τ2 / s 

σ2 / cm
2
 

C6H6 248.8 (4.51±0.5)×1018 S/B 0.45±0.03 

(5.0±0.9)×10-19 

2.57±0.3 

(8.6±2)×10-20 

C6H6 248.8 (4.51±0.5)×1018 S/W/B 0.36±0.03 

(6.2±1)×10-19 

2.99±0.2 

(7.4±1)×10-20 

H2O 248.8 (4.51±0.5)×1018 S/W/B 10.0±5 

(2.2±1)×10-20 

--- 

C6H6 248.8 (4.51±0.5)×1018 S/B/W 2.95±0.3 

(7.5±2)×10-20 

--- 

H2O 248.8 (4.51±0.5)×1018 S/B/W 2.30±0.5 

(9.6±3)×10-20 

--- 

Table 4.7: Summary of desorption cross-sections obtained for all systems with an irradiation 
wavelength of 248.8 nm. 
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Given the dominance of the direct adsorbate-mediated desorption channel in the 

desorption of C6H6 from sapphire and H2O, the desorption cross-sections σ1 and 

σ2 are attributed to this mechanism, and substrate-mediated thermal desorption 

respectively. Given that the direct channel at 248.8 nm arises as a result of the 

same electronic transition, the very similar cross-section is reasonable. Likewise, 

the thermal desorption component is essentially the same at the two wavelengths. 

With this in mind, an average value for the cross-section for the desorption of 

C6H6 from sapphire and H2O via the direct channel is (5.0±2)×10-19 cm2 where the 

error is two standard deviations. Similarly, an average value for the thermal 

desorption of C6H6 can be calculated as (7.9±2)×10-20 cm2. Whilst the direct 

channel still operates when the C6H6 is present under a capping layer, as indicated 

by the high translational temperature with which the C6H6 molecules desorb, the 

cross-section for this process is reduced, reflecting a reduction in desorption 

efficiency that arises as a result of the H2O layer physically blocking the 

desorption. The average cross-section in this case is (8.2±2)×10-20 cm2. This value 

is very similar to the C6H6 thermal desorption cross-section which explains why a 

single component fit is sufficient to fit the decay. Nevertheless, two desorption 

components were present in the ToF profiles, indicating that the direct channel is 

still in operation. The desorption cross-section for H2O from a C6H6 film is, using 

the same considerations, (8.2±4)×10-20 cm2. The low signal obtained for the H2O 

desorption from underneath a C6H6 film precludes any reliable estimate beyond an 

order of magnitude of 10-20 cm-2. The average values are summarized in Table 

4.8. 

 

Desorption Channel Desorption cross-section / cm
2 

Direct adsorbate-mediated (C6H6) (5.0±2)×10-19 

Inhibited direct adsorbate-mediated (C6H6) (8.2±2)×10-20 

Substrate-mediated thermal (C6H6) (7.9±2)×10-20 

Indirect adsorbate-mediated desorption (H2O) (8.2±4)×10-20 

Table 4.8: Averaged desorption cross-sections for the desorption channels. 
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4.5 Astrophysical implications and conclusions 

There are several observations reported here that are likely to be important in the 

ISM. It is difficult to quantify the overall impact of the results given that only a 

single transition was probed for absorption by C6H6 molecules, used as a model of 

the broader aromatic hydrocarbon populations. It is however possible to discuss 

the importance in general terms, and apply some approximations in order to 

further assess the likely interstellar impact.  

One particularly important result is the observation of desorbing molecules having 

significant translation energies, corresponding to translational temperatures well 

in excess of the grain temperatures. This has also been observed in the case of the 

direct photodesorption of H2O as a result of irradiation at 157 nm [32] where 

translational temperatures of up to 1800 K were observed. The desorption of 

molecules with such high translational energies is likely to have important 

consequences for gas phase chemistry. There was also evidence for vibrational 

and rotational excitation in the desorption, though this has not been measured in 

the present case. However, where viable transitions exist, internal energy will be 

lost through radiative processes. For example, radiative lifetimes in the IR are 

typically 1-10-3 s [33]. The mean free path, λ, for molecules in the gas phase is 

given by [8]: 

P

Tk

σ
λ

2
B=      Equation 4.23 

where T is the gas phase temperature, σ is the collision cross-section and P is the 

gas pressure. Considering a gas phase temperature of 50 K, a typical collision 

cross-section of 1 nm2 [8] and a dense cloud pressure of 10-14 mbar yields a mean 

free path of 5×108 m. For a C6H6 molecule travelling at 500 m s-1 this corresponds 

to a collision time of the order of 10 days. Although this is clearly a very 

simplistic approach, it does demonstrate that it is the translational energy content 

that is important as internal energy will have been lost by the time collision 

occurs. In the case of translational energy, this energy will remain until collision. 

This results in the possibility of reactions otherwise excluded by the low 

temperature of the gas. 
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Another important observation is the desorption of H2O molecules as a result of 

resonant absorption by C6H6 molecules. This indicates that the photon-induced 

desorption for a particular molecule may occur over wavelength ranges where that 

molecule itself may not absorb photons. The inclusion of such processes in 

chemical models that include gas-grain processes is likely to increase the overall 

photodesorption rates. In the present case, the observed desorption cross-section 

for H2O as a result of this indirect mechanism is only a few times smaller than that 

for the direct desorption of C6H6 molecules. Although the H2O molecules are 

desorbed with a translational temperature of 500 K, significantly lower than the 

C6H6 molecules and H2O molecules desorbed via a direct mechanism [32], this is 

still far in excess of typical grain temperatures and the possibility of enhanced 

gas-phase reaction rates remains. The impact of H2O desorption driven by the 

absorption of photons by other species will be discussed in more detail in 

Chapter 6. 

The observation of desorption of C6H6 molecules from under a H2O ice film of 

thickness comparable to interstellar ice mantles with only a slightly reduced cross-

section and translational temperatures indicates that the direct channel is relatively 

insensitive to bulk ice composition. However, experiments on ice mixtures would 

be required to confirm this. Extension of these to shorter wavelengths, e.g.  

Lyman-α photons, where C6H6 has a larger absorption cross-section would also be 

a valuable extension of this work. At such energies direct H2O desorption and 

dissociation is also likely. Any contribution from this channel would need to be 

determined in order to obtain any enhancement caused by the presence of a 

secondary species such as C6H6.  

In summary, experiments probing the photon-induced desorption of C6H6 and 

H2O molecules from pure and layered ices containing the two species have 

revealed the presence of several desorption mechanisms. C6H6 are desorbed 

through a direct desorption mechanism following resonant absorption of 250 nm 

photons. These molecules desorb with a cross-section of ca. 1×10-19 cm2 and 

exhibit translational temperatures in excess of 1000 K. The cross-section and 

translational temperature are only slightly reduced when the C6H6 is present 

underneath a H2O ice film of a thickness comparable to that of interstellar grain 
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mantles. The desorption of H2O molecules with a similar cross-section is also 

observed. It is thought that this arises as a result of the unimolecular 

decomposition of surface bound clusters in which a C6H6 molecule is hydrogen 

bonded to a H2O cluster. This was also evidenced by the observation of a very 

slow and broad ToF for desorbing H2O molecules, suggesting the desorption of 

clusters of H2O molecules of a range of sizes which then disintegrate within the 

QMS. Experiments involving the use of a full ToF mass spectrometer to detect the 

intact clusters would be advantageous in further characterising this desorption 

channel. The internal energy content of desorbing molecules has not been 

determined, and state-resolved studies would be useful in further constraining the 

desorption mechanisms. However, simple arguments indicate that any internal 

energy content will be lost when radiative relaxation channels exist before 

collision under dense cloud conditions. 
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CHAPTER 5 - Low Energy Electron Irradiation of C6H6 / H2O 

Ices 

5.1 Introduction 

This chapter describes experiments performed to investigate the irradiation of 

C6H6 films with low energy electrons in the range 100-350 eV. The loss of C6H6 

from C6H6 films adsorbed directly on the SiO2 substrate as observed through TPD 

experiments are discussed first. No desorption of C6H6 was observed. This is 

followed by a more detailed discussion of the irradiation of C6H6 on ASW during 

which efficient desorption of C6H6 molecules was observed. Both ESD 

measurements and those of total C6H6 loss through TPD and RAIRS experiments 

are reported. Possible mechanisms for the observed desorption and other loss 

channels are discussed. Finally, the results are summarized along with a 

discussion of the astrophysical implications. 

5.2 Experimental procedures 

The experiments described in this chapter were performed using UHV chamber 1. 

Electron irradiation was performed using the Kimball Physics ELG-2 electron gun 

described in Chapter 2. Electron fluxes were determined by measuring the 

current through the sample using a picoammeter. For those experiments where the 

beam was pulsed, the average current during the pulse was determined by using a 

current to voltage converter and obtaining the pulse duration and current by 

suitable connection to an oscilloscope (LeCroy 9420). Electron-stimulated 

desorption (ESD) was observed during continuous irradiation experiments using 

the QMS in pulse counting mode with the SEM set to typically ca. 3000 V. Post 

irradiation TPDs were obtained with a heating rate of (0.1±0.02) K s
-1

. ESD 

experiments were performed with the sample facing the line-of-sight tube, with 

the QMS positioned such that the electron beam was incident at 45° to the surface 

normal. During RAIRS experiments, irradiation and RAIR scans needed to be 

obtained without moving the sample, so the electron beam was incident at a much 
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larger angle to the surface normal. During ESD experiments, the electron beam 

was not rastered, whilst in post-irradiation TPD and RAIRS experiments, the 

beam was rastered across the entire surface with a z (vertical) period 2 s of and a y 

(horizontal) period of 50 ms resulting in a triangular scanning pattern. 

5.3 Results and discussion 

5.3.1 Introduction 

A limited number of experiments were performed with C6H6 adsorbed directly on 

the SiO2 surface. After several experiments, subsequent TPDs lacked the high 

temperature tail discussed in Chapter 3. This is thought to arise because of 

carbon build-up that occurs as result of decomposition of C6H6; most likely 

dehydrogenation. In the first section, preliminary post-irradiation TPD 

experiments for C6H6 on amorphous SiO2 after carbon build-up will be discussed. 

A more in depth study of the irradiation of C6H6 adsorbed on ASW will then be 

reported. These experiments involved the use of ESD measurements, and both 

post-irradiation TPD and RAIRS experiments. Some of the TPD traces in this 

chapter are plotted versus time rather than temperature as the thermocouple 

amplifier was found to be unstable for a significant period of time following 

reconnection to the thermocouple after irradiation. This occurred as a result of the 

time taken to charge a smoothing capacitor used to remove noise from the 

amplified signal. As only the time integrated TPD yields were required for kinetic 

analysis this, has no direct impact on the results presented. 

5.3.2 Electron irradiation of C6H6 adsorbed on SiO2 

As previously discussed, the irradiation of C6H6 appeared to result in a change of 

surface morphology which can be attributed to the build up of a carbon deposit 

that results from the decomposition of C6H6 during irradiation. Therefore, only a 

limited number of experiments were performed on this carbonized SiO2 surface. 

The difference in the TPD profile in terms of the lack of any high temperature tail 

is clear in Figure 5.1. This figure shows the TPD traces resulting from the 250 eV 
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electron irradiation of 1 L of C6H6 adsorbed on the carbonized SiO2 surface. This 

was found to result in close to monolayer saturation coverage on this surface, 

reflecting a loss of surface area as a result of carbon build-up. This effect was not 

explored further. During these experiments, the electron beam was pulsed at 100 

Hz, with a pulse length of 5 µs with the aim of obtaining ToF profiles for 

desorbing molecules. However, no ESD signal was observed. The electron pulse 

current during irradiation was 6.8±0.5 µA, with the error being one standard 

deviation, which yields an average flux of (4.25±0.3)×10
15

 electrons cm
-2

 s
-1

 for 

continuous beam irradiation, assuming a reasonable beam spot size of 1 mm
2
. 

Taking into account the pulsing results in a flux of (2.2±0.2)×10
12

 electrons cm
-2

 

s
-1

. 

 

Figure 5.1: TPD traces obtained after 

irradiation of 1 L of C6H6 adsorbed on 

amorphous SiO2. An electron energy of 250 eV 

was used. Traces have been offset for clarity. 
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In order to obtain the total cross-section for C6H6 loss, the TPD yield for each 

post-irradiation TPD profile was obtained. A 10% error was associated with each 

yield as a result of dose variability. It is possible that the beam did not entirely 

cover the surface during the irradiation, resulting in a non-zero baseline. The total 

C6H6 loss cross-section was therefore determined by fitting the TPD yield decay 

with a modified form of the single component decay introduced in Chapter 4: 

∞+




−= S
t

StS
τ

exp)(
0

   Equation 5.1 

where, in this case, S(t) can be taken as the TPD yield with S0 being the TPD yield 

when there is no irradiation. τ is the decay constant and S∞ is the limiting value of  

 

Figure 5.2: Fitted exponential decay for the 1 L C6H6 TPD yield 

decay as a function of electron irradiation time at 250 eV. 

the TPD yield for infinite decay time, representing the unirradiated region. σ is 

then obtained from the decay constant for the fit in Figure 5.2 as: 

Fτ
σ

1
=      Equation 5.2 
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where F is the electron flux derived previously. The errors in this plot arise as a 

result of the propagation of the 10% error on the measured TPD yields. This 

results in a cross-section for total C6H6 loss of (8.8±2)×10
-17

 cm
2
. As no ESD was 

observed during irradiation, it is thought that the major loss channel is 

decomposition of C6H6 on the surface resulting in a deposit that was, after a 

significant number of experiments, visible by eye. It is not possible to completely 

rule out desorption, as a low cross-section for desorption might result in a 

desorption rate below the sensitivity of the QMS. The cross-section obtained is in 

reasonable agreement with that observed for the decomposition of the first few 

physisorbed layers on W(110) during irradiation with 150 eV electrons [1]. A 

value of ca. 3×10
-17

 cm
2
 was obtained in this case. A decay in the low coverage 

C6H6 was observed, as in the present case, with XPS confirming no significant 

reduction in surface carbon, consistent with the current observation of no C6H6 

desorption during irradiation. UPS confirmed the presence of C6H6 – like orbitals 

following irradiation, suggesting the formation of a carbon deposit consisting of 

dehydrogenated C6H6. Auger studies showed the appearance of a loss at around 6 

eV when the substrate was annealed to temperatures in excess of 650 K after 

irradiation. This was attributed to a graphite plasmon, indicating the formation of 

a graphitic layer at higher temperatures. XPS studies of the substrates used in the 

experiments presented here after multiple irradiation experiments were conducted 

at the University of Nottingham Nanotechnology and Nanoscience Centre [2]. 

The presence of a peak at 285.9 eV suggests the presence of some amount of 

graphitic material [3]. The C 1s XPS peak for the irradiated sample, along with 

fitted components, is shown in Figure 5.3. The new peak results in a shoulder on 

the aliphatic C 1s peak at 284.8 eV. The peak at 284.8 eV was fixed, with shifts in 

other peak positions being attributable to charging effects. Peak positions and 

relative percentage values for unirradiated and irradiated SiO2 films are reported 

in Table 5.1. Despite not being annealed to 650 K, it is reasonable to assume that 

multiple anneals to ca. 500 K would lead to some degree of conversion to 

graphitic carbon. RAIRS experiments were not conducted as the exposures used 

were below the detection limit as discussed in Chapter 3. Such studies would 

require the use of a flat SiO2 surface for increased sensitivity to submonolayer 

films of C6H6. 
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Figure 5.3: C 1s XPS spectrum for the SiO2 substrate with significant visible 

staining following electron irradiation of adsorbed C6H6 

 

Unirradiated peak 

position / eV 

Unirradiated 

relative % 

Irradiated peak 

position / eV 

Irradiated 

relative % 
284.8 13.7 284.8 53.6 

286.4 3.4 287.1 8.3 

288.4 1.7 288.6 4.3 

--- --- 285.9 12.0 

Table 5.1: C 1s XPS peak positions and relative % values for the unused SiO2 substrate and one 

which had significant visible staining following electron irradiation of adsorbed C6H6 

Although an in-depth analysis of the obtained XPS was not performed, it is clear 

from the relative percentage values that the visible staining is due to the formation 

of carbon deposits following electron irradiation of adsorbed C6H6. Further 

detailed studies carried out in a single UHV chamber to eliminate contamination 

of the films whilst exposed to atmosphere would be essential in a more systematic 

approach. Moreover, the use of the same SiO2 substrate for the XPS prior to, and 

after electron irradiation would also remove the effect of differences between the 

initial compositions of SiO2 films. 

To investigate the low energy electron irradiation of bulk C6H6, multilayer films 

obtained with exposures of 10 and 50 L were used. The TPD studies discussed in 

Chapter 3 indicate that in both cases, these exposures result in multilayer films 
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that display zero-order desorption kinetics. As no ESD was observed, continuous 

beam irradiation was performed with an incident electron current of 15±3 nA, 

corresponding to (9.4±2)×10
12

 electrons cm
-2

 s
-1

, within the same order of 

magnitude as that used for the pulsed irradiation of 1 L of C6H6. The TPD traces 

and corresponding fitted exponential decay for a C6H6 exposure of 10 L are 

shown in Figure 5.4 and Figure 5.5 respectively. Figure 5.6 and Figure 5.7 

present the equivalent data obtained with a C6H6 exposure of 50 L. The TPD 

profiles are presented as obtained for qualitative analysis, whilst TPD yields were 

scaled by comparison with QMS traces obtained during doses to account for dose 

variability. The errors displayed on the decays were obtained as previously. The 

cross-sections for C6H6 loss obtained are (1.7±1)×10
-17

 cm
2
 and (4.1±2)×10

-17
 cm

2
 

for C6H6 exposures of 10 and 50 L respectively. These values are somewhat lower 

than that obtained for the irradiation of submonolayer quantities of C6H6 on SiO2 

indicating that C6H6 loss channels may be enhanced on the SiO2 surface. Given 

the larger error on the value for a C6H6 of 50 L, an average value for the cross-

section of 3×10
-17

 cm
2
 is reasonable, in agreement with the previous studies of the 

irradiation of C6H6 multilayers adsorbed on W(110) [1].  

It is also apparent that a significant change in the TPD profile occurs as a result of 

irradiation, with the appearance of a prominent high temperature shoulder. This 

change in TPD profile was also observed when C6H6 multilayers were adsorbed 

on top of a thick ASW film as will be discussed later. It will be shown that no 

reaction products corresponding to this feature could be found with RAIRS of 

irradiated multilayer C6H6 films. It is therefore likely that the higher temperature 

feature arises as a result of adsorption energy changes within the multilayer film, 

perhaps as a result of the formation of carbon deposits. The C6H6 loss observed is 

therefore attributed to processing of the bulk C6H6 film. RAIR spectra and a more 

detailed discussion will be presented for the case of C6H6 adsorbed on ASW. The 

possibility of an enhanced total loss cross-section for C6H6 from thin 

submonolayer films adsorbed on the SiO2 substrate was not investigated further 

due to the difficulties arising from the build-up of carbon deposits. 
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Figure 5.4: TPD traces obtained after irradiation of 10 L of C6H6 adsorbed 

on amorphous SiO2. An electron energy of 250 eV was used. 

 

 

Figure 5.5: Fitted exponential decay for the 10 L C6H6 TPD yield decay 

as a function of electron irradiation time at 250 eV. 
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Figure 5.6: TPD traces obtained after irradiation of 50 L of C6H6 adsorbed 

on amorphous SiO2. An electron energy of 250 eV was used. 

 

Figure 5.7: Fitted exponential decay for the 50 L C6H6 TPD yield decay 

as a function of electron irradiation time at 250 eV. 

 



220 

5.3.3 Electron irradiation of C6H6 adsorbed on ASW 

The electron irradiation of C6H6 on ASW was considered in significantly more 

detail. First, the ESD of neutral C6H6 upon electron irradiation will be discussed, 

followed by complementary TPD and RAIRS experiments. 

ESD of C6H6 adsorbed on ASW 

In contrast to the case of C6H6 adsorbed directly on the amorphous SiO2, a 

significant ESD signal was observed when the C6H6 was adsorbed on a thick layer 

of ASW. In all cases, ASW films were deposited to a thickness sufficient to 

completely cover the SiO2 substrate. The results presented here were obtained 

using either a thick film (200 L) of background dosed ASW, or one deposited 

using the molecular beam (ca.150 L). These film thicknesses are comparable to 

those used in the experiments described in Chapter 3 and Chapter 4. The 

substrate temperature used in these experiments was sufficiently high to result in 

the formation of compact ASW [4]. As a result, no differences were observed in 

the presented data that could be attributed to film deposition method, in 

accordance with expectation. Initially, low electron currents of 10-50 nA were 

used, for comparison with the experiments performed with C6H6 adsorbed directly 

on the amorphous SiO2 surface. The typical beam currents used and calculated 

electron fluxes are shown in Table 5.2. Beam currents of 100 and 200 nA are 

included for completeness as they were used in subsequent experiments that will 

be discussed later. It should be noted that the cross-section calculations utilized 

the actual beam currents measured using the picoameter. These were averaged 

over the irradiation time, with the error reflecting the beam stability. The errors 

quoted for the nominal values in Table 5.2 correspond to typically observed 

fluctuations, which were around 10%. The beam current dependence of the ESD 

signal is examined in Figure 5.8 for C6H6 exposures of 10 and 5 L adsorbed on a 

thick, multilayer film of ASW. The films were irradiated with 250 eV electrons at 

the beam currents indicated. The ESD signal displays a peak upon the 

commencement of irradiation which decays exponentially. 
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Beam current / nA Electron flux / electrons cm
-2

 s
-1 

10±2 (6.2±1)×10
12 

20±3 (1.2±0.2)×10
13 

50±5 (3.1±0.3)×10
13

 

100±10 (6.2±0.6)×10
13

 

200±20 (1.2±0.1)×10
14

 

Table 5.2: Typical beam currents and the corresponding electron fluxes used in the ESD 

experiments. 

This decay does not decay to zero signal, rather a low intensity desorption signal 

persists until the beam is closed off, as evidenced by a sharp drop in signal. This is 

visible in one of the plots in Figure 5.8, though was also present in the other plots 

when the beam was closed off at significantly later times. The full desorption 

timescale is not displayed in order to improve the clarity of the sharp peak. Whilst 

the shape of the decay is clearly dependent on the C6H6 exposure, there are no 

significant differences between the profiles obtained with the two beam currents. 

The form of the ESD signal indicates the presence of two desorption channels, 

one which is very efficient and gives rise to the sharp feature, and a second, much 

slower process which results in the desorption tail. It is also apparent that the 

sharp desorption feature displays a faster decay for the 5 L C6H6 exposure 

compared with the 10 L exposure. This layer thickness effect is examined in more 

detail in Figure 5.9 which shows the C6H6 ESD signals resulting from the 250 eV 

irradiation of 1, 2, 5, 10 and 20 L exposures of C6H6 on ASW. This confirms the 

decrease in decay rate with increasing C6H6 exposure. Although the fast 

desorption process appears to become less efficient with increasing C6H6 film 

thickness, the tail resulting from the slower process can be seen to increase in 

intensity. It should also be noted that the most significant change in the fast 

process occurs for C6H6 exposures of ca. 5 L and higher. In Chapter 3 it was 

shown that multilayer growth begins at exposures in excess of 2 L. It is therefore 

possible to attribute the sharp desorption feature to the efficient desorption of 

C6H6 adsorbed directly on the ASW surface. The tail feature can be attributed to a 

much slower desorption process within C6H6 overlayers which are not in direct 

contact with the ASW. 
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Figure 5.8: C6H6 ESD signals for C6H6 exposures of 10 and 5 L on ASW for 

different electron currents and a common electron energy of 250 eV. For each 

exposure, the two curves have been normalized to a common peak intensity. 

 

Figure 5.9: C6H6 ESD signals for various C6H6 exposures on 

ASW. The electron energy was 250 eV in all cases. All curves 

have been normalized to a common peak intensity. The dotted 

lines indicate the baseline for each profile. 
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In order to make a more quantitative assessment on the effect of film thickness on 

desorption efficiency, the desorption cross-section was obtained using semilog 

plots as discussed in Chapter 4. As the ESD signals decay to zero, or very close 

to zero compared to the initial signal, no correction for S∞ was required. An 

example of one of these is shown in Figure 5.10, with the red line indicating the 

linear fit used to extract the decay constant. The two linear regions in this plot 

clearly indicate the presence of two desorption regimes. The cross-sections were 

calculated using the decay constants and measured beam fluxes, with the error 

being derived by suitable combination of flux and linear fit uncertainties. The 

final values for the fast component are shown in Figure 5.11. This clearly shows 

the decrease in cross-section once multilayer growth has begun, although 

quantitatively this is a relatively small effect. Attempts were made to obtain 

desorption cross-sections for the slow component, though the poor signal-to-noise 

ratio in this region made it possible only to suggest an upper limit of 10
-16

 cm
2
. 

The electron energy dependence of the desorption cross-section for the fast 

desorption component was examined in more detail. In order to minimize the 

effect of the tail, and to maximise the efficiency of the fast component, a C6H6 

exposure of 1 L was used. The ESD signals obtained for electron energies of 80, 

100, 150, 200 and 250 eV are shown in Figure 5.12. The corresponding 

desorption cross-sections are shown in Figure 5.13. The cross-section displays a 

monotonic increase with electron energy, although this increase is not particularly 

large over the energy range investigated. Where possible, the cross-section for the 

slow component was extracted with, as previously, an upper limit of 10
-16

 cm
2
 

being obtained. There was no apparent energy dependence, though it is likely that 

this is simply a result of the extremely small signal intensity. 
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Figure 5.10: Example of a semilog plot for the ESD of C6H6 from 

a 20 L exposure of C6H6 adsorbed on ASW. The electron energy 

and beam current were 250 eV and 50 nA respectively. 

 

Figure 5.11: C6H6 ESD cross-section as a function of C6H6 

exposure. These values correspond to the fast desorption process 

that results in the sharp peak at the start of the irradiation period. 
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Figure 5.12: C6H6 ESD signals for several electron energies. An 

exposure of 1 L of C6H6 on ASW was used in all cases. The curves 

have been normalized to a common peak intensity and offset for 

clarity. 

 

Figure 5.13: C6H6 ESD cross-section as a function of electron 

energy for 1 L of C6H6 adsorbed on ASW. These values 

correspond to the fast desorption process that results in the sharp 

peak at the start of the irradiation period. 
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In order to investigate further the slower desorption process, a beam current of 

100 nA was used to increase the signal. Retuning of the QMS also resulted in a 

significant improvement in signal. Figure 5.14 shows a series of C6H6 ESD 

signals for small exposures (1, 2 and 5 L) of C6H6 adsorbed on ASW and 

irradiated with 200 eV electrons using a beam current of 100 nA. A close-up of 

the slow desorption process is shown in Figure 5.15. The overall features of the 

ESD curves are in good agreement with those obtained at lower beam currents. 

The fast decays all appear to be very similar, as seen previously for exposures 

below 10 L. It should be noted that at this electron flux, this feature is sufficiently 

fast that the number of points in the decay is significantly reduced. The slow 

component however decays in a much more reliable fashion with a significantly 

improved signal-to-noise ratio. A typical semilog plot for this data is shown in 

Figure 5.16 for the 2 L C6H6 exposure which clearly shows two linear regions 

associated with the two desorption processes. It should be noted that in obtaining 

the cross-section, no subtraction of the slow decay was made when determining 

the slope for the fast decay. It is thought that in this case the slow decay is 

sufficiently slow compared with the fast decay that the effect is within the 

uncertainty. The desorption cross-sections obtained for the two processes are 

plotted as a function of exposure in Figure 5.17. There is no apparent strong 

exposure dependence of either cross-section, though the decrease in going from 3 

to 5 L may indicate the start of a gradual decrease in cross-section to the value for 

a 10 L exposure discussed previously. Mean values of the cross-sections for small 

exposures of C6H6 are found to be (2.6±1)×10
-15

 cm
-2

 and (2.9±1)×10
-17

 cm
2
 for 

the fast and slow components respectively. In both cases, the thickness 

dependence of the cross-section is relatively minor over the range investigated. 

However, there is some evidence for a thickness dependence of the amount of 

C6H6 desorbed. Variability in sensitivity made a quantitative assessment of this 

difficult, but some general trends can be observed. For low coverages of around 1 

monolayer the fast component dominates. As the exposure is increased to a few 

multilayers, the intensity of the fast component decreases whist that of the slow 

component increases. Limited experiments for thick C6H6 layers of 200 L 

exposure resulted in extremely small signals – in agreement with the lack of 

observation of C6H6 from the pure C6H6 ice. 
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Figure 5.14: C6H6 ESD signals for small exposures of C6H6 

adsorbed on ASW and irradiated with 200 eV electrons at a beam 

current of 100 nA. All three traces have been normalized to a 

common peak intensity. 

 

Figure 5.15: C6H6 ESD signals for small exposures of C6H6 

adsorbed on ASW and irradiated with 200 eV electrons at a beam 

current of 100 nA showing a close-up of the slower decay 

component. 
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Figure 5.16: Semilog plot for the C6H6 ESD from 2 L of C6H6 

adsorbed on ASW and irradiated with 200 eV electrons at a beam 

current of 100 nA. Linear fits to the fast and slow component are 

shown. 

 

Figure 5.17: C6H6 ESD cross-section as a function of C6H6 

exposure. An electron energy of 200 eV and beam current of 100 

nA were used in all cases. 
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These observations indicate that both of the observed desorption channels are in 

some way related to the interface between the C6H6 and H2O ice. 

A more consistent sensitivity was obtained in experiments performed with a beam 

current of 200 nA. These were used to obtain further estimates of the desorption 

cross-sections. Figure 5.18 shows clearly the intensity variation of the signals 

with C6H6 exposure for film thickness ranging from ca. 1 monolayer to a few 

monolayers. The extremely small signal at an exposure of 0.1 L must result from 

isolated C6H6 molecules on the ASW surface. At this higher beam current, the 

slow desorption component also exhibits an appearance type region where the 

desorption signal increases before decaying. This is suggested in some of the 

profiles obtained at lower beam currents and is probably enhanced here as a result 

of the increased desorption signal. This suggests that the slow component does not 

begin at the same instant that the irradiation begins; rather it may rely on some 

precursor that initially increases in concentration. 

 

 

Figure 5.18: C6H6 ESD from various exposures of C6H6 adsorbed on 

ASW. A beam current of 200 nA and an electron energy of 250 eV were 

used. 
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ESD profiles obtained at a range of electron energies are shown in Figure 5.19 

and Figure 5.20 for C6H6 exposures of 1 and 10 L respectively. The desorption 

cross-sections for the fast component obtained from the 1 L exposure data are 

shown in Figure 5.21. The values obtained are in good agreement with those 

obtained at lower beam currents. Extraction of the fast component cross-section 

from the 10 L data was more difficult as a result of the more complicated nature 

of the desorption. Semilog plots were fitted for the initial decay, with the obtained 

decay constant suggesting a reduction in the fast component desorption cross-

section by approximately a factor of two. Attempts were made to fit the 10 L ESD 

profiles with the following functional form which includes a fast decay and a slow 

decay with an associated appearance: 
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where 
1

A  and 
2

A  are the amplitude and 
1
τ  and 

d2
τ  are the decay constants 

associated with the two components. 
a2

τ is the time constant associated with the 

appearance of the second component. The resulting fits reproduced the 

experimental data well as shown in Figure 5.22. A comparison of the cross-

sections for the fast component obtained from semilog plots for the 1 L and 10 L 

exposure experiments and the three component fit for the 10 L experiment are 

shown in Figure 5.23. The errors displayed in all cases are derived from the 

uncertainty in the flux and the error associated with the fitting procedure 

employed. A generally monotonic increase from around (0.7±0.2)×10
-15

 cm
-2

 to 

(2.2±0.5)×10
-15

 cm
-2

 between electron energies of 100 and 300 eV is observed. 

Cross-sections corresponding to the appearance and slow decay components were 

extracted, although difficulties were encountered for those plots where no 

significant rise was observed. The electron energy dependence in the range 

studied was relatively minor, and approximate cross-sections for the slow decay 

and associated appearance of (8±2)×10
-17

 cm
2
 and (3±2)×10

-17
 cm

2
 respectively 

were obtained. The value for the decay component is in agreement with the 

estimate of <10
-16

 cm
2
 obtained using lower beam currents. 
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Figure 5.19: C6H6 ESD signals obtained from 1 L of C6H6 

adsorbed on top of ASW for various electron energies. A beam 

current of 200 nA was used in all cases. The traces have been 

normalized to a common peak intensity. 
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Figure 5.20: C6H6 ESD signals obtained from 10 L of C6H6 

adsorbed on top of ASW for various electron energies. A beam 

current of 200 nA was used in all cases. The traces have been 

normalized to a common peak intensity. 
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Figure 5.21: C6H6 desorption cross-sections for the fast 

component as a function of electron energy. 

 

 

Figure 5.22: Three component fit to the C6H6 ESD observed with 

an electron energy of 250 eV a beam current of 200 nA. 
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The suggested mechanisms behind the desorption processes will be discussed 

later. Finally, Figure 5.24 shows examples of H2O ESD observed during the 

irradiation experiments. It can be observed that the H2O desorption is inhibited by 

the overlayer of C6H6 with the H2O signal decreasing in intensity as the C6H6 film 

thickness is increased. Measurements of the H2O desorption cross-sections from 

pure H2O films using a combination of ESD, TPD and RAIRS are underway [5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



235 

 

Figure 5.23: Comparison between cross-sections obtained for the 

fast component using different methods. 

 

 

 

Figure 5.24: Typical H2O ESD signals observed when different 

exposures of C6H6 are adsorbed on top of ASW. 
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Loss of C6H6 adsorbed on ASW observed through RAIRS 

As the electron energy dependence of the observed desorption has been shown to 

relatively small, experiments were conducted using energies of 250 and 100 eV. 

For comparison with the experiments performed on the amorphous SiO2 surface, 

TPD experiments were also conducted for this system. RAIRS was however 

found to be a much more reliable method of determining total loss as a full 

experiment could be performed using the same C6H6 sample. With the TPD 

experiments, difficulties with dose reproducibility and sensitivity made cross-

section determination difficult. Figure 5.25 shows an example of a such an 

experiment performed at 250 eV using a C6H6 of 10 L deposited on top of a thick 

ASW film. The overall change in shape of the TPD profile with irradiation is in 

agreement with that obtained on amorphous SiO2, with an initial decrease in the 

original peak and the simultaneous growth of a high temperature shoulder, with 

the overall intensity gradually decreasing as a function of irradiation time. The 

scatter in the TPD yields made cross-section determination difficult, though an 

estimate of 2000±500 s for the time constant could be made. This corresponds to a 

cross-section of <1×10
-17

 cm
2
. The difficulties encountered suggest that the loss 

process may be more complicated than a simple exponential decay. Without a full 

understanding of the appearance of the high temperature shoulder, the values 

obtained here, and for C6H6 multilayers on SiO2 should be regarded as estimates. 

Typical RAIR spectra for C6H6 are shown in Figure 5.26 for 20 L of C6H6 

adsorbed on a thick ASW film. Spectra are shown prior to irradiation, and 

following 4000 s irradiation with 250 eV electrons using a beam current of 150 

nA. C6H6 loss was monitored by considering the integrated absorbance, A, of the 

aromatic C-C stretching band at 1477 cm
-1

. It is clear that a significant amount of 

H2O is lost, probably through a combination of desorption and dissociation with 

subsequent reaction. The H2O loss was not studied in detail as more detailed 

investigations  are  currently  in  progress  [5].  The C-C  stretching  band for C6H6  



237 

 

Figure 5.25: TPD profiles obtained prior to and following different 

irradiation periods with 250 eV electrons using a beam current of 200 

nA. 

 

Figure 5.26: RAIR spectra for 20 L of C6H6 adsorbed on a thick 

ASW film prior to irradiation and after 4000 s irradiation with 250 

eV electrons using a beam current of 150 nA. 
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exposures of 10, 20 and 50 L is shown in Figure 5.27 as a function of irradiation 

time with 250 eV electrons using a beam current of 150 nA. Corresponding decay 

curves for the integrated absorbance relative to the unirradiated band (i.e. A/A0) 

along with single exponential decay fits are shown in Figure 5.28. The equivalent 

spectra and decay curves for experiments using 100 eV electrons are shown in 

Figure 5.29 and Figure 5.30 respectively. Exponential fits were only possible for 

irradiation times of up to 1000 s and 2000 s for electron energies of 250 and 100 

eV respectively. The extra loss observed at longer times possibly arises as a result 

of thermal desorption occurring during the extended irradiation time. Cross-

sections were obtained from the decay constants of the fits. The errors were 

calculated by considering an error of 1×10
-4

 for the RAIR spectra, resulting in an 

error of around 1×10
-3

 for the integrated absorbance. The corresponding relative 

error was combined with that associated with the electron flux. The cross-sections 

yielded by this analysis are summarized in Table 5.3 and Figure 5.31. Compared 

to the ESD cross-sections, the fast component with a cross-section of around 

2×10
-15

 cm
2
 is clearly absent. This is reasonable given that this channel is only 

efficient for a very small population of C6H6 molecules in direct contact with the 

ASW surface. Whilst this channel is extremely efficient for the desorption of this 

small amount of C6H6, it would not have a significant impact on the total amount 

of C6H6 desorbed. The overall loss cross-sections for the 10 and 20 L C6H6 films 

observed through the RAIRS experiments are around 8×10
-17

 cm
2
 and 5×10

-17
 cm

2
 

for electron energies of 250 and 100 eV respectively. These are comparable to the 

value obtained for the slow ESD component and likely consist of contributions 

from both ESD and decomposition of bulk C6H6. The ESD component was 

previously attributed to a second mechanism at the C6H6 interface.  

No chemical reaction products were observed in any of the RAIR spectra 

observed. This most likely results from the dominant non-desorption channel 

being dehydrogenation through the breaking of C-H bonds in which no C-C bonds 

are cleaved. This is in contrast to studies involving energetic ion irradiation. 

Strazulla et al. [6] observed the formation of products both more and less volatile  
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Figure 5.27: C6H6 C-C stretching band for 10, 20 and 50 L of C6H6 

adsorbed on ASW as a function of irradiation time. The electron 

energy was 250 eV. 
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Figure 5.28: Fitted exponential decays for the decay of the C-C 

stretching band 10, 20 and 50 L of C6H6 adsorbed on ASW as a 

function of irradiation time. The electron energy was 250 eV. 
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Figure 5.29: C6H6 C-C stretching band for 10, 20 and 50 L of C6H6 

adsorbed on ASW as a function of irradiation time. The electron 

energy was 100 eV. 
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Figure 5.30: Fitted exponential decays for the decay of the C-C 

stretching band 10, 20 and 50 L of C6H6 adsorbed on ASW as a 

function of irradiation time. The electron energy was 100 eV. 
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Energy / eV C6H6 exposure / 

L 

Cross-section / 

10
-17

 cm
2 

250 10 6.6±4 

250 20 9.5±5 

250 50 3.8±2 

100 10 6.5±2 

100 20 3.6±1 

100 50 0.8±0.1 

Table 5.3: Cross-sections for C6H6 loss obtained through RAIRS 

experiments for C6H6 exposures of 10, 20 and 30 L and electron energies 

of 250 and 100 eV. 

 

Figure 5.31: Total C6H6 loss cross-sections as determined from 

the RAIRS experiments. The 100 eV points and error bars are 

plotted with thicker lines for clarity. 

 

than C6H6 as a result of irradiation with 3 keV ions. Acetylene (C2H2) was 

observed through three bands at 3232, 1414 and 754 cm
-1

 corresponding to the C-

H asymmetric stretch, combination and C-H out-of-plane bend of C2H2 

respectively. Ruiterkamp et al. [7] also observed C2H2 formation through the 

same bands following the irradiation of both pure and Ar matrix isolated C6H6 
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with either 800 keV protons or VUV photons. Any possible reaction products 

within the C6H6 film are best examined by considering the 50 L experiment where 

limited loss of C6H6 was observed. RAIR spectra for the spectral regions where 

these bands associated with C2H2 are shown in Figure 5.32. No features that can 

be attributed to C2H2 are visible. The sharp features in the combination region are 

associated with small fluctuations in the concentration of H2O vapour in the 

purge. The deviation between the two spectra in the C-H bend region is an artefact 

associated with this region being very close to the cut-off of the RAIRS system 

employed. Whilst no clear evidence of C2H2 was obtained, it is worth noting two 

possibilities. Any C2H2 that does form would be expected to desorb at the base 

temperature of these experiments. Previous studies have demonstrated the 

desorption of multilayer C2H2 is complete by ca. 70 K [8]. Any C2H2 that is 

trapped may also recombine on the timescale of these experiments. Phenyl 

radicals are also a possible product having been observed previously in the 1 MeV 

electron irradiation of Xe matrix isolated C6H6 [9], though this was attributed to a 

mechanism involving first the ionization of Xe.  

 

Figure 5.32: RAIR spectra showing the regions where IR bands associated with 

C2H2 would be expected before (black) and after (red) irradiation of 50 L of 

C6H6 on ASW with 250 eV electrons for 2000s. The vertical black lines indicate 

the location of C2H2 bands observed in ion irradiation experiments [6]. 
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Furthermore, these experiments were performed at 16 K and annealing at 45 K 

resulted in the formation of the cyclohexadienyl radical identified through an IR 

feature at 618-620 cm
-1

 associated with the C-H out-of-plane band and the CH2 

wagging mode. This frequency is outside the range accessible by the system used 

in these experiments. However, in the current non-isolated system it seems more 

likely that reactions are limited to dehydrogenation and simple recombination 

reactions, reforming benzene along with larger scale carbonaceous deposits. No 

spectral evidence of any other products within the C6H6 were observed. The 

possibility of reaction at the C6H6/H2O interface involving fragments from H2O 

decomposition to form phenol (C6H5OH) was also considered. No bands that 

could be attributed to the O-H stretching mode around 3200 cm
-1

 (hydrogen 

bonded) or 3600 cm
-1

 (free O-H) [10] were visible, though the presence of the 

H2O O-H stretching band would make identification difficult. It is also likely that 

the concentration of C6H5OH formed in the interface region would be below the 

detection limits. The observed rapid desorption of C6H6 from the interface region 

also indicates that C6H5OH would be a minor channel. In summary, despite 

extensive searches no reaction products could be identified through RAIRS 

experiments confirming that C6H6 loss through desorption and carbonization are 

the dominant processes. As a result, the origin of the high temperature shoulder on 

the irradiated multilayer C6H6 TPD profiles is uncertain. Physical processing of 

the bulk C6H6 ice would seem the most plausible explanation. The presence of 

carbonaceous deposits could lead to subtle changes in the C6H6 binding energy 

and effectively trap some C6H6 to a higher desorption temperature. Further studies 

would be required to investigate the origin of this feature, possible with the use of 

STM to examine the formation of carbon structures on the surface. 
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Overview of possible mechanisms for C6H6 loss 

A summary of the signatures of C6H6 loss from the experiments discussed in this 

chapter is presented in Table 5.4. The non-desorption loss channel of 

dehydrogenation has already been discussed, along with the possibility of the 

formation of reaction products either below the detection limit or that desorb upon 

formation. The two desorption channels will now be considered in more detail. 

Mechanism Experiment Cross-section 

/ cm
2 

Electron 

energy / 

eV 

Beam 

current 

/ nA 

Comments 

Dehydrogenation 

 

TPD  

C6H6 on 

SiO2 

(3±1)×10
-17

 

 
 

250 

 

 

15  

 

 

Desorption 

(Slow) 

ESD 

C6H6 on 

ASW 

 

RAIRS 

C6H6 on 

ASW 

(8±2)×10
-17 

(3±1)×10
-17 

 

 

(8±4)×10
-17 

(5±3)×10
-17

 

250 

200 

 

 

250 

100 

200 

100 

 

 

150 

150 

 

 

Decreases 

with C6H6 

thickness 

Desorption 

(Fast) 

ESD 

C6H6 on 

ASW 

(2.5±1)×10
-15 

(1.5±1)×10
-15 

 

200 

200 

100 

200 

Increases 

with energy 

decreased 

for thick 

layers 

Table 5.4: Summary of C6H6 loss processes observed through the experiments discussed in this 

chapter. 

 

It is important to consider estimates of the electron penetration depth into both 

C6H6 and H2O ices in understanding the possible desorption mechanisms. An 

estimate of the mean free path for electrons of energy, E can be calculated from 

the following expression: [11] 

2/12/3

2
41.0

538
/ Ea

E

a
nm +=λ    Equation 5.4 

where a is the mean “atomic” diameter of the scattering material given by: 
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3/1

1000 






 Ω
=

L
a

ρ
    Equation 5.5 

where Ω is the molar mass, ρ the material density and L the Avogadro number. 

H2O was considered as a single scattering centre of mass 18 g mol
-1

 and with the 

density of ice determined in Chapter 4 (0.87 g cm
-3

). The major scattering centres 

for C6H6 are the C atoms. Therefore, a was calculated assuming the density of 

C6H6, (1.11 g cm
-3

) associated with the number density calculated in Chapter 4 

and the atomic mass of carbon. The calculated mean free paths for C6H6 and H2O 

are shown as a function of electron energy over the range used in these 

experiments in Figure 5.33. The mean free path values at the electron energies of 

interest can then be used to obtain the ratio of the intensity of the initial electron 

beam, to that at a distance d in the film, I/I0 for an angle of incidence, θ [11]: 









−=

θλ cos)(
exp

0
E

d

I

I
   Equation 5.6 

This quantity is plotted for C6H6 and H2O in Figure 5.34 and Figure 5.35 

respectively. It should be noted that the penetration depths have been converted 

into dose equivalent units in Langmuir using the film thickness calculated for 

particular doses in Chapter 4. These figures will be referred to in the discussion 

of mechanisms that follows. The ESD data clearly indicate that both of the 

desorption channels identified are reliant on the presence of H2O molecules. In 

particular, the fast desorption channel with a cross-section of ca. 1×10
-15

 cm
2
 is 

the only channel present at low coverage. As the coverage is increased towards 

monolayer saturation, this component increases in intensity. Once multilayers 

begin to form, this component is gradually reduced in intensity, along with a 

gradual decrease in cross-section. This desorption is therefore attributed to the 

desorption of isolated C6H6 molecules that are directly in contact H2O molecules 

at the vacuum interface. This is analogous to the photon-induced desorption of 

C6H6 from surface bound C6H6(H2O)n clusters discussed in Chapter 4. 
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Figure 5.33: Calculated mean free paths for electrons in C6H6 and 

H2O films. 

 

Figure 5.34: Calculated electron penetration through C6H6 films 

for the electron energies used in this work. The penetration depths 

are reported in dose equivalent units to aid comparison with the 

previously presented data. 
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Figure 5.35: Calculated electron penetration through C6H6 films 

for the electron energies used in this work. The penetration depths 

are reported in dose equivalent units to aid comparison with the 

previously presented data. 

In the case of photodesorption, the photon was absorbed directly by the C6H6 

molecule, leading to unimolecular decomposition of the cluster and the desorption 

of C6H6 and H2O molecules. Here, the decomposition of the same surface bound 

cluster is likely to result in the observed desorption. At the energies used here, the 

electron scattering cross-section for H2O is dominated by ionization [12], with 

electronic excitations also playing an important role. However, the total inelastic 

scattering cross-section is calculated to be around 1-2×10
-16

 cm
2
 for electron 

energies of 100-300 eV [13] and ionization of H2O molecules cannot therefore 

lead directly to the desorption of C6H6 molecules. It is important to note from the 

electron penetration curve for H2O that it is likely that very few electrons will 

completely penetrate the H2O film corresponding to an exposure of 150 L. It is 

therefore necessary to consider what happens during the passage of electrons 

through the H2O film. Ionization that occurs along the path of an electron passing 

through the H2O film will result in a cascade of secondary electrons. This has 

been calculated for the cascade that results from a 500 eV oxygen Auger electron 

in H2O [14] where 25 secondary electrons were found to be generated within 100 
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fs. The calculations indicated the presence of a large population of electrons with 

energies of less than 50 eV. The experiments reported here were conducted using 

electrons with energies below 500 eV and consequently the number of secondary 

electrons and their average energy is likely to be somewhat smaller. Nevertheless, 

it is reasonable to assume that a cascade of electrons will be formed in the present 

case, resulting in an effective amplification of the effect of the primary electron 

beam. Several possibilities then exist for the transport of these electrons to the 

surface region where they can lead to the desorption of C6H6. 

The generation of secondary electrons within H2O ice will lead to the formation of  

solvated electrons e
-
(aq) and these reactive species have been shown to be 

important in reactions in CCl4/H2O films [15]. It is worth stressing that this alone 

will have important consequences for chemistry in mixed ices where solvated 

electrons will readily interact with species present within the ice matrix. These 

solvated electrons might then diffuse through the ice, with some of them reaching 

the surface bound C6H6(H2O)n clusters. Isolated solvated electrons have a 

microsecond lifetime [16], although in the presence of electron scavengers this is 

reduced. This suggests that these solvated electrons are likely to play a role only 

close to the vacuum interface as a result of rapid recombination with hydronium 

ions, which is thought to be efficient in the bulk [17]. As well as slow secondary 

electrons becoming solvated directly, it is also necessary to consider the 

possibility of excitation and dissociation of H2O molecules [18]. This will result 

in the formation of ionic products, and a pre-solvated electron. The nature of the 

pre-solvated electrons depends on the excitation energy and are thought to include 

pre-solvated conduction band electrons, localized partially solvated electrons, and 

excited states of H2O molecules. In particular, excitons, which are bound states of 

electron-hole pairs, have been proposed for transporting excitation energy from 

the bulk to the vacuum interface. This mechanism has been used to explain the 

desorption of D2 from the vacuum interface region following the 100 eV electron 

irradiation of ASW [17], an experiment not unlike the present case. The efficient 

formation of excitons at defect sites within ASW films has also been suggested as 

a mechanism for the desorption of H2O from interfacial sites on ASW adsorbed 



251 

on graphite [19]. Here, excitons were formed as a result of multi-photon excitation 

of H2O molecules, with H2O desorption showing a 9 eV threshold, compatible 

with the ice band gap. Migration of the excitons that were formed was again 

thought to be responsible for the observed H2O desorption. Bulk excitations and 

subsequent migration have also been shown to play a role in the formation of O2 

although the actual mechanism by which the migration occurs remains unclear 

[20]. It therefore seems reasonable that the same mechanism is transporting 

excitation energy to the vacuum interface in the present case. Upon reaching the 

vacuum interface, this energy will excite any surface bound clusters, possibly 

resulting in H2O and fragmentation product desorption. Decomposition of the 

cluster and ejection of the weakly bound C6H6 molecule is also highly likely. This 

mechanism is analogous to that discussed for the case of the photon-induced 

desorption of C6H6 from surface bound clusters. Whilst with 250 nm photons the 

energy enters the system though excitation of the C6H6 molecule, with low energy 

electrons the energy pathway is via the H2O molecules. The large cross-section 

for the fast desorption component can therefore be ascribed to an effective 

amplification of the primary electron beam by the formation of multiple 

secondary electrons and excitations in the ice that leads to the observed 

desorption. 

As the C6H6 coverage is increased, the surface concentration of isolated C6H6 

molecules in surface bound clusters will decrease as a result of island formation. 

For C6H6 exposures of around 10 L, the TPD experiments in Chapter 3 indicate 

the presence of 3-dimensional islands on the surface, between which isolated 

C6H6 molecules must also exist. As has been discussed, the initial fast desorption 

arises as a result of desorption of isolated molecules, resulting in a concentration 

gradient. Further desorption can only occur as a result of the diffusion of C6H6 

from the edges of islands to the bare regions. The observed slow desorption is 

therefore attributed to desorption that occurs via the same mechanism as the fast 

desorption process, but after diffusion of C6H6 molecules from the islands to form 

new surface bound clusters. This also accounts for the observed appearance 

profile which can be related to the increasing concentration gradient during the 
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fast desorption. As the initially isolated C6H6 molecules desorb, the desorption 

rate will depend on the diffusion rate of C6H6 molecules from the islands. This 

will be fastest for small islands which will be consumed more rapidly, leading to 

an overall decay in diffusion rate. This is essentially analogous to Ostwald 

ripening in colloidal dispersions [21] where large particles tend to grow at the 

expense of small ones. As the C6H6 exposure is increased further, the number of 

large islands will increase and both desorption channels will be reduced in 

efficiency as observed experimentally. Furthermore, Figure 5.35 shows that the 

overall energy content of electrons reaching the ASW film is much reduced for 

C6H6 exposures of tens of L, reducing the rate of H2O excitation. For thick films 

of C6H6 the desorption mechanism will therefore be blocked by the presence of 

the C6H6 film itself resulting in the dehydrogenation channel observed in 

multilayer C6H6 films as the only active loss channel. The film morphologies 

which give rise to these effects are shown schematically in Figure 5.36. 

 

Figure 5.36: Cartoon showing why both fast and slow channels for C6H6 desorption from 

ASW arise. C6H6 film thickness plays an important role in the efficiencies of the desorption 

of pre-existing isolated C6H6 molecules, and those that depend on the diffusion of C6H6 from 

islands. Both channels are much reduced in efficiency for thick films. 
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As has been discussed, the RAIRS experiments reveal only the total loss of C6H6 

and appear to primarily reflect the slow desorption channel, along with 

dehydrogenation for thick films. It is clear from the desorption traces that for thick 

films the limiting value for C6H6 loss is around 20%. As well as the effect of not 

irradiating the full surface area, the accumulated carbon deposits will form a cap 

that will result in a reduction of further C6H6 loss as a result of a reduction in 

electron beam intensity reaching the unirradiated C6H6. 

5.4 Astrophysical implications and conclusions 

The results in this chapter suggest that the electron-stimulated desorption of 

species needs to be included in astrochemical models that include the gas-grain 

interaction. The fast cross-section obtained here for the desorption of C6H6 from 

the surface of an ASW surface is extremely large, indicating a very efficient 

desorption process. As has been discussed, the mechanism thought to be driving 

this desorption has previously been shown to result in the formation of both intact 

H2O molecules, and H2 molecules from the vacuum interface region, as well as 

initiating chemical reaction within the ices. The implication is that the cascade of 

secondary electrons within H2O dominated ices that results from the passage of 

cosmic ray particles through the ice will result in the transport of excitation 

energy to the vacuum interface region, leading to the desorption of many species 

from this region. The impact of the H2O desorption that arises as a result of this 

will be discussed in Chapter 6 along with a consideration of the efficiency of this 

mechanism in an interstellar environment. 

 The results presented here also further highlight the importance of substrate 

effects, given that the C6H6 desorption relies on the presence of the underlying 

H2O substrate. Further experiments are required to study the effect of electron 

irradiation of C6H6 present within the H2O ice. However, these experiments 

suggest that electron irradiation of aromatic hydrocarbons, certainly in the energy 

range studied, is unlikely to result in significant chemical change apart from 

dehydrogenation. Experiments with larger PAHs would of course be required to 
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confirm this assertion, though there is no reason to expect the cleaving of C=C 

bonds in these larger, more stable aromatic systems. 

In summary, the experiments discussed in this chapter have revealed an extremely 

efficient electron-stimulated desorption channel for isolated C6H6 molecules 

adsorbed on an ASW surface. As no C6H6 desorption is observed from a 

multilayer C6H6 film the desorption must be the result of a mechanism involving 

the underlying ASW layer. The formation of excitons and solvated electrons 

within the ice and their subsequent migration to the vacuum interface has been 

observed previously and could provide the necessary mechanism to drive the 

observed desorption. A slower desorption channel is also observed, with this 

being attributed to the diffusion of C6H6 from islands prior to desorption. This 

results in a diffusion limited desorption channel. An appearance profile associated 

with this channel can be attributed to the establishment of a concentration gradient 

during the initial desorption of isolated C6H6 molecules.  
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CHAPTER 6 - Overall Conclusions and Future Work 

6.1 Introduction 

This chapter presents a more detailed discussion of the astrophysical implications 

of the observations presented in this thesis. Simulations performed using 

astrophysical heating rates are used to assess the impact of the different desorption 

channels that have been revealed. The overall conclusions of this work are 

summarized, before a discussion of possible future work. 

6.2 Astrophysical implications 

6.2.1 Adsorption of C6H6 on amorphous SiO2 and ASW 

The thermal desorption experiments reported in Chapter 3 clearly demonstrate 

the sensitivity of the adsorption of small amounts of adsorbate to the underlying 

substrate. In an interstellar context, this indicates that the binding of species to 

bare grain surfaces in warmer astrophysical environments may be significantly 

stronger as a result of the presence of high energy binding sites on the grain 

surface. The distribution of binding energies is much smaller on the c-ASW 

surfaces studied in this work, although previous work has shown this is likely to 

be important for the adsorption of volatile species at low temperatures in dense 

clouds [1-3]. These studies indicated that a broader distribution of binding 

energies is present on p-ASW and, for a full comparison, thermal desorption 

studies of C6H6 adsorbed on this surface are required.  

The thermal desorption simulations performed using astrophysical heating rates 

demonstrate how a broad distribution of binding energies can lead to a significant 

lengthening of the timescale for desorption of species from the substrate. This is 

likely to be a general effect, and would be observed for any species that adsorb 

sufficiently strongly to the surface. Indeed, for more strongly bound species such 

as larger PAHs, the distribution might be even broader.  
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The results presented indicate the importance of using realistic grain mimics in 

experiments investigating processes that occur on bare grain surfaces, where 

interactions with the grain itself play an important role. However, a detailed 

understanding of interstellar grains is extremely challenging. As might be 

expected, the desorption of thick films of ices is relatively unaffected by the 

nature of the underlying substrate. This may not be the case for photon or electron 

induced chemistry. At wavelengths where H2O ice is relatively transparent, a 

significant photon flux might reach the substrate. For a metallic substrate, the 

resulting hot electrons may drive chemical and physical processes that would not 

be relevant in an astrophysical environment. The SiO2 substrate may then provide 

an ideal substrate for performing such irradiation experiments. 

6.2.2 Non-thermal desorption mechanisms 

The photon-induced desorption experiments described in Chapter 4 have several 

important implications. The direct-adsorbate mediated desorption of C6H6 is 

observed to be an efficient process at the wavelength used in these experiments. 

This confirms the importance of photon-induced desorption in astrophysical 

environments that has been demonstrated previously [4-6]. Furthermore, the 

desorption of H2O at a wavelength where H2O ice is known to be relatively 

transparent is an extremely important observation. Such mechanisms will increase 

the overall efficiency of photon-induced desorption.  

The C6H6 and H2O molecules that desorb as a result of photon irradiation have 

high translational energies, suggesting that this may be an important mechanism 

for the injection of energetic molecules into the gas phase. The simple 

calculations presented here demonstrated that in the low collision environment of 

dense clouds, internal energy is likely to be lost through radiative processes, 

where allowed transitions exist, before collision with another species. However, 

translational energy will not be lost until collision, when it may allow reaction 

over activation barriers otherwise insurmountable as a result of the low 

temperatures of the interstellar environment. 
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The electron-stimulated desorption (ESD) experiments described in Chapter 5 

demonstrate that, as well as being responsible for inducing chemical change 

within interstellar ices, physical processing such as desorption must also be 

considered. The desorption observed for C6H6 is extremely efficient, and the 

proposed mechanism relies on the presence of an ASW layer indicating that this 

may also be important for other species. The desorption of intact H2O molecules 

was also observed and this is currently being investigated in more detail [7]. 

In order to assess the impact of the non-thermal desorption channels discussed in 

this thesis, it is necessary to consider the relevant fluxes, as well as the desorption 

cross-sections. Desorption cross-sections, 
des

σ , can be converted to first order rate 

constants, 1k , for desorption by considering the associated flux, F , of electrons 

or photons driving the desorption: 

Fk
des

σ=1     Equation 6.1 

The rate constants obtained can then be used in kinetic simulations performed 

with astrophysical heating rates. It is therefore necessary to consider the relevant 

electron and photon fluxes.  

Secondary electrons arise as a result of cosmic ray ionization of interstellar ices. 

The flux of 1 MeV cosmic ray protons is around 1 cm-2 s-1 [8] within dense 

interstellar clouds. This value is taken as being representative of the 1-50 MeV 

region over which the differential proton flux is relatively flat [9] as shown in 

Figure 6.1. The electron flux derived as a result of this proton flux should 

therefore be considered as a lower limit because the secondary electron yield for 

higher energy protons will necessarily be higher. The secondary electron yield for 

1 MeV protons can be calculated by considering the stopping power for these 

particles in water ice [10]. This was calculated by using the Stopping and Range 

of Ions in Matter (SRIM) software [11]. The electronic stopping power for liquid 

H2O with the density of c-ASW, as used in calculations in Chapter 4, was found 

to be 19.22 keV µm-1. The other important factor is the so-called  W-value which  
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Figure 6.1: Differential cosmic ray fluxes as reported by Shen et al. [9]. 
The integrated flux up to the maximum at 50 MeV is ca. 1.5 cm-2 s-1. 

is the typical energy deposited per ionization event. This value is usually around 

2-3 times the ionization potential of the molecule being ionized [12]. For ASW 

the ionization potential is 11.0 eV [13] which yields a lower limit for the W-value 

of 22 eV. The number of secondary electrons generated per µm-1 can then be 

estimated from the ratio of the stopping power to the W-value, from which a value 

of 900 µm-1 is obtained. This corresponds to an electron yield of ca. 90 electrons 

per proton along the ion track through an ice film of thickness 100 nm. Given the 

photon flux this corresponds to an effective electron flux of 90 cm-2 s-1. The 

differential cross-sections for secondary electron generation during the proton 

irradiation of liquid H2O for a range of proton energies have been calculated [14]. 

The fraction of the integrated cross-section as a function of secondary electron 

energy is shown in Figure 6.2 for 0.5 MeV protons. This shows that the energy 

range of 100-300 eV investigated in this work is towards the upper limit of 

electron energy. However, calculations show that the total inelastic cross-section 

for H2O ice does not drop significantly below 100 eV as a result of low energy 

excitations [15]. This electron flux is therefore a reasonable approximation, within 

an order of magnitude, for assessing the impact of H2O ESD. 
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Figure 6.2: Fraction of the total H2O ionization 
cross-section as a function of secondary electron 
energy. From [14]. 

 

In terms of the photon flux it is necessary to consider two contributions to the UV 

field. The interstellar radiation field (ISRF) will be important close to the edge of 

a dark cloud where Av values are low. The ISRF field calculated by Mathis et al. 

[16] as shown in Chapter 1 will be used, with an estimated ISRF photon flux at 

250 nm of 108 cm-2 s-1. Values of 106, 104 and 101 cm-2 s-1 were estimated for the 

field at Av values of 2, 4 and 6 respectively. Within the cloud, the photon flux is 

dominated by cosmic ray induced fluorescence of H2, which results in a flux of 

ca. 5×103 cm-2 s-1 [9,17]. This is essentially insensitive to Av as a result of the 

penetrating nature of cosmic rays. The spectrum is similar to the output of the 

broadband hydrogen microwave discharge lamps which have previously been 

used to study the photon-induced desorption of H2O in this wavelength region [5]. 

The spectrum of such lamps is dominated by hydrogen emission features, and 

they are usually considered to be a reasonable approximation of the UV field at 

these wavelengths both within the dense clouds and the diffuse ISM. Figure 6.3 

shows an example of the spectra obtained from such lamps compared to that of 

the diffuse ISM, demonstrating the broad similarity between the spectra. 
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Figure 6.3: Spectrum of broadband hydrogen microwave discharge lamps 
with quartz and MgF2 windows compared to the diffuse ISM. From [18]. 

 

In order to compare the relative efficiencies of the different desorption channels 

the desorption of H2O will be used as an illustrative example. It is therefore 

necessary to consider the appropriate cross-sections for each of the desorption 

mechanisms. The direct ESD of H2O for electron energies in the range 100-300 

eV has been found to be (5±2)×10-17 cm2 [7]. Photon-induced desorption of H2O 

at wavelengths corresponding to the internal cosmic ray induced field has been 

shown to occur with a quantum yield of ca. 10-3 [5] which, combined with the UV 

photon absorption cross-section at 121 nm of 4×10-18 cm2 [19], yields a desorption 

cross-section of 4×10-21 cm2. Finally, desorption caused by resonant absorption of 

photons by other species as demonstrated by the experiments presented in 

Chapter 4 of this thesis will be considered. The cross-section for indirect 

adsorbate-mediated desorption of H2O of 1×10-19 cm2 will be used. From these 

cross-sections, along with the estimated photon and electron fluxes, the first order 

rate constants reported in Table 6.1 were obtained. 
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Mechanism Relevant flux / cm
-2
 

s
-1 

Cross-section / 

cm
2 

k1 / s
-1 

H2O ESD 90 electrons 5×10-17 4.5×10-15 

H2O PSD 

(internal UV field) 

5×103 photons 4×10-21 2×10-17 

H2O PSD 

(indirect 
mechanism) 

(ISRF) 

Av=0 

Av=2 

Av=4 

Av=6 

108 photons 

106 photons 

104 photons 

1 photon 

1×10-19 10-11 

10-13 

10-15 

10-19 

Table 6.1: Fluxes, cross-sections and corresponding first order rate constants for the non-thermal 
desorption of H2O. 

A kinetic model for incorporating these non-thermal desorption mechanisms was 

built using CKS [20,21] as described in Chapter 3. The simulations were 

performed with an initial ASW surface concentration of 3.4×1017 cm-2 

corresponding to a realistic ice film thickness of the order of 102 layers. Both 

steady state simulations, with a constant temperature of 10 K, and those 

incorporating a heating rate of 1 K / 1000 yr, as justified in Chapter 1, were 

performed. In the latter, the thermal desorption of both ASW and crystalline ice, 

along with the crystallization of ASW, were considered. The kinetic parameters 

for these thermal processes were optimized for recent H2O TPD experiments [7] 

from those previously reported by Collings et al. [22]. Simulations performed 

with the thermal processes only were included for comparison.  

Figure 6.4 and Figure 6.5 show the simulated desorption traces for the different 

mechanisms under steady state conditions at 10 K for extinctions of Av=0 and 

Av=6 respectively. For Av=0, corresponding to the edge of a cloud, desorption 

induced by the ISRF dominates. This indicates that a full understanding of the 

potential of the indirect adsorbate-mediate desorption mechanism discussed in 

Chapter 4 is required for desorption under such conditions. At high extinctions of 

Av=6 and higher, desorption deep within clouds is dominated, not by the photon-

induced desorption as a result of the internal field, but by direct ESD of H2O.  
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Figure 6.4: Traces showing the desorption of H2O as a result of 
non-thermal processing at a steady state temperature of 10 K for 
Av=0. 

 
Figure 6.5: Traces showing the desorption of H2O as a result of 
non-thermal processing at a steady state temperature of 10 K for 
Av=6. 
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This suggests that this channel, which has not previously been considered in 

detail, may be an extremely important mechanism for the non-thermal desorption 

of H2O and is currently under more detailed investigation [7].  

Corresponding desorption traces for the simulations including thermal desorption 

with a heating rate of 1 K / 1000 yr are shown in Figure 6.6 and Figure 6.7 

respectively. These indicate that for low Av values, the photon-induced desorption 

mechanism may result in the complete desorption of H2O before the temperature 

has risen sufficiently for the onset of thermal desorption. This indicates that the 

inclusion of non-thermal desorption via this mechanism into astrochemical 

models will significantly decrease the time required for H2O desorption at the 

edge of a dense cloud. Indeed, this mechanism may play an even greater role than 

suggested by these simulations. The absorption spectra for larger PAHs are 

situated towards longer wavelengths [23], a trend seen generally with increasing 

molecular complexity. The ISRF increases in intensity by as much as an order of 

magnitude to longer wavelengths. Desorption that results from resonant 

absorption by such molecules may therefore be extremely important, and relevant 

laboratory investigations would be desirable to ascertain the true extent of the 

impact of such mechanisms. Deeper within clouds thermal desorption is the 

dominant channel, although ESD leads to significant H2O desorption prior to the 

temperature being sufficiently high for thermal desorption. This mechanism is 

again at least two orders of magnitude more efficient than photon-induced 

desorption as a result of the internal UV field. 

To further demonstrate the importance of non-thermal desorption, the fraction of 

total H2O desorbed by all of the non-thermal mechanisms is compared to that 

desorbed thermally as a function of Av in Figure 6.8. Clearly, non-thermal 

desorption is extremely important under low extinction conditions. Finally, 

considering only the non-thermal mechanisms, Figure 6.9 demonstrates that the 

ISRF driven channel is important up to extinctions as high as Av=4 whilst Figure 

6.10 confirms the dominance of the direct ESD of H2O over that driven by the 

internal UV field for all values of Av.  
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Figure 6.6: Traces showing the desorption of H2O as a result of 
thermal and non-thermal processing with a heating rate of 1 K / 
1000 yr for Av=0. No thermal trace is shown as all the H2O desorbs 
non-thermally prior to the onset of thermal desorption The orange 
line corresponds to thermal desorption alone.  

 
Figure 6.7: Traces showing the desorption of H2O as a result of 
thermal and non-thermal processing with a heating rate of 1 K / 
1000 yr for Av=0. The orange line corresponds to thermal 
desorption alone. 
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Figure 6.8: Comparison between the fractions of H2O desorbed 
thermally and non-thermally as a function of Av for a heating rate 
of 1 K / 1000 yr. The smoothed lines are to guide the eye. 

 
Figure 6.9: Comparison between the fractions of H2O desorbed by 
ISRF photons those from the internal UV field along with 
electrons as a function of Av at 10 K. The smoothed lines are to 
guide the eye. 
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Figure 6.10: Comparison between the fractions of H2O desorbed 
by photons from the internal UV field and electron irradiation as a 
function of Av at 10 K. The smoothed lines are to guide the eye. 

These simulations confirm the importance of the inclusion of non-thermal 

desorption mechanisms in astrochemical models and, in particular, highlights the 

impact of including the two mechanisms investigated in this work; indirect 

adsorbate-mediated desorption induced by the ISRF and direct ESD driven by the 

secondary electrons produced by cosmic ray ionization of ices.  

6.3 Overall conclusions 

The work presented in this thesis has provided insight into the thermal and non-

thermal desorption of C6H6, as a model of larger aromatic hydrocarbons, under a 

range of interstellar conditions. The thermal desorption experiments reported in 

Chapter 3 have indicated the strong dependence for small adsorbate quantities of 

the desorption kinetics on the nature of the underlying substrate. In the present 

case, although C6H6 is thought to bind to both ASW and amorphous SiO2 through 

hydrogen bonding interactions, the observed desorption behaviour is sensitive to 

the gross morphology of the substrate. A broad distribution of desorption energies 
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was extracted for the case of the SiO2 substrate compared to a much narrow 

distribution for the ASW substrate. Multilayer desorption kinetics were in 

agreement with previous studies, indicating the relative insensitivity of thick films 

to the substrate. The RAIR spectra obtained suffered from a lack of sensitivity for 

submonolayer coverages but did indicate a possible shift that could be attributed 

to hydrogen bonding interactions on both substrates. Clearly, astrochemical 

processes that involve direct adsorbate-substrate interactions must be conducted 

on a relevant substrate. This SiO2 substrate developed in this work is one possible 

approach for modelling the interstellar silicate grain population. 

Chapter 4 considered the photon-induced desorption of C6H6 and H2O from pure 

and binary layered ices of the two species. One key observation is the desorption 

of hot C6H6 molecules, as characterised by translational temperatures in excess of 

1100 K. The possible importance of the desorption of such energetic molecules in 

the cold environment of the ISM has been considered. Also of importance was the 

observation of an indirect adsorbate-mediated desorption channel by which H2O 

was desorbed following resonant absorption by C6H6 molecules. The observations 

were consistent with desorption occurring following the unimolecular 

decomposition of a surface bound C6H6(H2O)n cluster. Furthermore, the H2O 

molecules desorbed were also translationally hot. Desorption cross-sections were 

obtained which indicated that the desorption of both species was efficient at 250 

nm. Typical values for these cross-sections were ca. 10-19 cm2. 

In Chapter 5 the focus was on electron-stimulated processing. No C6H6 

desorption was observed during electron irradiation of either C6H6 multilayers, or 

low coverages of C6H6 adsorbed on amorphous SiO2. In these cases 

dehydrogenation is thought to be the dominant loss channel. This is in agreement 

with previous studies. However, significant desorption of C6H6 was observed 

when submonolayer coverages of C6H6 were adsorbed on top of a pre-adsorbed c-

ASW film. This desorption occurred with an extremely high cross-section of 10-15 

cm2 and was attributed to the formation of excitons within the H2O layer which 

subsequently migrate to the vacuum interface. Solvated electrons, which arise as a 
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result of the complete stopping of electrons within the thick ASW film, may also 

play a role in the desorption. A slower desorption channel with a cross-section of 

the order of 10-17 cm2 was observed for thin multilayer films which was attributed 

to the diffusion of C6H6 from islands to regenerate the isolated species desorbed 

via the fast mechanism. No evidence for chemical change was observed during 

irradiation using electrons within the energy range 100-350 eV.  

Finally, the impact of non-thermal desorption mechanisms under interstellar 

conditions has been assessed using kinetic simulations to model the thermal and 

non-thermal desorption of H2O. The kinetic model described made use of 

interstellar fluxes and cross-sections obtained from this work, along with previous 

studies in the literature. The results of the simulations indicate the importance of 

including non-thermal desorption mechanisms in astrochemical models. In 

particular, electron-stimulated desorption may play a far greater role within dense 

clouds than previously thought. At the edges of dense clouds, and for extinction 

values of up to Av=4, the indirect desorption mechanism observed in Chapter 4 

results in significant H2O desorption; an effect that may be even more efficient for 

more complex absorbing species. 

6.4 Future work 

The results of this work have highlighted many possibilities for future research, 

and some of these will be highlighted here. In order to gain a more fundamental 

understanding of the impact of the SiO2 substrate on thermal desorption it would 

be desirable to use a flat crystalline SiO2 film which could, in principle, be formed 

by heating the stainless steel substrate during the evaporation procedure. This 

would eliminate the complexity of desorption traces that arises as a result of the 

gross morphology of the film, allowing the typical SiO2-adsorbate adsorption 

energy to be obtained. Experiments considering different silanol concentrations 

would also be useful. Using a flat surface might also result in an increased RAIRS 

sensitivity allowing a more detailed spectroscopic analysis of the interactions 

between submonolayer coverages of adsorbate and the substrate. The inclusion of 
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metal atoms within the film would be required to make the current film more 

representative of the metallic silicate grains found in the ISM. 

From a chemical physics viewpoint, state-resolved studies to determine the 

internal energy partitioning of molecules desorbed during photon irradiation 

would be required for a full understanding of energy disposal. In order to further 

understand the indirect desorption mechanism observed in this work, full ToF 

experiments allowing the observation of intact (H2O)n clusters during the 

desorption could be performed. Such experiments could reveal the nature of the 

slow feature observed in the current H2O ToF traces. From an astrophysical 

viewpoint, extension of the current experiments to larger PAHs and other complex 

molecules would be required to fully determine the importance of this indirect 

photon-induced desorption mechanism in the ISM. 

A fuller understanding of the ESD of H2O molecules from pure ASW is required 

and, as has been highlighted, such experiments are currently underway. This work 

could be extended to lower electron energies, around 10 eV where C6H6 

resonances are likely to exist, to reveal any direct desorption mechanisms. STM 

experiments would be required to confirm the proposed mechanisms for the ESD 

of C6H6 from ASW surface; particularly in terms of the diffusion limited slow 

desorption mechanism. Given the extremely large cross-section of the fast 

mechanism further studies are warranted. It would also be interesting to use ToF 

measurements to investigate the translational energies of desorbing C6H6 and H2O 

molecules for comparison with the photon irradiation experiments. Again, from a 

chemical physics viewpoint, state-resolved studies would provide a fuller 

understanding of energy partitioning in the system. As with the photon irradiation 

experiments extension to larger PAHs would also be a longer term goal. 

Heteroatomic species, such as pyridine, have the potential for more complex 

binding as a result of the presence of the nitrogen lone pair, along with the π-

system, and are also target molecules of the longer term programme of work 

initiated by that presented in this thesis. 
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