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ABSTRACT 

Both spraying and drying are critical to spray dryer performance.  Models are developed 

which explain the very different performance of a spray dryer when large droplets of 

film forming materials are created using a Rayleigh resonance atomiser.  The droplet 

diameter distribution from this "Acoustic Atomiser" is inadequately described by 

previously reported spray size distribution functions, but well described by the Stable 

distribution.  The alpha parameter of this distribution was found to tend towards the 

Gaussian limit for low viscosity fluids and the Lorentz limit with increasing viscosity, 

consistent with behaviour as a simple and damped forced harmonic oscillator 

respectively, and hence with the physics of the atomisation process.  Droplet drying 

kinetics dominate model predictions.  A device using an ultramicrobalance to measure 

droplet drying kinetics with unprecedented accuracy and range has been designed.  A 

scaling and residence time analysis model was able to account for experimental spray 

dryer observations.  Sprayability even of complex fluids is predicted adequately by the 

Ohnesorge diagram, provided that extensional rather than shear viscosity is plotted.  A 

new determination of the transient apparent extensional viscosity from arbitrary CaBER 

time-diameter curves has successfully been used for fluids too complex to analyse using 

previously published rheological models.   
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CHAPTER 1 - INTRODUCTION 

The purpose of this research was to develop models of the spray drying process that 

could both predict performance and be used to interpret and explain observations in the 

case where large particles of film forming materials are being dried.  This addresses a 

research gap identified from industrial experience during the development of a novel 

atomiser. 

Spray dryers are extensively used, chiefly in the process, food and pharmaceutical 

industries, for the conversion of bulk liquid into dry powder products by evaporation of 

a liquid solvent.  The process is straightforward to describe; referring to Figure 1, a feed 

liquid is atomised into small droplets, into a chamber through which hot gas is blown. 

The atomised droplets are dispersed across the chamber both by their initial momentum 

and by their interactions with the drying gas.  The solvent (normally water) evaporates 

from the droplets.  Due to their small size (typically 50-100µm mean diameter), rapid 

heat and mass transfer occurs, and the droplets dry in-flight, leaving solid particles 

which are disengaged from the gas flow and collected as product.  Due to the rapid heat 

and mass transfer, the residence time of the process material within the chamber is in 

the order of seconds, which is short when compared with other convective drying 

processes (tray, tunnel etc.) where residence time may be minutes or hours.  For this 

reason, spray dryers are extensively used to dry heat sensitive products, typically foods 

(especially dairy products) and pharmaceuticals (Masters, 1991, Oakley, 1997, van 

Dycke, 2006, Bartels, 2006).  

Whilst spray drying itself is considered to be a mature technology (Masters, 1991), 

modelling of spray drying is less well developed (Verschueren, 2005, Fletcher et al., 

2006).  The simplicity of the outline process description above belies the complexity 

and interconnectedness of the underlying science.  The fluid mechanics problem of the 

flow of and the interactions between the continuous gas and discrete droplet phases is 

coupled to the heat and mass transport to, from and within a droplet, where the droplets 

will typically have a rather wide size distribution, and may change shape and size and 

therefore aerodynamic drag during the drying process (Hecht, 1999, Masters, 1991).  

Whilst developments in computer power and accurate experimental methods for 

studying gas-particle flows have enabled phenomenal progress to be made in the fluid 

mechanics problem over the past two decades (Kievet et al., 1997, Oakley, 1997, 
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Fletcher et al., 2006), theory and experiment are not in close agreement even for the 

subsidiary problem of heat and mass transport to a drop (Kumar and Hartland, 1999) 

and the complexity of the process has so far eluded accessible predictive models useful 

for design and performance evaluation (Fletcher et al., 2006).  Spray dryers are 

consequently designed and operated principally by experience (Bartels, 2006, Zbicinski 

and Li, 2002, Räderer et al., 2002), resulting in sub-optimal product quality, rate and 

energy usage (Baker and McKenzie, 2002, Verschueren, 2005). 

  

Figure 1: schematic of the spray drying process (after Masters, 1991) 

   

Figure 2:  retail coffee: a familiar example of the different product forms obtained by 

spray drying alone (left) as compared with spray drying followed by granulation (right) 
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Familiar consumer products made using spray drying are powdered milk and instant 

coffee, an example of which is shown in Figure 2.  Spray drying typically produces a 

fine powder, with a mean size of order 50-100µm.  Post-spray drying granulation is 

frequently a pragmatic necessity in order to increase the particle size to some hundreds 

of micrometre diameter, and hence to confer desirable properties such as flowability and 

re-dispersibility to the powder.  The granulation step increases both the capital and 

operating costs of the powder production plant.  It is also something of a "black-art", 

relying on operator experience for design and operation, rather than on robust predictive 

models.  In consequence most spray drying operations have two series-coupled unit 

operations, the fundamentals of each of which are rather poorly understood. 

Twenty years ago, ICI developed an atomiser for prilling (spray-solidification of melts) 

working on the principle of resonant breakup of laminar liquid jets.  There is a brief 

description of the physical principle of operation of this so-called "Acoustic Atomiser" 

later in this introductory chapter.  A prototype device was also developed for and tested 

in a production spray dryer as early as 1992, but due to restructuring in ICI, 

development ceased and the atomiser was unexploited for several years.  The author 

was initially part of, and from 2000 supervised, a small team that resumed development 

of the Acoustic Atomiser for spray drying.  An immediately apparent benefit of the 

atomiser, and the primary commercial incentive to resume development, was the ability 

to make large particles (hundreds of microns diameter) directly in a single step in an 

existing spray dryer, and hence dispense with the need for a subsequent granulation 

step.  The commercial research project had two aspects; firstly the mechanical 

development of the atomiser from a chemical products prototype into production 

equipment for food products, and secondly the manufacture of pilot scale quantities of 

demonstration products.  However, in both these aspects, progress was frustrated by a 

lack of theoretical development pertaining to the use of this atomisation technology in a 

spray dryer.  In particular, for the film forming hydrocolloids that were the primary 

commercial opportunity, the existing in-house spray drying computational model was 

unable to predict successfully what particle size could be made in the pilot spray dryer.  

The development of the computational process model was beyond the scope of the 

commercial research project, but clearly of benefit to the commercial exploitation of the 

atomisation technology.  Hence the project has been undertaken as a part-time doctoral 

research project, sponsored by ICI, the author's full-time employers. 
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This thesis uses results from experiments at ICI, often performed by others working 

under my direction.  The methodology, analysis, interpretation and conclusions from 

these experimental results that are reported in this thesis are my own unaided work. 

Whilst the particular focus of this research project was the effects on the spray drying 

process of employing the novel ICI design Acoustic Atomiser, the resultant discoveries 

are not peculiar to that special case.  The use of the Stable distribution as a physically 

meaningful model for spray droplet size, and also the link between extensional rheology 

and sprayability, are both especially deserving of further studies of their wider 

relevance.  Whilst most spray-dried products have fine particle size, large particle spray 

drying is especially relevant also to detergent manufacture (Huntington, 2004), and in 

drying of fly ash from wet scrubbers on incinerator exhausts (Tanno et al., 1988).  The 

demand from industry for a predictive spray drying model is demonstrated not only by 

the sponsors of this project, but also by the funding for other spray dryer modelling 

programmes, for example by the European Union (Bayer AG et al.), by the Australian 

Dairy Research and Development Corporation (Fletcher et al., 2006), and by Unilever 

(Kievet et al., 1997).  Other significant research programmes are in progress in 

Strumillo and Pakowski’s group at the Technical University of Lodz, Poland (Zbicinski 

and Li, 2002), and in Chen’s group at the University of Auckland, New Zealand (Chen, 

2002). 

This introductory chapter proceeds with an overview of the relevant science and process 

technology of spray drying, followed by an outline of this thesis and the contribution it 

makes to the field. 

1.1 Fundamentals of drying 

Drying is the partial or complete removal of a solvent from a material to give a dried 

product.  It is differentiated from concentration or evaporation processes, which 

partially remove solvent to form a concentrated liquid product. 

Drying is most frequently encountered as the removal of liquid solvent by volatilisation, 

leaving lower volatility materials as a solid phase.  This is not a necessary condition.  In 

freeze drying, the pressure and temperature are maintained below the triple point of 

water, and solid water is sublimed.  In osmotic dehydration, liquid solvent diffuses 
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down a concentration gradient from the feed material discrete phase to the immiscible 

continuous phase.  However, spray drying is an instance of convective drying, the 

largest class of driers (by production tonnage and research activity) (Keey, 1972, 

Mujumdar, 2004).  These depend upon a temperature gradient to drive convective heat 

transfer from the gas phase to the material to be dried, which provides the energy input 

for a phase change of the solvent from liquid to gas, coupled to a humidity 

(concentration) gradient which drives the evaporation of water from the material to the 

continuous gas phase.  Both the temperature and solvent concentration gradients are 

required for commercially relevant drying rates.  If the gas were saturated with solvent, 

no drying would take place; the heat transferred to the material would cause a 

temperature rise (and for a finite extent of gas, cool the gas, causing supersaturation and 

condensation).  If there were no temperature gradient, the concentration gradient would 

drive drying, with concurrent fall in temperature of the solid, but the rate of mass 

transfer would normally be uneconomically low. 

Whilst there is no general constraint on the solvent that is evaporated in the spray drying 

process, it is generally only the pharmaceutical industry that practices organic solvent 

spray drying.  Water is the most frequently encountered solvent (Mujumdar, 1995, 

Nonhebel and Moss, 1971), it has no toxicity or fire hazards associated with 

experimentation, and a large body of literature exists with which to compare methods 

and results.  Hence this study is limited to water.   

The progress of drying may be divided into a number of regions characterised by the 

mechanism by which the water is bound to the solvated material (Keey, 1972).  

Typically, much of the water to be removed from a material is thermodynamically 

‘free’, i.e. no lowering of the vapour pressure above the liquid; removal of this water is 

normally termed ‘primary drying’.  Secondary drying is the removal of capillary water.  

Tertiary drying refers to the removal of physically bound water, for example in gels or 

by adsorption.  Quaternary drying is the removal of chemically attached moisture – 

water of hydration or crystallisation.  The stages of drying are characterised by 

increased energy for water bonding.  Transitions between the stages can be observed in 

a sample dried in controlled conditions, as a decrease in drying rate and also in 

convective drying as changes in the rate of decrease of temperature difference between 

the sample and the drying gas. 



Chapter 1 - Introduction 

 

 6  

If a dried material is allowed to equilibrate with a humid gas, the moisture content of the 

solid will reach an ‘equilibrium moisture content’.  This clearly consists of tertiary and 

quaternary bound water, but also of some water in very fine pores, that is, some 

secondary water.  It is only part of the secondary water, as shown by the comparison 

between known porosities of materials and their equilibrium moisture content (Luikov, 

1967).  The concept of the equilibrium moisture content is important in dryer modelling, 

as during the latter stages of drying, the evaporative flux can be described as a function 

of the approach to the equilibrium moisture content of the moisture content in the 

material.  The equilibrium moisture content is by definition not a fixed value but a 

sorption isotherm, where the equilibrium moisture content is a function of relative 

humidity, and a weaker function of temperature.  In practice in industrial equipment, the 

relative humidity of the drying gas is very low, and there is typically not a close 

approach to equilibrium moisture content in a spray dryer due to the limited residence 

time.  Since the equilibrium moisture content isotherm is only a weak function of 

temperature, the equilibrium moisture content is often measured at ambient conditions 

and treated as if it were a constant value. 

In general, it is normal to remove only the primary and part of the secondary water in 

industrial drying operations.  For biologically active materials, this is normally 

sufficient to reduce the water activity to such a low level that microbial growth is 

acceptably slow.  Tertiary and quaternary drying would normally cause irreversible 

structural change to the solute, and this is frequently undesirable.  Removal of tertiary 

and quaternary water requires both long residence times, hence increased capital cost, 

and high energy input, hence increased variable costs.  Finally, dried materials will tend 

towards equilibrium moisture content on storage, so unless they are stored under 

dehumidified atmospheres, it would be pointless removing moisture below the 

equilibrium moisture content during processing. 

1.2 Drying of a single droplet 

1.2.1 Classical description of single droplet drying 

During the drying of a single droplet clear regions can be characterised by the rate of 

change of moisture loss, as well as by the quantity of water loss described above.  An 

initial constant rate period can be observed, followed by a decreasing rate (Ranz and 
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Marshall, 1952a).  It is tempting but erroneous to equate this to the transition between 

the loss of primary and secondary water described previously; the distinction is between 

a kinetic and a thermodynamic effect.  Classical drying theory is that this transition is 

between heat transfer limited drying and mass transfer limited drying. 

In the initial, constant rate period, heat transfer to the droplet is balanced by mass 

transfer from the droplet.  In the constant rate period, the droplet surface is saturated and 

the droplet remains at constant temperature: the wet bulb temperature, by definition.  

This gives rise to a very non-intuitive phenomenon in the spray drying process.  As 

spray dryers are typically very thermally inefficient (Baker and McKenzie, 2005), and 

also because it reduces feed viscosity and atomiser blockages, it is common industrial 

practice to preheat the liquid feed to the spray dryer (Masters, 1991, ETSU, 1996).  The 

degree of preheating is limited by boiling point and thermal stability of the liquid, but 

the liquid feed temperature will frequently be greater than the wet bulb temperature.  In 

these cases, when the liquid feed is sprayed into the spray drying chamber, the droplet 

temperature initially decreases to the wet bulb temperature, even though the liquid 

droplet is in contact with air at a much higher temperature.  It is well established that 

excessive heat can reduce product quality, for example nutritional quality of milk 

products (Straatsma et al., 1999b, Schuck, 2002).  The initial evaporative cooling of the 

droplet, together with the rapid drop in the drying gas temperature with the initial surge 

in evaporation, help to prevent heat degradation of the particles. 

As the drying progresses, the non-volatile components of the liquid droplet become 

more concentrated at the evaporating surface.  Eventually the concentration reaches a 

critical threshold, the 'critical moisture content', where the limit to evaporation rate is no 

longer the rate at which heat can be transferred to the drop, but the rate at which solvent 

from the droplet interior can diffuse or convect to the droplet surface.  In the classical 

description of the drying of an inorganic particulate slurry drop, the critical moisture 

content is the point at which the droplet surface has dried to a crust, following which 

there is a receding front of moisture into the particle.  Drying proceeds at a lower rate 

than when the droplet surface was saturated.  The rate progressively decreases as the 

crust thickens and the diffusion resistance increases - the ‘falling rate period’.  It is only 

for infinitely slow drying that the transition between the constant and falling rate 

periods equates to the transition between primary and secondary water loss: this 
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condition would be physically manifest as instantaneous crust formation throughout the 

droplet.  The critical moisture content of a droplet always occurs during primary drying. 

The critical moisture content is not a constant – it will vary with the initial drying rate 

(air temperature and velocity) and the material thickness.  When the product of the 

initial evaporative flux and the thickness is plotted against the ratio of the critical 

moisture content to the initial moisture flux a ‘critical point curve’ is obtained (Keey, 

1972).  Actual drying curves tend towards the critical point curve as a function of the 

mass transfer Biot number (Eqn. 1-1): the critical point curve would be the actual drying 

curve for an infinitely thick material.  For large 100Bim > , the difference is small, and 

the assumption is made that the plot of the drying rate relative to that in the constant rate 

period against the moisture content relative to the critical moisture content is 

characteristic of a material – a ‘characteristic drying curve’, which can be used to 

extrapolate drying data from one set of conditions to another (Suzuki et al., 1977).  It is 

normally a reasonable assumption in spray drying that Bim is large, especially in the 

internal mass transfer limited latter stages of drying.  Hence the 'characteristic drying 

curve' approach is valid.  Nešić and Vodnik (1991) consider the case where there is 

internal circulation within the droplet.  This might be supposed to significantly increase 

the internal mass transfer, hence reduce Bim and jeopardise the characteristic drying 

curve approach.  However, they decide that continued mass transfer limitation 

assumption is valid for a circulating drop, with estimated error no greater than 2% 

(although it is not clear how they quantified this estimate). 

The Biot number is defined to be the ratio of either the mass or heat transfer resistance 

within a body to that at the surface; 

      Biot number (mass transfer)    

      Biot number (heat transfer) 
k

hd
Bih ≡   

after Hall (1992), where km and h are the surface mass and heat transfer coefficients 

respectively, D is the mass diffusivity at the interface, k is the thermal conductivity of 

the body, and d is a characteristic dimension, typically taken to be the droplet diameter 

in the spray drying context. 

Eqn. 1-1 

Eqn. 1-2 

D

dk
Bi m

m ≡
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The spray drying literature infrequently explicitly states whether Bim or Bih is intended, 

which can lead to confusion as, in contrast to the mass transfer case it is normally a 

reasonable assumption that the heat transfer Biot number is small, i.e. the thermal 

resistance of the drop is small compared with the surrounding air.  Small Bih is 

frequently used in the spray drying modelling literature as the quantitative justification 

for an assumption that the droplet temperature is uniform - for example 2.0Bih =  in 

Cheong et. al. (1986).  Uniform temperature is consistent with experimental data from 

the earliest studies: Ranz and Marshall (1952a) checked that the position of the 

thermocouple junction within the drop had no effect on the indicated temperature.  

Strictly, small Bih simply quantifies that the heat transfer is externally rather than 

internally limited.  The measure works in practice in this context as an index of 

homochronism because Bim is so much larger than Bih: the internal temperature 

equilibrates on a much faster timescale than that characterising the mass transfer.  In 

principle, the speed with which a body responds to changes in surface temperature can 

be quantified directly using the Fourier number for heat transfer.  This is defined (Eqn. 

1-3) as the ratio of the product of the thermal diffusivity κ and a characteristic time τ to 

the square of a characteristic thickness d, where κ===k/ρ.Cp and ρ and Cp are 

respectively the density and specific heat capacity of the body (Hall, 1992). 

 
22h d.Cp.

k

d
Fo

ρ

τ
=

κτ
≡   

However, Tanno et al. (1988) is the only instance in the spray drying literature where 

the Fourier number is used in the experimental data analysis.  Although uniform droplet 

temperature has normally been assumed, Patel et al. (2005) have critically reviewed the 

assumption, and Farid (2003) has shown that better agreement with experimental data is 

obtained from a droplet drying model which properly accounts for temperature 

gradients within the droplet. 

The classical description of droplet drying has most clearly been illustrated by a five 

stage model (Dolinski and Ivanicki, 1984 (in Russian), cited in Nešić and Vodnik, 1991, 

Dolinsky, 2001).  The first two stages occur during the constant-rate or low-temperature 

period, the latter three during the falling rate or high temperature period.  In the first 

stage, the temperature of the droplet changes from the initial to the equilibrium 

temperature, close to the wet-bulb temperature.  The second stage is quasi-equilibrium 

Eqn. 1-3 
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evaporation, analogous to the equilibrium evaporation of a pure liquid.  The droplet 

temperature is slightly greater than the wet bulb temperature, and increases gradually as 

solid accretes at the droplet surface, with commensurate reduction in surface vapour 

partial pressure and evaporation rate, and increase in heat transferred to droplet heating 

rather than evaporation.  The third stage is crust formation and growth, when the 
surface solids concentration exceeds a critical value and the solid separates out by 
crystallisation or agglomeration as a crust.  The resistance to mass transfer increases 

more than resistance to heat transfer, so proportionally greater heat is transferred into 

raising the droplet temperature rapidly.  The evaporation rate in this third stage is 

primarily controlled by water permeability through the crust.  The fourth stage deviates 

from the simplest classical descriptions.  Boiling only occurs when the air temperature 

is greater than the solvent boiling point.  The internal vapour pressure rises, and, 

depending on the permeability and mechanical properties of the crust, the particle may 

relieve the pressure by cracking, inflating, or explosion and disintegration.  At the end 

of the fourth stage, all the free liquid has evaporated.  The fifth stage, porous particle 

drying, is secondary drying, at ever decreasing rate and asymptotic approach of the 

particle to the gas temperature.  

1.2.2 Deviation from the classical description 

In a film forming material, as with the crust forming material, a critical moisture content 

can be defined at which the droplet surface de-saturates and the drying rate decreases, 

but in contrast to that case, the film is unlikely to be "dry".  In latices, formation of a 

close packed array from the original colloidal suspension is followed by deformation of 

the particles (and hence decreasing bore of the capillaries transporting water to the 

droplet surface) and finally migration of polymer between particles to form the surface 

film (Routh and Russel, 1998).  During drying, starch molecules form a three-

dimensional matrix, forming cavities which trap water molecules and restrict diffusion 

(McMinn and Magee, 1996). 

Whilst film formation undesirably inhibits the water diffusion rate to some extent, it is 

key to the widespread industrial use of starches in spray-dried encapsulation matrices 

(Ré, 1998).  The well established "Selective Diffusion Theory", developed by many 

authors from the original work of Rulkens and Thijssen (1972), postulates that as the 

film dries out, the diffusion coefficients of volatile compounds reduce at a greater rate 
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than the diffusion coefficient of water through the film.  Consequently the film becomes 

progressively less permeable to the encapsulated components whilst still permitting 

water vapour transport, albeit hindered.  To ensure high total retention of the 

encapsulated components, the film should dry to this state of selective permeability as 

rapidly as possible (Kieckbusch and King, 1980, Etzel and King, 1984, Hassan and 

Mumford, 1996, Hecht, 1999, Flores-Martínez et al., 2004).  A dispersed oil phase 

sequesters organic volatile compounds (Zakarian and King, 1982), and hence the 

archetypal industrial spray-dried encapsulation strategy is to emulsify an oil containing 

flavour or fragrance compounds, into an aqueous carbohydrate dispersion, where the 

carbohydrates have been modified in order to provide chemical functionality which both 

stabilises the oil emulsion drops before drying, and also promotes rapid film formation 

when the emulsion is sprayed into the drying chamber. 

In an ideal crust forming material, the final particle diameter is set by the formation of 

that rigid crust, and further evaporation leads to internal voids.  In contrast, due to 

plasticisation by moisture a hydrocolloid film may not be rigid until a very low water 

activity has been achieved (Roos, 2002, Vuataz, 2002).  Hence the final shape and size 

of a film forming particle may not be set until a very late stage in the drying, and 

significant morphological changes can and do occur, as described in Chapter 2.  Due to 

the morphological changes, the surface area for mass transfer will vary through the 

drying, and hence Perré and May (2001) propose that it would be more appropriate to 

term the characteristic drying periods as constant and falling flux rather than rate. 

1.3 The spray drying process 

Whilst the earliest detailed description of spray drying is dated 1872 (Percy, cited in 

Masters, 1991), there is no evidence of the process finding widespread commercial 

application until the 1920s.  Although many modifications have been made to the 

implementation of the process since that time, these have been evolutionary and the 

process is generally considered to be mature technology (Masters, 2004).  Typical 

modifications to the basic layout are the addition of a fluidised bed to the product 

stream, to increase particle residence time and energy efficiency, and various 

configurations of cyclones and filters for product collection, and the separation and 

recycling of fines (Písecký, 1983, Masters, 1991). 
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Co-current gas/particle contact is most frequently encountered, where both gas and 

liquid are introduced at the top of the chamber and exhausted at the base.  Counter-

current operation with liquid introduced at the top and the gas introduced at the base is 

less frequently encountered, as it is only suitable where the droplets are large enough 

not to be fluidised and the product is heat insensitive, so that the contact of the hottest 

gas onto the driest particles does not degrade the product.  Typical applications are in 

the processing of detergents and ceramics.  Many recent spray dryers would more 

accurately be called mixed flow, where either the gas is introduced co-currently with the 

droplets at the top of the chamber, but exhausted from various locations, or alternatively 

(less frequently) where the liquid is introduced upwards near the base of the chamber in 

a fountain.  In terms of modelling, the physics of droplet drying and gas-particle 

interaction are the same regardless of the dryer configuration, but the airflow modelling 

becomes increasingly complex.  This study is limited to the simplest and most 

widespread case, where the gas and liquid flow co-current downwards. 

Spray dryers are not thermally efficient.  Since they are typically employed for heat 

sensitive products, gas inlet temperatures are moderate, often around 200°C.  In order to 

maintain a reasonable driving force for drying in the short residence time, a close 

approach to ambient temperature is not possible, and a typical gas exit temperature is in 

the region 80-110°C.  Theoretical efficiency is thus typically only in the region 50-70%.  

Actual efficiencies achieved are even lower; an average of 46% thermal efficiency was 

reported across all dryers in a UK study (Baker and McKenzie, 2005). 

Whilst liquid feed may be a solution, suspension, dispersion, emulsion, slurry or paste, 

the limitations are that it must be both pumpable and dispersible into small droplets by 

some form of atomisation process. 

1.4 Atomisers for spray dryers and droplet size distributions 

Atomisers in spray dryers are normally either pressure nozzles, two-fluid nozzles, or 

rotary atomisers (Masters, 1991).  The descriptions given below are précis of a variety 

of sources, principally Lefebvre (1989) and Bayvel and Orzechowski (1993). 

If a liquid is sprayed sufficiently fast through a nozzle into a gas, turbulent eddies in the 

liquid, and turbulence generated by the friction at the interface between the liquid and 
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the gas, quickly lead to the disintegration of the liquid into droplets.  This effect is 

exploited in pressure nozzle atomisers. 

In two-fluid (or air-blast) nozzle atomisers, an additional stream of high velocity gas is 

used to enhance the atomisation effect; the shear at the liquid-gas interface generates 

surface instabilities on the liquid that tear it apart.  This means that the liquid can be 

atomised at a lower pressure drop across the nozzle than using liquid pressure alone, 

and a finer dispersion can be created.  The atomisation air is normally unheated, so two-

fluid nozzles reduce the efficiency of the spray dryer. 

In both pressure and two-fluid nozzles, fluid pressure is the energy source to create the 

surface energy of the droplets.  In rotary atomisers, mechanical energy is used to rotate 

a disc at high speed (10,000.-.30,000.rpm), creating a very high shear rate at the 

periphery of the disc and hence liquid surface instabilities that cause the liquid to 

disintegrate into droplets.  Rotary atomisers are the most common type in spray dryers, 

because they are hard to block up, require low feed pressure, and the mean size can be 

readily controlled by varying the rotation speed.  However, they have the complexity, 

hazards, and relatively high cost that are associated with high speed rotary machinery. 

In all these atomisers that are conventionally used in spray dryers, a wide distribution of 

droplet sizes are created.  It is not yet possible to calculate the droplet size distribution 

explicitly from first principles (Mandal et al., 2008), but indicatively, the two fluid 

nozzle is likely to give the widest distribution and the pressure nozzle the least wide 

(Walzel, 1990).  This is so much determined by the geometry of the nozzle and 

operating parameters (pressure, feed rate, feed viscosity, etc.) that it would be unwise to 

draw this as a firm general conclusion, however. 

1.4.1 The impact on the spray drying process of droplet size distribution 

The smallest drops in the size distribution form dust, which must be separated from the 

spray dryer airflow before the air can be exhausted to atmosphere.  In extreme cases, the 

dust must be discarded as waste, but it is normal to try to recover it in some way.  

Sometimes the dust is directly harvested as product.  This tends to reduce flowability, 

and dust around or below 10µm is respirable, so the personal protection equipment 

required - especially with the encapsulation of biologically active materials - makes the 
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powder more difficult to handle.  The dust may be recycled back into the feedstock, or 

into the atomisation zone, as nuclei to promote agglomeration within the spray dryer.  

Dust increases the explosion risk; the finest dusts are the most sensitive to ignition due 

to their very high specific surface area.  When dust explosions occur in spray drying 

plant, they are most frequently initiated in the dust collection systems (bag filters and 

cyclones), where the dust is both most concentrated, and also driest, due to long 

residence time in contact with hot gas. 

The largest droplets in the size distribution have the largest terminal velocity, so have 

the least residence time in the spray dryer.  However, the largest droplets also require 

the longest residence time to dry or solidify.  A spray dryer must be made sufficiently 

large to have residence time large enough to solidify these largest drops, otherwise they 

will be deposited on the inside surfaces of the chamber, especially at the base.  Not only 

are chamber deposits inefficient loss of product, they also increase fire and explosion 

risk, limit the on-line time between cleanouts, and make cleaning more arduous.  Since 

the spray dryer must be sized to solidify the largest droplets, the majority of droplets 

have a residence time much larger than is required for solidification.  In spray drying, 

the sensible heat of the dry particle is normally tiny compared with the latent heat of the 

evaporation of water, so the effect of increased residence time is to heat up the dry 

particle significantly, risking the very heat degradation which is intended to be avoided 

by the short spray dryer residence time.  In practice, a balance is struck (even if it is not 

articulated explicitly by plant operators), averaging out the final moisture content and 

heat degradation across the size distribution.  Whilst acceptable products have been 

made for many years in this way, there is potential for improved products and enhanced 

process efficiency. 

1.4.2 The Acoustic Atomiser 

The ICI Acoustic Atomiser exploits the Raleigh jet instability in order to produce a 

stream of droplets which are all of substantially the same size.  The jet instability is 

named after the physicist Lord Rayleigh, who laid the theoretical foundations of the 

phenomena  (Rayleigh, 1878, 1879).   

A jet of liquid in air is always unstable.  It is easy to imagine how turbulent eddies in 

high velocity liquid jets lead to instability, but breakup to droplets occurs even when a 
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jet of liquid is run sufficiently slowly that it is in varicose laminar flow, and the jet 

remains initially coherent, as a smooth parallel sided cylinder of liquid.  The interaction 

of gravitational forces on the jet and interfacial tension of the liquid jet with the air 

eventually leads to its disintegration into droplets, with non-uniform sizes (although the 

size distribution from this uncontrolled laminar jet breakup is still narrower than from 

nozzle or rotary atomisers).  

If the varicose jet is vibrated at its natural (resonant) frequency, surface waves at this 

frequency are propagated along the jet, increasing in amplitude until they neck off 

uniform sized droplets from the jet.  The principle is shown in Figure 3, together with 

an image taken using strobe lighting of the shower of uniform droplets created from an 

array of multiple jets. 
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Figure 3: resonant breakup of laminar jets (Fanny Briand, ICI) 

The acoustic wave is not the energy source for atomisation.  The energy source is 

pressure - the Acoustic Atomiser is by category a type of pressure atomiser, albeit with 

a multiple orifice sprayplate rather than a single nozzle orifice.  The acoustic wave is 

simply conditioning the size distribution of the atomisation.  Because it is a resonance 

phenomenon, the natural amplification inherent to the system is exploited, and only a 

small initial perturbation is required. 
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This resonant effect can only be seen for relatively low velocity jets.  At higher velocity, 

turbulent eddies in the liquid damp out the resonance effect.  This has the unfortunate 

consequence that the flowrate of a single jet must be rather low, and many jets are 

required in order to obtain commercially useful flowrates - from a few hundred to a few 

thousand.  Additionally, vibration is normally undesirable in mechanical equipment: it 

can lead to premature failure, e.g. by shaking apart fixings such as screws.  The 

oscillator electronics are destroyed by high temperatures, so in spray drying, they must 

be protected from the hot drying air.  The sprayplate orifices must be no greater than 

half the desired droplet diameter - and this diameter ratio increases as the feed viscosity 

increases.  Hence in the spray drying case, the orifices are rather small, typically 120 -

200µm diameter in experiments at ICI Wilton, and must be protected from blockage by 

guard filters.  The many practical complexities have limited the use of this atomiser type 

to academic investigations and niche applications.  However, the difficulties were 

overcome in two ICI designs for large scale spray processing (Oliver and Lloyd-Jones, 

1993, Oliver et al., 1994).  Although patented and hence notionally in the public 

domain, these devices were not publicised.  When ICI were operating the atomiser in a 

number of spray-cooling plants at between 60 and 80.te/hr, and running trials in a 

1.te/hr evaporative capacity spray dryer, a paper in a mainstream journal claimed to 

have overcome some of the practical limitations of size and production rate with a 

27.litres/hour device (Hunik and Tramper, 1993).  A few years' later it was still claimed 

that industrial scale rates (by which was meant just 10_- 1000.kg/hr) had not been 

reached (Brenn et al., 1997).  Even a recent paper discusses issues thought still to be 

overcome before drop generator atomisers could be scaled up to order litres per hour 

flowrate in a spray dryer, although this was for very small droplets, where the 

difficulties of small orifice size and low flowrate per nozzle are most severe (Wu et al., 

2007). 

Atomisers using the Rayleigh jet instability principle to produce narrow droplet size 

distributions were used in some of the studies described in Chapter 3 where free-falling 

droplets were used to measure drying kinetics.  However, narrow "drop tubes" were 

used, rather than conventional spray dryers, and the atomiser was used simply as a 

stratagem to remove the complication of droplet size distribution from the experiments. 

Since the atomisation method has not been used for larger scale spray drying outside 

ICI, it is unsurprising that the effects of using a Rayleigh jet instability atomiser on the 
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process and products of spray drying has not been systematically studied and reported in 

the literature.  Fiannaca and Threlfall-Holmes (2005) and Threlfall-Holmes (2008) 

contain phenomenological reports of the differences in powder product made using the 

Acoustic Atomiser.  The research reported in this thesis provided the models which 

were used both to predict process performance and also to gain a theoretical 

understanding of how and why the powder product obtained with the Acoustic Atomiser 

was so different to conventional spray-dried powder. 

1.5 Outline of this thesis 

The structure of the argument in this thesis is depicted in Figure 4 and described below. 

The field of spray dryer modelling is reviewed in Chapter 2.  Computational Fluid 

Dynamics (CFD) models have been demonstrated to be an exceedingly useful tool for 

analysing and predicting spray dryer performance, at least for typical spray dryers with 

small droplets in the range 50.-.100µm mean diameter, where the air residence time 

distribution and temperature distribution are more significant than the drying kinetics.  

Indeed, Zbicinski and Li (2002) claim to have experimentally validated that droplet 

drying kinetics are irrelevant.  The wider literature shows that in contrast to this claim, 

droplet drying kinetics are expected to be not only significant, but dominant when 

drying large droplets of film forming materials. 

The corollaries of that conclusion are first a significant and welcome simplification that 

a process model need not be overly concerned with the complexities of the air flow, but 

unfortunately also that the error in model predictions is dominated by the error in the 

droplet drying kinetics.  These could not be measured with sufficient accuracy by an 

existing device.  Methods for determining droplet drying kinetics are reviewed in 

Chapter 3, in order to identify the most satisfactory technique for an improved device. 

In Chapter 4, the design is described of a droplet drying kinetics measurement apparatus 

using an electronic ultramicrobalance to determine rate of weight loss of a single 

droplet.  The combination of operating range, precision and accuracy of the apparatus 

design would greatly exceed other devices reported in the literature.  
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Figure 4: flow diagram of the structure of the thesis 
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Pending completion of the new droplet drying kinetics apparatus, it was necessary to 

find an alternative modelling strategy in order to predict spray drying performance when 

using the Acoustic Atomiser.  The inspiration for a suitable alternative was the 

experimental observation that the large droplets from the Acoustic Atomiser appeared to 

be falling in plug flow.  In Chapter 6 it is shown that simple manipulation of droplet 

size distributions is a powerful model to predict the change in performance of a spray 

dryer when an Acoustic Atomiser is used in place of a rotary atomiser.  The analysis has 

not been reported by others. 

The analysis in Chapter 6 relies upon the manipulation of atomiser droplet size 

distribution functions.  However, the Acoustic Atomiser is novel, and there are no 

independent published sources of its droplet size distribution.  In Chapter 5, the droplet 

size distribution is established, using the 40 size distributions from the 180 experiments 

conducted in the pilot spray dryer at ICI Wilton over the duration of the project, 

together with historical data from production scale prilling and a selection of laboratory 

liquid jet experiments.  Surprisingly, it was found that the distribution functions 

commonly used for sprays are not a good representation of the droplet size distribution 

from the Acoustic Atomiser.  The novel findings reported are not only that the Stable 

distribution appears to be numerically a good model for the droplet size data from the 

Acoustic Atomiser, but unusually for a sprays size distribution function, there are 

indications of some underlying scientific rationale to the values of the parameters of the 

distribution. 

Despite the indications that the Stable distribution is in some sense the correct model for 

the size distribution from the Acoustic Atomiser, care has been taken to ensure that the 

results of the analysis in Chapter 6 are not contingent upon that novel choice of 

distribution function.  It is shown that the conclusions are substantially unaltered when 

the log-normal distribution is used instead. 

The analysis in Chapter 6 demonstrates that the atomiser performance is critical to the 

spray drying process.  However, the vast majority of the modelling effort in the 

literature reviewed in Chapter 2 is devoted to the fluid flows and heat and mass transfer 

within the spray drying chamber.  The atomisation is normally excluded from spray 

dryer models.  An assumption of sprayability is made, with point sources of liquid 

droplets appearing as an input to the model.  In operational practice, however, liquid 
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feedstocks are often dewatered to the rheological limit of sprayability, both to minimise 

energy consumption and to ensure that an encapsulation film forms most rapidly on the 

droplet surface.  The limit is empirically determined by spray trials; there are currently 

no robust predictive rules to determine sprayability from rheological measurements.  

The review in Chapter 7 identifies that the Capillary Breakup Extensional Rheometry 

(CaBER) technique is potentially applicable to this problem. 

The CaBER technique is not yet mature, and only a handful of rheological model fluid 

cases with which to interpret the instrument data have so far been reported.  The 

consequence of dewatering so close to the limit of sprayability is that commercial spray 

dryer liquid feedstocks exhibit rheology of greater complexity than can well be 

represented by model fluids.  Chapter 8 describes the analysis technique development 

that has been undertaken in order to analyse fluids of arbitrary complexity.  Stepwise 

differentiation of the CaBER instrument data has been used to make a transformation of 

the raw data into a measure of transient apparent extensional viscosity. 

The analysis methodology developed in Chapter 8 is novel.  The method is exemplified 

by an experimental study which is reported in Chapter 9.  The fluids used for the study 

are used commercially for flat-fan coatings sprays, rather than spray dryer feedstocks, 

but this is unimportant to the demonstration of the method.  It matters only that the 

studied fluids exhibited a rheological response in the CaBER experiment that is 

sufficiently complex that it could not be interpreted using the rheological model fluid 

cases which have previously been published. 

Finally in Chapter 10 it is demonstrated how the measure of transient apparent 

extensional viscosity obtained from the developed CaBER technique can be used to 

predict quantitatively, sprayability from the Ohnesorge diagram.  This is a 

dimensionless chart which characterises regions of spray behaviour.  Two causes are 

expounded for why the Ohnesorge diagram has been neglected as a useful quantitative 

tool in sprays research.  Firstly, most references reproduce an incorrect transcription of 

the original diagram, so the regions of spray behaviour are incorrectly delineated.  

Secondly, shear viscosity data have previously been used in the dimensionless groups 

which plot onto the diagram, whereas extensional viscosity is shown using the data 

obtained from the study reported in Chapter 9 to be a more appropriate choice of 

parameter. 
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Chapter 11 provides a summary of the significant results obtained in this study.  

Recommendations are made in Chapter 12 for studies that would extend these findings. 

1.6 Important notes about treatment of sources 

It is customary in a doctoral thesis to place the entire literature review within a single 

chapter.  Such a structure is not well suited to this research, however.  Workers in the 

spray drying field have often turned their attention to a selection of aspects of the spray 

drying problem (e.g. evaporation rate, morphological development, retention of 

volatiles, droplet drag and trajectory, modelling, experiment) and their interconnection.  

In contrast, there is rather little intersection between rheologists and spray scientists, 

and even less between these and drying specialists.  Insightful studies are often found in 

related fields, for example in combustion or atmospheric science (vaporisation of fuel 

and water droplets respectively).  Furthermore, to review the breadth of subject matter 

at an appropriate depth, the number of literature sources reviewed would entail an 

excessively long single chapter.  A structure has instead been chosen so that the review 

follows thematically through the developing argument, avoiding apparently capricious 

jumps between threads of thought that could occur were the material forced into a 

monolithic literature review into a single chapter.  The literature review has been split 

into thematic sections, principally spread between Chapters 2, 3 and 7.  In those cases 

where authors have considered a number of relevant aspects of the problem in a single 

paper, it has been deconvoluted, and each aspect is reviewed separately in the relevant 

sections of the literature review. 

As in any human endeavour, progress has not necessarily been neatly chronological.  

Hence in each thematic sub-section of literature review, sources are normally ordered 

chronologically, but not strictly so to the detriment of obvious clustering by thematic 

concepts, or to the developing understanding generated by a progression of papers from 

a prolific research group. 
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CHAPTER 2 - REVIEW OF SPRAY DRYER MODELLING 

In this chapter, an overview of the spray dryer modelling literature is presented, and an 

assessment is made of the key factors to consider for the subject of the present study, 

large droplets of film forming materials. 

A pragmatic simplification of the physical reality in the overwhelming majority of the 

spray dryer models reported in the literature is to confine the model to the spray drying 

chamber itself.  Whilst the spray drying unit operation frequently has a fluidised bed 

coupled to the drying chamber outlet to remove residual moisture, and may have 

product or recycle streams of fines from cyclones, the whole system is simply too 

complex to model in detail as a whole.  Atomisation is normally considered to be a 

separate model.  A source of pre-formed droplets, potentially with diameter and/or 

momentum distributions, is a inlet boundary condition to the spray dryer model. 

Even when the model is confined to the spray drying chamber, there are a daunting 

number of physical processes occurring simultaneously in a real spray dryer.  There is a 

continuous phase gas flow and a discrete phase droplet/particle flow.  There is heat 

transfer from the gas to the droplets, and there is moisture transport both within the 

droplet, and from the droplet to the gas.  These processes all interact: single phase gas 

flow is different from two-phase flow of gas with inert particles, and different again 

when the gas is cooled and humidified by evaporating droplets.  The particles initially 

have a distribution of diameters, but as the drying progresses they develop additional 

distributions of moisture content and shape, and may also change size due to 

coalescence or breakage.  Sticky particles may form deposits on the chamber wall.  A 

comprehensive spray dryer computational model would require; equations of motion for 

both phases; energy balance equations accounting for interphase heat transfer and heat 

transfer from the gas to the environment through the chamber wall; moisture transport 

equations both within and external to the droplets, including some form of boundary 

layer concentration and temperature gradients model; a solid phase mechanical 

properties sub-model to account for developing drying stresses and hence 

morphological changes; and a phase equilibrium sub-model to determine stickiness and 

hence probability of wall or interparticle impacts leading to rebound or adhesion. 
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In practice it can be seen in the literature that no model presented is entirely 

comprehensive by the above definition.  However, it is possible to identify a trend 

towards more comprehensive models in the historical development of spray dryer 

modelling.  There is an association between model complexity and available computer 

power.  The complexity of description of the flows in the chamber progresses from 

simple one-dimensional steady plug flow, through two-dimensional axisymmetry to full 

three-dimensional, transient simulations.  There is also a trend in the number of 

processes considered, for example, it is only in recent years that wall deposition 

modelling has been reported (Fletcher et al., 2006).  These are only broad trends, 

however. Contemporaneously with three-dimensional simulations are studies 

implementing steady-state one-dimensional models (Negiz et al., 1995, Meerdink and 

van't Riet, 1995, Garcia and Ragazzo, 2000, cited in Palencia et al., 2002, Truong et al., 

2005, Chiou and Langrish, 2008) as well as studies considering the gas flow field as 

well-mixed (Birchal and Passos, 2005) and a series of well-mixed dryers (Palencia et 

al., 2002). 

2.1 Early spray dryer models 

Gluckert (1962) assumed that since the largest particles take the longest to dry, they 

limit the chamber performance, hence a calculation of the heat transfer rate to the 

largest particles would define the dryer limiting heat transfer rate.  The simple model 

showed good agreement with overall heat transfer rates measured in pilot spray dryer 

experiments.  Sjenitzer (1962) presented a simple graphical solution, although with 

oversimplistic assumptions of axial motion from rest, of monodisperse droplets which 

do not coalesce or break, in a co-current gas of constant velocity, with constant gas and 

liquid phase properties, at constant temperature difference between the gas and droplet.  

Dickinson and Marshall (1968) appears to be the first numerical solution with a droplet 

size distribution.  Hortig (1970) presents a method for approximate spray dryer sizing 

for particles greater than 100µm diameter, with a spread of trajectories based on the 

spray angle, using nomographs.  Miura and Ohtani (1980) assumed a 1-D model of the 

gas phase (no radial temperature or humidity gradients), but 2-D particle trajectories.  

Stein (1973) and Katta and Gauvin (1975, 1976) independently showed that simple 

differential equations of motion can be used successfully to calculate helical particle 

motion, a quarter of a century earlier than swirl was incorporated into CFD models.  

Truong et al. (1983) accounted for the effect of the jet of atomising air from a two-fluid 
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nozzle on the mixing of the spray with the drying air.  Flick et al. (1988) develop an 

explicit equation for the drying rate, using a series of assumptions to reduce differential 

equations to algebraic equations.  The model was not experimentally validated.  Some 

of the assumptions are only valid for the specific case studied, of milk in the early 

stages of drying. 

2.2 Spray dryer modelling using Computational Fluid Dynamics (CFD) 

The limited number of reported studies in spray dryer modelling in the last fifteen years 

have primarily focused on the implementation of CFD.  Whilst there is a sense in which 

any numerical model of a spray dryer is by definition computational fluid dynamics, the 

term CFD has come to mean specifically the technique whereby a complex physical 

volume - for example a spray drying chamber - is divided into a very large number of 

polyhedral cells.  The equations of motion are then solved numerically within each cell, 

and the model is iterated until the boundary conditions of each cell converge to within 

acceptance criteria.  Brief discussions of turbulence models and the treatment of the 

particle phase are pertinent to the comprehension of the literature.  

Turbulence occurs on a range of length scales, so either it must be solved on all length 

scales, a technique known as Direct Numerical Simulation, which is computationally 

exorbitantly expensive, or more normally a turbulence model is introduced as a closure 

for the Navier-Stokes equations of motion.  Large Eddy Simulation is one approach, 

where eddies large enough to be dependent on the flow geometry are explicitly 

simulated, but smaller scale eddies are considered to have a universal, self-similar 

characteristic, captured by an "eddy viscosity".  However, the turbulence model most 

frequently cited in spray dryer CFD models is the Reynolds-averaged Navier-Stokes 

equations.  This introduces "Reynolds-stress" terms, the equations for which must then 

be closed by some model.  Again the most frequently cited in spray dryer modelling is 

the k.-.ε closure for turbulent kinetic energy and dissipation, but there is an alternative 

Reynolds Stress Model where the transport equations for the Reynolds stresses are 

directly solved.  In general there is a trade-off in turbulence modelling between the 

speed of calculation and the accuracy of flow resolution.  Even using the k.-.ε model, 

weeks of CPU time may be required to converge spray dryer CFD models (see later), 

hence the predominance of this turbulence model in the literature over others which are 

even more computationally expensive. 
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The finite volume CFD method is most naturally a Eulerian reference frame for the 

continuous gas phase, that is, the grid of cells is a fixed reference frame through which 

the fluid flows.  The treatment of the discrete droplet/particle phase is a less clear cut 

choice.  The most intuitive and prevalent approach has been developed from Crowe's 

"particle-source-in-cell" model (Crowe et al., 1977), where the interactions between 

"packets" of droplets and the gas are solved in each individual cell, and the path of those 

packets is tracked through the dryer.  This is a Lagrangian reference frame: the volume 

mesh moves relative to the particle packet "observer".  Hence most spray dryer CFD 

models are described as Eulerian-Lagrangian in the literature.  However, Eulerian-

Eulerian models have also been explored and will be discussed later.  A single paper has 

proposed a Lagrangian-Lagrangian formulation (Salman and Soteriou, 2004), but this 

approach has not been adopted by others in the field. 

The reason for the timing of the introduction of CFD into spray dryer modelling is the 

increased capability of commercial CFD packages, initially in the ability to include 

dispersed phases into the models, which opened up the interest in their use in the spray 

drying field and led to the sort of results reported by Oakley (1997), and then within the 

last few years, the capability of modelling unsteady flows using transient three 

dimensional cases with very fine grids and Lagrangian tracking of large numbers of 

particles (Fletcher et al., 2006). 

The results from CFD studies have been exceedingly useful, in particular; confirmation 

of empirical dryer design rules for the importance of air swirl in promoting flow 

stability in spray dryers (Southwell and Langrish, 2000, 2001, Harvie et al., 2001), the 

confirmation of experimental evidence of unsteady flows, especially the precession of 

the axis of the core vortex induced by the inlet air swirl (Langrish et al., 1993, Stafford 

et al., 1997, Moor and King, 1998, Lebarbier et al., 2001), the design of the inlet air 

plenum (Southwell et al., 2001), the position and severity of wall deposition (Fletcher et 

al., 2006), and the prediction of agglomeration in the dryer (Verdurmen et al., 2004).  

CFD has been used to improve both the design of new spray dryers (Schwartzbach, 

2000) and also the performance of existing dryers (Straatsma et al., 1999a). Some 

counter-intuitive phenomena have been first predicted by CFD and subsequently 

experimentally validated.  Papadakis and King (1988a, b) reported that since the largest 

droplets were transported further radially, they experienced higher temperatures and 

dried in a shorter time than intermediate-sized droplets.  Nijdam et al. (2006) reported 
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that the smallest droplets evaporated even faster than expected, because they were found 

to disperse to the boundaries of the spray cloud where lower humidity air was drawn in, 

which increased the local driving force for evaporation. 

2.2.1 Limitations of CFD as a tool for modelling spray dryers 

The most significant disadvantage of the CFD approach to spray dryer modelling is the 

enormous computational effort involved in Lagrangian tracking of the tens of thousands 

of drops required to achieve adequate resolution of features.  In a case study of a CFD 

model of a real industrial dryer, two days of CPU time was required for each second of 

real time (Fletcher et al., 2006).  Total CPU time per run was six weeks, as such 

transient simulations must be run for some period of time for the droplets to have 

moved through the dryer and achieved some approach to a quasi-steady state.  Several 

runs were required for each optimisation.  It was estimated that computational speed 

would need to improve by five orders of magnitude for real-time simulations as on-line 

optimisers.  The extended run times are a direct consequence of the large number of 

particles tracked: the gas model uses a k.-.ε closure for turbulence, and even with a 

transient three dimensional simulation on a very fine grid that is stated to be required for 

resolution, a couple of days CPU time was sufficient to converge a "gas only" case.  

Elsewhere in their paper, Fletcher et al. (2006) question why drying simulation is not 

more used by industry, but they have already provided sufficient explanation.  Full 3-D 

transient CFD modelling using domain decomposition to permit parallel computation 

schemes is simply beyond the budget and patience if not the capability of operators.  

Schuck (2002) says that the spray dryer mathematical models reported in the literature 

have become too complex for manufacturers to put into use.  Langrish (2007) states that 

CFD modelling of spray dryers is sufficiently complex to require post-graduate training.  

Of course, provided that Moore's "law" continues to hold, and computer speed roughly 

doubles every eighteen months, the five orders of magnitude increase in speed will be 

achieved within a quarter of a century.  Until then, it would be useful to have an 

alternative modelling strategy. 

The alternative Eulerian-Eulerian approach where the gas and particle phases are treated 

as interpenetrating continua within the CFD model removes the requirement to keep 

track of tens of thousands of droplets.  However, this approach has its own difficulties –

not least the problem of modelling collision and coalescence of droplets (Nijdam et al., 
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2004).  The issue in essence is this.  An Eulerian phase is assigned to a droplet size 

range.  Collisions between droplets can be modelled by code controlling the interaction 

between two different phases-- for example assigning some fraction of the mass of two 

interacting phases to third and fourth phases representing larger and smaller droplet 

sizes, and hence the fraction of collisions that result in coalescence and breakage events.  

However, collisions between identical sized particles cannot be modelled successfully.  

The result of interaction of two fluid Eulerian phases is simply more of that phase.  The 

physical interpretation of such model behaviour is that a collision between two 

identically sized particles always results in a rebound rather than a coalescence or 

breakage event.  If a square matrix were to be written of the possible two-particle 

interactions between the droplet phases, the diagonal would be the like-sized particle 

interactions.  With two assumptions, the chance of any interaction in the matrix is 

equally probable.  The first assumption is that the phases (size classes) have been 

chosen so that the number of particles is evenly distributed between the phases, which is 

a reasonable choice for a modeller to make.  The second assumption is that the gas flow 

has not resulted in droplet size segregation between cells.  This is not true, but is good 

enough for this estimate.  Given that the chance of any interaction in the matrix is 

equally probable, the fraction of incorrectly modelled interaction events is simply the 

ratio of the length of the diagonal of the matrix to the total number of possible 

interaction, or n/n²===1/n for n phases.  So if there are 10 phases representing the size 

distribution, 10% of collisions are like-sized particle interactions which are incorrectly 

modelled, if there are 100 phases, a more acceptable 1% of collisions are incorrectly 

modelled.  Whilst this is still two orders of magnitude less phases to deal with than the 

tens of thousands of particles required for Lagrangian tracking, each additional Eulerian 

phase adds a complete set of momentum, mass and energy balance equations, so the 

reduction in computational load is not as great as might be anticipated. 

A further disadvantage of the Eulerian approach to modelling the droplets is that the 

tracking of the residence time history of individual particles is lost, so spatial averages 

only are considered (Fletcher et al., 2006).  This somewhat dilutes an important claimed 

advantage for the CFD models over simpler non-transient approaches which implicitly  

if not explicitly consider averages over time, and frequently averages over space also.  
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2.2.2 Drying kinetics in CFD models 

A final and important issue with the CFD studies published so far, is that a great deal 

more computational effort is expended in simulation of the air flow than in modelling 

the droplet drying kinetics.  In the majority of spray drying applications this is not an 

entirely unreasonable focus.  In the dairy industry, for example, small droplets typically 

in the range 50.-.100µm mean diameter are produced using a rotary atomiser.  The 

terminal velocity of such droplets is order 0.1m/s; of the same or lesser order than the 

superficial gas velocity of between 0.1 and 1 m/s in the drying chamber of typical 

industrial spray dryers.  Therefore it is a reasonable assumption that the droplets are 

fully relaxed to the air flow (i.e. they follow the air flow streamlines).  In this case the 

air residence time distribution and temperature distribution will be critical to the drying 

performance, and since the air flow is typically designed to promote recirculation zones 

(Schwartzbach, 2000), the airflow pattern may be exceedingly complex.  In such 

circumstances, CFD models have been demonstrated to be an exceedingly useful tool 

for analysing and predicting spray dryer performance.  It appears that the determination 

of residence time and temperature history of the droplets is more significant than the 

drying kinetics.  Indeed, Zbicinski and Li (2002) claim that they have experimentally 

validated that droplet drying kinetics are irrelevant in CFD spray dryer models.  On 

closer examination this result is only obtained because the liquid feed was very dilute 

(13% solutions of yeast) – for which case one would expect a material to dry very much 

as a water droplet and the drying kinetics not to have a measurable effect.  The claim is 

surprising not least because the same authors in a contemporaneous paper state that 

determination of drying kinetics is the key unsolved problem in spray drying (Zbicinski 

et al., 2002), and in a later paper that drying kinetics do matter in CFD models (Li and 

Zbicinski, 2005).  The claim is not supported by other literature: to take as example, "to 

improve the spray drying process one must examine drying kinetics" (Dolinsky, 2001).  

A more nuanced response is obtained from Fletcher et al. (2006).  With fine particles 

fully relaxed to the flow streamlines, and with unhindered or only moderately retarded 

drying rate by crust formation, most dryers can be considered to be effectively 

equilibrium limited devices, where the equilibrium is moisture and temperature between 

the exit gas and droplet phases (Ozmen and Langrish, 2003).  Where drying kinetics are 

significant, as in this study (see later) and also rare literature references (Ozman et al., 

1998, cited in Fletcher et al., 2006, Hecht and King, 2000b, Langrish et al., 2006, 

Langrish, 2007), the spray dryer is better considered as a rate limited device. 
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Langrish and Kockel (2001) demonstrated that the simple characteristic drying curve 

(CDC) model for drying kinetics worked acceptably in CFD models for the typical case 

of a dairy dryer producing small particles.  The CDC concept was introduced in section 

1.2.1.  It is an empirical concept which lumps together all drying phenomena without 

attempting to physically describe what is occurring.  Langrish et al. (1991) compared 

the CDC with a receding interface model, which is a physically based model of one 

mechanism of moisture transport.  The CDC was found to be more successful, which 

was hypothesised to be because a number of transport mechanisms operate 

simultaneously.  Fyhr and Kemp (1998) compared the CDC with a rigorous diffusion 

model.  They found that in most cases, the simple lumped CDC model gave as good 

predictions as the rigorous model.  The exception was the effect of humidity on the 

drying rate. 

Lin and Chen (2005, 2007) describe an alternative "reaction engineering approach" 

(REA), where it is assumed that evaporation has to overcome an activation energy 

barrier.  The new approach has been compared to the CDC (Chen and Lin, 2005, Patel 

and Chen, 2005).  The REA method has been devised to reduce computational 

complexity in CFD models, as it removes the need to calculate spatial concentration 

gradients within a droplet.  The REA method has most recently been extended to binary 

mixtures of non-volatile components, each of which has a different moisture desorption 

energy (Patel et al., 2009).   

Handscomb et al. (2009) comment that both the CDC and REA methods return only 

particle averaged properties, and more sophisticated droplet drying models are required 

to obtain spatially resolved information such as morphological changes that may occur 

as a result of drying.  The proposed alternative population balance sub-model for the 

droplet drying kinetics is discussed later.  Kraft (2007) has presented work in progress 

on incorporating this meso-scale model within an overall macro scale CFD model of 

spray dryer.  

2.3 The effect on drying rate of morphological development in droplets during 

spray drying 

In the classic description of the drying of a single droplet, during the constant rate 

period, the droplet shrinks as mass is lost at close to constant liquid density.  When the 
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crust forms at the critical moisture content, the particle diameter is fixed.  Since solvent 

continues to vaporise out of the particle, a void is formed at the core of the particle.  

Thus arises the archetypal cenospherical spray-dried particle. 

In practice, significant deviations from this ideal behaviour are normally observed. 

Walton (2004) recorded non-sphericity during drying even of a pure water drop, and 

even for materials which form classical capillary porous crusts, the crust may crack, 

giving a much lower resistance route for solvent evaporation than diffusion through the 

crust (Tanno et al., 1988).  For materials which form elastic films rather than capillary 

porous crusts, some very curious behaviour has been reported in the literature.  Once a 

surface film is formed, the rate of heat input to the droplet exceeds the rate at which 

solvent can be lost by vaporisation, so the droplet temperature rises.  It is then possible 

for the droplet internal vapour pressure to deform the surface film – giving rise to 

‘blowholes’ where a section of the film has ruptured, inflated droplets where the film 

has expanded and then dried through the glass transition temperature and solidified, and 

‘popcorn’ where weak sections of the film have inflated and solidified.  In addition, the 

film may remain elastic to very low moisture contents, resulting in ‘deflated soccer 

balls’ or ‘dried peas’ where the particle has collapsed on the internal void, or in some 

instances, a series of inflation-deflation cycles.  As Oteng-Attakora and Mumford 

(1994a) say with formidable understatement "depending on porosity of skin and or the 

rheological properties of the crust, subsequent evaporation may cause the particle to 

assume one of several forms". 

The morphological changes may be droplet size dependent.  The driving force for 

distortion is the internal vapour pressure, which is driven by heat transfer to the droplet 

through the surface, and hence increases with the square of the diameter.  The hoop 

stress of the surface crust or film resists distortion, but increases only linearly with the 

thickness of the layer and hence the particle diameter. 

There are various practical implications of the morphological developments of droplets 

during spray drying.  Of primary concern to this study is that the evaporation rate can be 

significantly altered, either due to change in surface area caused by droplet inflation and 

shrivelling, or because interior liquid becomes exposed.  However, product quality can 

also be affected.  Retention of volatile components may be reduced, especially if 

interior liquid is ejected through the particle shell (Verderber and King, 1992, Sunkel 
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and King, 1993, Hecht, 1999).  Variability in particle morphology has been reported 

even under tightly controlled processing conditions (Sunkel and King, 1993).  The 

physical properties of the bulk powder (bulk density, flowability, friability) are affected 

by the shape and size of the final particles.  Hence there is a spread of particle properties 

in a typical spray-dried powder product (Wu et al., 2007). 

It is well substantiated from careful reading of the literature that droplets of film 

forming materials are prone to extreme morphological changes during spray drying, that 

particle morphology is droplet size-dependent, and also that the droplet drying rate is 

greatly affected by various morphological developments.  Only a selection of 

particularly relevant studies is presented here.  Handscomb (2009) and Hecht (1999) 

both present good summaries of the field. 

Duffie and Marshall (1953a, b) appears to be the first systematic study of process 

variables on droplet morphology in spray-dried product.  Four mechanisms of hollow 

particle formation were postulated;  

1. formation of film causing puffing or ballooning of the particle 

2. rate of evaporation exceeding diffusion rate of salts back into the particle 

3. capillary action of the material on the drop surface drawing liquid and solids to 

the surface and creating sub-atmospheric pressure within the particle 

4. expansion of entrained air in the liquid feed 

The classic early treatise on spray-dried droplet morphology is Charlesworth and 

Marshall (1960).  Morphological changes were rationalised in terms of the relationship 

between the mechanical properties and porosity of the shell, and the internal vapour 

pressure.  It was noted that the changes in morphology could expose interior liquid. 

Trommelen and Crosby (1970) observed that droplets of various foodstuffs which were 

dried in air at or above 150°C did not exhibit any constant temperature period, and some 

were prone to undergo one or more cycles of inflation, rupture and collapse.  They also 

noticed that when milk droplets were dried in superheated steam, the skins were more 

elastic and pliable, and the degree of inflation was greater. 
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Büttiker (1981) found that drops of pure chalk dried to dense solid spheres, but 

increasing concentration of dissolved polymer changed the morphology progressively 

through "mushroom cap", cenospheres with opening, intact cenospheres, shrunken 

cenosphere, and burst cenosphere.  Progressive indentation to form mushroom caps was 

observed to occur slowly compared with the rapid collapse of the hollow spheres.  

Although he does not make this connection, the rate and shape transition from intact to 

shrunken (and then burst) cenospheres at high concentrations of polymer, is consistent 
with a transition from a rigid to a plastic shell.  Büttiker observed that the polymer 

concentration required for the transitions between the morphologies depended on the 

particle size: higher concentrations were required for any given transition for smaller 

particles.  He hypothesised that the indentation seen in the "mushroom cap" morphology 

was at the low pressure region in the wake of the free-falling particle - all the particles 

collected in oil were observed to have the indentation in the upper surface (it must be 

assumed that the oil was sufficiently viscous to prevent the particles rotating between 

impact and observation).  The distribution of the polymer in these dried "mushroom 

cap" particles was inferred from the extent of agglomeration of the chalk.  From the 

anisotropy in polymer distribution, he concluded that after the concave surface formed it 

was no longer involved in mass transfer, postulated to be due to inadequate convection 

in the indentation, so that the local atmosphere in the indentation became saturated.  

Such chemical imaging results have not been presented by others, but they are more 

than intriguing.  From Charlesworth and Marshall onwards, a common assumption of 

authors appears to be that when particles rupture the inner surface becomes active in 

mass transfer.  Büttiker's observation suggests that the assumption is erroneous, and 

Hecht and King (2000a) showed quantitatively that water vaporisation into the internal 

void was an insignificant fraction of the total evaporation rate. 

Greenwald and King (1981, 1982) observed that both the fraction of particles showing 

expansion and the amount of expansion increased with the air temperature.  At the 

highest temperature, some samples collected during drying had blowholes.  Ejection of 

droplet interior liquid from these blowholes was presumed to account for a similar 

fraction of contracted particles at the base of the dryer.  There was a clear droplet size 

dependence: smaller droplets expanded earlier, but in a lesser fraction of the particles.  

Considering a variety of possible mechanisms, they concluded that a two-stage 

mechanism for expansion is operative.  Voids did not occur if the feeds were degassed 

and the atomiser blanketed with steam, hence a single step nucleation of steam is not 
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credible.  In the first stage of expansion, air which has been absorbed either into the feed 

liquid or into the droplet immediately below the atomiser, is desorbed into a bubble.  

This desorption is triggered either by temperature increase (oxygen tension of water 

decreases with increasing temperature) or by the increased solids concentration in the 

droplet liquor.  In the second stage, water vapour accumulates within the air bubble.  

Particles are more likely to expand if the droplet temperature approaches the liquid 

boiling point after the surface has begun to solidify, but whilst there is still a large 

amount of water in the core.  The observation that only a fraction of particles expanded 

was explained by the stochastic nature of bubble nucleation and the limited availability 

of heterogeneous nucleation sites.  This explanation is not entirely convincing: there 

should have been a plethora of heterogeneous nucleation sites in every drying particle, if 

not from the crust, from colloidal dispersions in the case of the maltodextrin, coffee and 

milk studied. 

El-Sayed et al. (1990) described a period of rapid inflation-deflation cycling during 

boiling of suspended drops drying above the solvent boiling point.  It was observed that 

bubbles breaching the surface of drying coffee droplets pushed wet core fluid onto the 

surface, and occasionally ejected a satellite droplet.  The observed inability of many of 

the blowholes to seal subsequently, was rationalised by the balance between surface 

tension forces trying to seal the hole and viscous forces resisting the flow.  Studies with 

sparged and degassed droplets reinforced the Greenwald and King (1981, 1982) 

conclusion of the importance of gas bubble nucleation to the developing droplet 

morphology. 

Tanno et al. (1988) observed differences in morphological development depending on 

initial droplet size in their single droplet drying experiments.  After the temperature of 

calcium chloride solution droplets had approached the air temperature, crust break-up 

occurred, and the larger droplets ceased to change, whereas the smaller droplets 

continued to decrease in size.  In the case of ammonium sulphate solutions, the crust 

breakage occurred during the region of rapid rise of droplet temperature.  Once the drop 

temperature had approached the air temperature, the larger droplet inflated and then 

remained at constant diameter, whilst the smaller droplet underwent a number of 

inflation-deflation cycles. 
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Experiments conducted on the pilot spray dryer at ICI Wilton also indicate some droplet 

size dependence of morphology (Fiannaca and Threlfall-Holmes, 2005).  Morphologies 

were observed in the large particles made using the Acoustic Atomiser that were not 

seen in the fine particle product made using conventional rotary or nozzle atomisers.  

Where multiple spray-dried particle morphologies were possible, particles 

predominantly of a single morphology could be made by the selection of processing 

conditions using the Acoustic Atomiser (Threlfall-Holmes, 2008).  This is depicted in 

the cartoon, Figure 5.  The thick grey lines indicate regions where the morphology is not 

stable, and a mixed morphology will always be obtained. 
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Figure 5: cartoon of regions of single predominant spray-dried particle morphology 

(Threlfall-Holmes, 2008). 

2.3.1 Modelling morphological development 

Räderer et al. (2002) hypothesised that since the limit to droplet drying rate in a spray 

dryer was known to be internal mass transfer, which was limited by diffusion, then a 

measurement of the diffusion coefficient could be used to determine the limiting drying 

rate of a droplet.  In thin layer drying experiments, they used agar to viscosify some 

samples in order to suppress internal circulation.  In critiquing alternative experimental 

methods, they refer to "the presence of undesired phenomena affecting the results".  The 

flaw in the argument is that the phenomena may be undesirable, but they occur in reality 

to the droplets in the spray drying process, just as they do in the single droplet drying 

experiments.  The internal circulation and morphological changes occur and they 

change the drying rate.  The real drying rate will not be well estimated if the diffusion 
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coefficient is accurate to within a percent, but 20% of the contents of each droplet are 

ejected through a blowhole.  A robust fundamental model of single droplet drying must 

account for morphological development.  In principle this might be predicted from 

constitutive equations for strain and stress in a drying material (Hasatani and Itaya, 

1996), but it is only the most recent work that even approaches this ideal. 

Alexander and King (1985) examined tendencies for formation of surface folds as drops 

dry.  They concluded that the higher viscosity associated with solutes of higher 

molecular weight resist flow sufficiently to preclude smoothing of surface irregularities 

under the surface tension driving force.  The mechanistic model gave partially 

quantitative agreement with observations. 

Lin and Gentry (1999a, b, Lin et al., 2000) have attempted to model the conditions 

under which a cenosphere rather than a dense particle is produced, although apparently 

without good agreement with experiments, judging by the lack of cross references 

between the experimental and modelling papers published from the study. 

Sano and Keey (1982) noted that there could be multiple cycles of inflation, rupture and 

shrinkage, but their model was restricted to a single such cycle.  Hecht (1999, Hecht and 

King, 2000a, b) was also able to obtain stable inflation-deflation cycles in his 

experiments.  Modelling work confirmed that this was due to vapour formation driving 

inflation, but then the larger surface area resulted in cooling and consequent 

condensation of the vapour, resulting in collapse.  This cycle could be repeated a 

number of times until the film hardened. 

Tsapsis et al. (2005) showed good agreement between a drying stress model and 

experiments using the Leidenfrost effect to levitate droplets of colloidal suspensions in 

their own vapour.  Buckling of the shell was found to occur when the stress 

accumulated sufficiently for attractive capillary forces to overcome repulsive 

electrostatic forces that had provided colloidal stability.  This was coincident with a 

transition from fluid-like to solid-like behaviour in the particle layer at the drop surface. 

Most recently, Werner et al. (2008) have demonstrated that a wide range of 

morphological developments in polymer solutions can be modelled with a combination 

of an effective diffusion model with a receding interface model.  The proximity of the 

droplet surface temperature to the glass transition temperature is used to indicate the 
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plasticity and mechanical stress of the developing polymer film and hence to predict the 

path of morphological development.  Excellent agreement is obtained with the 

experimental data shown. 

2.4 Considerations when drying large droplets of film forming materials 

It was observed in experiments using the Acoustic Atomiser on the pilot spray dryer at 

ICI Wilton, UK, that drying kinetics are not only significant, but dominant, when drying 

large droplets of film forming materials.  By varying the composition of the liquid feed 

under otherwise identical drying conditions, the maximum mean droplet diameter that 

could be dried varied from 250µm to 450µm.  The feed liquids were dispersions of 

starch in water, sometimes with an emulsified flavour or fragrance oil.  The dryer was a 

1.6m diameter Niro P-6,3 that had been specially manufactured with the cylindrical 

section extended from 0.8 to 7.8m fall height in order to mimic the fall height available 

in large production dryers.  The airflow was co-current.  A total of around 180 

experiments were conducted over a period of several years.   

It is the confluence of several factors that ensures that drying kinetics dominate the 

spray drying of large droplets of film forming materials.  Considering first the film 

forming characteristic, it was previously noted that spray dryers are thermodynamically 

inefficient, and it is desirable for encapsulation matrices to form a film as soon as 

possible after atomisation into the dryer.  Hence it is normal industrial practice to 

remove as much water as possible from the liquid feed, constrained only by limits of 

product quality, and rheology for pumping and spraying.  To take an example, the 

hydrocolloid based industrial formulations used in the ICI Wilton experiments are often 

used close to the limit of dilatency in the liquid feed, at between 30 and 50% solids.  

Measured drying curves frequently show little or no initial constant flux period (Figure 

6 for example), that is, the drying rate is limited by mass transfer through the film for 

almost the entire drying time.  The combination of constrained evaporation rate and a 

flexible film gives rise to morphological variability, which further influences the 

evaporation rate. 
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Figure 6: measured drying rate of 1mm diameter droplet of 50% starch and 

encapsulated oil dispersion in water, at 101.2°C, 3m/s air velocity, compared with the 

theoretical water droplet evaporation curve (ICI - Photos Peleties) 

Considering the droplet size, it will be seen later in Chapters 5 and 6 that the Acoustic 

Atomiser produced droplets with characteristic diameter around 300µm.  These would 

have a terminal velocity of order 1m/s.  In contrast to the small droplets considered 

earlier, this is of the same or greater order than the superficial gas velocity in the dryer, 

hence the expectation is that the trajectories of the larger droplets are much less affected 

by the gas flow.  This is consistent with observations through the sight glasses fitted to 

the ICI Wilton pilot dryer, with ~0.1m/s superficial gas velocity.  When using a rotary 

atomiser, the particles appear to be tracers for the air flow.  They are seen to be flying 

around in the bulk circulation of the air flow at the length scale of metres, and on the 

decimetres length scale they are observed to blow around in chaotic eddies.  Such 

behaviour has also been observed through the sight glasses of production spray dryers.  

In contrast, it was observed that the spray shower from the Acoustic Atomiser was 

coherent, simply diverging in a cone of size and shape consistent with predictions from 

a simple trajectory calculation from droplet momentum.  That is to say, to the level of 

detail observable with naked eye observation, the spray shower was entirely unaffected 

by the bulk rotation of the air, let alone the vagaries of turbulent eddies in the airflow.  
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This would suggest that plug flow droplet residence time would be an adequate 

approximation.  This is supported by Fiannaca and Threlfall-Holmes (2005), where it is 

reported that in contrast to the normal expectation with a spray-dried powder, when 

using the Acoustic Atomiser it is possible to make all the particles with substantially the 

same morphology, a very exciting result which strongly suggests that all the particles 

had very similar residence time-temperature histories. 

The partial decoupling of the gas and particle flows has been found to have advantages 

in consistency of residence time and hence product properties, but it is no longer the gas 

holdup that primarily determines the droplet holdup.  Increasing the co-current gas 

flowrate will speed the droplets and decrease the particle residence time, but given the 

magnitude of the droplet terminal velocity relative to the gas velocity, this is a relatively 

minor effect, and there is little scope to increase the particle residence time by 

entrainment of particles in large recirculation zones.  To a first approximation, large 

droplets can be considered to fall vertically at their terminal velocity, with maximum 

particle residence time determined by the freefall height available.  The dryness of the 

particles at the spray drying chamber exit is determined primarily by the droplet drying 

rate compared to that relatively immutable particle residence time. 

2.5 Selection of an appropriate modelling strategy for drying large droplets of 

film forming materials 

CFD has become the predominantly reported technique for spray dryer modelling in the 

recent literature.  However, an early advocate of the use of CFD for spray dryer 

modelling has cautioned that a modelling strategy should be selected to give the most 

appropriate level of detail for the practical situation, whilst not imposing excessive run 

times and complexity (Oakley, 2004).  The most-published advocate of 3-D transient 

CFD simulations of spray dryers selected a steady state 1-D model to be fit-for-purpose 

in his most recent paper (Chiou and Langrish, 2008).  It has been established that for the 

object of the present study, drying kinetics dominate and plug flow of the particles is a 

reasonable first approximation.  Hence the precise simulation of the gas flow, and the 

Lagrangian tracking of tens of thousands of particles, is unnecessary and unproductive 

computational effort in the present case. 
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It will be shown in Chapter 6 that a simple scaling model yielded surprisingly good 

predictions for the largest dryable droplet diameter.  However, this model requires 

performance data for a given product in an existing process from which to base the 

scaling.  As future work, it would be desirable to have a more fundamental model in 

order to make predictions when the existing process data is not available.  Regardless of 

the degree of complexity of such a computational model, the accuracy to which the 

droplet drying kinetics are established determines the overall accuracy of the predictions 

of the spray dryer model.  This was most clearly demonstrated in an unpublished 

internal ICI study (Watson, 2001) which was one of the stimuli to undertake the present 

study.  The effect was studied of the measurement errors from an existing in-house 

'wire-deflection' apparatus for measuring droplet drying kinetics (described later), on the 

range of predictions from the in-house 1-D computational drying model.  The results 

from this study have been re-plotted in Figure 7.  It will be seen that the effect of 

measurement errors is so large that the model predictions are frequently no better than a 

guess. The test material is commercially confidential, but the specific formulation is 

immaterial.  The important details are that the product variants were similar, changing 

only in concentrations of various constituents which affected the rapidity of formation 

of a surface film and the porosity and mechanical properties of that film.   

It was clear that the droplet drying kinetics measuring apparatus would need to be either 

modified or replaced in order to reduce the range of uncertainty in the predictions to an 

acceptable level.  A literature search was conducted in order to identify potential 

solutions.  This review is reported in the following chapter. 
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Figure 7: predictions of maximum dryable size for a selection of variants of an 

industrial product (after Watson, 2001). 



 

 41  

CHAPTER 3 - REVIEW OF METHODS FOR THE 

DETERMINATION OF DROPLET DRYING KINETICS 

It will be clear from the discussion in the preceding chapter that an adequate model of 

spray drying for film forming materials must contain rather more droplet drying physics 

than the simple classical crust formation model.  It would be most desirable for this to 

be based on sound theory.  However, as is discussed in the first subsection of this 

chapter, this problem has eluded satisfactory theoretical approaches to date.  Hence 

most researchers in the spray drying field have resorted to experimental determination 

of droplet drying kinetics.  The classic study to which all others are referenced is Ranz 

and Marshall (1952a, b), although there were many earlier studies: 70 of 88 citations in 

Fuchs' (1959) review predate Ranz and Marshall's study.  The literature contains a wide 

variety of experimental techniques, which have here been categorised as firstly thin 

layer studies, then free falling droplets, free droplets held stationary to observer, and 

finally droplets constrained on supports.  The category ‘free droplets held stationary to 

observer’ naturally subdivides into 'aerodynamic' and 'acoustic' levitators.  There are a 

variety of approaches to constraining a droplet on a support, but the 'rotating capillary', 

'cantilever' and 'microbalance' methods have each attracted sufficient studies to merit 

separating them out into separate sub-sections. 

The literature reports of the various methods have been reviewed to determine an 

appropriate methodology and important construction details for new apparatus.  All the 

methods involve some compromises between precision and/or simplicity of 

measurement and close approximation to the conditions experienced by a droplet in a 

real spray dryer. 

ICI had previously constructed and tested a number of droplet drying kinetics 

measurement apparatus using a variety of the techniques described in the literature.  

Although reports of these apparatus were not published in the open literature, the 

knowledge gained from using them did inform the design of the new apparatus, hence 

relevant details of previously unreported ICI in-house apparatus are reported here. 

Apart from the range of basic techniques reported in the literature, there are wide 

variations in what variables are measured, how they are measured, and the ranges of 

droplet size and air temperature, humidity and velocity accessible to the instruments that 
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are described.  Hecht (1999) usefully compiled a summary table with 26 references in 

chronological order, indicating the method of determining drying rate, loss of volatile 

component, drop temperature and morphology.  Table 1 at the end of this chapter is an 

extension of that concept, including details of the materials and range of experimental 

conditions studied.  The loss in volatile component column in Hecht's table has not been 

included: it was a particular focus of his study, but not of this.  A few of the references 

in Hecht's table were not obtainable to check details.  These are asterisked in Table 1. 

3.1 Theoretical solutions to droplet heat and mass transfer 

Although droplet heat and mass transfer is a complex problem, there has been some 

progress in theoretical solutions.  There are two aspects to the problem, firstly the 

external heat and mass transfer between the droplet and the air through which it flows, 

and secondly the heat and mass transfer within the droplet.  Most authors are concerned 

with a single isolated particle, although the heat and mass transfer is altered by an array 

of particles (Ocone and Astarita, 1991).  Single isolated particles is an acceptable 

assumption in the body of the spray drying chamber.  Simple flux calculations using 

data from a few ICI dryers indicates that the inter-particle separation is between ten and 

one hundred particle diameters.  The assumption will, however, break down at some 

point close to the atomiser, where the droplets are sufficiently close to each other that 

there is mutual interdependence of the heat and mass transfer.  

Han et al. (1996) use potential flow theory to reduce the partial differential equations for 

mass transfer to tractable ordinary differential equations.  However, to do this they 

needed to assume steady vortex formation in the droplet wake, which is invalid for 

droplet Reynolds numbers greater than 130 (Clift et al., 1978).  The result is valid for 

small particles in the main body of the spray dryer, but most heat and mass transfer 

occurs in the region close to the atomiser and air inlet, where air velocity may be as high 

as 40.m/s, with droplet Reynolds numbers in the order of 300, so the result has limited 

practical application.  The result has not been verified experimentally. 

There is good agreement between theory and experiment for a drying slurry droplet in 

Liang et al. (2001), for very high solids contents ceramics slurry feeds, where it is a 

good approximation to assume that the slurry particles are discrete, non-interacting and 

not drawn to the surface by capillary action.  These are not good assumptions for the 
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case of film forming materials that are the key concern of this study.  Jørgensen et al. 

(2006) have subsequently shown that the boundary condition was chosen incorrectly, 

and the method cannot predict the formation of the hollow particle morphology that is 

most frequently found from spray drying.  The latter conclusion is disputed by an author 

of the original study (Minoshima, 2006). 

Alassar and Badr (2007) reports a theoretical study of droplet heat transfer under forced 

and free convection, including the effect of airflow oscillation.  A full solution of the 

Navier-Stokes equation was computed, for the case of droplet Reynolds number up to 

200, which is of relevant magnitude.  For computational tractability, sinusoidal 

fluctuations were assumed, but it would appear possible to extend the solution strategy 

to some simplified model of turbulent eddies, and perhaps to a generalised stochastic 

fluctuation model.  Heat transfer only was considered, but the solution is clearly 

extensible to mass transfer.  However, the solution is sufficiently complex that such 

extensions would be studies in their own right.  It remains to be experimentally 

validated. 

Seydel et al. (2006) describe a new approach, where the solid particle formation is 

modelled by a population balance model.  Handscomb et al. (2009) model nucleation 

and growth of the solid phase from an ideal binary solution.  A companion paper is 

cited, as yet unpublished, where the model is extended to shell and internal void 

formation.  The model is claimed to predict the microstructure of the shell formed, and 

hence provide a basis for predicting both the drying rate and the overall morphology of 

the particle.  This is a rational sequence to predict overall particle behaviour, but many 

more extension studies would be required in order to achieve this aim.  The model 

actually presented in this paper predicts the microstructure of the shell formed from 

precipitation from ideal binary inorganic solutions: simulations of colloidal silica and 

also of sodium sulphate solutions are presented as exemplars.  Overall droplet spherical 

symmetry and crust formation to cenospherical final particle form are assumed.  From 

previous discussion it will be clear that inorganic crust forming materials are most 

unlikely to exhibit the reported range of morphological variation in film forming 

materials, and most morphological variants do not show spherical symmetry.  No 

experimental validation of the model is presented, and it is not made clear whether any 

such validation studies are or have been in progress.   
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Štĕpánek (2008, Kohout et al., 2006) has shown good agreement with experiments with 

an alternative approach to modelling the porous microstructure during drying.  In a unit 

calculation cell, the ballistic deposition of particles was modelled in order to obtain a 

random structure, then a "Volume of Fluid" method was used to determine the 

equilibrium spreading of interstitial fluid.  A stochastic method was used to determine 

the effective thermal conductivity for the unit cell, using a transient hot wire probe for 

experimental validation.  A similar calculation method was used to determine 

permeability, with a capillary pressure saturation evaporation/re-condensation hysteresis 

curve for pore transport.  The structure during and at the end of drying were visually 

similar between the model and validation experiments using X-ray computed micro-

tomography scanning.  Quantitatively the x-y plane averaged liquid phase volume 

fraction predicted by the model closely matched the experiment.  Although the study 

was directed towards contact drying of inorganic particles, the underlying science of the 

method is in principle portable.  The 40µm resolution of the validation technique may 

be insufficient for the scale of the relevant microstructure of a spray drying droplet, 

however. 

3.2 Thin layer studies 

The key advantage of drying a thin layer and correcting the measurement for geometry 

is that the planar extent of the layer can be large enough for a readily measurable mass 

rate of vapour to be generated, whilst maintaining one dimension with particle-

appropriate length scale.  An additional practical advantage is that sample preparation 

does not require the same precision of micromanipulation as the dispensing of small 

droplets required in many other methods.  

In a device built at AEA Technology, a flow of dried air was passed through a relatively 

thin bed (2-7mm) of moist particles (Langrish et al., 1991, Fyhr and Kemp, 1998, 

Hirschmann et al., 1998).  The drying rate was determined from the humidity of the 

exhaust air, measured by an infra-red gas analyser.  The technique is unsuitable for use 

in this study, as it requires moist particles as starting materials, rather than droplets of 

bulk liquid.  Morphological changes on drying are not expected to be reversible, so 

drying of re-wetted spray-dried powder product is not expected to yield a meaningful 

measurement of the drying rate during the original drying. 
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Räderer et al., (2002) used a thin film device to determine water diffusion coefficient.  

Unfortunately for the purposes of this review, only sketchy details of the apparatus are 

reported.  The air was recirculated by a fan.  Test chamber velocity was in the range 

0.5.-.1.0.m/s.  Humidity was controlled in the range 4.-.22.%.RH by passing the airflow 

through a cold trap.   The air was subsequently heated to between 40 and 70°C.  The 

airflow was then passed through "several" (sic) meshes in order to achieve uniform flow 

over the sample.   The actual number, type and spacing of the screens are unreported.  It 

is reported that the efficacy of the flow conditioning was checked by CFD and 

measurements, but neither method nor results are presented.  Mass loss and sample 

temperature are stated simply to have been measured, without elaboration.  From the 

sketch flowsheet in the paper, it seems most probable that the sample holder was 

connected to an electronic balance outside the chamber, but this is inference, and the 

precision of the device is unknown.  The initial thickness of the liquid film was between 

0.6 and 2.0mm, but neither the planar extent of the layer not the chamber dimensions 

are reported. 

A significant disadvantage of the thin liquid layer method for this study, is that it is 

entirely dependent on the validity of the geometrical correction, and it has been 

previously noted that the geometry of a droplet may alter during the course of the 

drying.  When a liquid layer is dried, formation of vapour pockets will cause inflation of 

the layer as with droplets, but the relative change of surface area (and therefore overall 

heat transfer) will be much less - there is a vapour bubble on some fraction of only the 

upper free surface of the film, compared to the expansion of the entire droplet.  A 

further disadvantage of the thin layer drying method is a practical one.  The liquid layer 

must be of sufficiently large planar extent that edge effects are negligible.  Since the 

airflow must be parallel to the surface of a liquid layer, then the leading edge of the 

layer is preferentially dried.  If the airflow were perpendicular to the film, it would 

distort the layer, thinning in the centre and creating radial ripples.  The surface 

temperature of the liquid layer and the temperature of the gas boundary layer will vary 

across the film.  It is average moisture loss over the whole surface of the layer that is 

measured. 
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3.3 Free falling droplets 

Some studies have used free falling droplets in order to avoid potential artefacts 

introduced by droplet tethers in other methods.  Rather than a normal spray dryer, where 

the gas flow patterns are highly complex with significant effect on the particle residence 

time, these studies typically use ‘drop tubes’ which are narrow, with the airflow 

arranged to be as uniform and parallel as could be established, sometimes with a special 

type of atomiser in order to produce a low flux of relatively uniform particles. 

Duffie and Marshall (1953a, b) built a drop tube 0.2m diameter and 6m high, using a 

Rayleigh resonant jet break-up nozzle in order to obtain a stream of droplets of 

controlled size.  They could not make this atomiser work with drops less than 150µm, 

and found that they normally had to use inlet air temperatures in excess of 300°C in 

order to obtain dry product.  Crosby and Marshall (1957) modified the drop tube with a 

wider upper section to minimise wall deposition so that they could use a conventional 

pressure nozzle and thus circumvent the drop size and atomiser blockage issues 

encountered in the earlier study. 

In order to measure the humidity of the air in their drop tube with high precision, 

Dlouhy and Gauvin (1960) employed a sampling technique which has not been reported 

by other workers in the field: the volume change in magnesium perchlorate as it 

absorbed water from the air drawn into a sampling burette.  

Büttiker (1981) used a Rayleigh resonance jet breakup nozzle in a drop tube.  There are 

few experimental details and no data on the drop tube conditions, but drying rate was 

determined from measurements of the moisture content and estimates of the surface area 

from microscopy on particles samples at varying points in the drying, as well as 

diameters from photographs of the droplets in flight.  Initial droplet diameters varied 

from 0.27 to 0.84.mm. 

Etzel, Frey and King (Etzel and King, 1984, Frey and King, 1986a, Frey and King, 

1986b) used a device more akin to a pilot spray dryer than a drop tube.  Swirl cone and 

flat-fan nozzles were used in a 57cm diameter tower.  Total available fall height was 

2.6m, but samples were only taken in the first 30cm of fall height, as the purpose of the 

studies was primarily to measure volatiles loss in the atomisation zone.  Air temperature 

was 243°C max.  An air velocity range of 0.03.-.0.06.m/s can be calculated from quoted 
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flowrate and temperature data (Etzel and King, 1984).  This extremely low velocity 

explains the reported problem of recirculating air flows.  The sampler described would 

have collected all droplets impinging onto it, so the measurements are an average over 

all the drop sizes.  The drop size distributions are not reported, but Frey and King 

(1986a) report a final dry particle Sauter mean diameter of 400µm: astoundingly large 

in the available fall height.  This may be due to additional residence time in the cyclone 

collectors that Frey added to the exhaust, but it is still surprising that moist sugar and 

coffee particles did not stick to the tower base before reaching the cyclones. 

Greenwald and King (1981, 1982) used a drop tube 7.62cm in diameter and 2.28m in 

length, with a vibrating reed device to produce a stream of uniform droplets.  A packed 

bed of 2mm spherical molecular sieve beads was used to create a uniform air velocity 

profile across the tube.  A combination of inlet air and wall heating was used to create a 

temperature profile.  They appear to be the first authors to report this, as opposed to 

either a controlled uniform temperature or an uncontrolled profile.  Particles were 

sampled on a microscope slide spread with a layer of neutrally buoyant high viscosity 

silicon oil.  Maximum droplet size was limited to 250µm by the fall height: surprisingly 

large for coffee even in dilute solution in 2.3m fall height.  It was reported, however, 

that skimmed milk drops were hard to dry in the apparatus. 

Alexander and King (1985) replaced the vibrating reed device in the Greenwald and 

King (1981, 1982) drop tube with a Rayleigh jet resonance instability monodisperse 

generator together with an electrostatic droplet dispersion device.  The same drop tube 

was used by Wallack et al. (1990), with a solvent sampler as used by Etzel and King 

(1984).  To determine the water content, HPLC was used where sugars were the 

dissolved solid, mass loss after freeze-drying for coffee, and Karl-Fischer titration when 

the droplets had been sampled into DMSO. 

Morimoto et al. (1985) measured drop size, temperature, velocity and drag coefficients 

of an evaporating drop falling freely in air.  A droplet generator was used to feed 

droplets down a 100mm diameter tube.  The test section was a 900mm long PVC tube, 

with light sources and optical sensors at 100mm axial separation.  The falling droplet 

triggered the optical sensors.  Measurements for ~100 drops were averaged to determine 

the velocity.  A spacer tube of length varying from 0.1 to 2.2.m was inserted between 

the droplet generator and the test section, so the total fall height from the droplet 
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generator to the final sensor position varied from 0.9 to 3.m.  No airflow is described in 

the text, and the data presented suggests that the droplets were falling through stagnant 

ambient air.  Droplet temperature was measured periodically by inserting a 

thermocouple into the droplet stream.  Droplets were periodically sampled, weighed and 

the droplet diameter inferred by assuming all droplets collected in the sample were 

spherical and of the same size.  Taniguchi et al. (1991) use the same apparatus.  

Although once again no airflow is described in the text, a table lists air velocity as 0.11.-

.0.83.m/s.  Electric heaters were used to heat the air, but only for small deviations from 

ambient temperature, up to 31°C. 

The drop tube of Flick et al. (1988) was 0.16m diameter and 2m high.  The air 

temperature varied between 80 and 180°C.  The mass rate of air was constant, so the co-

current air velocity must have varied from 0.41 to 0.53m/s over the temperature range.  

The air temperature in the drop tube was kept constant by the ingenious solution of 

introducing the air from the heater into the base of a jacket around the drop tube.  This 

hot air stream then flowed up the jacket before flowing into the top of the drop tube 

(with a diffuser to even out the flow).  A vibrating reed droplet generator based on 

Greenwald and King (1981) was used.  Droplet diameter was 200.-500µm.  The 

sampling method is not reported elsewhere.  A roll of aluminium paper was wound from 

reel to reel, so that droplets fell from the open base of the tower onto the strip of 

aluminium paper between the reels.  The droplets were caught on the strip which was 

then wound up quickly, confining the droplets away from the airflow and cooling them 

on contact with the aluminium, and hence arresting evaporation.  The mass loss after 

oven drying was used to determine moisture content, with error estimated to be +5/-

10%.  They present only a little data, but it does appear to be good, correlating well with 

model predicted values.  However, on close inspection, the residual moisture contents 

are very high: the particles can barely have formed crusts, and the micrographs of the 

material are still very spherical.  It would have been interesting to see how the sampling 

technique worked with a longer column, drying to more realistic product final moisture 

contents, and with a film forming material that showed more interesting morphological 

changes during drying. 

Meerdink and van't Riet (1995) used a drop tube 0.63m in diameter, 6m fall height, with 

single fixed rate 0.2m/s co-current air.  A Rayleigh jet resonant breakup device was 

used to generate a dilute stream of monosized droplets, with an electrostatic dispersion 
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ring to prevent droplet coalescence.  Drying rate was determined by collecting samples 

through ports spaced down the dryer.  The sampler was water cooled and contained 

paraffin oil, in order to minimise evaporation during sampling.  Moisture content was 

determined by weight after vacuum drying, and particle diameter was measured under a 

microscope.  An earlier report from the study contains further details that the drop tube 

air temperature was in the range 80.-.150°C and the droplet diameter was 160 or 200µm 

(Meerdink and van't Riet, 1994). 

Sommerfeld and Qiu (1998) determined vaporisation rate from rate of change of the 

diameter distribution measured with a Phase Doppler Anemometer (PDA). 

Zbicinski et al. (2002) constructed a drop tube equipped with a PDA on a traversing 

mechanism, so the droplet size and velocity distributions and phase concentration could 

be measured at any point within a 5.5m height range.  The paper lacks many specific 

details of the experiments, but it can be inferred from the diagrams that the tower 

diameter was at least 0.36m, with total freefall height around 7.5m: the PDA traverse 

did not reach either quite up to the atomiser or right down to the base of the tower.  The 

air velocity calculated from the quoted mass flowrate and operating temperature is a 

factor of ½.-.1/3 lower than the stated velocity.  It is not clear which figures are 

erroneous.  Very dilute maltodextrin dispersions were sprayed with a pressure atomiser.  

No comment is made regarding wall deposition relative to product recovery.  Droplet 

samples were collected at several heights and analysed by an unspecified method for 

moisture content.  Similarly air temperature was measured at several heights.  The 

authors state that the air temperature drop is mainly due to the drying, with only small 

losses to atmosphere.  It is unclear how the tower and especially the numerous 

observation windows were so well insulated.  Drying rate was determined from the 

moisture content measurements together with the average velocity data obtained from 

the PDA measurement. 

Vehring et al. (2007) used a drop-on-demand monodispersion generator, similar to ink-

jet printer heads, so that the droplets could be much wider spaced than from a Rayleigh 

jet instability monodispersion generator, and hence avoid droplet interaction effects.  

The droplets were sized at various heights by what appears from the description to be a 

home-made Laser Doppler Anemometry, and the droplet velocity was determined with 

a laser strobe.  The dry particles were shown by SEM to be only slightly non-spherical, 
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so the determination of an equivalent spherical diameter by image analysis was 

acceptable. 

In summary, the advantages of the 'free  falling droplet' approach is that it is possible to 

set up a gas temperature profile and velocity similar to that obtained in a real spray 

dryer, and that the droplets can freely rotate, unlike devices where the droplet is 

constrained on a support. 

A disadvantage of this approach is that examination of anything other than the dried 

particle requires sampling at intermediate points.  Feasibility of equipment design and 

safe practical operation limits the number of possible sampling points, and the samples 

are always time and droplet size averaged to some extent. 

The greatest disadvantage of the ‘drop tube’ methods, however, is the assumption that 

the gas and particles flows can really be maintained parallel down a height which is 

sufficient to achieve drying.  The open literature sources largely avoid explicit 

discussion of this aspect, although experimental details such as droplet generators or 

widened sections around the atomiser suggest that the researchers were well acquainted 

with the issue.  In unpublished experiments on a 0.3m diameter x 6m high drop tube at 

ICI Wilton (Nawaz, 1997), significant wall deposition was normally observed, typically 

far in excess of the product recovery.  The atomiser in this drop tube was a Rayleigh 

resonance jet breakup atomiser, with typically seven jets, all of which were aligned 

vertically, no more than 1cm away from the centre line of the tower.  In some cases, the 

required atomisation condition meant that jet velocity was significantly greater than 

particle terminal velocity, and the "slipstreaming" of the particles gave rise to 

coalescence.  In these cases an electrostatic dispersion ring was sometimes used, but 

only to knock particles slightly off course.  This electrostatic dispersion method has also 

been reported in a far narrower drop tube at Judson King's group at the University of 

California, Berkeley (Alexander and King, 1985, El-Sayed et al., 1990).  That wall 

deposition overwhelmed product recovery in the ICI Wilton drop tube indicates that 

significant deviation from the predicted trajectories must not only have occurred, but 

was the norm.  Hence significant deviation should be expected from the plug flow 

residence time that is assumed in the drop tube methods for determining droplet drying 

kinetics.  Together with concerns about the sampling, it is difficult to remain confident 

about the accuracy of the drying data. 



Chapter 3- review of methods for the determination of droplet drying kinetics 

 51  

These doubts seem to be confirmed in Meerdink and van't Riet (1995), both by the 

limited range of experimental conditions reported and by the adjustments required in 

their model to match experimental data.  Sunkel and King (1993) further back up this 

conclusion, summarising King's studies over the previous decade (Greenwald and King, 

1981, 1982, Alexander and King, 1985, Wallack et al., 1990), that even a single stream 

of uniform drops through a controlled temperature field develops a range of 

substantially different morphologies and degrees of expansion, although they 

rationalised this as the difference in number and effectiveness of bubble nucleation sites 

within droplets.  

3.4 Free droplets held stationary relative to observer 

In order to maintain free rotation of the droplet for similarity with real spray-dried 

droplets, whilst overcoming the limitations of free falling droplet methods, in some 

studies a droplet has been levitated in such a way that it remains stationary relative to 

the observer.  The studies can be subdivided into aerodynamic and acoustic levitators.  

It has also been reported (Dransfield and Davis, 1985) that if a drum with a heel of 

liquid is rapidly rotated so that an annular liquid film is formed around the inside of the 

drum, then a drop from a syringe of the same liquid will not merge into the spinning 

film, but float just above it, adopting an equilibrium position that is stationary relative to 

the observer.  However, there are no known studies of droplet drying which exploit this 

phenomenon. 

3.4.1 Aerodynamic levitators 

Jones and Smith (1962) measured the mass transfer from particles suspended in a 

vertical airflow in a rotameter tube.  Since a rotameter tube bore gradually increases 

along its length, the air velocity fell as the air rose.  The evaporating particles migrated 

up the tube as they became progressively lighter and hence a diminishing air velocity 

was required to suspend them.  No active control of the air rate was required in order to 

keep the particle suspended.  The spheres were rather larger than those in other studies, 

ranging from 2.3 to 19mm in diameter, and were slowly subliming solid organic 

chemicals; hence the rate of migration was sufficiently slow to follow the particles with 

a camera on a manual traverse.  Measurements were made both with single particles and 

ensembles of up to fifty particles, always in dilute phase.  Particles were periodically 
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removed, weighed, and the diameter measured with a micrometer in order to determine 

the interfacial area and mean diameter.  A number of observations are made that are 

relevant to this study.  Even though stroboscope measurements showed that the particles 

spun at up to 300.Hz, the data indicated no measurable enhancement in mass transfer 

rate for free floating particles over control experiments, either with tethered particles or 

with free floating particles made with an internal off-centre ball bearing in order to 

damp motion.  This suggests that data from drying tethered droplets is relevant to the 

real spray dryer free falling case.  The data also confirmed the expectation that there 

was no change in mass transfer rate between single particles and dilute phase ensembles 

of particles.  This is also an important assumption when using single droplet drying data 

in a spray dryer model.  Finally, the data was found to vary with the tube airflow 

Reynolds number, where the tube diameter is used in the dimensionless group, as well 

as the droplet Reynolds number, using the droplet diameter.  This had not been reported 

by others: Jones and Smith (1962) note that in most experiments, tube Reynolds number 

is correlated with droplet Reynolds number, so no separable effect can be observed.  

There is no evidence in the literature to suggest that others have subsequently 

considered or investigated the influence of drying tube Reynolds number. 

An aerodynamic levitator was used to study the rate of evaporation in ambient 

temperature (22.-.24°C) air of water drops of between 27 and 375µm diameter (Beard 

and Pruppacher, 1971).  Unusually, the relative humidity was varied, between 27 and 

65%.  An air flowrate control valve was adjusted to keep the droplet stationary.  The 

valve position had previously been calibrated to the flowrate, so together with a drag 

correlation and the assumption that the droplet was always at its terminal velocity, the 

droplet diameter was inferred.  The drop surface temperature (required to calculate the 

diffusivity and density at boundary layer conditions) was calculated iteratively from a 

heat balance. 

It may be the same levitator in a later study by Pruppacher (Mitra et al., 1992).  The 

stated air velocity control range is very large, from a few cm/s to 30m/s.  This is 

claimed to be capable of suspending particles from 50µm to 4mm, although the actual 

range of dried particle sizes reported in the study is 40 to 300µm.  A slight convergence 

upstream from the test section helped to stabilise the levitated particle.  Flow 

conditioning screens and a honeycomb together reduced the turbulence to 0.3%.  The 

airflow control was via a variable throat sonic contraction with downstream vacuum 
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pumps.  This gave control sufficiently fine to suspend the studied particle at any height 

within the 25cm observation section, and also to be able to maintain the levitation even 

whilst the droplet became progressively lighter during the drying.  Relative humidity 

was controlled between 5 and 60%.  The field of the study was meteorology rather than 

spray drying, so elevated temperatures were not used.  The focus of the study was the 

crystal structure and robustness of the dried particles: the only observation of drying 

rate is that the droplets were dry generally within ten minutes. 

Miura et.al. (1977) and Akbar (1988) also report devices which used an ascending air 

current to keep a single droplet stationary by matching the air current velocity with the 

terminal velocity of the droplet.  Oteng-Attakora and Mumford (1994a) used a water 

cooled catchment device to sample individual droplets from the tunnel for weighing. 

One intuitively apparent issue with aerodynamic levitation is positional stability of the 

droplet.  Jones and Smith (1962) used the simple but crude technique of a long straight 

section of tube to steady the flow before the test section.  They observed that the 

particles always moved close to the wall.  The rotameter tube used as the test section 

had a narrow divergence and hence the velocity changes very gradually up the tube, and 

they chose to experiment with very slowly evaporating particles, both of which would 

contribute to short term positional stability.  It is not clear that the method would be so 

satisfactory with rapidly evaporating aqueous droplets of relevant size to spray drying.  

The rapid rate of mass loss and the shape change of the droplet alter the buoyancy and 

drag force of the droplet respectively and hence modify the equilibrium position in the 

levitator.  There is also the constraint of the limited field of view and depth of focus of 

the macro or microscope lenses required to image the small droplets.  For a practical 

device to study spray drying droplets, the position of the droplet should be well 

constrained.  Winborne et al. (1976) report designs of levitator nozzles to achieve this, 

where the particle is suspended close to the nozzle on an air jet that emerges from a 

central orifice, surrounded by a curtain of air jets from a ring of peripheral orifices, in 

order to prevent radial migration.  Experiments are reported using a selection of metals, 

introduced as cold solid particles, levitated and then induction heated to melt them to 

droplets before starting the experiment, a neat trick which is unfortunately not 

transferable to spray drying.  The analogy would be to suspend particles harvested from 

a spray-dried powder, then rewet them in a saturated air stream before re-drying them.  

This would be a useful technique only for a material that dried reversibly, which as 
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previously discussed, is not a supportable assumption for the objects of this study.  The 

concept of levitation in an air jet shaped by air nozzle geometry is understood to have 

been used in one spray drying droplet kinetics study, although known only by citation, 

as the conference paper was not available (Furuta et al., 1983, cited in El-Sayed et al., 

1990). 

The great strength of the aerodynamic levitation technique is the potential for 

correspondence to conditions in a real spray dryer.  The droplet is unconstrained, and 

the air temperature, velocity and humidity and the droplet diameter can all be of the 

appropriate magnitude.  In order to achieve this ideal, there is a severe specification on 

the air flow control.  It must be both precise and stable, but also have an exceedingly 

fast acting feed back loop to be able to rapidly respond to changes in particle shape and 

mass if the correct magnitude of all the variables are observed.  A serious drawback of 

the technique is that the "just suspended" criterion must always be maintained.  This 

limits the parameter space that can be probed.  It also complicates the experimental 

design and data analysis, as it is not possible to alter a single independent variable over 

a sequence of experiments: for example, to hold constant all of the air velocity, 

temperature and humidity, and vary only the droplet diameter between experiments.   

For droplets that remain spherical, drying rate can be estimated by measuring the 

evolution of diameter and air velocity.  This approach fails when there are gross 

morphological changes, as are expected for the materials that are the object of this 

study.  It would be more appropriate to measure the humidity change in the airstream, 

by some sensitive and rapidly responding technique.  In other single droplet drying 

measurement devices in this review, gas thermal conductivity detectors and infra-red 

gas analysers have been used to answer this purpose.  However, these methods have not 

been reported in conjunction with an aerodynamic levitator. 

3.4.2 Acoustic levitators 

The earliest known report of a droplet acoustic levitator device is a citation to a 

NewScientist news article (Anon, Jan 9, 1975, p74, cited in Winborne et al., 1976), but 

Toei and Furuta (1982) are the first workers to report a drying study of droplets 

suspended in a sound field.  Later authors elegantly describe these devices as "acoustic 

levitators", but it is not clear who first coined this term.  The basic principle is that the 
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droplet is held in the acoustic potential well at the nodes of standing waves (Ohsaka and 

Trinh, 1989).  The key advantage of the acoustic over the aerodynamic levitator is that 

droplet size is no longer coupled to air flow velocity. 

In Toei and Furuta's study (1982), the ultrasonic transducer was a cylindrical tube.  The 

frequency was controlled in order to hold the droplet stationary.  The frequency had to 

be adjusted during the drying as the air around the droplet heated up.  A drop was 

introduced on the tip of a filament, from where it was "grasped" (sic) by the sound 

pressure well.  The droplet was observed to rotate with frequency around 10.Hz.  The 

range of drop sizes is unstated, although 1.5mm diameter is quoted on one diagram.  

The droplet was heated with a carbon dioxide laser.  The apparatus was then measuring 

primarily radiative heat transfer, when the aim is to assess drying rate under primarily 

conductive heat transfer.  The choice of laser heating is not discussed, but inferring from 

other later reports of acoustic levitators, it is assumed that the sound field was either 

insufficiently strong and/or well controlled to maintain a droplet stationary in a flowing 

air stream.  The air temperature was measured by a thermocouple, the droplet 

temperature by an infrared thermometer.  It was thus measuring droplet surface 

temperature.  Even though the sight line of the IR thermometer was placed 

perpendicular to the laser beam, it was found that reflections of the laser beam from the 

drop surface interfered with the temperature measurement, and a filter was placed in 

front of the IR thermometer objective in order to minimise this error.   Toei and Furuta 

(1982) were aware that the vibration of the air would increase the heat transfer 

coefficient.  In the absence of valid correlations to predict this increase, the heat transfer 

coefficient of the device was calibrated by heating PMMA or glass spheres to around 

90°C with the laser, then measuring the cooling curve when the laser was turned off.  

This calibration indicated that the heat transfer coefficient was enhanced approximately 

threefold by the ultrasonic sound field.  The impedance of the drop surface is stated to 

be a thousand times that of the air, so the sound wave would be reflected from the 

surface and would not be expected to enhance the liquid-side heat transfer, only the gas 

film heat transfer.  It is not made explicit, but this is a key assumption, as in the initial 

stage of drying with a saturated drop the heat and mass transfer analogy should hold.  If 

the liquid-side heat transfer were enhanced, it seems probable that the mass transfer 

would also be enhanced, and since the purpose of the experiment is to determine mass 

transfer, large uncorrected artefacts in the mass transfer measurement would seriously 

undermine the conclusions.  The drying rate was estimated by a heat balance, using the 
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measurements of the air and droplet temperature, together with the photographic record 

of the experiment to determine the droplet area exposed to the laser heater.  There is 

thus an implicit assumption that the droplet temperature is uniform, so the surface 

temperature measurement is representative of the whole.  There is also a second implicit 

assumption, of spherical symmetry, so that the area exposed to the laser beam can be 

determined from a photograph taken at 90° to the laser beam.  The sequences of 

photographs shown in the paper indicate some deviation from sphericity. 

Ohsaka and Trinh (1989) measured melting and solidification of droplets.  The whole of 

the acoustic levitator was enclosed within a domed heated water jacket, which heated 

the air within the dome, and hence heated the droplet by natural convection.  Sloth et al. 

(2006) appears to be the only study in the drying literature to have used the concept.  

They do not make this attribution, however, but rather describe the device as being 

similar to Toei and Furuta (1982) and Groenewold et al., (2002), which is correct in 

virtually no other respect than it was an acoustic levitator for studying droplet drying.  

The drying chamber was controlled between 25 and 80°C and 0.-.80.% relative 

humidity.  They observed that the droplet became elliptical in the acoustic field, but 

then in order to determine the drying rate by filming the droplet diameter, they 

explicitly assumed that the droplet was spherically symmetrical and shrunk during 

evaporation to a dense particle. 

Groenewold et al. (2000, 2002) overcame the limitations of radiative heat transfer in 

Toei and Furuta's (1982) work using an acoustic field sufficiently powerful to hold the 

droplet in place while air was blown over the droplet.  However, this was only achieved 

with the highly undesirable side effect of significant corrections to the data for the 

droplet distortion and the approximately 30% enhancement to the heat transfer rate that 

were due to the acoustic field (Yarin et al., 1999).  The airflow was cool (24.4°C), dried 

to 2.-.4.%.RH, and slow (0.02.-.0.09.m/s).  The acoustic field was so strong it locally 

heated the air by about 4°C.  Droplets were around 1.8mm diameter.  The drying rate 

was determined from the humidity change of the airstream blown over the droplet, 

measured by a high accuracy dew-point hygrometer.  Attention was drawn to the 

smooth drying curves obtained, but there is no discussion of whether this is potentially 

simply an artefact of implicit averaging, either in the numerical correction method, or 

due to the slow response time obtained from high accuracy dew-point hygrometers. 
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The droplet distortion can be very severe in a high intensity acoustic levitator.  It has 

been deliberately exploited as a moulding technology (Venturelli and Culick, 2003).  

Lee et al. (1991) found that droplets first flattened to dimpled discs (resembling a 

"Werthers Original" toffee to judge by the photographs in the paper), then surface 

ripples appeared, before the droplet buckled, ballooned and finally shattered.  Large 

"disk-like" distortions were also reported in an acoustic levitator constructed by ICI to 

measure solidification rate for fertiliser prills (Haire and Kaldas, 1989).  They also 

found that due to manufacturing tolerances, the resonant frequency of the transducers 

drifted apart as they warmed up, so the phase interlocking and hence the low pressure 

well drifted, and the particle levitation became unstable.  It was concluded that the 

device was better as a qualitative screening tool than a quantitative measuring 

instrument. 

The object of the present study are droplets which are expected to change shape during 

drying, and numerous authors report that such morphology changes are associated with 

changes in heat and mass transfer rates.  The droplet distortion induced by the acoustic 

levitator would obscure the features that are the object of the study.  Hence this type of 

device does not answer the design brief. 

3.5  Droplets constrained on supports 

The most reported method for measuring droplet drying kinetics is to suspend the 

droplet upon a support – a thin wire, a thermocouple, or a syringe.  Evaporation rate has 

been determined by measuring outlet air humidity (Audu and Jeffreys, 1975, Hecht, 

1999) and by diameter, either by recording the rate of water addition required to 

maintain constant diameter (Ranz and Marshall, 1952a, b, Chuchottaworn et al., 1984), 

or from the rate of change in droplet diameter (Walton, 2004).  This inference from 

diameter can only be valid for a material which shrinks predictably as a function of its 

moisture content.  This is not a good assumption for the objects of this study.  The 

largest group of studies follow the drying rate by loss in weight of the droplet.  The two 

principle approaches are by deflection of a wire cantilever and by suspending the 

droplet and wire from an electronic microbalance. 

The classic droplet drying study is Ranz and Marshall (1952a, b), who measured the 

evaporation of a droplet in the constant rate period of drying, both by keeping the 
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droplet at constant diameter by feeding from a microburette, and also by suspending the 

droplet on a thermocouple.  Fairly small drops (600.-.1100µm diameter) were measured, 

over a wide air temperature range from ambient to 220°C, and from still to 2.9.m/s air 

velocity.  Droplet Reynolds numbers were in the range 0 to 200.  The data were found 

to conform to the Colburn heat and mass transfer analogy, and were also found to 

correlate according to theoretically derived dimensionality, which correlations have 

become eponymous.  Ranz and Marshall also ran experiments during the later periods 

of drying of crust-forming droplets, where they noted that the temperature and/or the 

diameter could to an extent be used as surrogate methods for determining the changing 

moisture content of the droplet, and a plot of the square of the droplet diameter against 

time should be straight for a uniformly evaporating water drop.  They made quantitative 

measurements in this later period of drying only in still air, but identified the step 

change in evaporation rate at the point of crust formation by the step change in the 

slopes of the plots of both d² and ∆t with time. 

Pei et al. (1962) also measured the drying rate by the rate of water addition to the drying 

particle, but using a hollow sphere of porous diatomaceous earth in order to maintain 

the diameter, fixed to the end of a microburette through which a stream of water was 

introduced into the centre of the particle.  The water flowrate was adjusted to maintain 

the surface just saturated (although it is not explained how the surface was judged to be 

just saturated).  There are a number of unusual features reported.  Superheated steam 

was used as the drying medium, and measurements were made to very high 

temperatures, in the range 150.-.750°C.  The experimental rig design is also novel:  the 

wind tunnel test section in which the particle was suspended, was open between the 

divergent inlet and exhaust nozzles, with the whole being encased within a stainless 

steel sphere.  Schlieren flow visualisation was used to determine flow patterns around 

the particle.  The flow could be varied from forced convection to buoyancy (natural 

convection) dominated.  In intermediate flow regions, the data indicated that heat 

transfer was depressed as the natural convection opposed the forced convective flow. 

Yuen and Chen (1978) also used steady state forced liquid feed from a microburette to 

saturate a porous sphere (sintered bronze in this case) in order to measure drying rate.  

However, in contrast to Pei et al. (1962), they deliberately operated at high enough 

Reynolds numbers to avoid the effects of natural convection.  A vertical wind tunnel 

was constructed with 7.6cm square cross section, and data is presented from 150°C to 
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960°C and 2.5 to 11.4m/s - although the claimed maximum capability of the tunnel was 

an even more astonishing 1000°C and 20m/s.  This wind tunnel is in size, temperature 

range and air velocity, dramatically more ambitious than any other reviewed here.  The 

porous sphere was 6.35mm diameter, and the internal liquid temperature was measured 

with a thermocouple.  The liquid feed line was cooled, except the final connection to the 

particle, which length was carefully chosen so that it neither overheated the introduced 

liquid nor interfered with heat transfer to the particle.  The feed rate was adjusted 

manually to maintain the sphere surface just saturated, which was judged to be when 

neither dry spots nor drips were observed.  Radiative heat transfer was significant and 

was corrected for. 

3.5.1 Rotating capillary 

The most intuitively obvious potential weakness of methods where the droplet is 

constrained on a support, is that the droplet dries preferentially on the leading edge.  In 

the early stage of drying, this is not an acute issue, as Charlesworth and Marshall (1960) 

and many subsequent authors have noted that the droplets internally circulate.  But after 

crust formation, the surface is constrained from rotation, and there arises the potential 

for artefacts, both from preferential drying on the leading edge and also (in a plastic 

filmed droplet) from distortion from the low pressure zone in the droplet wake as 

reported by Büttiker (1981).  In order to try to avoid this potential source of artefacts, 

researchers at Aston University constructed a device which rotated the suspension 

capillary and hence the droplet.  This device was used in a number of studies over three 

decades, but the technique was not adopted by other academic research groups. 

The original device (Audu and Jeffreys, 1975) was a wind tunnel with a 1" diameter 

Perspex test section.  Temperature range was 26.5 to 121.5°C, limited at the upper end 

by the Perspex.   Hemispherical drops 1 to 5mm in diameter were created on the tip of a 

capillary, which capillary was rotated, typically at 20.rpm.  The evaporation rate of pure 

water droplets was measured by constant feeding.  The droplet size was maintained 

constant by pressure head, and checked at intervals by measurement with a 

cathetometer.  Crust forming materials were also studied, without constant feeding of 

water during the drying.  In all cases, the air flowrate, temperature and humidity were 

measured at intervals, both upstream and downstream from the drop.  From the 

conclusions in the paper, droplet temperature measurements must also have been made, 
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at least for the water droplets, but it is not described in the text, although a likely 

thermocouple position can be inferred from the rig diagram in the paper.  The range of 

air velocity is also not explicit in the text, but 0.4 to 2.5m/s can be estimated from data 

in the figures.  It may have been as high as 3.3m/s if coincident maximum air flowrate 

and temperature were possible.  In the crust formation studies, a series of droplets were 

dried for a sequence of increasing times and then sliced off the tip of the capillary.  In 

this way a series of crusts were collected for thickness measurements (mean of 

numerous points over the crust) and structural analysis by SEM.  In another series of 

experiments, drying drops together with the attached nozzle were removed at intervals 

for weighing.  In separate experiments, the air flowrate and pressure drop were 

measured through a series of crusts, again removed at different times during the drying.  

A diagram in the paper suggests that the crust was maintained attached to the nozzle, 

and inverted, so residual liquid may simply have drained under the joint effects of 

gravity and the air being blown through the crust during the porosity measurement, 

although this is not explicitly described.  Porosity was estimated from the air pressure 

and flow data, assuming (in order to obtain pore surface area) an equal probability of 

pores being at all inclinations from normal to the crust, an estimate of the number and 

mean radius of the pores from SEM, and a textbook value for pore tortuosity.  From 

these measurements, Audu and Jeffreys derived an estimate of the crust mass transfer 

coefficient.  There is no discussion of the potential error from heat conduction from the 

large circumferential contact between the capillary to the hemispherical drop, other than 

a mention that PTFE capillaries were sometimes used instead of stainless steel, although 

from the context it is unclear whether this was simply to make guillotining off the crusts 

simpler.     

The range of the Aston rotating nozzle device was extended to 20.-.200°C in Ali et al. 

(1988).  A copy of this modified device was installed at the ICI Specialties Research 

Centre in Blackley (Hull, n.d.; 1988?).  It is reported for this latter device that 3m/s was 

the highest speed at which the droplet was not deformed by the airflow. 

Modifications to the Aston device were made for later studies.  The capillary was 

replaced first by a rotating thermocouple (Sayed et al., 1996, Hassan et al., 1996a, b) 

and then by a rotating glass filament (Walton and Mumford, 1999, Walton, 2000, 2004). 
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3.5.2 Wire deflection 

If a droplet is placed upon the free end of a thin and flexible wire which is cantilevered 

from the other end, the weight of the drop causes the wire to droop.  By Hooke’s spring 

law, the deflection of the wire is proportional to the mass of the droplet, so as the 

droplet dries in an air stream, the wire rises.  A key experimental difficulty is the 

selection of the wire, to get an acceptable precision.  If the wire is too rigid, it will not 

deflect very much, and the precision will be limited by the discrimination of very small 

deflections.  If the wire is too flexible, the tip will move wildly in the air flow, and the 

precision is limited by the noise in the droplet position measurement.  Some researchers, 

especially the earlier studies, have used a combination of stagnant or very slow moving 

air, and interrupted air flow, to minimise the droplet oscillation and remove the 

contribution to deflection given by the drag on the drop and wire.  More recent studies 

have made continuous measurements, calibrating the deflection due to drag with non-

evaporating droplets as a function of air velocity, and estimating a central tendency of 

the noise in tip position with the aid of video recordings of the experiment. 

The wire deflection method is very old:  Morse (1910) reports the evaporation rate of a 

sphere of iodine on a fibre of quartz or glass, and casually claims that "there is no 

difficulty in detecting and measuring changes of weight of 0.001 milligram or less".  

However, the method is even older; Morse refers to it as "the micro-balance of Salvioni 

and Nernst", without further bibliographic reference, so presumably he expected the 

method to be already well known.   

The first application of the wire deflection balance to measuring evaporation rates 

specifically with reference to spray drying is the study of Charlesworth and Marshall 

(1960).  The droplet was suspended from a 43cm long glass capillary, which tapered 

from 425µm diameter at the fixed end to 210µm at the free end.  The fixed end was 

inclined up at 45°, but it bent along the length until the tip was almost horizontal.  From 

this free horizontal end, a second glass capillary 3cm long was hung vertically 

downwards, with a tip flamed to a bulb around 200µm diameter, from which the 

pendant droplet hung.  The arrangement must have looked something like a fishing rod.  

Although not mentioned in the text, from the photographs in the paper and a later 

publication describing the same apparatus (Trommelen and Crosby, 1970), the wire was 

enclosed within a box in order to minimise artefacts from laboratory draughts.  The 

airflow was from below, so that the suspension wire was vertically in the wake of the 
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droplet, to minimise interference with the airflow around the droplet.  The air jet was 

generated using the same rig as Marshall's earlier study (Ranz and Marshall, 1952a, b), 

except that the exit air flow distributor gauze was removed, as it quickly became fouled 

by droplets falling onto it.  The consequence must have been that the airflow was less 

uniform, but no measurements are reported, so it is not possible to confirm this.  Rather 

than the conceptually simplest scheme, of measuring the deflection of the free end of 

the droplet, instead at each measurement time the fixed end was moved until the droplet 

was back in its original position.  Presumably this was in order to maintain the droplet 

within a limited field of view of the microscope camera with which the droplet 

appearance was studied.  The deflection was calibrated to weight, with a maximum 

capacity of 4mg, equivalent to a water droplet of just under 2mm diameter, and an 

accuracy of 0.01mg (around 1% of the mass of the smallest droplet tested - range 1.3.-

1.8mm).  The air velocity and temperature were 0.4.-.1.6m/s and 30.-.160°C 

respectively.  The airflow was interrupted for around 10 seconds in order to make the 

measurements of wire deflection on a 1 minute period.  Whilst intuitively such 

interruption is undesirable, it does not appear to have given rise to measurable error in 

the determination of the drying rate: it is stated that changing the frequency of 

weighings did not noticeably affect the results.  Furthermore, in separate experiments, 

droplets were suspended from a thermocouple junction, and the temperature during 

drying was recorded continuously.  No gross mismatch in drying time between the 

continuous and the interrupted experiments was reported.   It is honestly stated that 

there could be great variation in drying time between droplets dried under notionally 

identical conditions.  Apart from the novelty of the method at the time, this study is 

notable for the huge range of materials studied.   

Trommelen and Crosby (1970) used a development of the Charlesworth and Marshall  

(1960) apparatus.  The short vertical glass capillary was replaced by a thermocouple 

junction, so the temperature and mass loss could be obtained from the same experiment.  

The purpose was to study drying in superheated vapours.  In order to prevent 

condensation, the jet of gas or superheated vapour was enclosed within a heated air 

jacketed glass drying chamber, rather than being a free jet as in the earlier study.  The 

drying chamber was fitted with optical glass windows for observations, a slot for the 

cantilever balance wire to enter, and an access port through which to place droplets on 

the wire.  Measurements were again made by stopping the air (or vapour) flow, but due 

to the higher temperatures and velocities in this study, drying could be too rapid for 
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sequential measurements on the same drop to be accurate, and instead each drying curve 

was constructed from a series of droplets, each one dried for a different length of time. 

Cheong et al. (1986) used a glass tube as their capillary (drawn so that it was thin 

enough to be flexible), with a nickel wire passed down the centre of the tube and the 

outside of the tube vacuum coated with a copper film.  In this fashion, the tip of the wire 

from whence the droplet was suspended formed a thermocouple junction, and droplet 

temperature could be measured simultaneously with mass loss.  By varying the length 

of exposed wire, either the core or an average temperature could be measured.  This 

detail is interesting, as the standard assumption in the literature is that the droplet 

temperature is uniform, but no internal and external temperature data are presented to 

confirm or confound that assumption.  Slurry droplets between 1 and 1.5.mm in 

diameter were dried in a stream of dehumidified air with temperature controlled in the 

range 20.-.78°C.  The air flowrate is unspecified.  At one point a typical experimental 

condition is given as 0.3m/s air velocity, although the thermocouple calibration velocity 

is stated to be rather higher (2m/s).  The weight-deflection was calculated from a 

calibration curve.  It is stated that the deflection was corrected for drag force on a 

spherical droplet and the cylindrical wire, but it is not made clear how the spherical drop 

size was determined during the course of the experiment, or whether the assumption of 

sphericity remained valid through the experiment.  It is possible that only the initial 

drop diameter was used, determined from volume dispensed.  Photographs of droplets 

are shown in the paper, so the drop diameter may have been measured directly from 

these photographs.  After drying, the thickness of the crust and porosity were estimated 

by SEM.  The porosity was also measured using the apparatus described by Audu and 

Jeffreys (1975). 

Tanno et al. (1988) used an apparatus which diagram looks similar in outline if not in 

precise detail to Charlesworth and Marshall (1960).  Variable ranges are unstated, but 

all results shown are for 1m/s air velocity, with temperature varying from 128.-.226°C.  

The major interest of this paper is that the droplets were as small as 200.-.300µm.  

Although not highlighted in the paper, it is the earliest literature report of measurement 

of such small droplets on a tether.  The droplets were made by dipping the tips of two 

5µm quartz filaments into the test liquid, withdrawing the filaments at a spacing of 

around 2mm so that a liquid film bridged between them, pricking the film, then 

transferring the resultant small droplet from the end of one of the filaments, to the 



Chapter 3- review of methods for the determination of droplet drying kinetics 

 64  

measurement apparatus filament.  For droplets above 1mm, the displacement of the 

droplet was measured with callipers, but for the smaller droplets it was measured from 

video footage, averaged over three successive video frames, as the vibration was severe. 

The wire deflection method has recently been considerably advanced by Chen's group at 

The University of Auckland, New Zealand (Chen, 2002, Lin and Chen, 2002, 2007).  

Great care has been exercised in order to quantify, control and minimise sources of 

error.  Glass filaments have been drawn to very fine diameters (30.-.70µm) to minimise 

heat conduction to the drop and disturbance to the airflow.  A 13µm diameter 

thermocouple was also inserted into the droplet so that temperature could be recorded 

simultaneously.  Droplets as small as 400µm have been measured.  The method of 

droplet formation and wire attachment was reproducible to within ±0.03mg: 100% of 

the smallest droplet, but just 0.3% of the largest.  Two air heaters in series, with both 

PID and fuzzy-logic control are used to ensure precise temperature control, within 

±0.3°C.  Ten layers of 24-mesh screen are used to reduce air velocity fluctuation to less 

than 4% of minimum drying air velocity, and hence minimise droplet bounce.  As with 

most of these devices, the body of the cantilever is contained within a box to minimise 

disturbance due to external draughts, but in this device the air within the box is heated 

to the same temperature as the main drying chamber.  This removes vibration from 

temperature gradient induced draughts through the entry slit of the cantilever into the 

drying chamber.  The deflection of the wire was recorded by analogue video and digital 

image analysis.  Resolution was 0.007mg, and calibrated accuracy within 0.05mg.  

Hysteresis was excluded by a repeatability check that the wire returned to the calibrated 

position for the weight after repeated manual displacements.  Repeatability was found to 

be better than resolution when there was no airflow, and at 0.01mg, only just greater 

than resolution when there was airflow.  Droplet drag force was corrected for by 

calibration with non-volatile spherical droplets.  Where the droplet shape deviated from 

spherical during drying, it was assumed that the drag force was equal to that of a 

spherical drop of the same weight.  This explanation is not entirely coherent, as the 

weight and the drag are not separately measured.  However, the authors state that they 

checked the assumption was valid by spot checks in various experiments, halting the 

airflow to determine the weight without conflation of drag.  It is claimed that the 

average error in the spot checks were within 0.02mg, less than the balance accuracy.   
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In Threlfall-Holmes and Ocone (2005), results were reported from a wire deflection 

device at ICI Wilton, constructed by Keith Appleby in 1993.  In using the apparatus, a 

number of limitations of the method became apparent.  Especially at higher velocities, 

the droplet vibrated in the airstream, with magnitude of oscillation between 10.-.100% 

of reading.  This vibration was corrected for, in as much as was possible, by manually 

analysing the video recording of the experiment frame by frame to determine an average 

position at a particular time.  This vibration is expected, due to wake vortex shedding 

for droplet Reynolds numbers 130.<.Red.<.400 (Clift et al., 1978, p103); Red varied 

between 130 and 350 in the experiments shown in the paper.  The vibration could be 

minimised by using a shorter or more rigid wire, but at the expense of precision; initial 

(maximum) deflection of the wire might only be 8mm, compared with the vertical 

position resolution, estimated at about 0.4mm.  However, this wire vibration limitation 

is now much less constraining than when the experiments were performed, as high 

speed digital cameras and motion tracking software have since become affordable.  

Certain materials appeared to dry more quickly than an equivalent water droplet.  This  

was shown to be neither a calibration nor a vibration induced error.  It is possible that 

the apparent anomaly was the effect of changes in droplet drag due to the morphological 

changes during drying.  An inflated droplet presents greater surface area for mass 

transfer, which genuinely enhances the mass transfer rate, but an inflated droplet will 

also present a greater cross sectional area in the flow, hence have greater flow resistance 

and therefore apparent mass loss on the wire deflection device.  The wire deflection 

device conflates the real enhancement in mass transfer rate with the artefact.  The only 

method reported that would deconvolute the effects on the data is intermittent 

measurements with the airflow removed.  Shape and size changes were certainly 

observed in some experiments, and reasonably accounts for some of the curious data 

reported, however, it is not clear that was the case in all instances, as the departure from 

expected behaviour could be immediate, whereas if caused by inflation of the droplet 

during drying, some delay would be expected whilst any such expansion developed. 

The details of several other wire deflection devices are included in Table 1 (Sano and 

Keey, 1982, Nešić and Vodnik, 1991, Yamamoto and Sano, 1992, 1995).  These have 

no unusual features described that merit further discussion in the text. 
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3.5.3 Electronic microbalance 

There are a few reports of a droplet suspended on a wire attached to an electronic 

microbalance (Kwapinski and Tsotsas, 2004, Taniguchi et al., 1999, Hirschmann et al., 

1998, Furuta et al., 1984, cited in Hecht, 1999).  This has the advantage that the droplet 

mass is measured directly, without calibration.  Also, the air flow can be horizontal, so 

that drag on the particle causes minimal mass loss and mass errors from flow induced 

vibrations, although both Kwapinski and Tsotsas (2004) and Taniguchi et.al. (1999) use 

vertical air flow, causing the same problem with apparent loss of mass as the wire 

deflection method.  This may explain why these studies were limited to around 1m/s 

maximum air velocity. 

The apparatus of Taniguchi and Asano (1994) simultaneously measured droplet weight 

and temperature.  The device was subsequently modified to also simultaneously 

measure projected surface area (Taniguchi et al., 1999).  The air was dehumidified and 

the dry air humidity measured.  The flowrate was controlled coarsely using a spill valve 

just after the inlet fan, and finely with an in-line needle valve.  A large and small heater 

in series were used, presumably intended for precise control over a wide temperature 

and flowrate range, although this is not explicit in the paper.  The air entered the test 

section through a convergent-divergent nozzle with a flow straightener.  The test section 

was 70mm square by 166mm long, with a window for a digital video microscope.  The 

droplet surface area was calculated by image analysis software, calibrated to within 1% 

accuracy by stainless steel spheres of known diameter.  The droplet was hung at the tip 

of a 50µm thermocouple connected to a datalogger.  The thermocouple was attached to 

the end of a 150mm long by 6mm diameter glass tube which was hung from an 

electronic balance.  The droplet was placed on the end of the thermocouple via a feed 

syringe and a traversing mechanism for aligning the feed tube and suspension wire.  The 

data acquisition was continuous, with a sampling interval of two to five seconds.  The 

balance precision was 0.2mg.  Maximum air velocity was 0.72m/s, and maximum 

temperature was 120°C.  Droplets were 2mm diameter. 

The droplet suspension method of Hirschmann et al. (1998) used fifty rather large 

(1.1mm) particles held on a wire lattice, to achieve measurable mass changes on drying 

with the 0.1mg resolution balance.  Hence average drying rates were measured, with a 
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mathematical correction applied from ensemble to single particle drying kinetics.  Very 

low air velocities were required in order to avoid balance error.  

McMinn and Magee (1996) describe apparatus to measure the drying curve of starch 

gels using a microbalance.  They cleverly use a recirculating wind tunnel, which permits 

a large air velocity without a large heating element.  It is not clear whether the inventory 

of air within the tunnel was sufficient that the humidity did not vary much during the 

drying, or whether the tunnel purge flow and measured humidity were used to 

minimised and/or correct for humidity accumulation.  Unfortunately it was large 

cylinders of starch gel rather than single small droplets that were being dried, so the 

details of the experimental design are not portable to the current application. 

Kwapinski and Tsotsas (2004) describe an apparatus where the sample holder was 

connected to a 1µg resolution electronic microbalance by a magnetic coupling.  This 

avoided direct contact, so air temperatures up to 350°C were possible.  It also acted to 

absorb the vibration of the droplet and suspension wire that were induced by the 

airflow.  It was reported that this reduced noise in the drying curve sufficiently that no 

data smoothing was required until the air velocity exceeded 1m/s.  The device was only 

capable of drying wet particles, not droplets, for reasons that are not explained.  A dry 

particle of molecular sieve was glued to the tip of the wire, and then moistened. 

3.6 Summary  

The various literature reports of devices are summarised in Table 1.  The selection of a 

method that is appropriate to the objects of the current study is made in the following 

chapter. 
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Table 1:  summary of experimental methods for measuring droplet drying kinetics.  

Asterisks indicate references from Hecht's table (1999) which it has not been possible to 

obtain to check details. 
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CHAPTER 4 - DESIGN OF A NEW APPARATUS TO MEASURE 

DROPLET DRYING KINETICS 

The confluence of the droplet size effect on morphology, and the effect of morphology 

on drying rate, requires that droplets of the correct order of size must be measured in 

order to obtain representative drying rate data.  This is not a new observation: 

Alexander and King (1985) comment on the need to measure droplets of correct size to 

obtain the correct morphology.  It is an exceedingly challenging measurement task, 

however.  A typical 50µm diameter spray-dried droplet has a volume of 65 picolitres.  

In industrial practice, feed solids concentration is typically high, and water may account 

for only half the initial mass of the droplet; 30.ng of water.  It will be shown later that 

the Acoustic Atomiser produced particles around 300µm diameter, but even these large 

droplets contain no more than 14µg of water. 

Measuring droplets as small as are found in a spray dryer presents challenges other than 

the sensitivity of the mass loss measurement.  At 200°C typical, 300°C maximum inlet 

temperature in a spray dryer with the materials of interest to this study, the timescale for 

drying is very short, just a few seconds.  To obtain equivalent droplet Reynolds 

numbers, the flow velocity must match that found in industrial dryers.  Whilst the 

superficial velocity in the main body of the dryer is typically in the region of 0.1.-.1m/s, 

the greatest drying rate is where the hot gas is introduced into the chamber at the same 

point as the atomiser, where gas velocity is typically 25.-.30.m/s (Schwartzbach, 2000).   

The majority of the apparatus described in the literature rely on scaling by dimensional 

analysis, so large droplets in slow airflow can be measured whilst maintaining the 

droplet Reynolds number of the small droplets in fast airflow encountered in the spray 

dryer.  The benefits of this approach are manifest: less absolute mass loss precision is 

required, larger droplets are easier to create and to manipulate, and slower airflows are 

cheaper to engineer, and easier and safer to work with.  In contrast, the device required 

for this study must be capable of making measurements of small droplets in hot, fast 

airflows.  It is apparent that under such extreme conditions, it will never be possible to 

obtain good data: indeed, one would be well content with any data.  Table 1 shows that 

in most of the devices reported in the literature, the ranges of airflow temperature, 

velocity and humidity are all less than the ranges of those operating variables in a spray 

dryer.  Hence the devices were almost always extrapolating from the measured values to 
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some extent.  The approach adopted in this new design is an apparatus that will operate 

over a wide range of droplet diameters and air velocity, temperature and humidity.  This 

can be used to make series of measurements from mild conditions where high accuracy 

can be obtained, (and comparison with literature data made), through to extreme, high 

error conditions where the measurements provide a reality check for the extrapolations.  

Additionally, size dependent morphology effects can potentially be characterised from 

discontinuities in trends over the range of a variable, especially if there is simultaneous 

imaging of the drying droplet experiments with which to cross-correlate the data.   

A final criterion, which arises from the high air velocity, is that any direct measurement 

of mass loss from the droplet must be perpendicular to the flow velocity, so that 

vibration induced by wake vortex shedding is orthogonal to the plane of the mass 

measurement. 

4.1 Selection of appropriate measurement technique 

The literature contains many ingenious methods for elucidating droplet drying kinetics. 

No single method is perfect, but the review indicated that the thin-layer and acoustic 

levitation techniques were not suitable for this study, and ICI had previously tested 

acoustic levitation, rotating capillary, free-falling droplets and wire-deflection devices.  

Even the most carefully constructed cantilever device reported so far (Lin and Chen, 

2002) has a resolution of 7µg, equivalent to the total mass of a 240µm diameter water 

droplet, and an accuracy of 0.05mg, equivalent to the mass of a 460µm diameter water 

droplet.  It is not until 2mm diameter that the accuracy is a negligible 1% of a water 

droplet mass.  These devices also measure mass loss in the direction of the air flow, and 

hence conflate mass loss and drag, and become noisy at high droplet Reynolds number 

due to wake vortex shedding.  

The aerodynamic levitation technique has many appealing features.  However, it is 

cumbersome to vary operating parameters over a range of conditions, due to the need to 

maintain the just-suspended criterion.  The deciding factor disqualifying it from this 

study, however, was that at the early stage of the project when the apparatus design was 

conceived, a safe, available and affordable technique could not be found that was 

capable of measuring the mass loss by humidity difference.  The extreme sensitivity 

required from such a humidity instrument can be appreciated by considering the air flow 
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in a 25mm diameter duct, which will be shown later to be a sensible size for a single 

droplet drying wind tunnel.  Taking a moderate air velocity of 1m/s in this duct, there is 

4µg/s water flowrate, even when the air has been dried to -40°C dewpoint; and 20mg/s 

at temperature and humidity conditions equivalent to a typical spray dryer outlet 

condition.  This is to be compared with the total mass of 70ng in a 50µm droplet, and 

14µg in a 500µm water drop.  The thermal conductivity detector used by Hecht (1999) 

was reported to be extremely sensitive, but required nitrogen rather than air flow, as the 

elements were destroyed by exposure to oxygen when hot.  In that study, a very low 

flowrate purge of nitrogen was used.  In this study, where it is intended to produce 

blasts of drying gas, and the operator will require access to the test chamber to place and 

remove droplets, nitrogen flow is unacceptably hazardous.  Groenwald et al. (2000, 

2002) report the use of a high accuracy dew-point hygrometer to measure humidity 

change, but on investigation the commercially available devices were all limited to 

180°C maximum operating temperature by solder joints in the sensor, and had long 

integration times, so were unsuited to the measurement of small droplets, where the 

drying may be completed in just a few seconds.  An IR gas analyser (Langrish et al., 

1991) was too expensive for this study. 

Should a suitably sensitive and rapid humidity instrument become available, the 

aerodynamic levitation technique is worthy of further investigation.  It could be used to 

compare results with the device described here, to check for artefacts from tethering.  It 

would not require a second apparatus to be built from scratch:  the air flow control, 

conditioning and flow calming stages could be re-used.  Such re-use is seen in the 

literature, for example the electronic microbalance device described in Taniguchi et al. 

(1999) is an extension of the device used by Chuchottaworn et al. (1984) to infer 

evaporation from droplet diameter. 

The remaining droplet drying measurement technique is where the droplet is suspended 

from an electronic balance.  The major disadvantage of this method was that until very 

recently, microbalances of sufficient accuracy to measure the drying rate of a single 

droplet were exceedingly costly, very susceptible to random error from external 

vibration, draughts, etc., and not designed for hanging a wire underneath the balance 

pan.  Hence the recourse to experimental ingenuity such as that demonstrated in 

Hirschmann et al. (1998), where a fifty particle array was assembled on a wire lattice, in 
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order to provide sufficiently large overall mass for the mass loss on drying to be 

measurable. 

Further disadvantages are common to all wire suspension devices. 

It is exceedingly hard to make a simultaneous temperature measurement without 

affecting the primary mass loss reading.  If the suspension wire is a thermocouple, then 

the torsion in the electrical connection leads will affect the load on the balance cell.  If a 

second, independent, very fine thermocouple is inserted into the droplet (in the trailing 

edge to minimise disruption to airflow), more heat is conducted into the droplet, and 

also surface tension forces will tend to pull the tips of the two wires together, leading to 

artefacts in the balance trace.  

A practical difficulty is the droplet dispensing and placement upon the wire tip.  Hecht 

(2002) has estimated that perhaps one in ten droplets of about the desired size were 

successfully placed.  Such a high success rate demonstrates considerable experimental 

technique. 

The final disadvantage common to all wire-suspension techniques is that drying occurs 

preferentially on the leading edge, whereas a droplet in a spray dryer is free to rotate in 

the airflow.  Although it appears intuitively obvious that the constraint from rotation 

would lead to artefacts, and many authors express this concern, it is not actually clear 

that the published data supports the concern.  Mitra et al. (1992) and Büttiker (1981) 

both observed that untethered droplets remain in the same orientation once surface 

solidification had begun.  Hull (n.d.; 1988?) reported that differences observed by 

scanning electron microscopy between particles of the same product dried on the 

rotating capillary device and a production dryer as were much less than between 

different products.  Walton (2000) reports "strong similarity" between industrial spray-

dried powder and that obtained from tethered single drop drying experiments.  There are 

few comparative studies of the different single droplet drying methods, but Jones and 

Smith (1962) reported that the mass transfer measurement was unaffected between 

aerodynamic levitated and tethered particles.  El-Sayed et al. (1990) reported qualitative 

agreement in the sequence of morphological development between suspended and free-

falling droplets. 
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Considering all the alternatives, it is believed that developments in the capabilities of 

ultramicrobalances make the droplet suspended from a balance method the best 

available compromise to tackle the particular constraints of this application.  A device 

with the accuracy of the one proposed here has not previously been reported.  A 

particular aspect of the design which is novel and key to attaining the target precision, is 

a pressure balancing concept described later, that avoids artefacts from frictional forces 

from the air flow on the wire connecting the droplet to the balance. 

The device has largely been constructed, but the remaining work of completion, 

commissioning, beneficial operation and validation of results in a spray dryer 

computational model would form at least one additional doctoral research project. 

4.2 Description of the new apparatus 

The new apparatus is shown as a schematic flowsheet in Figure 8, in detail in the line 

diagram Figure 9 and in the annotated photographs Figure 10.  A highly sensitive 

ultramicrobalance (UMX2, Mettler-Toledo) (WE901 in Figure 9) with 10-7g precision is 

used, which is sufficient to obtain a drying curve down to about 300µm droplet 

diameter.  In practice, this has been found by others to be about the lower limit of size at 

which a droplet can be placed upon a wire, and even then with considerable ingenuity 

and skill (Lin and Chen, 2002, Hecht, 2002).  The update rate is eight readings per 

second, which is sufficiently rapid to obtain at least a few data points with which to 

construct a drying curve for even the smallest droplets in the hottest, fastest air.  The 

balance is provided with an underpan hook from which the droplet suspension wire can 

be slung, although there is a severe constraint that the suspension assembly must weigh 

less than the 2g maximum load capacity of the balance.  The key problem, is to devise a 

means of blowing an air stream over the droplet, suspended from the balance, without 

introducing so many sources of error in the balance reading that the signal is swamped 

by the noise. 

It is desirable to make the measurement chamber the smallest possible diameter.  This 

minimises the volume flowrate of air, the heater duty, and the cantilevered length of the 

suspension wire in the flow (and therefore the axial deflection due to drag).  However, 

the minimum chamber diameter is limited by empirically established guidelines of 5% 

of area and 1/5th diameter for the maximum size of obstruction that can be placed in a 
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wind tunnel airflow without wall effects changing the airflow pattern around the droplet 

(Barlow et al., 1999, EIA/JEDEC, 1999).  The wind tunnel internal diameter has been 

chosen to be 22.1mm to match a standard tube bore.  This permits droplets up to around 

4.5mm diameter to be measured, which as discussed later is about the largest size that 

has been found not to distort excessively under self-weight.  

A supply of compressed air, dried to -40°C dewpoint, is heated in the apparatus to a 

controlled temperature using a custom made 4kW helical annular electrical heater 

(Rapid Response Heat Exchanger, Watlow Inc.) (B101 in Figure 9), and precisely 

rehumidified with demineralised water fed by a metering pump (Encynova Travelcyl) 

(J701 in Figure 9).  The air flowrate is measured cold using a high and low ranged pair 

of thermal mass flowmeters (Brooks) (FT101 and FCT102 respectively in Figure 9).  

The lower ranged meter has an integral flow controller, with a 1s response to step 

change.  Higher flowrates are controlled with an air regulator (PRV21 in Figure 9).  The 

air velocity around the droplet is calculated from the density at the temperature in the 

droplet measurement chamber.  In consequence, the accuracy to which the air velocity 

around the droplet can be established is limited by the accuracy of the temperature 

measurement, rather than the flowmeter.  It would be desirable to measure the air 

flowrate directly at the potentially high temperature in the measurement chamber, but at 

the time the apparatus was specified, no instruments were available that were fit for this 

arduous duty. 
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Figure 8:  schematic flowsheet of the new droplet drying measurement apparatus 
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Figure 9:  line diagram of the new droplet drying measurement apparatus 
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Figure 10: photographs from two angles of the new droplet drying measurement 

apparatus 
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4.3 Minimising sources of error 

As a key feature of the design brief was improved accuracy, it was particularly 

noticeable when reviewing the literature that only Lin and Chen (2002) devote 

concerted attention to identifying and evaluating sources of error in their device.  

Elsewhere in the literature there are only occasional remarks to indicate that error 

sources have even been considered let alone quantified.  A couple of studies note that 

there could be great variation in drying time between droplets dried under notionally 

identical conditions (Charlesworth and Marshall, 1960, Sano and Keey, 1982).  A 

working assumption is that it will be necessary to generate ensemble average drying 

curves from a large number of repeat experiments, but most authors show drying curves 

obtained from only a single droplet experiment, and only Nešić and Vodnik (1991) 

explicitly say that they performed 10-20 repeats to generate each evaporation curve. 

Similarly, surprisingly little attention is devoted to the processing of the data obtained.  

This has also been observed by Kemp et al. (2001), who reviewed methods for 

processing the data from drying kinetics rigs, concluding that a cubic spline curve fit to 

the data gave least smoothing artefacts. 

In this design, a careful error analysis was conducted in order to determine the required 

precision and accuracy of all aspects of the instrumentation, from the primary sensing 

elements to the analogue/digital converters.   

The need to correct the air flowrate measured at ambient temperature for the 

temperature and pressure in the measurement chamber is shared with most of the 

devices reported in the literature.  The intent is that the measurement chamber is cool 

whilst the droplet is placed, and then the hot airflow is introduced, so the temperature 

measurement must also have a very fast response.  It is not possible to achieve both the  

required speed and accuracy with a single element, so there are two measurements of 

the chamber temperature, one with a Class 1 Type T thermocouple, in the smallest 

available size for minimum thermal lag, and the other a 3mm diameter PT100 element 

(both sensors TC Thermocouples) (TE205/1 and /2 respectively in Figure 9).  The 

chamber absolute pressure is determined from a micromanometer (Furness Controls 

FCO12/332) (PDIT306 in Figure 9) for gauge pressure together with a barometer for 

atmospheric pressure (Druck RPT) (PI390 in Figure 9). 
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4.3.1 Balance artefacts 

Although the balance is supplied with noise filtering algorithms good enough to obtain 

stable readings to the balance precision on a normal laboratory bench, these algorithms 

are designed for variation around a constant weight, for the normal use of this 

instrument.  To avoid introducing damping artefacts into the reading, it is necessary to 

disable the internal damping algorithms, to draught screen the balance carefully (not 

shown in photographs Figure 10), and to insulate it from structure-borne vibration with 

an isolation table.  The isolation table consists of a block of approximately one tonne of 

concrete, on top of which are two stages of marble slabs supported on pneumatic 

isolation mounts (Fabreeka). 

The loadcell of the balance is sensitive to draughts and can only withstand a maximum  

temperature of 40ºC, very much lower than the 300ºC maximum temperature in the 

measuring chamber, so it has been necessary to isolate the balance thermally from the 

measurement chamber.  The wire on which the droplet is suspended from the balance 

must therefore necessarily enter the drying chamber through a hole.  The dynamic 

pressure of the airflow through the drying chamber will give a pressure differential 

between the drying chamber and the balance, and drive an air flow through the annular 

gap between the wire and its entry hole, which will exert a vertical drag force on the 

wire, resulting in a balance error which is considerably greater than the balance 

resolution, so cannot be ignored.  It has been found impractical to completely eliminate 

this source of error.  However, by encasing the balance in a sealed chamber (Figure 11), 

and by careful design of exhaust diffuser (Figure 12), the dynamic pressure in the 

measurement chamber can be recovered, and by adjustment with a balance valve (V12 

in Figure 9), trimmed so that the pressure differential between the measurement and 

balance chambers is minimised and the equalisation time is of the shortest practicable 

duration - calculated to be no more than 0.5s in the worst case.  The differential 

pressures are determined by the aforementioned micromanometer, with two sensors, one 

between the measurement and balance chambers, and one between the measurement 

chamber and atmosphere. 
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Figure 11:  sketch of balance and measurement chambers 
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Figure 12: plans of exhaust diffuser  

4.3.2 Axial deflection of droplet and wire 

It is essential to ensure that the force of the airstream does not deflect the droplet 

sufficiently far from the vertical that the suspension wire chafes against its entry hole 

into the measurement chamber.  In addition, if the wire is deflected from the vertical, 

then a resolved component of the axial drag force on the droplet is balanced by tension 

in the suspension wire.  This tension will be detected as apparent mass gain by the 

balance Figure 13.  The greater the angle of deflection, the greater the fraction of the 
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drag force that is seen as a balance artefact.  Thus it is desirable to maximise the 

stiffness of the suspension wire in order to minimise deflection. 

The deflection of the droplet has been estimated by a force balance, where the drag 

force on the wire and droplet were estimated from correlations for drag force on an 

isolated sphere and long wire respectively.  This assumes that the droplet suspension 

wire is sufficiently thin that it does not noticeably alter the streamlines around the 

droplet, and therefore the drag on the droplet, and correspondingly that the droplet is 

sufficiently small when compared to the length of the wire exposed to the flow, that the 

streamlines around the wire, and therefore the drag upon the wire, are not noticeably 

affected by the droplet. 

  

Figure 13: sketch of force balance on droplet suspension wire 

The conclusion of this analysis was that, especially for larger droplets and at high air 

velocities, the high and temperature insensitive Young’s Modulus of tungsten is 

required.  125µm diameter Tungsten wires have been obtained (Goodfellow).  It was 

subsequently found that there is a previous citation of the use of Tungsten suspension 

wires (Tanno et al., 1988), although they do not explain why they selected this material.  

They do note that heat transfer rate from the air to the wire to the droplet needs to be 

compensated for, and provide a calculation method for doing so.  They also tested 

quartz fibres, and found that there was then no need to correct for heat transfer.  The 

most satisfactory solution, at least at moderate drying air temperature, is probably to 

coat a Tungsten wire core with a thin layer of PTFE, which would also reduce the 

tendency of the droplet to climb the wire.  The very tip would need to be uncoated to 

ensure droplet adhesion. 
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4.3.3 Droplet distortion 

Two effects contribute to droplet distortion.  Initial distortion of the liquid droplet on the 

wire is an artefact of the measurement technique and should be minimised.  Shape and 

size changes during drying are neither practicable nor desirable to suppress, however. 

It is readily observed, and noted by many authors in this field, that a droplet suspended 

on a wire has a tendency to adopt a slightly pendant shape (Figure 14a), so 

characteristically indeed that Hecht (1999) refers to it as "the pendant drop method".  

This shape is of course not representative of a droplet in free flight.  There are actually 

two related effects at work in distorting the drop.  The first is capillary creep up the 

wire, a function of the interfacial tension between the liquid drop and the solid surface 

of the wire.  The second is the force balance between the gravitational attraction of the 

mass of the droplet and the interfacial tension between the liquid and the air.  Correct 

solution of the force balance is exceedingly complex (O'Brien, 1991), but a simple force 

balance is sufficient to place a theoretical upper bound of just under 7mm diameter for a 

spherical water drop, rather less for materials of industrial interest which often exhibit 

air-liquid surface tension in the range 35.-.45.mN/m.  It was found that near spherical 

water droplets could be created when the diameter was 2.-.3mm (Figure 14b), but the 

upper limit on droplet diameter was much less than the theoretical prediction.  This may 

reflect trace impurities in the water lowering the surface tension. 

 (a)   (b) 
Figure 14: droplets on a wire. (a) 30% starch dispersion in water, (b) water.  Scale 

graduations are mm. (ICI - David Willox/Roger Watson) 
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4.3.4 Droplet oscillation 

Several authors have noted that droplet oscillation enhances the evaporation rate (Yao 

and Schrock, 1976, cited in Nešić and Vodnik, 1991, Oteng-Attakora and Mumford, 

1994b).  Oteng-Attakora and Mumford hypothesised that the stretching of the droplet 

surface film or crust during oscillation increased porosity.  Walton (2004) reports 

droplet oscillation in all experimental conditions in his single droplet drying 

experiments.  This in itself will not necessarily give rise to an artefact in measurement, 

however.  It is consistent with the observed behaviour of droplets in sprays, as seen in 

Figure 15. 

  

Figure 15: droplet oscillation; droplet stream from breakup of a single jet of 40% 

solution of glycerol in water, captured under strobe lighting. (ICI - Fanny Briand) 

4.3.5 Premature evaporation 

Experience gained with the wire deflection apparatus previously described showed that 

even with skill, it is tedious and slow to place a droplet accurately upon the tip of the 

wire.  Even if the flow over the droplet has been stopped, radiation from the preheated 

chamber walls causes evaporation during the placing of the droplet and the 

commencement of the experiment.  It has been reported that radiation accounts for a 

large fraction of the overall heat transfer at or above 200°C (Yuen and Chen, 1978, 

Walton, 2004). 

Therefore it is desirable if the measurement chamber can be kept cool and draught free 

during the placement of the droplet, so the apparatus has been provided with a hot-air 

diversion, so that the flow and temperature controls can be stabilised on start up, 

without heating the chamber. 

Also to minimise radiative heat transfer, the glass measurement chamber is externally 

silvered except where a direct view on the droplet is required.  This also provides a 
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means to dissipate any accumulated static charge.  This is helpful to avoid small 

droplets adhering to the chamber walls in preference to the wire tip. 

4.3.6 Radial deflection of the droplet 

By far the most troublesome aspect of the design of the apparatus was found to be the 

minimisation of radial deflection of the droplet, which is manifest directly as balance 

error.  The velocity profile of the air must be flat, so that there is no lift on the drop 

from differential velocity over the top and bottom surfaces, which are manifest as a 

systematic error in balance reading.  Also, turbulent velocity fluctuations must be 

minimised, again to suppress lift from differential velocity, but manifest as random 

error in the balance reading. 

Uniform, parallel and low turbulent airflows are also the specification for wind tunnels, 

so wind tunnel design methodology was employed, especially Barlow et al. (1999), the 

standard reference work.  Additional references have been used both for clarification 

and also to inform design decisions where alternatives are presented (Mehta and 

Bradshaw, 1979, Bradshaw and Pankhurst, 1964, Eckert et al., 1976).  Both flow 

uniformity and reduction in the magnitude of turbulent velocity fluctuations are 

achieved by passing the airflow through a series of fine gauzes, where non-uniformities 

are reduced by that for a single screen raised to the power of the number of screens 

(Barlow et al., 1999).  Goodfellow Ni008705 is the commercially available mesh which 

best meets the criteria of temperature and corrosion resistance, small mesh size relative 

to the droplets, and maximum pressure drop coefficient whilst having sufficient open 

area to avoid a known flow instability (Mehta and Bradshaw, 1979, Barlow et al., 

1999).  However, even with this screen, theory suggests that between fifty and one 

hundred screens in series are required to sufficiently damp out turbulence.  In order to 

perform their job as intended, these screens must be held taught to prevent "flapping" 

instabilities, and parallel to each other, perpendicular to the direction of air flow.  

Clearly this is exceedingly difficult to construct.  The solution arrived at, in 

collaboration with Mr. John Putson of Cordell Fine Mechanics, is shown 

diagrammatically in Figure 16 and in the photograph Figure 17.  The outer pressure 

shell is one and a half inch outside diameter stainless steel tube, with a rather thin wall.  

This outer tube was filled with annular aluminium split rings, with inner diameter equal 

to 22.1mm wind tunnel test section, and with outer diameter just fractionally less than 



Chapter 4- Design of a new apparatus to measure droplet drying kinetics 

 86  

the inner diameter of the housing tube.  These aluminium rings were made 6mm thick, 

dictated by a rule-of-thumb that minimum inter-screen separation should be 500 gauze 

wire diameters (Barlow et al., 1999), and also by the requirement that the ring must be 

pushed square down the tube without rotating and jamming against the tube wall.  A 

circle of screen was punched out from a sheet, and wrapped around the aluminium ring, 

so that the action of pushing the screen and ring together down the tube acted both to 

tauten the screen and to hold it in place.  This required several iterations in order to get a 

reasonable degree of restraint of the screen by the close fit, without tearing the screen in 

the process.  Finally, the stack of discs and screens was compressed as the Swagelok 

compression joints were pulled up.  This ensured that the screens were tightly retained.  

The shortest possible sections of tube were required, to minimise the length that the 

rings had to be slid down the tube.  The minimum length of tube between two Swagelok 

joints is available as a special "port connector" fitting.  This has the particular advantage 

for this purpose that it is a machined part, with a much closer tolerance on circularity 

and inner diameter than a drawn tube.  However, at one end these port connector fittings 

do not draw up against the tube stop.  A custom tube stop insert was constructed, and is 

shown in Figure 17, to compress the disc stack whilst ensuring that the pressure seal 

was maintained. 
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Figure 16:  sketch of assembly method for retaining the series of flow conditioning 

screens into the wind tunnel 
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Figure 17:  photograph showing an exploded view of the first wind tunnel section with 

flow conditioning screens.  Four of the retaining split rings are shown bottom right.  

Behind and above them in the mouth of the adjacent wind tunnel section, a partially 

inserted ring and its screen can be seen.  Behind the wind tunnel section is the back 

retaining stop, and then the tee-piece inlet junction to the flow diversion.  The sheet of 

screen from which the section have been cut is shown in the foreground.  In order to cut 

the circles from the sheet neatly without tearing the delicate screen, they were punched 

straight through the plastic envelope in which the screen was supplied. 

 

4.4 Conclusion 

An apparatus based on an ultramicrobalance has been designed to address limitations 

with other techniques used to measure the drying rates of droplets of film forming 

materials. 
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CHAPTER 5 - DROPLET SIZE DISTRIBUTION FOR THE 

ACOUSTIC ATOMISER 

In a preliminary version of the analysis which follows in Chapter 6, a log-normal 

distribution was used as a model for the droplet size distribution from the Acoustic 

Atomiser.  It had previously been established that a log-normal distribution appeared to 

be an acceptable fit to sieve-sizing data for a material made using the Acoustic Atomiser 

(Dataset B shown Figure 25).  However, the log-normal spread parameter σg, (the 

geometric standard deviation) was not estimated from that set of sieve-sizing data alone, 

but from two metrics used in ICI, which were based on both research and production 

plant experience.  The first metric was a historical rule-of-thumb that 95% of the weight 

distribution of spray-cooled product ("Material A") from the Acoustic Atomiser was 

less than 4/3 of the mode size.  The second metric was polydispersity index (PDI).= 

0.4., where the PDI is defined as (dv90-dv10)/dv50 by percentiles of the weight 

distribution.  The PDI value was established as the smallest spread that was obtained for 

experimental spray-dried powder ("Materials D"), when all the powder dried to a single 

morphology (Fiannaca and Threlfall-Holmes, 2005).  PDI.=.0.4 is thus a measure of 

inherent atomisation spread, as little as possible conflated by spread due to morphology 

changes on drying.  The two metrics both gave 1.17 as the fitted value for σg.  Such 

agreement is most satisfactory, and was sufficient to demonstrate the principle of the 

analysis method in Chapter 6, as presented in a conference paper (Threlfall-Holmes, 

2008). 

As the Acoustic Atomiser is novel, there are no independent published sources of its 

droplet size distribution and the metrics described above for the spread of the particle 

size distribution lack authentication.  In this chapter a more rigorous fit to a range of 

experimental size data will be substantiated, before proceeding to the analysis in the 

next chapter.  Since the physics of atomisation are not completely understood, it is not 

the normal expectation to be able to select an appropriate function a priori, and a 

selection of likely candidates are tested.  It is found that the best fits are obtained with 

the Stable distribution.  This has not previously been reported to be applicable to spray 

size distributions.  Surprisingly, there appears to be some scientific rational for the 

values of the Stable parameters, tending towards the Gaussian limit for inviscid fluids, 

and moving towards the Lorentz limit as the viscosity increases.  This is consistent with 

behaviour as a simple or damped forced resonator respectively. 
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5.1 Droplet size distribution data sources 

There are a variety of data sources for the droplet size distribution from the Acoustic 

Atomiser.  The sources are described in the following sub-sections: tabular and 

graphical data are in Appendix A.  The data sources cover a variety of materials, spray-

dried and spray-cooled, with mean sizes varying over two orders of magnitude and 

flowrate ranging over four orders of magnitude.  The data have been measured by a 

selection of techniques.  A few datasets are measurements of liquid droplet size, but 

most are measurements of solid particle product, i.e. incorporating dispersion in particle 

size due to morphology and size changes during solidification, as well as due to 

variations in droplet size from the atomiser.  Whilst the datasets are thus individually 

rather noisy, we can be confident in the robustness of a fit to such a range of data. 

5.1.1 Water 

A single laminar jet of water was measured by Phase Doppler Anemometry (AEA 

Technology PD Lisatek).  The PDA technique is considered the reference standard in 

sprays sizing, as it measures size and velocity simultaneously from first principles of 

optics, and hence requires no calibration.  It measures droplets passing through the 

intersection of four laser beams.  This point is rather small - around 1mm³ in our 

instrument.  Hence the measurement in this case is naturally of droplets in the stream 

issuing from a single jet.  To obtain the size distribution from a whole sprayhead, would 

require traversing the head so that each jet in turn was in the probed volume. 

The PDA instrument measures a number distribution, in discrete diameter bins rather 

than continuous.  The droplet size distribution peaks from a single resonant nozzle are 

very sharp, and this PDA is an old design, so the bins are not as finely spaced as would 

be ideal for resolution of the shape of the peak.  However, the spacing of the bins is 

sufficiently fine that there is little error in the instrument's conversion to volume 

distribution using the upper limit diameter of the bin, and it is this data which is quoted 

in Appendix A.1.  Volume distribution data have been chosen, as this is the natural 

representation of data from sieve sizing, which is not only the most abundant source of 

size data for the Acoustic Atomiser, but also is discretised rather coarsely, so the 

alternative strategy of conversion of sieve sizing data to a number distribution for 

comparison with PDA data would create serious error. 
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5.1.2 Spray-cooled materials A and B 

Datasets A (Appendix A.2) are sieve size data for a spray-cooled product Material A 

made in production plants operating at between 60 and 80.te/hr.  Dataset A1 is from 

samples collected at approximately half-hourly intervals during a commissioning trial of 

the Acoustic Atomiser.  Datasets A2 and A3 are daily production logs from two 

different plants, each covering a month of operation. 

Datasets B (Appendix A.3) are sieve size data for spray-cooled product Material B, 

made in a 2.kg/hr pilot tower at ICI Wilton. 

5.1.3 Spray-dried material C 

Material C was a spray-dried product, but the size distribution data are of the liquid 

droplets in the spray using PDA (Appendix A.4).  Datasets C1 and C2 are 

measurements made on single nozzles.  Dataset C3 is the cumulative droplet volume 

distribution curves from a 1.te/hr Acoustic Atomiser, compared with the rotary atomiser 

that it replaced.  The original PDA frequency data tables are not available for this 

dataset, and the data have been digitised from the secondary source of the plotted graph. 

5.1.4 Spray-dried materials D 

Materials D are a range of spray-dried powder products made in a pilot spray dryer at 

ICI Wilton at 1.-.5.kg/hr.  Powder product size distribution was measured for some 

samples by sieve sizing (Appendix A.5), and for others by image analysis (Oxford 

Lasers Visisize) (Appendix A.6). 

In the Visisize image analysis sizing, the powder was fed from a hopper using a 

vibrated feeder, with the vibration amplitude carefully adjusted so that the flow of 

powder through the field of view of the instrument was maintained sufficiently dilute 

that individual particles could be properly resolved.  The image analysis algorithm in 

the instrument software determines an area and a perimeter of the objects passing 

through the field of view, with corrections and rejections for various artefacts such as 

out of focus objects and dust spots on the lens.  The diameter of an equivalent circle is 

calculated from the area.  The area and the perimeter together can be used to test the 
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assumption of sphericity, in a shape factor which is the ratio of the perimeter of an area-

equivalent circle to the measured perimeter; 

 
Perimeter

Area.2
ycircularit

π
=   

Most of the datasets in Appendix A.6 were filtered for gross non-circularity during 

acquisition.  A further analysis of non-circularity has been carried out, see section 5.2.2. 

The Visisize instrument creates a count of particles as a function of their area.  As with 

the PDA data, this number distribution has been transformed into a volume distribution.  

The original datafiles were available electronically, so the conversion to volume could 

be made directly on the 0.1µm precision to which the diameter data was computed by 

the instrument.  Hence there is negligible loss in precision through the transform.  With 

the lens and camera used for these measurements, the calibrated resolution is 7µm/pixel, 

with a minimum resolvable diameter of 30µm.  The loss in precision in the transform 

from a number to a volume distribution is an order of magnitude less than the inherent 

resolution accuracy of the data even in the fine droplet tail, where the quantisation by 

pixilation of area and perimeter measurements is most severe. 

It can be seen in Figure 18 that the number distribution is quantised by discrete number 

counts at a diameter increment.  These horizontal bands in the number distribution 

become cubic curved bands in the volume distribution: these are not a reprographic 

artefact.  Each point on these frequency plots represents the frequency at a 0.1µm 

diameter increment.  There may be many empty size bins between each plotted point, as 

shown on the inset graphs: this is not apparent on the full range axes due to finite 

printable and visible line width compared with bin width.  The empty bins need not 

confound numerical fitting algorithms, hence numerical fits have been made to this 

unprocessed data.  However, the visual impression of the frequency spectra is 

erroneous.  Hence to depict the goodness-of-fit of theoretical distribution curves to these 

data, they have also been plotted as histograms, where the bin size was manually 

iterated until it was sufficiently large that spurious peaks of noise disappeared but the 

underlying shape of the distribution was not lost.  Bins were typically a fixed width of a 

few µm, up to typically 120% of the fiftieth percentile of the volume distribution (dv50), 

and thereafter the bins were linearly increased in bin width, typically to 10.-.20µm 

width at maximum diameter.  It is emphasised that this is purely to aid visual evaluation 

of fit curves, and the arbitrary histogram bin size is hence defensible. 

Eqn. 5-1 
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D3.7 Visisize number distribution
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D3.7 Visisize volume frequency distribution
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Figure 18: effect of count quantisation in the Visisize data 
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5.2 Droplet size distribution artefacts 

5.2.1 Steady satellite droplet formation 

When the driving frequency for jet break-up is not quite at resonance a small satellite 

droplet can form between each main droplet (Bousfield et al., 1986) (Figure 19).  The 

breakup still appears to be uniform under strobe lighting.  The satellite droplets are 

small.  In the materials D spray drying experiments, the jets were imaged with a low 

resolution CCD camera, through a sight glass and across the body of the spray dryer.  

Hence it is understandable that the operator did not always observe the satellite droplet 

formation and tune them out.  However, the consequence of steady satellite formation is 

that some of the particle size distributions are bimodal (e.g. Figure 27).  Satellite 

droplets can also occur by a different mechanism, for non-Newtonian jet rheology from 

the collapse of "beads-on-a-string" formations (Figure 20) (Clasen et al., 2006a).  Such 

"beads-on-a-string" structures would have been visible to the operator, so are a less 

credible explanation for the bimodal product size distributions in these experiments. 

 
Figure 19: steady satellite droplet 

formation from a vibrated laminar jet 

80% glycerol, 500µm nozzle, 4.3m/s jet 

velocity, 2.3kHz driving frequency.  Fanny 

Briand, 1999, ICI Wilton. 

 

Figure 20:  sequence of evolution of 

iterated beads-on-a-string structure 

(Oliveira and McKinley, 2005). 
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5.2.2 Orifice size variation 

Multiple peaks that are too similar in peak location and volume fraction to be 

satisfactorily explained as satellite droplet peaks can be observed in a number of the 

materials D datasets.  A particularly clear example is Dataset D7.9 (Figure 21).  The 

Acoustic Atomiser used in these experiments had orifices in removable inserts, so that 

the diameter, number and patternation of the orifices could be varied between 

experiments.  Inconsistency in the orifice diameters fitted to the atomiser is the most 

likely explanation for the multiple peaks.  The manufacturing tolerance on the diameter 

of the orifice in the inserts was not always as tight as would be desirable.  Great care 

was taken to segregate orifices of different diameters, but it is also possible that sets of 

orifices were mixed up. 

 

Dataset D7.9
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Figure 21: example of multiple peaks, best explained as error in orifice diameters 

5.2.3 Agglomeration 

Some agglomeration was observed in some of the spray-dried materials D, either by 

visual examination of the product in the powder collection bucket or by examination 

under a microscope.  These agglomerates appeared to be composed of discrete particles 

stuck together, rather than a fused mass.  This strongly suggests that agglomerates 

formed during the late stages of drying from solid but still sticky particles rather than 

wet liquid droplets.  The presence of agglomerates indicates that the powder may not 

have been fully dry.  The result of agglomerates in the product is noisy scattered tertiary 
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peaks in the droplet size distribution at large sizes (e.g. Figure 27).  As it occurs at large 

sizes, the data scatter from agglomeration may appear to be large in a volume 

distribution, even when the number of agglomerates in the sample was small. 

A check has been made on the Visisize datasets for diameter dependent asphericity (e.g. 

agglomerates or aspherical morphologies in the spray-dried powder).  For each 

individual particle count recorded in the instrumental output data file  (i.e. data prior to 

binning), the circularity parameter has been calculated, and plotted as a function of 

diameter.  An example is shown Figure 22, plots for other datasets can be found in 

Appendix A.6. 

Material D8.11 Visisize data - check for circularity
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Figure 22: example of diameter-circularity plot check for diameter dependent 

asphericity in Visisize datasets 

In all cases, these plots show that whilst the range of asphericity varied between 

samples, in any one sample the range of particle asphericity was almost independent of 

diameter, even when the presence of agglomerates was recorded in the experimental 

log.  That is, for each sample, the primary particles cover as great a range of asymmetry 

as do the agglomerates, and the shape factor cannot be used to filter out secondary peaks 

in the size distribution caused by agglomerates.  The observable trend in all datasets to 

reduced asphericity with increasing particle diameter is most credibly an artefact of 

quantisation due to pixilation in the measurement. 

5.3 Droplet size distribution function 

A log-normal distribution was assumed in the first instance.  The physics of atomisation 

have not been sufficiently well understood for functional forms to be selected a priori, 
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but the log-normal distribution has been found to fit a number of naturally occurring 

particle size distributions and is widely used in sprays analyses (Lefebvre, 1989).  It has 

already been noted that the log-normal distribution had previously been considered to 

be a satisfactory model for particle size data of material made using the Acoustic 

Atomiser (Dataset B shown Figure 25).  Particular mathematical attractions of the log-

normal distribution are the ease of transformation from number to weight distributions, 

the known and mathematically relatively straightforward forms of frequency and 

cumulative distributions, and that the probability density function is normalised and 

goes to zero at zero diameter. 

However, it has been found that the log-normal distribution is not a satisfactory fit to all 

the data.  In particular, the tails are not well fitted: using statistical tools the tail 

behaviour is shown to be deviant even for the fit to the Material B data which were the 

original reference.  Fitting the tails is crucial to the credible validity of the analysis 

performed with the fitted distribution, which relies on comparison of the large diameter 

tails between distributions.  A better fit function has been sought. 

5.3.1 Alternative fitting functions 

The distributions selected for testing include those used for sprays analysis in the 

literature, either commonly (log-normal and Rosin-Rammler), or rarely (hyperbolic), 

and also others selected from statistical literature sources which appeared to have a 

potentially appropriate peak shape (Laplace, Lorentz/Stable).  McLaughlin (1999) was 

found to be an especially useful source, as not only are an unusually large range of 

distribution functions described, they are expressed in parameterisations which are 

conducive to data fitting.  The log-logistic and its extension, the Burr distribution, were 

selected from that source as showing potentially the right sort of peak shape.  However, 

when tested against the data neither was found to be any more satisfactory than the log-

normal distribution, and they will not be considered further. 

To fit the size distribution data to theoretical distributions, in most cases the Non-Linear 

Curve Fitting tool (NLFit) in Origin 8 (OriginLab Corp.) was used.  This relies on the 

Levenberg-Marquardt algorithm to minimise the chi-squared deviations of the fit curve 

from the experimental points.  Functions definitions in the tool library were used where 

available, but in many cases it was necessary to code a function definition.  The Stable 
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distribution function would have been excessively complex to code into NLFit, and in 

this case an alternative strategy was employed, using a Visual Basic macro behind an 

Excel spreadsheet to call a third party program to generate the Stable distribution 

datapoints.  This is further described in section 5.3.8. 

An Excel spreadsheet was also used for the bimodal fits.  Multimodal fitting is possible 

for many of the NLFit library functions, but excessively complex to code for novel 

functions used just once as a screening test. 

The selection of an appropriate fit function for the Acoustic Atomiser size distribution is 

made more complex by the variable quality of the experimental data.  The high 

resolution of the image analysis datasets (D4, D7, D8) most clearly shows the shape of 

the primary peak (Figure 27 for example), but in all these datasets there are secondary 

peaks which mask the tails of the primary distribution.  The sieve sizing data for 

materials A and B are unimodal, but the diameter resolution is low, so the peak shape 

and kurtosis are not well defined.  The PDA data for water and material C have such 

sharp peaks that the diameter resolution is low, even though the bin size is fine.  To be 

sure that a distribution function is satisfactory, it must be tested in parallel between the 

various datasets, in order to check goodness-of-fit to both peak and tails.  However, it is 

impractical and unnecessary to test every possible distribution function against every 

dataset.  To screen the fit functions, datasets A1, B, C, D4.15 and D7.3 were chosen as 

representative of the range of sources.  These show the features of the primary peak at 

as high a resolution as the measurement technique permitted, with as small secondary 

peaks as possible.  Most of the functions were clearly inappropriate when tested against 

any one of these datasets and so were rejected without testing them against even the 

remaining screening datasets.  Only the theoretical distributions which performed 

satisfactorily in screening tests were fitted to other datasets.   

The variable quality of the data also explains why a fit function is required at all.  We 

could calculate moments of the raw data without an assumed distribution, but especially 

the higher moments that would be required for the analysis in Chapter 6 would be 

unusably variable due to the coarseness of the sieve fraction data and the secondary 

peaks in the Visisize data.  The fit function acts as a filter for the data artefacts. 

In the initial screening, volume distributions normalised by the total volume were used, 

i.e. including any secondary peaks where present.  This is ultimately inadequate: a good 
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fit to the primary peak is impossible if both data and fit are normalised, but there is an 

appreciable volume fraction of the data in secondary peaks.  With distribution functions 

which appeared on preliminary screening to be about the right shape, the volume 

fraction in the primary peak of the data was corrected by an iterative procedure using 

the fit function.  The procedure is described in Appendix B.  Confining the fit to just the 

primary peak data is based on the assumption that the secondary peaks arise from 

ascribable physical phenomena and are not part of the primary atomisation distribution.  

The validity of this assumption has been tested by performing multimodal fitting 

(section 5.4). 

5.3.2 Determining goodness-of-fit 

The goodness-of-fit has been tested by visual comparison on the volume density, the 

cumulative volume, and a delta stabilised probability (DSP) plot.  This latter 

presentation is derived from the stabilised probability (SP) plot of the cumulative data 

against the value for corresponding diameter predicted by the cumulative fit function.  

Figure 23 is an example of the SP plot.  Both the data and fit probabilities are scaled by; 

 ( )psin
2

sp 1−

π
=   

where p is the probability value and sp the scaled value.  This transformation makes the 

variance more uniform across the distribution, and hence is a much more sensitive test 

of fit to the tails than a standard probability-probability (p-p) plot (Michael, 1983, 

Nolan, 2009).  If the theoretical distribution tested were a perfect model for the data, the 

plotted points would all lie on the x.=.y line.  Thus it is straightforward to evaluate 

goodness-of-fit visually from the SP plot.  In addition, a goodness-of-fit statistic DSP has 

been defined (Michael, 1983): analogous to the Kolmogorov-Smirnov statistic for a 

standard p-p plot, it is the maximum deviation of the data from the theoretical fit.  This 

statistic can be tested against confidence limits, which depend only on the sample size, 

not upon the form of the distribution being tested (Lloyd, 1984).  This has the huge 

advantage that the goodness-of-fit statistic can directly be compared between fits of 

different theoretical distributions to the same dataset.  The 95% confidence limits have 

also been plotted, to further facilitate the visual evaluation of goodness-of-fit. 

Eqn. 5-2 
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Material A1: unconstrained Rosin-Rammler fit

 

Figure 23: example of the stabilised probability (SP) plot 

Michael (1983) only computes the confidence limits up to a sample size of 100, whilst 

the Visisize data have thousands of discrete diameters.  There are no literature 

tabulations of the limits for large samples, and the method Michael describes for the 

computation of the confidence intervals is daunting.  The pragmatic approach of 

extrapolating from a curve fit to Michael's tabulated values has been adopted (Appendix 

C).  Even though the extrapolation curve fit is very near perfect to the precision of 

Michael's tabulated data, such gross extrapolation is of course conjecture, and it 

incorrectly asymptotes to Dsp.=.0.0548 rather than zero as n.→.∞.  It is fit for the 

purpose of discriminating between the various theoretical distributions tested, but it is 

wise to be especially cautious when the test statistic for the Visisize datasets is close to 

the confidence limit.  Such caution is anyway recommended for the Kolmogorov-

Smirnov test on which the DSP test is based (Pollard, 1977). 

Most of the area in the SP plot is unused, and it is hard to magnify the area of interest 

around the perfect fit line.  Visual assessment of goodness-of-fit is further enhanced in 

the delta stabilised probability (DSP) plot, where the deviation of the data from the 

theoretical fit is plotted against the theoretical fit.  In the DSP plot the perfect fit line is 

y = 0 and the acceptance bounds become horizontal (e.g. Figure 24), 
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Figure 24:  example of the delta stabilised probability (DSP) plot 

When performing the fits, from the available sources only the data from where it was 

indicated that the Acoustic Atomiser was running normally in steady state has been 

selected.  Each dataset is a group of one or more individual determinations of size 

distribution at a given operating condition.  If the sprayhead was truly in steady state, 

each individual determination of size distribution in any dataset would be a sample of 

the same time-invariant population.  Hence the fit has been performed on the combined 

data in each dataset.  Especially for the larger datasets, fitting to each and every 

determination would be computationally intensive.  It would also detract from the 

purpose, which is to clarify from the mass of experimental size distribution data, a 

single fit curve which is characteristic of this type of atomiser.  It can be seen in Figure 

25 that the expectation of time invariance appears reasonable: the fits to each dataset 

and the fit to the combined data are only trivially different to each other.  In principle it 

would be possible to demonstrate quantitatively the time invariance of the realisations 

within the dataset using the 2-sample Kolmogorov-Smirnov test (Lloyd, 1984) to test 

for confidence that two fitted sample size distributions came from the same population.  

In practice in this instance it would not improve the reliability of the inference about 

time invariance.  The datasets with multiple realisations are all by sieve-sizing or PDA, 

with only a small number of datapoints in each realisation, and hence large acceptance 

bands on the 2-sample Kolmogorov-Smirnov statistic.  In this circumstance, the visual 

check of similarity of the distribution fits between realisations in a dataset (as depicted 

in Figure 25) is just as precise. 
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5.3.3 Log-normal distribution 

The definition of the log-normal distribution in the Origin NLFit tool library is a 

generalised form, with a y-offset parameter y0 and an area parameter A.  These were set 

to fixed values of 0 and 1 respectively in order to obtain the zero baseline normalised 

log-normal distribution required for this analysis. 

in Origin's notation; 
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and in the more normal notation used for sprays, for the weight density distribution 

w(d), with parameters geometric mean and standard deviation, dg and σg respectively; 
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Material B appears to be a reasonable fit to the log-normal distribution Figure 25, with 

w.=.ln(σg).=.0.148.±.0.002  =>  σg.=.1.160.±.0.003 from the combined data, which is 

only trivially narrower than the value of 1.17 derived from the rule of thumb in the 

original analysis.  However the DSP plot reveals deviation in the tails. 

The log-normal distribution is not a good fit to Material A data (Figure 26), especially 

in the large diameter tail.  It is possible to force a better fit to the large diameter data (by 

setting a minimum constraint on parameter w in the solver), but only at the expense of 

underestimating the peak magnitude by ~50%, which is highly undesirable. 

The log-normal distribution fails to capture the peak shape correctly for the Visisize 

data (Figure 27), and both tails are too narrow.  As described in section 5.1.4, the 

numerical fitting has been made to unbinned data (top plot), but the fits are also shown 

on binned data (middle plot) for convenient visual assessment of the fit.  In the middle 

plot, two fit curves have been plotted: with parameters fitted to the entire range of data, 

and with parameters fitted only to the primary peak.  It is observed that the fit curves are 

almost coincident.  This was observed to be the case with other distribution functions.  

Both for brevity, and also to make it clear that it is the quality of fit to the primary peak 

that is of most interest, only the data match for the primary peak is shown for the other 

distributions functions in the following sub-sections, and the goodness-of-fit statistic 

DSP is taken as the maximum deviation in the fitted range of the primary peak. 

Eqn. 5-4 

Eqn. 5-3 
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Figure 25:  log-normal fits to material B sieve size distribution data 
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Figure 26: log-normal fits to dataset A1 sieve size distribution 
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Figure 27:  log-normal fits to Visisize dataset D4.15 
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5.3.4 Rosin-Rammler distribution 

The Rosin-Rammler distribution (Eqn. 5-5) is the most widely used sprays distribution, 

largely because of its mathematical simplicity (Lefebvre, 1989).  The function is not in 

the Origin NLFit library, so Eqn. 5-6 was coded as a user function, with initialisation 

for the fit parameters for test dataset A1 from Microsoft Excel linear regression of 

ensemble averaged data (Figure 29).  To linearise the data, double logs are taken: this 

will tend to smooth any dataset considerably, yet in Figure 29 it is already obvious that 

the fit will be poor.  The Rosin-Rammler is often poor at fitting the large and small 

diameter tails of size distributions (ibid., and personal industrial experience), and it can 

be seen in Figure 28 that this expectation was realised, the fit to the large diameter tail 

data is worse than the log-normal. 
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Where dRR is a characteristic diameter and q is a width parameter. 

Rizk and Lefebvre have proposed a modification to the Rosin-Rammler which is 

asserted to be better fit to the large size tail (Eqn. 5-7) (Lefebvre, 1989).  The mass 

frequency distribution was again coded as a user function in Origin NLfit, with 

initialisation parameters from Microsoft Excel linear regression of ensemble averaged 

data.  Despite the originators' assertion, the best fit (Figure 30) is virtually identical to 

the parent distribution (Figure 28). 
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Figure 28:  Rosin-Rammler fits to sieve sizing dataset A1 
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Figure 30:  Rosin-Rammler Rizk-Lefebvre fit to dataset A1 
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5.3.5 Laplace distribution 

The Laplace distribution (Eqn. 5-8) is symmetrical about the mean, and hence unlikely 

to ultimately be the best fit to the right skewed size distribution data.  However, not 

only is the peak shape more credible as a model than the distribution functions tested 

thus far, the hyperbolic distribution is a superclass which includes the Laplace 

distribution as an instance.  The promising fit of the Laplace distribution to the data 

indicates that it is worth tackling the complexities of the hyperbolic distribution. 
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where dm is the mean, mode and median, and w is a width parameter. 

It can be seen in Figure 31 that the peak shape shows much better concordance with the 

data than seen thus far, as evidenced by the approximately horizontal central portion of 

the DSP plot, although the sides of the base of the peak are overpredicted, and the fit is 

rejected by the Dsp parameter.  When the peak area is corrected (according to the 

method described in section 5.3.1 and Appendix B), the fit is numerically acceptable 

(Figure 32), although it can be seen from the ripple around the baseline in the DSP plot 

that it is qualitatively not quite the correct description.  Note that for the peak area 

corrections for dataset D4.15 (here for the Laplace fit and subsequently), the  estimate 

of the lower limit of the base of the peak was adjusted from 194µm to 210µm.  This was 

to ensure discrimination of the primary peak from the secondary peak that arises from 

satellite droplet formation. 

The fit to the example sieve dataset A1 (Figure 33) qualitatively shows more clearly 

than for dataset D4.15 (Figure 31) that a skewed version of the Laplace function would 

be required for good agreement, but it is again quantitatively accepted by the Dsp 

parameter (the acceptance band is considerably wider for the n.=.13 sieve data than for 

the n.~.3000 Visisize data).  

Eqn. 5-8 
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Figure 31:  Laplace fit to primary peak of Visisize dataset D4.15 
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Figure 32:  Laplace fit to area-corrected primary peak of dataset D4.15 
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Figure 33:  Laplace fit to dataset A1 

5.3.6 Hyperbolic distribution 

The three and four parameter log-hyperbolic distributions have been shown to be a good 

fit to spray size distributions (Stanton et al., 1998, Xu et al., 1993), although they appear 

not to be widely used.  This is probably due to a combination of the mathematical 

complexity and the difficulties and instability of fitting.  Xu et al. (1993) have shown 

that for the 4-parameter log-hyperbolic (4P-LH) distribution, with the likely accuracy of 

spray size data, the δ scale parameter is so dominant at the distribution tails that the 

distribution can be well fitted with arbitrary combinations of the α parameter and the β 

asymmetry parameter.  Although this does not allow for easy comparison of parameters 

between fits to different datasets, it is an inconvenience rather than a fatal weakness.  If 

the fit is good, either it can be visually compared, or some statistics of the distributions, 
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for example the moments, can be computed and compared between datasets as proxies 

for the distribution parameters. 

The 4P-LH distribution is given by; 

 ( ) ( ) ( )



 µ−β+µ−+δα−
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β−α
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)d(w 22
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with parameters α, β (asymmetry), δ (scale) and µ (location), and K1 is a modified 

Bessel function of the second kind, first order.  The function has again been coded into 

the Origin NLFit non-linear least squares fitting tool, using the routine s18adc() from 

the NAG function library for C to calculate K1. 

The cumulative function is undefined.  The cumulative volume fraction has been 

calculated by numerical integration of the density function. 

Stanton et al. (1998) recommend plotting the hyperbolic shape triangle (Figure 34) to 

check that the dataset lies within the parameter space of the distribution.  The bounds 

are given by Eqn. 5-10, and the letters on the bounds in Figure 34 indicate limiting 

distributions, N = normal, L = Laplace, E = exponential, H = hyperbolic. 

 1=ξχ±=ξ   

Values of parameters χ and ξ for the dataset are calculated from the skewness γ1 and 

kurtosis γ2 which are themselves determined from moments mn about the mean of the 

distribution of the raw data, where the mean d  can be found from the ratio of the zeroth 

and first moment about the origin; 
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  Eqn. 5-11 

Eqn. 5-10 

Eqn. 5-9 
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A practical difficulty is immediately apparent: as noted earlier the higher moments of 

the distribution are sensitive to the large diameter noise caused by agglomerates.  For 

the example dataset D4.15 (which was selected as a test dataset precisely because the 

tertiary agglomeration peak is least significant), γ1.=.1.7 and γ2.=.4.9 when all the data 

are used, and (χ,.ξ) = (0.6, 1.3) plots outside the hyperbolic shape triangle.  When only 

the primary peak data are used to calculate the moments, γ1.=.-0.75 and γ2.=.1.8 and (χ, 

ξ) = (-0.25, 0.77) plots within the hyperbolic shape triangle, although the negative skew 

indicates a left skewed distribution.  This arises from the choice of truncation of the 

primary peak. 

A three parameter log-hyperbolic distribution has been proposed, which does not 

exhibit the parameter instability (Xu et al., 1993).  The reduced parameter space of the 

3P-LH distribution is shown shaded in grey in Figure 34.  It can be seen that the 

example dataset does not lie within these bounds.  Hence the 3P-LH distribution will 

not be considered.  
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Figure 34: 4P-LH distribution hyperbolic shape triangle for dataset D4.15 
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In principle initial estimates of the (α,.β,.δ,.µ) parameter set can be obtained from the 

(χ,.ξ) co-ordinates, but it would be unwise given the known instability of the solution 

and the observed variation in the (χ,.ξ) co-ordinate depending on the choice of peak 

data truncation.  An alternative graphical method is recommended to determine initial 

parameters (Stanton et al., 1998).  This was found to not only to give inconsistent 

estimates for the parameters, but at least for the tested data, the location parameter µ is 

simply and well estimated as the mode diameter by inspection of the frequency plot of 

the data.  Convergence was stable for any reasonable initial guess for α, β and δ, 

provided that µ was initially held fixed at this estimated mode diameter whilst good 

estimates for α, β and δ were computed by the NLFit least squares fit algorithm.  The 

solver could then be re-run with all four parameters free.  The laborious graphical 

estimation of input parameters could be entirely dispensed with. 

The fitting was found to be more stable than the literature would suggest, repeatably 

converging to the same parameters for a given input dataset.  However, in contrast to 

the distribution functions tested so far, the fit to the whole dataset was clearly different 

to the fit to just the primary peak, both in the shape and the values of the parameters: the 

fit is undesirably sensitive to the selection of the data range.  The fit to the whole dataset 

was so poor it is not shown. 

The distribution function parameters on all plots are quoted rounded to the significant 

digits of the least squares calculated error in that parameter reported by NLFit.  

Considering Figures 35, 36 and 37, the fractional error in the α, β and µ parameters was 

satisfactory, but the error in δ was found to be up to 2δ.  This is far from satisfactory. 

The fit to the primary peak of dataset D4.15 with all parameters free is shown in Figure 

35.  The agreement is worse than for the Laplace distribution (Figure 31).  The DSP plot 

is above the perfect fit line, which indicates that the fit is right-skewed relative to the 

data: this can be seen in the middle plot by the divergence of the fit from the data at the 

right hand base of the peak.  A better fit is obtained (Figure 36) by fixing µ at a visual 

estimate of the peak diameter, although this fit is still qualitatively and quantitatively 

unsatisfactory and no better than the mathematically simpler Laplace distribution. 

The calculated curve has approximately the right shape peak, so the lack of numerical 

fit may be due to the uncorrected peak area.  It can be seen in Figure 37 that the fit is 
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much improved when the peak area has been corrected according to the procedure 

described in section 5.3.1 and Appendix B.  However, it is still by the measure of the 

Dsp parameter, quantitatively a less good match than that obtained for the Laplace 

distribution with the same peak area correction (Figure 32), although qualitatively the 

ripple around the baseline is reduced with the 4P-LH distribution fit, apart from the 

divergence near the lower bound of the peak which gives rise to the large value of Dsp. 

There is a concern about the large fractional uncertainty in one of the estimated 

parameters.  Whilst the fit repeatedly converges to the same parameters for the same 

dataset, there is no apparent pattern to the values of the parameters between datasets.  

The agreement was only achieved with considerable computational effort.  There is no 

explicit cumulative distribution.  Despite these concerns, the fit in Figure 37 is too good 

to reject the 4PLH distribution without further testing. 
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Figure 35:  unconstrained 4-parameter log-hyperbolic fit to 1° peak, dataset D4.15 
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Figure 36: fixed µ,  4-parameter log-hyperbolic fit to 1° peak, dataset D4.15 
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Figure 37: 4P-LH fit to area-corrected primary peak of datset D4.15 
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5.3.7 Lorentz distribution 

In the same way as the Laplace distribution was considered before the hyperbolic 

distribution, the simple symmetrical Lorentz distribution will now be considered before 

tackling the complexities of its generalised form, the Stable distribution. 

A physical justification might be made for the Lorentz distribution (Eqn. 5-12, with 

width parameter w and characteristic diameter dc) for the droplet size distribution from 

these resonance jet break-up nozzles with viscous fluids, as the distribution arises in 

physics from the solution for a damped harmonic oscillator excited by a resonant 

sinusoidal fluctuation.  In which case, intuitively the best fit would be expected to the 

PDA droplet data, the sizes of which are distributed only by the resonant nozzle, 

without conflation of size changes during solidification.  In fact it is seen in Figure 38 

and Figure 39 that the Lorentz distribution is not a good fit to the PDA data, whilst the 

log-normal is good or excellent.  Unusually for a spray size distribution, which are 

normally right skewed, these figures also show that the normal distribution is a good 

fit:- typically almost indistinguishable from the log-normal. 
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However, it can be seen in Figure 40 that the Lorentz distribution is the best match yet 

to dataset D4.15, with only a little ripple around the baseline of the DSP plot.  Note that 

the distribution tracks the baseline for a short distance into the masked tail data.  The 

peak boundaries for area adjustment were set very conservatively, so this quantitatively 

correct extrapolation is indicative that the fit really is a good model of the data. 

When fitting the PDA datasets, the obvious outlier datapoints have been excluded, for 

example the blips at 210 and 260µm in water nozzle A (see table Appendix A.1) which 

are from inspection almost certainly spurious single particle counts.  Origin NLFit has 

been used as a first estimate of parameters, which were then adjusted where necessary 

to obtain the best fit on the DSP plot, in order to obtain the fairest comparison between 

fit functions.  For Material C2, where there are four datasets, only the combined data is 

shown on the frequency plot, as it otherwise becomes too confused: the individual 

datasets and the combined data are shown on the cumulative and DSP plots. 

Eqn. 5-12 
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Figure 38: Lorentz, normal, and log-normal fits to PDA water data 
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Figure 39: Lorentz, normal and log-normal  fits to PDA data, Material C 
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Figure 40: Lorentz fit to area-corrected primary peak of dataset D4.15 
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5.3.8 Stable distribution 

The Stable distributions are a class of wide-tailed distributions whose instances include 

the Gaussian and Lorentz distributions (Nolan, 2009).  They are also known as Levy 

skew alpha stable distributions after Paul Lévy who was the first to characterise them.  

There are four parameters: an index of stability 0.<.α.<.2, skewness -1.<.β.<.1, scale 

γ.>.0 and location δ.  Alpha is two for a Gaussian and one for the Lorentz distribution.  

As alpha tends to zero the Stable distribution tends towards the Dirac delta function. 

The Stable distribution is defined by a Fourier transform of its characteristic function 

(Eqn. 5-13).  There are a variety of parameterisations (Eqn. 5-14 - Eqn. 5-16).  Index α 

and skewness β are the same in all of them, but definitions of the scale γ and location δ 

parameters differ.  The most frequently quoted is the 1-parameterisation (Eqn. 5-14), 

which is favoured for demonstrating mathematical properties of the distribution, for 

example asymptotic behaviour.  Nolan (2009) recommends that the 0-parameterisation 

(Eqn. 5-15), which is everywhere continuous, should be favoured for numerical fitting 

and statistical inference.  However, the analysis in Chapter 6 uses distributions where 

the diameter is non-dimensionalised around the mode, hence for the current purpose the 

2-parameterisation (Eqn. 5-16) is preferred, as δ is defined to be the mode, in contrast to 

the 0 and 1 parameterisations where δ is less intuitively defined.  As they are unfamiliar, 

the mathematical definitions of the parameterisations are included, but in practice 

Nolan's "STABLE" FORTRAN program (Nolan, 1997) has been used to perform the 

Fourier transform computations, and the mechanics of the solution of these equations 

need not be considered any more than would the mechanics of the calculation of the 

error function when fitting a Gaussian or log-normal distribution.  The equations have 

been rearranged from those given in Nolan (1998, 2009) in order to more clearly show 

the family resemblances and differences between the parameterisations. 
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0-parameterisation   

2-parameterisation   

Where m(α,β) is the mode of the standardised 0-parameterised distribution 

S(α,.β,.γ,.δ.:.0).=.S(α,.β,.1,.0.:.0) which is found numerically. 

The 0-parameterised Maximum Likelihood solver in Nolan's "Stable" FORTRAN 

program fails against the droplet size distribution datasets in this research, probably due 

to the secondary peaks in the tails, whether the secondary peak data is left in or elided as 

with the Origin NLFit solver.  The "Stable" solver is also a number distribution solver 

only: it takes a single column of data and calculates the number frequency from this.  

However, the "Stable" program will also generate tabular density and cumulative 

functions from input parameters.  An Excel macro was written (Appendix D) to 

generate the Stable input files, run the command line executable version "Stablec.exe", 

and read the "Stable.out" results file back into Excel to calculate Dsp.  The Excel Solver 

cannot be programmatically interrupted, so it was instead necessary to explicitly code a 

optimisation routine.  The inelegant approach of sequential direct substitution of 

parameters has been used.  The limited number of datasets required to be fitted does not 

justify the programming effort required to code a more elegant maximum gradient 

solver routine for example.  A large degree of manual intervention was required, with 

intelligent selection of input parameters, to avoid mathematical artefacts of shallow 

local minima far from a visually acceptable fit.  The parameter chosen to be minimised 

was normally Dsp, but in cases where there was a single "wiggle" away from an 
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otherwise excellent fit, attempting to minimise Dsp simply resulted in the whole curve 

being vertically translated on the DSP plot and the resultant agreement was much worse 

overall.  In these cases minimisation of the sum of the absolute deviations of all the 

datapoints away from the perfect fit line [notation Σ(∆sp) ] was used instead.  The Excel 

macro method was crude but fit-for-purpose.  A more elegant solution should be 

considered for future studies. 

Initially the Origin NLFit Lorentz fit to the data was used to generate iteration 

initialisation values for the parameters, where Lorentz dm and w are Stable δ and 2γ 

respectively in the 2-parameterisation and (α,.β).=.(1,.0) by definition in a Lorentz 

distribution.  However, this gave rise to an additional computation step.  It was 

subsequently found that adequate parameter estimates could be made by inspection.  A 

more serious weakness of using the best Lorentz curves as the initial estimates is 

assuming symmetry around the mode as the starting point.  The normal expectation for 

a sprays droplet size distribution would be positive skew.  Except at the Gaussian limit 

(α.=.2), Stable distributions are wide tailed.  The exclusion of the secondary peak data 

leads to the undesirable situation where a wide-tailed distribution is fitted to data where 

the tails have been truncated.  At least for moderate skew, the effect of skew on the 

shape of the distribution is seen most clearly at the tails.  It was found that when the 

truncated peak was considered in isolation, that a visually and numerically acceptable fit 

was obtained for β.=.0.  It was only when a wider range of the datasets and especially 

the bimodal distributions were fitted (see following section) that a skewed distribution 

was found to be a better fit to the data.  Figure 41 is the original symmetrical best fit: it 

has not been post-rationalised and re-plotted skewed.  Although the consequence of this 

decision is that the quoted values of the Stable distribution parameters vary between the 

monomodal and bimodal fits to the same data, the impact is insignificant upon the 

derived parameter of interest - the dv95 relative to the mode. 

The sensitivity of the DSP plot shows that the Stable distribution is in the small 

diameter limit not quite the correct description of the data.  However, the plot also very 

clearly indicates that the Stable distribution is an exceptionally good model over the 

vast majority of the range of the data. 

It can be seen in Figure 41 that the fit to dataset D4.15 is numerically slightly better 

than the Lorentz fit, although the slight ripple around the baseline is still present. 
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Figure 41:  Stable fit to area-corrected primary peak of dataset D4.15 
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5.4 Testing fit functions against the multimodal distributions 

If the observed secondary peaks at small sizes were truly solely due to either satellite 

droplet formation or orifice size variation, then they arise from the same physical 

mechanism as the primary peak, and a good fit function should be able to account for 

both primary atomisation and secondary satellite droplet peaks with meaningfully 

related parameters.  Two distribution functions have been shown to be plausible fits to 

the Acoustic Atomiser droplet size distribution data: the 4-parameter log-hyperbolic 

distribution (4P-LH), which has previously been applied to sprays size distributions, and 

the Stable distribution, which is novel in this application.  Fitting to the bimodal data 

has been used as a demanding test to resolve which distribution function is the best 

model for the data. 

An important property of the Stable distribution is self-similarity.  If the Stable 

distribution really were a good description of the underlying physical phenomena, then 

the secondary peak should come from the same (α,.β) family and vary only in the 

location parameter delta.  Mathematically self-similarity would be satisfied if the scale 

parameter γ varied also, but on an intuitive argument the width parameter γ should be 

the same for the primary atomisation and secondary satellite droplet peak as they arise 

from the same atomisation event.  As there is no previous reference to the use of the 

Stable distribution to describe the droplet size distribution of a spray, there is no 

evidence to support this postulate of constant γ between the peaks.  However, from 

consideration of the physical process, it appears to be a reasonable assumption to be 

tested against the data.  Hence in performing the bimodal fits α, β and γ have been 

constrained to be the same between primary and secondary peaks, and it is only the 

location parameter delta that has been permitted to differ.  Again intuitively it is 

expected that γ would widen with increasing number of nozzles, and also that for a 

given fluid with constant number and detailed mechanical construction of the nozzles, 

that the ratio of γ/δ should be constant as nozzle size (and hence δ) were varied.  

However, there are insufficient appropriately sequenced datasets available in this study 

to test these further postulates about γ.  

In contrast to the Stable distribution, it is unclear how the parameters of the 4-parameter 

log-hyperbolic distribution should be related between the primary and secondary peaks, 

as the parameters have less intuitive physical meanings. 
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Tertiary peaks at large diameter have been postulated to be artefacts due to 

agglomeration.  The agglomeration process is independent from the atomisation.  Hence 

it is not expected that the tertiary peaks should be exhibit self-similarity with the 

primary atomisation peak, or even that they should follow the same type of distribution.  

Thus the multi-peak analysis has been confined to bimodal primary mode atomisation 

and secondary mode at smaller diameter. 

The Excel worksheet and macro method described in the previous section has been 

extended to cover bimodal fits for the Stable distributions.  Each peak has been fitted 

separately, and then a linear combination of these curves has been applied to the 

combined data.  The volume ratio between the two peaks was first estimated by 

inspection, and subsequently adjusted if necessary.  A similar Excel spreadsheet was 

constructed to calculate the bimodal fits for the 4-parameter log-hyperbolic distribution, 

although in this case the distribution function can be calculated explicitly, within the 

worksheet cells, and the Excel Solver used to vary the parameters to minimise Dsp.  

Although the 4P-LH distribution fit to each individual peak was more convenient with 

the Origin least-square non-linear curve fit used earlier for the monomodal fits to the 

4P-LH distribution, the iteration required for the bimodal fitting would be excessively 

tedious to construct in Origin and hence a modified form of the Excel worksheet used 

for the bimodal Stable fits was a more efficient tool.  

If the secondary peak were truly only satellite droplets, regardless of how many jets 

there are in total in the sprayhead, there should not be more than one satellite droplet per 

primary droplet.  This sets an upper limit on the volume fraction of the secondary peak 

relative to the primary peak, if the physical mechanism were satellite droplet formation; 
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where d1 and d2 are the mode diameters of the primary and secondary atomisation peaks 

respectively.  In practice it was found that the ratio was much less than this limit for 

most datasets, consistent only a small fraction of the total number of jets forming 

satellites.  This is credibly due to nozzle manufacturing tolerance limitation combined 

with the narrow frequency window for resonant break-up of non-Newtonian fluid jets: 

the spray dryer operator observed controlled break-up in those jets in the camera view, 

but some out-of-field or out-of-focus jets were just out of tune and forming satellites. 

Eqn. 5-17 
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The small secondary peak size relative to the main peak is also consistent with scanning 

electron micrographs and mechanical attrition tests that were performed on the products.  

These showed that the particles were robust, with only a small quantity of broken 

particle fragments.  Hence there is no separately observable contribution to the size 

distribution from fragments as there is from agglomerates.  However, such fragments 

are still credible sources of some of the variation observed of the droplet size data from 

the fits, even were the calculated curves a perfect description of the atomisation physics. 

Some datasets were found to have a secondary peak that was both too large in volume 

fraction and too close in diameter to the main peak to be convincingly attributed to 

satellite droplet formation, but was better described as variation between orifice sizes in 

the sprayplate.  It is less defensible in this case that the Stable width parameter γ should 

be the same for each peak.  One of the nozzle diameters will give a jet that is excited at 

resonance from the driving frequency, and will have the value of γ characteristic of the 

resonant jet breakup.  Another jet emerging from the same sprayplate, driven at the 

same frequency, but from an orifice of different diameter, is unlikely to also be at 

resonance, and thus γ might be expected to be larger.  The assumption made here is that 

the operator would have tuned the driving frequency so that the largest number of jets 

appeared to be breaking up at resonance, i.e. the primary peak is the one expected to be 

at resonance.  Thus γ has been adjusted to fit the primary peak best.  The same γ was 

used to fit the secondary peak.  It is not often an excellent fit to the secondary peak - as 

anticipated by the discussion in this paragraph - but in only one case (dataset D7.7) was 

the value of γ fitted to the primary peak not an acceptable fit against the secondary peak.  

It was, however, acceptable for γ2/γ1.=.δ2/δ1. 

5.4.1 Discussion of multimodal fits to test datasets 

Comparing Figure 42 for the 4-parameter log-hyperbolic distribution fit and Figure 43 

for the Stable fit to dataset D4.15, both appear on inspection to fit the data reasonably, 

although both show some ripple around the baseline in the DSP plot, indicating that 

neither fit is perfect.  The 4-parameter log-hyperbolic distribution produces numerically 

the better fit, but the Stable distribution is more compelling in the maintenance of self-

similarity in the values of the parameters between the peaks: a better agreement than 

that shown in Figure 43 could be obtained by the artifice of letting the α,β,γ parameters 

float between peaks as was permitted for α,.β,.δ in the 4P-LH fit shown in  Figure 42. 
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Neither distribution function bottoms the trough around 200µm between the peaks.  The 

Stable distribution underestimates significantly the cluster of datapoints just greater than 

200µm.  When compared to the rest of the data range, there is rather more noise or 

spread in this cluster, which suggests that there may be an additional physical 

explanation behind this feature other than simply points mapping the locus of the 

primary atomisation curve.  A similar pattern of overestimation followed by under-

estimation can be observed at the lower-diameter base of the secondary satellite droplet 

curve in Figure 44.  Furthermore, the shape of this secondary atomisation peak is rather 

similar to the primary atomisation peak of a dataset not examined up to now, D7.3a 

shown in Figure 45.  The simplest explanation is that the Stable distribution fails to 

describe some feature of the physics.  However, it was considered interesting to explore 

whether the step around 200µm in dataset D7.3a could be described as a secondary peak 

merged into the base of the primary atomisation peak.  The unimodal Stable distribution 

fit is shown in Figure 46, the bimodal fit in Figure 47.  When these two figures are 

compared, it can be observed that the bimodal Stable distribution fit shows very good 

agreement with the data right down to the minimum resolvable size of the Visisize 

instrument.  In contrast in Figure 48, a bimodal 4-parameter log-hyperbolic distribution 

fit deviates from these data more than the monomodal Stable fit in Figure 46.  In the 4-

parametrer log-hyperbolic case the Excel solver failed to fit the secondary peak 

parameters entirely, so β2 and δ2 were constrained to match the primary peak, and α2 

only was solved to minimise Dsp. 

In principle, dataset D4.15 could similarly by fitted exceedingly closely by a 

quaternary-modal Stable distribution, but it would be complex to compute, and whilst 

mathematically it may be satisfying to obtain ever closer statistical descriptions of the 

data, it is less easily physically justifiable than the bimodal fits.  It is plausible that jets 

from out-of-spec nozzles were producing droplets with a second primary peak diameter, 

and all nozzles were not quite at resonance and forming satellite droplets, hence 

producing a quaternary modal distribution.  However, it is less credible that the same 

conditions pertained to both experiments D4.15 and D7.3.  Simpler and more plausible 

explanations are that either the Stable distribution fails to capture something of the 

underlying atomisation process, and/or that the atomisation size distribution peak has 

been distorted by morphological changes during drying. 
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Figure 42:  bimodal 4-parameter log-hyperbolic fit to dataset D4.15 
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Figure 43: bimodal Stable fit to dataset D4.15 
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Figure 44: Stable fit to secondary satellite droplet peak, dataset D4.15 
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Figure 45: dataset D7.3a 
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Figure 46: unimodal Stable fit to dataset D7.3a 
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Figure 47:  bimodal Stable fit to dataset D7.3a 
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Figure 48: bimodal 4P-LH fit to dataset D7.3a 
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5.5 Stable distribution fits to all datasets 

The Stable distribution performed better in the tests than the 4-parameter log-hyperbolic 

distribution.  The fits are almost always both qualitatively and quantitatively better, and 

the fit parameters are always less arbitrary, especially when applied to the bimodal 

distribution case, when the assumption of self-similarity of the distribution between the 

primary atomisation and secondary satellite droplet peaks works consistently for the 

Stable distribution, but erratically for the 4-parameter log-hyperbolic distribution. 

Stable distribution fits have been performed on all size distribution datasets.  Appendix 

A contains the plots.  The fit parameters, the Dsp goodness-of-fit statistic and the 

comparison with the 95% confidence level limiting value are summarised in Table 2.  

With bimodal fits, only parameters that differ for the secondary peak are tabulated.  The 

Dsp statistic is tabulated for both peaks individually, and also for the combined fit to 

both peaks.  Peak upper and lower limits are explicit where the fit is to a subset of the 

data.  The lower bound of the secondary peak is normally the dataset minimum, in 

which case the value appears in brackets.  In five cases, however, the smallest diameter 

data was discordant even with a bimodal fit, and the secondary peak lower bound was 

chosen to be greater than the dataset minimum.  In these cases, the Dsp statistic is shown 

for both the fit within the selected limits, and also from the dataset minimum. 

In all cases the agreement of the Stable distribution model with the data is acceptable at 

the 95% confidence level, and in most cases it is a comfortably small fraction of the 

limit.  The borderline fit of datasets D10.6 and D11.4 is attributed in Appendix A.5 to 

agglomeration: as indicated by the values in Table 2, when the largest sieve data are 

excluded (10 and 20% of the total volume for each dataset respectively), the 

concordance is comfortably within the confidence limits in both cases.  For the bimodal 

fits, the Dsp statistic for each peak in isolation is often relatively poor compared to the 

Dsp value for the fit to the combined peaks.  This is an artefact of the selection of the 

bounds.  The assumption was made that bounds could be chosen by inspection such that 

the contribution from other peaks was trivial.  In many cases, the peaks are too closely 

spaced for this assumption to be valid, unless the bounds are set so conservatively that 

there are too few data to be fitted to each peak to be able to meaningfully gauge the 

quality of the fit.  Hence the bounds have been chosen to be sufficiently wide to enable 

the fit to be judged, and in consequence there may be significant contributions from 

other peaks.  Thus the Dsp statistic for each peak in isolation looks poor relative to the 
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overall peak fit.  It should be noted, however, that even if poor by comparison, the Dsp 

statistic is still always within the 95% confidence limits, even for the peaks in isolation. 

Also shown in Table 2 are the polydispersity index of the volume distribution (PDIv) 

and the ratio of the ninety-fifth percentile to the mode of the volume distribution for the 

Stable distribution fits.  The average PDIv over all datasets is 0.4, and the average 

Dv,95./.dm ratio over all datasets is 1.33.  These are the same as the ICI metrics 

introduced at the beginning of this chapter.  The metrics were previously obtained, 

independently from the fitting that has been discussed in this chapter. 

5.6 Trend in Stable alpha parameter with feed liquor viscosity 

In section 5.3.7 it was hypothesised that the PDA data, for water and Materials C, 

should be the best fit to the Lorentz distribution.  In fact they were found to be good fits 

to the Normal distribution, which can be described as a Stable distribution with 

parameter α.=.2.  Water and Materials C have rather low viscosity.  The liquid feed to 

the atomiser for Materials D had higher viscosity, and the alpha parameter is smaller.  

Surprisingly, it can be seen from Figure 49 that the Stable alpha parameter is roughly 

correlated with the viscosity of the liquid feed to the Acoustic Atomiser.  A linear 

regression line has been plotted, not because the trend is necessarily supposed to be 

linear, but because there are many coincident datapoints, which lessen the visual 

impression of the trend.  The linear regression excludes the outlier data discussed in the 

following paragraph.  The viscosity data are the shear viscosity at the nozzle wall shear 

rate.  At the time the measurements were made, the CaBER instrument for measuring 

extensional viscosity that is described later was not available, and the conclusion of 

Chapter 10 that atomisation behaviour was best mapped by extensional viscosity had 

not yet been made.  Materials D have the greatest range of viscosity in Figure 49.  These 

materials were all aqueous carbohydrate dispersions, sometimes with an emulsified oil 

phase.  Starch molecules in solution were the only species that might give rise to strain 

hardening, and thus an extensional viscosity greater than would be predicted from a 

shear viscosity measurement.  Since the occurrence of starch molecules in solution was 

broadly similar between Materials D, it is a defensible assumption that the extent of 

strain hardening would be similar for all materials.  Thus the use of shear viscosity data 

in Figure 49 instead of extensional viscosity data should not alter the validity of the 

conclusion.  
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Figure 49: trend in Stable distribution α parameter with atomiser liquid feed viscosity 

Outliers from the trend of decreasing alpha with increasing viscosity are the Material A  

and dataset C3 production plant data.  This is not a difference between spray-

solidification and spray drying; Material B was spray-solidified as was Material A, but 

fits well to the trend, and C3 was spray-dried.  Material A was made using an earlier 

mechanically vibrated atomiser design, which may have given less uniform jet breakup, 

with more dispersion in the size distribution and hence larger tails.  However, the 

atomiser used for dataset C3 was the same type as used for C1, C2 and Materials D.  

9 datapoints at (0.1, 1.6) 

2 datapoints at (0.15, 1.3) 

2 datapoints at 
(0.2, 1.3) 

2 datapoints at each of (0.001, 2), (0.002, 2) and (0.02, 2) 
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3 datapoints at (0.02, 1.9) 
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The most satisfactory explanation for the outliers is increased dispersion in the size 

distribution from production scale atomisers, as the result of manufacturing tolerance in 

size of holes, where the overall size distribution is an ensemble of several hundred 

individual nozzle size distributions, each with a slightly different mean and width.  

Intriguingly and somewhat counter-intuitively, although α decreases for the production 

scale atomisers, the ratio of the 95th percentile to the mode of the volume distribution 

does not increase.  The analysis in Chapter 6 relies on the ratio of the large size tail 

diameter to the mode.  The data in Table 2 indicate that the analysis in Chapter 6 will be 

valid for production scale as well as pilot scale Acoustic Atomisers. 

5.7 Conclusions 

A selection of distribution functions has been tested against various Acoustic Atomiser 

droplet and particle size distribution datasets.  Although it has not previously been 

reported for use in droplet size distributions, the Stable distribution has been found in 

this research to be a better fit to the Acoustic Atomiser size distribution data than any of 

the fit functions commonly reported in the sprays literature. 

It is proposed that the Stable distribution is not only a good numerical fit to the data, but 

furthermore that it is in some way descriptive of the physics of atomisation.  The trend 

in alpha towards the Gaussian limit α.=.2 for inviscid liquids and towards the Lorentz 

limit of α.=.1 as the feed viscosity increases, is consistent with the physical description 

as a simple or damped forced resonator respectively. 
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CHAPTER 6 - ANALYSIS OF THE EFFECTS ON SPRAY DRYING 

OF NARROWER DROPLET SIZE DISTRIBUTION 

In this chapter it will be shown that a drop size distribution and residence time analysis 

gives insight into why large droplets behave so differently from small droplets in a 

spray dryer.  Although this analysis is straightforward and powerful, it has not been 

previously reported. 

The experimental observations and reasoning that led to the conclusion that plug flow 

residence time was a reasonable approximation for large droplets in a spray dryer was 

described in section 2.4.  It was observable because all the droplets from the Acoustic 

Atomiser had similar size and trajectory.  Other than initial velocity, the droplets have 

no "memory" of the type of atomisation.  The fraction of droplets with the same large 

size from conventional atomisers should be as comparatively unaffected by the vagaries 

of the gas flow.  This is not directly observable because the trajectories of the few large 

particles are hidden by the many smaller particles swirling around in the air eddies.  

However, existing spray dryers must have sufficient plug flow residence time to be 

capable of drying the large droplets, regardless of the method of atomisation.  Since the 

Acoustic Atomiser size distribution is considerably narrower than that from 

conventional atomisers, the mean droplet size should be greater.  It is established in this 

chapter that the increase in mean size is at least a factor of two. 

It will be shown that the corollary of the increase and narrowing in droplet size 

distribution is that the droplet residence time is shortened and narrowed.  A seven-fold 

decrease in the spread of droplet residence times is predicted. 

6.1 Largest dryable size 

The size distribution is rather broad from a conventional rotary or 2-fluid atomiser used 

in a spray dryer.  For a material behaving according to the classic crust formation 

model, the drying time is expected to increase with the square of the droplet diameter.  

It will be immediately apparent that it will be uneconomic to provide sufficient 

residence time to dry the tiny fraction of, say 1000µm diameter droplets when the mode 

diameter is 50-100µm.  Apart from the unfavourable economics of the enormously 

oversized drying chamber (expensive to construct, and with greater heat loss from the 
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greater surface), the sensible heat of the dry particles is tiny compared to the heat of 

vaporisation of the water: dry particles rapidly relax to the drying gas temperature.  In a 

dryer constructed to dry even the very largest droplets, most of the rest of the particles 

would be dry from an early stage, and would spend excessive time at high temperature.  

Designing to dry too large a fraction of the droplet size distribution is expensive and 

reduces product quality. 

Conversely, if the chamber residence time is insufficient, too many droplets will still be 

wet and sticky when they strike the walls or outlet cone of the dryer.  At best, there is 

the unnecessary cost of recycling or disposing of the excessive quantity of agglomerates 

and sloughed-off wall deposits that are caught on screens.  At worst, the wall deposits 

will char and could ignite a dust explosion. 

In any spray drying operation there will be some optimum cut fraction of the size 

distribution, the largest dryable size.  This is not normally made explicit by spray dryer 

operators, but it is possible to estimate it from the material efficiency of the dryer.  This 

estimate is based on the assumptions that oversize droplets always end up as wall 

deposits rather than product powder, and also that the oversize are the only droplets to 

deposit upon the walls.  Whilst this is evidently a simplification of the physical reality, 

empirically it accords to a first approximation with spray dryer operating practice.  

When wall build-up is excessive, a standard control action would be to increase the 

driving force for atomisation (increase rotation speed or atomisation air pressure for 

example) and hence shift the droplet size distribution to smaller sizes.  The problem of 

estimating the largest dryable size is then reduced to estimating the acceptable material 

efficiency of a spray drying operation, together with a droplet size distribution. 

The acceptable material efficiency will vary somewhat; between operators, depending 

on the value of the material being processed, potential safety hazards from charring of 

deposits and hence dust explosion initiation, and finally the mode of operation - a high 

wall deposition rate might give acceptable total accumulation over an eight hour batch 

operation, but not on a continuous plant.  The estimates here have been combined from 

personal communications from ICI plants, a non-ICI operator and also a spray dryer 

manufacturer.  In a well run, high quality continuous spray drying operation, material 

efficiency could be 99%, i.e. only 1% of the feed builds up on the wall.  Most 

operations are in the range 95.-.98.% material efficiency.  Rarely, batch operations only 

reach 85.-.90.% material efficiency.  In apparently the sole open literature source, 
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Pemberton and Keey (1980) estimate 92.-.98.% over all dryers in their survey of New 

Zealand dairy dryers. 

In this work the 95th, 98th and 99th percentage points of the droplet size distribution will 

be used as the range of cut points of the largest dryable size.  The size distribution for 

the Acoustic Atomiser was established in the previous chapter.  A representative size 

distribution for conventional spray dryer atomisers is also required for comparison 

6.2 Droplet size distribution for the Acoustic Atomisers 

It was established in the previous chapter that the Acoustic Atomiser droplet size 

distribution was most accurately represented by the Stable distribution.  A range of sets 

of distribution parameters were obtained.  However, a representative distribution can be 

created by the observations from Table 2 and Figure 49 that the central tendency of the 

alpha and beta parameters is 1.6 and 0.3 respectively, and the mean value of the ratio of 

the diameter of the 95th percentile of the volume distribution to the mode diameter was 

1.33. Hence a representative 2-parameterisation Stable distribution, non-

dimensionalised around the mode, can be generated using the parameter set 

S(α,.β.,γ,.δ.;.2).=.S(1.6,.0.3,.0.137,.1.;.2).  This is plotted in Figure 50. 
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Figure 50: generic Acoustic Atomiser 2-parameter Stable distribution, non-

dimensionalised around the mode 
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The conclusions of the analysis presented below are not dependent upon the selection of 

the Stable distribution as the model of the Acoustic Atomiser size distribution, but 

rather upon the experimental observation that the d95 is 4/3 the mode diameter dm.  

Indeed, the analysis was originally undertaken with the log-normal distribution: the 

Stable distribution model was a later refinement.  In order to demonstrate that the 

analysis is independent from the specific droplet size distribution model function, it will 

be worked through with both the log-normal and the Stable distributions.  It can be 

calculated from standard results for the log-normal distribution that a geometric 

standard deviation σg.=.1.17 gives the required width such that d95.=.4/3dm .   Table 3 is 

a summary of the log-normal σg parameter from fits to a selection of droplet sizing 

datasets for the Acoustic Atomiser.  It should be recalled from the earlier discussion that 

the log-normal distribution was found not to be a good fit to the data, hence there is no 

purpose in fitting all the datasets.  However, the selection of datasets that have been 

fitted are sufficient to confirm that σg.=.1.17 is a reasonable choice for the log-normal 

width parameter.  This distribution is plotted in Figure 51. 

 

 

Material sizing Unconstrained fit to all data

method σg w=ln(σg) PDI d95/dm

Water nozzle A PDA 1.131 0.123 0.3 1.24

Water nozzle B PDA 1.021 0.0207 0.05 1.04

A1 sieve 1.175 0.161 0.4 1.34

A2 sieve 1.1194 0.1128 0.3 1.22

A2 sieve 1.1471 0.1372 0.4 1.28

B sieve 1.160 0.148 0.4 1.30

C1 PDA 1.05 0.045 0.1 1.08

C2 PDA 1.0317 0.0312 0.08 1.05

D4.15 Visisize 1.115 0.109 0.3 1.21

 

Table 3:  summary of log-normal distribution parameters for fits to Acoustic Atomiser 

droplet size distribution data 
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Figure 51: generic Acoustic Atomiser log-normal distribution, non-dimensionalised 

around the mode 

6.3 Droplet size distribution for conventional spray dryer atomisers 

It is remarkably difficult to find reliable literature data for the droplet size distribution 

for conventional spray dryer atomisers.  The primary literature sources used even in 

recent spray dryer models all pre-date modern sizing instruments, so should be used 

with caution (Welander and Vincent, 2001).  To take as an example, in their otherwise 

detailed overview of the state-of-the-art in CFD modelling of spray dryers, Fletcher et 

al. (2006) cite a 1981 paper as the source of the atomiser droplet size distribution 

experimental data. 

In common with numerous authors in the sprays literature, Lefebvre (1989) is more 

concerned with expressions for the estimation of mean diameters from atomisation 

parameters.  The width of the distribution is quantified only in a single paragraph, and 

then only as a range of 1.5.-.4 for the width parameter of a Rosin-Rammler distribution.  

Huang et al. (2003, 2004) use a Rosin-Rammler spread parameter of 2.05.  This is 

referenced to a PhD thesis (Kievet, 1997) which it has not been possible to obtain.  The 

published work from the doctorate (Kievet et al., 1997) does not refer to the spray, so it 

is unclear whether the droplet size was measured, or referenced from other earlier 
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investigations.  Schröder and Walzel (1998) quote values of three to five for the Rosin-

Rammler spread parameter, depending on detail of mechanical design for a modified 

narrow size distribution rotary atomiser, but no reference for a standard rotary atomiser.  

Despite Mugale and Evans (1951) demonstrating over fifty years ago that the Rosin-

Rammler distribution was not a good model for spray droplet sizes, it continues to be 

used to the present day.  The analysis in this chapter is reasonably independent of the 

detail of the fit function, but the chosen distribution must be at least a passable 

representation of the large size tail of the droplet size distribution data, so the Rosin-

Rammler distribution is not fit for purpose.  The problem is that the pertinent large size 

tail of the distribution is so severely underestimated, that without the original sizing data 

for spray drying atomisers used in the literature, it is not possible to reliably translate 

the quoted Rosin-Rammler width parameters into log-normal width parameters. 

Both Matsumoto et al. (1985) and Masters (1991) note that there is considerable 

discrepancy between literature reported distributions.  Matsumoto et al. (1985) reference 

ten studies of rotary atomiser size distributions, although they only include the data 

from the oldest work (Herring and Marshall, 1955).  This data plots as a straight line on 

log-probability axes, so a log-normal distribution is the appropriate fit function.  Values 

for d16, d50 and d84 have been read from this chart.  Using the standard results for the 

log-normal distribution (Irani and Callis, 1963) that the geometric mean is the d50 and 

the geometric standard deviation σg.=.d84./.d50.=.d50./.d16.=.√(d84./.d16), a value of 

around σg.=.1.6 is obtained.  Similarly, values for σg between 1.34 and 1.46 can be 

obtained from measuring of percentile points on the chart reported by Masters (1991).  

This is not only incredibly narrow, it is narrower than a rule-of-thumb quoted earlier in 

the same work (Masters, 1991); 
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It can be calculated that these correspond to log-normal σg of 1.42 and 1.55 

respectively.  Even the d95.=.2dm rule-of-thumb is surprisingly narrow.  The d95.=.4/3.dm 

historical rule-of-thumb for the width of the Acoustic Atomiser droplet size distribution 

was introduced in the previous chapter.  There was a similar d95.=.2dm rule-of-thumb for 

the size distribution of unvibrated laminar jets.  Although there are no droplet size 

distribution data to validate this second rule, the validation of the first against forty sets 

of droplet size distribution data gives some confidence that the d95.=.2dm metric for 

Eqn. 6-1 
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unvibrated laminar jets is also valid.  Without detailed substantiation, consideration of 

atomiser physics as well as experience would suggest that the chaotic break-up of liquid 

from a rotary atomiser would lead to a wider droplet size distribution than that obtained 

from the breakup of a laminar jet.  Masters does not show the data from which his 

distribution parameters were obtained.  The graph axis is labelled as particle size rather 

than droplet size, and it may be that these are data for screened product.  Overall, the 

narrower widths presented by Masters are considered unreliable, but the d95.=.2.5.dm  or 

equivalently σg.=.1.55 is sufficiently similar to the value of σg.=.1.6 from the data of 

Herring and Marshall (1955) for these to be taken as reasonable literature estimates of 

the expected width for a log-normal distribution from a rotary atomiser. 

There are a few experimental rotary atomiser droplet size data from the research 

programme at ICI.  Datasets C3 and C4 are direct comparisons of a production rotary 

and an Acoustic Atomiser (Figure 52).  The rotary atomiser dataset C4 is an acceptable 

fit to a log-normal distribution with σg.=.1.8 (Appendix A.4), rather wider than the 

literature data.  Dataset D7.17 is a Visisize measurement, and Dataset D8.14 is sieve 

sizing data, from powder made on the Wilton pilot spray dryer using a rotary atomiser, 

as comparison data for the Acoustic Atomiser experiments.  D7.17 fits well to a log-

normal distribution with σg.=.1.61.-.1.63., depending on whether the slightly 

agglomerated tail is included or excluded from the fit (Appendix A.6.3).  Dataset D8.14 

fits acceptably with 52.1=gσ  (Appendix A.5.2). 

Between the literature and experimental data, a log-normal distribution with σg.=.1.6 is 

considered to be a reasonable estimate of the width of a typical rotary atomiser size 

distribution (Figure 53). 
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Figure 52:  chart comparing drop size distribution of a production Acoustic Atomiser 

(line 3) to the rotary atomiser that it replaced (line 1).  Image courtesy of ICI. 
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Figure 53: generic rotary atomiser log-normal distribution, non-dimensionalised 

around the mode 

6.4 Potential increase in droplet size using the Acoustic Atomiser 

The distributions for the conventional and the Acoustic Atomiser are matched at the cut 

point chosen as the largest dryable size { }999895XX d,d,dd = .   To take as example, if d95 

is considered as the largest dryable size, the cumulative volume fraction V is 0.95 

regardless of the distribution model chosen.  Diameters are chosen to be non-

dimensionalised around the mode of the conventional atomiser distribution.  To be 

found are the non-dimensionalised location parameters of the Acoustic Atomiser 

distribution with matching dXX.  

The log-normal distribution is considered first as it can be solved analytically.  From 

inspection of the standard definition of the cumulative distribution (Eqn. 6-2), equality 

in the value of the cumulative volume fraction requires equality in the parameter z also 

(Eqn. 6-3), where subscripts a and c refer to parameters for the Acoustic and 

conventional atomisers respectively.  A substitution (Eqn. 6-5) can be made using the 

relationship (Eqn. 6-4) between the mode dm and the geometric mean gd .  dm,c.=.1 and 

dxx.=.dxx,c by definition of the chosen non-dimensionalisation.  The solution is given 

algebraically in Eqn. 6-6, numerically in Table 4, and plotted in Figure 54. 
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A numerical solution is required for the Stable distribution.  A modified version of the  

spreadsheet previously described for the experimental data fitting was used.  The 

parameter delta has been iterated, with gamma maintained at 0.137.δ, until the diameter 

cut point of the Stable distribution matched that of the rotary atomiser log-normal 

distribution.  The solution is given numerically in Table 4, and plotted in Figure 55. 

 

Location parameters of Acoustic Atomiser drop size matched at cut-point XX % of the 

distribution relative to rotary atomiser log-normal drop size cumulative volume distribution

distribution, σg,c=1.6 & non-dimensionalised around the mode 95 98 99

log-normal model σg,a = 1.17 dm,a 2.04 2.31 2.52

dg,a 2.09 2.37 2.58

Stable distribution model S(1.6, 0.3, γ, δ;2) δ 2.03 2.15 2.13

γ 0.278 0.295 0.292

 

Table 4:  increase in droplet size distribution using the Acoustic Atomiser 

Eqn. 6-6 

Eqn. 6-5 

Eqn. 6-3 

Eqn. 6-4 

Eqn. 6-2 
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Figure 54: increase in droplet size distribution using the Acoustic Atomiser: log-normal 

model 
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Figure 55:  increase in droplet size distribution using the Acoustic Atomiser: Stable 

distribution model 
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It can be seen between Figures 54 and 55 that doubling the mode droplet size is 

predicted when an Acoustic Atomiser is used in a spray dryer in place of a rotary 

atomiser.  If the log-normal model is assumed, the factor of increase may be as great as 

2.5 if the cut point is taken as dv99 rather than dv95.  The Stable distribution has been 

shown in this research to be a better model of the droplet size distribution from the 

Acoustic Atomiser.  If the Stable distribution is used in the analysis, only modest further 

increases in the droplet size distribution are predicted when cut point diameters greater 

than dv95 are chosen.  Indeed, due to a numerical peculiarity of the differing rates of tail 

decay of the Stable distribution and the matched log-normal distribution, the match at 

dv99 is predicted to be at fractionally lower mode size than that at dv98 (it is not a 

typographical error in Table 4). 

The predicted droplet size distribution increase when the Acoustic Atomiser is used in 

place of a rotary atomiser accords well with informal observations made during the ICI 

in-house development programme.  Indeed, a factor of 2.5 increase in mode size result 

from the original log-normal model analysis was subsequently used as a rule-of-thumb 

in experimental design by the research team.  At 7.8m, the ICI Wilton pilot spray dryer 

is unusually tall, so that the droplet residence time is similar to typical production spray 

dryers.  When a research programme with a new material was commenced, data for the 

mode size in the existing production plant was obtained.  This diameter was increased 

by a factor of 2.5 as an estimate of the expected dryable size in the Wilton pilot facility, 

and the atomiser parameters for experiments chosen accordingly.  Prior to this research, 

a 1-D computational model was used to make the estimate of dryable size, with 

experimental drying kinetics data from a wire deflection device that has previously been 

described (section 3.5.2).  The new method was not only a cost-effective saving in 

research time, but was found to give more reliable predictions.  However, the more 

recent refinement of the analysis with the Stable distribution suggests that the factor of 

2.5 was ambitious.  A more conservative estimate using a factor of 2 increase in mode 

size may have given fewer problems with agglomeration.  The ubiquity of 

agglomeration seen in the Visisize datasets suggests that too large a fraction of the 

droplets were not quite dry. 

The magnitude of the predicted droplet size distribution increase is less well 

substantiated with the very few instances where there are comparable rotary and 

Acoustic Atomiser droplet size data.  Taking the fit parameters from Appendix A.4, a 
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mode diameter of 47µm can be calculated using Eqn. 6-4 for rotary atomiser dataset C4, 

compared to 238µm for the Acoustic Atomiser dataset C3.  This is a factor of 5 

increase.  However, it was previously noted that rotary atomiser dataset C4 was 

unusually wide compared to literature and other experimental data, and dataset C3 is 

unusually narrow.  In contrast to this larger than expected increase, a mode diameter of 

220µm can be calculated from the fit parameters for dataset D7.17 in Appendix A.6.3.  

The 280.-.305µm mode diameters for the comparable Material D7 Acoustic Atomiser 

datasets are only a factor of 1.3.-.1.4 increased.   However, the mode diameter of 169µm 

calculated for the D8.14 rotary atomiser dataset is almost perfectly a factor of two less 

than 330µm mode diameter of the primary atomisation peak of the Stable fits to datasets 

8.9a.-.8.12a shown in Appendix A.6.4. 

As the Acoustic Atomiser is novel there are no independent validation data, but the 

predicted increase in size is not inconsistent with data from a survey of production spray 

dryers with conventional atomisers (Pemberton and Keey, 1980).  This was the first 

report that most of the drying occurs within a short distance of the atomiser.  It was 

concluded that manufacturers' scale-up rule-of-thumb was that the air residence time 

should be held constant for a given height to diameter ratio.  Consequently the designs 

were very sub-optimal.  Chamber volume was ineffectively utilised: all the dryers 

studied had surplus drying capacity.  Dryers with product mean diameter from 25-55µm 

had air residence time sufficient to dry particles of order 250µm diameter.  However, 

between 92 and 98% of product was found to be below this maximum size. 

Whilst the model qualitatively demonstrated its practical worth, there are insufficient 

size distribution measurement validation data from rotary atomiser comparative 

experiments to be able to demonstrate quantitatively the correctness of the analysis. 

6.5 Comparison of droplet residence time in a spray dryer 

Personal industrial experience is that a widespread myth amongst spray dryer operators 

is that the spray drying chamber residence time is only a few seconds.  This is 

perpetuated by, for example, a statement in the sales literature of the market leading 

spray dryer manufacturer that the whole process generally takes no more than a few 

seconds (Niro, 1999).  The standard textbook gives a more nuanced view (Masters, 

1991).  Chamber residence time may be as short as 5s, but 20.-.40s is typical.  Schuck 
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(2002) quotes 20.-.60s from his experience of dairy spray dryers.  These are gas mean 

residence times, but the standard assumption described earlier has been made, that the 

particles are sufficiently fine to be fully relaxed to the flow streamlines, so the air 

residence time and the particle residence time are the same.  Pemberton and Keey 

(1980) distinguish between the two, reporting gas residence time from 7 to 30s and 

shorter particle residence times from 6 to 17s in their survey of production spray dryers.  

Experimental data for droplet residence time distribution in a spray dryer are scarce.  

There are only two known reports in the literature, both of studies in pilot dryers. 

Kröger and Schulte (2000) reported a radiotracer study of residence time distribution in 

a pilot spray dryer 1.5m in diameter and 2.7m total height, of which the upper 1.7m was 

cylindrical and the lower metre was conical.  Air flowrate was 210.Nm³/hr.  Water with 

70µm mode droplet size was sprayed.  A tracer pulse was injected into the liquid feed to 

the atomiser, and the radiation intensity emitted from the product stream was measured.  

The intensity was converted into a mass concentration of tracer, and this mass 

concentration against time data was presented graphically in the paper.   

Taking Kröger and Schulte's (2000) data, it has been calculated that the chamber 

volume was 3.6m³, the gas mean residence time was 62s and the gas superficial velocity 

in the upper cylindrical portion was just 0.03m/s.  The tracer concentration data has 

been read from the graph, and normalised.  The concentration had not fallen to zero by 

the end of the recording period.  By extrapolating the decay curve (Figure 56), it has 

been estimated that 87% of the tracer was recorded, so the data has been normalised to 

0.87 rather than 1.  This is a refinement: the conclusion is not sensitive to the accuracy 

of the estimate.  The data has been re-plotted in Figure 57 as cumulative mass fraction 

of tracer in the product as a function of time.  Also plotted are hypothetical limiting 

cases.  Plug flow gives the theoretical minimum droplet residence time, whilst the plug 

flow dead time and stirred tank model gives the maximum.  The plug flow curve has 

been calculated assuming that droplets fall vertically at steady terminal velocity, 
without evaporation.  A log-normal droplet size distribution with σg.=.1.6 has been 

assumed.  It is apparent that the actual median residence time of the droplets is roughly 

double the theoretical minimum.  This is consistent with the reports of numerous 

authors, as previously reviewed, that many droplets become entrained in large 

recirculation zones in a spray drying chamber. 
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Figure 56: mass concentration of radiotracer in powder product as a function of time, 

after Kröger and Schulte (2000). 
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Figure 57:  residence time analysis using data from Kröger and Schulte (2000) 

radiotracer study. 
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If spray drying has been selected over a cheaper drying process, it is normally because 

the material is temperature sensitive and will be degraded by long residence times.  If 

the particles actually dry in just a few seconds, holding them at high temperature for a 

further half minute is not an obvious strategy to minimise thermal degradation.  It would 

also be preferable for any unavoidable thermal degradation to be distributed throughout 

the sample, especially if the material is used in extremely small doses, as sometimes 

occurs with flavour ingredients or pharmaceuticals for example.  Instead, the most heat 

degradation is expected to occur in the smallest particles which both dry most rapidly 

and also are most prone to being entrained in recirculation zones. 

The effect on the residence time distribution (RTD) of the narrower size distribution 

from the Acoustic Atomiser has been calculated and then plotted (Figure 58).  The black 

points and line are as in Figure 57, respectively the data from Kröger and Schulte 

(2000) and the theoretical plug flow RTD for a log-normal distribution with 70µm mode 

diameter and σg.=.1.6.  The red lines are the plug flow RTD for an Acoustic Atomiser 

droplet size distribution, with 70µm mode diameter, matched to the conventional 

atomiser.  The solid red line is the log-normal σg.=.1.17 model, the red dashed line is 

the Stable distribution S(α,.β,.γ,.δ.;.2).=.S(1.6,.0.3,.0.137*δ,.70.;.2) model.  There is 

little difference between the two models.  It can be seen that the prediction is that the 

narrower size distribution from the Acoustic Atomiser gives a massive decrease in the 

spread of the residence time distribution.  The blue line with circle symbols is the plug 

flow RTD for a Stable distribution model of the Acoustic Atomiser size distribution, 

matched to the log-normal distribution for a conventional atomiser at dv95.  From the 

previous section, this is S(1.6,.0.3,.0.137*δ,.2.03*70.;.2).  Taking this effect of larger 

mean size into account as well as the narrower size distribution, the predicted spread of 

the RTD becomes extremely narrow, far more so than might have been anticipated from 

inspection of the comparative size distributions plotted in Figure 55. 

In an attempt to quantify the narrowing in the spread of the RTD, the residence time 

between the 5th and 95th percentiles of the cumulative mass fraction has been selected as 

a arbitrary baseline for comparison.  From inspection of the data in Table 5, a seven-

fold reduction in the spread of the RTD is predicted when an Acoustic Atomiser is used 

in place of the rotary atomiser.  Of course, these are only the predictions from the 

hypothetical ideal case of plug flow.  It is clearly seen in Figure 58 that the experimental 

RTD is significantly wider than plug flow, which widening has been rationalised as the 



Chapter 6- Analysis of the effects on spray drying of narrower droplet size distribution 

 159  

effect of the entrainment of droplets in the air recirculation zones in the spray dryer 

chamber.  There is no experimental data for the residence time distribution of a spray 

dryer using an Acoustic Atomiser.  However, as previously discussed, the larger droplet 

sizes will have greater momentum and thus be less likely to be entrained by the airflow.  

Hence the RTD when an Acoustic Atomiser is used is expected to deviate less from 

plug flow than the experimental RTD data for the conventional atomiser.  Thus the 

surprising expectation is that the calculated seven-fold decrease in the spread of the 

RTD would be a conservative estimate in practice. 
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Figure 58: theoretical Acoustic Atomiser RTD compared with data from Kröger and 

Schulte (2000) radiotracer study. 

 

residence time /s at cumulative

mass faction cutpoints

5% 95% t5-t95 

Conventional atomiser log-normal, dm=70µm, σg=1.6 26.3 2.5 23.8

Acoustic atomiser log-normal, dm=70µm, σg=1.17 16.7 7.5 9.2

S(1.6, 0.3, 9.6, 70; 2) 18.1 7.3 10.8

S(1.6, 0.3, 19.5, 141.2; 2) 5.9 2.5 3.4

 

Table 5: reduction in spread of theoretical plug flow RTD with the Acoustic Atomiser 
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In the other RTD study reported in the literature, a maltodextrin dispersion in water was 

dried in a pilot spray dryer 2.215m diameter, 3.73m total height, of which the upper 2m 

was cylindrical and the lower 1.73m was conical (Kievet and Kerkhof, 1995).  The 

drying air was again at very low flowrate, 1040.m³/hr, with inlet temperature 195°C and 

outlet 105°C.  A pressure nozzle atomiser was used.  Sieve sizing data of the dry 

product from both the spray dryer and the cyclone are presented, together with Rosin-

Rammler fits. 

From the published data (Kievet and Kerkhof, 1995) the gas mean residence time has 

been calculated to be 34s.  The size distribution data has been re-fitted by a log-normal 

distribution with σg.=.1.65, dg.=.125µm, dm.=.97µm, which is a more satisfactory 

agreement to the data in the tails of the distribution (Figure 59).  The tabular data for the 

residence time distribution which can be plotted without further processing (Figure 60). 

The recorded times are astoundingly long, much greater than can be accounted for by 

particle entrainment in the airflow.  Kievet and Kerkhof (1995) note that a large 

fraction of the product was deposited on the walls.  They ascribe the extended particle 

residence times to particles slowly sliding down the walls and cone of the drying 

chamber.  Since this effect dominates the particle residence time distribution, the data 

presented in the paper is not useful for substantiating a model of how a typical spray 

dryer would be expected to perform. 
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Figure 59: particle size distribution after Kievet and Kerkhof (1995) 
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Figure 60: particle residence time distribution after Kievet and Kerkhof (1995) 
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6.6 Conclusions 

In this chapter it was shown that simple manipulation of droplet size distributions is a 

powerful model to predict the performance of a spray dryer when an Acoustic Atomiser 

is used in place of a rotary atomiser. 

A factor of two increase in mode size is predicted, which accords well with 

experimental observations, although there are insufficient rotary atomiser comparative 

experimental data to robustly quantitatively validate the conclusion. 

The predicted effect on droplet residence time when using the Acoustic Atomiser is 

even more dramatic than the increase in size.  If the mode size is kept constant between 

rotary and Acoustic atomisers, then the effect of reducing the fine and oversize tails of 

the droplet size distribution is alone sufficient to more than halve the spread of the 

droplet residence time distribution (RTD).  If the mode size is increased by a factor of 

two, then a seven-fold decrease in the spread of the particle RTD is conservatively 

estimated.  There is no experimental RTD study for the Acoustic Atomiser to directly 

validate this prediction.  However, the large decrease in spread is consistent with and 

explains the finding in Fiannaca and Threlfall-Holmes (2005), reviewed earlier, that 

where multiple spray-dried particle morphologies were possible, particles 

predominantly of a single morphology could be made using an Acoustic Atomiser.  This 

strongly indicates that the particles each had very similar time-temperature histories 

during the drying. 

The potential decrease in the spread of droplet residence times may not always be 

practically realisable.  Langrish (2007) hypothesised that residence time grossly in 

excess of that required for drying alone may for some materials be required for phase 

transformation from amorphous to crystalline.  He also noted, however, that fluidised 

beds on the dryer outlet perform the function of extended residence time at lower 

temperature.  It remains for further work to confirm the expectation that even if 

extended residence times were required for phase transformation, it would still be more 

thermally efficient and produce the most consistent product, to minimise the residence 

time in the spray drying chamber to that required for drying. 

This chapter has underlined the importance of atomisation in the spray drying process.  

However, there are currently no robust predictive rules to determine sprayability.  The 

remainder of this thesis describes how sprayability can be predicted. 
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CHAPTER 7 - REVIEW OF EXTENSIONAL RHEOLOGY, THE 

CaBER TECHNIQUE AND THE RELEVANCE TO 

SPRAYABILITY 

Extensional rheology is the study and behaviour of fluids under an extensional 

deformation.  The most widely known examples of where elongational flows are 

encountered are polymer melt processing operations such as extrusion, fibre spinning 

and film blowing, but elongational flows are also important in such applications as 

roller application of coatings and glues, various jet dispensing techniques such as ink-jet 

printing, as well as in sprays (Petrie, 1978, McKinley, 2005, Chan et al., 2007).  The 

behaviour of Newtonian fluids in elongational flows can be predicted from their 

behaviour under shearing deformations.  In contrast, the rheological behaviour of 

complex fluids may differ markedly between extensional and shear deformations.  The 

deviations from ideality may be so extreme, that even allowing for the complex 

combination of shear and extensional flows in real processing equipment, extensional 

rheology may dominate the overall behaviour of the flow.  Industrial spray dryer 

feedstocks are expected to exhibit complex fluid rheology, as they are commonly 

extensively dewatered and may contain dispersed polymer, as has previously been 

noted. 

The importance of extensional deformations to spray droplet formation is readily 

appreciated from a description of the process.  In most atomiser types, liquid leaving the 

nozzle orifice initially diverges into a sheet.  The friction at the interface between the 

sheet and the air drives instabilities at the interface, forming waves and perforations, 

which grow until ligaments are formed, which are themselves unstable, and break-up 

into droplets (Figures 61 and 62).  The diagram and image are for a fan shaped sheet, as 

this is the configuration in the study reported in Chapter 9, but the description is 

extendable to other atomisers: for example a pressure swirl nozzle with a circular orifice 

will form a cone shaped sheet, and a rotary atomiser an annular sheet.  As liquid 

velocity increases, the sheet becomes shorter lived until eventually atomisation occurs 

immediately at the nozzle.  There is also no sheet formation at very low nozzle exit 

velocities: in the atomisation mode exploited by the Acoustic Atomiser the droplets are 

formed from a varicose laminar jet which emerges directly from the nozzle, as depicted 

in Figure 3 in the Introduction.  Common to all of these atomisation mechanisms is the 

final droplet formation from the stretching of a ligament.  This ligament breakup is a 
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uniaxial extension at very large strains and strain rates, and explains why extensional 

rather than shear viscosity is expected to dominate atomisation behaviour. 

 

Figure 61:  idealised sketch of wavy sheet breakup (after Dombrowski and Johns, 1963) 

 

Figure 62:  example of flat-fan spray.  Cuprinol Sprayable Timbercare.  Image 

captured under laser strobe sheet illumination.  Greyscales inverted to more clearly 

show features of spray.  Scale is approx. 8cm from top to bottom of image. (Tony 

Flounders and Phil Threlfall-Holmes- ICI)  
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Petrie (2006b) has described the historical development of understanding of extensional 

viscosity, from Trouton's description of the "coefficient of viscous traction" (Trouton, 

1906) and Fano's of corpi filanti (thread forming materials) 100 years ago (Fano, 1908).  

The importance of extensional rheology in the types of industrial application noted in 

the introductory paragraph has long been recognised and acknowledged in the academic 

literature, if not so widely in the applicable industries.  Measurement methods for 

characterising the extensional rheological response of high viscosity melts have been 

developed and applied to problems such as polymer fibre spinning.  Strain hardening of 

dilute solutions of high molecular weight polymers has also received significant 

research attention; the effect is very extreme and amenable to quantitative explanation 

from simple models of molecular structure.  However, in the absence of a commercially 

available measurement technique, or indeed any technique which gave consistent results 

(Combloux, 1990, James and Walters, 1994), studies of the extensional rheology of 

other complex fluids and especially low viscosity solutions have been sparse.  The 

practical difficulty is in obtaining a steady flow at constant extension rate.  Generally 

the best that can be obtained from real apparatus are measures of a tensile stress growth 

function (most frequently termed as a "transient apparent extensional viscosity", despite 

the confusion this term is reported to cause (Petrie, 2006a)), which requires 

specification of the details of the flow geometry employed. 

The importance of extensional rheology has been acknowledged in the sprays literature 

(e.g. Xing et al., 1999, Dexter, 1996), but the context of such acknowledgements make 

clear that it is not common practice within the sprays community to utilise the concept. 

In the following chapters of this thesis it will be demonstrated that the prognosis has 

been improved by the commercial availability of the Capillary Breakup Extensional 

Rheometer or CaBER technique, implemented in the Haake CaBER 1 instrument from 

ThermoFisher Scientific.  Whilst the CaBER 1 as supplied is best considered as a 

"commercial prototype", technique and analysis method development has been found to 

be sufficient to utilise it to gain useful insight into the problem of sprayability.  The 

CaBER technique still only yields a measure of transient apparent extensional viscosity 

at best, but it has been found that the flow geometry is sufficiently similar to the 

ligament breakup occurring in sprays processes for the transient apparent extensional 

viscosity coefficient to be a useful measurement parameter to predict sprayability.   
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7.1 The capillary thinning and breakup principle 

Jetting and dripping from a nozzle both exhibit a region of uniaxial extensional 

deformation in the fluid neck between droplets, but this region moves rapidly relative to 

the observer and so is hard to instrument.  If a disc of fluid held between two plates is 

stretched by the separation of the plates, however, then the thinning ligament can be 

constrained to be in a stationary reference frame to the observer and hence can form the 

basis of a rheometer.  The CaBER technique is an implementation of this flow 

configuration.  In the experiment, a disc of fluid is introduced into the gap between 

parallel co-axial cylindrical plates typically 6mm in diameter [Figure 63(a)].  The upper 

plate is raised [Figure 63(b)] as rapidly as possible, from the initial height L0 which is 

typically half the plate diameter, to a predetermined final height [Figure 63(c)], typically 

set in the range 8-20mm, thus stretching and imparting a step strain upon the fluid.  The 

fluid ligament then thins down under the action of gravitational and surface tension 

forces, resisted by the elasticity and viscosity of the fluid [Figure 63(c)].  Finally, the 

fluid thread snaps [Figure 63(e)]. 

  

Figure 63:  schematic of the course of a CaBER experiment (after McKinley and 

Tripathi, 2000) 

As the fluid thread becomes very thin, gravitational drainage becomes negligible, and 

the rate of thinning is determined by the visco-elasto-capillary balance.  The capillarity 

is separable (and can be characterised by independent measurement of the static surface 

tension), provided that two key assumptions are satisfied; that the tensile stress 

developed by the initial strike has relaxed away before capillary thinning takes over and 

also that the surface tension is constant.  Separating out the capillarity permits analysis 

of the visco-elastic response of the fluid.  The behaviour of the thread is dominated by 

the visco-elastic response at the thinnest point, where the strain rate is greatest.  It is 

typically a reasonable approximation that the thread is thinnest at the mid-point between 
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the plates, thus measurement of this mid-point diameter as a function of time as 

indicated in Figure 63(c) can be analysed to yield information about the visco-elasticity 

of the fluid in uniaxial extension.  Since the thread is thin compared with the plate 

separation, it is normally also a reasonable assumption that the thread is sufficiently 

close to cylindrical local to the mid-point, that the flow is entirely axial, as illustrated in 

Figure 63(d).  This significantly decreases the mathematical complexity so that it is 

possible to reduce the force balance to (Anna and McKinley, 2001) ; 

 
dt/)t(dR2

)t(
mid
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σ
=η   

where σ is the static surface tension, dR/dt the rate of thinning and )t(appη  the transient 

apparent extensional viscosity.  It is important to appreciate that the strain and strain 

rate vary throughout the thinning, and are not controlled by the experimenter but rather 

by the physical properties of the fluid.  Thus the force balance is a pseudo-equilibrium 

for a differential timestep, and the parameter obtained is a transient apparent extensional 

viscosity not the extensional viscosity (i.e. in the widespread casual usage of the term to 

mean a steady state viscosity coefficient), except under certain special conditions 

(McKinley, 2005). 

7.2 Implementation of the CaBER technique 

The principle of optical measurement of capillary thinning and breakup as the basis for 

a rheometer was first described by Entov and co-workers (Bazilevsky et al., 1990a).  

This filament thinning rheometer was developed through the 1990's, notably by Prof. 

Gareth McKinley's group at MIT.  It is a version of the MIT CaBER that has been 

commercialised as the ThermoHaake CaBER 1.  In this instrument, the mid-point 

diameter is determined by a laser micrometer.  The obscuration by the filament of a UV 

laser sheet generated by a laser diode is measured by voltage drop on a detector, which 

voltage drop is then calibrated to filament diameter.  Due to refraction in the thin 

filaments of interest, the filament shadows the detector regardless of the transparency of 

the samples (Thermohaake, 2003).   However, the beam is not infinitesimally thick as is 

implied by the mid-point arrow in Figure 63(c), but rather is 1mm thick.  Thus the 

assumption of cylindricity of the filament around the mid-point is required not just for 

the mathematical simplifications outlined above, but also for practical accuracy of 

determination of the mid-point diameter.  

Eqn. 7-1 



Chapter 7- Review of extensional rheology, the CABER technique and the relevance to sprayability 

 168  

The viscosity limits of the CaBER are not well defined, as they are dependent on the 

surface tension and elasticity of the fluid, together with the actual performance of the 

instrument as against published specification.  Rodd et al. (2005) have estimated the 

lower limit of viscosity for an inelastic fluid to be around 70mPa.s, but conservative 

assumptions of the surface tension and instrument performance were made, and lower 

viscosities can be measured when there is elasticity.  Personal industrial experience 

would suggest that 20-30mPa.s may be achievable in some cases, although this has yet 

to be formally substantiated.  The vendor documentation (Thermohaake, 2003) claims 

the upper limit to be around 105.-.106.Pa.s, but no substantiation of this limit is 

referenced. 

The CaBER provides a flow field believably analogous to ligament breakup in a spray, 

or indeed to other industrial applications previously noted, where ligament formation, 

thinning and breakup dominate the overall behaviour.  Further attractions of the CaBER 

are practical:  a measurement is typically comparatively quick and simple to perform, 

with very little fluid (85µl per measurement in the default geometry), and the 

commercial instrument is not expensive when compared with analytical shear 

rheometers, especially considering that it offers unique capability.  However, the 

technique is immature, and the commercial instrument has not sold in sufficient 

quantities for the manufacturer to be able to justify the cost of developing an improved 

version (Nijman, 2006).  Clasen et al. (2006b) reported difficulties in measurements of 

model polymer solutions caused by the inaccuracy of the quadratic diameter calibration 

curve at very low filament diameters.  Research at ICI Wilton with industrial fluids 

which display a variety of complex rheological responses has uncovered a series of 

issues with the commercial CaBER 1.  These can be categorised as mechanical, 

control/electrical and analysis issues.  In this work only technique and analysis 

development will be considered.  There is a rich seam of opportunity for further 

research and development of the CaBER technique. 

7.3 Alternative approaches to extensional rheometry 

There are, or have been, other commercial extensional rheometers; the Rheometrics 

RFX opposed jet rheometer for very low viscosity fluids (now out of production) and 

polymer melts rheometers from a number of manufacturers for very high viscosities, 
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which work on the principle of forcing or extruding the sample through a capillary or 

die; or alternatively stretching the melt through the rollers of a triple roll mill. 

The CaBER is not the only possible implementation of the plate separation geometry.  If 

the plates are driven so that they continue to separate at an exponentially increasing rate, 

the strain rate in the filament will remain constant (Anna et al., 2001, McKinley and 

Sridhar, 2002, CPG, 2003).  In some senses these modern devices are not so different 

from Trouton's experiments a century ago (Trouton, 1906), except in that Trouton was 

studying very viscous material and thus had the timescale in which to measure and 

record the filament diameter manually with a graticule in the eye-piece of a 

cathetometer telescope.  Filament stretching rheometers require a well controlled and 

exponentially increasing plate separation, so are large and mechanically complex 

compared with the CaBER, and thus are significantly more costly to construct, house 

and operate, notwithstanding the lack of commercial availability. 

Various other extensional rheometers have been developed.  For example, Xing et al. 

(1999) describes a variation on the spin-line rheometer.  Dexter (1996) determines 

extensional viscosity from the pressure drop across a packed bed.  There are many 

implementations of contraction geometries (e.g. James et al., 1990, Binding and 

Walters, 1988), the contraction-expansion geometry of Taylor's four roll mill (Lagnado 

and Leal, 1990), or hyperbolic converging-diverging flows (Janssen et al., 1993).  Gupta 

and Sridhar (1988) and James and Walters (1994) have reviewed experimental methods.  

However, rather than constructing another instrument, the focus of this research was to 

study the capability of the CaBER, which is the only commercially available 

extensional rheometer for low viscosity fluids.  

7.4 The state of the art 

There were several key experimental studies with model fluids during the development 

and validation of the CaBER technique (Liang and Mackley, 1994, McKinley and 

Tripathi, 2000, Anna and McKinley, 2001, Anna et al., 2001).  It should be noted that 

these studies were carried out on instruments constructed by the investigators, before 

the introduction of the commercial ThermoHaake CaBER 1 instrument.  Thus they 

develop and validate the technique in principle rather than the detail of the 

implementation in the commercial instrument. 
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Recently published experimental studies typically still consider the rheological 

behaviour of relatively simple model systems, and many investigators continue to use 

instruments they have built themselves, rather than the commercial CaBER 1 

instrument.  There are several studies with dilute solutions of high molecular weight 

polymers, exploring variously: the limits of sensitivity of the CaBER instrument, and 

adherence to and divergence from basic explanatory models such as Zimm theory 

(Clasen et al., 2006b, Rodd et al., 2005); and also, the formation of "beads on a string" 

(Oliveira and McKinley, 2005, Clasen et al., 2006a).  The behaviour of solutions of 

flexible, rigid and semi-rigid polymer molecules has been considered, with some 

demonstrable success in a practical application, relevant to the flat-fan type of atomiser 

considered in the study reported here (Stelter et al., 2002a, 2002b).  

There are only a handful of experimental studies with materials of complexity more 

akin to real commercial products such as the liquid feed to spray dryer atomisers, or the 

coatings formulations in the study reported in Chapter 9. 

The relaxation times of blends of commercial methyl-hydroxy-ethyl-cellulose solutions 

have been determined from CaBER measurements (Plog et al., 2005).  Hydroxy-ethyl-

celluloses are widely used as rheology modifiers in coatings formulations.  The 

relaxation times were shown to correlate with measurements of the molecular weight 

distributions obtained by other techniques.  They also characterised defined blends of 

polystyrene standards, and showed by moment analysis of the molecular weight 

distribution, correlation with the methyl-hydroxy-ethyl-cellulose solutions. 

Yesilata et al. (2006) have shown that the behaviour in CaBER experiments of 

wormlike micellar fluids can be accurately predicted by the Giesekus constitutive 

equation.  Quantitative agreement was obtained provided that relaxation time of the 

solutions in extensional flows was three times lower than in shear.  No physical 

explanation is offered for why this factor of three should arise. 

Cooper-White et al. (2002) studied the effect of addition of associative polymer to a 

dilute polymer solution, concluding that there was a substantial impact on the dynamics 

of extension, but a gulf between observing the phenomenon and being able to construct 

formulation guidelines for real commercial systems.  The result has more recently been 

extended to an experimentally validated theory with hydrophobically modified ethylene 

oxide urethane (HEUR) associative polymers (Tripathi et al., 2006).  This might in the 
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future be a basis for quantitative understanding of the behaviour in extensional flow of 

HEUR containing formulations such as the materials in the study reported in Chapter 9.  

However, the behaviour of coatings formulations also containing solid pigment particles 

is expected to be significantly different again (Buscall, 2006) and it remains to be 

substantiated that the theory will even qualitatively describe these materials. 

Dijkstra et al. (2007) investigated the effect on rheology and sprayability of polymers 

dispersed in the continuous phase of polyurethane latex adhesives.  The storage 

modulus measured in oscillatory shear showed qualitatively the expected trend with 

both spray fan length and a qualitative assessment of overspray, although no 

quantitative correlation is offered.  Extensional viscosity measurements were made on a 

CaBER instrument that had been built at Erlangen-Nürnberg University.  This was 

found not to be capable to making measurements on all the fluids tested, but it is unclear 

whether the same limitations on measurement range apply to the Haake CaBER 1 also. 

Yarin et al. (2004) report that simulants for gelled rocket propellants, the rheology of 

which followed a power law dependence in shear, could also be described in both shear 

and elongation by a three dimensional extension of the power law model. 

A rheological model for yield stress fluids has been proposed (McKinley, 2005).  It 

remains to be experimentally validated.  In an unpublished study at ICI Wilton, it was 

not found to fit experimental data.  Since the rheological response of the studied 

material was exceedingly complex, it was perhaps an unfairly severe test of an 

embryonic theory, but it is nonetheless demonstrative that far more work remains to be 

done before a reliable framework of models is available, upon which to interpret 

experimental data from fluids of the complexity of commercial product formulations. 

The lack of a reliable model for yield stress rheology is especially vexing when 

considering spray dryer feedstocks.  The commercial drive to minimise dryer 

evaporation load means that particulate suspensions as dryer feedstocks are typically 

highly concentrated, and yield stress rheology would be expected from a highly 

concentrated particulate suspension.  Theoretical and instrumental development and 

empirical validation of a yield stress model from CaBER data is a project beyond the 

scope of this doctoral research project.  What is reported in this thesis is a step along 

that path, with developments to the experimental data analysis, for a fluid which does 

not conform to any of the published rheological models for the CaBER. 
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CHAPTER 8 - THE ANALYSIS OF CABER DATA 

In this chapter is described the development that has been undertaken of the analysis of 

CaBER data for a fluid of arbitrary complexity.  The discussion begins from the 

expected behaviour of published rheological model fluids. 

The raw data output from the commercial Haake CaBER 1 instrument is a tabulation of 

filament diameter (as measured by the laser micrometer) against time.  The plot of this 

data is the "time-diameter curve".  The analysis task is to extract useful rheological 

insight from this data. 

8.1 Behaviour of model fluid cases 

The currently available literature models have been usefully summarised by McKinley 

(2005).  In the Newtonian fluid case, the diameter decays linearly with time in the later 

stages of thinning, once gravitational slump can be neglected.  Power law or Bingham 

plastic rheology destabilises the filament, which is seen as a negative deviation from 

linear in the time-diameter curve.  Elasticity in the fluid will generally progressively 

retard the thinning of the ligament, which is seen as a positive deviation from linear of 

the time-diameter curve (although in some cases elastic recoil may decrease the filament 

stability).  A quadratic decay is expected for a second order fluid, the simplest model of 

finite strain elasticity under flow.  It has been shown theoretically for a FENE-P 

dumbell model visco-elastic fluid, and experimentally validated with polystyrene based 

Boger fluids, that the filament diameter decays exponentially, limited only by the finite 

extensibility of polymer chains in solution (Entov and Hinch, 1997, Anna and 

McKinley, 2001). 

8.1.1 The Newtonian case 

Only the Newtonian fluid case will be discussed in detail.  The reason for this focus is 

twofold.  The Newtonian case is the simplest behaviour, and thus a first step to 

understanding more complex behaviours.  In addition, in the limit any shape of time-

diameter curve can be considered to be an infinite sequence of straight lines of 

differentially short length.  In general, real fluids will not correspond perfectly to any of 

the theoretical models, and no general means has previously been established to 

transform the time-diameter data into viscosity-strain data, which is shown later to be a 
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useful method of presentation.  The approach proposed in this thesis is that the 

Newtonian model can be used as a basis for the numerical differentiation of an arbitrary 

time-diameter curve. 

It is important to appreciate that the most successful outcome to be expected from this 

numerical differentiation approach is a numerical parameter related to transient apparent 

extensional viscosity.  To achieve this would require a true capillary thinning 

experiment in the CaBER and a material only slightly deviant from Newtonian 

behaviour.  In an experiment with a real material with an arbitrary rheology, the 

numerical differentiation technique can pragmatically give useful insight, but it is 

unlikely to advance fundamental understanding.  The more extreme the non-Newtonian 

character of the sample and the further the deviation from a capillary thinning 

experiment, the less useful it is likely to become, as the underlying assumptions in the 

simplification are violated.  Nonetheless, the utility of the differential timestep analysis 

approach is demonstrated by the study reported in this thesis. 

In the Newtonian model case the extensional viscosity coefficient is obtained simply 

from the gradient of the time-diameter curve dRmid/dt, with a numerical correction 

factor for the slight curvature of the filament away from a parallel sided capillary 

(Renardy, 1995b).  McKinley and Tripathi (2000) show analytically and experimentally 

that the gradient of the time-diameter curve is; 
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with the constant X = 0.7127 according to the self-similar solution of Papageorgiou 

(1995) and σ is the static surface tension, which can be obtained from a separate 

instrument - for example a DeNoüy ring or plate. 

The parameter ηs is confusingly termed an apparent shear viscosity.  Although ηs is a 

viscosity coefficient from a measurement of apparent extensional viscosity, the equation 

has been cast in such a form that the parameter ηs has numerical magnitude equivalent 

to the shear viscosity, rather than three times the shear viscosity as would be expected 

for the extensional viscosity of a Newtonian material.  Although it is not made explicit 

in McKinley and Tripathi (2000), it is likely that it was chosen simply for the 

convenience of direct comparison of the numerical magnitude of ηs from CaBER data 

with shear rheometry data in validation experiments.  The authors no doubt wanted to 

Eqn. 8-1 
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avoid calling the parameter ηs an apparent Newtonian extensional viscosity, as that 

should be 3ηs.  The ηs parameter appears in key papers in the literature, as well as in the 

commercial CaBER manual and software.  However, in order to avoid propagating 

further confusion by this study, in these analyses only the apparent extensional viscosity 

will be used, which is numerically three times the magnitude of the ηs parameter; 

 sext,app 3η=η   

In the Newtonian model case, the extensional viscosity is time invariant.  In all other 

cases in the CaBER experiment, what is measured is a transient apparent extensional 

viscosity ext,appη .  The normal expectation is that the viscosity coefficient obtained from 

CaBER data is a transient apparent extensional viscosity, varying in time, strain, strain 

rate and total stress state of the sample. 

It will be seen from a re-arrangement of the McKinley and Tripathi formula (Eqn. 8-1) 

that for a Newtonian fluid the apparent extensional viscosity parameter can be estimated 

from the measured gradient dDmid/dt of an experimental time-diameter curve; 
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If the fluid were genuinely Newtonian, the numerical value of the extensional viscosity 

coefficient ηapp,ext obtained from the CaBER experiment should agree quantitatively 

with three times the shear viscosity obtained by conventional shear rheometry.  This 

was confirmed experimentally by McKinley and Tripathi (2000). 

8.2 Behaviour of real fluids in the CaBER experiment 

In reality several forces act upon the sample other than the capillary stress, among them 

inertia, gravity, and uncontrolled viscous and elastic stresses arising from the initial 

elongation or the loading of the sample into the rheometer.  The response of real fluids 

to the experiment may be far from simple and these other forces may be significant or 

even dominant over the capillary stress. 

Considering once again the initial stretch in the CaBER experiment, a step elongation 

strain is imposed in as short a time as possible.  Both the strain and the strain rate are 

large.  Even if the sample is purely liquid in character the inertial, viscous and 

Eqn. 8-3 

Eqn. 8-2 
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gravitational stresses which develop at this stage will initially overwhelm the capillary 

stress.  However, a key assumption of the CaBER experiment is that the initial stress 

relaxes away, whilst the capillary stress increases with time and will eventually 

dominate.  The assumption is good provided that the sample is purely viscous at all 

achievable extension rates and timescales, and the viscosity is not too high.  If, 

however, the sample is visco-elastic, then the terminal relaxation time of the material 

determines whether or not the initial stresses relax out sufficiently quickly for the 

CaBER experiment to be measuring capillary thinning.  In experiments with real 

industrial fluids, when the initial stresses have not relaxed out a variety of anomalous 

behaviours have been observed, as shown in Figure 64.  Fluids variously detach from 

one or other of the plates, or yield in either brittle fracture or ductile failure under the 

action of the elastic stress developed in the initial step.  Many materials pinch off 

asymmetrically, so that the laser micrometer beam positioned mid-way between the 

plates does not intersect the narrowest point of the filament and the diameter thus 

reported cannot be used to quantify the maximum capillary stress.  These artefacts are 

more clearly apparent in video footage of the experiment than from the time-diameter 

curve.  However, the instrument is supplied without a camera, and at the time the study 

reported in this thesis was conducted, the ICI Wilton CaBER was not fitted with a 

camera.  The analyses in this study are reliant upon careful examination of the time-

diameter curve for the identification of data that is invalid for analysis due to artefacts. 

Constant surface tension is another assumption in the CaBER experiment.  Given the 

very high rate of creation of liquid-air interfacial area during the CaBER experiment, 

this is a challengeable assumption for materials with very high surfactant loadings.  Any 

effect on the CaBER experiment of dynamic surface tension has yet to be explored 

rigorously either theoretically or experimentally. 
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Figure 64: gallery of artefacts in the CaBER experiment (ICI-Phil Threlfall-Holmes) 

8.3 Presentation of CaBER data 

The native presentation is the time-diameter curve plot.  A useful translation method for 

this curve is proposed in section 8.3.1.  However, there are others ways that can be 

conceived of presenting CaBER data.  To take the most sophisticated example in the 

literature, Petrie (1997) has investigated with theoretical rheology models whether 

surface plots of transient apparent extensional viscosity against both strain and time 

could be used to harmonise the measurements from various types of elongational 

rheometers.  He was unable to reach a conclusive verdict, as the deviations from 

expectation were greatest where the theoretical models are known to be least reliable.  

The plots had been proposed by others, but exemplified by experimental data covering 

only a very limited range.  It is possible that with more recent elongational rheometer 

designs that the plot method could now be tested more thoroughly, but no such studies 
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have been reported.  More simply, by analogy with shear rheometry, aspects of material 

flow behaviour can most clearly be exposed by careful selection of the axes of 2D 

plots:- stress, strain, shear rate, modulus, etc.  The commercial CaBER 1 instrument 

does not measure sufficient parameters to unlock such fecundity of choices in data 

presentation as does a shear rheometer, but of particular note is the widely used plot 

against strain of the Trouton ratio, which is a measure of strain hardening.  This Hencky 

strain_- Trouton ratio plot is described in section 8.3.2.  In order to create this plot, 

strain, strain rate and measures of transient apparent extensional viscosity and strain 

hardening must be derived from the time-diameter data.  These transformations are 

considered in sections 8.3.3 to 8.3.6.   

8.3.1 Time re-zeroing of the time-diameter curve 

From Eqn. 8-3, it can be seen that a key quantity is the gradient, dRmid(t)./.dt, and how 

this gradient changes over the time of the experiment.  Hence it is the shape of the curve 

obtained that gives insight. 

It is widely reported in the literature (e.g. McKinley, 2005, Rodd et al., 2005, McKinley 

and Tripathi, 2000) that the characteristic time to ligament break-up (i.e. the time 

between the end of the strike and filament failure) can also be used to analyse 

experimental data.  However, experiments with industrial products (both the results 

reported in this thesis and other unpublished commercial studies) have not typically 

given repeatable break-up times.  The reasons for this discrepancy in findings have yet 

to be validated, but it is likely to be some combination amongst three; inherent 

inhomogeneity of the samples on the length scale of the capillary; an artefact of 

experimental protocols (for example insufficient relaxation time after loading before 

straining); an artefact of the measurement method (for example, many published studies 

used home made apparatus rather than the commercial CaBER).  As previously noted, 

the laser beam has a finite thickness.  During a breakup event, the calibration may no 

longer be valid; instead of a parallel sided capillary obscuring the path of the laser 

beam, there may be a converging neck, or all or part of a drop or drops.  Drop formation 

may precede filament breakup, as in the widely reported "beads-on-a-string" 

morphology (Clasen et al., 2006a, Oliveira and McKinley, 2005, Bazilevsky et al., 

1990b), or more usually, if droplet formation occurs, it follows on from filament 

rupture.  An additional source of variation is the motion control of the linear motor 
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which drives the strike.  Devices built by study authors may record the time of the end 

of the strike, but the commercial CaBER does not.  The time zero in the CaBER output 

file is at or around the time when the reported diameter begins to drop below the initial 

plate diameter.  This occurs as the upper plate passes through the laser beam, i.e. it is 

during the transit of the plate, not at the end of the strike.  In principle the relative time 

of the end of the strike could be calculated from the programmed strike profile.  In 

practice this calculation is unreliable.  In an unpublished study at ICI Wilton by Dr. 

Anthony Stickland using high speed photography and image analysis, it was found that 

the actual strike profiles varied from the intended strike profile in an unpredictable 

fashion.  Thus it is not in general possible to characterise the time to breakup from the 

laser micrometer signal alone, but only in combination with video footage. 

The observation that the time to breakup is not a useful measurable parameter (at least 

in the commercial CaBER) permits an important transformation to be made to the data.  

Of primary interest is the shape of the time-diameter curve, and whether the decay curve 

for one material is more or less rapid than another.  That is, it is the gradient and the rate 

of change of the gradient that is interesting, but the actual position of the curve in time 

is not important.  The rheologist is thus free to choose an arbitrary time zero, and 

translate the curves along the time axis in order to make comparison between different 

curves easier.  This time-shifting (or time re-zeroing) has been found in this study to be 

an exceedingly powerful analysis tool, and has been used routinely in the analyses 

reported here.  This analysis technique has not been reported by other authors.  The 

principle is to choose a convenient diameter, and re-define the zero point time to be the 

time at this diameter.  Time-diameter curves can then be translated along the time axis 

so that they have a common diameter at the new time zero, to enable easier comparison 

of the shapes of the curves, whether between repeat experiments on the same material or 

between different materials.  In the theoretical analysis for a Newtonian filament, Bond 

number less than 0.1 is taken to be the criterion for the filament diameter for which 

gravitational drainage can be considered to have become negligible and the rate of 

thinning is solely a balance between surface tension and extensional viscosity 

(McKinley and Tripathi, 2000).  The corresponding numerical value of 0.8mm filament 

diameter is only valid for capillary thinning of a Newtonian fluid, but there are no 

literature reports of what the diameter should be for other rheological models.  In the 

study reported in the following chapter, 1mm has been used as a pragmatic and 

convenient zero point time, but it must be appreciated that this is essentially an arbitrary 
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selection as none of the analyses are truly capillary thinning of a Newtonian fluid, and 

Bond number of 0.1 is an arbitrary standard. 

8.3.2 Hencky Strain - Trouton ratio plot 

The Trouton ratio is defined as the ratio of the extensional viscosity to the shear 

viscosity.  From geometrical considerations, for a Newtonian fluid, the uniaxial 

extensional viscosity is three times the shear viscosity, so the Trouton ratio in this 

special case is three.  So, in a plot from CaBER data of Trouton ratio against a measure 

of strain, a Newtonian material will plot a straight horizontal line, as the Trouton ratio is 

always three for any value of strain.  The curve for a strain hardening material, where 

the viscosity increases with increasing strain, will show a positive deviation away from 

the horizontal, as the viscosity and therefore Trouton ratio increase with increasing 

strain.  The concept is sketched in Figure 65:  Figure 71 in Chapter 9 is an example of 

such a plot from CaBER data for a strain hardening material.  It will be seen that the 

Trouton ratio_- Hencky strain plot is useful because strain hardening behaviour is very 

clearly depicted.  It will now be considered how these plot parameters can be calculated 

from CaBER data. 

  

Figure 65:  cartoon of the Hencky strain - Trouton ratio plot for Newtonian and strain 

hardening rheologies 
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8.3.3 Calculation of Hencky strain from CaBER data 

Engineers would normally use the structural engineers' definition of strain, as the 

change in length of a beam divided by its original length, ∆L./.L0.  However, this is a 

pragmatic simplification for the very small extensions generally encountered in a civil 

engineering structure.  Large extensions would only be encountered if the structure fails, 

but civil engineering design methods are intended to ensure that structures do not fail, 

so the implicit assumption of small extensions is perfectly adequate in this context.  The 

problem is that engineering strain is not objective except for infinitesimal strain.  On 

stretching, the strain is ∆L./.L0, but on the reverse compression, the starting position is 

L0.+.∆L, so the strain is -∆L./.(L0.+.∆L), that is, the value of strain obtained is lower in 

magnitude for the same physical deformation.  This lack of objective measure is 

inadequate for the huge extensions in the CaBER experiment.  The problem is resolved 

by defining an infinitesimal strain increment dL./.L and integrating from the initial 

length L0 to the final length L to get the total strain, or Hencky strain, which is now 

objective (Eqn. 8-4).  In one dimension for an incompressible material, the Hencky 

strain is the strain.   
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It will be seen that for very small strains, this reduces to the approximation given by the 

engineering strain; 
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Conservation of sample volume in the CaBER experiment allows the deformation ratio 

L(t)./.L0 to be re-cast in terms of filament diameter, so in practical terms, the Hencky 

strain H is rather straightforward to calculate from CaBER data; 
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where d(t) is the filament mid-point diameter at time t, and d0 the initial diameter of the 

sample when it was first loaded, before the imposition of the step strain.  Anna and 

McKinley (2001) define d0 as the initial diameter of the sample when it was first loaded, 

but then in an example calculation of the Hencky strain, use the diameter of the filament 

at the end of the strike.  Whichever definition is strictly correct, pragmatically the initial 

Eqn. 8-6 

Eqn. 8-5 

Eqn. 8-4 
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sample diameter has been used in this study.  As noted previously, the time at the end of 

strike is not recorded by the CaBER instrument, so the diameter at end of strike is not 

known unless the CaBER data has been synchronised to simultaneous video footage. 

A further practical complication, is that the unprocessed CaBER data is a time series of 

diameter measurements, i.e. the diameter is a dependent variable.  In the Hencky strain.- 

Trouton ratio plot, diameter becomes the independent variable.  The practical 

significance is that it is computationally simplest to leave the transformed datasets in the 

same order, i.e. the first diameter measurement, d(t0), at t0, is transformed into the first 

element of the Hencky strain dataset, and the second diameter measurement, d(t1) is 

transformed into the second element of the Hencky strain dataset.  Whilst the filament 

thins over the course of the experiment, there will inevitably be noise in the diameter 

measurement, so it is not guaranteed that dn+1 is smaller than dn .  Consequently the 

Hencky strain will not monotonically increase as would be desirable in an independent 

variable, and strange jagged loops can appear if the Hencky strain_- Trouton ratio is 

plotted as a line.  Potential solutions are to re-order the dataset in increasing Hencky 

strain, or to plot the data as points.  In the study reported in this thesis, the noise is 

suppressed as a side effect of the moving average data smoothing in the transient 

apparent extensional viscosity calculation which is described in section 8.3.5. 

8.3.4 Calculating the strain rate from CaBER data 

The strain rate ε&  can be calculated by differentiation of the Hencky strain; 
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Strategies for the numerical differentiation are discussed below 

8.3.5 Calculating the transient apparent extensional viscosity from CaBER data 

If a fluid conforms reasonably to one of the small selection of rheological models 

available, then the transient apparent extensional viscosity can be determined from a fit 

of one or other of the model equations to the experimental time-diameter curve.  

Eqn. 8-7 
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However, with industrial non-model fluids, this is found to be the exception rather than 

the rule.  It would be desirable to have a general method to analyse an arbitrary form of 

time-diameter curve. 

The full force balance is (Renardy, 1995a); 
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As previously introduced, an assumption in the CaBER experiment is that the capillary 

stress will eventually dominate, so other terms can be neglected and Eqn. 8-8 reduces 

to; 
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In fact recalling Eqn. 8-3 for the Newtonian case, a correction factor is required for the 

slight curvature of the filament around the mid-point. 

The conjecture in this thesis is that a pragmatic approach to analysis of an arbitrary 

shape of time-diameter curve is to assume that when the filament is fine, contributions 

to the total stress other than the capillary stress are always sufficiently small to be 

negligible.  That is, the contribution of inertial, gravitational, and uncontrolled viscous 

and elastic stresses arising from the initial strike or sample loading may be initially 

large, but diminish over time as these stresses relax, whereas the capillary stress 

increases, and it is assumed that it eventually dominates, at some time before filament 

breakage.  An arbitrary time-diameter curve can then be considered to be a series of 

quasi-Newtonian straight lines, and the evolution of the transient apparent extensional 

viscosity of the fluid over the lifetime of the filament can be calculated from a 

numerical differentiation of the time-diameter curve; 
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This approach will work best for materials which deviate only slightly from Newtonian 

behaviour. As the non-Newtonian character of the sample becomes more extreme, the 

assumption that the other contributions to the total stress are negligible becomes less 

applicable.  An alternative interpretation is that the duration of the experiment for which 

the capillary stress dominates becomes progressively shorter as the deviations from 

Eqn. 8-10 

Eqn. 8-9 

Eqn. 8-8 
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Newtonian behaviour increase.  Hence the transient apparent extensional viscosity is 

well estimated by the method for a decreasing portion of the range over which it has 

been calculated and reported.  The method has known limitations, but its utility is 

demonstrated by the study reported in this thesis. 

The proposed method requires a numerical differentiation of the time-diameter tabulated 

data that is the instrument output.  Stepwise calculation of change in diameter over each 

time increment is not only the simplest strategy to implement, but it has the important 

advantage of avoiding the imposition of model or fit dependent artefacts upon the data, 

or unwittingly smoothing out interesting but subtle features of the data.  Numerical 

differentiation is normally noisy, but there is an additional complication in the 

unmodified commercial CaBER on which the study in this thesis was conducted.  A 12-

bit data acquisition card is supplied.  This gives serious quantisation of the laser 

micrometer signal (Figure 66).  Direct stepwise numerical differentiation gives an 

unusable noisy trace, as the differential varies from zero on the treads of the steps to 

extremely large values on the risers.  In this study, the first element of data processing 

has been to apply a repeat data filter.  Sequentially repeated diameter data are replaced 

with a single diameter datum at the average time. 

Even following the excision of repeat data, stepwise differentiation has been found to be 

excessively noisy, and some data smoothing is required.  In the study reported here a 

moving average has been used, where the duration of the average was constant for each 

group of datasets.  The duration was manually adjustable, so by a process of iteration 

and inspection of results a visually acceptable balance could be struck between 

excessive noise and oversmoothing. 

The study reported here was conducted in 2005.  Clasen et al. (2006b) have 

subsequently shown success by taking logs of the data, another traditional data 

smoothing strategy, although it is used only as a preparation for a model fit, not for 

numerical differentiation as proposed here.  Model visco-elastic solution were 

deliberately chosen for that study, and hence a model solution analysis applied (Entov 

and Hinch, 1997). 
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Figure 66: detail of an unprocessed CaBER time-diameter curve showing quantisation 

due to the 12-bit data acquisition card 

8.3.6 Calculating the transient apparent Trouton ratio from CaBER data 

The Trouton ratio was defined earlier as the ratio of the extensional viscosity to the 

shear viscosity.  The numerical value is three for uniaxial strain of a Newtonian material 

from geometrical considerations.  The Trouton ratio is thus a measure of excess 

extensional viscosity over Newtonian expectation.  It can alternatively be viewed as an 

index of strain hardening. 

In the literature, the shear viscosity chosen for the transient apparent Trouton ratio is 

typically the zero shear viscosity (McKinley, 2005).  This would appear to be one of the 

many pragmatic conveniences in reported CaBER analyses.  Some of the coatings 

formulations used in the study reported in Chapter 9 were found to be shear thinning, 

but strain hardening.  The transient apparent Trouton ratio would be underestimated if 

the zero shear viscosity were used.  It would be more satisfactory to choose the shear 

viscosity shearη  at an equivalent deformation rate (Eqn. 8-11).  Chan et al. (2007) is the 
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only literature example where this has been adopted for CaBER analyses.  There is a 

geometry correction factor of √3 in the equivalence of shear rate γ&  to strain rate ε& . 
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Where appropriate data is available, the denominator of Eqn. 8-11 can be calculated 

from a fit to a flow curve obtained from a separate shear rheometry experiment. 

8.4 Summary 

The derivation of rheological parameters from CaBER time-diameter data has been 

introduced.  Time re-zeroing and numerical differentiation of the time-diameter curve 

has been proposed as a novel strategy for the analysis of data which does not conform to 

one of the few published rheological models. 

 

 

 

 

 

 

 

 

 

Eqn. 8-11 
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CHAPTER 9 - EXPERIMENTAL MEASUREMENT OF 

TRANSIENT APPARENT EXTENSIONAL VISCOSITY  

In this chapter, the novel analysis method developed in the previous chapter will be 

applied to an experimental study.  This study uses commercial coatings formulations 

rather than spray dryer feedstocks, as the development by ICI Paints of the "Cuprinol 

Sprayable" system for spraying Timbercare products provided a good source of 

comparative sprayable and non-sprayable materials.  The industrial application of the 

materials is immaterial to the demonstration of the method, the important detail is that 

the fluids exhibited a rheological response in the CaBER experiment that is sufficiently 

complex that it could not be interpreted using the rheological model fluid cases which 

have previously been published. 

CaBER measurements were performed on seven fluids, four of which were retail fence 

timbercare products and three were development formulations.  To protect commercial 

confidentiality, they are labelled in this thesis as materials E to M (letters I and L are 

omitted to avoid confusion with the number 1). 

9.1 The expected behaviour of rheology modifier additives 

Coatings formulations contain additives to obtain a desirable rheology profile, for 

example to minimise dripping from a brush during application, or resist sags and runs 

on the substrate.  These additives are often high molecular weight flexible polymers, 

which characteristically produce strain hardening (Larson, 1998).  The enhancement in 

extensional viscosity over shear viscosity at high strains can be many orders of 

magnitude.  The maximum extension is limited by the polymer chain length, and hence 

theory predicts that the extensional viscosity will reach a plateau at large strains.  This 

plateau is typically expected to be beyond the range of the commercial CaBER, as 

discussed later. 

The sprayable products contain an associative thickener in place of the high molecular 

weight polymeric thickeners (Insausti-eci-olaza and Mouzouras, 2005).  At rest, the 

molecules self assemble into a large scale network structure (hence the name 

"associative"), which gives the product sufficiently high zero shear viscosity to resist 

sagging and dripping when applied as a coating.  But this network is relatively weak, 
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and is broken up both by high shear deformations and under the strong deformation of 

extension, so the viscosity drops dramatically. 

9.2 Strain and strain rate in the CaBER and in a spray 

The Hencky strain and strain rate in the CaBER experiment are determined by the fluid, 

not selected by the rheologist.  The maximum measurable strain is determined by the 

thinnest resolvable filament.  From Figure 66 it can be seen that a single bit on the data 

acquisition card is equivalent to around 8µm.  The maximum measurable strain rate is 

determined by the measurement frequency.  The maximum data acquisition frequency 

on the commercial CaBER is 30kHz.  So for a filament in the default 6mm diameter 

geometry, the theoretical maximum Hencky strain and strain rate are given by; 
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These are theoretical maxima.  It can be seen from Figure 70 and the plots in Appendix 

F that the Hencky strain actually obtained in this study was between 3.5 and 9.  The 

strain rate was as low as 10/s for Material G and as high as 1100/s for Material J. 

The most basic criterion for sprayability of a fluid from the flat-fan type of atomiser 

used in this study is that it forms a fan sheet on discharge from the atomiser.  The range 

of strain and strain rate in the fluid during the stretching of this sheet have been 

estimated from calculation to be of the order of 0.-.4 and 105.-.103/s respectively.  The 

strain in the CaBER experiment is generally greater, and the strain rate lower, with 

rather little overlap. 

The strain and strain rate during final ligament breakup to drops in the spray are rather 

harder to estimate or to measure.  An attempt was made to measure ligament thinning 

and breakup to drops directly in the spray.  The ligaments are in a frame of reference 

that is moving rapidly relative to the observer.  To measure the rate of thinning requires 

that the same filament is followed for a period of time.  The spray droplets are small, 

perhaps 50-100µm mean diameter, so the filaments between them are even thinner.  To 

obtain any precision of measurement requires a high magnification lens.  Optical 

Eqn. 9-2 

Eqn. 9-1 
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physics constrains that such a lens has a rather small field and depth of view, so it was 

found that the filaments do not remain either in field or in focus for sufficiently long for 

a filament thinning measurement to be made.  To put it another way, if it was practical 

to have measured the rate of filament thinning directly in the spray, the abstraction into 

the filament thinning in the CaBER measurement would have been dispensed with.  

Instead it is necessary to make the assumption that, since the CaBER time and diameter 

increments are quantised, but the actual filaments in the spray are both thinner, and 

thinning continuously, that the strain and strain rate during the final filament breakup in 

the spray are somewhat larger than is achieved in the CaBER experiment. 

Stelter et al. (2002a, 2002b) support the notion that the sprays-relevant measurement is 

the plateau of constant extensional viscosity expected at high strain rate (coarsely, at full 

molecular stretching, or fluid restructuring in the case of the associative thickeners).   

They refer to this as the "Steady Terminal Extensional Viscosity" (STEV). 

9.3 Repeated straining as a surrogate for desirably high strain and strain rates 

Anomalous behaviour in a single CaBER experiment is frequent, especially for fluids 

with complex rheology.  Experience suggests that good repeatability is indicative that a 

capillary thinning experiment has really been performed each time, and was largely 

unaffected by experimental artefacts.  Dijkstra et al. (2007) supports the experiential 

conclusion that it is necessary to make three to five repeats of a CaBER experiment to 

be confident that the interpretations are valid.   

In this study, it was initially noted that the CaBER measurements on some of the test 

fluids were very non-repeatable.  However, if the same sample of fluid was repeatedly 

stretched, rather than being renewed between each repeat, the time-diameter curves 

became repeatable.  The repeated straining program on the CaBER control software is 

described by the manufacturer as "batch measurement mode". 

On one level, the repeated straining protocol was simply a pragmatic technique in order 

to obtain a consistent measurement for each material.  However, it is instructive to 

consider why such a protocol should lead to improved repeatability 

One possible explanation is chain scission.  It is well known that the strain hardening 

effect in dilute solutions of high molecular weight polymers can be reduced after 
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excessive strains.  This is normally ascribed to polymer chain scission: the flow-induced 

stress is sufficient to break a backbone bond (Müller et al., 1992).  The stress will 

increase with the chain length: crudely, there are longer lengths of chain to drag in the 

flow and accumulate stress on the backbone.  Hence it is the longest chains which are 

the most susceptible to scission.  These are also the constituents which cause the 

greatest strain hardening.  If chain scission were occurring, the effect of repeated 

straining should be for strain hardening to decay over time.  The extensional viscosity 

measurement on repeated straining would trend towards a Newtonian response.  Chain 

scission is thus unsatisfactory as an explanation.  It can be seen in Figure 77 that there is 

still significant strain hardening in the samples that have been repeatedly strained. 

Materials E and K were the only two samples where the effect of repeated straining was 

a trend towards a Newtonian response.  These two materials have an associative 

thickener, so chain scission is not a satisfactory explanation.  A more credible 

explanation is that the recovery time for the association network is greater than the time 

between the repeated strains.  A single moderate strain obtained in the CaBER 

experiment is insufficient to completely disrupt the network.  The variation in single 

strain measurements is probably due to different extents of shear during loading from a 

pipette, and variable times (and hence extent of recovery) between loading the sample 

and performing the straining experiment.  When the sample is repeatedly strained, the 

network does not have time to recover fully from each previous strain.  Hence, over 

time, the rheological response becomes more like the behaviour of a fully disrupted 

network.  This is the expected behaviour in the spray, when the fluid is intensely pre-

sheared through the nozzle and then subject to very large extensions and rates in the 

spray.  Hence for Materials E and K, which contain an associative thickener, the 

repeated straining protocol in the CaBER is expected to give an extensional viscosity 

measurement which is meaningfully representative of the spray, even though the strain 

and strain rate of a single strain are too low. 

The remaining fluids contain a high molecular weight thickener.  A reasonable 

explanation for the improved repeatability from multiple straining is that the molecular 

alignment from the initial strain has not decayed completely before subsequent strains.  

Single strains are unrepeatable as there are varying degrees of molecular alignment 

within the samples, again expected to arise from differences in the shear experienced by 

the sample loading with a pipette and difference in time lapse from loading to the 

sample to performing the strain.  Subsequent strains all have the same degree of semi-
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decayed alignment from previous strains, so the extensional viscosity measurement 

becomes consistent. 

It was initially hoped that the repeated straining would accumulate sufficient molecular 

pre-alignment for subsequent strains that the "Steady Terminal Extensional Viscosity" 

(Stelter et al., 2002b) would be approached.  Figure 76 does not support such a 

conclusion. 

In this study the CaBER "batch measurement mode" repeated straining protocol has 

been used as a technique to obtain consistent results.  In the case of the associative 

thickener containing fluids at least, the measurements made in this way are credibly 

more representative of the fluid behaviour under the much greater extension rates 

experienced by the fluid during spraying.  This has not been reported by others. 

9.4 Experimental details of CaBER measurements 

In all cases the CaBER default 6mm diameter plates were used, with an initial 

separation 3mm.  The final distance between the plates was empirically chosen to 

produce a capillary filament with lifetime long enough to allow the rate of reduction in 

the diameter of the filament to be measured.  8mm was found to give acceptable results.  

The strike from the initial to the final height was in all cases set as 50ms, with a linear 

velocity profile. 

The number of repeat strains in the "batch measurement mode" was varied for each 

material.  Groups of 20 repeats were performed until the time-diameter curves plotted 

by the control software were judged to have reached steady state.  Hence for most 

samples 20, 40, 60 or 80 repeats were performed.  For Material J only, there were a set 

of 10 followed by a set of 20. 

9.5 The need for software and some degree of automation in analysis 

There are a total of almost 400 time-diameter curves to analyse in this study.  Even if 

the "batch measurement mode" had not been used, there would be three to five repeats 

for each experiment.  There are five steps to the analysis of each time-diameter curve.  

Manual analysis would be slow, tedious, and hence prone to error.  The sheer quantity 
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of data manipulation required for any real study makes at least some degree of 

automation a pragmatic necessity.   

Furthermore, much of the analysis is required simply to plot data in useful formats for 

interpretation.  These plots are useful for the experimenter to determine what 

experiment to run next.  The speed required for such on-line use practically dictates 

some degree of automation.  

9.5.1 The supplied CaBER analysis software 

The CaBER Analysis software supplied with the instrument has inadequate capability 

when compared with the desired list of data processing tasks.  It will import only up to 

20 datasets, there is inadequate control over what range of data is imported, and the 

curves cannot be time translated for easier comparison of their gradients.  It is possible 

to select the data range over which a fit can be applied, but the models must be chosen 

from amongst a short predetermined list.  There is no model for associative thickeners.  

Only one dataset at a time can be fitted, and the fit parameters must be manually saved 

each time or they are lost when moving onto the next dataset.  The analysis software 

does not calculate the useful derived parameters described in the previous chapter, but 

relies on these values having been written to columns in the datafile output from the 

CaBER control software.  However, not only is it unclear what calculation the control 

software is using to derive the parameters, but the columns are not normally fully 

populated with values.  Frequently the columns are totally empty.  When values do 

appear, it is only for the first part of the experiment where the filament is thick and 

gravitational drainage dominates.  Values rarely appear in these columns in the thin 

filament region where they would be valid.  Hence it is not possible to create the desired 

plots against Hencky strain of transient apparent Trouton ratio and transient apparent 

extensional viscosity. 

The supplied CaBER Analysis software is even more limited for processing the "batch 

measurement mode" datafiles in this study.  These have only time and diameter 

tabulated data: the derived parameters do not appear even as underpopulated columns.    

It is possible to import "batch measurement mode data" only into a daughter window, 

which has no control whatsoever over what is displayed. 
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9.5.2 Excel VBA macro analysis method 

As the CaBER Analysis software was not fit for purpose, a Visual Basic for 

Applications (VBA) macro to an Excel spreadsheet was written to perform the desired 

sequence of analysis tasks.  The macro code is listed in Appendix E.  The tasks 

performed by the macro are as follows; 

1. Redundant data filtering.   Filter out invalid data at large filament diameter (where 

gravity is dominant in determining the thinning rate) and small filament diameter 

(where artefacts due to e.g. droplet formation confuse the later fitting routines).  The 

maximum and minimum diameter selected for valid data cut points are the same for 

all data series on each spreadsheet. 

2. Re-set time zero to the first valid reading, chosen to be 1mm as previously discussed.   

3. Repeat data filtering.  As described in section 8.3.5, where diameter values are 

repeated at sequential times in the list, they are replaced with a single value at the 

mean time. 

4. Smooth the filtered data on a moving average.  Averaged over the least number of 

points, found by manual iteration, to remove gross outlying points (large peaks in the 

gradient calculation) without excessive smoothing.  The number of points in the 

moving average was the same for all curves for a material, so noise is still apparent 

in some curves. 

5. Apply a stepwise numerical differentiation on the smoothed filtered data and use this 

to calculate the viscosity. 

The calculations for the Hencky strain, Trouton ratio, and the ensemble averages of the 

batch measurement curves, were performed subsequent to macro execution by 

spreadsheet cell formulae and manual manipulation of data. 

Excel and VBA were selected because it was straightforward to prototype the analysis 

algorithm using these tools.  The disadvantages are that it is not practically scalable: the 

worksheets are very large (~15 MB), and Excel has a limit to the number of columns in 

a worksheet.  This limit was uncomfortably closely approached for fluid E where 80 
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repeat strains were performed.  VBA is an interpreted, not a compiled language, so the 

macro is comparatively slow to run.  Investigating the effect of changing the smoothing 

parameter, for example, is undesirably time consuming.  A final disadvantage is that it 

is very user unfriendly.  There is little exception handling, and the datasets must be 

added to the plots manually. 

9.5.3 Calculation of  transient apparent Trouton ratio 

The method of determining the deformation-rate-dependent transient apparent Trouton 

ratio described in section 8.3.6 requires shear flow curve data, which was not available 

in this study.  The shear rheometry was performed by others.  The results were reported 

at two points for each fluid: shear viscosity at 5000/s, and, for some of the materials, an 

extrapolation back from low shear measurements to a zero shear viscosity value.  In 

absence of the full flow curve data, the high shear viscosity value has been used to 

calculate the transient apparent Trouton ratio.  The reason for this choice was twofold.  

The high shear value is more representative of the deformation rates in a spray, as 

discussed above.  The high shear viscosity measurement set was also complete, whereas 

zero shear measurements were not available for all the test materials.  The strain rate in 

the CaBER experiments was always less than 5000./.√3.=.2900.s, and some of the 

experiments were at very low strain rates.  The use of high shear viscosity may therefore 

give rise to numerical error in the calculation of transient apparent extensional rheology.  

However, as the purpose of determining the Trouton ratio was only to compare 

qualitatively the existence and extent of strain hardening behaviour between materials, 

the potential numerical error is acceptable. 

9.6 Exemplification of analysis method: Material J 

The analysis protocol is perhaps most clearly explained by following the analysis for an 

example material.  The single strain experimental data is considered first.  The batch 

measurement mode data is then presented and compared. 

It will be seen from inspection of the single strain curves in Figure 67 that the results are 

far from repeatable.  This is most readily apparent in the difference in overall filament 

lifetime between the repeats, but on closer inspection it can also be seen that the 

gradient is far from repeatable in the salient sub-millimetre filament diameter region. 
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Figure 67: unprocessed CaBER time-diameter curves: material J single strains 

The results of the numerical analysis on these data are shown plotted as transient 

apparent extensional viscosity as a function of strain rate in Figure 68.  This means of 

presentation portrays both qualitative and quantitative differences between the repeat 

measurements.  Four of the curves, shown as continuous lines, show consistently low 

viscosity at all strains, which indicates approximately Newtonian rheology.  Two 

experiments, shown as continuous lines with square symbols, show the lowest viscosity 

of all repeats at low strains, but this increases above a Hencky strain of about six.  This 

would suggest visco-elastic extensional strain hardening behaviour.  Three of the 

repeats, shown dotted, show at low strains a transient apparent extensional viscosity that 

is an order of magnitude greater than the other experiments, but this decays to almost 

the lowest values at the highest strains measured.  This is more similar to the model of 

power law fluid behaviour. 
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Figure 68: transient apparent extensional viscosity as a function of strain from material 

J single strain CaBER data 

In contrast, in Figure 69 it can be seen that the batch measurement mode data (solid 

lines) form a mass of very similar shaped curves.  There are just two outliers, shown in 

red.  In each case, these two outliers are the first strain of a set of repeated strains.  Also 

in each case, the outliers are similar to one of the single strain time-diameter curves. 

The time-diameter curves in Figure 69 suggest that the effect of repeated straining is to 

move from an erratic to a consistent measurement.  This suggestion is supported by the 

results of the numerical analysis which has been plotted in Figure 70.  The datapoints 

cluster around a trend line.  An ensemble average of the data has been calculated and is 

plotted (heavy black line).  Strain hardening is indicated.  The first strain in the set (red 

line) is different.  In Figure 69, the first strains from each set are plotted, but only one of 

these has sub-millimetre data valid for analysis, so there is only one red line in Figure 

70. 

Also plotted in Figure 70 are dotted horizontal lines which are judged to bound the bulk 

of the measurements.  The dashed horizontal line is mid-way between these bounds.  

Noise in these curves shown dotted 
is a result of using the same number 
of points in the moving average for 
all curves.  Smoothing these curves 
would have oversmoothed others, 
and obscured the strain hardening 
indicated in the curves shown solid 
black with square symbols 
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This range of viscosity values has been used in the analysis in the following chapter.  It 

has been treated as though it were a central tendency and error bound, purely as a means 

to plot a datum onto the Ohnesorge diagram.  It should be understood for the strain 

hardening materials, however, that this is not to imply that there is a central tendency: 

the extensional viscosity increases with strain.  The simplification of the transient 

apparent extensional viscosity data into a single central tendency value with error 

bounds is a more intuitive concept for the materials that exhibit approximately 

Newtonian rheology. 

The summary statistic for the transient apparent extensional viscosity of Material J has 

been taken to be 0.25.±.0.2.Pa.s. 
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Figure 69: unprocessed CaBER time-diameter curves, material J 
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Figure 70:  transient apparent extensional viscosity as a function of strain, calculated 

from material J CaBER batch measurement mode data 

A minimum Trouton ratio of three is expected.  The consistently lower values indicated 

in Figure 71 are suggestive of a systematic error.  Potential error sources in the CaBER 

experiment have been discussed previously.  The error is not so gross that it detracts 

from the interpretation as a fluid exhibiting strain hardening behaviour. 

The moving average was taken over three readings for Material J.  This material was 

selected for this exemplification discussion partly because the noise was relatively low 

and features in the data were more clearly apparent.  Rather larger averaging sets were 

required for most of the other materials tested. 

first strain of set (red solid line) 

mid-way between bounds (dashed line) 

estimate of upper bound (dotted line) 

ensemble average of data (heavy black line) 

data as points (far outlier points shown 
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Figure 71:  transient apparent Trouton ratio as a function of strain, material J  

9.7 Material E results 

Material E warrants discussion as this shows the most gradual decay towards steady 

state. 

The time-diameter curves for Material E are plotted in Figure 72.  There is a gradual 

evolution of the curves with repeated straining.  The first set of strains, and the first five 

strains from the second set are shown as red lines.  The remainder of the second set of 

repeats, and the first five strains from the third set also form a group and are depicted 

blue.  The final 35 strains appear to have reached a steady state condition and are shown 

as black lines.  The same pattern is seen in Figure 73 for the trend with repeated 

straining in transient apparent extensional viscosity as a function of Hencky strain. 

single strains 
(black dotted lines) 

batch measurement 
mode strains 
(black solid lines, 
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Figure 72:  CaBER time-diameter curves for 80 repeated strains of the same sample 

material E. 
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Figure 73:  Material E analysed data for repeated strains of the same sample 

first 25 strains in red 

final 35 
strains  
in black 

0.06mm lower limit of analysis 

next 20 
strains 
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first 25 strains in red 
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final 35 strains in black 
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The ensemble average and the spread of the transient apparent extensional viscosity 

parameter plotted in Figure 74 have been determined from those final thirty-five strains 

where a steady-state response appears to have been reached.  The summary statistic for 

the transient apparent extensional viscosity has been taken to be 0.3.±.0.25.Pa.s.  Figure 

75 indicates that the behaviour is Newtonian for moderate strains, consistent with the 

breakdown of the association network of the thickener.  There is also a trace of high 

molecular weight polymer which accounts for the strain hardening at high strain. 
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Figure 74:  Material E: summary of the magnitude and spread of ηext,app 
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Figure 75: transient apparent Trouton ratio as a function of strain, material E 

estimate of upper bound (dotted line) 

ensemble average of data (heavy black line) 

mid-way between bounds (dashed line) 

data from final 35 strains as points (far outlier points 
shown bold so that they are more clearly seen) 

data from final 35 strains as points 
(Tr axis upper bound chosen to show region 
of interest: far outlier points excluded) 

ensemble average of data (heavy black line) 
Newtonian expectation Tr=3 (dashed line) 
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9.8 Conclusions 

The analysis for materials J and E discussed above was repeated for the other materials.  

The results from these analyses are summarised here, the data are in Appendix F. 

The analysis method that was developed in the preceding chapter for an arbitrary 

CaBER time-diameter curve has successfully been used to determine the transient 

apparent extensional viscosity parameter for fluids whose response in the CaBER 

experiment was too complex to successfully have been analysed using any of the 

rheological models that have so far been published. 

Table 6 shows all the data values used in the Ohnesorge diagram plots in the following 

chapter.  This includes the CaBER data measured and reported in this study, and also 

data for shear viscosity, surface tension and density that was measured for this study by 

colleagues (Steven and Elliott, 2005). 

There is an order of magnitude variation in the measured transient apparent extensional 

viscosity parameter between the different materials.  The spread values are large 

fractions of the total values, as for all materials the extensional viscosity shows 

significant fractional variation as a function of strain, as depicted in Figure 76.  

In Figure 77 it can be seen from the Trouton ratios elevated over the Newtonian 

expectation that materials F, G and H show significant strain hardening.  The effect is 

most pronounced for material F, where the onset of strain hardening was at strains too 

small to be measurable in the CaBER experiment.  The strain softening indicated by the 

dip in curves G and H indicates error in the analysis.  Strain softening is exotic and 

would not be expected for these materials.  The most likely explanation is that initial 

stresses had not fully relaxed by the 1mm diameter taken to be the start of valid data for 

analysis.  A smaller limiting diameter should have been selected, corresponding to a 

Hencky strain of around 5.5.   Material M shows moderate strain hardening.  Materials 

E and J show a Newtonian response until significant strain has developed, and even 

after onset only show a small degree of strain hardening.  The physically meaningless 

Trouton ratio calculated for material K indicates a systematic error.  It was not possible 

to identify the source of this error. 
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Material Data measured this study Data measured by Steven & Elliott (2005)

code ηext, app Trapp ηshear at 5000/s surface tension σ density ρ

Pa.s [-] Pa.s mN / m kg/m³

E 0.3 ± 0.25 11 ± 10 0.0261 ± 0.0001 40.0 ± 0.5 1013 ± 5

F 0.7 ± 0.35 100 ± 50 0.0067 ± 0.0001 45.5 ± 0.5 1007 ± 5

G 1.6 ± 0.4 57 ± 14 0.0283 ± 0.0001 46.1 ± 0.5 1013 ± 5

H 1.1 ± 0.5 44 ± 20 0.0251 ± 0.0001 36.9 ± 0.5 1010 ± 5

J 0.25 ± 0.2 9 ± 7 0.0280 ± 0.0001 44.8 ± 0.5 1009 ± 5

K 0.14 ± 0.06 1.1 ± 0.5 0.1300 ± 0.0001 47.4 ± 0.5 1000 ± 5

M 2 ± 1 12 ± 6 0.1730 ± 0.0001 49.1 ± 0.5 1000 ± 5
 

Table 6:  summary statistics for the physical properties for all test fluids. 
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Figure 76: ensemble average of  ext,appη  as a function of strain 
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Figure 77:  ensemble average of  ext,apprT  as a function of strain.  All data (above), 

expansion of 0.<.Tr.<.25 (below) 
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CHAPTER 10 - THE OHNESORGE DIAGRAM AND PREDICTION 

OF SPRAYABILITY FROM CaBER DATA 

The Ohnesorge diagram (Figure 78) is a map delineating regions of characteristic 

atomisation phenomena.  It is typically referred to in the introductory chapter of spray 

technology textbooks (Lefebvre, 1989, Bayvel and Orzechowski, 1993), but otherwise 

neglected.  It might reasonably be surmised that workers in the field may find the 

diagram a helpful visualisation, but not quantitatively of practical use, even if such lack 

of utility has not been formally acknowledged in the literature. 

Surprisingly, in this research it has been found that the Ohnesorge diagram can in fact 

provide a quantitatively useful guide to spray behaviour, at least for the example case of 

the fluids in the CaBER study in the previous chapter.  Two possible explanations are 

proposed for the perception that the Ohnesorge diagram is not practically useful.  

Firstly, the diagram has been incorrectly reproduced by some authors, including the 

standard textbook (Lefebvre, 1989).  Secondly, shear viscosity data are traditionally 

used in the dimensionless groups which plot onto the diagram, whereas extensional 

viscosity would be a more appropriate choice of parameter. 
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Figure 78:  the Ohnesorge jet stability diagram 
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10.1 The Ohnesorge diagram 

Ohnesorge (1936) proposed the diagram which now bears his name.  Four distinct 

regions of behaviour were observed in atomisation experiments; 

0 Dripping 

I breakup of a cylindrical laminar jet into drops 

II similar to 2, except that the jet oscillates sinusoidally 

III atomisation  

Ohnesorge found that regions I, II and III could be delineated by straight lines on a log-

log plot, where the abscissa was the Reynolds number, a ratio of inertial to viscous 

forces, and the ordinate was a group, now known as the Ohnesorge number, a ratio of 

viscous to surface tension forces.  According to McCarthy and Molloy (1974), the term 

Ohnesorge number was coined by Miesse (1955), even though the group was in use 

earlier than Ohnesorge’s work.  Ohnesorge simply called the group "Kennzahl", 

characteristic number, and used the notation Z, presumably for Zahl, in the same way 

that an English speaker might choose N to notate an arbitrary number. 

Re = ρUd / µ 

Z = √We / Re = µ / √(ρdσ) 

We = ρU²d / σ 

where; 
Re is the Reynolds number 

Z is the Ohnesorge number (alternatively notated Oh) 

We is the Weber number 

ρ is the atomised liquid density 

U is the superficial axial velocity of the liquid jet at the point when 

it emerges from the nozzle 

d is a characteristic diameter of the nozzle 

µ is the viscosity of the liquid.   

σ is the surface tension of the liquid being atomised 

The paper states that the atomisation was into air, so it is the interfacial tension of the 

liquid with air that is intended. 
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Experimental data was obtained over a huge parameter space; 2.<.Re.<.104 and 

0.001.<.Z.<.10, with water, aniline, gasoil (the fraction of crude oil that is used for 

diesel and heating oil), glycerine, oil A, oil B (both unspecified) and castor oil. 

Experimental temperature is unspecified, but ambient room temperature seems probable 

from the description of the experiment, and it is improbable that experimental room 

temperature variation would materially alter the conclusions of the paper.  Significantly 

elevated temperature would have reduced the viscosity of the fluids, but the evidence in 

the paper suggests that Ohnesorge was a competent and careful experimentalist, so it is 

reasonable to assume that the viscosity reported was measured at the spraying 

temperature.  The choice of fluids gave a wide range of viscosity, so it anyway seems 

improbable it would have been necessary to resort to the experimental complexities of 

raising the temperature of the fluids. 

It is not known exactly what oils A and B were, but all the other materials would be 

expected to have Newtonian rheology, so it is a reasonable inference that they were 

unexceptional choices, without unusual microstructure, and hence also Newtonian.  

Ohnesorge uses the word "Zähigskeitsreibung", which roughly translates as "coefficient 

of stringiness", rather than "viscosität" or "Zähflüssigkeit" which a modern dictionary 

offers as translations for viscosity, but the description of stringiness should not be taken 

to mean that Ohnesorge intended extensional viscosity.  As discussed in Chapter 7, 

extensional rheometers for low viscosity fluids are a recent development, so it is highly 

improbable that Ohnesorge would have had an extensional rheometer, even if it had 

occurred to him that extensional viscosity would in principle be a more appropriate 

parameter for the physics of the atomisation process.  Finally, a few quantitative checks 

can be made.  Selecting the value Oh.~.0.004 for water sprayed through a 1mm nozzle 

from Ohnesorge’s chart, with the accepted approximate literature values of density 

1000.kg/m³ and surface tension 72.mN/m, a viscosity coefficient of ~1.07mPa.s is 

obtained, which is close to the known value for shear viscosity of water.  Similarly for 

aniline through the 0.7mm nozzle, Oh.~.0.025, with density 1022.kg/m³ and surface 

tension 43.4.mN/m, viscosity by calculation is 4.4.mPa.s, c.f. 3.7.mPa.s literature value.  

If extensional viscosity had been used the values would have been three times larger.  

There is no doubt that shear viscosity is the data that Ohnesorge used and intended. 
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Ohnesorge (1936) did not propose a transition line between the dripping region 0 and 

varicose jet region I.  A dependency was sought on the dimensionless group r/a., where 

a.=.√(σ./.ρg) and r is the nozzle radius, but this group was found to vary from 0.01 to 1 

between experiments.  It can be inferred that Ohnesorge had written a force balance 

between gravity and surface tension for an incipient drop; 

 

g2

3
r

r2gr
3

4

2

3

ρ

σ
=

σπ=ρ
π

  

These terms might today be more naturally rearranged into the form of a dimensionless 

Eötvös number.  The problems are that this is a static force balance and does not 

account for the inertia of the flowrate into the developing drop, and also that the radii 

are not the same - the gravitational force applies to the droplet size, the surface tension 

to the nozzle radius. 

10.2 Extrapolation of the Ohnesorge diagram to flat-fan nozzles 

Ohnesorge (1936) does not specify the exact geometry of the nozzle, but the text and the 

photographs of example jets strongly suggest a simple cylindrical nozzle, with diameter 

variously 0.5, 0.7, 1.0 and 2.0.mm.  This detail is important, because the dimensionless 

groups characterise the nozzle solely by a diameter, without any modifying shape 

factors, but it is common knowledge in the atomisation field that the type of nozzle 

(simple nozzle, pressure swirl etc.) has an influence on the type of atomisation obtained.   

The “flat-fan” type of nozzle used in the study reported here is in essence a simple 

cylindrical pressure nozzle, albeit modified at exit to an ellipse by a “vee” cut 

perpendicularly across the nozzle exit and with a flow restriction orifice at the entry to 

the nozzle cap (Figure 79). 

It is empirically observed that the "pre-orifice" modifies the droplet size distribution 

from the nozzle, and smoothes temporal instabilities: the spray is reported to be finer 

and more even (Insausti-eci-olaza and Mouzouras, 2005).  The mechanism of its action 

is not well established, however.  It is postulated that it pre-shears the fluid and thus 

lowers the effective fluid viscosity in the final exit from the nozzle.  It does not appear 

to modify the point at which a jet becomes a spray, and no separate account of this 

Eqn. 10-1 
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internal orifice has been made in the data analysis and plotting onto the Ohnesorge 

diagram.  However, the repeated straining of the fluid in the CaBER experimental 

protocol described in the previous chapter may serendipitously have produced 

appropriate data for the pre-sheared case.  Thus although the pre-shear nozzle may not 

have been separately and independently allowed for, it has been accounted for in the 

aggregate analysis. 

 

Figure 79:  schematic diagram of the type of flat-fan pressure nozzle used (after 

Insausti-eci-olaza and Mouzouras, 2005) 

The vee-cut across the nozzle tip creates the flat-fan shape provided that the liquid 

momentum is high enough, but it is observed that an approximately cylindrical jet can 

be obtained from a flat-fan nozzle, if the flowrate is sufficiently low.  Hence it is a 

reasonable initial assumption that an Ohnesorge diagram could be used as an 

atomisation map.  However, it is not clear that the position of the transition lines would 

be unaltered for a flat-fan nozzle. 

10.3 Review of the delineations on the Ohnesorge diagram 

A literature review was conducted to establish whether there was any guidance to 

changes to the transition lines for different nozzle types.  A more fundamental issue was 

uncovered: authors do not agree on the positions of the lines even for the simple 

cylindrical nozzle.  

Reading point values from Ohnesorge's chart (Ohnesorge, 1936), the equation for the 

transition line from varicose to sinuous breakup has been estimated as; 

(Re.=.7.8, Z.=.10),  (Re.=.10,950, Z.=.0.001),   =>   Z.=.35.Re.-1.27    Eqn. 10-2 
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and for the sinuous breakup to secondary atomisation; 

(Re.=.34, Z.=.10),  (Re.=.63,720, Z.=.0.001),   =>    Z.=.741.Re.-1.22   

Miesse (1955) is the first appearance in an English language journal of the Ohnesorge 

diagram.  It was proposed that, since the lines were straight on a log-log chart, they 

should follow the form Z.=.A.Re-n (where A and n are arbitrary constants).  This re-

arrangement has been used in this thesis to compare the transitions lines found in the 

literature. 

Miesse's (1955) quantitative result is not useful, however; the diagram in Ohnesorge 

(1936) was reproduced incorrectly.  Miesse's chart has fewer decades on both axes.  The 

most plausible explanation for the transcription error is that Miesse plotted the intercept 

for Z.=.10, at the top of Ohnesorge’s chart, onto the top of his chart, at Z.=.1.  The lines 

are correct at the base of the chart, where Z.=.0.001 on both Ohnesorge and Miesse’s 

charts.  Reading point values from the chart, the equation for the line on Miesse's plot 

intended to be Ohnesorge's varicose to sinuous breakup transition has been estimated as; 

(Re.=.10, Z.=.0.7),  (Re.=.104, Z.=.0.001),   =>     Z.=.6.5.Re.-0.95    

and for the sinuous breakup to secondary atomisation; 

(Re.=.37, Z.=.1),  (Re.=.7x104, Z.=.0.001),   =>    Z.=.27.3.Re.-0.92     

Since all Miesse's data was for low values of the Ohnesorge number, the error in the 

gradients of the transition lines was not apparent.  The data covers insufficient range to 

substantiate Miesse's assumption that the exponent (gradient) of the sinusoidal to 

turbulent atomisation transition line should be unaltered when translated to the right of 

the chart to fit new data.  Lines with a large range of gradients could validly be plotted 

through Meisse's data. 

Despite the transcription error and the limited data range, Meisse's data does show a 

transition from sinusoidal breakup to turbulent atomisation that is not consistent with 

Ohnesorge's data and transition line, and hence at least supports the principle that a 

change in atomiser type will translate the transition to turbulent atomisation.  There is 

no data regarding other transitions.  

Eqn. 10-5 

Eqn. 10-4 

Eqn. 10-3 
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McCarthy and Molloy (1974) postulate that reports of uncertainty in the position of the 

transition between jetting and atomisation could be attributed to differences in the 

velocity profile and turbulence of the jet as it leaves the nozzle.  A thin orifice (axial 

length short compared to diameter) will have a flat or nearly flat velocity profile, whilst 

a long nozzle (axial length several diameters) will have a fully developed velocity 

profile, for example parabolic for laminar flow.  Ohnesorge (1936) did not include 

sufficient detail of his nozzle to be able to reliably estimate the velocity profile.  A 

complication not elaborated by McCarthy and Molloy is that the entry length to develop 

a velocity profile is dependant on the physical properties of the liquid, especially the 

viscosity (Dombrowski et al. (1993), cited in Perry and Green, 1997).  It is strongly 

indicated from a critical analysis of the data, that the exit flow varied from effectively 

completely undeveloped to fully developed over the range of Reynolds numbers in 

Ohnesorge’s experiments.  At the high viscosities required for the high Ohnesorge 

numbers for the Oils A and B and the castor oil, laminar flow fully develops in a very 

short length, and it would be hard to construct a nozzle mechanically strong enough to 

resist the required injection pressure (which increases with viscosity), without that 

nozzle being sufficiently long for laminar flow to fully develop.  In contrast, a notable 

feature is Ohnesorge's datum of a laminar water jet at nozzle Reynolds number around 

twenty thousand.  It seems incredible that such a high Reynolds number could be 

maintained in a long capillary without turbulent flow developing (and hence precluding 

a laminar jet issuing).  The tip of the nozzle appears to be rounded and much wider than 

the jet diameter in a photograph in Ohnesorge (1936).  It does not look like the tip of a 

long capillary.  A convergent flow into a relatively short nozzle orifice is more 

probable.  Hence a less than fully developed flow profile is to be expected in this case.  

So, the velocity profile almost certainly did alter over the range of data plotted in the 

diagram, but it is questionable whether that represents a practical shortcoming or only a 

theoretical one.  It is certainly a possible explanation of variation in literature reports, 

but in contrast to the nozzle geometries McCarthy and Molloy cite from academic 

investigations, commercial pressure nozzles are not long capillaries.  Change in velocity 

profile from undeveloped to fully developed over the range of the Ohnesorge diagram is 

the practical expectation, so does not necessarily represent a shortcoming.  The 

discussion of velocity profile is thought provoking, but it is not necessary to look to any 

such theoretical complexity to understand why McCarthy and Molloy saw uncertainties 

in the position of the lines on the Ohnesorge diagram.  They reproduced Miesse’s 

(1955) incorrect diagram, although they referenced it directly to Ohnesorge (1936). 
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The standard atomisation textbook (Lefebvre, 1989) further obfuscates the issue, by 

once again attributing directly to Ohnesorge (1936) a chart on which the delineations 

between atomisation region are quantitatively neither those of Ohnesorge nor Miesse 

(1955) (whose modified delineation is also invoked in the chart).  It is suspected to be 

simply a typesetting error; the lines are positioned identically to the chart attributed to 

Reitz (1978, cited in Lefebvre, 1989), reproduced on the facing page of Lefebvre's 

book.  Reading values from Lefebvre's chart, (in fact a plot of Reitz's delineations as 

noted), the equation for the transition line from the varicose to the "first wind induced 

breakup region" (i.e. varicose to sinusoidal transition by another name) is given by; 

(Re.=.10, Z.=.2.8),  (Re.=.103, Z.=.5.6x10-3),   =>     Z.=.62.6.Re.-1.35   

and for the transition from the "second wind induced breakup region" to turbulent 

atomisation (the sinusoidal to turbulent atomisation transition by another name) as; 

(Re.=.10, Z.=.12.52),  (Re.=.104, Z.=.1.45x10-3),  =>  Z.=.1650.Re.-1.30  

Lefebvre (1989) also quotes the result of Grant and Middleman (1966) who proposed 

Re.=.325.Oh.-0.28 for the varicose-sinusoidal transition for jets with fully developed 

parabolic velocity profiles (n.b. not 3.25.Oh.-0.28 as misquoted by both McCarthy and 

Molloy (1974) and Lefebvre (1989) ).  This can be transformed into Z.=.9.35x108.Re-3.57 

which is unhelpfully dissimilar to all other results.  When carefully checked against the 

data in Grant and Middleman's paper, this may simply be due to correlation to data in a 

narrow range of 640.<.Re.<.1500, 0.09.>.Z.>.0.004, compared to the orders of 

magnitude of Reynolds and Ohnesorge numbers in the data of Ohnesorge (1936). 

The Ohnesorge diagram is reproduced substantially correctly in Bayvel and 

Orzechowski (1993), although the transition lines are actually plotted according to 

equations which do not quite match the lines in Ohnesorge (1936).  The lines are 

defined by We.=.17400./.√Re  and  We.=.940000./.√Re., which can be transformed into; 

Z.=.√17400.Re.-1.25.=.132.Re.-1.25   

Z.=.√940000.Re.-1.25.=.970.Re.-1.25   

Bayvel and Orzechowski (ibid.) describe the regions with different terminology to other 

authors.  The varicose region is characterised by disintegration due to axisymmetric 

Eqn. 10-9 

Eqn. 10-8 

Eqn. 10-7 

Eqn. 10-6 
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waves, the sinusoidal region by disintegration due to asymmetric waves, and the 

turbulent atomisation region by disintegration due to aerodynamic forces.  This is more  

fundamentally correct and consistent terminology than generally used.  However, in this 

thesis the traditional terminology for the regions has been used, because the words 

"asymmetric" and "axisymmetric" are so similar as to be readily confused. 

Bayvel and Orzechowski (ibid.) also note that the sinusoidal jet to turbulent atomisation 

transition has been found to shift parallel to its original position, depending on the 

magnitude of initial perturbation of the jet.  They quote this result from "numerous 

experiments", and in the context that this comment is made, it is with the implication 

that these experiments were by a number of other workers, rather than their own 

experiments, although no references are given.  This provides further circumstantial 

evidence that the position of the transition between sinusoidal jet and turbulent 

atomisation might alter for a flat-fan nozzle, but again no validatory evidence from 

experimental data is available. 

Bayvel and Orzechowski (ibid.) also cite Lyshevskii (1963).  This in Russian, so it has 

not been possible to check the original.  Three correlations are quoted in the form; 

 ii nm
iii MLpKWe =   

where Ki, mi, ni are a set of empirical constants for each of three transitions, i.∈.{1,2,3}, 

Lp is the Laplace number, Lp.=.1./.Oh², and M is the ratio of the gas to liquid density.   

The criterion for transition I is linear relationship between jet break-up length and 

velocity, a criteria for stable varicose jet formation also mentioned by Scheele and 

Meister (1968b), who note that it may be at order 30% higher velocity than their criteria 

for incipient jetting.  The description of criteria II and III map onto the varicose_- 

sinusoidal and sinusoidal_- turbulent atomisation transition lines from other authors. 

Lyshevskii's equations can be rearranged into the form Oh.=.A.Re.-n to compare the 

result with that given by other authors, provided that Mni is treated as a constant.  This 

conceit does not seem unreasonable.  At least as judged by the translated title of his 

book offered by Bayvel and Orzechowski's citation, Lyshevskii was concerned with 

diesel atomisation.  Unless he capriciously chose to perform his experiments with fluids 

much denser than the diesel which interested him, we would expect M, the ratio of gas 

to liquid density, to vary within a similar and small range to that for the selection of 

fluids used by Ohnesorge.  In the following lines of working, the terms KiM
ni have been 

grouped together as a new constant term J for convenience; 

Eqn. 10-10 
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The values for Ki, mi, ni quoted in Bayvel and Orzechowski can then be used to 

determine the value of the coefficient Ai and the power Ni .  The results from this 

numerical working are shown in Table 7.  The density ratio appropriate for water and air 

is assumed first, and then it is demonstrated for the fluids in the data presented by 

Ohnesorge (1936), that this does not give rise to an error of more than +30/-15%.  

Density data has been taken from internet sources_- data accuracy is not critical to the 

conclusion.  For the first transition, where there may be an additional 30% error due to 

the different definitions of jetting velocity, the error might then be as great as 60%, but, 

to briefly preview the conclusion, the reader will see later from Figure 80, this is still 

insufficient to account for differences between Lychevskii's first transition line and the 

data from Ohnesorge. 

Transition i

i I II III

Ki 10 16.6 266

ni -1.08 -1.05 -0.8

mi -0.455 -0.302 -0.133

Ni = 
1
/(1+mi) 1.83 1.43 1.15

ρliquid M=ρair/ρliq

Castor oil 956 1.3E-3 1359.5 1112.6 209.4

Glycerine 1258 9.5E-4 1828.7 1484.3 260.9

Gasoil 870 1.4E-3 1227.9 1007.8 194.2

Aniline 1024 1.2E-3 1464.2 1195.8 221.3

M
n
i Water 998 1.2E-3 1424.1 1164.0 216.8

max+ 28% 28% 20%

max- -14% -13% -10%

Ji = Ki .M
n
i 1.4E+4 1.9E+4 5.8E+4

1
/[2(1+m)] 0.92 0.72 0.58

Ai = J^(
1
/[2(1+mi)]) 6465 1176 557

 

Table 7:  conversion of Lyshevskii's coefficients to the form Oh.=.A.Re.
-N
 for 

comparison with the proposed transitions from other authors. 

Eqn. 10-11 
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A version of the Ohnesorge diagram used in ICI plots the varicose to sinusoidal jet 

transition line according to Z.=.148.Re.-1.30., the sinusoidal jet to turbulent atomisation 

transition as Z.=.3820.Re.-1.40., and also has a dripping to varicose jetting transition 

located at Weber number equal to eight.  The sources for this diagram are unrecorded.  

Lefebvre (1989) derives We.=.8./.CD as the criterion for aerodynamic breakup of a 

droplet in an airstream, by equating aerodynamic drag to surface tension, but neither 

this balance nor a drag coefficient of one are intuitively applicable to the incipient 

jetting case. 

The We.=.8 criterion at least has the merit of a similar dimensionality to the criterion for 

incipient jetting in Scheele and Meister (1968a, b), but there the numerical constant is 

no greater than four, rather than eight.  This conclusion is not obvious by inspection of 

the reference and requires some explanation.  It requires that the term d./.(1.24.V.1/3), 

the ratio of the nozzle diameter to the diameter of the drop that would form if a jet did 

not form, is neglected, with justification as follows.  The term arises from a 

consideration of the excess pressure required in the emerging fluid over the continuum 

to sustain a spherical drop.  Scheele and Meister's analysis is general, but focused on 

liquid-liquid systems.  In liquid jetting into gas, this diameter ratio was found to be 

small in studies cited by Scheele and Meister.  The term d./.(1.24.V.1/3) is non-

dimensional, so cannot change the dimensionality of the solution, and is always positive 

for physically meaningful solutions, so it can only act to reduce the magnitude of the 

calculated flowrate Q.  The value of 1.57 for the coefficient is applicable for a flat 

velocity profile at the nozzle exit; 
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Hence a Weber number of four is a well referenced upper limit for the transition from 

dripping to jetting.  This can be rearranged to the form Z.=.2.Re.-1. 

Eqn. 10-12 
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All the various literature reported positions of the transitions have been summarised in 

Table 8 and plotted in Figure 80.  There is no evidence in the literature that other 

authors have made this comparison of the equations for the lines on a like-for-like basis 

as Z.=.A.Re.-n , even though this arrangement was first applied to this problem over fifty 

years ago by Miesse (1955). 

 Transition line, Oh =  

 Dripping to 
Varicose 

Varicose to 
Sinusoidal 

Sinusoidal to 
Turbulent atomisation 

Ohnesorge (1936) - 135 Re-1.27 741 Re-1.22 

Meisse (1955)  - - 100 Re-0.92 

Re>104 

Meisse's (1955) plot of 
Ohnesorge (1936) 

- 6.5 Re-0.95 27.3 Re-0.92 

Reitz (1978) cited in 
Lefebvre (1989) 

- 62.6 Re-1.35 1650 Re-1.30 

Grant and Middleman 
(1966) 

- 9.35x108 Re-3.57 

640<Re<1500 

- 

Ohnesorge (1936) cited 
in Bayvel and 
Orzechowski (1993) 

- 132 Re-1.25 970 Re-1.25 

Lyshevskii (1963) cited 
in Bayvel and 
Orzechowski (1993) 

6465 Re-1.83 1176 Re-1.43 557 Re-1.55 

ICI √8  Re-1 148 Re-1.30 3820 Re-1.40 

Scheele and Meister 
(1968b) 

2  Re-1 - - 

Table 8:  summary of literature reports of transition lines on the Ohnesorge diagram. 
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--------------------------------------------------------------------------------------------------------------------------------------------------
 

Figure 80: the Ohnesorge jet stability diagram: variations in literature reported 

positions of transitions. 

A number of lines on Figure 80 are readily discarded.  Miesse's lines are clearly 

erroneous due to the transcription error.  Grant and Middleman's varicose.- sinusoidal 

transition conflicts grossly with other reports, and is based only on data over a very 

narrow range of Re and Oh.  The ICI dripping-varicose transition line is unreferenced, 

and conflicts with Scheele and Meister's well referenced transition. The dripping.- 

varicose and varicose.-.sinusoidal transitions proposed by Lychevskii are physically 

implausible, as they converge at moderate Ohnesorge number.  This is a prediction of 

flow transition direct from dripping to turbulent atomisation without a region of laminar 

jetting, at an Ohnesorge number corresponding to the flow of a fluid with a viscosity 

less than 2.Pa.s through a 1mm diameter orifice. 
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These deletions leave the plot shown Figure 81, with the data of Ohnesorge overlaid.  

Frustratingly, only the 70 year old original data of Ohnesorge is available on which to 

base further selection.  This will sort the best fit to the data between the lines proposed 

in the charts by Ohnesorge, Bayvel and Orzechowski and ICI, as all these claim to be 

based on Ohnesorge's data.  However, both Lefebvre and Bayvel and Orzechowski state 

that Reitz and Lychevskii respectively used additional data from their own studies when 

proposing their transition lines.  It has not been possible to obtain either original work to 

critically examine or to use this additional data.  
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Figure 81:  the Ohnesorge jet stability diagram with selected literature reported flow 

transitions and the data of Ohnesorge overlaid. 
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It can be seen from careful examination of Figure 81, that the ICI and the Bayvel and 

Orzechowski fit to Ohnesorge's varicose-sinusoidal transition line are both not only 

imperfect fits to that line, but also less good fits to the data.  Ohnesorge's line is thus 

preferred, and can be accurately plotted by the fit proposed in this thesis;  

 Z.=.135.Re.-1.27   

Reitz's proposal for the locus of the varicose-sinusoidal transition is more problematic.  

When compared to Ohnesorge's line, the gradient is sufficiently similar to preclude 

abrupt rejection, but the position is in stark disagreement with Ohnesorge's line, and 

only Lefebvre is available as a secondary source to Reitz's work, without the supporting 

data.  It is a transition within the laminar flow region, so the physical process is 

expected to be reasonably clearly discernable (c.f. the transition to turbulent 

atomisation).  Reitz's proposed transition line is so grossly conflicting with Ohnesorge's 

data that the only reasonable conclusion to be drawn is that his definition of "first wind 

induced breakup" came from observations of phenomena peculiar to his experimental 

arrangement, at earlier onset than the upper limit of coherent straight sided varicose jets 

observed other workers.  In the absence of supporting data, Reitz's varicose.-.sinusoidal 

transition line will be discarded. 

Turning to the sinusoidal.-.turbulent transition lines in Figure 81, the ICI fit to 

Ohnesorge's line is poor and unreferenced.  Bayvel and Orzechowski's fit to this line is 

acceptable, but it is more closely matched by the fit proposed in this thesis.  Bayvel and 

Orzechowski's line is no better fit to the data, so the better fit to the original work is 

preferred.  Both Reitz and Lychevskii's transition lines are positioned in a close but not 

identical location to Ohnesorge's transition.  They would not be good fits to the 

transition in Ohnesorge's data.  However, in contrast to the varicose-sinusoidal 

transition, they should not be immediately disregarded for that reason.  The 

disagreement in position of the lines is not large.  Considering that the physical process 

being mapped is a transition to breakup driven by chaotic turbulent instabilities, some 

dispersion in estimates of this transition might be expected, both due to inherent 

variability in the process itself, but also in the experimental difficulty in making a 

definitive and consistent estimate of flow behaviour near to the transition.  It is therefore 

proposed to plot the sinusoidal-turbulent transition according to the fit to Ohnesorge's 

transition line proposed in this thesis; 

 Z.=.741.Re.-1.22    Eqn. 10-14 

Eqn. 10-13 
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but also to plot the transition lines of Reitz and Lychevskii to indicate reasonable  

variability in estimates of the transition; 

 Z.=.1650.Re.-1.30 

 Z.=.557.Re.-1.15   

Note that the selected transitions lines are not quite parallel.  There is nothing in the 

original or later works to explain why they should be parallel, although most of the 

authors quoted seem to have assumed that they should be.  

It should also be emphasised that a gradual transition between atomisation regions is 

more physically realistic than the sharp transitions implied in the diagram. 

In conclusion, an acceptable definition has been established for the transition lines for 

the flow of Newtonian fluids through a simple cylindrical orifice.  Whilst no 

quantitative guidance has been found on appropriate translations of the transition lines 

for different atomiser types, there is at least support from some authors for the intuition 

that the lines may in principle need to be so translated.  There is no mention of the 

behaviour of non-Newtonian fluids. 

Since neither Ohnesorge (1936) nor others have provided a physical explanation for 

why the delineations between the regions should lie where they were found to be, 

further studies would be required to establish the transition lines for a flat-fan nozzle.  

In the absence of such reports, it is proposed that a reasonable assumption is that the 

transition from dripping to varicose jet formation would be co-located for both simple 

cylindrical and flat-fan atomisers, since in the varicose jet region I, the flat-fan nozzle 

produces a cylindrical jet directly from the orifice without effect of the vee-cut.  It is 

less clear that the transitions to transitional oscillatory behaviour and finally turbulent 

atomisation would be similarly co-located.  As well as the wave instabilities common to 

the cylindrical jet, breakup of the liquid sheet from a flat-fan atomiser can also be 

initiated by perforations, especially as the fluid viscosity increases (Lefebvre, 1989). 

In the absence of guidance for the flow of fluids with non-Newtonian rheology through 

a flat-fan nozzle, it was deemed a reasonable approach to plot the experimental data 

from the study reported in the previous chapter onto a standard Ohnesorge diagram, and 

examine the result. 

Eqn. 10-15 
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10.4 Experimental study data plotted onto the Ohnesorge diagram 

In Figure 82 the data co-ordinates of Reynolds and Ohnesorge number have been 

calculated using the shear viscosity, surface tension and density data in Table 6.  Green 

datapoints are for flowrates and nozzle diameters where a spray fan formed as intended, 

in experiments run by a colleague at ICI (Steven and Elliott, 2005).  Fan spray 

behaviour is characteristic of the sinusoidal region.  The red datapoints are those that 

failed to spray, but instead formed a jet.  This behaviour is characteristic of the varicose 

region.  The data as plotted in Figure 82 do not conform to expectation: the sprayable 

(green) datapoints are intermingled with the non-sprayable (red) data, and are not 

separated into two distinct flow regions. 
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Figure 82:  Ohnesorge diagram for study data, using shear viscosity in the 

dimensionless groups. 
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Substitutions for the shear viscosity in the dimensionless groups by the transient 

apparent extensional viscosity measurements from Table 6 can then be made. 

The substitution could be made into only one or both dimensionless groups.  The 

substitution of a measure of extensional viscosity in place of shear viscosity into both 

dimensionless groups is readily justified by qualitative consideration of the physics 

represented by the numbers, but does require further careful consideration.  The 

Ohnesorge number quantifies the relative magnitude of viscous to surface tension 

forces.  As described in Chapter 7, the balance of extensional viscosity and surface 

tension is the essence of the filament necking and eventual breakup characterised in the 

CaBER experiment.  The same physical process in the final breakup of fluid filaments 

to droplets is also where extensional viscosity is expected to dominate in the 

atomisation mechanism.  The Reynolds number quantifies the relative magnitude of 

inertial to viscous forces.  The argument can again be made from the physical process of 

ligament breakup, that since apparent viscosity in extension will dominate the 

atomisation behaviour, the apparent extensional viscosity is the correct parameter to use 

in the Reynolds number.  However, the nozzle dimension appears in the Ohnesorge 

number, and in the Reynolds number the inertia is characterised by the nozzle velocity 

and diameter.  This might suggest that nozzle viscosity (i.e. high shear rate viscosity) 

should be used in the Reynolds number.  Here is argued that it is not the case.  The 

apparent extensional viscosity during filament breakup dominates the atomisation 

behaviour, so this is the characteristic parameter that should be used. 

Rather, the question is posed, why it should be the nozzle diameter and velocity that are 

used, rather than, say, the diameter (or thickness) of the liquid jet (or sheet) and its 

velocity relative to the surrounding air.  It is hypothesised that it is simply a pragmatic 

convenience, and it is contested that it is defensible.  The nozzle diameter and velocity 

are readily and accurately measurable.  In contrast the relative velocity and sheet 

thickness are hard to measure, and anyway not well defined: both will vary with 

distance from the nozzle.  The physical principle that allows the nozzle diameter and 

velocity to be used as characteristic parameters is that although atomisation shows 

stochastic variability, it is not entirely random.  The distribution of characteristic 

thicknesses and relative velocities over time at any distance from the nozzle is 

deterministic from nozzle conditions, albeit in a relationship sufficiently complex to 

have eluded investigations so far except in the simplest case of the laminar jet.  In the 
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case of a flat-fan atomiser, it could reasonably be postulated that the Reynolds number 

should be modified by some corrective factor, a measure of fan angle at nozzle exit, for 

example, in order to correct the geometry to obtain equivalence on the Ohnesorge 

diagram to a cylindrical jet.  But the same principle applies: nozzle geometry parameters 

can validly substitute for the spray geometry parameters.  

The data plotted in Figure 82 using shear viscosity in the Ohnesorge and Reynolds 

numbers has been re-plotted in Figure 83, with the shear viscosity replaced by the 

measurements of transient apparent extensional viscosity obtained from the CaBER 

study (Table 6).  Note that the error bars are now considerably wider because the 

transient apparent extensional viscosity varied throughout the course of the 

measurement experiment.  The bounds of the range of transient apparent extensional 

viscosities exhibited by the samples during the experiments have been characterised as 

error margins about a central magnitude.   
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Figure 83:  Ohnesorge diagram for study data, using ext,appη  in both Re and Oh 
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The result is most satisfactory.  In Figure 82, with shear viscosity data, the green 

datapoints indicating fan spray formation were intermingled with the red datapoints 

indicating failure to form a spray.  In contrast in Figure 83, with extensional viscosity 

data, not only are the red and green datapoints almost entirely separated from each 

other, but within the range shown by the error bars, all the green datapoints fall within 

the sinusoidal region, as expected for a flat-fan spray, and all the red unsprayable 

datapoints are in the varicose jet region, which again accords with the experimental 

finding that they were failing to form a spray fan but rather were jetting. 

However, to achieve numerical equivalence on the Ohnesorge diagram after the 

viscosity parameter substitution into the dimensionless groups, it is expected that the 

measure of extensional viscosity should be divided by three.  This correction has been 

plotted in Figure 84.  The positions of the points change, but the conclusion is unaltered. 
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Figure 84:  Ohnesorge diagram for study data, using 3ext,appη  in both Re and Oh 
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10.5 Conclusion to the use of CaBER data in the Ohnesorge diagram 

This study has successfully demonstrated for the first time the substitution of an 

extensional viscosity parameter obtained from CaBER experiments in place of the shear 

viscosity in the dimensionless groups in the Ohnesorge diagram.  It has given a 

preliminary indication that this novel substitution yields quantitatively correct 

predictions of spray behaviour when the original shear viscosity version does not.  This 

finding has been demonstrated, not for a laboratory model fluid and nozzle, but for real 

commercial products. 

The data separation in figure 83 and figure 84 is not perfect, but it is indicative.  It has 

been discussed earlier that the CaBER instrument, whilst commercially available, is best 

considered to be a prototype, requiring development both to hardware and measurement 

data analysis.  Additionally, the rheological response of the study materials was 

complex, requiring innovation in both the experimental protocol and the data analysis.  

Hence the quantitative accuracy of the CaBER is not well established, and wide error 

margins were used on the plotted data.  Furthermore, it has been established from the 

sparse literature that the only validation data for the Ohnesorge diagram is for flow of a 

Newtonian fluid through a simple cylindrical nozzle, and it is reasonable to anticipate 

that a translation of the boundaries of the regions of characteristic spray behaviour 

would be required for other nozzle geometries.  Any such translations are as yet to be 

determined. 
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CHAPTER 11 - CONCLUSION 

The research reported in this thesis has met the goal stated in the introduction, to 

develop models of the spray drying process that could both predict performance and be 

used to interpret and explain observations in the case where the Acoustic Atomiser was 

used to produce large particles of film forming materials in a spray dryer. 

Assessment of the differences when large particles are dried led to important 

simplifications to the modelling task.  In contrast to much of the recent literature, the 

computational complexity of 3-D transient CFD simulation was found to be 

unnecessary.  The droplet drying rate was shown to dominate computational models 

when drying large droplets of film forming materials. 

The science is not yet sufficiently developed to be able to predict droplet drying rates 

from theory, and the drying kinetics must be experimentally determined.  A 

measurement device using the principle of suspension of a single droplet from an 

electronic ultramicrobalance was chosen from the many techniques described in the 

literature.  A detailed design for such a device has been presented, and the apparatus has 

been partially realised.  The combination of operating range, precision and accuracy of 

the apparatus design would greatly exceed other devices reported in the literature. 

Pending the completion of the new droplet drying kinetics apparatus, it was necessary to 

find some alternative modelling strategy in order to predict spray drying performance 

when using the Acoustic Atomiser to create a narrow size distribution of large droplets 

of film forming materials.  In a new approach, it was shown that a simple scaling 

analysis yielded a prediction of a factor of two increase in mode droplet size, which 

accords well with experimental observations.  A seven-fold decrease in the spread of the 

residence time distribution was predicted when the Acoustic Atomiser was used in place 

of a conventional atomiser.  This result is consistent with and explains the 

phenomenological reports that have been made (Fiannaca and Threlfall-Holmes, 2005, 

Threlfall-Holmes, 2008), that where multiple spray-dried particle morphologies were 

possible, particles predominantly of a single morphology could be made using an 

Acoustic Atomiser. 

Whilst satisfyingly computationally economical, the analysis is not as general in scope 

as a well understood computational process model together with accurate drying kinetic 
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measurement data.  The new method requires performance data for an existing process.  

Hence it is well suited to the case of replacing the atomiser in an existing spray dryer, 

but cannot make predictions for a novel material or in the design of a new spray dryer. 

The scaling model requires a mathematical function to describe the droplet size 

distribution.  The Acoustic Atomiser is novel, so there are no previous reports of a 

suitable fit function.  In this research, it was found that the distribution functions 

commonly used for sprays are not a good representation of the droplet size distribution 

from the Acoustic Atomiser.  The best representation of the data was obtained using the 

Stable distribution.  This has found practical application in modelling financial data, but 

there are no previous references to its use to model spray droplet size data.  This is 

undoubtedly partly due to the mathematical complexity.  For many practical purposes 

simple fit functions such as the log-normal are perfectly adequate.  Mathematical 

complexity is not a complete explanation for lack of application to spray size 

distributions, however.  The mathematical complexity of the Stable distribution is no 

worse than the 4-parameter log-hyperbolic function (4PLH), which has been applied to 

sprays droplet sizing (Stanton et al., 1998, Xu et al., 1993), and in this research it has 

been found that the parameter selection of the Stable distribution is more rational than 

the 4PLH.  Indeed, the value of the "alpha" parameter of the Stable distribution was 

found to be roughly correlated with the viscosity of the liquid feed, tending towards the 

Gaussian limit of two for low viscosity systems, and towards the Lorentz limit of one as 

the viscosity increased.  This is consistent with behaviour as a simple and damped 

forced harmonic oscillator respectively.  Hence the novel findings reported are not only 

that the Stable distribution appears to be numerically a good model for the droplet size 

data from the Acoustic Atomiser, but unusually for a sprays size distribution function, 

there are indications of some underlying scientific rationale in the choice of parameters. 

The reliance of the scaling model on the droplet size distribution created by an atomiser 

demonstrates the importance of atomisation to the spray drying process.  Industrial 

spray dryer feedstocks are expected to exhibit complex fluid rheology, as they typically 

contain colloidal dispersions and/or dispersed polymer, and are commonly dewatered 

close to the rheological limit of sprayability.  However, there is no robust theory to 

predict sprayability.  To begin to address this deficit, a study has been reported where a 

measure of transient apparent extensional viscosity obtained from the Capillary Breakup 

Extensional Rheometry (CaBER) technique was shown to predict quantitatively, 
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sprayability using the Ohnesorge diagram.  Developments to the technique and the 

analysis method were required.  A repeated straining protocol was required in order to 

obtain consistent data.  A novel analysis method was proposed and exemplified, using 

the Newtonian model as a basis for the numerical differentiation of an arbitrary time-

diameter curve obtained from the CaBER experiment.  This allows fluids to be analysed 

even when they do not exhibit behaviour conforming to one of the limited number of 

published rheological models.  Although the Ohnesorge diagram was first proposed 

over 70 years ago, this work is the first report of the use of the Ohnesorge diagram to 

predict quantitatively sprayability for an industrial fluid with complex rheology. 
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CHAPTER 12 - RECOMMENDATIONS FOR FUTURE WORK 

The research reported in this thesis has yielded new insights and contributed to the 

fields of sprays and spray dryer modelling.  However, despite these achievements, there 

remains much to be done. 

The completion and beneficial operation of the ultramicrobalance based drying kinetics 

apparatus would be a valuable further contribution to the spray drying field. 

The scaling model requires performance data from a given product in an existing spray 

dryer as a basis from which to scale: it does not negate the need for computational 

process models and accurate drying kinetic measurement data in order to make 

predictions for new products or dryers when the existing process data is not available.  

It has been observed that there is broad similarity in the pattern of large scale 

recirculation flows within a spray dryer obtained from the models reported by 

independent research groups (Liang and King, 1991, Sano, 1993, Kievet et al., 1997, 

Schwartzbach, 2000, Lebarbier et al., 2001, Huang et al., 2003, Lo, 2005).  For the 

specific case of large droplets which fall in a well defined shower trajectory, it would 

seem plausible to use these results to create an assumed steady state model of the flow 

field contours with considerably better representation of the time-temperature history of 

the droplets than a 1-D model, but with little more computational effort 

The use of the Stable distribution as a physically meaningful model for spray droplet 

size is deserving of further study to investigate its wider relevance to modelling spray 

size distributions. 

The analysis method that was proposed for an arbitrary CaBER time-diameter curve 

would benefit from further theoretical and experimental validation. 

It would be useful to validate the extensional viscosity substitution in the Ohnesorge 

diagram using the flow through a simple cylindrical nozzle of simple model strain 

hardening fluids.  Furthermore by reference to the conceptual visco-elasto-capillary 

balance diagram in McKinley's review paper (McKinley, 2005), for visco-elastic fluids 

it is anticipated that the Ohnesorge diagram should be extensible to a third dimension in 

the Weissenberg number.  Also helpful would be careful experimental studies of the 

effect of nozzle geometry on the position of the transition lines on the Ohnesorge 



Chapter 11- Conclusion 

 229  

diagram.  A final useful study would consider the sprayability of non-model fluids with 

a range of non-Newtonian rheological responses to strain, in a selection of nozzle 

geometries.  A successful conclusion of such a study would be at least an empirical 

robustly validated predictive model for sprayability. 
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APPENDIX A - ACOUSTIC ATOMISER SIZE DISTRIBUTION 

DATA 

A.1 Water from a single laminar jet vibrated at resonance, measured by PDA 

Data measured on a now obsolete AEA PD Lisatek PDA, with only 5000 counts per 

acquisition - half what would now normally be accepted for a valid PDA measurement 

to make sure that there were sufficient counts in peripheral size bins.  The sizing bins 

are undesirably wide compared to distribution width. 

Normal (i.e. α.=.2 in Stable distribution) and log-normal fits for Water are shown 

Figure 38 of main text. 

 

Nozzle A Nozzle B

diam CumVol diam CumVol

µm % µm %

22.17 0 244.32 0.00

28.62 0.01 256.27 0.01

35.06 1.23 268.22 10.51

41.50 42.07 280.17 84.37

47.94 84.92 292.13 99.89

54.39 92.64 304.08 100.00

60.83 93.76

67.27 93.83

73.72 93.83

80.16 93.83

86.60 93.96

93.05 93.96

99.49 93.96

105.93 93.96

112.38 93.96

118.82 93.96

125.26 93.96

131.71 93.96

138.15 93.96

144.59 93.96

151.03 93.96

157.48 93.96

163.92 93.96

170.36 93.96

176.81 93.96

183.25 93.96

189.69 93.96

196.14 93.96

202.58 93.96

209.02 93.96

215.47 96.04

221.91 96.04

228.35 96.04

234.80 96.04

241.24 96.04

247.68 96.04

254.13 96.04

260.57 96.04

267.01 100.00
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A.2 Material A.  Sieve size data from production spray-solidification 

Data is percent of weight under size as transcribed from plant logs.  Expressed to 0.1% 

precision.  In principle error bars could be plotted as with other sieve data (see 

subsequent sections of this appendix).  Those are frequently 100g total expressed to 

0.1g, so the error bars would be of the same order for the individual days samples in 

datasets A.  However with datasets A the fit is to the ensemble average, where the error 

is reduced by the square root of the number of readings - i.e. the error bar is reduced by 

a factor of about three for Dataset A1 and five for Datasets A2 and A3.  By inspection 

the error bars even in the tails on the DSP plot will be insignificant. 

The plant logs record occasional process changes and disturbances that changed the size 

distribution, and hence these data have been excluded from the analysed datasets. 

A.2.1 Dataset A1 

sieve size % weight under size

µm sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8

5600 100.0 100.0 100.0 100.0 99.8 100.0 100.0

4750 99.8 99.8 99.3 99.8 99.4 100.0 99.9

4000 97.7 97.3 96.9 96.5 97.5 98.0 98.4

3650 95.1 94.5 93.6 93.3 94.3 95.9 96.1

2800 70.5 68.5 65.5 61.7 66.4 69.8 74.8

2400 22.8 20.5 20.4 20.9 21.3 25.5 42.4

2000 6.9 5.1 4.9 4.0 5.5 7.2 14.9

1680 4.9 3.4 3.0 2.1 3.7 4.9 4.8

1200 2.6 1.7 1.7 0.8 2.1 2.9 2.8

850 1.2 0.6 0.8 0.2 1.0 1.3 1.5

420 0.1 0.0 0.1 0.1 0.1 0.2 0.1

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 

60.te/hr production plant trial 

Log-normal fits for Dataset A1 are shown Figure 26 of main text. 

Stable fits (next page) performed on the ensemble average data of 7 samples.  Dsp 

limits have been set for (number of sieves per sizing)*.√(number of sizings).=.12*.√.7 

=.32 points. 
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A1 ensemble average of data

Stable fit S( 1.5, 0.2, 337, 2630 :2)
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A1 ensemble average of data, Stable fit, Dsp = 0.045 
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A.2.2 Datasets A2 and A3 

70-80.te/hr production plant daily QC checks covering one month for each dataset. 

The assumption that the different day's records are samples from the same population is 

much less defensible for datasets A2 and A3 than for A1 or B.  There is one extreme 

outlier in A3 in particular which in hindsight could reasonably be rejected.  However, 

one dataset amongst 27 does not much skew the ensemble average. 

Data tables for A2 and A3 are on the next page, followed by log-normal and then Stable 

fits.  The Stable fits are performed only on the ensemble average data.  Dsp limits have 

been set for (number of sieves per sizing)*.√(number of sizings).=.11*.√.29.=.59 points 

for A2 and 12.*.√.29.=.62 points for A3.  The Stable distribution is in each case a better 

fit to the data. 
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A2 ensemble average of data

Stable fit S( 1.65, 0.6, 250, 2590 :2)
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A2 ensemble average of data, Stable fit, Dsp = 0.035 
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A3 ensemble average of data

Stable fit S( 1.5, 0.5, 300, 2630 :2)
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A3 ensemble average of data, Stable fit, Dsp = 0.057 
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A.3 Material B.  Sieve size data for spray-cooled product 

Dataset B.  5.kg/hr experimental tower 

 

sieve size mass on sieve /g

µm sample 1 sample 2

850 2.6 2.2

710 8.8 8.4

600 177.5 135.9

500 304.7 289.2

425 108.6 110.7

355 16.9 13.7

250 3.9 3.4

106 0.3 0.3

0 0.1 0.2
 

Log-normal fits for Material B are shown Figure 25 of main text. 

Stable fits (below) performed on the ensemble average data of both samples.  Dsp limits 

set for (number of sieves per sizing)*.√(number of sizings).=.9*.√.2.=.13 points. 

 

Material B Combined data

Stable fit S( 1.91, 0, 69, 557 :2)
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Material B ensemble average of data, Stable fit, Dsp = 0.017
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A.4 Material C.  Laminar jets at resonance, measured by PDA 

 

C1 C2

diam CumVol diam

µm % µm %

233.74 0.00 30.58

247.14 0.02 33.04 0.00

260.55 0.15 35.50 0.01

273.95 1.43 37.96 0.00 0.02 0.00

287.35 40.90 40.42 0.00 0.27 0.27 0.39

300.75 76.18 42.88 1.36 16.30 37.64 40.16

314.15 95.70 45.33 73.52 90.19 91.74 96.44

327.55 99.61 47.79 90.72 97.84 97.97 99.29

340.96 99.76 50.25 93.63 98.45 98.80 99.40

354.36 99.86 52.71 94.94 98.73 99.17 99.44

367.76 99.90 55.17 97.30 98.95 99.32 99.47

381.16 99.90 57.63 98.47 99.11 99.54 99.47

394.56 99.94 60.08 98.67 99.35 99.68 99.57

407.97 100.00 62.54 98.78 99.40 99.85 99.63

65.00 98.78 99.46 99.85 99.69

67.46 99.07 99.46 99.92 99.69

69.92 99.07 99.46 100.00 99.69

72.38 99.07 99.46 99.69

74.83 99.07 99.46 99.69

77.29 99.29 99.56 99.69

79.75 99.29 99.67 99.69

82.21 99.29 99.67 99.69

84.67 99.29 99.67 99.69

87.13 99.60 99.67 99.99

89.58 99.60 99.83 99.99

92.04 99.60 99.99 99.99

94.50 99.99 99.99 99.99

96.96 99.99 99.99 99.99

99.42 99.99 99.99 99.99

101.88 99.99 99.99 99.99

104.33 99.99 99.99 99.99

106.79 99.99 99.99 99.99

109.25 99.99 99.99 99.99

111.71 99.99 99.99 99.99

114.17 99.99 99.99 99.99

116.63 99.99 99.99 99.99

119.08 99.99 99.99 99.99

121.54 99.99 99.99 99.99

124.00 99.99 99.99 99.99

 

Normal (i.e. α.=.2 in Stable distribution) and log-normal fits for Datasets C1 and C2 are 

shown Figure 39 of main text. 

Datasets C3 and C4 are from a chart (next page) comparing the size distribution of a 

production Acoustic Atomiser (line 3, dataset C3) to the rotary atomiser that it replaced 

(line 1, dataset C4).  Line 2 refers to another novel atomiser design that was tested, but 

is not discussed in this work.  The ICI internal report indicates that these lines were 
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drawn from PDA measured data, but the original instrument data tables are no longer 

available.  The chart has been digitised using an Origin add-in tool where the user 

manually clicks on points on the graph.  The precision of the digitisation is thus limited 

by the accuracy to which the cursor is placed.  It can also be observed by careful 

examination of the chart, that the hand-sketched curve is not entirely smooth.  Hence the 

points on the digitised dataset are rather noisy. 
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To estimate an appropriate value for the 95% confidence limits on the DSP chart, an 

estimate of the number of points in the original dataset is needed.  The bin size in the 

AEA Lisatek PDA was fixed with the choice of lens focal length, which in turn was 

determined by the measurable size range.  Since the size range of dataset C3 is similar 

to C1, it seems reasonable to assume that the bin size was also 13.4 µm, and hence the 

digitised size range of dataset C3 must have covered 10 size bins.  Thus the 95% 

confidence limits plotted on the DSP chart (below) for dataset C3 are set for 10 

readings. 

Dataset C3: data digitised from chart

Stable fit S( 1.7, 0.3, 12, 238 :2)
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Dataset C3 data digitised from chart, Stable fit, Dsp = 0.062
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The rotary atomiser dataset C4 has been fitted to a log-normal distribution (next page).  

Sizing bins are again assumed to be 13.4µm width, hence 30 bins cover the data range, 

with 95% confidence limits on the DSP chart set accordingly. 
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A.5 Material D.  Spray-dried powder product, measured by sieve sizing 

Data collected during the Acoustic Atomiser development programme at ICI Wilton.  

The purpose was to roughly assess the size and width of the distribution.  It is 

immediately apparent from inspection of the data tables that there are insufficient sieves 

in most cases for an analytical sieve sizing, and the sizes have not been chosen to 

carefully define the shape of the peak, but rather to roughly quantity relative amount of 

agglomerates, primary peak, and fines.  The research focus at this stage of the 

programme was mechanical reliability of the atomiser and product morphology.  Sieve 

sizing is time consuming and requires a reasonable quantity of powder, so was not 

performed routinely, but only for a selection of experiments. 

Data has been recorded as mass on sieve in grams, to 0.1g or 0.5g precision.  The 

accuracy cannot be better than the precision, so error bars for ±0.1g or ±0.5g can be 

plotted on the DSP chart (error is insignificant on the cumulative chart, but significant 

in the tails on the DSP chart, as this plot magnifies the tails).  It should be emphasised 

that these represent the least possible error in the data.  Given the purpose and 

circumstance of the data collection, careful analytical experimental methodology is not 

the expectation: the actual error will be greater.  However it is not possible to reliably 

estimate this actual greater error.    

Given the likely low reliability of these sieve data, they are best considered as 

consistency checks against the other data sources. 
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A.5.1 Material D1 

 

Sieve mass retained Sieve Mass retained on sieve

size g size g

µm D1.17a µm D1.17b D1.23 D1.25 D1.26 D1.28 D1.30

150µm 150µm 120µm 150µm 150µm 120µm 120µm

0 0 0 0 0.24 0 0 0.1 0

90 0.6 150 0 3.6 1.2 0.2 2.2 4.6

180 5.5 250 20.6 71.3 22.4 21.2 59.2 70.6

250 146.6 500 79.4 24.7 75.4 76.4 38.4 26

355 256.2 1250 0 0 0 0 0 0

500 31.2

600 35.7
 

Two independent sieve sizings were made for experiment D17.  The large discrepancy 

between them emphasises the low reliability of these sieve-sizing datasets.  The 

selection of sieve sizes in Dataset D1.17a gives the most definition of the peak.  The 

unexpectedly large fraction on the largest sieve may indicate some agglomeration.  The 

nozzle sizes were either 120 or 150µm as indicated in the table header.  These sieve 

sizing data may not be very accurate, but the pattern of relative fractions between the 

250 and 500µm sieves is at least consistent with the expectation of larger size particles 

from the larger nozzles. 
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D1.17b Stable S(1.9, 0.25, 60, 550 :2)
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D1.25 Stable S( 1.9, 0.25, 130, 590 :2)
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D1.28 Stable
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A.5.2 Material D8 

 

Sieve Mass retained on sieve

size g

µm D8.14

rotary

30 3

90 11.5

125 13

150 15

180 20.5

212 28.5

300 13.5

355 8

425 0

500 0

 

There is a single set of sieve sizing data for a rotary atomiser comparison experiment, 

which has been fitted with a log-normal distribution. 
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A.5.3 Material D10  

 

Sieve Mass retained on sieve

size g

µm D10.3 D10.5 D10.6

rotary 150µm 120µm

0 0 0

106 0.32 0 0

125 1 0

150 2 0 0.34

180 5 0.3

212 6 1 7

250 14.8 5 16.3

300 8 10 18.5

350 17 1.9

355 5.25

400 10 1.1

425 2 4 1.75

450 3 1.69
 

These datasets are a bit messy and difficult to interpret in isolation.  However, the 

material was rather similar in composition to D11, except in the presence of an 

encapsulated surfactant rather than an oil, and it was found that similar Stable 

parameters were overall the most satisfactory fit to datasets D10.5 and D10.6. 

An acceptable fit is obtained for S(α,.β,.γ,.δ.;2).=.S(2,.0,.61,.375.;.2) for D10.5 and 

S(2,.0,.43,.300.;2) for D10.6.  Numerically superior fits could be obtained for other 

combinations of (α,.β) for either dataset taken in isolation, but (α,.β) should be the 

same for experiments with the same material but with a different nozzle size.  Note that 

the β parameter is irrelevant in the special Gaussian case of α.=.2.   Note also that an 

almost as acceptable fit could be obtained for identical (α,.β) = (1.9,.0.25) as used for 

D11.   

If the 400µm sieve fraction in D10.5 had been just a couple of grams less, the fit would 

appear markedly improved.  A variation in a single sieve fraction strongly suggests 

either experimental error or an artefact due to a few agglomerated lumps for example. 

Similarly the unexpectedly large 425 and 450µm sieve fractions for D10.6 suggests 

agglomeration, although it is unusual for more agglomeration to be evident for the  

experiment with smaller nozzles.  Normally in these experiments agglomeration was 



Appendix A- Acoustic Atomiser size distribution data 

 249  

associated with the larger particles and is postulated to be due to less complete drying 

and hence sticky particle surfaces at the base of the spray dryer.  

In each case delta is the same multiple (2.5) of the nozzle diameter.  The ratio of the 

droplet size to the nozzle size should be constant for the same material at optimum 

frequency.  In principle it is possible within a limited window to change the frequency 

(and hence the droplet size) away from the optimum, with insignificant detriment to the 

uniformity of droplet size.  However, it was found that in practice this window becomes 

narrower for more viscous and especially for non-Newtonian materials.  Normally a 

greater influence on the final particle size is morphological changes during drying.  In 

this case SEM showed that the powder was substantially the same morphology in each 

case.  Hence an approximation to a constant multiplier between the nozzle size and the 

distribution mode is the expectation.  Whilst it is probably serendipitous that the 

agreement in these two datasets is so close, it is additional support for the Stable 

distribution as a good model for the size distribution data. 

The rotary atomiser data D10.3 are well fitted by S(1.9,.0.25,.70,.280.;.2).  It is a 

surprise that the Stable distribution is a good model to the rotary data - there is neither 

physical explanation or prior experience to show that it should be.  It is also incredibly 

narrow for a rotary atomiser distribution, with a incredibly large mean size.  Rather 

close in fact to the D10.6 experiment with 120µm nozzles.  A rotary atomiser 

comparative experiment was certainly performed, from which a powder sample is still 

available.  Whilst it is now far too agglomerated to perform a meaningful new size 

distribution (starch is hydroscopic and the material was made 7 years ago), it is by 

inspection quite clearly much finer than the corresponding Acoustic Atomiser samples.  

Overall the most credible explanation is experimental error, and that the size 

distribution recorded for rotary atomisation experiment D10.3 is in fact the size 

distribution from Acoustic Atomiser experiment D10.1 
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D10.6 Stable
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A.5.4 Material D11 

 

Sieve Mass retained on sieve

size g

µm D11.3 D11.4

120µm 120µm

63 0

75 0

90 0

106 0 0

125 1.1 0.1

150 3.7 0.8

180 15.4 1.2

212 37 4.9

250 6.5 10

300 18

355 7

425 1.4

500 2.8

600 1

800 0
 

In many experiments during mechanical development of the atomiser, the outlet cone of 

the spray dryer was wetted by dripping nozzles and no powder could be recovered from 

the main tower.  The size distribution D11.3 is from powder collected from the cyclone.  

The size distribution looks rather curious at first sight, but using the data and fit peak 

area matching functionality built into the spreadsheet, it looks like the truncated lower 

portion of the size distribution of the powder obtained from the main tower in repeat 

experiment D11.4. 

Both datasets have been fitted with S(α,.β,.γ,.δ.:.2) = S(1.9,.0.25,.62,.318.:.2).  The 

surprisingly large 500µm sieve fraction in dataset D11.4 suggests some agglomeration, 

to which phenomenon is ascribed the relatively poor fit above 355µm.  
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D11.4 Stable
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A.6 Material D.  Spray-dried powder product, measured by image analysis 

The circularity parameter plotted for the Visisize data is the ratio of the perimeter of an 

area-equivalent circle, to the measured perimeter, i.e.  2.√(πA)./.P 

All Visisize datasets have just over 10,000 particle counts (normally considered 

sufficient for validity) with the exception of D3.9, D7.5a and D8.11a which only have 

5340, 4516 and 1614 counts respectively. 

 

A.6.1 Material D3 

Dataset D3.8 is one of the few Visisize measurements that were repeated.  The Stable 

distribution fit parameters are satisfactorily similar between the two repeats.  The 

primary and secondary peaks are rather closely spaced, with a relatively large volume 

fraction in the secondary peak.  This would be an unusual signature for satellite 

droplets.  A more likely explanation is one or more incorrectly sized nozzles in the 

sprayplate. 

Dataset D3.9 is the only dataset for Material D3 with no indication of a secondary peak.  

It was the experiment with the least solids concentration in the liquid feed, and hence 

also the lowest viscosity.  Lower viscosity is correlated with a wider window for 

resonant jet breakup, and hence a greater probability that all jets will be breaking up 

uniformly without satellite droplet formation, even with the same manufacturing 

tolerance between nozzles as in the other experiments. 
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Material D3.7 Visisize data - check for circularity
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D3.7 Visisize number distribution
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D3.7 Visisize volume frequency distribution
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D3.7 Stable bimodal
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DSP D3.7 Stable bimodal Dsp =0.0137
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Material D3.8a Visisize data - check for circularity

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900

diameter /µm

c
ir
c
u
la
ri
ty

 

 

D3.8a Visisize number distribution
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D3.8a Visisize volume frequency distribution
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D3.8a Stable bimodal
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Material D3.8b Visisize data - check for circularity
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D3.8b Visisize number distribution
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D3.8b Visisize volume frequency distribution
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D3.8b Stable bimodal
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Material D3.9 Visisize data - check for circularity
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D3.9 Stable
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Material D3.10 Visisize data - check for circularity
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D3.10 Stable bimodal
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A.6.2 Material D4 

Fits for dataset D4.15 are in the main text. 
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Material D4.15 Visisize data - check for circularity
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Material D4.16 Visisize data - check for circularity
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D4.16 Stable bimodal
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A.6.3 Material D7 

D7.1 and D7.2a are rejected as the data are too non-circular.  It is unclear from the 

records of either the spray drying or the measurement experiments what was so different 

about these two datasets. 

Stable fits for dataset D7.3a are in the main text. 

Datasets D7.5 and D7.6 each have 2 repeats of the Visisize measurement.  In each case 

the "b" measurements, repeat measurements made a couple of weeks after the original, 

have a much greater tail of large sizes. This may indicate some agglomeration during 

storage of an imperfectly dry powder.  The large tail gives a much greater Dv90 for the 

raw data and hence a much higher PDI - almost 50% greater in both cases.  As the raw 

data is intrinsically wider in the "b" repeats, the agreement between the fitted Stable 

parameters for datasets D7.5 and D7.6 "a" and "b" repeats is less good than between the 

Stable parameters for the repeated Visisize measurements on dataset D3.8.  However, 

the Stable parameters are still reasonably similar between the "a" and "b" repeats, and 

the fit acts as a filter on the large size tail, so the PDI for the fitted primary peak is only 

around 20% greater in the "b" measurements than in the "a" measurements. 

Unusually, D7.7 cannot be fitted satisfactorily for γ2.=.γ1, but only for γ2/γ1.=.δ2/δ1.  In 

dataset D7.9, two peaks can be observed, of about equal size and closely spaced.  The 

secondary peak is too large volume fraction to be accounted for by satellite droplet 

formation.  Error on the hole size is a more credible explanation, although it is initially 

surprising that an approximately equal number of two sizes of orifice should have been 

fitted to the sprayplate.  However, re-examining the other D7 datasets in light of this 

analysis of D7.7 and D7.9, shows the same pattern of unusually closely spaced peaks 

and large volume fraction of the secondary peak.  The overall most plausible 

explanation is of a poor batch of orifices, or two sizes of orifice having been mixed up, 

with a varying number of each orifice size being fitted to the sprayplate for each 

experiment. 
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Material D7.1 Visisize data - check for circularity
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Material D7.3a Visisize data - check for circularity
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Material D7.5a Visisize data - check for circularity
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D7.5a Stable bimodal
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Material D7.5b Visisize data - check for circularity
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D7.5b Stable bimodal

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 100 200 300 400 500 600 700
diameter /µm

v
o
lu
m
e
 d
e
n
s
it
y
 /
 1
/µ
m

Masked data

Extraoplation of fit

Fitted peak data

Fit curve to fitted data

 

 

D7.5b Stable bimodal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

diameter / µm

c
u
m
u
la
ti
v
e
 v
o
lu
m
e
 f
ra
c
ti
o
n

Stable fit

Masked shift area corr. data

Fitted peak shift area corr. data

 

 

DSP D7.5b Stable bimodal Dsp =0.0115

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

 

 

peak Parameters of the Stable  distribution

D7.5b %vol α β γ δ

1° 69 290

2° 31 204
1.6 0.3 43

 



Appendix A- Acoustic Atomiser size distribution data 

 278  

 

Material D7.6a Visisize data - check for circularity
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D7.6a Stable bimodal
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Material D7.6b Visisize data - check for circularity
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D7.6b Stable bimodal
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Material D7.7 Visisize data - check for circularity
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D7.7 Stable bimodal
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Material D7.9 Visisize data - check for circularity
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D7.9 Stable bimodal
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Material D7.10 Visisize data - check for circularity

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600

diameter /µm

c
ir
c
u
la
ri
ty

 

 

D7.10 Visisize number distribution

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600
diameter / µm

c
o
u
n
t

 

 

D7.10 Visisize volume frequency distribution

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 100 200 300 400 500 600
diameter / µm

v
o
lu
m
e
 f
re
q
u
e
n
c
y
 /
 1
/µ
m

 



Appendix A- Acoustic Atomiser size distribution data 

 287  

 

D7.10 Stable bimodal
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Dataset D7.17 is from a rotary atomiser comparison experiment.  The raw data volume 

distribution indicates that there was some agglomeration, but both the number 

distribution and the histogram indicate that it was relatively unimportant.  Hence a 

unimodal fit is acceptable.  A log-normal distribution has been used and fits well.  A 

lower bound of 45µm has been used, eliminating the tail of surprisingly high count near 

to the limit of the instrument resolution, which is believed to be an artefact.  

Emphasising the unimportance of agglomeration to this dataset, it can be seen in the 

graphs there is very little difference in the best fit width parameter whether or not the 

large size data is included or excluded. 
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Material D7.17 Visisize data - check for circularity
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D7.17 Visisize number distribution
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D7.17 Visisize volume frequency distribution
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D7.17 log-normal dc=275µm, σg=1.61
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DSP D7.17 log-normal  Dsp = 0.037
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DSP D7.17 log-normal  Dsp = 0.006

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

 



Appendix A- Acoustic Atomiser size distribution data 

 291  

A.6.4 Material D8  

Datasets D8 are particularly noisy.  Both the number and the volume frequency 

distributions suggest that there are a number of overlapping peaks.  Nonetheless, 

reasonable Stable bimodal fits to the data have been obtained.  It is possible to fit all 

four datasets with the same set of Stable parameters S(α,.β,.γ,.δ1,.δ2.:.2).= 

S(1.3,.0.3,.40,.330,.190.:.2) and the same volume ratio between the peaks (v1:v2).= 

(71:29).  However, the fits are more convincing with the parameters shown in the plots 

in the next few pages.  The similar position of the peaks in all the datasets is surprising, 

as the experimental log records that D8.11 and D8.12 used a smaller orifice size than 

D8.9 and D8.10.  
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Material D8.9a Visisize data - check for circularity
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D8.9a Visisize number distribution
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D8.9a Visisize volume frequency distribution
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D8.9a Stable bimodal
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D8.9a Stable bimodal
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DSP D8.9a Stable bimodal Dsp =0.0208
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Material D8.10a Visisize data - check for circularity

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700

diameter /µm

c
ir
c
u
la
ri
ty

 

 

D8.10a Visisize number distribution
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D8.10a Visisize volume frequency distribution
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D8.10a Stable bimodal
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DSP D8.10a Stable bimodal Dsp =0.0142
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Material D8.11a Visisize data - check for circularity

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700

diameter /µm

c
ir
c
u
la
ri
ty

 

 

D8.11a Visisize number distribution
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D8.11a Visisize volume frequency distribution
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D8.11a Stable bimodal
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Material D8.12a Visisize data - check for circularity
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D8.12a Visisize volume frequency distribution
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D8.12a Stable bimodal
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APPENDIX B:  PROCEDURE TO RE-NORMALISE DSD DATA 

Datasets with secondary peaks due to satellite droplet formation and agglomeration 

(sections 5.2.1 and 5.2.2 respectively) can be considered to be the superposition of three 

DSDs as shown in the sketch Figure 85. 
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Figure 85:  sketch superposition of DSDs from primary atomisation, satellite formation 

and agglomeration 

The task in Chapter 5 is to fit a function to that primary peak.  However, neither the 

equation or the parameters of the distribution function are known a priori.  For 

preliminary screening, i.e. selecting a shortlist of likely candidate functions, it is most 

efficient (quickest) to simply fit a normalised distribution function to the normalised 

data.  Functions with the wrong shape can be discarded, but a good fit to the peak 

cannot be obtained whilst insisting that both data and fit are normalised, even though a 

significant fraction of the data volume distribution is contained in secondary peaks. 

Typically the superposed DSDs have overlapping tails as indicated in Figure 85.  The 

secondary peaks cannot be eliminated by inspection of clear separation between the 

peaks (except for some of the PDA datasets).  It is, however, possible to select by eye a 

range of the volume density distribution which (good enough to a first approximation) 
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only contains particles from the primary peak.  This is a simple observation from the 

data that is available, it will not be true for an arbitrary measurement of droplet size 

data.  However, if a clear primary peak could not be discerned by eye, that size 

distribution would not be a good exemplar of the Acoustic Atomiser size distribution, 

and it would not be necessary to find a fit function to it.  This range of data of the 

primary peak is the range of data that the fit is applied to.  The lower bound diameter dL 

and the upper bound diameter dU., are shown in Figure 86.  The selection of these 

bounds is a subjective judgement. 
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Figure 86:selection of primary peak for fitting theoretical distribution 

A normalised fit function is the goal, so the normalised data volume density distribution 

is scaled by a factor x (where x.≥.1), so that the area under the curve in the primary peak 

range between dL and dU is the same in both the data and the fit function.  The total 

cumulative volume of the scaled data is now greater than 1.  It is equal to the scale 

factor x.  The excess volume (x.-.1) is the volume in the secondary peaks of the 

measured data that is in excess of the expectation value according to the fit function. 
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It will be immediately apparent that this procedure is distribution-dependent, and will be 

iterative.  Iteration by manual direct substitution of estimates of x is found to be both 

robust and rapidly convergent. 

A correction is required to the DSP goodness of fit plot.  The cumulative volume 

fraction of the entire dataset is no longer normalised.  In order to judge goodness-of-fit,  

the origin of the data cumulative volume fraction sum is set at dL, rather than at zero.  

The cumulative volume fraction of the data at dL is set to be equal to the cumulative 

volume fraction of the fit at dL.  The cumulative sum is then performed from dL for  

both lower and higher diameters.  The cumulative volume fraction for small diameters 

will become negative and the stabilized probability (2./.π).sin-1[.√W(d).] will become 

complex and hence unplottable.  However, the purpose of the test is goodness-of-fit to 

the peak.  It is not to be expected that a good fit would be obtained of a unimodal 

theoretical distribution function to secondary peaks in the tails of the data.  It should 

also be noted that since Wdata(dL).=.Wfit(dL) has been fixed, and by definition of the re-

normalisation procedure (eqn B.1),  Wdata(dU).=.Wfit(dU) is also fixed.  Hence a perfect 

fit will be indicated on the DSP plot at these two fixed points.  Overall positive or 

negative displacement of the line (as seen in the uncorrected DSP plots when skew is 

indicated) is not possible.  Goodness-of-fit is indicated only by the divergence of the 

data from the perfect fit line for the intermediate points plotted between dL and dU.
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APPENDIX C:  CRITICAL DSP FOR LARGE n 
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Michael, 1983 Curve fit ε|data-fit|
n DSP n DSP

α=0.05 to 3d.p

5 0.168 5 0.1683535 0.168 0

6 0.163 6 0.1629141 0.163 0

7 0.158 7 0.1579135 0.158 0

8 0.154 8 0.1533097 0.153 0.001

9 0.149 9 0.1490649 0.149 0

10 0.145 10 0.1451449 0.145 0

12 0.138 12 0.1381595 0.138 0

14 0.132 14 0.1321424 0.132 0

16 0.127 16 0.1269221 0.127 0

18 0.122 18 0.1223595 0.122 0

20 0.118 20 0.1183414 0.118 0

22 0.115 22 0.1147754 0.115 0

24 0.112 24 0.1115868 0.112 0

30 0.104 30 0.1037277 0.104 0

40 0.094 40 0.0942285 0.094 0

50 0.087 50 0.0872365 0.087 0

60 0.082 60 0.081724 0.082 0

70 0.077 70 0.0772332 0.077 0

80 0.074 80 0.0735214 0.074 0

90 0.07 90 0.0704344 0.07 0

100 0.068 100 0.0678603 0.068 0

200 0.0569707

300 0.0551678

500 0.0548198

600 0.0548116

1000 0.05481

3000 0.05481
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APPENDIX D:  EXCEL VBA MACRO TO FIT STABLE 

DISTRIBUTIONS TO DROPLET SIZE DATA 

The use of this method is described in sections 5.3.8 and 5.4.  The macros used for 

bimodal distributions are not shown, they simply added additional worksheets pages 

and parameters γ1, γ2, δ1, δ2 rather than just δ and γ, and had calling routines to fit one or 

other curve separately as well as a routine to fit both together.    

Spreadsheet screendump following page. 

Named ranges called by the macro are: 

Name Cell range 

alpha O2 

beta P2 

gamma Q2 

delta R2 

DSP AA23 when minimising against Σ(∆sp) 

AA25 when minimising against Dsp 

ItAlpha O3 

ItBeta P3 

ItDelta R3 

ItGamma Q3 

ItFine L7 

lbound L3 

ubound L4 

where the prefix "It" is a contraction of Iterate  
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D.1 Macro code in worksheet 

Private Sub RunStableButton_Click() 
 
    ModuleRunStable.WorkingFileName = ActiveWorkbook.Name 
    SingleStableRun 
    Range("alpha").Activate 
 
End Sub 
 
 
Private Sub IterateStableButton_Click() 
 
    ModuleRunStable.WorkingFileName = ActiveWorkbook.Name 
    IterateStable 
    Range("alpha").Activate 
 
End Sub 

 

D.2 Macro code in ModuleRunStable 

Option Explicit 
Public WorkingFileName As String 
Public Stable_completed_normally As Boolean 
Dim alpha, beta, gamma, delta, L_bound, U_bound As Variant 
Dim ItAlpha, ItBeta, ItGamma, ItDelta As Variant 
Dim Input_data_written_normally As Boolean 
 
 
Sub SingleStableRun() 
    alpha = Range("alpha") 
    beta = Range("beta") 
    gamma = Range("gamma") 
    delta = Range("delta") 
    L_bound = Range("lbound") 
    U_bound = Range("ubound") 
    RunStable 
End Sub ' InitialStableRun 
 
 
Sub IterateStable() 
Dim DSP1, DSP2, i As Variant 
Dim Dummy As Variant 
 
    alpha = Range("alpha") 
    beta = Range("beta") 
    gamma = Range("gamma") 
    delta = Range("delta") 
    L_bound = Range("lbound") 
    U_bound = Range("ubound") 
    ItAlpha = Range("ItAlpha") ' flag to iterate each parameter 
    ItBeta = Range("ItBeta") 
    ItGamma = Range("ItGamma") 
    ItDelta = Range("ItDelta") 
    i = Range("ItFine") ' multiplier on fineness of parameter increments in iteration 
     
    If ItAlpha = 1 Then 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
            alpha = alpha + 0.1*i 
            Dummy = DoEvents 
            If alpha > 2 Then Exit Do 
        Loop 
        alpha = alpha - 0.2*i 
 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
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            RunStable 
            DSP2 = Range("DSP") 
            alpha = alpha - 0.1*i 
            Dummy = DoEvents 
            If alpha < 0.4 Then Exit Do 
        Loop 
        alpha = alpha + 0.2*i 
        RunStable 
    End If 'ItAlpha 
 
    If ItBeta = 1 Then 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
            beta = beta + 0.1*i 
            Dummy = DoEvents 
            If beta > 1 Then Exit Do 
        Loop 
        beta = beta - 0.2*i 
 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
            beta = beta - 0.1*i 
            Dummy = DoEvents 
            If beta < -1 Then Exit Do 
        Loop 
        beta = beta + 0.2*i 
        RunStable 
    End If 'ItBeta 
    
    If ItGamma = 1 Then 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
            gamma = gamma + 1*i 
            Dummy = DoEvents 
        Loop 
        gamma = gamma - 2*i 
 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
            gamma = gamma - 1*i 
            Dummy = DoEvents 
        Loop 
        gamma = gamma + 2*i 
        RunStable 
    End If 'ItGamma 
         
    If ItDelta = 1 Then 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
            delta = delta + 1*i 
            Dummy = DoEvents 
        Loop 
        delta = delta - 2*i 
 
        DSP1 = 1 
        DSP2 = DSP1 
        Do Until DSP2 > DSP1 
            DSP1 = Range("DSP") 
            RunStable 
            DSP2 = Range("DSP") 
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            delta = delta - 1*i 
            Dummy = DoEvents 
        Loop 
        delta = delta + 2*i 
        RunStable 
    End If 'ItDelta 
     
End Sub 
 
 
Sub RunStable() 
' Runs John Nolan's FORTRAN "Stablec.exe" 
'   once for density calc with "pdfip.dat" input file 
'   again for cumulative calc with "cdfip.dat" input file 
' VB "Shell" command doesn't parse DOS pipes correctly. Command line 
'     stablec < pdfip.dat 
'   written as single line DOS batch file stblpdf.bat 
'   (and equivalently for cdf) 
Dim ResultsCheck, ResponseCheck 
Dim OriginalDir As Variant 
Dim fs 
On Error GoTo ErrorHandler 
 
    Stable_completed_normally = False 
    Input_data_written_normally = False 
    OriginalDir = CurDir 
    ChDrive "c:" 
    ChDir "c:\Program Files\Stable" 
    Call WriteStableInputFiles 
    If Not Input_data_written_normally Then Err.Raise vbObjectError + 2002 
 
' VB Shell command runs concurrently, code checks that "StableC.exe" has 
' written "stable.out" results file before continuing 
' also check for excessive elapsed time- suggests excecution problem 
    Set fs = CreateObject("Scripting.FileSystemObject") 
    ResponseCheck = Now 
    Shell ("stblpdf.bat") 
    Do Until fs.FileExists("stable.out") 
    'loop until results file is written 
      'if 60 seconds elapsed assume problem with StableC.exe. 
   'First guess stable.out open in Excel, try closing and reset 

  'if not the case, attempting to close stable.out flags error, 
  'errorhandler displays dialog box warning 

        If Now > (ResponseCheck + 3*0.00023) Then    '0.00023=20secs; 1=24hours 
            Windows("stable.out").Close 
            ResponseCheck = Now 
            Shell ("stblpdf.bat") 
        End If 
    Loop 
    Do Until FileLen("stable.out") > 2000   ' Stablec.exe first creates file, then 
                                            ' populates it.  This checks length is 
                                            ' greater than 2K  (i.e. some data 
                                            ' written) before proceeding 
    If Now > (ResponseCheck + 3*0.00023) Then    

Windows("stable.out").Close 
            ResponseCheck = Now 
            Shell ("stblpdf.bat") 
        End If 
    Loop 
     
     
    Call ReadStablepdf  'read "stable.out" into Excel 
        
    ResponseCheck = Now 
    Shell ("stblcdf.bat") 
    Do Until fs.FileExists("stable.out") 
        If Now > (ResponseCheck + 3*0.00023) Then 
            Windows("stable.out").Close 
            ResponseCheck = Now 
            Shell ("stblcdf.bat") 
        End If 
    Loop 
    Do Until FileLen("stable.out") > 2000 
        If Now > (ResponseCheck + 3*0.00023) Then 
            Windows("stable.out").Close 
            ResponseCheck = Now 
            Shell ("stblcdf.bat") 
        End If 
    Loop 
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    Call ReadStablecdf 
        
'tidy up - return to calling directory, set success flag 
    ChDir OriginalDir 
    Stable_completed_normally = True 
    Exit Sub 
 
ErrorHandler: 
    Select Case Err.Number 
        Case 9 
            Fatal_Calculation_error_2.Show 
        Case 2002 
            Fatal_input_error_2.Show 
        Case Else 
            Fatal_Calculation_error_3.Show 
    End Select 
    ChDir OriginalDir 
    Stable_completed_normally = False 
    Exit Sub 
End Sub 'RunStable() 
 
 
Private Sub WriteStableInputFiles() 
'NB Print #file1, alpha, alpha, 0 
'doesn't work, Excel prefixes a space to each line when 
'outputting variables, crashes Stablec.exe 
Dim file1 As Integer 
Dim a, b, g, d, lb, ub 
 
On Error GoTo ErrorHandler 
     
    a = CStr(alpha) 
    b = CStr(beta) 
    g = CStr(gamma) 
    d = CStr(delta) 
    lb = CStr(L_bound) 
    ub = CStr(U_bound) 
     
    file1 = FreeFile 
    Open "pdfip.dat" For Output As #file1 
    Print #file1, "1"           'pdf calculation 
    Print #file1, "2"           '2 parameterisation 
    Print #file1, a, a, "0"     'first alpha, last alpha, stepsize 
    Print #file1, b, b, "0"     'first beta, last beta, stepsize 
    Print #file1, lb, ub, "0.1" 'first x, last x, x stepsize" 
    Print #file1, g, d          'gamma, delta 
    Print #file1, "2"           'output to "stable.out" file 
    Close #file1 
     
    file1 = FreeFile 
    Open "cdfip.dat" For Output As #file1 
    Print #file1, "2"           'cdf calculation 
    Print #file1, "2"            
    Print #file1, a, a, "0"      
    Print #file1, b, b, "0"      
    Print #file1, lb, ub, "0.1"  
    Print #file1, g, d           
    Print #file1, "2"            
    Close #file1 
   
    Input_data_written_normally = True 
    Exit Sub 
 
ErrorHandler: 
    Input_data_written_normally = False 
    Exit Sub 
End Sub 'WriteStableInputFiles 
 
 
Sub ReadStablepdf() 
    Workbooks.OpenText Filename:= _ 
        "stable.out", _ 
        Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 
        xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, Semicolon:=False, _ 
        Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(1, 1), _ 
        Array(2, 1), Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _ 
        TrailingMinusNumbers:=True 
    Columns("B:I").Select 
    Selection.Copy 
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    Windows(WorkingFileName).Activate 
    Columns("B:I").Select 
    ActiveSheet.Paste 
    ' clear clipboard and close 
    Application.CutCopyMode = False 
    Windows("stable.out").Close 
    Kill "stable.out"  ' must delete stable.out:successive runs appended not overwritten 
End Sub 'ReadStablepdf 
 
 
Sub ReadStablecdf() 
    Workbooks.OpenText Filename:= _ 
        "stable.out", _ 
        Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 
        xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, Semicolon:=False, _ 
        Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(1, 1), _ 
        Array(2, 1), Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _ 
        TrailingMinusNumbers:=True 
    Columns("B:I").Select 
    Selection.Copy 
     
    Windows(WorkingFileName).Activate 
    Columns("AH:AO").Select 
    ActiveSheet.Paste 
    ' clear clipboard and close 
    Application.CutCopyMode = False 
    Windows("stable.out").Close 
'    Windows("stable.out").Activate 
'    ActiveWindow.Close 
    Kill "stable.out" 
End Sub 'ReadStablecdf 
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APPENDIX E: EXCEL VBA MACRO TO PROCESS CaBER DATA 

Option Explicit 
Sub CaBERDataSort() 
Dim i, j, k As Integer 
Dim NumInMovingAve As Integer 
Dim RepeatFlag, EndFlag As Boolean 
Dim Sigma As Double 
Dim Column1, Column2, Column3, Column4, FirstRow, LastRow, FirstFittingRow, 
LastFittingRow As Integer 
Dim FirstSortedDataRow, LastSortedDataRow, DataNumber, FirstHsappRow, LastHsappRow, 
MaxRows As Integer 
Dim TimeReZero, OldValue, NewValue, RepStartTime, RepEndTime, TimeValue, d1, d2, t1, t2, 
hsapp, HsappMean, HsappSD, SigFigs As Double 
Dim DataTitle As Variant 
'-------------------------------------------------------------- 
    k = 7  'counter for row in B4 to write to 
    Sigma = Worksheets("batch").Cells(34, 3).Value     'surface tension 
    NumInMovingAve = Range("NumInMovingAverage").Value 
    Worksheets("B4").Range("B7:D200").ClearContents 
'process batch data first 
    Sheets("batch").Select 
    Range("$b$4").Select 
    EndFlag = False 
    Do Until EndFlag 
        Application.Calculation = xlCalculationManual 
        Column1 = ActiveCell.Column 
        Column2 = Column1 + 1 
        FirstRow = Cells(5, Column1).Value 
        LastRow = Cells(7, Column1).Value 
        FirstFittingRow = Cells(5, Column2).Value 
        LastFittingRow = Cells(7, Column2).Value 
        Worksheets("B2").Range(Worksheets("b2").Cells(FirstRow, Column1), 

Worksheets("b2").Cells(LastRow, Column2)).ClearContents 
        Sheets("B3").Range(Worksheets("B3").Cells(FirstRow, Column1), 

Worksheets("b3").Cells(LastRow, Column2)).ClearContents 
        TimeReZero = Cells(FirstFittingRow, Column1).Value 
        j = FirstRow    'counter for row number on B2 to write to 
        RepeatFlag = False 
        If (LastFittingRow > FirstFittingRow) Then 
            For i = FirstFittingRow To LastFittingRow 
                OldValue = Worksheets("B2").Cells(j-1, Column2).Value 
                NewValue = Worksheets("batch").Cells(i, Column2).Value 
                If (NewValue = OldValue) Then 
                    RepeatFlag = True 
                    If (i = LastFittingRow) Then 
                       RepStartTime = Worksheets("B2").Cells(j-1, Column1).Value 
                       RepEndTime=Worksheets("batch").Cells(i,Column1).Value-TimeReZero 
                       TimeValue = (RepEndTime + RepStartTime) / 2 
                       Worksheets("B2").Cells(j-1, Column1).Value = TimeValue 
                    End If 
                Else 
                    If RepeatFlag Then 
                       RepStartTime = Worksheets("B2").Cells(j-1, Column1).Value 
                       RepEndTime=Worksheets("batch").Cells(i-1,Column1).Value-TimeReZero 
                       TimeValue = (RepEndTime + RepStartTime) / 2 
                       Worksheets("B2").Cells(j-1, Column1).Value = TimeValue 
                       RepeatFlag = False 
                    End If 
                    TimeValue = Worksheets("batch").Cells(i, Column1).Value - TimeReZero 
                    Worksheets("B2").Cells(j, Column1).Value = TimeValue 
                    Worksheets("B2").Cells(j, Column2).Value = NewValue 
                    j = j+1 
                End If 
            Next 
        End If 
'now convert sorted data into extensional viscosity.  Moving average used. 
'If this would cause divide-by-zero error, use point values only 
        Application.CalculateFullRebuild 

'need to calculate sheet to count sorted data rows correctly 
        Application.Calculation = xlCalculationAutomatic 
        FirstSortedDataRow = Worksheets("B2").Cells(5, Column1).Value 
        LastSortedDataRow = Worksheets("B2").Cells(7, Column1).Value 
        j = FirstSortedDataRow    'counter for row number on B3 to write to 
        If (LastSortedDataRow > FirstSortedDataRow) Then 
            For i = FirstSortedDataRow To LastSortedDataRow - NumInMovingAve 
                d1=Application.WorksheetFunction.Average(Range(Worksheets("B2").Cells(i, 
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Column2), Worksheets("B2").Cells(i+NumInMovingAve-1, Column2))) 
                d2=Application.WorksheetFunction.Average(Range(Worksheets("B2").Cells(i 

+1, Column2), Worksheets("B2").Cells(i+NumInMovingAve, Column2))) 
                If (d1 = d2) Then 
                    d1 = Worksheets("B2").Cells(i, Column2).Value 
                    d2 = Worksheets("B2").Cells(i+1, Column2).Value 
                    t1 = Worksheets("B2").Cells(i, Column1).Value 
                    t2 = Worksheets("B2").Cells(i+1, Column1).Value 
                Else 
                t1=Application.WorksheetFunction.Average(Range(Worksheets("B2").Cells(i, 

Column1), Worksheets("B2").Cells(i+NumInMovingAve-1, Column1))) 
                t2=Application.WorksheetFunction.Average(Range(Worksheets("B2").Cells(i 

+1, Column1), Worksheets("B2").Cells(i+NumInMovingAve, Column1))) 
                End If 
                hsapp = 0.4254*Sigma*(t2-t1) / (d1-d2) 
                If (hsapp > 0) Then 
                    Worksheets("B3").Cells(j, Column2).Value = hsapp 
                    DataNumber = j-FirstSortedDataRow+1 
                    Worksheets("B3").Cells(j, Column1).Value = DataNumber 
                    j = j+1 
                End If 
            Next 
        End If 
'then move to the next series of data 
        Sheets("batch").Select 
        Worksheets("batch").Cells(4, Column1+2).Select 
        If (ActiveCell.Value <> Worksheets("batch").Cells(4, Column1).Value) Then 

EndFlag = True 
    Loop 
    Range("$a$1").Select 
     
'then process the SINGLE MEASUREMENT data 
'{*this code not shown: identical to batch but on worksheet page "single" *} 
 
    Range("$a$1").Select 
End Sub 
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APPENDIX F:  CaBER DATA 

For each material apart from E and J which are in the main text, plots are shown for 

time-diameter curves, both unprocessed and the data selected as valid for analysis, and 

then on the following page, plots against Hencky strain of each of transient apparent 

Trouton ratio and transient apparent extensional viscosity. 

As the full shear rheometry flow curve data was not available, the plots against strain 

rate are less interesting in this study.  Only the plots for the materials with greatest and 

least strain rate are shown below. 

Material J, CaBER batch measurements, 30 strains, filtered 1mm<d<0.13mm, moving average over 3 readings
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Material G, CaBER batch measurements, 60 strains, filtered 1mm<d<0.01mm, moving average over 15 readings
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Material F, CaBER filament lifetime curve raw data, 20 strains in batch 
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Material F, CaBER batch measurements valid for analysis
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Material F, CaBER batch measurement, 20 strains, filtered 1mm<d<0.26mm, moving 

average over 20 readings, ensemble average (excl. outlier 1st strain) in green
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Material F, CaBER batch measurement, 20 strains, filtered 1mm<d<0.26mm, moving 

average over 20 readings, ensemble average (excl. outlier 1st strain) in green
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Material F, transient apparent extensional viscosity taken to be 0.7.±.0.35.Pa.s 
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Material G, CaBER filament lifetime curve raw data, 60 strains in batch 

measurement mode (solid), 5 single strains (dashed)
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Material G, CaBER batch measurements valid for analysis
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Material G, CaBER batch measurements, 60 strains, filtered 1mm<d<0.01mm, 

moving average over 15 readings, ensemble average in green
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Material G, CaBER batch measurements, 60 strains, filtered 1mm<d<0.01mm, 

moving average over 15 readings, ensemble average in green
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Material G, transient apparent extensional viscosity taken to be 1.6.±.0.4.Pa.s (single 

strain values were similar, plots not shown) 
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Material H, CaBER filament lifetime curve raw data, 60 strains in batch 

measurement mode (solid), 5 single strains (dashed)
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Material H, CaBER batch measurements valid for analysis
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Material H, CaBER batch measurements, 60 strains, filtered 1mm<d<0.02mm, 

moving average over 20 readings, ensemble average in green

0

10

20

30

40

50

60

70

80

90

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Hencky strain

tr
a
n
s
ie
n
t 
a
p
p
a
re
n
t 
T
ro
u
to
n
 r
a
ti
o
  
.

 

Material H, CaBER batch measurements, 60 strains, filtered 1mm<d<0.02mm, 

moving average over 20 readings, ensemble average in green
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Material H, transient apparent extensional viscosity taken to be 1.1.±.0.5.Pa.s (single 

strain values were similar, plots not shown) 
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Material K, CaBER filament lifetime curve raw data, 60 strains in batch 

measurement mode (solid), 5 single strains (dashed)
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Material K, CaBER filament lifetime curve data valid for analysis
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macro execution) 
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passing through the laser 
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Material K, CaBER batch measurement (60 strains, solid, ensemble average in green), 

5 single strains (dashed), filtered 1mm<d<0.15mm, moving average over 15 readings
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Material K, CaBER batch measurement (60 strains, solid, ensemble average in green), 5 

single strains (dashed), filtered 1mm<d<0.15mm, moving average over 15 readings
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Trouton ratio less than three is not physically meaningful.  Potential error sources in the 

Trouton ratio calculation are discussed in the main text. 

Material K transient apparent extensional viscosity taken to be 0.14.±.0.06.Pa.s  
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Material M, CaBER filament lifetime curve raw data, 40 strains in batch 

measurement mode (solid), 1 single strain (dashed)
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Material M, CaBER filament lifetime curve data valid for analysis
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Material M, CaBER batch measurement (40 strains, solid, ensemble average in green), 

1 single strain (dashed), filtered 1mm<d<0.006mm, moving average over 25 readings
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Material M, CaBER batch measurement (40 strains, solid, ensemble average in green), 

1 single strain (dashed), filtered 1mm<d<0.006mm, moving average over 25 readings
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Material M, transient apparent extensional viscosity taken to be 2.±.1.Pa.s (from single 

strain value: batch measurements look similar at low strain, but measurement was 

truncated due to insufficient acquisition time set). 
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