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ABSTRACT 

A series of α-alkoxy-3,6-dispiro-1,2,4-trioxanes have been synthesised by acid-catalysed 

perhydrolyses of α-alkoxy methylenecyclohexane oxides (provides ring A) to give 

selectively the corresponding 1-hydroperoxy-1-(hydroxymethyl)cyclohexanes followed 

by acid-catalysed condensation with an appropriate cycloalkanone (provides ring C). 

Analogous perhydrolyses catalysed by MoO2(acac)2 afforded mixtures of regioisomeric 

β-hydroxy hydroperoxides, albeit in overall increased yields. The resulting 1-

(hydroperoxymethyl)-1-hydroxycyclohexanes allowed entry to the isomeric 3,5-dispiro-

1,2,4-trioxanes. X-ray crystallographic analysis of the isomeric dispiro-1,2,4-trioxanes 

revealed that (a) they originate from different diastereoisomers of the epoxide 

substrates, and (b) the 1,2,4-trioxane rings of the 3,5-isomers adopt distorted half-chair 

rather than chair conformations as a consequence of intramolecular 1,3-diaxial steric 

interactions. Modelling studies of the perhydrolysis process are in broad agreement with 

the regioselectivity of the acid-catalysed reactions, but suggest that the α-alkoxy-

substituted epoxides can act as bidentate ligands which can adopt different binding 

modes to the Mo catalyst and hence provide alternative reaction pathways. 

Thermolysis of dilute solutions of the α-alkoxy-3,6-dispiro-1,2,4-trioxanes in decane 

afforded a variety of 13-, 14-, 15- and 20-membered fully ring-expanded keto lactones 

in high yield via stepwise, β-scission/radical recombination reactions in contrast to the 

partially ring-expanded oxalactones obtained previously from other 3,6-dispiro-1,2,4-

trioxane derivatives. 

An investigation of substituent effects on the thermal rearrangement mechanisms of 3,6-

dispiro-1,2,4-trioxanes using DFT calculations indicated that, after the initial O-O bond 

homolysis to form the corresponding oxy biradical, ring C generally opens significantly 

faster than the unsubstituted ring A because of the greater delocalisation of radical 

character into ring C. In these cases, the lowest rearrangement energy barrier links 

directly to the partially ring-expanded oxalactone product as observed experimentally. 

Methyl or methoxy substituents at the α-position of ring A render its ring opening by β-

scission increasingly more competitive to that of ring C due to increased delocalisation 

of radical character onto the α-substituent, consistent with the ‘α-effect’. Methoxy-

substituents are also noted to engage in close range interactions with the 1,2,4-trioxane 

ring. Since the energy barrier for ring A opening falls below that of ring C in the 

methoxy model, formation of the fully ring-expanded keto lactone becomes favoured. 
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Cyclic peroxides have been found as substructural units in many naturally occurring 

compounds isolated from a variety of marine sponges and plants.1,2 Various examples 

include the 1,2,4-trioxane in artemisinin (1),3 the 1,2-dioxane in yingzhaosu A (2)4 and 

yingzhaosu C (3),5 and the 1,2-dioxolane in 4.6 These peroxide-containing compounds 

have been shown to possess a range of pharmacological properties,7 in particular 

antimalarial activity, with the peroxide bond being the key pharmacophore.3  
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Over the last thirty years, 1,2,4-trioxane synthesis has come to particular prominence 

because of the antimalarial properties of naturally occurring artemisinin (1) (IC50= 9.7 

nM). Artemisinin was identified as the active component of qinghaosu which has been 

used for centuries in China as a herbal medicine for the treatment of malaria. Although 

artemisinin (1) was originally characterised as an ozonide, the presence of the 1,2,4-

trioxane ring was determined unambiguously by X-ray crystallography. The presence of 

the 1,2,4-trioxane ring in a natural product was considered unusual at the time.3  

 

The treatment of malaria strain P. falciparum is becoming increasingly difficult due to 

its widespread resistance to the traditional cheap and readily available quinine- and- 

chloroquinine-related therapies. This strain of malaria can be fatal and is estimated to 

affect up to 200 million people,8 Artemisinin (1) exhibits potent pharmalogical activity 

against chloroquinine-resistant strains of malaria, and in particular P. falciparum.  There 

have been no reports of any drug resistance to artemisinin-based compounds.9 
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The 1,2,4-trioxane ring contains a relatively weak peroxide bond, which on cleavage, 

can form highly reactive oxy radicals.  This characteristic is the basis of the useful 

properties of the 1,2,4-trioxanes. Catalytic hydrogenation of artemisinin (1) affords the 

acetal 5 which is completely inactive against the malaria parasite,10 confirming that the 

1,2,4-trioxane moiety and particularly the endoperoxide bridge is the active 

pharmacophore.  Although artemisinin (1) has been used successfully in the treatment 

of malaria due to its high potency, low toxicity and rapid action against malaria, poor 

bioavailability has led to the development of several semi-synthetic analogues. Thus, 

artemether (6), arteether (7) and artesunic acid (8), which have the basic artemisinin 

structure, have been shown to hold greater potency and bioavailability and are now also 

used routinely in the clinical treatment of malaria.11 Further derivatives including 

modifications at the C10 position have shown better solubility and stability.12 Although 

none of these new derivatives are in commercial production, artemisone (9) shows 

particular promise.13 The artemisinin-based family of compounds however do suffer 

from limited availability because of erratic supply and high cost. A recently announced 

collaboration between OneWorld Health, Amyris Biotechnologies, and Sanofi-Aventis 

aims to introduce a low-cost, semisynthetic artemisinin into the supply chain.14 

 

 

 
 

The search for a new potent anti-malarial based on artemisinin continues. This has led 

to the synthesis of artemisinin dimers. The artemisinin dimer 10, connected through an 

ether linkage was noted to have similar potency to arteether.15 Further studies suggested 

that dimer 11 is likely to be a reduction metabolite of arteether itself.16  The synthesis17 

and biological activity18,19 of artemisinin dimers based on 12 (IC50= 0.59-0.91 nM) 

demonstrate a ca. 10-fold increase in antimalarial potency in vitro compared to 

artemisinin, suggesting a benefit in having two trioxane rings in the same molecule. 

Although, the biological activity of artemisinin-based dimers depends on the nature of 
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the linker between the artemisinin type moieties, in general they show increased 

potency.20,21 Additionally, some artemisinin dimers show high in vivo anticancer 

activity.22 

 

 

 

Trioxaquines 13, which are hybrid molecules made up of a 1,2,4-trioxane bonded 

through a linker to a quinoline, have been identified as potential antimalarial drug 

targets. 23 This gives the drug two pharmacophores which are able to interact with the 

heme target. Although the individual pharmacophores have limited biological effect in 

isolation,  trioxaquines are found to be highly active against drug-resistant P. 

falciparum strains of malaria24 and are able to alkylate heme as efficiently as 

artemisinin and its derivatives.25,26 

 

 

 

Promising biological activity has been found for 1,2,4-trioxolanes 14,27 1,2,4-

trioxepanes 15,28  1,2,4,5-tetroxanes 1629 and 1,2,4,5-tetraoxanes 1730. Although no 

synthetic peroxide antimalarial drugs have yet been identified from these classes of 

compounds, the ozonide OZ277 (14) is currently in phase II clinical trials.31  These 

compounds have the advantage of being cheaper to make due to their easily accessible 

starting materials and short synthetic routes. 
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Additionally, 1,2,4-trioxanes are found to be useful in the treatment of schistosomiasis 

which is a parasitic disease caused by several species of fluke of the genus Schistosoma. 

Schistosomiasis is the second-most socioeconomically devastating disease after malaria. 

Schistosomes ingest hemoglobin and aggregate the release of heme as a dark pigment 

similar to the hemozoin produced by P. falciparum in the malaria infection. 

Praziquantel (18), synthesised as a racemate with only one of the enantiomers 

biologically active, is the current drug of choice for the treatment of schistosomiasis and 

has been used successfully for many years. However, recently signs of resistance to 

praziquantel have been reported.32 Although artemisinin (1) has low but real effects on 

schistosomicide activity, a new class of hybrid molecules called trioxaquantels 19, made 

up of a praziquantel (18) linked to a 1,2,4-trioxane, have been developed.33 

 

 

 

There have been further reports into another natural product containing a 1,2,4-trioxane 

ring. Two previously reported 1,2,4-trioxanes 20 and 20a34 and one new 1,2,4-trioxane 

21 have been isolated from the roots of J. integerrima. Although the medicinal 

properties of 20, 20a and 21 are as yet unexplored, it is known that the leaves of the J. 

integerrima are very toxic.35 

http://en.wikipedia.org/wiki/Parasitic_disease
http://en.wikipedia.org/wiki/Trematoda
http://en.wikipedia.org/wiki/Schistosoma
http://en.wikipedia.org/wiki/Malaria
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Artemisinin and related peroxides: Mechanism of therapeutic effects 

  

There have been a number of reviews discussing how artemisinin provides its anti-

malarial effect.36,37,38,39  The mechanism of action was first proposed to involve a heme-

mediated oxidative stress leading to the destruction of the parasite.40 Heme was found to 

catalyse the reductive decomposition of artemisinin and dihydroartemisinin in vitro. 

Since these conclusions were based on tests involving dose concentrations far higher 

than pharmacological drug concentrations, it was concluded that parasite death was not 

due to heme-mediated oxidative stress.41 

 

Artemisinin was found to react with hemin in aqueous solutions to form an adduct with 

a high molecular weight and identical physical and chemical properties as the parasite-

derived product. It was suggested that the formation of the adduct was by alkylation of 

hemin by organic free radicals. The hemin-rich internal environment of the malaria 

parasite therefore may account for the selectivity of the drugs toxicity.42 This notion 

was further supported when artemisinin was shown to be >50 times less effective than 

chloroquine-resistant P.berghei strain which lacks hemozoin.43  

 

In 1992, it was shown that ferrous iron triggers the cleavage of the peroxide bond in 

artemisinin and the oxygen radicals rearrange to form carbon-centred radicals.44 This 

was concluded after subjecting an 18O-labelled trioxane 22 to the effects of ferrous and 

non-ferrous reducing agents (Scheme 1).  
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Scheme 1 
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The products isolated from the two experiments were different indicating that the 

ferrous iron cleavage follows a different mechanistic course to that of non-ferrous 

cleavage. The reductive cleavage of trioxane 22 using either samarium diiodide, or zinc 

metal, or tritylithium produce dioxolane 23 involving the release of methoxide ion.  13C 

NMR spectroscopic analysis confirmed the 18O-labelled oxygen was located entirely in 

the exocyclic hemiacetal position of dioxolane 23. The reductive cleavage of trioxane 

22, in the presence of ferrous salts or heme, produces dioxolane products 28 and 30. 

Iron(II)-induced cleavage of the peroxide bond in 22 produces  two distinct oxy-radical 

intermediates 24 and 25. Each intermediate can then proceed via two separate reaction 

mechanisms. Oxy-radical 24 undergoes β-scission producing primary carbon-centred 

intermediate 26 before ring contraction to form the furan ring in 27 with the 18O located 

in the acetoxy group (confirmed by mass spectrometry). A subsequent loss of the 

acetoxy group then forms the non-18O labelled 28. Oxy-radical 25 performs an 

intramolecular 1,5-hydrogen abstraction to produce the more stable C4-carbon radical 

29 and then ultimately forming dioxolane 30 as a mixture of two diastereoisomers with 

the 18O-labelled atom not being observed on the methoxy group (confirmed by mass 

spectrometry).  

 

Following this, the antimalarial activity of arteether (6) was shown to be antagonised by 

two iron chelators, pyridoxal benzoylhydrazone and 1,2-dimethyl-3-hydroxypyrid-4-

one, demonstrating that iron plays a role in the mechanisms of action and toxicity of 

artemisinin.45 Further to this the hemozoin isolated from [14C] artemisinin-treated 

parasites demonstrated hemozoin-associated radioactivity in HPLC and TLC 

experiments indicating that artemisinin was covalently bonded to heme in malarial 

hemozoin.46 

 

In a study designed to evaluate the importance of the carbon-centred radicals, the 

potency of different 4-methylated analogues of the artemisinin skeleton was tested 

against both chloroquinine-susceptible and chloroquinin-resistant strains of P. 

falciparium malaria parasites.47 The results demonstrated a direct relationship between 

the ease of the intermediate oxy radicals performing an intermolecular-1,5-hydrogen 

abstraction and the anti-malarial activity of the compound (Table 1). 
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IC50 (ng/mL) 

Compound W-2 iodochina clone D-6 African clone 

31a 4.5 3.5 

31b >500 >500 

31c >500 >500 

Artemisinin (1) 8 8 

Table 1: Potency against P. falciparum malarial strain/ ng/mL 

 

Compound 31a is around 100 times more potent than either 31b or 31c. Of the three 

compounds, only 31a has the ability to undergo intermolecular-1,5-hydrogen 

abstraction to produce the C-4 radical. This suggests the creation of a C-4 radical is 

linked to the antimalarial activity. 

 

The Haynes group have also suggested that iron may act as a Lewis acid to facilitate an 

ionic rather than radical activation of antimalarial trioxanes.48,49 In this proposal, 

heterolysis of one of the C-O bonds induced by Lewis acid iron salts produces oxygen-

stabilised carbocation 32.  This then forms an unsaturated alkyl hydroperoxide 33 which 

can act as a source of cytotoxic, reactive oxygen species (Scheme 2). 50 

 

 

Scheme 2 

It has been argued that although the concentration of ‘free’ iron in living cells is very 

low, free heme is produced as a waste product of the consumption of haemoglobin by 
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the parasite. This free heme induces the cleavage of the O-O bond in artemisinin to give 

oxy radicals which rearrange by β-scission giving a C4 radical capable of alkylating the 

meso-position of heme. Alternatively, the C4 radical could alkylate a nearby parasite 

causing its death. Meunier et. al. reported the first covalent adduct 34 between 

artemisinin and a heme model obtained using a synthetic manganese metalloporphyrin 

and involved the alkylation by artemisinin of the β-pyrrolic position on the 

macrocycle.51 

N HN

NNH

R

R
R

R H H

H

O

H

HO
H

H

O

H

34  

Evidence for the existence of the carbon-centred radicals during ferrous-mediated 

peroxide cleavage was provided by electron paramagnetic resonance (EPR) spin-

trapping studies, in which the trapped primary and secondary carbon-centred radicals of 

artemisinin were identified.52,53 The reaction of artemether (6) with catalytic amounts of 

ferrous iron in the presence of excess cysteine produced two adducts of cysteine 35 and 

36, derived from the primary and secondary radicals, in the aqueous phase in addition to 

the expected observable products (Scheme 3).54 

 

 

Scheme 3 
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In a further study, the isolation of hydroxyl epoxide 38 was achieved in low yield 

through the iron-induced cleavage of artemisinin (Scheme 4).51 It was first proposed by 

Posner et. al. that 38 could be the intermediate in the decomposition pathway between 

37 and 39.55 The hydroxy epoxide 38 can be produced through two mechanistic routes: 

first by the direct intramolecular ring closure, and second by β-scission of Fe(IV)=O 

followed by rebound epoxidation from intermediate vinyl ether 40. The highly 

electrophilic epoxide 38 is now a potent alkylating agent and potentially cytotoxic. 

Epoxide 38 would be expected to rearrange though an SN1 mechanism making use of its 

free hydroxide to form the dioxolane intermediate 39.  However there is debate about 

the intermediacy and importance of high-valent iron-oxo species. Arguments from 

Meunier et. al. suggest that the formation of all characterised products can be explained 

by route A, Scheme 4  alone.56  

 

 

Scheme 4 

 

The alkylation of heme by artemisinin was reported in 2001.57 This involved the 

alkylation of heme at one of its four meso-positions by the carbon-centred radical 

derived from the β-scission of oxy radicals after the heme-mediated reductive activation 

of artemisinin (Scheme 5). This behaviour was repeated using artemisinin derivatives 

and mimics of the active 1,2,4-trioxane ring.58,59 
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Scheme 5 

 

Additionally, artemisinin and its analogues, but not chloroquine or quinine, were shown 

to inhibit the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) orthologues 

(PfATP6) of P. falciparum.  This provided evidence of the molecular target for 

artemisinins and suggested that artemisinin acted by inhibiting PfATP6 outside the food 

vacuole after activation by iron. Artemisinin shows inhibiting properties similar to 

thaigarin, a well known inhibitor of SERCA. Artemisinin was shown to inhibit SERCA 

with high specificity, leaving other Ca2+-ATPases like PfATP4 unaffected. There is 

almost a perfect correlation between the antimalarial activity of 1,2,4-trioxanes and their 

ability to active PfATP6. Desoxyartemisinin was also shown not to inhibit PfATP6 even 

at high concentrations confirming that the endoperoxide bridge is essential for the 

inhibition. It was therefore hypothesised that artemisinins produce carbon-centred free 

radicals in the presence of catalytic quantities of Fe2+ with the selective targeting of 

PfATP6.60 
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It has also been noted that the accessibility of the peroxide bond has an effect on the 

antimalarial activity of the compound (Scheme 6). If the peroxide bond is crowded by 

bulky alkyl groups, homolysis of the peroxide bond is inhibited and consequently 

antimalarial potency is low.61 Therefore a close interaction between the metal centre and 

the endoperoxide bridge is necessary in order to facilitate the inner-sphere electron 

transfer and that the ability to alkylate heme is crucial for the antimalarial activity of 

1,2,4-trioxane molecules.41  
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Scheme 6 

 

A similar explanation was proposed for the low potency of some methyl-substituted 

1,2,4,5-tetroxanes. Compounds 41 and 42 demonstrated very low potency (>1000nM) 

as antimalarials whilst the less-substituted model 40 (55 nM) had a similar potency to 

that of 43 (38 nM).62 It was suggested that steric hinderence about the peroxide bonds of 

41 and 42 substantually reduced their antimalarial activity. Similar patterns of activity 

have been observed for a series of 1,2,4,5,7,8-hexaoxonanes.63  
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Within red blood cells, the malaria parasite consumes haemoglobin as a source of amino 

acids. This consumption releases free heme and ferriprotoporphyrin which are toxic to 

the malaria parasite. The heme remains toxic to the parasite until its conversion to 

hemozoin, which is harmless. It had previously been thought that the hemozoin was 

made up of polymeric chains of heme64 however the X-ray analysis proved that it had 

crystalline properties.65 Crystallization experiments confirmed that β-hemozoin crystal 

growth in the presence of chloroquine took longer and the shape seemed tapered at each 

end of the needle-like crystals. Thus, it was proposed that the prevention of the 

crystallisation of β-hemozoin is what kills the parasite and is the mode of action of 

antimalarial agents.66  

 

In a study of potent antimalarial compounds, a marked antagonism was observed for all 

compounds in combination with the iron chelators desferrioxamine (DFO) (44) and 

deferipone (DFP) (45). A more marked antagonism was seen for artemesone (9) with 

DFP than with DFO and in a short experiment the sensitivity of the parasites to 

artemisone (9) and artesunate (8) was decreased significantly by 10-fold and five-fold 

respectively. This strongly suggests that none-heme, chelatable free-iron activation is 

essential for the activity of both compounds. A further experiment using labelled 

artemisinin with a fluorescent probe demonstrated the selective build-up of drug at the 

infected erythrocytes in the parasite cytoplasm with exclusion from the digestive 

vacuole. Significantly, the drug is completely washed out of the cell in the presence of 

DFO, whilst it remains irreversibly bound when the iron chelator is absent. Thus the 

labelled compounds were being accumulated by the parasite and then activated by the 

iron to form stable covalent adducts with the parasite.67 
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Synthetic routes to 1,2,4-trioxanes 

 

Preparation of β-Hydroxy hydroperoxides via epoxide ring opening with 

anhydrous hydrogen peroxide 

 

Although there has been a number of different approaches to the synthesis of 1,2,4-

trioxanes, most synthetic routes proceed through the formation of a β-hydroxy 

hydroperoxide intermediate.68,69 The first synthesis of a 1,2,4-trioxane derivative 49 was 

reported by Payne and Smith in 1957. 70 The addition of excess hydrogen peroxide and 

tungstic acid catalyst to cyclohexene (46) formed β-hydroxy hydroperoxide 48 in situ. 

Although no evidence was found, the production of the β-hydroxy hydroperoxide was 

thought to proceed though epoxide 47. The addition of excess hydrogen peroxide and 

subsequent condensation with acetone yields the bicyclic 1,2,4-trioxane 49 which has 

been form via the key β-hydroxy hydroperoxide intermediate 48 (Scheme 7). 

 

 
Scheme 7 

 

It was noted that the percentage yield of 49 varied with the concentration of hydrogen 

peroxide. Increasing the concentration of hydrogen peroxide from 34% to 90% 

increased the yield from 23% to 49% of 49. This route however produces quantities of 

the extremely explosive triacetone triperoxide (50) upon addition of acetone to the 

excess hydrogen peroxide. Although this method is not generally used in the synthesis 

of 1,2,4-trioxanes, it showed that the perhydrolysis of epoxides to β-hydroxy 

hydroperoxides could be used as a synthetic method in the formation of 1,2,4-trioxane 

rings. 

 

Ring-opening reactions of epoxides are normally enhanced by a catalyst. Under neutral 

and basic conditions, nucleophilic attack occurs at the sterically less-hindered carbon 

centre by a classic SN2 mechanism. In contrast, the acid-catalysed ring openings of 

epoxides are considerably accelerated and nucleophilic attack proceeds via an SN2 type 

reaction mechanism at the more substituted side of the epoxide. The reagent tends to sit 
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further away from the position of attack and the driving force of the reaction is said to 

be more a transfer of electron density from the carbon centre to the epoxide oxygen than 

from reagent to carbon. This SN2 reaction is referred to as a ‘borderline SN2’.71,72 

 

An apparently uncatalysed epoxide ring-opening using 98% hydrogen peroxide reported 

an encouraging 70% yield of the β-hydroxy hydroperoxide 51 (Scheme 8).73 However 

this method required extended reaction times of 14 days and the product was 

contaminated with diol 52, produced from reagent and product decomposition. The β-

hydroxy hydroperoxide 53 was subsequently condensed with acetone using anhydrous 

cupric sulfate to give the 1,2,4-trioxane 53 in up to 50% yield. 

 

 
Scheme 8 

 

Perchloric acid-catalysed epoxide ring openings using a five-fold excess of 98% 

hydrogen peroxide for 2 hours at 0-5°C gave 55-95% yields of the  β-hydroxy 

hydroperoxides 54 (Scheme 9).74 Although unsymmetrical epoxides could open either 

way, NMR spectroscopic analysis showed only one product arising from attack at the 

more substituted carbon was formed. Subsequent acid-catalysed ring openings of spiro-

epoxides result in the same selectivity for the attack of hydrogen peroxide.75,76 Base-

catalysed perhydrolysis reactions yielded no isolable products, with either  steric 

hindrance or insufficient nucleophilicity of HOO- being deemed responsible for 

recovery of starting material even after extended reaction times of 24 hours.74 

 

 
Scheme 9 

 

Molybdenyl acetylacetonate has been shown to catalyse the production of isobutylene 

oxide by reaction of isobutene 55b and hydrogen peroxide. In the proposed mechanism 
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outlined in Scheme 10, the epoxide 56, when formed, would continue reacting with 

excess hydrogen peroxide producing a β-hydroxy hydroperoxide intermediate 57. 

Subsequent reaction between the β-hydroxy hydroperoxide 57 and the alkene 55b 

produces the observable epoxide 56 and diol impurity 58.77  

 

 
Scheme 10 

 

The existence of a β-hydroxy hydroperoxide 57 is an important observation as it 

demonstrates the potential of the molybdenum catalyst to promote the formation of the 

key intermediate in 1,2,4-trioxane synthesis. To confirm the presence of the β-hydroxy 

hydroperoxide 57, isobutylene oxide 56 was reacted in isolation with hydrogen 

peroxide. The reaction produced the β-hydroxy hydroperoxide 57 in an exothermic and 

very fast reaction which only occurred in the presence of the molybdenum catalyst.  It 

was noted that the selectivity of the reaction gave rise to a hydroperoxide group at the 

more substituted carbon centre. These results were repeated in the reaction of propene 

(55a).  

 

 
Scheme 11 

 

The catalytic production of β-hydroxy hydroperoxide using molybdenyl acetylacetonate 

was used effectively in the synthesis of 1,2,4-trioxanes.78 Thus perhydrolyses of 

epoxides 59 and 60, using a 10-fold excess of 50% H2O2 pretreated with anhydrous 
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MgSO4, were catalysed with 5% molybdenyl acetylacetonate (Scheme 11). When the 

reaction time was extended to 18 hours (compared to 2 hours for acid-catalysed 

reactions) increased yields of β-hydroxy hydroperoxide were reported. Attempted 

perhydrolyses of epoxide 59 with acid catalysis and different solvents (ether, 

acetonitrile and 2-propanol) produced a higher ratio of diol to β-hydroxy hydroperoxide. 

Furthermore under similar conditions, epoxide 60 produced no isolable products.  

 

Allylic alcohols as precursors of 1,2,4-trioxanes 

 

There are major advantages in designing syntheses of 1,2,4-trioxanes that do not require 

a high concentration of hydrogen peroxide. There have been several different methods 

of synthesising the 1,2,4-trioxane ring via β-hydroxy hydroperoxide obtained from the 

‘ene’ reaction of singlet molecular oxygen with allylic alcohols. 79 These synthetic 

methods proceed under milder conditions which may be more appealing when scaling 

up 1,2,4-trioxane synthesis. 

 

The photo-oxygenation reaction of allylic alcohol 61 in ethanol in the presence of a 

photosensitizer, methylene blue (MB), at 0-10°C produced the β-hydroxy 

hydroperoxide 62 in 37-55% yield after 16 hours.80 Following acid-catalysed 

condensations of β-hydroxy hydroperoxide 62 with cyclopentanone and cyclohexanone, 

a range of spiro-1,2,4-trioxanes 63 were produced, generally in good yield (Scheme 

12).81 

 

 
Scheme 12 

 

The photo-oxygenation of allylic alcohols becomes complicated when there are several 

sites for the ‘ene’ reaction to take place. This problem was highlighted when geraniol 

(64) was investigated as a potential precursor to antimalarial trioxanes (Scheme 13).82 

The photo-oxygenation of geraniol produced four products (65a-d). It was beneficial for 
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the synthesis of 1,2,4-trioxanes that the mixture was separated into hydroxy bis 

hydroperoxides 65c,d and the hydroxy monohydroperoxides 65a,b. Subsequent acid-

catalysed condensation of 65c,d with acetone followed by reduction with NaBH4 in 

methanol produced mixtures of trioxanes 66a and 66b which were separated by flash 

column chromatography on silica gel. Although 1,2,4-trioxane 66a was thought to be 

synthesised as a mixture of two diastereoisomers no evidence was found by either TLC, 

or spectroscopic analysis. Similar 1,2,4-trioxanes were obtained from acid-catalysed 

condensations with cyclopentanone, cyclohexanone and 2-adamantanone. 
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Scheme 13 

 

The hydroxyl group in 66a,b offers a useful functional group for further elaboration to 

produce a series of new 1,2,4-trioxane derivatives. However problems with the low 

yielding ‘ene’ reactions producing a mixture of products, as indicated above, prompted 

the investigation of the photo-oxidation of 67 which is readily available in three steps 

from commercially available geranyl acetate.83 Thus Methylene Blue-sensitized photo-

oxygenation of allylic alcohol 67 in MeCN gave β-hydroxy hydroperoxide 68 in 30-

45% yield as inseparable mixtures of diastereoisomers. A range of 1,2,4-trioxanes 69 

were reported from 68 by acid-catalysed condensation with cyclohexanone, 

cyclopentanone, and 2-adamantanone (Scheme 14). 
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Scheme 14 

 

The β-hydroxy hydroperoxide 71 was synthesized by the standard method from 70 and 

was then reacted in situ with 1,4-cyclohexanedione to produce 1,2,4-trioxane 72 in 

overall 40-50% yield. Subsequent reductive amination of 72 afforded the antimalarial 

trioxaquine 73, which, when converted into its dicitrate salt 74, becomes more stable 

and soluble in water (Scheme 16).84  

 

 
Scheme 16 

 

Application of this method to cyclic allylic alcohols allowed access to the bicyclic 

1,2,4-trioxanes 76 (Scheme 17).85 There have been a few reports of the photo-

oxygenation of cyclohexenols and only one isolated a hydroperoxide.86 Using normal 

photo-oxygenation conditions, hydroxy hydroperoxide 75 was obtained in 22-35 % 

yield and then, following acid-catalysed condensation with cyclohexanone, 
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cyclopentanone and 2-adamantanone, produced the corresponding 1,2,4-trioxanes 76 in 

12-37% yield. 

 

 

 
Scheme 17 

 

1,2,4-Trioxanes and 1,2,4-trioxolanes containing the adamantylidene substituent show 

an increase in antimalarial activity when compared to other structurally related 

compounds.87,88 Since the economic cost of having an adamantylidene substituent in the 

structure is high, the replacement of the adamantane ring with a steroidal unit has been 

investigated.89 A range of steroid-derived spiro-1,2,4-trioxanes 79 were synthesised by 

the photo-oxygenation of allylic alcohols 77 to give the corresponding  β-hydroxy 

hydroperoxide 78 followed by condensation with 3,20-pregnanedione to yield 1,2,4-

trioxanes 79 in 40-87% overall yield (Scheme 18). 1,2,4-Trioxane 79 showed 

encouraging results in testing against P. yoelii in mice. However, the analogous 

steroidal 1,2,4-trioxanes derived from cholestanone 80 (23-69% yield) and a tigogenine 

81 (35-55% yield) showed weak activity in the treatment of P. yoelii in mice. 

 

 

 
Scheme 18 
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Photo-oxygenation of chiral allylic alcohols 

 

The ‘ene’ reactions with substrate 82 react selectively to form 83a and 83b in a 93:7 

ratio when using non-polar solvents, e.g. CCl4 (Scheme 19). The selectivity drops when 

performed in protic solvents, e.g. MeOH, suggesting an important role for hydrogen-

bonding interactions.90 The use of a polystyrene microcontainer photo-oxidation also 

provides a similar selectivity to MeOH.91 Formation of the 1,2,4-trioxane 84 from the 

83a:83b, 93:7, mixture was achieved by condensation with acetone. No product from 

the erythro isomer was apparent. Condensation of the 83a:83b, 73:27, mixture gave 

both diastereoisomers with analysis of the 1H NMR specra  proving that the major 

product was the threo isomer 84.92 A selection of diastereotopically pure 1,2,4-trioxanes 

have been synthesised using this method.93,94 

Scheme 19 

 

1,2,4-Trioxanes from the hydroperoxysilylation of allylic alcohols 

 

Using conditions developed by Mukaiyama and Isayama95,96 [Co(acac)2, Et3SiH, O2], 2-

methyl-2-propen-ol 86 was readily converted at room temperature into a peroxysilyl 

alcohol 87 (40-60% yield). The method takes advantage of the implied regioselective 

‘Markovnikov’ addition of molecular oxygen to the alkene to give the peroxysilyl 

alcohol 87. Additionally, a significant increased yield of 87 (75-85%) was observed 

when using the Co(thd) complex (90) instead of Co(acac)2 (89). 97,98 After purification, 

peroxysilyl alcohol 87 has been condensed with a range of aldehydes and ketones under 

acid catalysis to give the corresponding 1,2,4-trioxanes, 88, in moderate to good yield 

[40-90%]. It has been found that purification of the intermediate peroxysilyl alcohol 87 

is not always nessessary (Scheme 20).99     
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Scheme 20 

 

The mechanism for the hydroperoxysilylation of alkenes was elucidated by Nojima et. 

al. as outlined in Scheme 21.100,101 It was proposed that the first step involves the 

insertion of  the alkene into the H-Co bond of the CoIII-hydride to give a CoIII-alkyl 

complex, 91. The second step was the homolytic cleavage of the CoII-C bond followed 

by the reaction of molecular oxygen to produce a CoIII-alkylperoxo complex 92. The 

triethylsilyl peroxide is then produced by transmetallation with Et3SiH, accompanied 

with the regeneration of the CoIII-H complex. 

 

 

 
Scheme 21 

 

 

The hydroperoxysilylation of allylic alcohols has also been used in the synthesis of 

trioxaquantels. As observed in previous hydroperoxysilylations during the synthesis of 

1,2,4-trioxepanes,102 the silylperoxidation step is 6-8 times slower in dichloromethane 

than in alcohol whilst an increased yield was observed with the vigorous stirring of the 

mixture, allowing more oxygen to dissolve. Reductive amination of 93 with 
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praziquanamine and sodium triacetoxyborohydride in dichloromethane at room 

temperature afforded the trioxaquentel 94 in 47-70% overall yield (Scheme 22).33 The 

complex pattern of multiplets (for position *) in the 1H NMR spectrum of trioxaquentel 

94 was consistent with its formation as a mixture of two diastereoisomers 94a and 94b, 

estimated to be in the ratio 70:30 respectively by HPLC analysis. 

 

 
Scheme 22 

 

All four possible isomers of 97, have been synthesised individually from trioxane 96 via 

95 (Scheme 23). Although the activities of the diastereoisomers of 97 as 

antischistosomiasis and antimalarial agents were moderate in each case, significant 

differences in activity between the diasteoisomers were apparent.33 

 

 

 
Scheme 23 
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The synthesis of 1,2,4-trioxanes from the thiol-oxygen co-oxidation (TOCO) of 

allylic alcohols 

 

The thio-oxygen co-oxidation (TOCO) of olefins provides an efficient route into 

hydroperoxy sulfides 98c via a three-step chain propagation sequence (Scheme 24).103 In 

step one, the addition of thiyl radicals will add regioselectively to the less hindered side 

of the olefinic bond.  

 

 
Scheme 24 

 

This procedure has been used successfully in the synthesis of analogues of the anti-

malarial bicyclic dioxane, yingzhaosu A (2) (Scheme 25).104,105 

 

 
Scheme 25 

 

A further extension of the TOCO reaction was reported using substituted allylic 

alcohols 98 to produce α-hydroxyperoxides 98c (Scheme 26). These α-

hydroxyperoxides were then condensed in situ with various ketones to form 

functionalised 1,2,4-trioxanes 99 in a convenient one-pot synthesis with yields ranging 

from 40-80%. The resulting sulfur-containing 1,2,4-trioxane derivatives were crystalline 

and their structures where determined by X-ray crystallographic analysis confirming the 

structure of the 1,2,4-trioxane ring. The sulfur-containing 1,2,4-trioxanes were reported 

as having moderate to good  biological activity.106 
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Scheme 26 

 

The side chain can be manipulated via the Pummerer reaction107,108 to produce a range 

of new 1,2,4-trioxane derivatives 100. The carbonyl group in 100 can be elaborated 

further, e.g. by a Wittig reaction to form 101 (Scheme 27). 

 

 
Scheme 27 

 

The TOCO method has been further adapted for the synthesis of 1,2,4-trioxepanes by 

simply extending the chain of the allylic alcohol (Scheme 28).109 

 

 
Scheme 28 
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First Solid-Phase Synthesis of 1,2,4-trioxane 
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Scheme 29 

The synthesis of 1,2,4-trioxanes through the photo-oxygenation of β-ionone 103a was 

reported in 1999.110 In a variation on the route, the β-ionone 103a,b has been anchored 

to a polystyrene polymer by Wang and Rink resin linkers in the first solid state 

synthesis of 1,2,4-trioxanes (Scheme 29).111 An aldol condensation between 102a,b and 

an excess of 103a,b with LiOH in DME produced the dieone 104a-c. The 1,2,4-trioxane 

ring was synthesised by irradiation of 104 in an oxygen atmosphere. 

 

 
Scheme 30 

 

The release of the solid support was reported to be difficult. Attempts to use an acid 

treatment yielded no 1,2,4-trioxane and instead produced a triketone from cleavage of 

the peroxy bond followed by β-scission reaction (Scheme 30). Successful release of the 
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Wang–resin anchored 1,2,4-trioxane was achieved by the use of 1 equivalent  of 

NaOMe in THF/OMe leading to the methyl ester 107b and a small quantity of epoxide 

108. Alternatively the use of ethyl alcohol and KCN produced the corresponding ester 

in moderate yield (Scheme 29). 

 

Synthesis of bridged bicyclic 1,2,4-trioxanes synthesis using UHP (Urea-H2O2 

Complex) 

 

Using methods developed for the synthesis of 1,2-dioxanes,112,113 the peroxide bond has 

been introduced into the bicyclic-1,2,4-trioxane 111 using UHP, a urea-hydrogen 

peroxide complex (Scheme 31). 114 The treatment of unsaturated ketone 109 with UHP 

in the presence of p-TsOH in DME afforded the hydroperoxide 110a,b in 89% yield as 

a mixture of isomers (cis:trans, 1.6:1). The isomers 110a,b were separated by column 

chromatography. Under mild base-catalysed conditions the cis-hydroperoxide 110a  

underwent intramolecular Michael addition to give the bicyclic 1,2,4-trioxane 111. The 

trans-isomer 110b cannot form a bicyclic 1,2,4-trioxane. 

 

 
Scheme 31 

 

Attempts to effect the analogous transformation of the unsaturated ketone 112 into the 

bicyclic 1,2,4-trioxane 113 were unsuccessful even using different catalysts and 

microwave irridation (Scheme 32). 115 It is likely that 1,3-synaxial interactions required 

in the formation of the cis isomer 112c render this arrangement energetically 

unfavourable. 
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Scheme 32 

 

Structural Analysis of 1,2,4-trioxanes 

 

The structures of ninety-eight molecules containing the 1,2,4-trioxane moiety have been 

determined by X-ray crystallographic analysis.116 The majority of the 1,2,4-trioxane 

structures reported are either related directly to artemisinin (1) or are polycyclic 

systems, because similar monocyclic 1,2,4-trioxane derivatives tend to be low melting 

solids. This brief review will highlight the following: artemether (6),117 the fused 

bicyclic 1,2,4-trioxanes 115118 and 115, 119 and the monocyclic 1,2,4-trioxanes including 

monospiro 117106, dispiro 119120, and C5-substituted 118121 and 116122 1,2,4-trioxanes. 
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The conformations of the 1,2,4-trioxane rings in these structure vary between a chair or 

near-chair conformation and a twist-boat. Since polycyclic structures like artemether (6) 

have highly restricted movement, the 1,2,4-trioxane ring tends to be in a twist-boat 

conformation. Other bicyclic 1,2,4-trioxanes, e.g. 114 and 115, have similar 

conformational restrictions on the 1,2,4-trioxane ring. Interestingly, despite the 

restriction, there is a fine balance between the 1,2,4-trioxane being in a chair or twist-

boat conformation in 114. 1,2,4-Trioxane 114c is in a twist-boat conformation whereas 

1,2,4-trioxanes 114a and 114b, which contain a bulky t-butyl group, are in chair 

conformations. Since the monocyclic 1,2,4-trioxanes 116-119 have no structural 

restrictions the central 1,2,4-trioxane ring adopts a classical chair conformation in each 

case. The dispiro-1,2,4-trioxan-5-one 119 which contains an sp2-centre in the 1,2,4-

trioxane ring adopts a pseudo twist-boat conformation. The orientation of the 

substituent at the C5 position in 1,2,4-trioxane 118 can also show a change depending 

on size: 118a has the 1-naphtyl group in an equatorial position  whereas the o-

chlorophenyl group in 118b is in an axial orientation. The O-O bond distance in a 1,2,4-

trioxane is around 1.48 Å and is comparable with other peroxide bond distances.123 The 

structure of 1,2,4-trioxane rings are further discussed in the results and discussion 

section. 

 

Thermal decomposition of 1,2,4-trioxanes 

 

 
 

The kinetics of the homolytic cleavage of the peroxide bond has been shown to be first 

order by monitoring the disappearance of the 1,2,4-trioxane 49 during a thermolysis 

reaction.124  The temperature for the decomposition has been shown to be similar for a 

variety of 1,2,4-trioxanes and independent of their physical form and melting point.125 

The resulting oxy radicals follow a step-wise fragmentation mechanism with β-scission 

reactions with activation barriers of ca. 15-18 kcal mol-1 resulting in the formation of 

carbon-centred radicals (Scheme 33).126 
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Scheme 33 

 

The thermolysis of 1,2,4-trioxane 49 took place in octane at 160-189°C via a first order 

reaction.127 Two products were isolated from the reaction and were determined to be 

acetone (121) and adipaldehyde (122). The oxygen diradical formed from the initial 

bond cleavage, 120, can further react by either cleavage of bond A or bond B or 1,5-

hydrogen abstraction before forming the products isolated (Scheme 34).  

 

 
Scheme 34 

 

In a similar study, the thermolysis of 1,2,4-trioxane 123 gave rise to the formation of 

three carbonyl compounds 124-126 in almost quantative amounts by different β-scission 

reactions prompting the fragmentation of the molecule (Scheme 35).128 

 

 
Scheme 35 

 

Artemisinin (1) was shown to decompose at temperatures of 190°C, with no artemisinin 

detected after 10 minutes, producing a mixture of 127, 128 and 5 from a radical 
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rearrangement process (Scheme 36).129 Compounds 127, 128 and 5 were separated on a 

silica gel column and fully characterised by NMR spectroscopy and X-Ray 

crystallography. Similar products have been observed in other thermolyses of 

artemisinin (1).130 The thermolysis of dihydroartemisinin (129) produced two products, 

5 and 130, in 30% and 50% yield respectively.131 The formation of the major product 

130 from 129 was consistent with the fragmentation of the molecule by a series of β-

scission reactions after the initial cleavage of the peroxide bond. 

 

 
Scheme 36 

 

In addition to aldehydes and ketones from the fragmentation of the whole molecule, the 

thermolysis of 1,2,4-trioxane 131 formed benzoic acid and deoxybenzoin. This is 

consistent with 1,2-hydrogen- and 1,2-phenyl-shifts occurring in the mechanism. The 

thermolysis of 132 also formed 134 by an intramolecular hydrogen abstraction (Scheme 

37).132 

 

 
Scheme 37 
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Before 1,2,4-trioxan-5-ones had actually been synthesised,133,134 it was believed that 

such trioxanes would spontaneously decompose to produce carbon dioxide and its two 

component carbonyl compounds. In reality, 1,2,4-trioxan-5-ones were found to be 

stable at room temperature forming crystalline solids.120 Initial experiments using 

capillary column gas chromatography showed that 1,2,4-trioxan-5-ones were stable at 

temperatures below 180°C. At temperatures above 210 °C they underwent complete 

fragmentation. Additionally heating 1,2,4-trioxanes 134-136 at 189°C for 2-3 hours in 

boiling decalin under argon, resulted in complete fragmentation. However 

fragmentation of 138 and 139 was only observed after extended reaction times of 3-5 

hours. Using flash-vacuum thermolysis, the 1,2,4-trioxanes 135 and 136 survived 

temperatures up to 300°C before fragmenting at 350-400°C.135  

 

 

 

The chemiluminescence quantum yields (Φcl) of 1,2,4-trioxan-5-ones 139 and 140 were 

shown to be the same within experimental error at 200°C. The (Φcl) of 1,2,4-trioxan-5-

ones 138 was shown to be significantly lower than that seen for either 139 or 140. This 

suggests that a concerted fragmentation is not possible, since both 138 and 140 would 

produce the same fragmentation. Consequently a stepwise process where cleavage of 

one side of the 1,2,4-trioxan-5-one ring happened first was suggested (Scheme 38).136 

 

 
Scheme 38 

 

GC-MS analysis of the crude product from the thermolysis of 1,2,4-trioxanes 141 and 

142 identified 12 and 11 different products respectively. The products were derived 

from the homolytic cleavage of the peroxide bond followed by several different step-

wise mechanisms.137 Analysis of the reaction rate noted that no effect was evident for 

the decomposition by adding a hydroxyl group in 142.138 This was due to the homolytic 

cleavage being the rate determining step and the substituents being relatively far away 
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from the peroxide bond. Although the expected activation energy for the homolytic 

cleavage of a peroxide bond is 33 kcal mol-1 139 the value obtained for 1,2,4-trioxanes 

143 differs slightly from this whereas the other values for the 1,2,4-trioxanes are closer 

to the expected value. The similar ∆H‡ values observed for 1,2,4-trioxanes 141 and 142  

reflect the fact the influential changes to the molecule are far away from the peroxide 

bond. The rate constant values for the cleavage increase as the polarity of the solvent 

increases with a faster reaction rate seen for the decomposition of 141 in methanol than 

that in n-hexane.140 A faster reaction rate (1.6 times greater) for the thermolysis of cis-

fused 1,2,4-trioxane 144 has been observed by varying the solvent from benzene to 

methanol, whilst the reaction rate for 143 was  less affected by changing the solvent.141 

The reaction rate for 144 measured in the same solvent was also faster than that for 143. 

This difference was said to be due to additional shielding effects of one side of the 

peroxide bond in 144. The measurement of the entropy of activation also helped 

determine the mechanism for the reaction. The entropy of activation ∆S‡ was measured 

to be between -3.0 to 30.2 cal mol-1 K-1 for 1,2,4-trioxanes 141-144 in methanol (Table 

2). For a concerted pericyclic process in which bond breaking in the transition state is 

partly compensated by bond making, the experimentally measured ∆S‡ would be 

expected to be heavily negative. This therefore supports the step-wise homolytic 

cleavage of the peroxide bond.142  

 

 
 

1,2,4-Trioxane ∆H‡/ kcal mol-1 ∆S‡/ cal mol-1 K-1 ∆G‡/ kcal mol-1 

141 28.2 ± 0.7 -3.0 ± 1.3 28.9 ± 0.7 

142 29.0 ± 0.9 0.4 ± 2.1 30.9 ± 0.9 

143 20.2 ± 0.6 0.1 ± 1.6 20.2 ± 0.6 

144 39.6 ± 0.6 30.2 ± 1.6 28.8 ± 0.7 

Table 2: Kinetic information for thermolysis of 1,2,4-trioxanes 141-144 in methanol  
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Synthetic routes to dispiro-1,2,4-trioxanes 

 

A retrosynthetic analysis of the 1,2,4-trioxane structure would suggest a few routes to 

synthesise the 1,2,4-trioxane ring (Scheme 39). 
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Scheme 39 

 

It is apparent from the retrosynthetic analysis that the production of the β-hydroxy 

hydroperoxide 145 is a key intermediate in the synthesis of 1,2,4-trioxanes. There are 

two possible strategies for the production of the β-hydroxy hydroperoxide:  

 

(i) Epoxide ring opening with anhydrous hydrogen peroxide (route A) 

(ii) Addition of singlet molecular oxygen to an allylic alcohol (route B) 

 

Due to the dispiro- nature of the desired 1,2,4-trioxane derivatives, route A starting 

from a cyclic ketone has been preferred. Acid-catalysed condensation of another ketone 

into the β-hydroxy hydroperoxide then produces the 1,2,4-trioxane (Scheme 40). 
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Scheme 40 

 

The synthesis of dispiro-1,2,4-trioxanes 

 

It was proposed to synthesise a family of methoxy- or ethoxy- substituted dispiro-1,2,4-

trioxanes 149 using a 3-step route from 146a,b as outlined in Scheme 41. Thus the 

reaction of cyclohexanones with dimethyloxosulfonium methylide (151) forms epoxide 

147a,b. Subsequent acid- or MoO2(acac)2-catalysed ring opening of epoxide 147a,b in 

the presence of excess hydrogen peroxide gave a β-hydroxy hydroperoxides 148a,b. 

The dispiro-1,2,4-trioxanes 149 were obtained via acid-catalysed condensations of β-

hydroxy hydroperoxides 148 with the appropriate cyclic ketone.  
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Scheme 41 
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Preparation of Epoxides 

 

The required epoxides were readily prepared from the reaction of the cyclohexanones 

146a,b with the stabilized sulfur ylide, dimethyloxosulfonium methylide (151) which 

was conveniently generated in situ by the sodium hydride-mediated deprotonation (in 

DMSO) of the sulfoxonium salt 150 (Scheme 42). 143,144  
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O I
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151146

 
Scheme 42 

 

In previous syntheses of 147a it was noted that heating of the reaction mixture after 

addition of the ketone caused epoxide-ring opening and low yields of product were 

obtained.145 When the reaction was carried out at room temperature, the yields of 147a 

improved significantly, usually in the range 60-90%. The revised procedure was also 

used in the synthesis of 147b giving around 65% yields. The epoxides 147a,b were 

isolated from the crude mixture by distillation under reduced pressure. Careful removal 

of DMSO during the reaction work-up was required to avoid contamination of the 

distilled product.  

 

 
Scheme 43 
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Unlike epoxide 147c,146 epoxides 147a,b were obtained as a mixture of 

diastereoisomers (147aa,ab, ratio= 60:40), (147ba,bb, ratio= 70:30) (Scheme 43). Both 

diastereoisomers were observed by 13C NMR spectroscopic analysis of the product. The 
13C NMR spectrum of 147aa,ab and 147ba,bb showed 16 and 18 signals representing 

two peaks for each carbon atom (Figure 1a,b). Analysis of epoxide 147a by 1H NMR 

spectroscopy clearly showed two methyl signals at δ3.30 and δ3.35 for both the 

diastereoisomers (Figure 2a). Additionally, four doublets with coupling constants of 5.0 

Hz (major) and 5.1 Hz (minor) where present at δ2.47, δ2.53, δ2.61 and δ2.83 consistent 

with the CH2 group of the epoxide. By analysis of the integrations and COSY 1H NMR 

spectroscopy, the peaks for the major isomer 147aa were at δ2.47 and δ2.61 whilst 

those of the minor diastereoisomer 147ab were positioned at δ2.53 and δ2.83. The 

signal at δ2.61 was further split into a doublet of doublets by a long range 4J coupling 

with the CH group (Figure 2a). NOESY 1H NMR spectroscopy showed two further 

long range interactions in the major diastereoisomer. Similar analysis of the minor 

diastereoisomer showed that only one of these interactions was present. 

 

 
 

Although analysis of the ethoxy substituted epoxide was more difficult due to further 

overlapping signals, two triplets for the ethoxy methyl at 1.12 ppm and 1.15 ppm for 

147ba,bb are seen. Additionally, the same pattern of signals was seen for the epoxide 

CH2 group confirming the same major diastereoisomer was formed (Figure 2b). The 

conformation of the major diastereoisomer isomer is consistent with the delivery of the 

methylene group by the sulfur ylide to the equatorial position of the epoxide,143 

however, the formation of both diastereoisomers of 147a,b proves that the 

dimethyloxosulfonium methylide is not particularly facially selective.  
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 Figure 1a: 13C NMR spectra for mixture of epoxides 147aa, 147ab 
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Figure 1b: 13C NMR spectra for mixture of epoxides 147ba, 147bb 
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Figure 2a: 1H NMR spectra for mixture of epoxides 147aa, 147ab 
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Figure 2b: 1H NMR spectra for mixture of epoxides 147ba, 147bb 
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Synthesis of β-hydroxyhydroperoxides by perhydrolysis of epoxides 

 

As outlined in Scheme 39, the β-hydroxyhydroperoxides required in this study were 

most conveniently made by the perhydrolysis of the epoxide 147. In previous syntheses 

of β-hydroxyhydroperoxides, it was noted that anhydrous conditions and a five-fold 

excess of hydrogen peroxide were the optimum reaction conditions and prevented the 

formation of a diols like 152 (Scheme 44).146 Commercially available 60% v/v hydrogen 

peroxide was dried using a combination of calcium chloride and phosphorus pentoxide 

in dry ether at -78°C and the resultant anhydrous hydrogen peroxide solution was used 

immediately.147 Since the reaction of phosphorus pentoxide with water is exothermic, 

external cooling was required to prevent the possible decomposition of the hydrogen 

peroxide. Alternative drying methods for hydrogen peroxide using magnesium sulfate 

as the dehydrating agent at 0°C have also been reported.78  
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Scheme 44 

 

Although sulfuric acid has been successfully used to catalyse the ring opening of 

epoxides, the reaction of epoxide 147a produced only low yields of β-hydroxy 

hydroperoxide 148a. Isolation of the product after 45 minutes and 2 hours showed no 

significant increase in the yield of 148a. Although analysis of the crude reaction 

mixture by thin layer chromatography (tlc) showed unreacted starting material, it was 

assumed therefore that the reaction would not proceed any further. The reaction was 

stopped to avoid potential decomposition of the product in acidic conditions. The 1H 

NMR spectrum of the isolated β-hydroxy hydroperoxide 148a contained a single 

methoxy signal at δ3.35 indicating it had been formed as a single diastereoisomer. 
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It is well known that epoxide ring opening in acidic conditions occurs via an SN2-type 

mechanism where attack of the nucleophile takes place at the most hindered carbon 

centre.71 By way of explanation, it has been suggested that the attack of hydrogen 

peroxide on the epoxide ring is restricted by steric interactions with axial hydrogen 

interactions as indicated (Scheme 45). Epoxide 147ab is not set up favourably for an 

SN2 reaction. With the oxygen of the epoxide positioned equatorial, attack of the 

hydrogen peroxide by its preferred linear approach is hindered by axial hydrogens.  

Epoxide 147aa is better set up for an SN2 reaction. With the oxygen of the epoxide 

positioned axial the attack of the hydrogen peroxide is less sterically hindered. 
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Scheme 45 

 

As an alternative to the use of sulfuric acid, it has been reported that the complex 

MoO2(acac)2 can catalyse the perhydrolysis of unsubstituted spiro-epoxides giving the 

β-hydroxy hydroperoxide in good yields.78 In an attempt to increase the yield of β-

hydroxyhydroperoxide 148a, MoO2(acac)2 was used as a catalyst in the perhydrolysis of 

epoxide 147a.  MoO2(acac)2 catalyst was used at the 5 mol% level with extended 

reaction times of 16-18 hours. Similar to the acid-catalysed epoxide ring opening, the 

reaction involves the use of a five-fold excess of hydrogen peroxide. By this method, 

three products were formed from epoxide 147a at Rf 0.80, 0.46, and 0.40 on tlc analysis. 

 

Each of the components was separated using column chromatography on silica gel. The 

component at Rf 0.80 was collected by elution with 1:1 ethyl acetate: light petroleum. 

Since this component had a similar Rf to epoxide 147a it was initially thought to 

correspond to unchanged starting material, however, the component gave a positive 

result in a peroxide test (produced a pink spot on treatment with a peroxide detector 

spray).148 The 1H NMR spectrum showed additional prominent signals at δ1.60, δ2.48 
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and δ8.90 which corresponded to an additional product. On removal of solvent, the 

resulting oil partially crystallised as colourless plates on prolonged storage at 0°C. A 

suitable crystal was picked out and subjected to X-ray crystallographic analysis which 

revealed surprisingly that the solid was the bis-hydroperoxy peroxide 153 (Figure 3). 

The synthesis of bis-hydroperoxy peroxide 153 had already been reported by the acid-

catalysed reaction between acetylacetone and hydrogen peroxide.149  

 

 
Figure 3: X-ray crystal structure of 153 (Ortep, 50% probability ellipsoids for non hydrogen atoms)150 

 

The additional signals in the 1H NMR spectrum can now be attributed to a CH3 group at 

δ1.60, a CH2 at δ2.48 and  hydroperoxy hydrogen at δ8.90 in bis-hydroperoxy peroxide 

153. This suggests that an acac ligand from the Mo catalyst must have been displaced at 

some point during the reaction. Bis-hydroperoxy peroxide 153 would then have been 

formed through reaction with three molecules of hydrogen peroxide. The structure of 

153 shows C2 symmetry and confirms the trans-relationship between the hydroperoxy 

groups. Due to the unstable nature of the bis-hydroperoxy peroxide 153, the sample was 

immediately destroyed after isolation.  

 

Further elution of the column with 1:1 ethyl acetate: light petroleum yielded the 

component at Rf 0.46. Complete separation of the components at Rf 0.46 and 0.40 was 

not always possible. Mixed fractions of both components could be resolved by further 

column chromatography. The component at Rf 0.46 gave a positive result from a 

peroxide test and was at first thought to be the alternative diastereoisomer of 148a. 

Although the 1H and 13C NMR spectra showed all the signals associated with β-hydroxy 

hydroperoxide 148a, the chemical shifts were significantly different to those observed 

for 148a. In particular, large differences in the chemical shifts of the quaternary carbon 

O O
HOO

OOH

153
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and the -CH2O- group suggested that they were in completely different chemical 

environments from the corresponding positions on 148a. Detailed analysis of the 1H and 
13C NMR spectra indicates that the regioisomer 154a has been formed in 8% yield from 

the epoxide 147a instead of the other diastereoisomers of 148a. 

 

 
 

Further elution with 1:1 ethyl acetate: light petroleum yielded the component at Rf 0.40. 

The component gave a positive result in a peroxide test and came at the same Rf as the 

β-hydroxy hydroperoxide 148a synthesised using sulfuric acid catalysis. On removal of 

solvent and isolation of the product, spectroscopic analysis confirmed the formation of 

β-hydroxy hydroperoxide 148a in 34% yield. As previously observed with sulfuric acid-

catalysed epoxide ring opening, the β-hydroxy hydroperoxide 148a was obtained as a 

single diastereoisomer. The reaction yield was possibly higher because of the 

appearance of an additional band ca. Rf= 0.20 which was probably diol from the 

decomposition of 148a and 154a during the reaction work-up and purification. 

 

On monitoring the Mo-catalysed perhydrolysis reaction by tlc, it was found that both 

isomers are formed simultaneously after ca. one hour. Although it has been expected 

that MoO2(acac)2 was acting as a Lewis acid promoting regioselective attack at the most 

hindered carbon centre, the synthesis of 154a indicates that the epoxide ring has also 

been opened at the least hindered carbon centre. This had never been observed with 

perhydrolysis reactions catalysed by H2SO4. 

 

This alternative acid-catalysed epoxide ring opening is not without further examples. 

The unsubstituted epoxide 147d reacted in deuterated chloroform, which is known to 

contain small quantities of deuterated hydrochloric acid, over a long period to form 

large clear glass-like crystals (Scheme 46).  A suitable crystal was picked out and 

subjected to X-ray crystallographic analysis which revealed that the solid was 

halohydrin 155 (Figure 4). The X-ray crystal structure confirmed that chloride had 

opened the ring at the least hindered position and mass spectrometry confirms the 

presence of deuterium and chlorine in the molecule. 
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Scheme 46 

 

Figure 4: X-ray crystal structure of 155 (Ortep, 50% probability ellipsoids for non hydrogen atoms)150 

 

 

To try to further understand the reasons for the formation of the unexpected products 

154a and 153, the reaction of epoxides 147b,c,d with excess hydrogen peroxide in the 

presence of MoO2(acac)2 was further investigated. The reaction of epoxide 147b forms 

three products at Rf 0.80, 0.55, and 0.50 on tlc. Each of the components was separated 

using column chromatography on silica gel. The component at Rf 0.8 gave a positive 

peroxide test and when collected by elution with 1:1 ethyl acetate: light petroleum was 

again shown to be bis-hydroperoxy peroxide 153. 

 

Further elution of the column with 1:1 ethyl acetate: light petroleum yielded the 

components at Rf 0.55 and 0.50 as a mixture. Although further purification by column 

chromatography was attempted, the mixture proved to be inseparable. On removal of 

solvent and isolation of the product the 1H and 13C NMR spectra showed significant 

evidence for the formation of both 148b and 154b. Although the spectroscopic data was 

difficult to interpret due to a number of overlapping signals, signals indicative of both 

compounds, in particular for the -CH2OH group, were evident in the spectrum. 

 

The Mo-catalysed perhydrolysis of epoxides 147c and 147d produced one major 

component at Rf 0.40 and 0.42 respectively by tlc analysis. There was no indication of 
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the formation of either the bis-hydroperoxy peroxide 153 or the alternative regioisomer 

154 in either case. These components were purified using column chromatography on 

silica gel eluting with 1:1 ethyl acetate: light petroleum. On removal of the solvent, 

spectroscopic analysis confirmed the formation of the known β-hydroxy hydroperoxides 

148c and 148d in 85% and 73% yield respectively. The ring openings of the epoxides 

147a-d all produce high yields of the corresponding β-hydroxy hydroperoxide 148a-d 

in the presence of MoO2(acac)2 catalyst.  The replacement of the sulfuric acid catalyst 

with MoO2(acac)2 gives a considerable increase in the yield of β-hydroxy 

hydroperoxide 147a and 147c (Table 3). 

 

 Catalyst 148/ % 154/ % 

147a 
H2SO4 8 0 

MoO2(acac)2 34 9 

147b MoO2(acac)2 Inseparable mixture# 

147c 
H2SO4 47146 - 

MoO2(acac)2 85 - 

147d 
H2SO4 64145 - 

MoO2(acac)2 73 - 

Table 3: Yields for perhydrolysis reaction using acid and MoO2(acac)2 catalyst 

# 33.2 % yield for 147b and 154b. Doublet at δ4.39, J= 14.1 is indicative of 154b 

 

As well as a large increase in yield of β-hydroxy hydroperoxide 148c from epoxide 

147c, the β-hydroxy hydroperoxide 148c product was also cleaner. In previous 

syntheses of β-hydroxy hydroperoxide 148c, using sulfuric acid-catalysed epoxide ring 

opening, the product was isolated as an oil, whereas using MoO2(acac)2 catalyst and the 

same method of purification β-hydroxy hydroperoxide 148c was isolated as a colourless 

low melting solid (m.p. 48 °C). Recrystallisation of 148c from diethyl ether/ light 

petroleum gave large, plate-shaped, colourless crystals suitable for X-ray 

crystallographic analysis.  

 

X-ray crystallographic analysis confirmed that the solid was 148c and interestingly the 

orientation of both the methyl group and the peroxide oxygens were trans-diaxial with 

the hydroxyl methyl group in a equatorial position (Figure 5).  
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Figure 5: X-ray crystal structure of 148c (Ortep, 50% probability ellipsoids for non hydrogen atoms)150 

 

From the structure of 148c, the stereochemistry of the epoxide 147c, which has reacted 

to form β-hydroxy hydroperoxide 148c, can be definitively assigned as epoxide 147ca. 

(Scheme 47). Nucleophilic attack of hydrogen peroxide on 147ca would be more 

favourable due to the axial leaving group and the axial hydrogens in 147cb causing 

steric hindrance. The β-hydroxy hydroperoxide from this preferred reaction must 

perform a ring inversion moving the methyl and hydroperoxy groups into axial 

positions in the solid state. 

 

 

 
Scheme 47 
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The compound has also crystallised in the uncommon space group of P3(2). This is a 

three-fold screw axis in which groups of three molecules are held together by a tight 

network of hydrogen bonding interactions. Each molecule is hydrogen bonded to four 

other molecules via two short interactions and one long interaction.   

 

 
Figure 6: Crystal packing of 148c indicating three different H-bonds 

 

The two short interactions are between OH···OH of 1.972 Å (O···O= 2.769(5) Å) and 

OOH···OH of 2.021 Å (O···O= 2.759(5) Å) and the long interaction is between 

HOO···HO of 2.731 Å (O···O= 3.063(10) Å) (Figure 6). Interestingly the methyl 

substituent is situated at the furthest point away from any of the hydrogen bonding 

network. Looking down the c-axis of the crystal structure at the mosaic pattern of 

hydrogen bonds demonstrates how the molecules have packed maximising all possible 

intermolecular interactions allowing the solid structure (Figure 7).  
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Figure 7: Crystal packing of 148c looking down the middle of 3-fold screw axis 

showing H-bond network 

 

It is interesting to note that in the crystal structure of the trisubstituted perhydrate 156, 

derived from α-bromocyclohexanone (157) and hydrogen peroxide, the molecule adopts 

a conformation with one axial group and two equatorial groups (Scheme 48).151 This is 

expected in order to give the fewest possible axial substituents. It may be that the 

hydrogen bond network in 140c overcomes any disadvantages in having two axial 

substituents and one equatorial.   

 

 

 
Scheme 48 
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From the nature of the products obtained from the Mo-catalysed perhydrolysis of 

epoxides 147a-d, it is clear that different mechanisms are operating. For epoxides 

147c,d, the Mo-catalyst is behaving in a similar manner to the sulfuric acid and 

promoting the highly regioselective formation of the corresponding β-hydroxy 

hydroperoxides 148c,d; the other regioisomers 154c,d have not been observed or 

isolated in sufficient quantities. The formation of regioisomer 154a,b together with the 

bis-hydroperoxy peroxide 153 in the reaction of 147a,b suggests that the oxygen from 

the alkoxy substituent plays a vital role in the perhydrolysis leading to 154a,b (Scheme 

49). 

 
Scheme 49 

 

Since the bis-hydroperoxy peroxide 153 is obviously derived from acetylacetone, the 

oxygen substituent may be responsible for the displacement of one of the acac ligands 

from the Mo catalyst. Assuming that the acac group is cleaved from the catalyst in the 

active species, one possible explanation is that the epoxide acts as a bidentate ligand by 

displacing one of the acac ligands 158 (Scheme 50). This species may then be more 

susceptible to nucleophilic attack at the least hindered centre. It is not possible at this 

stage to distinguish which of the diastereoisomers of epoxide 147a,b react to form each 

of the β-hydroxy hydroperoxide regioisomers 148a,b and 154a,b. X-Ray 

crystallographic analysis of corresponding dispiro-1,2,4-trioxanes will resolve this 

question (vide infra) . 

 

 
Scheme 50 
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NMR analysis of β-hydroxy hydroperoxides 148a,b and 154a,b 

 

Previous 1H NMR analysis of β-hydroxy hydroperoxides 148c,d showed that the most 

distinguishable signals in the spectrum are for the diastereotopic hydroxymethyl group 

which gives two doublets at ca. δ3.5. It was found that the regeoisomeric β-hydroxy 

hydroperoxides 148a and 154a show enough significant differences in their respective 
1H and 13C NMR spectra to unambiguously assign which regioisomer has been formed 

(Table 4). The 1H NMR spectrum of β-hydroxy hydroperoxide 148a has two sets of 

doublets at δ3.75 and δ3.95 with a 2J coupling constant of 12.0 Hz and a carbon signal 

at δ63.0 in the 13C NMR spectrum for the diasterotopic hydroxymethyl group (Figure 

8). In contrast, the 1H NMR spectrum of  β-hydroxy hydroperoxide 154a has a set of 

two doublets much wider apart, further down-field and a larger 2J value than that seen in 

148a. The 1H NMR signals at δ3.95 and δ4.45 with 2J 14.0 Hz and a 13C NMR signal at 

δ80.0 show that the peroxide group is more highly de-shielding than a hydroxide group 

(Figure 9). This effect on the chemical shifts in the 1H and 13C NMR spectrum for a 

hydroxide versus peroxide is documented in the literature.152  

 

  CH2OOH/ δ qC/ δ CH/ δ CH3/ δ 

O OH

OH

OMe

H
H

148a  

1H 
3.75, d, J 12.0 

- 3.45, m 3.35, s 
3.95, d, J 12.0 

13C 63.0 84.4 80.1 57.1 

OMe

OH

O

OH

H
H

154a  

1H 
3.95, d, J 14.0 

- 3.20, m 3.45, s 
4.45, d, J 14.0 

13C 80.0 74.4 84.9 57.7 

Table 4: δ values (ppm) and coupling constants (J) for 1H and 13C NMR data of 148a, and 154a 

 

There were similar changes evident for other sections of the molecule by 1H and 13C 

NMR spectral analysis. Of particular interest is the quaternary carbon shifting up-field 

from δ84.7 in 148a to δ74.4 in 154a. This further highlights the effective difference of a 

hydroxy to a peroxy substituent. Other smaller differences show a slight downfield shift 

from δ80.1 in 148a to δ84.9 in 154a for the CH group. This is matched in the 1H NMR 

spectrum where the CH multiplet moves upfield from δ3.45 in 148a to δ3.20. The 

signals for the OCH3 group show no change in the chemical shift in the 13C NMR 

spectrum however there is a slight downfield shift in the 1H spectrum from δ3.35ppm in 
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148a to δ3.45 in 154b. Similar but less apparent effects were seen for the mixture of 

regioisomers 148b and 154b. Since β-hydroxy hydroperoxides 148b and 154b could not 

be separated efficiently by conventional column chromatography, definitive 1H and 13C 

NMR spectra were not obtained for the compounds. However the 1H NMR spectrum of 

the mixture, an additional doublet at δ4.4, 2J 14.1, indicated the presence of 154b 

(Figure 10). In general, the mixture was reacted further without purification. 

 

 

 

3.153.203.253.303.353.403.453.503.553.603.653.703.753.803.853.903.95
(ppm)  

Figure 8: 1H NMR spectra for 148aa 

O OH

OH

O

H
H

CH3
H

148aa
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3.153.253.353.453.553.653.753.853.954.054.154.254.354.45
(ppm)  

Figure 9: 1H NMR spectra for 154a 

 

 

 

2.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.6
(ppm)                                  

Figure 10: 1H NMR spectra for 148ba, 154b 
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Dispiro-1,2,4-trioxane synthesis 

 

The final step in the synthesis of dispiro-1,2,4-trioxanes is the condensation of an 

appropriate cyclic ketone into β-hydroxy hydroperoxides 148a,b. The availability of β-

hydroxy hydroperoxides 154a,b also provided the opportunity to form structurally novel 

dispiro-1,2,4-trioxanes 160a,b via the same route (Scheme 51).  

 

 
Scheme 51 

 

The condensation reaction takes place with the addition of the relevant cyclic ketone 

(1.5 eq.) to a cooled solution (-5 °C) of the β-hydroxy hydroperoxide in dry 

dichloromethane (DCM). The reaction is catalysed by tosic acid and left to stir for 18-

20 hours at room temperature. The reaction was monitored by tlc by the disappearance 

of the low Rf β-hydroxy hydroperoxide fraction on with the simultaneous appearance of 

a new spot at higher Rf. 

 

Condensation of cyclic ketones with β-hydroxy hydroperoxides 140a and 145a 

 

Although β-hydroxy hydroperoxide 148a and 154a could be separated as described 

above, it was often convenient to carry out the condensation reaction using the mixture. 

From the condensation reaction with cyclohexanone, two components were obtained 

with Rf 0.30 and 0.25 by tlc analysis which were both peroxidic.  Although the 

components at Rf 0.30 and 0.25 are close together by tlc analysis, each of the 

components was separated readily using column chromatography eluting with 1:25 

ethyl acetate: light petroleum. Fractions corresponding to component at Rf 0.30 were 

collected as a viscous oil. Upon storage at 0°C, the collected oil formed a low melting 

point solid. The melting point was thought to be around room temperature because it 



Chapter One                                                                                Results and Discussion 
 

 57

melted on prolonged exposure to ambient temperatures. The position of the –CH2O- 

signal in the 1H NMR spectrum was similar to that seen for β-hydroxy hydroperoxide 

154a indicating the product was derived from this regioisomer. The solid was 

recrystallised from ethanol to form crystals suitable for X-ray crystallography. Careful 

handling of the crystals was required in order to prevent the melting of the crystals 

during transportation and before being positioned in the cooled (160 K) N2 gas stream 

of the X-ray diffractometer. Following data collection and refinement X-ray 

crystallographic analysis of the crystals revealed the formation of dispiro-1,2,4-trioxane 

160aa as illustrated in Figure 11. To our knowledge this is this first reported trioxane of 

this type. It is clear that this particular dispiro-1,2,4-trioxane is derived from β-hydroxy 

hydroperoxide 154a rather than 148a. The overall yield of 160aa was 4.4% from 

epoxide 147a. 

 

 
Figure 11: X-ray crystal structure of 160aa (Ortep, 50% probability 

ellipsoids for non hydrogen atoms)150 

 

After removal of solvent from the fractions corresponding to Rf 0.25 the component was 

obtained as an oil. The position of the –CH2O- signal in the 1H NMR spectrum was 

similar to that seen for β-hydroxy hydroperoxide 148a indicating the product was 

derived from this regioisomer. Detailed analysis of the 1H and 13C NMR spectra showed 

that dispiro-1,2,4-trioxane 149aa had been obtained. The overall yield was 9.4% from 

the epoxide 147a. 
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Similarly the condensation of cyclopentanone with the mixture of β-hydroxy 

hydroperoxide 148a and 154a resulted in two peroxide containing components at Rf 

0.30 and 0.25 respectively by tlc. Each of the components was separated readily using 

column chromatography on silica gel eluting with 1:25 ethyl acetate: light petroleum. 

Following the removal of solvent the fraction at Rf 0.30 was isolated as an oil. Upon 

storage at 0°C the collected oil formed a low melting point solid. The solid was 

recrystallised using ethanol to form crystals suitable for X-ray crystallography. X-ray 

crystallographic analysis of the crystals revealed the formation of dispiro-1,2,4-trioxane 

160ab as illustrated in Figure 12. The overall yield of 160ab was 7.1% from epoxide 

147a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: X-ray crystal structure of 160ab (Ortep, 50% probability  

ellipsoids for non hydrogen atoms)150  

 

The fractions corresponding to the component at Rf 0.25 were collected and upon 

removal of the solvent gave an oil. Detailed analysis of the 1H and 13C NMR spectra 

was consistent with the formation of dispiro-1,2,4-trioxane 149ab (10.5% yield from 

the epoxide 147a). 

 

The reaction of cycloheptanone with the mixture of β-hydroxy hydroperoxide 148a and 

154a resulted in the formation of only one component with Rf 0.30 by tlc. The 

component purified using column chromatography on silica gel eluting with 1:25 ethyl 
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acetate: light petroleum and isolated as an oil. Detailed analysis of the 1H and 13C NMR 

spectra indicates that dispiro-1,2,4-trioxane 149ac has been formed (7.4% yield form 

the epoxide 147a). No isolatable quantities of product derived from the reaction of 

regioisomer 154a were obtained.  

 

Subsequent attempts to condense ring sizes greater than six into pure samples of β-

hydroxy hydroperoxides 154a,b yielded none of the expected dispiro-1,2,4-trioxane 

160ac. Previous work had reported difficulties in condensing cyclooctanone into β-

hydroxy hydroperoxides.146 

 

Further condensation to form methoxy-substituted dispiro-1,2,4-trioxanes involved β-

hydroxy hydroperoxides which had been separated into regioisomers 148a and 154a. 

Using the same method described above, cyclododecanone was successfully condensed 

with β-hydroxy hydroperoxide 148a to produce dispiro-1,2,4-trioxane 149ad in 7.3% 

overall yield from the epoxide.  

 

Unfortunately attempts to purify dispiro-1,2,4-trioxane 149ag following the 

condensation of a 2-indanone into the β-hydroxy hydroperoxide 148a were 

unsuccessful. Although the expected signals for the dispiro-1,2,4-trioxane were present, 

extra signals in the 13C NMR spectra demonstrated that it was impure. As purification of 

149ag was unsuccessful, the dispiro-1,2,4-trioxane was reacted further without 

characterisation. 

 

In early condensation reactions, other products had also been isolated from the reaction 

of cyclohexanone, cyclopentanone and cycloheptanone with a mixture of β-hydroxy 

hydroperoxide 148a and 154a. From the condensation of cyclohexanone with 148a and 

154b an additional low lying intense component was present at Rf 0.15 by tlc. The 

fractions corresponding to the component at Rf 0.15 were combined and upon removal 

of solvent were collected as a colourless semi-solid. Trituration of this semi-solid using 

light petroleum formed large crystals. A suitable crystal was picked out and subjected to 

X-ray crystallographic analysis which revealed surprisingly that the solid was bis 

hydroperoxy peroxide 161 (Figure 13). The X-ray crystal structure of 161 had 

previously been reported by P. Groth et. al. using less accurate photographic collection 

methods.153 The new X-ray crystal structure shows some differences in intramolecular 

and intermolecular hydrogen bonds involving the peroxy groups. 
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Figure 13: X-ray crystal structure of 161 (Ortep, 50% probability ellipsoids for non hydrogen atoms)150 

 

The synthesis of 161 indicates that hydrogen peroxide has been collected alongside the 

β-hydroxy hydroperoxide in the isolation of 148a. The residual hydrogen peroxide has 

reacted with an excess of cyclohexanone to form 161. Similar products were also 

formed through the condensation of the contaminated β-hydroxy hydroperoxide 148a 

and 154a mixture with cyclopentanone and cycloheptanone. These products were again 

titrated with light petroleum to give crystals suitable for X-ray crystallography. Similar 

to the structure of 161 the product derived from cyclopentanone was shown to be bis 

hydroperoxy peroxide 162 (Figure 14) whilst the product derived from cycloheptanone 

was shown to be dispiro-1,2,4,5-tetroxane 163 (Figure 15). The crystal structure of 163 

had previously been determined by P. Groth et. al. using photographic collection 

methods.154 

 

 

 

 

 

 

 

 

 

 

Figure 14: X-ray crystal structure of 162 (Ortep, 50% probability ellipsoids for non hydrogen atoms)150 
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Figure 15: X-ray crystal structure of 163 (Ortep, 50% probability ellipsoids for non hydrogen atoms)150 

 

More care was taken in future isolation of the β-hydroxy hydroperoxides with more 

extensive washing of the product to remove any unreacted hydrogen peroxide. Future 

condensation using non-contaminated β-hydroxy hydroperoxides 148a and 148b gave 

no isolable quantities of compounds like 161-163. 

 

Condensation of cyclic ketones with β-hydroxy hydroperoxides 148b and 154b 

 

Since β-hydroxy hydroperoxides 148b, 154b could not be readily separated the 

condensation reactions were carried out using a mixture. Thus the β-hydroxy 

hydroperoxide 148b, 154b were reacted by acid-catalysed condensation using a series 

of cyclic ketones which formed dispiro-1,2,4-trioxanes which were more readily 

separable. The condensation of cyclohexanone with β-hydroxy hydroperoxides 148b, 

154b formed two peroxidic components which were very close together by tlc analysis 

with Rf 0.30 and 0.27. Although attempts to separate the components using column 

chromatography on silica gel were at first unsuccessful, successive band shaving of the 

fractions provided a pure samples of dispiro-1,2,4-trioxane 149ba (Rf 0.27) in 7.9% 

yield from the epoxide 147b. Similarly isolation of the fraction at Rf 0.30 isolated a 

product in 4.3% yield from epoxide 147b. Detailed NMR analysis of this fraction 

indicated that dispiro-1,2,4-trioxane 160ba was contaminated by small amounts of 

dispiro-1,2,4-trioxane 148ba. Repeated column chromatography did not significantly 

improve the purity of this trioxane.  

 

Although separation of regioisomers 149ba and 160ba was not completely successful, 

the regioisomers from the condensation of cyclopentanone and β-hydroxy 
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hydroperoxides 148b and 154b were readily separated. Thus by careful combination of 

appropriate column fractions, pure samples of both regioisomers 149bb (Rf 0.30) and 

160bb (Rf 0.35) were obtained as oils in 13.4% and 1.0 % yields from their 

corresponding epoxides.  

 

The acid-catalysed reaction of cycloheptanone with the mixture of β-hydroxy 

hydroperoxides 148b and 154b resulted in the formation of only one component at Rf 

0.30 by tlc. The component at Rf 0.30 was collected by elution with 1:50 ethyl acetate: 

light petroleum initially as an oil in 9.8% yield from epoxide 147a. Trituration of the oil 

using light petroleum afforded crystals of the product which were suitable for X-Ray 

crystallography. X-Ray crystallographic analysis confirmed that the structure of the 

solid product was the expected dispiro-1,2,4-trioxane 149bc rather than the regioisomer 

160bc (Figure 16). 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: X-ray crystal structure of 149bc (Ortep, 50% probability 

ellipsoids for non hydrogen atoms)150 

 

Since no isolatable quantities of dispiro-1,2,4-trioxane 160bc, derived from the reaction 

of regioisomer 154b with cycloheptanone, were obtained, this reinforced the conclusion 

that cyclic rings with ring sizes greater than six are incapable of reacting with β-

hydroxy hydroperoxide 154a,b. 

 

Using the same method described above, cyclododecanone was successfully condensed 

with β-hydroxy hydroperoxide 148b to produce dispiro-1,2,4-trioxane 149ad in 2.9% 

yield from the epoxide 147a.  
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In contrast to the reaction of β-hydroxy hydroperoxide 148a with 2-indanone which 

gave an impure product, the condensation of 2-indanone with 148b formed the dispiro-

1,2,4-trioxane 149bg cleanly in 1.7% yield from epoxide 147a. Although dispiro-1,2,4-

trioxane 149bg was initially isolated as an oil, trituration with light petroleum gave the 

dispiro-1,2,4-trioxane 149bg as a crystalline solid. Crystals suitable for X-ray 

crystallographic analysis were grown using a diethyl ether: light petroleum mixture. X-

Ray crystallographic analysis confirmed the formation of the expected dispiro-1,2,4-

trioxane 149bg as illustrated in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: X-ray crystal structure of 149bg (Ortep, 50% probability 

ellipsoids for non hydrogen atoms)150 

 

Condensation of cyclohexane-1,4-dione with β-hydroxy hydroperoxide 140a,b and 

145a,b 

 

The dispiro-1,2,4-trioxane 149af,bf derived from the condensation of cyclohexane-1,4-

dione with β-hydroxy hydroperoxide 148a,b was a further synthetic target. The 

additional functionality provides the opportunity to synthesise a more fuctionalised keto 

lactone from the thermolysis of dispiro-1,2,4-trioxane 149af,bf. Despite previous 

successful condensation reactions of cyclohexane-1,4-dione with β-hydroxy 

hydroperoxide 148c,145 the corresponding reactions with β-hydroxy hydroperoxides 

148a,b and 154a,b did not produce the desired dispiro-1,2,4-trioxane. As an alternative 
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approach, the condensation of β-hydroxy hydroperoxides 148a,b and 154a,b with the 

protected derivative 1,4-dioxaspiro[4,5]decan-8-one (164) followed by an acid-

catalysed hydrolysis in acetone was investigated (Scheme 52). 
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Scheme 52 

 

The condensation reaction of 1,4-dioxaspiro[4,5]decan-8-one (164) with β-hydroxy 

hydroperoxide 148a successfully produced the dispiro-1,2,4-trioxane 149ae in 3.9 % 

yield from the epoxide. Since the dispiro-1,2,4-trioxane 149ae was considerably more 

polar, it required a more polar solvent system e.g. 1:5 ethyl acetate: light petroleum for 

tlc analysis and column chromatography.  

 

The condensation reaction of semi-protected diketone 164 with β-hydroxy 

hydroperoxide 154a surprisingly gave a 5:2 mixture of the protected 160ae and de-

protected 160af. In the 1H NMR spectrum of the crude product mixture, two sets of two 

sharp doublets (δ3.89 and δ4.26 160ae, δ3.97 and δ4.35 160af) were observed for the 

trioxane methylene group and in the 13C NMR spectrum, there was a carbonyl signal at 

δ210 which would correspond to the carbonyl group carbon of 160af. The formation of 

both 160ae and 160af suggests that reaction conditions used for the condensation 

reaction are favourable for the partial removal of the ketal group in 160ae. 
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The condensation reaction of semi-protected ketone 164 with β-hydroxy hydroperoxide 

regioisomers 148b and 154b formed two components at Rf 0.40 and 0.29 by tlc. Both 

components were separated using column chromatography on silica gel eluting with 1:5 

ethyl acetate: light petroleum. Following solvent removal, the component was collected 

as an oil. The 1H NMR spectrum of the oil contained two sets of two sharp doublets 

(δ3.90 and δ4.28 160be, δ3.98 and δ4.37 160bf) for the trioxane methylene and in the 
13C NMR spectrum there was seen a carbonyl signal at δ210 which would correspond to 

the formation of 160bf. This is consistent with the formation of a mixture of the dispiro-

1,2,4-trioxane regioisomers 160be and 160bf. On further elution of the column the 

component at Rf 0.29 was collected as an oil. Although 1H NMR spectroscopic analysis 

was not conclusive in the determination of the products, a carbonyl signal at δ210 in the 
13C NMR spectrum demonstrated the formation of 149be and 149bf as a mixture. 

 

The complete de-protection of the dispiro-1,2,4-trioxanes 149be and 160ae,be was 

attempted using a tosic acid-acetone mixture with continuous stirring for 24 hours. 

However following the work-up of the reaction, 149be and 160ae,be were still present 

in each of their respective reactions indicating the difficulty of the hydrolysis. Further 

treatment with tosic acid in acetone for 24 hours produced the product in most cases 

however a mixture still existed in the case of 149bf. Unfortunately the conditions used 

for the de-protection of the dispiro-1,2,4-trioxane 149ae caused the complete 

degradation of the sample. To avoid further loss of 149ae the dispiro-1,2,4-trioxane was 

reacted further without de-protecting the ketone. 

 

The yields of all the dispiro-1,2,4-trioxanes synthesised are listed in Table 5. Although 

some of the dispiro-1,2,4-trioxanes were necessarily synthesised from mixtures of β-

hydroxy hydroperoxides 148 and 154  rather than the pure β-hydroxy hydroperoxide, all 

the yields are reported from their corresponding epoxide 147a,b. Yields for both the 

methoxy- and ethoxy- substituted dispiro-1,2,4-trioxanes were generally around the 

same with a small increase seen for the ethoxy compounds. The reaction yields for 

condensations involving 148a,b are lower than previous condensations using 148c,d. 

(Table 5).75,76 Lower yields for the reaction of 148a,b may be due to steric restrictions 

associated with the alkoxy group preventing efficient condensation. None the less the 

formation of the methoxy- and ethoxy-substituted dispiro-1,2,4-trioxanes 149a,b were 

adequate for thermolysis studies. 
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        Compound                         R= OMe                         R= OEt 

 

149aa 9.4 149ba 7.9 

 

149ab 10.5 149bb 13.4 

 

149ac 7.4 149bc 9.8 

 

149ad 
2.5 

(7.3) 
149bd 2.9 

 

149ae 
3.9 

(11.7) 
149be 6.0# 

 

149af - 149bf 4.7* 

 

149ag * 149bg 1.7 

O

O

O

R

 

160aa 4.4 160ba 4.3* 

 

160ab 7.1 160bb 1.0 

 

160ac 
2.1# 

(22.4) 
160bc 1.1# 

O

O

O

O

R

 

160ad 2.0 160bd 0.7 

Table 5: Yield of dispiro-1,2,4-trioxanes from corresponding epoxide  

Number in brackets for yield directly from purified β-hydroxy hydroperoxide 

# Product mixed with deprotected impurity 

* Not fully characterised due to impurity. Reacted further with impurity where appropriate  
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Structure analysis of dispiro-1,2,4-trioxanes via X-Ray crystallography  

 

Generally dispiro-1,2,4-trioxanes are isolated as viscous oils or low melting solids. As 

reported above, a small number of dispiro-1,2,4-trioxanes derived from the 

condensation reactions of cyclic ketones and β-hydroxy hydroperoxides 148b and 154a 

have been isolated as solids which on recrystallisation gave crystals suitable for a X-ray 

crystallographic study. 

 

The solid state structures of dispiro-1,2,4-trioxanes 160aa,ab (Figure 11 and 12) 

demonstrate they are unambiguously derived from the condensation of cyclohexanone 

or cyclopentanone respectively with the β-hydroxy hydroperoxide regioisomer 154a. 

The central 1,2,4-trioxane ring in 160aa,ab is distorted significantly from the classical 

chair conformation (Figure 18). Steric interactions between the 1,3-diaxial methylene 

groups in the spiro-substituents flatten the trioxane ring out of the chair conformation 

and into a half chair. The flattening of the 1,2,4-trioxane ring allows the 1,3-diaxial 

methylene groups to move away from each other. The extent of the distortion can be 

appreciated by comparing the interatomic distance between the spiro-carbons in 

160aa,ab (ca. 2.45 Å) with that between the diaxial methylene groups (ca. 3.30 Å) 

(Figure 19). 

 

The bond lengths associated with the 1,2,4-trioxane rings in 160aa,ab are normal and 

similar to those reported previously reported (See Table 8 and references there in). The 

bond angles however deviate significantly from the tetrahedral angle of 109°. The 

O-C-C bond shows significant expansion of the angle to almost 120° whilst the O-O-C 

angle shows compression to around 103° (Table 9). 

 

 

 

 

 

 

 

 

Figure 18: 160aa and 160ab from showing distortion out of chair-like conformation.  

Hydrogens have been removed for clarity.   
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Figure 19:160aa and 160ab showing 1,3-diaxial interaction. Distances in Å. 

 Hydrogens have been removed for clarity.  

 

This would suggest these structures are very rigid and would not easily take up 

alternative conformations. The general features of the X-ray crystal structures are 

readily reproducible by DFT calculations using a B3LYP hybrid functional and 

6-31G** basis set. Optimisation of the structure gave bond lengths and angles 

comparative to the structures of 160aa,ab (Figure 20) (Tables 6 and 7). Like the 

structures of 160aa,ab the O-C-C bond shows significant expansion to ca. 120° whilst 

the O-O-C similarly shows a compression to ca. 103°. This results in the 1,2,4-trioxane 

ring being in a similar half chair conformation seen for 160aa,ab and the 1,3-diaxial 

methylene groups being ca. 3.30 Å apart. 

 

Surprisingly it was found that the acid-catalysed reaction between cycloheptanone and  

β-hydroxy hydroperoxide 154b did not give the expected trioxane 160ac. This could be 

due to one of two reasons: either there are additional steric restrictions which prevent 

the formation of 160ac, or the product has excessive intramolecular steric restrictions 

meaning the product is thermodynamically unstable. Initial computational analysis of 

dispiro-1,2,4-trioxane 160ac indicates the former of the two possibilities is more likely. 

It is therefore thought that steric restrictions in the condensation reaction prevents in 

cycloheptanone from reacting with the β–hydroxyhydroperoxide 154a.  
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      160ab 

 

 

 

 

 

 

  160aa       160ac 

Figure 20:160ac, 160aa and 160ab optimised structure using DFT calculations. 

 B3LYP hybrid functional and 6-31G** basis set 

 

Compound O1-O2 O2-C3 C3-O4 O4-C5 C5-C6 C6-O1 

160aa 1.462 1.420 1.428 1.446 1.538 1.424 

160ab 1.463 1.427 1.420 1.446 1.537 1.425 

160ac 1.463 1.420 1.435 1.446 1.538 1.424 

O

O

O

OMe
eq

eq

 

1.461 1.425 1.429 1.449 1.538 1.427 

Table 6: Bond lengths associated with optimised structures of 160aa and 160ac 

 

Compound 6-1-2 1-2-3 2-3-4 3-4-5 4-5-6 5-6-1 6123 

160aa 104.36 107.44 110.64 120.05 109.74 110.53 -75.03 

160ab 104.84 107.30 110.36 118.65 109.04 110.36 -73.30 

160ac 104.03 107.22 110.57 120.68 109.99 110.14 -76.47 

O

O

O

OMe
eq

eq

 

104.49 107.41 110.55 120.43 108.80 110.11 -74.73 

Table 7: Angles associated with optimised structures of 160aa and 160ac 
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The preferred orientation of the methoxy group in 160aa,ab is axial with respect to ring 

A with a trans-relationship (torsion angle 173.3° and 170.9° respectively) to the ether 

oxygen at the 4-position of the 1,2,4-trioxane ring. At first sight this arrangement looks 

unfavourable as the methoxy group would be expected to be equatorial in order to 

minimise 1,3-diaxial interactions. But from modelling studies it appears that the 

alternative conformation where the –OMe group and the ether oxygen are in an 

equatorial positions on ring A, obtained by a ring inversion in ring A, bring the –OMe 

hydrogens into close contact with the ether oxygen (Figure 21). Additional gauche 

interactions between the methoxy oxygen and the methylene carbon and the ether 

oxygen of the 1,2,4-trioxane ring destabilise the molecule. As the energy of this 

conformation is ca. 2.5 kcal mol-1 higher than the optimised crystal structure the gauche 

interactions must destabilise the structure more than the methoxy group being in an 

axial position. 

 
Figure 21: 160ac 

B3LYP hybrid functional and 6-31G** basis set 

 

A retrosynthetic analysis of the structures for 160aa,ab confirms that the dispiro-1,2,4-

trioxane ring must have been formed in each case from epoxide 147ab via β-hydroxy 

hydroperoxide 154ab (Scheme 53). Thus the Mo-mediated perhydrolysis occurs via the 

nucleophilic attack at the least hindered carbon-centre of the minor epoxide 147ab. In 

contrast epoxide 147c was formed as a single diastereoisomer which on Mo-mediated 

perhydrolysis gives exclusively ring opening at the most substituted carbon centre. 

Therefore this suggests that methyl-substituted 1,2,4-trioxanes of the type 160ca cannot 

be formed due to epoxide 147cb not being present.      
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Scheme 53 

 

The condensation reaction of cyclododecanone into β-hydroxy hydroperoxide 148c 

gave dispiro-1,2,4-trioxane 149cd as a colourless solid which on recrystallisation from 

ethanol gave crystal suitable for X-ray crystallography.155 X-ray crystallographic 

analysis confirmed the formation of the expected dispiro-1,2,4-trioxane 149cd as 

illustrated in Figure 22. As expected 149cd, retains the same trans-relationship between 

the methyl group and the peroxide group observed in the crystal structure of β-hydroxy 

hydroperoxide 148c (See Figure 5). Similar to the structure of the β-hydroxy 

hydroperoxide 148c, the methyl group is in the axial position. The 12-membered ring is 

in a [3333] conformation and is similar to that observed in previous X-ray 

structures.156,157 Unlike the structures of 160aa,ab, the central 1,2,4-trioxane ring adopts 

a near-classical chair conformation.  

 
 

 

 

 

 

 

 

 

 

Figure 22: X-ray crystal structure of 149cd (Ortep, 50% probability  

ellipsoids for non hydrogen atoms)150 

 

The crystal structure of dispiro-1,2,4-trioxane 149bc demonstrates very similar 

characteristics to that of 149cd (See Figure 16). The ethoxy group in 149bc lies axial 

with a trans-relationship to the peroxide group and the central 1,2,4-trioxane ring is in a 

chair-like conformation. Although the spiro-seven-membered ring has two possible low 
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lying conformations,158 which often leads to disorder in crystal structures, in this case it 

has adopted a well defined twist-chair conformation. 

 

Following data collection and structure refinement dispiro-1,2,4-trioxane 149bg was 

shown to have crystallised as two crystallographically independent molecules with both 

the R,S and S,R enantiomers present in the crystal (Figure 23). When the structures are 

overlaid on each other (one structure inverted), the major structural differences between 

the enantiomers are in the orientation of the ethoxy groups and a slight distortion of the 

indanylidene group (Figure 24). Despite the presence of the aromatic rings there is no 

π-stacking or significantly short intramolecular interactions in the crystal. The ethoxy 

group in 149bg is again situated axial and trans to the peroxide bond and the central 

1,2,4-trioxane rings are in the expected chair conformation. 

 

 

 

 

 

 

 

 

 

 

Figure 23: X-ray crystal structure of R,S and S,R enatiomers of 149bg (Ortep, 50% probability ellipsoids 

for non hydrogen atoms)150 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Overlay of R,S and S,R enatiomers of 149bg150 
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The centre 1,2,4-trioxane ring contained within the dispiro-1,2,4-trioxanes 149bc,bg 

and 149d is in a near-perfect chair conformation. This is the expected conformation of 

the 1,2,4-trioxane ring and is in contrast to the ring seen for 160aa,ab. An overlap of the 

1,2,4-trioxane rings in 149bg onto 160aa demonstrates the distortion associate with the 

position of O4. The structures shown in Figure 25 clearly illustrate the flattening of the 

ring at the O4 position. 

 

 

 

 

 

 

 

 

Figure 25: 1,2,4-trioxane ring of 141bg( Dotted line) superimposed onto 160aa (Dark line)  

 

A retrosynthetic analysis of the structures for 149bc,bg confirms that the dispiro-1,2,4-

trioxane ring must have been formed in each case from epoxide 147ba via β-hydroxy 

hydroperoxide 148ba (Scheme 54). Thus the Mo-mediated perhydrolysis occurs via the 

nucleophilic attack of the most substituted carbon-centre of the major epoxide 147ba. 

  

 
Scheme 54 

 

It is therefore apparent that the formation of regioisomers 148a,b and 154a,b occur 

from the reaction of two different diastereoisomers of epoxide 147a,b. There is no 

evidence for these reactions occurring on the opposite epoxide diastereoisomer 

indicating that the reaction of each epoxide diastereoisomer is taking place with a high 

degree of selectivity.  

 

The bond lengths around the central 1,2,4-trioxane ring of these novel dispiro-1,2,4-

trioxanes are listed in Table 8 and are compared to previously obtained crystal 

structures of 1,2,4-trioxanes and 1,2,4,5-tetroxanes. The observed O-O bond distances 

of around 1.48 Å are comparable to that previously reported for a peroxide bond 
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distance.123 The acetalic C-O bonds O2-C3 and C3-O4 lie between 1.41 Å and 1.44 Å 

with the length of O2-C3 being slightly longer in most cases. These lengths are similar 

to previously reported acetal C-O bond lengths.159 The lengths of O5-C5 and C6-O1 are 

longer than the acetal C-O bonds and are consistent with literature values for C-O bond 

lengths. 

 

The bond angles around the peroxide bond for these new dispiro-1,2,4-trioxanes are 

listed in Table 9 and are compared to previously obtained crystal structures of 1,2,4-

trioxanes and 1,2,4,5-tetroxanes. The bond angles associated with the 1,2,4-trioxane 

varied dramatically depending upon the nature of the dispiro-linkages. Where the spiro-

linkages is at positions 3 and 6 angles of around 107-108° are seen for dispiro-1,2,4-

trioxanes 149bc,bg and 149cd around the peroxide bond. Further bond angles around 

the 1,2,4-trioxane do not significantly vary from 109°. This is similar to previously 

reported structures of dispiro-1,2,4-trioxanes (165, 166 and 167) and close to the angles 

associated with 1,2,4,5-tetroxane 163. Angles of ca. 109° around the ring are indicative 

of a chair conformation. 

 

 
 

Dispiro-1,2,4-trioxanes 160aa,ab have a compressed O1-O2-C3 angle of(103.96(6)° for 

160aa and 103.37(11)° for 160ab as well as an expanded O4-C5-C6 bond angle 

(118.65(6)° for 160aa and 117.50(11)° for 160ab consistent with a flattening of one 

side of a chair conformation to give a half-chair. The magnitude of the O4-C5-C6 

angles for 160aa,ab is close to that in 1,2,4-trioxanone 119 (ca. 120°) which contains an 

sp2-centre at C5.  

 

The torsion angle C6-O1-O2-C3 for 149bc,bg and 149cd is similar in size to previously 

reported dispiro-1,2,4-trioxanes and 1,2,4,5-tetroxanes. 1,2,4-Trioxanes 160aa,ab have 

a much bigger torsion angle for C6-O1-O2-C3 closer to that in the 1,2,4-triox-5-one 119 

(Table 9).  
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The clear differences in the central 1,2,4-trioxane ring of 149bc,bg,cd and 160aa,ab  

exemplify the different conformations associated with the 1,2,4-trioxane ring. Although 

the half-chair conformation in 160aa,ab was unexpected, it is seen that 1,3-diaxial 

interactions between spiro-methylene groups seem to distort the 1,2,4-trioxane ring by 

flattening out the angles associated with O4 in the ring. The absence of the 1,3-diaxial 

interaction in 149bc,bg,cd enables the 1,2,4-trioxane ring to adopt a chair-like 

conformation with all the angles associated with the 1,2,4-trioxane ring being more 

tetrahedral-like. 

 

Ref  O1-O2 O2-C3 C3-O4 O4-C5 C5-C6 C6-O1 

 160aa 1.4709(10) 1.4240(10) 1.4232(10) 1.4423(9) 1.5222(12 1.4266(10) 

 160ab 1.4734(17) 1.4283(18) 1.4152(19) 1.4520(18) 1.518(2) 1.433(2) 

 149bc 1.47480(8) 1.4410(9) 1.4271(9) 1.4325(9) 1.5303(10) 1.4492(9) 

 149bg 1.481(3) 1.431(4) 1.410(4) 1.438(4) 1.515(4) 1.449(4) 

 149bg 1.487(3) 1.432(4) 1.409(4) 1.429(4) 1.513(4) 1.450(4) 

 149cd 1.479(2) 1.438(3) 1.430(3) 1.427(3) 1.520(4) 1.462(3) 
118 119 1.436 1.430 1.485 1.336 1.494 1.442 
146 165 1.477 1.436 1.405 1.426 1.513 1.452 
146 166 1.471 1.434 1.425 1.422 1.520 1.449 
145 167 1.471 1.427 1.419 1.433 1.518 1.454 

 163 1.473(2) 1.441(3) 1.429(3) 1.473(2) 1.441(3) 1.429(2) 

Table 8: Selected bond lengths of dispiro-1,2,4-trioxane ring structures  

 

Ref  6-1-2 1-2-3 2-3-4 3-4-5 4-5-6 5-6-1 6123 

 160aa 103.96(6) 107.18(6) 110.42(6) 118.65(6) 109.23(7) 109.62(7) -74.03(7) 

 160ab 103.37(11) 107.37(11) 110.33(12) 117.50(11) 108.87(13) 109.52(13) -73.43(14) 

 149bc 108.67(5) 108.55(5) 108.74(6) 113.26(6) 111.34(6) 107.84(6) 66.76(6) 

 149bg 108.3(2) 108.4(2) 109.6(3) 110.5(2) 110.8(3) 108.1(3) 64.17(3) 

 149bg 108.0(2) 107.1(2) 109.2(3) 112.1(2) 111.5(3) 107.9(3) -66.90(3) 

 149cd 107.71(16) 108.02(16) 108.83(19) 113.35(18) 112.0(2) 106.54(19) -68.7(2) 
118 119 106.43 106.98 107.50 121.68 120.08 110.27 -79.68 
146 165 108.34 107.49 108.66 111.59 111.29 107.11 -66.42 
146 166 107.94 107.67 107.96 113.45 112.39 107.29 -69.52 
145 167 107.64 107.59 108.79 112.98 111.93 106.80 69.54 

 163 108.26(17) 107.51(19) 107.51(19) 108.28(17) 107.31(19) 107.51(19) -64.22(2) 

Table 9: Selected bond angles and torsion angles of dispiro-1,2,4-trioxane ring structures 
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Structure determination of dispiro-1,2,4-trioxanes 149a,b via 1H and 13C NMR 

spectroscopy  

 

Although several 1,2,4-trioxane structures have been analysed using X-ray 

crystallography, most 1,2,4-trioxanes were isolated as low melting solids or oils which 

were unsuitable for X-ray crystallography. Analysis of 1,2,4-trioxanes by NMR 

spectroscopy at room temperature is difficult because like other saturated six-membered 

ring heterocycles, the three spiro-rings readily undergo ring inversion. 

 

The main characteristic signals in the 1H NMR spectrum are the two doublets at δ3.0-

4.0 corresponding to the 1,2,4-trioxane methylene group at C5. The asymmetrical nature 

of the dispiro-1,2,4-trioxane plus the dynamic chair-to-chair interconversions of each of 

the rings results in the doublets being broadened or not fully resolved at room 

temperature. The room temperature 1H and 13C NMR spectra of dispiro-1,2,4-trioxanes 

149ab gave unresolved signals demonstrating the dynamic changes in the conformation 

of the molecule. At this temperature the 1H NMR showed one broadened doublet at 

δ3.94 for the equatorial hydrogen atom at C5 plus a very broad unresolved signal at 

δ3.39 for the axial hydrogen. In addition a sharp singlet at δ3.30 was present for the 

OCH3 group with a broad signal at δ4.10 for the CH group (Figure 26a). The 13C NMR 

signals were generally broad apart from the acetal spiro-carbon at δ114 and the 

methylene CH2 in the C5 position at δ64 (Figure 27a).  

 

On lowering the temperature to -55 °C, the 1H and 13C NMR spectra of 149ab become 

resolved as the conformation begins to lock.  The 1H NMR spectra now shows two clear 

doublets for the methylene C5 group at δ3.94 and δ3.39 with a 2J coupling constant of 

11.5 Hz (Figure 26b). The methoxy group remains unaffected by the low temperature 

and still shows its characteristic singlet at δ3.33; however, the CH group is now a broad 

singlet at -55°C. The 13C NMR spectra at -55 °C of 1,2,4-trioxane 149ab shows sharp 

signals for each of the carbon atoms (Figure 27b). Through a combination of 13C NMR 

DEPT experiments and C–H correlation experiments (Figure 28), the spectra were 

assigned to show the methoxy carbon at δ57, the methylene group C5 of the 1,2,4-

trioxane ring at δ64, the CH at δ73 and the two spiro carbons at δ78 and δ114 (spiro-

acetal). The difference in the chemical shifts for the spiro-carbons is due to the 

inductive effect of a further oxygen atom adjacent to the carbon. 
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Axial methylene
hydrogen at C5

3.303.353.403.453.503.553.603.653.703.753.803.853.903.954.004.054.104.154.204.25
(ppm)  

Figure 26a: 1H NMR spectrum of characteristic chemical shifts of 149ab at room temperature 

 

 

 
Figure 26b: 1H NMR spectrum of characteristic chemical shifts of 149ab at -55°C 
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Figure 27a: 13C NMR spectrum of 149ab at room temperature  
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Figure 27b: 13C NMR spectrum of 149ab at -55°C 
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Figure 28: C – H correlation spectrum for dispiro-1,2,4-trioxane 149ab 
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Despite the structure of 149ab being locked out at -55 °C, it is apparent from the 1H 

NMR spectrum of 149aa that the molecule is still fluxional because the doublet 

associated with the methylene group at C5 in the 1,2,4-trioxane ring was not resolved. 

This was confirmed by the 13C NMR spectrum which showed broad signals for some 

signals in particular between δ10-40 which indicate that some parts of the molecule 

were not yet rigid even at -55 °C. 

 

The room temperature NMR spectra of ethoxy-substituted 1,2,4-trioxanes 149b did not 

contain sufficient information to determine their structures and seemed to indicate that a 

more dynamic chair-to-chair interconversion was occurring than in the corresponding  

methoxy-substituted cases (Figure 29a). Both the 1H and 13C NMR spectra showed 

generally broad undefined signals which could not be interpreted. High temperature 

NMR spectra for ethoxy-substituted 1,2,4-trioxanes give first order spectra which could 

be more readily correlated with structure. At these temperatures the doublets for the C5-

methylene group of the 1,2,4-trioxane ring could be clearly observed in all cases 

(Figure 29b). The high temperature 1H NMR spectrum of the ethoxy-substituted 1,2,4-

trioxanes also split the CH2 of the ethoxy group into two clear doublet of quartets for 

each of the hydrogens.  

 

The position of the doublets for the 1,2,4-trioxane methylene group in dispiro-1,2,4-

trioxanes 149a,b vary only slightly throughout the series analysed (Table 10). The 

doublets situated at ca. δ3.90 and ca. δ3.50 for all dispiro-1,2,4-trioxanes have a 

germinal coupling constant which varies between 11.8 Hz for methoxy substituted 

dispiro-1,2,4-trioxanes and 11.5 Hz for ethoxy substituted dispiro-1,2,4-trioxanes. 

Assuming the signals is consistent with substituted cyclohexanes the proton with the 

lower chemical shift is in the axial position due to diamagnetic anisotropic effects.158 

 

Overall, the order in which the carbons appear in the 13C NMR spectrum does not 

change in any dispiro-1,2,4-trioxane 149a,b. Equally the chemical shifts associated with 

the 13C NMR vary only slightly over the series of dispiro-1,2,4-trioxanes 149a,b except 

the position of the acetal spiro-C3 which seems to vary depending on the size of the 

ring bonded to the carbon. In general, values of δ100-102 were recorded for six 

membered rings, δ106 for 12-membered rings, δ106-107 for 7-membered rings and 

δ112-114 for 5-membered rings (Table 11).160 
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Figure 29a: 1H NMR spectrum of characteristic chemical shifts of 149bc at room temperature  

 

Figure 29b: 1H NMR spectrum of characteristic chemical shifts of 149bc at 60°C 
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Compound Temp δHeq δHax Coupling constant J/ Hz 

149aa -50°C 3.86 3.56 11.8 

149ba 60°C 3.92 3.52 11.5 

149ab -50°C 3.94 3.39 11.8 

149bb 60°C 3.95 3.50 11.5 

149ac -50°C 3.84 3.48 11.8 

149bc 60°C 3.90 3.48 11.5 

149ad -30°C 3.80 3.43 11.8 

149bd 60°C 3.91 3.48 11.5 

149ae -50°C 3.92 3.51 11.8 

149bf 60°C 4.02 3.57 11.8 

149bg 55°C 4.08 3.55 11.8 

Table 10: δ values (ppm) and coupling constants (J) for methylene group of trioxane rings 
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Compound Temp C3 C5 C6 Sub CH 

149aa -50°C 102.0 61.7 78.0 56.8 72.6 

149ba 60°C 102.1 62.3 79.4 15.5 64.5 74.1 

149ab -50°C 113.9 64.4 78.0 56.8 72.5 

149bb 60°C 114.1 64.8 79.2 15.6 65.0 74.0 

149ac -50°C 107.2 62.2 78.0 56.9 72.9 

149bc 60°C 106.7 62.5 79.3 15.5 64.0 74.2 

149ad -30°C 106.1 62.5 78.2 57.1 73.4 

149bd 60°C 106.2 62.5 79.2 15.6 65.1 74.2 

149ae -50°C 
101.5 

108.5 
62.6 79.5 57.2 81.3 

149bf 60°C 100.7 62.9 79.8 15.4 64.9 73.8 

149bg 55°C 112.8 64.8 79.4 15.6 65.1 79.1 

Table 11: δ values (ppm) for 13C NMR signals of dispiro-1,2,4-trioxanes 
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Structure determination of dispiro-1,2,4-trioxanes 160a,b via 1H and 13C NMR 

spectroscopy  

 

In contrast to the NMR spectra of dispiro-1,2,4-trioxanes 149a,b, the 1H NMR and 13C 

NMR spectra of 1,2,4-trioxanes 160 are completely resolved at room temperature 

(Figure 30). The ring methylene group exhibits sharp doublets at ca. δ3.9 and δ4.5 for 

all dispiro-1,2,4-trioxanes 160 (Table 12). The doublets lie further upfield and are 

further apart than the corresponding signals for dispiro-1,2,4-trioxanes 149a,b. 

Additionally they have a larger 2J coupling constant of 12.6 Hz in all cases. This is 

around 1 Hz higher than the coupling constant for dispiro-1,2,4-trioxanes 149 and 

demonstrates further the difference in the conformation of the 1,2,4-trioxane ring. A 

slight 0.3 Hz splitting of each peak in the doublet also suggests microfine coupling 

between the methylene CH2 group and other parts of the molecule. With the exception 

of a haystack of signals between δ1.2 and δ2.0 the remaining signals in each of the 

spectra are completely resolved at room temperature with no variable temperature 

analysis required.  

 

The chemical shifts for the 13C NMR spectroscopy of 160a,b follow the same trend as 

was seen for the dispiro-1,2,4-trioxanes 149a,b (Figure 31). Through a combination of 
13C NMR DEPT experiments and C – H correlation experiments the signals were 

assigned to show the 1,2,4-trioxane methylene group at ca. δ77, the CH at ca. δ80 and 

the two spiro-carbons at ca. δ77 and ca. δ100-115 (spiro-acetal) (Table 13). Although 

the chemical shifts of the spiro-carbon and the methylene group have changed, this is 

only because the spiro-carbon position has changed to C5 in the trioxane ring and is 

now next to the ether oxygen rather than the peroxide oxygens. 

 

The clarity of the spectra at room temperature further demonstrates the central 1,2,4-

trioxane ring is not undergoing chair-to-chair interconversion because of the 1,3-diaxial 

interactions between the CH2 group in the spiro-rings. 
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Compound δH ax δH eq Coupling constant J/ Hz 

160aa 4.25 3.87 12.6 

160ba 4.27 3.88 12.6 

160ab 4.25 3.88 12.6 

160bb 4.27 3.90 12.6 

160af 4.34 3.97 12.6 

160bf 4.37 3.98 12.6 

Table 12: δ values (ppm) and coupling constants (J) for methylene group of trioxane rings 
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Compound C3 C5 C6 Sub CH 

160aa 102.0 70.9 76.3 56.9 80.9 

160ba 102.1 71.0 76.3 15.5, 62.0 79.0 

160ab 113.0 71.3 76.6 56.9 79.6 

160bb 112.3 71.3 77.7 15.6, 64.5 77.8 

160af 100.7 71.6 76.5 56.3 80.7 

160bf 100.6 71.7 76.4 15.6, 64.4 78.8 

Table 13: Selected 13C NMR δ values (ppm) of dipiro-1,2,4-trioxanes 
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Figure 30: 1H NMR of 160aa 
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Figure 31: 13C NMR of 160aa 
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Computational analysis of acid-catalysed perhydrolysis 

 

The acid-catalysed perhydrolysis of simple non-substituted and methyl-substituted spiro 

epoxides 147c and 147d has been shown to give good overall reaction yields of the 

corresponding β-hydroxy hydroperoxides 148c and 148d respectively. In contrast, the 

perhydrolysis of the methoxy-substituted derivatives 147a only gave low isolable yields 

of β-hydroxy hydroperoxide 148a. Moreover, unlike the synthesis of the methyl-

substituted spiro-epoxide 147c, the methoxy-substituted epoxide 147a was obtained as a 

mixture of diastereoisomers 147aa and 147ab, which upon acid-catalysed perhydrolysis 

only produced β-hydroxy hydroperoxide 148aa. No product derived from 147ab was 

isolated indicating that epoxide 147aa is significantly more reactive than its 

diastereoisomer 147ab (Scheme 55). Computer modelling of this system sought to 

investigate, (i) the energies of the transition states involved in the perhydrolysis process 

and (ii) the greater reactivity of 147aa over 147ab in the methoxy-substituted example. 

 

 
Scheme 55 

 

Computational Details 

 

The calculations contained within this section have been carried out using the MP2161 

method deploying a 6-31G** basis set. MP2 calculations were used to describe the 

geometry of protonated epoxides because DFT methods fail to accurately describe the 

epoxide C(spiro)-O bond distance. Previous reports noted large differences in the C-O 

bond distance by varying the density functional employed including an elongation of 

0.4Å to an almost completely open structure.162 The use of either MP2 or CCSD or 

newly developed methods such as M05 and M05-2X better describe the structure.163 

However due to the extra cost of computer time in running CCSD and the 

inaccessibility of M05 and M05-2X, MP2 calculations were used. 
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To carry out the calculations, the distance between the hydrogen peroxide nucleophile 

and the spiro-carbon of the protonated epoxide  was scanned until the energy associated 

with the system reaches a maximum. This point served as a guess geometry for the 

subsequent location for the SN2 transition state. During the scan, the angle of the oxygen 

nucleophile to the C(spiro)-O(epoxide) was fixed to a 180° angle to best mimic the SN2 

reaction. In the transition state optimisation, this angle was allowed to vary with no 

restriction. During the scanning process the C(spiro)-O bond length increased steadily 

as would be anticipated for an SN2 reaction. Similar scans, allowing the hydrogen 

peroxide to approach the least-hindered carbon centre on the epoxide ring, showed no 

elongation of the least hindered C(epoxide)-O(epoxide) bond. There was instead a 

dramatic increase in the energy of the system implying the alternative SN2 reaction was 

not likely to occur. All the energies quoted in this section are with respect to the 

protonated reactant with the epoxide oxygen in its preferred conformation in each 

model. 

 

Ring opening of unsubstituted epoxide 147d 

 

The protonated unsubstituted epoxide 147d+H+ can form two conformational isomers, 

of similar energy, which are linked by a chair-to-chair interconversion. Both 

conformations contain elongated C(spiro)-O bonds of 1.61 Å and 1.62 Å which are 

consistent with the low energy barriers (4.6 and 6.2 kcal mol-1) and the overall 

exothermic reaction calculated for the perhydrolysis reaction (Figure 32). The results 

demonstrate a kinetic preference for the oxygen leaving group being in an axial position 

on the ring. Distances of 2.35 Å and 2.48 Å between the hydrogen peroxide and the 

spiro-carbon in the transition state demonstrate the long-range influence of the 

nucleophile in the SN2 reaction of epoxides as speculated in early literature for epoxide 

ring opening.71 This is consistent for all the transition states of epoxide ring openings. 
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Figure 32: Reaction profile for the acid-catalysed perhydrolysis of epoxide 147d. Energies are in kcal 

mol-1 and relative to lowest energy conformation. Bond distances are given in Å. 

 

Ring opening of methyl-substituted epoxide 147c 

 

The methyl-substituted epoxide was synthesised as a single diastereoisomer 147ca in 

which the epoxide oxygen and the methyl group are cis to each other. The protonated 

epoxide 147c again can form two conformational isomers of similar energy linked by a 

chair-to-chair interconversion. In principle, two different positions of the proton could 

also be considered where the proton is positioned towards or away from the methyl. 

However since, this only caused a small energy difference, it was deemed not to be an 

important factor. Both conformations contain elongated C(spiro)-O bonds of 1.61 Å and 

1.62 Å within the epoxide ring consistent with favourable nucleophilic attack at the 

spiro-carbon. The activation energies associated with the ring opening of epoxide 147ca 

(3.9 and 6.5 kcal mol-1) were comparable to those seen for the unsubstituted epoxide 

147d and are consistent with the high yields achieved in both reactions. The conformer 

which gave the lowest barrier was again corresponding to the displacement of the axial 

oxygen leaving group (Figure 33). 
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Figure 33: Reaction profile for the acid-catalysed perhydrolysis of epoxide 147c. Energies are in kcal 

mol-1 and relative to lowest energy conformation. Bond distances are given in Å. 

 

Ring opening of methoxy-substituted epoxide 147aa and 147ab 

 

Although the methoxy-substituted epoxide was synthesised as the two possible 

diastereoisomers 147aa and 147ab, the acid-catalysed perhydrolysis afforded only the 

β-hydroxy hydroperoxide 148a in generally low yield, implying that epoxide 147ab was 

less reactive to acid-catalysed perhydrolysis. The introduction of the methoxy-

substituent provides a potential hydrogen bond between the proton situated on the 

epoxide oxygen and the methoxy oxygen. The proton on the epoxide oxygen can either 

be situated towards the methoxy oxygen or away from it meaning four possible 

conformations of the epoxide needed to be considered. The four conformations 

147aa(1)-(4) are illustrated in Figure 34 and show a 8.8 kcal mol-1 energy difference 

between conformer 147aa(1), which contains the hydrogen bond, and conformer 

147aa(2). The remaining two conformations, 147aa(3) and 147aa(4), where the 

methoxy-substituent is axial with respect to the ring are even higher in energy at 9.0 and 

9.9 kcal mol-1 respectively. It is clear therefore that the most abundant conformation in 
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solution is going to be 147aa(1). The methoxy-substituted epoxide 147aa(1) contains a 

hydrogen bond of 1.73 Å between the proton on the epoxide oxygen and the methoxy 

oxygen which creates a pseudo 5-membered ring. This causes the C(spiro)-O bond 

distance to contract from 1.60 Å in 147aa(2) to 1.57 Å in 147aa(1). A complete 

reaction profile from the ring opening of conformations 147aa(1) and 147aa(3) is 

detailed below (Figure 35). Protonated epoxides 147aa(1) and 147aa(3) were 

considered because they represent the lowest energy conformations in which the 

epoxide oxygen is positioned axial or equatorial. 

 
Figure 34: Four conformations of the acidified epoxide 147aa showing crucial C-O bond 

distances and close range H-bonding interactions (Å). Energies are in kcal mol-1 and 

relative to lowest energy conformation. 

 

Consistent with the shortened C(spiro)-O bond in 147aa(1), the calculated barrier for 

the opening of the epoxide bond by nucleophilic attack of hydrogen peroxide is 10.8 

kcal mol-1 which is considerably higher than for the unsubstituted 147d or methyl-

substituted epoxides 147c (Figure 35). The transition state for the opening of 147aa(3) 

is only 8.8 kcal mol-1 but as the conformer is unlikely to form in solution as it is 9.0 kcal 

mol-1 higher in energy than 147aa(1) this transition state is unlikely to be observed. As 

a consequence of the shortened C(spiro)-O bond the hydrogen peroxide has to be 

considerably closer to the spiro-carbon (2.21 Å and 2.23 Å) to open the epoxide ring 

than was calculated for the unsubstituted and methyl-substituted epoxide models. 

 

Although the reaction of 147aa+H+ is very exothermic, as a proton has transferred to 

the methoxy oxygen, it is concluded that the reaction is under kinetic rather than 

thermodynamic control. This is supported by the larger yield of β-hydroxy 

hydroperoxide 148aa achieved when using an alternative catalyst i.e. MoO2(acac)2 

which suggested the energy barrier and not the energy of the product is determining the 

low yields isolated in the acid-catalysed reaction. Although the activation energy for the 
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opening of 147aa(1) is relatively low for a room temperature reaction, the higher energy 

transition states due to the stabilisation of one conformation are consistent with the 

lower yields of β-hydroxy hydroperoxide 148a.  
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Figure 35: Reaction profile for the acid-catalysed perhydrolysis of epoxide 147aa. Energies are in kcal 

mol-1 and relative to lowest energy conformation. Bond distances are given in Å. 

 

No products were isolated from the acid-catalysed perhydrolysis of epoxide 147ab 

implying that there is a larger energy barrier associated with its perhydrolysis reaction 

than epoxide 147aa. Like epoxide 147aa, 147ab can accommodate an additional 

hydrogen bond between the proton on the epoxide oxygen and the methoxy group. The 

four conformations considered in this study 147ab(1)-(4) are illustrated in Figure 36 

and show a 5.5 kcal mol-1 energy difference between conformer 147ab(1) and 147ab(2). 

Both of these conformations have the additional hydrogen bond and are considerably 

stabilised by 8.4 kcal mol-1 and 7.2 kcal mol-1 respectively compared to 147ab(3) and 

147ab(4). It is again clear that conformer 147ab(1) is going to be the most abundant in 

solution.  
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Figure 36: Four conformations of the acidified epoxide 147ab showing crucial C-O bond 

distances and close range H-bonding interactions (Å). Energies are in kcal mol-1 and 

relative to lowest energy conformation. 
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Figure 37: Reaction profile for the acid-catalysed perhydrolysis of epoxide 147ab. Energies are in kcal 

mol-1 and relative to lowest energy conformation. Bond distances are given in Å. 

 

In the same way as was explained for epoxide 147aa, the hydrogen bond contracts the 

C-O bond to 1.56 Å in 147ab(1) making the bond harder to break. Accordingly the 

energy barrier for the opening of 147ab(1) was calculated to be 11.4 kcal mol-1 (Figure 

37). Although this transition state for the opening of epoxide 147ab(1) is slightly higher 
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in energy than epoxide 147aa(1) the difference is only 0.6 kcal mol-1 and therefore does 

not give a clear reason for the apparent unreactive nature of 147ab to acid-catalysed 

perhydrolysis. The energies are however still substantially higher than the methyl–

substituted epoxide ring openings and consistent with a more difficult ring opening. 

Although the transition state for the opening of 147ab(2) is only 8.2 kcal mol-1 the 

conformer is unlikely to form in solution as it is 5.5 kcal mol-1 higher in energy than 

147ab(1) again indicating that the reactivity of  147ab is dictated by the stability of one 

of its conformations. 

 

Computational studies into the MoO2(acac)2-catalysed methoxy-substitueted 

epoxide ring opening reaction 

 

The perhydrolysis of methoxy-substituted epoxides 147aa and 147ab using a 

MoO2(acac)2 catalyst gave increased yields of the β-hydroxy hydroperoxide 148aa, but 

surprisingly, also gave β-hydroxy hydroperoxide 154a. The isolated β-hydroxy 

hydroperoxides 148a and 154a are derived from the diastereoisomeric epoxides 147aa 

and 147ab via Mo-mediated ring openings at the most hindered or the least hindered 

carbon centre respectively (Scheme 56).  

 
Scheme 56 

The calculations discussed within this section have been carried out using density 

functional theory (DFT) using a B3LYP functional, a 6-31G** basis set and a 

pseudopotential representing the core electrons of the molybdenum. The calculations 

sought to investigate the stability of possible epoxide-molybdenum catalyst complexes 

to determine if the stability of one reactant may correlate with the outcome of the 

reaction. To do this a series of docking studies have been carried out in order to assess 

the geometry of the epoxide and the preferred binding orientation at the Mo metal 

centre. These calculations assume that an acac ligand has been cleaved from the Mo 

centre allowing the epoxide to bind in a bidentate manner. All energies reported in this 

section are relative to the most stable Mo-epoxide complex. It is noted however, that 
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other studies of Mo catalysts have made reference to possible seven co-ordinate Mo 

catalysts where the nucleophile is first bound to the Mo centre as the seventh ligand.164 

Unfortunately attempts to carry out reaction profiles for ring opening reactions were 

unsuccessful due to unrealistic side reactions between the opened epoxide and the oxo 

ligands on the catalyst. 

 

The optimised geometry of MoO2(acac)2 is illustrated in Figure 38 and shows the 

preferred cis-arrangement between the oxo ligands. The oxo ligand has a trans-

influence on the acac ligand which means the Mo-O bond trans to the oxo ligand is 0.22 

Å longer than the Mo-O bond trans to the other acac ligand. In this study, the methoxy-

substituted epoxides replace an acac ligand meaning the epoxide oxygen can be 

positioned either cis or trans to the oxo groups giving a short or long interaction with 

the molybdenum. 

 
Figure 38: Optimised geometry of MoO2(acac)2. Distances in Å. 

 

The ring opening of epoxide 147aa has been shown to produce 148a via the 

nucleophilic attack at the spiro-carbon by hydrogen peroxide. Epoxide 147aa can take 

up two low energy conformations by having the methoxy group or the epoxide oxygen 

axial in the six-membered ring. The two conformations are related by chair-to-chair 

interconversion. In either conformation, the epoxide oxygen can be bound to the 

molybdenum complex cis or trans to the oxo ligand as illustrated in structures 168-171.   

 

In each of the four possible arrangements, the epoxide 147aa is interacting with the 

molybdenum via both the epoxide oxygen and the methoxy oxygen. A range of 

distances between the epoxide and the molybdenum are observed depending on the 
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conformation of the epoxide. In general, the epoxide oxygen is more strongly bound to 

the molybdenum than the oxygen of the methoxy group with the distance dependant on 

if the epoxide is trans to the oxo or acac ligand. Where the epoxide oxygen is trans to 

the acac ligand there is a short bond of ca. 2.16 Å to the molybdenum whilst trans to the 

oxo ligand is slightly longer (2.31-2.39 Å).  

 

The energy of the complexes show a clear preference for 168 and 169 where the 

epoxide oxygen is in an axial position. The conformations of 168 and 169 look 

favourable for the nucleophilic attack at the most substituted carbon centre as the 

epoxide oxygen is in an axial position, which have been shown to be preferred during 

acid-catalysed reactions. The preferred binding site for epoxide 147aa looks to be where 

the epoxide oxygen is cis with respect to the oxo ligand in 168. In this arrangement, a 

short epoxide oxygen Mo-bond distance of 2.16 Å is accompanied by a longer 

MeO···Mo bond distance of 2.39 Å. A slight elongation of the C(spiro)-O to 1.51 Å in 

168  is also observed which is consistent with the site of opening required to produce β-

hydroxy hydroperoxide 148a.  

 
168 (1.02 kcal mol-1)    169 (1.21 kcal mol-1) 

      

 

170 (3.37 kcal mol-1)    171 (6.96 kcal mol-1) 
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The ring opening of epoxide 147ab has been shown to produce 154a in preference to 

148ab via the nucleophilic attack at the least substituted carbon of the epoxide. Like 

epoxide 147aa, epoxide 147ab can take up two low energy conformations, however in 

this case the oxygen substituents would either be diaxial or diequatorial. In the 

arrangement in which the methoxy group and the epoxide oxygen are diaxial the 

epoxide failed to coordinate to the Mo complex as a bidentate ligand as shown in 172-

173. Due to the gap between the epoxide oxygen and the methoxy group being too 

large, the epoxide binds by the epoxide oxygen alone leaving the molybdenum atom in 

a trigonal bipyramidal arrangement. The relative energy levels of 172 and 173 are 

substantially higher than any other arrangement investigated. It is therefore assumed 

these complexes would not exist during the reaction. 

 

 
172 (10.24 kcal mol-1)   173 (7.98 kcal mol-1) 

 

In contrast, the alternative conformers 174-175, where the oxygens are both equatorial, 

can form complexes in which both the epoxide oxygen and methoxy oxygen are 

interacting with the molybdenum. The energy associated with both of these 

arrangements of epoxide 147ab (174 and 175) are comparable to the lowest energy 

form of the diastereoisomer 147aa (168 and 169). The preferred binding site for 

epoxide 147ab looks to be where the epoxide oxygen is cis with respect to the 

remaining acac ligand (175) giving a complex with two similar Mo-O bond distances of 

ca. 2.30 Å to epoxide 147ab. This is different to epoxide 147aa which showed preferred 

binding of the epoxide oxygen trans to the remaining acac ligand. In 175 the epoxide 

shows a shortened C(spiro)-O bond of 1.47 Å which implies that nucleophilic attack at 

the spiro-carbon would be more difficult than the corresponding reaction of epoxide 
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147aa. The shorter C(spiro)-O bond in the most stable conformation (175) therefore 

may allow for nucleophilic attack of the least hindered carbon-centre giving 154a.  

      

 

 
174 (1.69 kcal mol-1)   175 (0.00 kcal mol-1) 
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General Experimental 

 

Analytical thin layer chromatography was carried out using aluminium backed plates 

coated with Merck Kieselgel 60 GF254 (Art. 05554). Developed plates were visualised 

using UV light, molybdic acid spray and a peroxide active spray.148 Flash 

chromatography was performed using DAVISIL® silica (60 Å; 35-70 µm) from Fisher 

(cat. S/0693/60). Fully characterised compounds were chromatographically 

homogeneous.  

 

Melting points were determined using a Stuart Scientific SMP10 apparatus and are 

uncorrected. IR spectra were recorded on a Perkin Elmer 1600 FT IR spectrometer as 

films between sodium chloride plates or as solutions in CHCl3. Mass spectra were 

obtained on a Kratos Concept IS EI (electron impact) spectrometer at Heriot-Watt 

University, Finnigan MAT 900 XLT (electron impact and electrospray) at the EPSRC 

National Mass Spectrometry Service Centre in Swansea and Kratos MS50 (electron 

impact) at the University of Edinburgh. Elemental analyses were carried out by the 

analytical service of the Chemistry Department at Heriot-Watt University using an 

Exeter CE-440 Elemental Analyser. Purity of thermolysis mixtures were checked using 

Gas chromatatography using a Perkin Elmer 8310 gas chromatography. 

 
1H NMR spectra were recorded at 200 and 400 MHz on Bruker AC200 and DPX400 

spectrometers; 13C NMR spectra were recorded at 50 and 100 MHz on the same 

instruments. Chemical shifts are recorded in parts per million (δ in ppm) and are 

referenced against solvent signals (δC 77.16 for chloroform) for 13C NMR spectra and 

solvent residual resonances (δH 7.26 for chloroform) for 1H NMR spectra. Chemical 

shift values are accurate to ±0.01 ppm and ±0.1 ppm respectively. J values are given in 

Hz. Multiplicity designations used are: s, d, t, q, quint and m for singlet, doublet, triplet, 

quartet, quintet and multiplet respectively. In 13C NMR spectra, signals corresponding 

to CH, CH2, or CH3 groups are assigned from DEPT.  

 

Commercially available cyclic ketones were purchased from Aldrich, Lancaster, and 

Fluorochem chemical companies and were generally used as supplied without further 

purification. Hydrogen peroxide was purchased as a 60% w/v aqueous solution and 
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dried using calcium chloride and phosphorus pentoxide.147 Dichloromethane, dimethyl 

sulphoxide and diethyl ether were pre-dried using activated molecular sieves. ‘Light 

petroleum’ refers to the fraction boiling between 40 °C and 60 °C. 

Crystallographic Data Collection 

 
Single crystals suitable for X-ray diffraction were mounted in inert oil on a glass fibre 

and cooled to 100K by an Oxford Cryostream. Data were collected on a Bruker X8 

APEX2 diffractometer,165 employing graphite-monochromated Mo-Kα X-radiation (λ = 

0.71069 Å) and were corrected for absorption semi-empirically from symmetry-

equivalent and repeated reflectons. Structures were solved by direct and difference 

ourier methods and refined by full-matrix least squares against F2 using SHELXTL 

program suite.150 Refinement was completed with all non-hydrogen atoms assigned 

anisotropic displacement parameters. Geometry measurements were made using 

Mercury.166 
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Preparation of Epoxides 

Preparation of 1-oxaspiro[2.5]octane (147d)143,144 

Dried dimethyl sulfoxide (160 mL) was added with stirring to 

sodium hydride (60% oil dispersion, 5.86 g; 146.3 mmol), which 

had been washed with light petroleum (2 x 100 mL). Under a 

constant flow of nitrogen trimethylsulfoxonium iodide (37.13 g; 

168.7 mmol) was added slowly over 15 minutes with constant stirring. The mixture 

was then stirred continuously for an additional 30 minutes until all the hydrogen gas 

had evolved. Cyclohexanone (8.07 g; 82.3 mmol) was added dropwise over ca. 5 

minutes. The reaction was left to stir for ca. 15 minutes at room temperature then 30 

minutes at ca. 55°C. The reaction mixture was poured into water (500 mL) and the 

product extracted using diethyl ether (3 x 100 mL). The organic extract was washed 

with water (50 ml) and sat. sodium bicarbonate (50 mL) and dried over magnesium 

sulfate. The solvent was distilled off before 1-oxaspirooctane (3.19 g, 28.4 mmol, 

34.5%) (b.p. 42°C at 90mm Hg) was collected by distillation under reduced pressure 

as a clear, colourless liquid: δH (200MHz, CDCl3); 1.3-1.8(10 H, m, CH2), 2.5 (2 H, s 

CH2O), δC (50MHz, CDCl3); 24.7, 25.0, 33.4 (CH2), 54.3 (CH2O), 58.8 (qC).  

Preparation of 1-(chloroethyl)cyclohexanol (155) 

1-Oxaspiro[2.5]octane formed large glass like crystals of 1-

(chloroethyl)cyclohexanol 155 when left in deuterated chloroform in 

the freezer for an extended period: δH (200MHz, CDCl3); 1.00-1.70 

(10 H, m), 3.43 (2 H, s, CH2Cl), δC (50MHz, CDCl3); 21.4, 25.1, 34.5 

(CH2), 54.9 (CH2Cl), 70.1 (qC), m/z 149 (M+) 

Preparation of 4-methyl-1-oxaspiro[2.5]octane (147c) 143,144 

Dried dimethyl sulfoxide (160 mL) was added with stirring to 

sodium hydride (60% oil dispersion, 5.14 g; 128.4 mmol), 

which had been washed with light petroleum (2 x 100 mL). 

Under a constant flow of nitrogen trimethylsulfoxonium iodide 

(31.27 g; 142.1 mmol) was added slowly over 15 minutes with constant stirring. The 

mixture was then stirred continuously for an additional 30 minutes until all the 

O

C8H 14O
126.20 gmol -1

O

C7H12O
112.17 gmol -1

C7H 12DOCl
149.64 gmol-1

OD(H)

Cl
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hydrogen gas had evolved. 2-Methylcyclohexanone 146d (8.00 g; 71.3 mmol) was 

added dropwise over ca. 5 minutes. The reaction was left to stir for ca. 15 minutes at 

room temperature then 30 minutes at ca. 55°C. The reaction mixture was poured into 

water (500 mL) and the product extracted using diethyl ether (3 x 100 mL). The 

organic extract was washed with water (50 ml) and sat. sodium bicarbonate (50 mL) 

and dried over magnesium sulfate. The solvent was distilled off before 4-methyl-1-

oxaspirooctane 147c (5.07 g, 40.2 mmol, 56.4%) (b.p. 54°C at 80mm Hg) was 

collected by distillation under reduced pressure as a clear, colourless liquid: δH 

(200MHz, CDCl3); 0.8 (3 H, d, J 13.5, CH3), 1.0-1.8 (9 H, m, CH2), 2.6 (2 H, d, J 

10.4, CH2O), δC (50MHz, CDCl3); 13.9 (CH3), 23.5, 24.2, 32.1, 32.4 (CH2), 34.0 

(CH), 52.1 (CH2O), 60.5 (qC). 

 

Preparation of 4-methoxy-1-oxa-spiro-octane (147a) 143,144 

Dried dimethyl sulfoxide (150 mL) was added with stirring to 

sodium hydride (60% oil dispersion, 6.13 g; 153.1 mmol), which 

had been washed with light petroleum (2 x 100 mL). Under a 

constant flow of nitrogen trimethylsulfoxonium iodide (34.40 g; 

156.3 mmol) was added slowly over 15 minutes with constant stirring. The mixture was 

then stirred continuously for an additional 30 minutes until all the hydrogen gas had 

evolved. 1-Methoxycyclohexanone (10.04g; 78.3 mmol) was added dropwise over ca. 5 

minutes. The reaction was left to stir for ca. 45 minutes. The reaction mixture was 

poured into water (500 mL) and the product extracted using diethyl ether (3 x 100 mL). 

The organic extract was washed with water (50 ml) and sat. sodium chloride (50 mL) 

and dried over magnesium sulfate. The solvent was distilled off before 4-methoxy-1-

oxaspirooctane was collected by distillation under reduced pressure as a clear, 

colourless liquid (10.00 g; 70.3 mmol; 89.8 % yield, 60:40 mixture of diastereoisomers) 

(b.p. 67°C at 80mm Hg): δH (200 MHz CDCl3); 1.1-2.0 (12 H, m), 2.47 (major) (1 H, d, 

J 5.0, CH2O), 2.53 (minor) (1 H, d, J 5.1, CH2O), 2.61 (major) (1 H, dd, J 5.0 and 1.3, 

CH2O), 2.83 (minor) (1 H, d, J 5.1, CH2O), 3.0 (1 H, m, CH) 3.30 (minor) (3 H, s, 

OCH3), 3.35 (major) (3 H, s, OCH3), δC(50 MHz, CDCl3); 20.8, 21.9, 24.0, 24.9, 29.5, 

30.0, 30.2, 30.8 (CH2), 50.4, 51.8 (CH2O), 56.8,57.2 (OCH3), 59.7, 60.2 (qC) 78.9, 79.7 

(CH). 

C8H 14O2

142.20 gmol -1

O

OMe
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Preparation of 4-ethoxy-1-oxa-spiro-octane (147b)143,144 

Dried dimethyl sulfoxide (180 mL) was added with stirring to 

sodium hydride (60% oil dispersion, 5.65 g; 141.1 mmol), which 

had been washed with light petroleum (2 x 100 mL). Under a 

constant flow of nitrogen trimethylsulfoxonium iodide (31.02 g; 

141.0 mmol) was added slowly over 15 minutes with constant stirring. The mixture was 

then stirred continuously for an additional 30 minutes until all the hydrogen gas had 

evolved. 2-Ethoxycyclohexanone (10.00 g; 70.3 mmol) was added dropwise over ca. 5 

minutes. The reaction was left to stir for ca. 45 minutes. The reaction mixture was 

poured into water (500 mL) and the product extracted using diethyl ether (3 x 100 mL). 

The organic extract was washed with water (50 ml) and sat. sodium bicarbonate (50 

mL) and dried over magnesium sulfate. The solvent was distilled off before 4-ethoxy-1-

oxaspirooctane was collected by distillation under reduced pressure as a clear, yellow 

liquid (7.75 g; 46.1 mmol; 65.6%, 70:30 mixture of diastereoisomers) (b.p. 70°C at 

80mm Hg): δH(200 MHz CDCl3); 1.12 (minor), 1.15 (major) (3 H, t, J 8.0, CH3), 1.2-

2.0 (8 H, m), 2.47 (major) (1 H, d, J 5.2, CH2O), 2.52 (minor) (1 H, d, J 5.2, CH2O), 

2.64 (major) (1 H, dd, J 5.0 and 1.1, CH2O), 2.84 (minor) (1 H, d, J 5.2, CH2O), 3.1 (1 

H, m, CH), 3.5 (2 H, m, OCH2), δC(50 MHz, CDCl3); 15.2, 15.3 (CH3),  20.9, 21.7, 

24.0, 24.5, 29.9, 30.6, 30.8 (CH2), 50.2, 51.6 (CH2O), 59.7, 60.3, 59.7 (qC), 64.2, 64.9 

(OCH3) 77.5, 77.2 (CH) 

 
Perhydrolysis of epoxides 

General Procedure for the drying of hydrogen peroxide147 

Hydrogen peroxide (60 %; 12.1 mL; 0.214 mol) was added with stirring to dry diethyl 

ether (100 mL), at ca. -78°C in a thick walled, flat bottomed vessel. Anhydrous calcium 

chloride (ca. 5 g) was added and the reaction mixture and stirred for 10 minutes. 

Phosphorus pentoxide (ca. 5 g) was then slowly added in small portions over 15 

minutes with careful monitoring of reaction temperature in order to minimise the 

exothermicity. The ethereal solution of hydrogen peroxide was decanted into a pre-

cooled reaction vessel (-78°C) and used immediately. 

C9H 16O2

156.23 gmol -1

O

OEt
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Preparation of 1-hydroperoxy-1-hydroxymethylcyclohexanone using Mo(acac)2 

catalyst (148d) 

 A solution of 1-oxaspiro[2.5]octane 147d (1.55 g, 13.8 mmol) in dry 

diethyl ether (5 mL) was added dropwise to the anhydrous hydrogen 

peroxide solution (ca. 35 mL) at 0°C and stirred for 24 hours along with 

molybdenyl acetylacetonate (0.25g; 0.75 mmol). The reaction mixture was poured into 

water (50 mL) and extracted using diethyl ether (3 x 30 mL). The organic extracts were 

washed with sat. sodium bicarbonate (30 mL), water (30 mL) and sat. sodium chloride 

(30mL). The solvent was removed under reduced pressure to yield a yellow oil which 

was purified collected by flash column chromatography on silica gel eluting with 1:1 

light petroleum/ ethyl acetate. 1-Hydroperoxy-1-hydroxymethylcyclohexanone Rf = 

0.42 was collected as a viscous oil (1.50 g, 10.3 mmol, 72.8%): δH (200MHz, CDCl3); 

1.1-1.9 (10 H, m, CH2), 3.6 (2 H, s, CH2O) δC (50MHz, CDCl3); 21.7, 25.9, 29.7 (CH2), 

66.7 (CH2O), 83.5 (qC) 

Preparation of 1-hydroperoxy-1-hydroxymethyl-2-methylcyclohexanone using 

Mo(acac)2 catalyst (148c) 

 

A solution of 4-methyl-1-oxaspiro[2.5]octane 147c (2.59 g, 20.5 mmol) 

in dry diethyl ether (5 mL) was added dropwise to the anhydrous 

hydrogen peroxide solution (ca. 50 mL) at 0°C and stirred for 24 hours 

along with molybdenyl acetylacetonate (0.33 g; 1.0 mmol). The reaction 

mixture was poured into water (50 mL) and extracted using diethyl ether 

(3 x 30 mL). The organic extracts were washed with sat. sodium bicarbonate (30 mL), 

water (30 mL) and sat. sodium chloride (30mL). The solvent was removed under 

reduced pressure to yield a yellow oil which was purified collected by flash column 

chromatography on silica gel eluting with 1:1 light petroleum/ ethyl acetate. 1-

Hydroperoxy-1-hydroxymethyl-2-methylcyclohexanone Rf = 0.40 was collected as a 

viscous oil (2.81 g, 17.5 mmol, 85.4%) as a crystalline solid: m.p. 48 °C from diethyl 

ether/light petroleum, δH (200MHz, CDCl3); 0.9 (3 H, d, J 15.6, CH3), 1.1-2.0 (9 H, m, 

CH2), 2.9 (1 H, bs, OH), 3.6 (1 H, d, J 12.0, CH2O), 3.7 (1 H, d, J 12.0, CH2O),  8.8 (1 

H, bs, 1H, OOH) δC (50MHz, CDCl3); 15.5 (CH3), 21.8, 22.0, 26.5, 29.7 (CH2), 32.0 

(CH), 64.1 (CH2O), 86.6 (qC), C8H16O3 requires C 60.0% H 10.1%, found C 59.6% H 

10.2%. 
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Preparation of 1-hydroperoxy-1-hydroxymethyl-2-methoxycyclohexanone using 

acid catalyst (148a) 

A solution of 4-methoxy-1-oxaspirooctane 147a (6.04 g; 42.8 mmol) 

in dry diethyl ether (5 mL) was added dropwise to the anhydrous 

hydrogen peroxide solution (ca. 100 mL) at 0°C. Sulfuric acid was 

added (2 drops, ca. 50 mg) and the mixture was stirred for 2 hours. 

The reaction mixture was poured into water (50 mL) and extracted using diethyl ether 

(3 x 20 mL). The organic extracts were washed with sat. sodium bicarbonate (30 mL), 

water (30 mL) and sat. sodium chloride (30mL). The solvent was removed under 

reduced pressure to yield a yellow oil which was purified collected by flash column 

chromatography on silica gel eluting with 1:1 light petroleum/ ethyl acetate at Rf = 0.40 

as a viscous oil (0.59 g; 3.3 mmol; 7.9%): δH(200 MHz CDCl3); 1.1-1.8 (8 H, m), 3.35 

(3 H, s, OCH3), 3.45 (1 H, m, CH), 3.7 (1 H, d, J 12.0, OCH2), 3.9 (1 H, d, J 12.0, 

OCH2), δC(50 MHz, CDCl3); 21.2, 21.3, 24.8, 28.1 (CH2), 57.1 (CH3), 63.0 (CH2OH), 

80.1 (CH),  84.7 (COOH) 

Preparation of 1-hydroperoxy-1-hydroxymethyl-2-methoxycyclohexanone (148a) 

and 1-(hydroperoxymethyl)-2-methoxycyclohexanol (154a) using Mo(acac)2 

catalyst  

A solution of 4-methoxy-1-oxa-spiro-octane 147a (7.99 g; 56.6 mmol) 

in dry diethyl ether (5 mL) was added dropwise to the anhydrous 

hydrogen peroxide solution (ca. 130 mL) at 0°C and stirred for 24 hours 

along with molybdenyl acetylacetonate (1.00g; 3.0 mmol). The reaction 

mixture was poured into water (100 mL) and extracted using diethyl 

ether (3 x 30 mL). The organic extracts were washed with sat. sodium 

bicarbonate (30 mL), water (30 mL) and sat. sodium chloride (30mL). 

The solvent was removed under reduced pressure to yield a yellow oil which was 

purified collected by flash column chromatography on silica gel eluting with 1:1 light 

petroleum/ ethyl acetate. 1-(Hydroperoxymethyl)-2-methoxycyclohexanol Rf = 0.46 

was collected as a viscous oil (0.89 g; 5.1 mmol; 9.3% yield): δH(200 MHz CDCl3); 

1.1-2.0 (8 H, m), 3.20 (1 H, m, CH), 3.45 (3 H, s, CH3), 3.9 (1 H, d, J 14.0, OCH2) 4.4 

(1 H, d, J 14.0, OCH2), 8.2 (1 H, bs, OH), 10.5 (1 H, bs, OOH), δc(50 MHz CDCl3); 

22.0, 23.3, 26.0, 33.8 (CH2), 57.7 (CH3), 74.4  (COH), 80.4 (CH2OOH), 84.9 (CH) and 

O
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1-hydroperoxy-1-hydroxymethyl-2-methoxycyclohexanone Rf = 0.40 was collected as a 

viscous yellow oil (3.34 g; 19.0  mmol; 33.7%): δH(200 MHz CDCl3); 1.1-1.8 (8 H, m), 

3.35 (3 H, s, OCH3), 3.45 (1 H, m, CH), 3.7, (1 H, d, J 12.0, OCH2), 3.9 (1 H, d, J 12.0 

OCH2) δC(50 MHz, CDCl3); 21.2, 21.3, 24.8, 28.1 (CH2), 57.1 (CH3), 63.0 (CH2OH), 

80.1 (CH),  84.7 (COOH),  

Preparation of 1-hydroperoxy-1-hydroxymethyl-2-methoxycyclohexanone (148b) 

and 1-(hydroperoxymethyl)-2-methoxycyclohexanol (154b) using Mo(acac)2 

catalyst. 

A solution of 4-ethoxy-1-oxa-spiro-octane 147b (6.00 g; 38.4 mmol) in 

dry diethyl ether (5 mL) was added dropwise to the anhydrous hydrogen 

peroxide solution (ca. 100 mL) at 0°C and stirred for 24 hours along 

with molybdenyl acetylacetonate (0.66g; 2.0 mmol). The reaction 

mixture was poured into water (100 mL) and extracted using diethyl 

ether (3 x 30 mL). The organic extracts were washed with sat. sodium 

bicarbonate (30 mL), water (30 mL) and sat. sodium chloride (30mL). 

The solvent was removed under reduced pressure to yield a yellow oil which was 

purified by flash column chromatography on silica gel eluting with 1:1 light petroleum/ 

ethyl acetate at Rf = 0.55, 0.60 as a viscous yellow oil (2.43g; 12.8 mmol; 33.2%): 

δH(200 MHz CDCl3); 1.13 (t, J 7.0, CH3), 1.20-1.90 (m, CH2),  3.30-3.70 (m, CH, 

CH2O),  3.76, (d, J 12.0, OCH2), 3.97 (d, J 12.0 OCH2), 4.40 (d, J 14.1 OCH2), 9.22 

(bs), 9.22 (bs), 9.57 (bs), 10.05 (bs), 11.14 (bs), δc(50 MHz CDCl3); 15.4, 17.5 (CH3), 

20.5, 21.1, 21.5, 22.9, 25.8, 26.6, 28.1, 32.7, 33.3 (CH2), 51.2, 62.8, 64.3, 65.2, 65.4 

(OCH2), 74.1 (qC), 78.0, 78.6 (CH), 84.5 (qC)  
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Preparation of dispiro-1,2,4-trioxanes 

Preparation of 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-cyclohexane (149aa) and 2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-

5’-spiro-1’’-2’’-cyclohexane (160aa) 

Cyclohexanone (1.40 g; 14.2 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-hydroxymethyl-2-methoxycyclohexane 

oxide 148a (1.70 g; 9.7 mmol) in dry DCM (30 mL) along with tosic 

acid (50mg). The mixture was allowed to warm up to room 

temperature and left to stir for 24 hours. The solution was washed in 

turn with sat. sodium bicarbonate (30 mL) and water (30  mL) before 

being extracted into DCM (3 x 30 mL). The combined extracts 

washed with water (10 mL) and sat. sodium chloride (10 mL) and 

dried over anhydrous magnesium sulfate before the solvent was removed under 

vacuum. The crude product was purified by flash column chromatography (1:25 ethyl 

acetate/ light petroleum) to afford the title compounds. 2-(Methoxy)cyclohexane-1-

spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-cyclohexane Rf = 0.30 (0.32 g; 1.25 mmol; 

4.4% from the epoxide) as a white crystalline solid: υmax (CHCl3)/cm-1 3019, 2939, 

2863, 1216;  δH(400 MHz CD2Cl2) 1.25-1.81 (17H, m, CH2), 2.00 (1 H, m, CH2), 3.26 

(1H, t, J 3.5, CH), 3.30 (3 H, s, OCH3), 3.87 (1 H, d, J 12.6, OCH2), 4.25 (1 H, d, J 

12.6, OCH2) δC (100MHz, CDCl3); 19.9, 20.8, 22.8, 22.9, 25.4, 31.9, 35.3, 36.1 (CH2), 

56.9 (CH3), 70.9 (spiro C), 76.3 (CH2O), 80.9 (CH), 102.0 (spiro-acetal C); m/z 256 

(M+), accurate mass C14H24O4 requires 256.16728, found 256.16746; C14H24O4 requires 

C 65.6% H 9.4%, found C 65.6% H 9.7% and 2-(methoxy)cyclohexane-1-spiro-3’-

(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-cyclohexane Rf = 0.25 (0.68 g; 2.66 mmol; 9.4% 

from epoxide) was collected as a yellow viscous oil: υmax/cm-1 2935, 2864, 1448, 1362; 

δH(400 MHz, -50°C CDCl3) 1.15-1.70 (17 H, m), 1.89 (1 H, m, CH2), 3.32 (3 H, s, 

OCH3), 3.56 (1 H, m, OCH2) , 3.86 (1 H, d, J 11.8, OCH2), 4.09 (1 H, s, CH), δC(100 

MHz, -50°C, CDCl3); 18.5, 19.3, 21.9, 23.7, 24.7, 25.0, 27.4, 27.8 (CH2), 56.8 (CH3), 

61.7 (CH2O), 72.6 (CH), 78.0 (spiro-C), 102.0 (spiro-acetal C); m/z 256 (M+), accurate 

mass C14H24O4 requires 256.16728, found 256.16746, C14H24O4 requires C 65.6% H 

9.4%, found C 65.3% H 9.6%,  
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In one reaction 1,1'-peroxybis(1-hydroperoxycyclohexane) (161) 

Rf= 0.15 (0.77 g;  2.94 mmol) was collected as a white crystalline 

solid: υmax (CHCl3)/cm-1 3420, 3019, 2942, 2866, 1450, δH(200 

MHz CD2Cl2) 1.40-1.70 (12 H, m, CH2), 1.80-2.00 (8 H, m, CH2), 

9.50 (2 H, s, OOH) δC (50MHz, CDCl3); 22.0, 24.9, 29.3 (CH2), 110.7 (COOH).  

Preparation of 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-cyclopentane (149ab) and 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-

trioxane)-5’-spiro-1’’-2’’-cyclohexane (160ab) 

Cyclopentanone (1.22 g; 14.5 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-(hydroxymethyl)-2-

(methoxy)cyclohexane oxide 148a (1.70 g; 9.7 mmol) in dry DCM (30 

mL) along with tosic acid (50 mg). The mixture was allowed to warm 

up to room temperature and left to stir for 24 hours. The solution was 

washed in turn with sat. sodium bicarbonate (30 mL) and water (30  

mL) before being extracted into DCM (3 x 30 mL). The combined 

extracts washed with water (10 mL) and sat. sodium chloride (10 mL) 

and dried over anhydrous magnesium sulfate before the solvent was removed under 

vacuum. The crude product was purified by flash column chromatography (1:25 ethyl 

acetate/ light petroleum) to afford the title compounds. 2-(Methoxy)cyclohexane-1-

spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-cyclohexane Rf = 0.30 (0.50 g; 2.06 mmol; 

7.1% from the epoxide) was obtained as a white crystalline solid: υmax (CHCl3)/cm-1 

3019, 2941, 1215  δH(400 MHz CD2Cl2) 1.33-1.80 (15 H, m, CH2), 2.25 (1 H, m, CH2), 

3.30 (1 H, m, CH), 3.30 (3 H, s, OCH3), 3.88 (1 H, d, J 12.6, OCH2), 4.25 (1 H, d, J 

12.6, OCH2) δC (100MHz, CDCl3); 20.0, 20.6, 23.0, 24.1, 29.9, 36.9, 38.0 (CH2), 56.9 

(CH3), 71.3 (spiro C), 76.6 (CH2O), 79.6 (CH), 113.0 (spiro-acetal C)]; m/z 242 (M+), 

accurate mass C12H22O4 requires 242.15164, found 242.15181; C13H22O4 requires C 

64.45% H 9.2%, found C 64.11% H 9.26%, and 2-(methoxy)cyclohexane-1-spiro-3’-

(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-cyclopentane Rf = 0.25 (0.737 g; 3.04 mmol; 10.5% 

from epoxide) was collected as a yellow viscous oil: υmax/cm-1 2937, 2868, 1455, 1332; 

δH(400 MHz CDCl3, -50°C) 1.15-1.89 (15 H, m, CH2), 2.46 (1 H, m, CH2), 3.33 (3 H, s, 

OCH3), 3.39 (1 H, d, J 11.5), 3.94 (1 H, d, J 11.5), 4.10 (1 H, s, CH) δC (100MHz, 

CDCl3, -50°C); 18.6, 19.3, 22.0, 22.6, 24.5, 27.3, 31.8, 37.0 (CH2), 56.8 (CH3), 64.4 

(CH2O), 72.5 (CH), 78.0 (spiro C), 113.9 (spiro-acetal C); m/z 242 (M+), accurate mass 
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C12H22O4 requires 242.15164, found 242.15181; C13H22O4 requires C 64.45% H 9.15%, 

found C 64.85% H 9.35%  

 

In one reaction 1,1'-peroxybis(1-hydroperoxycyclopentane) (162) Rf = 

0.13 (0.21g;  0.88 mmol) was collected as a white crystalline solid: 

υmax (CHCl3)/cm-1 3426, 3018, 2945, 2876, 1715, 1214, δH(200 MHz 

CD2Cl2) 1.50-1.70 (10 H, m, CH2), 1.80-2.05 (8 H, m, CH2), 9.70 (2 

H, s, OOH) δC (50MHz, CDCl3); 24.1, 32.8 (CH2), 122.0 (COOH). 

Preparation of 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-cycloheptane (149ac) 

Cycloheptanone (0.57 g; 5.1 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-(hydroxymethyl)-2-

(methoxy)cyclohexane oxide 148a (0.59 g; 3.4 mmol) in dry DCM 

(40 mL) along with tosic acid (50 mg). The mixture was allowed to 

warm up to room temperature and left to stir for 24 hours. The solution was washed in 

turn with sat. sodium bicarbonate (30 mL) and water (30  mL) before being extracted 

into DCM (3 x 30 mL). The combined extracts washed with water (10 mL) and sat. 

sodium chloride (10 mL) and dried over anhydrous magnesium sulfate before the 

solvent was removed under vacuum. The crude product was purified by flash column 

chromatography (1:25 ethyl acetate/ light petroleum) to afford the title compound.  2-

(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-cycloheptane Rf = 

0.30 (0.20g;  0.74 mmol; 7.4% from epoxide) was collected as a yellow viscous oil : 

υmax/cm-1 2931, 1457, 1369; δH(400 MHz CDCl3, -50°C) 1.26-1.94 (19 H, m, CH2), 

2.48 (1 H, m, CH2), 3.34 (3 H, s, OCH3), 3.48 (1 H, d, J 11.8), 3.84 (1 H, d, J 11.8) , 

4.05 (1 H, s, CH) δC (100MHz, CDCl3, -50°C); 18.6, 19.2, 21.8, 21.9 22.0, 27.5, 30.0, 

30.1, 30.4, 37.8 (CH2), 56.9 (CH3), 62.2 (CH2O), 72.9 (CH), 78.0 (spiro C), 107.2 

(spiro-acetal C); m/z 270 (M+), accurate mass C15H26O4 requires 270.18292, found 

270.18311; C15H22O4 requires C 66.7% H 9.7%, found C 66.8% H 9.8%. 

In one reaction 3,6-spiro-dicycloheptylidene-1,2,4,5-

tetraoxacyclohexane (163) Rf = 0.42 (180 mg;  0.70 mmol) was 

collected as a white crystalline solid: υmax (CHCl3)/cm-1 3019, 
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2932, 2856, 1635, 1215, δH(200 MHz CDCl3) 1.20-2.00 (20 H, m, CH2), 2.16 (2 H, m, 

CH2), 2.42 (2 H, m, CH2), δC (50MHz, CDCl3, -50°C); 22.74, 29.9, 32.9 (CH2), 112.8 

(spiro-acetal C)  

Preparation of 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-cyclododecane (149ad) 

Cyclododecanone (1.09 g; 6.0 mmol) was added to a cooled (-

5°C) solution of 1-hydroperoxy-1-hydroxymethyl-2-

methoxycyclohexane oxide 148a (0.70 g; 4.0 mmol) in dry 

DCM (30 mL) along with tosic acid (50 mg). The mixture was 

allowed to warm up to room temperature and left to stir for ca. 

24 hours. The solution was washed in turn with sat. sodium bicarbonate (30 mL) and 

water (30  mL) before being extracted into DCM (3 x 30 mL). The combined extracts 

washed with water (10 mL) and sat. sodium chloride (10 mL) and dried over anhydrous 

magnesium sulfate before the solvent was removed under vacuum. The crude product 

was purified by flash column chromatography (2:25 ethyl acetate/ light petroleum) to 

afford the title compound.  2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-

spiro-1’’-2’’-cyclododecane Rf = 0.30 (100 mg;  0.29 mmol; 7.3%) was collected as a 

white solid: m.p 91-93°C from diethyl ether/ light petroleum, υmax (CHCl3)/cm-1 3019, 

2936, 1215; δH(400 MHz CD2Cl2, -30°C) 1.12-1.67 (28 H, m, CH2), 1.88 (2H, m), 3.32 

(3 H, s, OCH3), 3.43 (1H, d, J 11.8), 3.80 (1 H, d, J 11.8), 4.03 (1 H, s, CH), δC 

(100MHz, CDCl3, -30°C); 18.7, 19.2, 19.5, 19.9 21.4, 21.9, 22.21, 22.26, 22.7, 23.8, 

26.0, 26.1, 26.2, 28.0, 31.9 (CH2), 57.1 (CH3), 62.5 (CH2O), 73.4 (CH), 78.2 (spiro C), 

106.1 (spiro-acetal C); m/z 270 (M+), accurate mass C20H36O4 requires 340.26656, 

found 340.26949; C20H36O4 requires C 70.6% H 10.7%, found C 70.4% H 10.8%. 
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Attempted preparation of indane-2-spiro-3’1(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

methoxycyclohexane (149ag) 

2-Indanone (0.37 g; 3.1 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-hydroxymethyl-2-

methoxycyclohexane oxide 148a (0.54 g; 3.1 mmol) in dry 

DCM (30 mL) along with tosic acid (ca. 50 mg). The mixture 

was allowed to warm up to room temperature and left to stir for ca. 24 hours. The 

solution was washed in turn with sat. sodium bicarbonate (30 mL) and water (30  mL) 

before being extracted into DCM (3 x 30 mL). The combined extracts washed with 

water (10 mL) and sat. sodium chloride (10 mL) and dried over anhydrous magnesium 

sulfate before the solvent was removed under vacuum. The crude product was purified 

by flash column chromatography (2:25 ethyl acetate/ light petroleum) to afford a 

mixture of the title compound and unidentified products Rf = 0.35 (50 mg; 0.17 mmol; 

5.5%) was collected as a colourless viscous oil.  Observed signals for indane-2-spiro-

3’1(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-methoxycyclohexane 149ag: δH(400 MHz 

CD2Cl2, -50°C) 1.15-1.77 (m, CH2), 1.93 (m, CH2), 3.02-3.33 (m, CH) 3.38 (s, OCH3), 

3.41 (s, CH2), 3.57 (d, J 11.8, OCH2), 3.93 (d, J 11.8, OCH2), 4.11 (1 H, s, CH), 7.16-

7.25 ( m, Ar C-H) δC (100MHz, CDCl3, -50°C); 18.5, 19.2, 21.9, 27.3, 38.2, 43.3 

(CH2), 56.9 (CH3), 62.9 (CH2O), 72.5 (CH), 78.3 (spiro C), 101.9 (spiro-acetal C), 

124.3, 125.0, 129.2, 130.2 (Aromatic CH), 138.0, 139.2 (Aromatic qC) 

Preparation of 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-1’’’,4’’’-dioxaspiro[4.5]decane (149ae) 

1,4-Dioxaspiro[4.5]decan-8-one (0.41 g; 2.6 mmol) was added to 

a cooled (-5°C) solution of 1-hydroperoxy-1-hydroxymethyl-2-

methoxycyclohexane oxide 148a (0.45 g; 2.6 mmol) in dry DCM 

(30 mL) along with tosic acid (50 mg). The mixture was allowed 

to warm up to room temperature and left to stir for ca. 24 hours. The solution was 

washed in turn with sat. sodium bicarbonate (30 mL) and water (30  mL) before being 

extracted into DCM (3 x 30 mL). The combined extracts washed with water (10 mL) 

and sat. sodium chloride (10 mL) and dried over anhydrous magnesium sulfate before 

the solvent was removed under vacuum. The crude product was purified by flash 

column chromatography (1:3 ethyl acetate/ light petroleum) to afford the title 
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compound. 2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

1’’’,4’’’-dioxaspiro[4.5]decane Rf = 0.51 (90 mg;  0.30 mmol; 11.7%) was collected as 

a white solid: υmax (CHCl3)/cm-1 3015, 2937, 2881, 1375, 1215, 1109; δH(400 MHz 

CDCl3, 60°C) 1.18-2.20 (16H, m, CH2), 3.34 (3 H, s, OCH3), 3.51 (1 H, d, J 11.5), 3.70 

(1 H, bs, CH), 3.90 (4 H, s, CH2), 3.92 (1 H, d, J 11.5), δC (100MHz, CDCl3, -30°C); 

20.3, 28.8, 24.1, 28.0, 28.1, 30.8, 30.9, 32.2 (CH2), 57.2 (CH3), 62.6 (CH2O), 64.3 

(OCH2CH2O), 79.5 (spiro C), 81.3 (CH), 101.5 108.5 (spiro-acetal C); m/z 314 (M+), 

accurate mass C16H26O6 requires 314.17262, found 314.17239. 

Attempted preparation of 2-(methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-

5’-spiro-1’’-2’’-1’’’,4’’’-dioxaspiro[4.5]decane (160ae) 

1,4-Dioxaspiro[4.5]decan-8-one (0.30 g; 1.92 mmol) was added to a 

cooled (-5°C) solution of 1-hydroperoxy-1-hydroxymethyl-2-

methoxycyclohexane oxide 154a (0.28 g; 1.59 mmol) in dry DCM 

(30 mL) along with tosic acid (ca. 50 mg). The mixture was allowed 

to warm up to room temperature and left to stir for 24 hours. The 

solution was washed in turn with sat. sodium bicarbonate (30 mL) and water (30  mL) 

before being extracted into DCM (3 x 30 mL). The combined extracts were washed 

with water (10 mL) and sat. sodium chloride (10 mL) and dried over anhydrous 

magnesium sulfate before the solvent was removed under vacuum. The crude product 

was purified by flash column chromatography (1:5 ethyl acetate/ light petroleum) to 

afford the title compound. 2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-

spiro-1’’-2’’-1’’’,4’’’-dioxaspiro[4.5]decane Rf = 0.40 (108 mg;  0.34 mmol; 22.4%) 

was collected as a colourless oil: δH(400 MHz CDCl3,  25°C) 1.26-2.30 (16 H, m, CH2), 

2.48 (2 H, m, CH2),  3.26 (1 H, s, CH), 3.29 (3 H, s, CH3), 3.31 (3 H, s, OCH3), 3.89 

(1H, d, J 12.6, OCH2), 3.93 (4 H, s, OCH2CH2O), 3.97 (1 H, d, J 12.6, OCH2), 4.26 (1 

H, d, J 12.6, OCH2), 4.35 (1 H, d, J 12.6, OCH2), δC (100MHz, CDCl3); 19.7, 19.8, 

20.7, 20.8, 22.4, 23.7, 23.8, 23.9, 24.2, 31.0, 31.2, 31.6, 31.7, 32.2, 33.2, 33.4, 34.6, 

36.8, 37.0 (CH2), 56.7, 56.9 (CH3),  64.2, 64.3 (CH2) 70.9, 71.5 (spiro C), 76.5 (CH2O), 

80.7 (CH), 100.7, 101.3 (spiro-acetal C), 108.2 (spiro-acetal C), 210.0 (C=O). 
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Preparation of cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-

methoxycyclohexanone (160af) 

2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

1’’’,4’’’-dioxaspiro[4.5]decane 160ac (108 mg, 0.34 mmol) in acetone 

(10 mL) was treated with tosic acid (0.23 g, 1.2 mmol) and continuously 

stirred overnight at r.t. The product was extracted using ethyl acetate (3 

x 20 mL) and the combined extracts were washed with sat. sodium bicarbonate (10 mL) 

and sat. sodium chloride (10 mL). After drying with magnesium sulfate, the solvent was 

evaporated. Incomplete reaction meant the reaction was repeated for a further 24 hours. 

The crude product was purified by flash column chromatography (1:5 ethyl acetate/ 

light petroleum) to afford the title compound. Cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-

trioxane)-5’-spiro-1’’-2’’-methoxycyclohexanone Rf = 0.40 (90 mg;  0.33 mmol; 

97.1%) was collected as a colourless oil: υmax (CHCl3)/cm-1 3019, 2938, 2865, 1718, 

1215;  δH(400 MHz CDCl3, -50°C) 1.31-1.79 (10 H, m, CH2), 2.05 (1 H, m, CH2), 2.16 

(1 H, m, CH2), 2.43 (4 H, m, CH2), 3.27 (1 H, m, CH), 3.31 (3 H, s, OCH3), 3.97 (1 H, 

d, J 12.0, OCH2), 4.34 (1 H, d, J 12.0, OCH2) δC (100MHz, CDCl3); 19.9, 20.8, 24.0, 

31.7, 33.4, 34.6, 36.9, 37.1 (CH2), 56.9 (CH3), 71.6 (spiro C), 76.5 (CH2O), 80.7 (CH), 

100.7 (spiro-acetal C), 210.0 (C=O); m/z 270 (M+), accurate mass C14H22O5 requires 

270.14620, found 270.14618 

Preparation of 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

cyclohexane (149ba) and 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-

spiro-1’’-2’’-cyclohexane (160ba) 

Cyclohexanone (0.78 g; 8.0 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-hydroxymethyl-2-ethoxycyclohexane 

oxide 148b (1.00 g; 5.3 mmol) in dry DCM (30 mL) along with tosic 

acid (50 mg). The mixture was allowed to warm up to room 

temperature and left to stir for ca. 24 hours. The solution was 

washed in turn with sat. sodium bicarbonate (30 mL) and water (30  

mL) before being extracted into DCM (3 x 30 mL). The combined 

extracts were washed with water (10 mL) and sat. sodium chloride 

(10 mL) and dried over anhydrous magnesium sulfate before the solvent was removed 

under vacuum. The crude product was purified by flash column chromatography (1:50) 
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ethyl acetate/ light petroleum) to afford the title compounds. 2-(Ethoxy)cyclohexane-1-

spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-cyclohexane Rf = 0.30 (0.18 g; 0.67 mmol; 

4.3% from the epoxide) as a viscous oil: δH(400 MHz CD2Cl2) 1.13 (3 H, t, J 7.0, CH3) 

1.27-2.01 (18H, m, CH2), 3.35 (1 H, m, CH), 3.44 (1 H, m, CH2CH3), 3.58 (1 H, dq, J 

7.0, 7.0, 7.0 and 9.4, CH2CH3) 3.88 (1 H, d, J 12.6, OCH2), 4.27 (1 H, d, J 12.6, OCH2) 

δC (100MHz, CDCl3); 15.5, 20.2, 20.4, 22.4, 22.5, 22.8, 25.1, 25.7, 28.0, 30.8, 32.6 

(CH2), 62.0 (OCH2CH3), 64.5 (OCH2), 71.0 (spiro-C) 79.0 (CH), 102.1 (spiro-acetal C) 

and 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-cyclohexane 

Rf = 0.27 (0.34 g; 1.25 mmol; 7.9% from epoxide) was collected as a colourless viscous 

oil: υmax (CHCl3)/cm-1 2935, 2864, 1448, 1362; δH(400 MHz, 60°C CDCl3) 1.16 (3 H, t, 

J 8.0, CH3) 1.30-2.03 (18 H, m, CH2), 3.44 (1 H, dq, J 7.0 and 9.5, CH2CH3), 3.52 (1 H, 

d, J 11.5, CH2O), 3.60 (1 H, dq, J 7.0, 7.0, 7.0 and 9.5, CH2CH3), 3.80 (1 H, bs, CH), 

3.92 (1 H, d, J 11.5 CH2O), δC(100 MHz, 60°C, CDCl3); 15.5 (CH3) 20.2, 20.4, 22.4, 

22.5, 22.8, 25.1, 25.7, 28.0, 30.8, 32.6 (CH2), 62.3 (OCH2), 64.5 (OCH2CH3), 74.1 

(CH), 79.4 (spiro-C), 102.1 (spiro-acetal C); m/z 270 (M+), accurate mass 

[C15H26O4NH4]+ requires 288.2169, found 288.2171; C15H26O4 requires C 66.6% H 

9.7%, found C 66.6% H 9.9%.  

Preparation of 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

cyclopentane (149bb) and 2-(Ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-

spiro-1’’-2’’-cyclopentane (160bb) 

Cyclopentanone (0.67 g; 8.0 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-hydroxymethyl-2-ethoxycyclohexane 

oxide 148b (1.00 g; 5.3 mmol) in dry DCM (30 mL) along with tosic 

acid (50 mg). The mixture was allowed to warm up to room 

temperature and left to stir for ca. 24 hours. The solution was washed 

in turn with sat. sodium bicarbonate (30 mL) and water (30  mL) 

before being extracted into DCM (3 x 30 mL). The combined extracts 

were washed with water (10 mL) and sat. sodium chloride (10 mL) 

and dried over anhydrous magnesium sulfate before the solvent was removed under 

vacuum. The crude product was purified by flash column chromatography (1:25) ethyl 

acetate/ light petroleum 40-60°C) to afford the title compounds. 2-

(Ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-cyclopentane Rf = 

0.33 (13 mg; 0.05 mmol; 1.0% from the epoxide) as a colourless oil: υmax/cm-1 3019, 

1521, 1424, 1214 δH(400 MHz CD2Cl2) 1.14 (3 H, t, J 7.0, CH3) 1.33-1.85 (14 H, m, 
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CH2), 1.97 (1 H, m, CH2), 2.25 (1 H, m, CH2), 3.34 (1 H, m, CH2CH3), 3.41 (1 H, t, J 

3.5, CH) 3.58 (1 H, dq, J 7.0, 7.0, 7.0 and 9.4, CH2CH3) 3.90 (1 H, d, J 12.6, OCH2), 

4.27 (1 H, d, J 12.6, OCH2) δC (100MHz, CDCl3); 15.6 (CH3), 20.2, 20.6, 23.1, 23.9, 

24.1, 30.0, 37.0, 38.0 (CH2), 64.5 (OCH2CH3), 71.3 (spiro-C), 77.8 (CH), 77.7 (OCH2), 

112.3 (spiro-acetal C); m/z 256 (M+), accurate mass C15H22O4 requires 254.15181 , 

found 254.15181 and 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-cyclopenane Rf = 0.50 (0.54 g; 2.12 mmol; 13.4% from epoxide) was collected as a 

colourless viscous oil: υmax (CHCl3)/cm-1 3019, 2940, 2866, 1214; δH(400 MHz, 60°C, 

CDCl3) 1.16 (3 H, t, J 7.0, CH3) 1.23-2.27 (16 H, m, CH2), 3.45 (1 H, m, CH2CH3), 3.50 

(1 H, d, J 11.8, CH2O), 3.61 (1 H, dq, J 7.0 and 9.5, CH2CH3), 3.85 (1 H, bs, CH), 3.95 

(1 H, d, J 11.8 CH2O), δC(100 MHz, 60°C, CDCl3); 15.6 (CH3) 20.3, 23.7, 24.1, 25.1, 

27.9, 34.0, 36.0 (CH2), 64.8 (OCH2), 65.0 (OCH2CH3), 74.0 (CH), 79.2 (spiro-C), 114.1 

(spiro-acetal C); m/z 256 (M+), accurate mass C15H26O4 requires 256.1675, found 

256.1732; C14H24O4 requires C 65.6% H 9.4%, found C 65.0% H 9.6%.  

Preparation of 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

cycloheptane (149bc) 

 
Cycloheptanone (0.89g; 7.9 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-hydroxymethyl-2-ethoxycyclohexane 

oxide 148b (1.00 g; 5.3 mmol) in dry DCM (30 mL) along with tosic 

acid (50 mg). The mixture was allowed to warm up to room 

temperature and left to stir for ca. 24 hours. The solution was washed in turn with sat. 

sodium bicarbonate (30 mL) and water (30  mL) before being extracted into DCM (3 x 

30 mL). The combined extracts washed with water (10 mL) and sat. sodium chloride 

(10 mL) and dried over anhydrous magnesium sulfate before the solvent was removed 

under vacuum. The crude product was purified by flash column chromatography (1:25) 

ethyl acetate/ light petroleum) to afford the title compounds. 2-(Ethoxy)cyclohexane-1-

spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-cycloheptane Rf = 0.30 (0.44 g; 1.55 mmol; 

9.8% from epoxide) was collected as a white solid: υmax (CHCl3)/cm-1 3019, 2935, 

2864, 1217; δH(400 MHz, 60°C CDCl3) 1.16 (3 H, t, J 7.0, CH3) 1.31-2.12 (20 H, m, 

CH2), 3.45 (1 H, m, CH2CH3), 3.48 (1 H, d, J 11.5, CH2O), 3.60 (1 H, dq, J 7.0 and 9.5, 

CH2CH3), 3.80 (1 H, bs, CH), 3.90 (1 H, d, J 11.5 CH2O), δC(100 MHz, 60°C, CDCl3); 

15.5 (CH3) 20.1, 20.3, 22.2, 25.1, 28.0, 29.5, 29.6, 33.5, 35.5 (CH2), 62.5 (OCH2), 64.0 

(OCH2CH3), 74.2 (CH), 79.3 (spiro-C), 106.7 (spiro-acetal C); m/z 284 (M+), accurate 
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mass C16H28O4 requires 284.19812, found 284.19821; C14H24O4 requires C 67.7% H 

9.9%, found C 67.4% H 10.0%.  

Preparation of 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

cyclododecane (149bd) 

Cyclododecanone (0.77g; 4.2 mmol) was added to a cooled 

(-5°C) solution of 1-hydroperoxy-1-hydroxymethyl-2-

ethoxycyclohexane oxide 148b (0.80 g; 4.2 mmol) in dry 

DCM (30 mL) along with tosic acid (50 mg). The mixture 

was allowed to warm up to room temperature and left to stir for ca. 24 hours. The 

solution was washed in turn with sat. sodium bicarbonate (30 mL) and water (30  mL) 

before being extracted into DCM (3 x 30 mL). The combined extracts washed with 

water (10 mL) and sat. sodium chloride (10 mL) and dried over anhydrous magnesium 

sulfate before the solvent was removed under vacuum. The crude product was purified 

by flash column chromatography (1:25) ethyl acetate/ light petroleum) to afford the title 

compounds. 2-(Ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

cyclododecane Rf = 0.45 (130 mg; 0.37 mmol; 2.9% from epoxide) was collected as a 

colourless viscous oil: υmax/cm-1 2932, 2863, 1710, 1449, 1362; δH(400 MHz, 60°C 

CDCl3) 1.17 (3 H, t, J 7.0, CH3) 1.24-2.00 (30 H, m, CH2), 3.46 (1 H, m, CH2CH3), 3.48 

(1 H, d, J 11.5, CH2O), 3.61 (1 H, dq, J 7.0 and 9.5, CH2CH3), 3.78 (1 H, bs, CH), 3.91 

(1 H, d, J 11.5, CH2O), δC(100 MHz, 60°C, CDCl3); 15.6 (CH3) 19.2, 19.4, 20.3, 20.4, 

22.3, 22.5, 22.7, 25.2, 26.2, 26.3, 28.1, 29.7 (CH2), 62.5 (OCH2), 65.1 (OCH2CH3), 74.2 

(CH), 79.2 (spiro-C), 106.2 (spiro-acetal C); m/z 354 (M+), accurate mass 

[C21H38O4NH4]+ requires 372.3108, found 372.3113.  

 

Preparation of indane-2-spiro-3’1(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

ethoxycyclohexane (149bg) 

 

2-Indanone (0.51g; 4.24 mmol) was added to a cooled (-5°C) 

solution of 1-hydroperoxy-1-hydroxymethyl-2-

ethoxycyclohexane oxide 148b (0.80 g; 4.21 mmol) in dry DCM 

(30 mL) along with tosic acid (50 mg). The mixture was allowed to warm up to room 

temperature and left to stir for ca. 24 hours. The solution was washed in turn with sat. 

sodium bicarbonate (30 mL) and water (30  mL) before being extracted into DCM (3 x 

30 mL). The combined extracts washed with water (10 mL) and sat. sodium chloride 
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(10 mL) and dried over anhydrous magnesium sulfate before the solvent was removed 

under vacuum. The crude product was purified by flash column chromatography (1:25) 

ethyl acetate/ light petroleum) to afford the title compounds. Indane-2-spiro-

3’1(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-ethoxycyclohexane Rf = .26 (66 mg; 0.22 mmol; 

1.7% from epoxide) was collected as a colourless viscous oil: υmax/cm-1 2935, 2864, 

1448, 1362; δH(400 MHz, 55°C, CDCl3) 1.25 (3 H, t, J 7.0, CH3) 1.3-2.0 (8 H, m, CH2), 

3.26 (4 H, m, CH2Ph), 3.50 (1 H, dq, J 7.0and 9.5, CH2CH3), 3.55 (1 H, m, CH2O), 3.60 

(1 H, m, CH2CH3), 3.65 (1 H, bs, CH), 4.08 (1 H, d, J 11.8, CH2O), 7.15 (4 H, m, Ph-

H), δC(100 MHz, 55°C, CDCl3); 15.6 (CH3) 20.3, 24.8, 27.9, 29.7, 44.6, 45.1 (CH2), 

64.8 (OCH2), 65.1 (OCH2CH3), 79.1 (CH), 79.4 (spiro-C), 112.8 (spiro-acetal C) 124.6, 

124.8 (Ph-H), 138.9, 139.5 (Ph, qC); m/z 304 (M+), accurate mass [C18H24O4NH4]+ 

requires 322.2013, found 322.2011; C18H24O4 requires C 71.0% H 7.9%, found C 70.7% 

H 8.4%.  

 

Attempted preparation of 2-(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-

spiro-1’’-2’’-1’’’,4’’’-dioxaspiro[4.5]decane (149be) and 2-(ethoxy)cyclohexane-1-

spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-1’’’,4’’’-dioxaspiro[4.5]decane (160be) 

 

1,4-Dioxaspiro[4.5]decan-8-one (0.79 g; 4.2 mmol) was added to 

a cooled (-5°C) solution of 1-hydroperoxy-1-hydroxymethyl-2-

ethoxycyclohexane oxide 148b (0.80 g; 4.2 mmol) in dry DCM 

(30 mL) along with tosic acid (50 mg). The mixture was allowed 

to warm up to room temperature and left to stir for ca. 24 hours. 

The solution was washed in turn with sat. sodium bicarbonate 

(30 mL) and water (30  mL) before being extracted into DCM (3 

x 30 mL). The combined extracts were washed with water (10 

mL) and sat. sodium chloride (10 mL) and dried over anhydrous 

magnesium sulfate before the solvent was removed under vacuum. The crude product 

was purified by flash column chromatography (1:5, ethyl acetate/ light petroleum) to 

afford the title compounds. 2-(Ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-

spiro-1’’-2’’-1’’’,4’’’-dioxaspiro[4.5]decane Rf = 0.40 (45 mg; 0.14 mmol; 1.1% from 

the epoxide) as a colourless viscous oil: δH(400 MHz, CDCl3) 1.13 (3H, t, J 8.0, CH3) 

1.22-2.22 (16 H, m, CH2), 2.42 (4 H, m, CH2), 3.35 (1 H, m, CH), 3.43 (1 H, m, 

CH2CH3), 3.61 (1 H, m, CH2CH3), 3.90 (1, H, d, J 12.6, OCH2), 3.93 (4 H, s, 

OCH2CH2O), 3.98 (1 H, d, J 12.6, OCH2), 4.28 (1 H, d, J 12.6, OCH2) 4.37 (1 H, d, J 
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12.6, OCH2) δC (100MHz, CDCl3); 15.5 (CH3) 19.0, 19.4, 23.7, 25.3, 25.5, 27.6, 27.8, 

30.6, 30.7, 30.8, 36.4, 36.5 (CH2), 62.4, 62.7, 64.2, 64.3, 64.8, 64.8 (CH2) 76.5, 76.7 

(CH), 78.3, 78.8 (spiro-C), 108.3, 108.2,  101.3, 100.6, 130 (qC) 210.1 (C=O) and 2-

(ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-1’’’,4’’’-

dioxaspiro[4.5]decane Rf = 0.29 (0.25 g; 0.76 mmol; 6.0% from epoxide) was collected 

as a colourless viscous oil: δH(400 MHz, CDCl3) 1.15 (3 H, t, J 7.0, CH3) 1.22-1.82 (16 

H, m, CH2), 2.41 (4 H, m, CH2),  3.35-3.69 (6 H, m), 3.92 (4 H, s, OCH2CH2O), 4.03 (1 

H, d, J 12.0, CH2O), δC(100 MHz, CDCl3); 15.5 (CH3) 19.0, 19.4, 23.7, 25.3, 25.5, 27.6, 

27.8, 30.6, 30.7, 30.8, 36.4, 36.5 (CH2), 62.4, 62.7, 64.2, 64.3, 64.8, 64.8 (CH2) 74.1 

(CH), 79.2 (spiro-C), 108.3, 101.2, 100.5 (qC) 209.8 (C=O).  

 

Preparation of cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-(2’’-

ethoxycyclohexaneone (149bf) 

2-(Ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-

2’’-1’’’,4’’’-dioxaspiro[4.5]decane 148bf (251 mg, 0.88 mmol) in 

acetone (10 mL) was treated with tosic acid (0.52 g, 2.70 mmol) 

and continuously stirred overnight at r.t. The product was extracted 

using ethyl acetate (3 x 20 mL) and the combined extracts were washed with sat. 

sodium bicarbonate (10mL) and sat. sodium chloride (10 mL). After drying with 

magnesium sulfate, the solvent was evaporated. Incomplete reaction meant the reaction 

was repeated for a further 24 hours. The crude product was purified by flash column 

chromatography (1:5 ethyl acetate/ light petroleum) to afford the title compound. 

Cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-(2’’-

ethoxycyclohexaneone Rf = 0.30 (88 mg; 0.31 mmol; 35.2%) was collected as a 

colourless viscous oil: δH(400 MHz, 60°C, CDCl3) 1.26 (3 H, t, J 7.0, CH3) 1.33-1.82 

(10 H, m, CH2), 2.16 (2 H, m, CH2), 2.40 (4 H, m, CH2), 3.44 (1 H, dq, J 7.0, 7.0, 7.0 

and 9.5, CH2CH3), 3.57 (1H, d, J 11.8, CH2O), 3.62 (1H, m, CH2CH3), 4.02 (1H, d, J 

11.8 CH2O), δC(100 MHz, 60°C, CDCl3); 15.4 (CH3), 19.1, 19.5, 20.1, 20.3, 25.0, 27.9, 

36.4, 36.4 (CH2), 62.9 (CH2O), 64.9 (CH2), 73.8 (CH), 79.8 (spiro C) 100.7 (spiro-

acetal C), 209.3 (C=O). 
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Preparation of cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-(2’’-

ethoxycyclohexanone (160bf) 

2-(Ethoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-2’’-

1’’’,4’’’-dioxaspiro[4.5]decane 160bc (45 mg, 0.16 mmol) in acetone 

(10 mL) was treated with tosic acid (0.12g, 0.6 mmol) and 

continuously stirred overnight at r.t. The product was extracted using 

ethyl acetate (3 x 20 mL) and the combined extracts were washed with 

sat. sodium bicarbonate (10mL) and sat. sodium chloride (10 mL). After drying with 

magnesium sulfate, the solvent was evaporated. Incomplete reaction meant the reaction 

was repeated for a further 24 hours. The crude product was purified by flash column 

chromatography (1:5 ethyl acetate/ light petroleum) to afford the title compound. 

Cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-(2’’-

ethoxycyclohexanone Rf = 0.50 (25 mg;  0.88 mmol; 64.1%) was collected as a 

colourless oil: υmax (CHCl3)/cm-1 3019, 1214, 1716  δH(400 MHz CDCl3) 1.15 (3 H, t, J 

7.0, CH3) 1.19-1.77 (10 H, m, CH2), 2.04 (1 H, m, CH2), 2.16 (1 H, m, CH2), 2.42 (4 H, 

m, CH2), 3.35 (1 H, m, CH), 3.37 (1 H, m, CH2CH3), 3.59 (1 H, dq, J 7.0, 7.0, 7.0, 9.3 

CH2CH3), 3.98 (1 H, d, J 12.7, OCH2), 4.37 (1 H, d, J 12.7, OCH2) δC (100MHz, 

CDCl3); 15.6 (CH3), 20.1, 20.9, 24.9, 31.8, 33.5, 34.6, 36.9, 37.1, 37.2 (CH2), 64.6 

(CH2), 71.7 (spiro C), 76.4 (CH2O), 78.8 (CH), 100.6 (spiro-acetal C), 210.2 (C=O); 

m/z 284 (M+), accurate mass C15H24O5 requires 284.16181, found 284.16183 
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In this review a number of different synthetic routes to macrocyclic lactones will be 

outlined, including ring closure, ring contraction and ring expansion reactions. 

Particular emphasis will be given to the synthesis of macrolides through radical 

processes. 

 

The term macrocycle refers to medium to large ring structures of greater than 9 atoms. 

Macrocycles which contain one or more ester linkages are generally referred to as 

macrolides or macrocyclic lactones.  Macrolides occur widely in nature and have been 

seen to exhibit a wide range of pharmaceutical applications.1,2 They have been used as 

antibiotics since the 1950s after isolation of the first macrolide antibiotic, picromycin 

(1), from an actinomyces culture.3 Macrocylic lactones erythromycin (2) and 

oleandomycin (3) are still used as antibiotics, and also have also been reported to have 

other therapeutic benefits including anti-tumour and more significantly, anti-HIV 

properties.1,2 The natural product, racicol (4), has also shown good anti-tumour 

properties and a derivative of radicicol is currently in phase II clinical trials.2 There 

have been extensive reviews on the synthesis of antibiotic macrolides particularly 

derivatives of erythromycin and the total synthesis of macrolide natural products.4,5,6 

 

3 Oleandomycin2 Erythromycin

O O

O

O

O

O

OH

(H3C)2N

1 Picromycin

O

H3C O

OH

CH3

H3C

H3C
CH3

H3C

O
O

O
O

CH3

NHO

O

O

H3C

CH3

CH3

OCH3

OH

O

H3C

OH

CH3

H3C
CH3

H3C

O
O

O

O

O

O CH3

H3CO

HO

CH3

CH3

CH3

CH3

N CH3

CH3

OHO

HO Cl O

O

O

H

4 Radicicol

O

O

5 Exaltolide

O

O

6 Ambrettolide  
 

As well as pharmaceutical applications, macrolides exaltolide (5) and ambrettolide (6), 

first isolated from angelica root and ambrette seed oil respectively, have been used as 

components of musks or fragrances.7 Although macrolides were one of the first 
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examples of macrocyclic musks, their limited availability from natural sources plus the 

cost of manufacture meant that they were rarely used as a component in musks. The use 

of macrocycles as musks however is a growing market. In 1998 around only 25% of all 

musks or fragrances contained a macrocycle. This figure is expected to rise to around 

65%.8 

Synthetic routes to macrolides 

 
Since the synthesis of macrocyclic lactones has been extensively researched,9,10,11 this 

review is only intended to give a short overview of selected synthetic methods of 

macrocyclic lactones. 

 

There are three basic principles by which macrolides are formed;  

i) ring closure  

ii) ring contraction 

iii) ring expansion 

 

By far the most commom route for macrolide synthesis is by ring closure of a long 

chain either to form the ester linkage in an intramolecular estertification or with a pre-

formed ester linkage e.g. by ring closure metathesis or Diels-Alder reaction. Routes 

involving intramolecular Diels-Alder reactions and ring contraction metathesis have 

been used to form the required macrolides from larger ringed compounds. Ring 

expansion reactions can also be used to synthesise macrolides. Ring expansion by 

thermolysis or oxidation reactions has allowed macrolides to be produced from fused 

bicyclic and smaller ringed compounds. Alternatively, the production of oxygen-centred 

radicals by either thermolysis or pyrolysis, or the use of hypervalent iodine has enabled 

the production of macrolides via radical mechanisms. 

 

i) Ring closure  

Ring closure to macrolides through esterification 

 

The most widely used method for macrolide synthesis is intramolecular esterification of 

a long-chained hydroxyl carboxylic acid 7 (Scheme 1). On its own, this approach is 

insufficient for the synthesis of macrolides with high temperatures and very dilute 

solutions required to prevent condensation polymerization. Although activation of the 
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functional groups promotes the reaction producing the macrolide 8, most activated 

systems still form varying yields of cyclic dimer even when using very dilute reaction 

conditions.   

 

 
Scheme 1 

 

The activation of both the carboxyl group and the alcohol group greatly improves the 

esterification, e.g the Corey double activation macrolactonization is outlined in Scheme 

2. In this example, 2,2’-dipyridyl disulfide (10) is used as the activating agent to form 

the thionyl ester 11 from 9. After proton transfer from the hydroxyl group to the 

pyridine ring, nucleophilic attack of the oxygen anion on the carbonyl group carbon 

results in cyclisation of 12 to 13 without further need for either acid or base catalysts. 

The hydrogen bond between the carbonyl group and the pyridinium hydrogen atom 

creates a rigid pseudo-6-membered ring in 12 which allows the oxygen anion greater 

access for nucleophilic attack in the carbonyl group. This method was demonstrated by 

the synthesis of 12-, 13-, 14-, and 16-membered marolides in 47-80% isolable yield. 12 

 

 
Scheme 2 

 

The addition of 1-methyl-2-chloro-pyridinium iodide (15) to the ω-hydroxycarboxylic 

acid in the presence of triethylamine does a similar job of activating the carboxylic acid 

(Scheme 3). Thus 15 reacts with the substrate to produce 12- (n= 10), 13- (n=11) and 

16-membered (n=14) macrolides in 61%, 69% and 84% yield respectively.13 
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Scheme 3 

 

The Mitsunobu lactonization reaction uses the activation of the hydroxy group of the ω-

hydroxycarboxylic acid by the formation of a dipolar alkoxylphosphonium salt (16) 

(Scheme 4). This is achieved through reaction of the hydroxy acid, Ph3P, and diethyl 

azodicaroxylate (DEAD) which brings the two reaction sites closer together and enables 

an SN2 displacement giving the lactone product 17 with inversion of configuration at the 

alcohol. Although the reaction takes up to 2 days to go to completion and requires high 

dilution conditions, the reaction is generally milder with no heating required. This 

procedure was used to make the 13-membered (n= 11) macrolide in 63% yield.14 

 

 

 
Scheme 4 

 

Mixed anhydrides generated in situ from the carboxyl group have also been used as 

intermediates in the synthesis of macrocyclic lactones. The anhydride reacts with the 

hydroxyl group under base catalysis leading to lactonization as outlined in Scheme 5. 

One such method is the Yamaguchi lactonization where the esterification consists of 

two steps: the formation of the mixed anhydride 18, and the intramolecular alcoholysis 

of the anhydride to form macrolide 17. Following a test of different mixed anhydrides, 

2,4,6-trichlorobenzoyl chloride (19) proved to be the most efficient with a fast reaction 

rate and almost quantative conversion to the lactone after 150 minutes. Further to this, it 

acts as a good leaving group and is sterically hindered towards nucleophilic attack. This 

reaction was used to form 9- (n= 7), 12- (n= 10) and 13-membered (n= 11) in 36, 48 and 

67% yield respectively.15 
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Scheme 5 

 

A variety of further routes exist where the activation of either the hydroxyl group or the 

carboxylic acid promotes the formation of macrocyclic lactones, e.g. 4-

(trifluoromethyl)benzoic anhydride,16 or scandium triflate,17 or di-2-thienyl carbonate.18  

 

Ring closure to macrolides through ring closure metathesis (RCM) 

 

Ring closure metathesis (RCM) has also been adapted for the synthesis of macrolides.19 

RCM is simply an intramolecular olefin metathesis of a long chain bis-unsaturated 

compound. If the long chain contains an ester group, the product would be a macrolide. 

RCM uses a ruthenium-based catalyst, Grubbs’ catalyst 21, or similar. Scheme 6 

outlines the catalytic cycle by which it creates a new bond whilst regenerating the 

catalyst.20 

 

 
Scheme 6 

 

The musks, exaltolide (5) and ambrettolide (6) have been prepared by RCM (Scheme 7). 

For example, exaltolide (5) was obtained by the metathesis of the diene ester 20 using a 

ruthenium catalyst 21. This produces the unsaturated macrolide 22 (E/Z 46:53) which is 

hydrogenated to produce exaltolide (5). Exaltolide is now a widely used musk and is 

produced in upwards of 200 tonnes per year.21 
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Scheme 7 

 

RCM was proposed as a possible synthetic route to the natural product e.g. 

amphildinolide W (25). Although the substrate looks like a good candidate RCM to a 

12-membered ring the reaction was competing with another RCM to form a 17-

membered ring exclusively (Scheme 8).22 This reaction was said to be more favourable 

due to entropic factors and the ring strain dictating that the formation of 12-membered 

rings is less favourable than the 17- membered ring.  
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Scheme 8 

 

Both first- and second-generation Grubbs’ catalysts have been used in Scheme 8. The 

addition of the first-generation catalyst 20 required Ti(OiPr)4 as a Lewis acid to produce 

24 in a 60% yield. When no additive was used, no reaction took place. Addition of the 

second-generation catalyst 26 required no additives and increased the yield of 24 to 

82%. 
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RCM has been used successfully in the key cyclisation step in the synthesis of 

salicylihalamide (29), a potential antitumour compound (Scheme 9). RCM is more 

effective than other methods because it provides an effective way of locating the alkene 

functionality in 28. The RCM proceeds in varying yields with E-:Z- selectivity 

depending on the nature of R. When the phenolic OH group is protected by a methyl 

ether, the reaction proceeds in 89% yield with a E/Z ratio of 18:1. However in the 

unprotected model the yield falls to 41% and the E/Z ration changes to 1:3 in favour of 

the unwanted Z isomer. Although the reaction gives a lower yield, further investigation 

into the influences of protecting groups at the second alcohol group showed that the 

unprotected alcohol gives a 29:1 E/Z ratio.23 

 

 
Scheme 9 

 

Ring closure via Diels-Alder reaction 

 

An intramolecular Diels-Alder reaction which in turn ring closes a large chain can also 

be used in the synthesis of large-ringed lactones. The synthesis of the basic ring 

structure of cytohalasans, a group of fungal metabolites, has been achieved. Although a 

5% yield of the regioisomer 32 was also formed in the reaction of 30, the intramolecular  

cycloadduct containing the basic structure of cyctohalsan B 31 was isolated in  27% 

yield (Scheme 10).24 
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Scheme 10 

 

In a more selective intramolecular cycloaddition reaction, some 11-membered lactones 

have been formed as illustrated in Scheme 11. The reaction of 33 via an intramolecular 

Diels-Alder reaction produced 34 in high exo-/endo- selectivity whilst isomer 35 is not 

isolated in any measurable quantity form the reaction. Replacement of the methyl group 

with an isopropyl group or tert-butyl group sees the selectivity decrease. Subsequent 

reaction with NaOMe to open the more strained lactone group at the bridge-head 

produced the 11-membered lactone 36.25,26 

 

 
Scheme 11 

 

ii) Ring contraction  

Ring contraction to yield macrolides 

 

The use of ring contraction to yield macrolides is relatively rare as they would require 

larger ringed precursors. Early ring contractions focused on the production of 10- to 13-

membered macrolides from the treatment of erythromycin with either acid or base.27,28 
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Recently, ring contraction has been achieved using ring-opening-ring-closing metathesis 

of conjugated dienes via the removal of a C2H2 unit.29 Treatment of the 16-membered 

macrolide, josamycin (37), with Grubbs’ second-generation catalyst30 in 1-hexene 

afforded the corresponding ring-contracted macrolide 38 in high yield (Scheme 12) 

(Table 1). Although transformations using Grubbs first-generation catalyst were 

unsuccessful, the procedure offers a synthetic route from larger ring structures 

containing a conjugated dienyl system to new antibiotics, several of which exhibited 

similar biological effects to 37.  
 

 
Scheme 12 

 

 

 

 

 
Table 1: Percentage yields for ring-opening-ring-closing metathesis in Scheme 12 

 

Additionally, 14- and 16-membered macrolides were shown to contract via a five- 

centre, five-electron transition state yielding 13- and 15- membered macrolides via the 

β-(alcyloxy)alkyl migration of the ester group.31 The macrolide undergoes tin hydride 

mediated dehalogenation to produce the carbon-centred radical required for the 

migration (Scheme 13). 

 

 
Scheme 13 

 

X Y R1 R2 Yield 

H OH COMe Me 78% 

H OH H H 65% 

OH H COMe Me 42% 
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Intramolecular Diels-Alder reactions have also been shown to be useful for the 

contraction of large-ringed macrolides.32 Macrolactonization of 39 produced three 

products, the expected 18-membered ring 40 and two additional 10-membered ring 

products 41, 41a (Scheme 14). The lower yield of isomer 41a demonstrates the 

stereoselectivity of the intramolecular Diels-Alder process and is further highlighted 

when, under forcing conditions, 40 further reacts via the intramolecular Diel-Alder 

reaction to form 41 in good yield as the sole product. In a further extension to this work 

the intramolecular Diels-Alder ring contraction has been used in the synthesis of (+)-

Superstolide33 and (-)-Spinosyn A.34 

 

 
Scheme 14 

 

iii) Ring expansion  

Ring expansion to macrolides 

 

One of the more obvious ring expansion routes to large macrolides is via a Baeyer-

Villiger oxidation of large cyclic ketones as outlined in Scheme 15. There are recent 

examples of the synthesis of (R)-12-methyltridecanolide (44) and (S)-muscolide (47) by 

the Baeyer-Villiger oxidation of macrocyclic ketones 43 and 46 respectively. The 

reaction however formed two regioisomers of each product in a 70:30 44:45, 86% yield 

((R)-12-methyltridecanolide (44)) and 80:20 47:48, 80% yield ((S)-muscolide (47)).35 
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Scheme 15 

 

Thermolysis of a neat sample of the 12-membered ring macrolide isomigrastatin (49) 

yielded the 14-membered ring macrolide migrastatin (50) via a [3,3]-sigmatropic 

rearrangement (Scheme 16). Attempts to carry out the reaction in various solvents (such 

as toluene, DMF, DMSO, and mineral oil) gave a complex mixture of products. The 

scope of the reaction was demonstrated with six further examples of the 

rearrangement.36 

 

 
Scheme 16 

 

Macrolides can be formed in moderate yield by a 4-step route from either 

cyclopentanone (51) or cyclohexanone (Scheme 17).37 A series of ring expansion 

reactions takes place from 52 to ultimately produce large-ringed macrolide 55. 

Oxidative cleavage of 53 using ceric ammonium nitrate creates the 9-membered 



Chapter Two  Introduction 
 

 141 

macrolide 54 which on subsequent catalytic hydrogenation followed by intramolecular 

trans esterification produces the 11-membered macrolide 55 in moderate yield. This 

method has been used to create a series of macrolides with ring sizes ranging from 9- to 

12-member. 

 

 
Scheme 17 

 

Another ring-expansion procedure utilizes the oxidative cleavage of an enol ether 

double bond by ruthenium tetroxide (Scheme 18).38 Following the alkylation of 

cyclononanone (56) and acid-catalysed cyclization to the enol ether (R)-57, oxidative 

cleavage of the enol ether double bond with ruthenium tetroxide/ sodium periodate 

gives the 13-membered keto lactone 58 (80% yield) which was then reduced to the 

target compound (R)-59. Investigations of (R)-59 noted a more intense smell than 

previously analysed (S)-59 demonstrating that the enantiomers of musks hold different 

the sensory properties. 

 

 
Scheme 18 

 



Chapter Two  Introduction 
 

 142 

Macrocyclic lactones via radical ring expansion 

 

Macrolides may also be obtained by intramolecular cyclisation of radicals derived from 

the unsaturated hydroperoxy acetals (61) (Scheme 19). Hydroperoxy acetal 61, 

synthesised via the ozonolysis of vinyl ether 60, was treated with iron(II) sulfate and 

copper(II) chloride to give macrolide 63, R=H in 49% yield. From 61, R=Me the 

macrolide was obtained in 35% yield. The formation of the macrolide suggests that the 

intermediate oxy radical undergoes β-scission of the six-membered ring followed by an 

intramolecular radical cyclisation and chlorination by CuCl2 to give macrolide 63. In the 

absence of copper (II) chloride, significant quantities of the dimeric macrolides 64 were 

obtained instead.39 

 

 
Scheme 19 

 

In an alternative approach, hypervalent iodine compounds have been reacted with 

hemiacetals to generate oxy radicals. The photolysis of hemiacetals 65 and 68 using 

visible light with a small excess of DIB (diacetoxyiodobenzene) in the presence of 

stoichiometric quantities iodine (I2) produced 9- and 10-membered lactones (Scheme 

20). The iodine was deemed essential since no reaction was observed when in the 

absence of iodine whereas a catalytic quantity of iodine produced only 30% conversion 

after 2 hours (Table 2).40 
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Scheme 20 

 

 

Hemiacetal DIB/ mmol Iodine/ mmol Products 

65 1.1 1 66 (45%), 67 (40%) 

65 1.1 0 No reaction 

65 1.1 0.1 66 (13%), 67 (12%), 65 (70%) 

68 1.2 1.4 69 (33%), 70 (17 %), 71 (33 %) 

Table 2: Percentage yields of products derived form 65 and 68  

 

 

The photolysis of the steroidal alcohol 72 with a protected side chain in the presence of 

HgO/I2 gave the 10-membered ring ketone 73 in 85% yield (Scheme 21). In contrast, the 

use of DIB/I2 in this reaction produced no product. Hydrolysis of acetate 72 with 

saturated methanolic solution of NaHCO3 at 0°C gave the hemiacetal 73a in 99% yield. 

Subsequent photolysis of the hemiacetal 73b using HgO/I2 afforded a mixture of 

macrolides 74 in 30% yield. Catalytic hydrogenation of the mixture over PtO2 gave the 

13-membered ring macrolide 75 in 75% yield.41  
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Scheme 21 

 

Macrocylic lactones from dispiro-1,2,4,5-tetroxanes 

 

The thermolysis of dimeric and trimeric cyclic peroxides derived from cyclic ketones 

has been shown to be a quick synthetic route to macrocyclic lactones (Scheme 22).42 

Symmetrical dispiro-1,2,4,5-tetroxanes such as 77 were synthesised by the acid-

catalysed reaction of the appropriate cyclic ketone with hydrogen peroxide.43 The 

thermolysis of 77 at 150°C for 30 minutes afforded a mixture of cyclododecane (78) 

(44%), undecanolide (79) (23%) and cyclohexanone (76) (21%).44 The reaction 

produced better yields when the peroxide was dissolved in a high boiling hydrocarbon 

solvent at a concentration of 5-10 wt%. At higher concentrations, lower yields of 

macrolide were obtained due to the formation of polymeric material.45  

 

 
Scheme 22 

 

Tricyclohexylidene triperoxide (80) has also been shown to decompose on thermolysis 

at 180 °C to give a mixture of cyclopentadecane (81), 16-hexadecanolide (82), 

cyclohexanone (76) and a small amount of the isomeric dilactones (Scheme 23).44 
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Scheme 23 

 

The synthetic usefulness of this reaction is heavily dependant on the availability of the 

required 1,2,4,5-tetroxane. However, different 1,2,4,5-tetroxane derivatives may 

decompose to give the same product. Thus synthesis of unsymmetrical and even 

substituted46 diperoxides and triperoxides allowed access into a range of macrocycles 

C8 to C33.47 

 

 

The mechanism for the decomposition of dispiro-1,2,4,5-tetroxanes proceeds via the 

homolytic cleavage of the O-O bond producing the oxy bi radical 83 (Scheme 24). 

Concerted double β-scission of the C-C bonds produce alkyl biradical 84 which 

undergoes radical recombination to produce the cyclic diacyl peroxide 85. Further 

decomposition via homolytic cleavage of the O-O bond in 85 followed by loss of one or 

two molecules of carbon dioxide produced 78 and 79 respectively.  The regeneration of 

the cyclohexanone (76) can be explained via a double β-scission of the C-O bonds in 83 

to release oxygen molecule plus two molecules of ketone 76. The decomposition of 80 

proceeds in a similar fashion. 

 

 
Scheme 24 
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Macrocyclic lactones from dispiro-1,2,4-trioxanes 

 

By analogy with the decomposition of dispiro-1,2,4,5-tetroxanes, it was anticipated that 

the thermal decomposition of dispiro-1,2,4-trioxanes 86 could provide macrocyclic 

compounds. With only one peroxide bond further decomposition of any cyclic 

intermediates releasing carbon dioxide to form cyclic alkanes would be prevented. In 

addition, the cyclic keto lactones 90 have additional functionality which would allow 

further manipulation e.g the keto group. Additionally the ability to synthesise 

unsymmetrical dispiro-1,2,4-trioxanes allows access to a wider range of ring systems.  
 

 
Scheme 25 

 

Although the initial step is the homolytic cleavage of the peroxide bond in 86 to form an 

oxy-biradical 87, the reaction products obtained seem to be indicate that the ring 

opening of ring C is occurring without the ring opening of ring A. Thus as well as the 

production of the desired macrocyclic keto lactone 90, there is also the production of the 

oxolactone 91 (Scheme 25) (Table 3).48 The formation of the oxalactone 91 suggests 

that the β-scission of rings A and C is stepwise rather than simultaneous thus the β-

scission of ring C forming 88 and recombination with the oxy radical is occurring faster 

than the β-scission of ring A. The relative quantities of keto lactone and oxalactone vary 

with the nature of the α-substituent on ring A indicating it must have an effect on the 

rate of opening of ring A. When R= H, the keto lactone 90 is only obtained when ring C 

is a 12-membered ring. This is thought to be due to the size and flexibility of the ring 

preventing efficient recombination and giving the system time to undergo the β-scission 
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of ring A.  When R=H and ring C is 5-, 6-, or 7-membered, only oxolactone 91 and the 

fragmentation products are formed. In contrast, when R is a methyl group, there is a 

move to increasing yields of keto lactone 90 indicating that the opening of ring A is 

more competitive with that of C. The formation of oxalactone 91 for methyl-substituted 

dispiro-1,2,4-trioxanes is still the preferred reaction route. In fact the thermolysis of a 

methyl-substituted dispiro-1,2,4-trioxane with an indanylidene ring C formed the 

exclusive formation of the corresponding oxalactone 91.49 The unsaturated hydroxyl 

ester 89 has also been isolated from the thermolysis of methyl-substituted cases and is 

thought to be due to a intramolecular 1,8-hydrogen abstraction process. Similar to 

dispiro-1,2,4,5-tetroxanes, the thermolysis of dispiro-1,2,4-trioxanes results in some 

total fragmentation into the corresponding ketones and formaldehyde as judged by GC 

analysis of the thermolysate. 

 

 
 

 

 

 

 

 

 

 

 

 
Table 3: Percentage yields of products derived from the thermolysis of unsubstituted and methyl-

substituted dispiro-1,2,4-trioxanes 
 

 

 

 

 

 

 

 

   Yields of each product/ % 

 R n Keto lactone Oxalactone Alkene 

86ab H 5 - 25 - 

86aa H 6 - 24 - 

86ac H 7 - 26 - 

86ad H 12 18 - - 

86bb Me 5 15 15 20 

86ba Me 6 15 22 - 

86bc Me 7 15 25 6 
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Structure of macrocyclic lactones 

 

Large ringed macrolides can adopt a variety of different conformations depending on 

the substitution patterns of the ring themselves. This is due to the many degrees of 

freedom each structure possesses resulting in many different conformations being close 

in energy.  

 

This review will concentrate on the structure and conformations of 13- to 15-membered 

ring structures. The structural studies of 14-membered rings have been extensively 

covered due to many naturally occurring macrocycles being 14-membered rings and the 

‘diamond-like’ packing of the rings. In contrast odd-numbered 13- and 15-membered 

cyclic systems rings have been studied less with very few X-ray crystal structures 

having been determined. 50 

 

Early structural studies of macrocycles by X-ray crystallography, NMR experiments 

and semi-empirical molecular mechanics suggest the large rings try to avoid as much 

torsion strain (Pitzer strain) by opening certain CCC bond angles even at the expense of 

the increase angle strain (Baeyer strain). Whilst studying large ringed structures, Dale 

found that a completely strain-free conformation is possible for 14-membered rings51 

whilst 13- and 15-membered rings were never formed without some strain. 

Investigation of the conformational energies of large rings suggested that the lower 

energy conformations have as many torsion angles close to 180° with gauche 

interactions also required to form corners. From the initial studies of the conformation 

of 14-membered rings, Dale proposed that the conformations would be superimposable 

on a diamond lattice framework, such as a [4343] conformation.52 NMR studies also 

suggested that a 14-membered ring was in a [4343] rectangular conformation. This 

conformation has four chemically individual carbons A-D in a 1:2:2:2 ratio (Figure 1).  

 

 
Figure 1: Conformation of a 14-membered ring indicating 4 chemically different carbons 
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Although room temperature 13C NMR spectrum of cyclotetradecane consisted of a 

single signal, the 13C NMR spectrum at -132°C contained 3 lines in approximate ratio of 

4:1:2. It was suggested that two of the signals had such a small chemical shift difference 

that they had overlapped.53 

 

Dale also proposed that whilst 14-membered cycloalkanes have rectangular 

conformations, 13- and 15- membered homologues have more strained quintangular 

conformations. The calculated favoured conformation for simple 13-15 membered 

cycloalkanes are listed in Table 4.54 In this study, Dale also found two low-energy 14-

membered ring conformations which were not based on the diamond lattice. These were 

[4433] conformations, with a strain energy of 1.1 kcal mol-1 and 2.4 kcal mol-1 relative 

to the [4343] conformation. These conformations proved to be lower in energy than any 

other diamond-lattice based 14-membered ring with the exception of [4343]. The most 

stable conformation of a 14-membered ring was confirmed as a rectangular [4343] by 

analysis of the X-ray crystal structures of cyclotetradecane55 and cyclotetradecanone.56  

 

Cycloalkane Conformation 

Cyclotridecane [12433] 

Cycletetradecane [3434] 

Cyclopentadecane [33333] 

Table 4: The conformations are represented by a shorthand notation first used by Dale where the 

numbers in the brackets represent the number of atoms between the corners of the molecule.57 

 

Force field calculations showed that there were major differences in the energies of the 

possible conformations of cyclotridecane with the [13333] conformation being the 

lowest in energy (Figure 2).58 In the same study, however, the conformation of the 15-

membered ring was confirmed as [33333]. X-Ray crystal structure determinations of a 

13-membered nitrogen-containing macrocycle59 as well as a 13-membered ring 

macrolide39 confirm the preference for [13333] over [12433]. However, other 13-

membered ring structures have also been reported as adopting [337] triangular 

conformations.60,61,62 Although the lowest energy form of cyclopentadecane was 

calculated as the quinquangular conformation [33333], X-ray structural determination 

has indicated the presence of a quadrangular form [3444]63 not investigated by Dale in 

his original study. Further 15-membered ring structures have also been reported as 

[13353]64 and [12345]65 conformations. The different conformations observed for these 
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structures are consistent with the flexibility of their macrocyclic systems and hence 

many local minima are possible.  

 

[4433][4343]

[13333] [12433] [337]

[33333] [13353] [12345] [3444]

15

13

14

 
Figure 2: Conformations of 13-, 14-, and 15-membered rings using Dales numencleture 57 

 

 

The replacement of one of the ring CH2 groups in a cycloalkane with oxygen, nitrogen 

or a carbonyl group has little effect on the conformation of the rings.53 Generally sp2-

carbonyl group carbons are located at facial rather than corner positions,66 because this 

helps to reduce repulsive gauche interactions between methylene groups.67 This is 

highlighted by the [4343] conformation of 1,3,8,10-tetraoxacyclotetradecane in which 

the carbonyl groups are in facial positions (Figure 3).68  

 

MM2 calculations also clearly indicated that the oxygen atom in 14-membered 

macrocyclic ethers tend to prefer a position in the middle of a face in the structure. The 

structural simulation also identified four other conformations within 2 kcal mol-1 of the 

[4343] global minima. These local minima included a [4433] conformation at 0.99 

kcal mol-1 in which the oxygen atom was located in the centre of a face (Figure 3).69  
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Figure 3: Conformations of ether containing 14-membered rings using Dales numencleture 57 

 

 

Moreover, the substituents e.g. alkyl groups, on a large ring can only occupy an exterior 

position of the face to avoid transangular interactions.70 However, the introduction of a 

geminally substituted ring atom forces the molecule to adopt a conformation where the 

di substituted ring atom occupies a corner position (Figure 3) because this is the only 

part of the structure where both substituents occupy an exterior position and 

consequently do not experience severe transannular interactions.71,72
 Depending on the 

rest of the molecule, this can force the large ring into otherwise unfavoured 

conformations. For example, introducing a geminally substituted carbon atom into the 

14-membered ring ether would affect the conformation of the molecule where the 

spacing between the ether oxygen and the geminally substituted carbon is either 4 or 7 

atoms apart. This would mean that both geminally substituted carbon and ether oxygen 

atom would be located at corner positions. In this case, molecular mechanics 

calculations found that the lowest conformation was [22334] whilst the [22244] and 

[3344] conformations where within 0.7 kcal mol-1. The [3434] diamond lattice 

conformations were much higher in energy at 1.97 kcal mol-1.73  
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In a similar study into the conformation of macrolide (12R)-12-methyl-13-tridecanolide, 

the global minimum was shown to be a [3434] conformation with the methyl in the 

corner position (Figure 4). Interestingly the closest [3344] conformation was only 0.43 

kcal mol-1 higher in energy with the methyl group in the same place. Only a small 

change in the ring conformation is required for the interconversion of their 

conformations.74 

 

 
Figure 4: Conformations of a 14-membered macrolide using Dales nomenclature 57 
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Thermolysis of dispiro-1,2,4-trioxane as a route to macrocyclic compounds 

 
As found previously,48,49 the thermolysis of dispiro-1,2,4-trioxanes 86aa-ac and 86ba-

bc showed a preference for the production of oxalactones 91a,b via radical 

rearrangement reactions. The formation of oxalactone demonstrates that β-scission of 

ring A is less favourable than β-scission of ring C for unsubstituted dispiro-1,2,4-

trioxanes 86a. Although the corresponding oxalactones 91b remained the major 

product, the thermolysis of methyl-substituted dispiro-1,2,4-trioxanes 86ba-bc also 

produced some of the desired fully ring expanded keto lactones 90b. A preliminary 

investigation into the thermolysis of methoxy-substituted dispiro-1,2,4-trioxane 86ca 

indicated that significant amounts of the fully ring expanded keto lactone 90c had been 

obtained.75  

 

As described in Chapter 1, a series of methoxy- and ethoxy-substituted dispiro-1,2,4-

trioxanes 86ca-86cd and 86da-86dd have been synthesised. In this chapter these new 

compounds have been thermolysed to investigate in detail the effect of the alkoxy 

substituent on the rearrangement reaction. By changing the size of ring C, it was hoped 

that the thermolysis of dispiro-1,2,4-trioxanes 86ca-86cd and 86da-86dd would form a 

range of substituted 13-, 14-, 15, and 20-membered macrolides 90c,d (Scheme 26). 

 

 
Scheme 26 

 

The thermolysis reactions were carried out using a modified procedure using  thick-

walled Schlenk tubes rather than single-use sealed glass tubes.75 This allowed the 

Schlenk tubes to be recycled and the thermolysis reactions to be carried out on a large 

scale. Samples of the dispiro-1,2,4-trioxane ca. 100-200 mg were dissolved in decane 
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ca. 10-15 mL (ca. 1-1.5% w/v) and carefully transferred to the Schlenk tubes via a 

pipette. Following the degassing of the solutions using three “freeze-pump-thaw” 

cycles, the reaction vessels were immersed in a temperature-controlled silicone oil bath 

and heated at 185 °C for ca. 16 hours. 

 

Thus, the thermolysis of the methoxy-substituted dispiro-1,2,4-trioxane 86ca at 185°C 

produced a clean thermolysate which on analysis by TLC seemed to give a single 

component at Rf 0.46. Subsequent analysis of the thermolysate by gas chromatography 

gave a chromatogram which contained one large peak with a retention time (tr) of 6.93 

min and two small signals with tr 3.53 min and as a shoulder of the main peak as 

illustrate in Figure 5. The identities of the two small signals were confirmed to be 

cyclohexanone and 2-methoxycyclohexanone respectively by comparison with 

authentic samples by GC.  

 

 

 
Figure 5: GC spectrum of thermolysate from thermolysis of 86ca demonstrating single large peak and 

two small peaks for cyclohexanone and 2-methoxycyclohexanone 

 

In previous methods for the isolation of the thermolysis products, it was customary to 

remove the decane solvent by distillation before separation and isolation of the non-

volatile products using flash column chromatography. Using this method, it was found 
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that, the major product also co-distilled with the decane. TLC analysis of the decane 

distillate showed that the component at Rf 0.46 was present therefore implying that the 

use of this method of isolation would result in reduced yields of the product. It was 

found that the most convenient way of isolating the product was to load the whole 

thermolysate onto the column and then by eluting with ethyl acetate/ light petroleum, 

the non-polar decane would run close to the solvent front and be collected in the early 

fractions before the more polar macrolides had migrated through the column. 

 

The major non-volatile component from the thermolysis of dispiro-1,2,4-trioxane 86ca, 

corresponding to the fraction at Rf 0.46 was collected by elution with ethyl acetate: light 

petroleum 1:3 as a crystalline solid in 67% yield with a melting point of 57°C. The mass 

spectrum of the solid showed a molecular ion peak at m/z 256 with an accurate mass of 

256.16746. Given that this mass was the same as that of dispiro-1,2,4-trioxane 86ca, 

this component must be a rearrangement product. The 1H NMR spectrum of this 

component showed the two doublets at δ4.3 and δ4.7 with 2J 16.0 Hz corresponding to 

the two methylene group hydrogen atoms situated next to the ester group. The 13C NMR 

spectrum showed two carbonyl group carbon signals at δ173 and δ207 corresponding to 

an ester and a ketone carbonyl group respectively. These signals corresponded to the 

spectral data reported previously for macrolide 90ca.75 The rearrangement of dispiro-

1,2,4-trioxane 86ca to give macrolide 90ca in an increased yield of 67% is a significant 

improvement in the selective formation of macrolides from dispiro-1,2,4-trioxanes 

(Scheme 27).  

 

 
Scheme 27 

 

The crude 90ca was recrystallised from light petroleum/ diethyl ether mixed solvent and 

upon slow evaporation crystals suitable for X-ray crystallography were obtained. 

Following data collection, structural solution and refinement, X-ray crystallographic 

analysis of the crystals revealed the structure to be the desired methoxy-substituted 14-

membered macrolide 90ca as illustrated in Figure 6.  
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Figure 6: X-ray crystal structure of 90ca 

(Ortep, 50% probability ellipsoids for non hydrogen atoms)76 
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The structure of macrolide 90ca shows that the 14-membered ring is not in the classic 

square [4343] conformation observed for other 14-membered rings.55,56 Instead the 

structure forms a [4433] conformation with the keto lactone functionality being located 

at the corner of the [44] sides. Interestingly the two carbonyl groups on the ring are 

situated on the same face of the molecule with the ester carbonyl pointing into the 

centre of the ring and the ketone carbonyl pointing toward the outside of the ring. As 

expected, the methoxy substituent is situated in a pseudo-equatorial position to 

minimise steric interactions with other hydrogen atoms pointing into the centre of the 

ring.   

 

Analysis of the packing of the molecules in the crystal structure shows that a number of 

weak C-H···O close interactions exist between the molecules (Figure 7).76 Two of these 

close interactions measure 2.480 Å (C···O = 3.255(9) Å) and 2.439 Å (C···O = 

3.192(8) Å) and are between the ketone oxygen and one of the hydrogen atoms of the 

methylene located between the ketone and ester functionalities. Additionally there is a 

longer interaction of 2.720 Å between the ketone oxygen and another ring methylene 

group hydrogen atom. Surprisingly there are no close range interactions involving the 

methoxy substituent.  

 
Figure 7: Selected molecules within the crystal structure of 90ca highlighting close interactions 

 

The macrolide 90ca crystallised in the centrosymmetric monoclinic space group P21 

with two crystallographically independent molecules per asymmetric unit. When the 

structures of the crystallographically independant molecules are overlaid on each other 

(one structure inverted), there were no significant structural differences between them 

(Figure 8). 
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Weighted R.M.S Deviation= 0.0098 Å 

Figure 8: Overlaid structures of enantiomers of macrolide 90ca and pictorial representation of the 

[4433] conformation.76 

 

The infrared spectrum of 90ca showed a clear band for the carbonyl group stretching 

frequency. Although both the IR bands from the two carbonyl groups were not resolved, 

there was a broad signal indicating more than a one carbonyl environment (Figure 9). 

The C=O stretching frequency for the ester is expected to be the higher than the 

stretching frequency for the ketone. 

 
Figure 9: IR spectrum of X demonstrating broad C=O stretching band for macrolide 90ca 

 

It is important that any new method for the formation of macrolides can be adapted to 

produce a number of different ring sizes. Whilst keeping the apparent beneficial effect 

of the methoxy substituent in ring A, the most convenient way of testing this idea is to 

[4433]
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vary the size of ring C. The thermolysis of a series of 1,2,4-trioxanes with ring C sizes 

of 5, 7, and 12 were investigated as an entry to obtaining 13-, 15- and 20-membered 

macrolides.  

 

Under the standard conditions detailed above, the thermolysis of dispiro-1,2,4-trioxane 

86cc resulted in the formation of a single component at Rf 0.30 by TLC. The component 

was collected by column chromatography, eluting with ethyl acetate: light petroleum 

1:3, as a viscous oil in 59% yield from the dispiro-1,2,4-trioxane 86cc. The mass 

spectrum of the product showed a molecular ion peak at m/z 270 with an accurate mass 

of 270.18292 confirming that the component was derived from the rearrangement of 

dispiro-1,2,4-trioxane 86cc. The pattern of signals in the 1H NMR spectrum was similar 

to that observed for macrolide 90ca. Like 90ca, the 13C NMR spectrum of the product 

contained two signals at δ173.3 and δ207.0 as expected for the keto lactone 90cc rather 

than the alternative oxalactone (Scheme 28). 

 
Scheme 28 

 

Upon prolonged storage at 0 °C, the oil obtained directly from column chromatography 

formed a low melting solid which had a melting point around room temperature (25 °C). 

The solid was recrystallised from a mixture of light petroleum/diethyl ether and 

following slow evaporation gave crystals suitable for X-ray crystallography. Careful 

handling of the crystals was required in order to prevent the crystal melting during 

transfer into the N2 (160K) gas stream of the X-ray diffractometer.  

 

Following X-ray crystallographic analysis, this structure was revealed to be the 15-

membered methoxy-substituted macrolide 90cc as illustrated in Figure 10. The structure 

demonstrates a [4443] tetragonal conformation in which the keto lactone functionality is 

situated in a similar corner position of the structure as in the corresponding 14-

membered keto lactone 90ca. A mapping of the 15-membered macrolide 90cc onto the 

14-membered macrolide 90ca shows the conformation adopted by the keto lactone 

functionality is similar in each case (Figure 11). 
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Figure 10: X-ray crystal structure of 90cc  

(Ortep, 50% probability ellipsoids for non hydrogen atoms)76 
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Figure 11: Overlaid structures of  90ca (dotted line) onto 90cc (solid line) and pictorial representation of 

the [4433] conformation76 

 

Similar to the structure of 90ca macrolide 90cc also contains weak C-H···O close range 

interactions involving the ketone oxygen (Figure 12).77 The shortest of these is a 2.571 

Å (C···O = 3.2504(18) Å) interaction between the ketone oxygen and one of the 

methylene hydrogens between the ketone and the ester. A further C-H···O close range 

interactions of 2.556 Å (C···O = 3.3051(18) Å) also exists between the ester carbonyl 

oxygen and a methylene hydrogen within the ring. 

 
Figure 12: Selected molecules within the crystal structure of 90cc highlighting close interactions 

[4443]
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Unlike the crystal structure of macrolide 90ca, there is a C-H···O close range interaction 

of 2.588 Å (C···O = 3.2807(19) Å) between the methoxy oxygen of one molecule of 

90ca and one of the hydrogen atoms on the methoxy group of another (Figure 13). 

 
Figure 13: Selected molecules within the crystal structure of 90cc highlighting close interactions 

 

Thermolysis of dispiro-1,2,4-trioxanes 86cb gave a single component at Rf 0.2. 

Isolation of the appropriate fractions by column chromatography as described above 

gave the 13-membered macrolide 90cb in 67% yield as an oil (Scheme 29). Unlike the 

corresponding 14- and 15-membered macrolides, there was no indication that this 

product would solidify at ambient temperatures. Although under prolonged storage in 

the freezer, the product showed signs that some of the mixture was solidifying, 

unfortunately it quickly melted on removal from the refrigerator. This precluded 

determination of the structure of 13-membered ring compound 90cb by X-ray 

crystallography.  

 

 
Scheme 29 

 

A previous thermolysis of unsubstituted dispiro-1,2,4-trioxane 86ad afforded the 20-

membered ring keto lactone in 18% yield.78 This was different from the products 

obtained from other unsubstituted dispiro-1,2,4-trioxanes which were exclusively 

oxalactone. Once β-scission has occurred in the 12-membered ring C, the carbon 

centred radical has more degrees of freedom thus giving the system enough time to 

open ring A before the recombination with the oxy radical. Thermolysis of methoxy-
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substituted dispiro-1,2,4-trioxane 86cd gave a single component at Rf 0.53. Upon 

isolation by column chromatography eluting with light petroleum: ethyl acetate 3:1 the 

component was isolated as an oil in 50% yield from dispiro-1,2,4-trioxane 86cd. The 

mass spectrum of the product showed a molecular ion peak at m/z 340 with an accurate 

mass of 340.26245 confirming that the component was derived from the rearrangement 

of dispiro-1,2,4-trioxane 86cc. Although all the characteristic signals for macrolide 

90cd were present in the 1H and 13C NMR spectra there were some differences from 

other analysed methoxy-substituted macrolides in the 1H NMR spectra. The two 

doublets corresponding to the methylene group between the ester group and the ketone 

almost overlapped with a chemical shift difference of only 0.05 ppm. However the 

presence of the two carbonyl groups at δ173.0 and δ204.6 in the 13C NMR spectra 

confirmed the formation of the 20-membered ring methoxy-substituted keto lactone 

90cd (Scheme 30). The isolated yield of the 20-membered keto lactone 90cd is 

significantly greater than that of 90ad. 

 

 
Scheme 30 

 

In summary, the yields of 13-, 14-, 15- and 20-membered methoxy-substituted 

macrolides 90ca-cd from the corresponding series of methoxy-substituted dispiro-1,2,4-

trioxanes 86ca-cd were in the range of 50-70%, after column chromatography. This 

represents a major increase in previously isolated yields of macrolides from other 

dispiro-1,2,4-trioxanes. Importantly, the thermolyses did not produce the corresponding 

oxalactones in isolable quantities showing that the rearrangement reaction producing the 

fully ring-expanded keto lactone predominates. To investigate further the influence of 

alkoxy substituents on the selective rearrangement reaction, the thermolyses of the 

ethoxy-substituted dispiro-1,2,4-trioxanes 86d were undertaken. 

 

Since, as described in Chapter 1, the mixture of regiomeric 1,2,4-trioxanes 86da and 92 

(ca. 9:1) could not be readily separated, it was pragmatic to carry out the thermolysis 

reactions on the isomeric mixture under the usual conditions.  Nonetheless, a fairly 

clean thermolysate was obtained which on analysis by TLC gave a single component at 
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Rf 0.30.  Isolation of this fraction using column chromatography eluting with 1:5 ethyl 

acetate: light petroleum gave the product as a viscous oil in 60% yield. The mass 

spectrum of the product contained a molecular ion peak at m/z 270. The mass spectrial 

data on their own do not indicate definitively the origin (86ca or 92) of the product. The 
1H NMR spectrum of the product contained two doublets at δ4.3 and δ4.7 with a 2J of 

16.0 Hz corresponding to the methylene group situated next to the ester group whilst the 
13C NMR spectra contained two carbonyl group carbon signals at δ173 and δ208 

corresponding to an ester and ketone carbonyl group carbons respectively. The 1H and 
13C NMR spectra were very similar to those of the methoxy-substituted macrolide 90ca 

with additional signals at δ3.38 and δ3.48 for the ethoxy CH2 group thus confirming the 

formation of macrolide 90da (Scheme 31). The rearrangement of the mixture of 

compounds to give only one macrolide demonstrates that the thermolysis of regioisomer 

92 does not appear to give significant quantities of macrocyclic products. It is therefore 

suggested that the regioisomer 92 undergoes complete fragmentation of the 1,2,4-

trioxane ring to produce ketones. The rearrangement of dispiro-1,2,4-trioxane 86da to 

give macrolide 90da in 67% shows the significance of the alkoxy substituent in the 

determination of the product and demonstrates that the highly selective formation of 

macrolides is reproducible. 

 

 
Scheme 31 

 

After storage at 0°C, the viscous oil solidified into small crystals. The crystals were re-

grown from light petroleum/diethyl ether mixed solvent and following slow evaporation 

gave crystals suitable for X-ray crystallography. X-ray crystallographic analysis of the 

crystals revealed the formation of the ethoxy-substituted macrolide 90da as illustrated 

in Figure 14. 
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Figure 14: X-ray crystal structure of 90da  

(Ortep, 50% probability ellipsoids for non hydrogen atoms)76 
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As observed for the X-ray crystal structure of macrolide 90ca, the 14-membered ring of 

90da also forms a [4433] conformation with the keto lactone functionality forming 

around the corner of the [44] sides. Mapping the structure of macrolide 90da onto 90ca 

shows only small differences exist between the 14-membered rings and alkoxy 

substituent (Figure 15). 

 

 
Weighted R.M.S Deviation= 0.2277 Å 

Figure 15:  Overlaid structures of 90ca (dotted line) onto 90da (solid line)76 

 

Similar to the structure of macrolide 90ca, the packing of the molecules in the crystal 

gives rise to a number of weak C-H···O close interactions (Figure 16).76 In this case, 

there are again close interactions between the ketone oxygen and methylene groups 

between neighbouring molecules. The shortest of these is again the 2.476 Å (C···O= 

3.185(2) Å) gap between the ketone oxygen and one of the methylene hydrogens in 

between the ester and the ketone. Additionally, like the structure of 90ac close 

interactions also exists between the ester carbonyl oxygen and a methylene hydrogen 

within the ring. In this case there are two separate close interactions of 2.552 Å (C···O= 

3.458(2) Å) and 2.692 Å (C···O= 3.405(8) Å) between the ester oxygen and two 

methylene hydrogens situated in remote positions on the ring. There are again no close-

range intermolecular interactions involving the ethoxy-substituents. 
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Figure 16: Selected molecules within the crystal structure of 90da highlighting close interactions 

 

The thermolysis of ethoxy-substituted dispiro-1,2,4-trioxane 86db was also carried out 

using the ca. 9:1 mixture of regioisomers. Similar to the thermolysis of dispiro-1,2,4-

trioxane 86da, the mixture formed a clean thermolysate with a single component at Rf 

0.42. The component was isolated from the rest of the themolysate by column 

chromatography eluting with ethyl acetate: light petroleum 1:5 and the fraction 

corresponding to the component at Rf 0.42 was obtained as a viscous oil in 72% yield 

from the dispiro-1,2,4-trioxane 86db. Mass spectrometric analysis confirmed that the 

fraction was a rearrangement product from either dispiro-1,2,4-trioxane 86da and/or 93. 

The 1H and 13C NMR spectra confirmed the presence of keto lactone 90db with no trace 

of any other macrocyclic products derived from dispiro-1,2,4-trioxane 93 (Scheme 32). 

This observation is consistent with 93 undergoing total fragmentation similar to the 

thermolysis of dispiro-1,2,4-trioxane 92. 
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Scheme 32 

 

The thermolysis of the dispiro-1,2,4-trioxane 86dc was carried out using a pure sample. 

Like the other examples, the reaction gave a thermolysate which consisted of essentially 
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one component at Rf 0.57. Isolation of the fraction corresponding to the component at 

Rf 0.57 using the same method described above gave the product as a colourless semi-

solid in 52% yield from dispiro-1,2,4-trioxane 86dc. 1H and 13C NMR analysis 

confirmed the formation of ethoxy-substituted macrolide 90dc (Scheme 33). Although 

on storage at 0°C the macrolide formed a solid, subsequent attempts to grow crystals 

suitable for X-ray crystallography using a number of different solvent systems were 

unsuccessful.  

 

 
Scheme 33 

 

The thermolysis of ethoxy-substituted dispiro-1,2,4-trioxane 86dd gave a single 

component at Rf 0.35. Upon isolation by column chromatography eluting with light 

petroleum: ethyl acetate 5:1 the component was isolated as an oil in 26% yield from 

dispiro-1,2,4-trioxane 86dd. The 1H and 13C NMR spectra showed similar 

characteristics to those seen for macrolide 90cd confirming the formation of macrolide 

90dd (Scheme 34). Although the reaction successfully formed the desired macrolide 

selectively without the formation of oxalactone or other rearrangement products the 

yield was significantly lower than for the methoxy-substituted 20-membered ring and 

other isolated macrolides. The yield was closer to the 18% yield of macrolide 90ad 

achieved from the thermolysis of unsubstituted dispiro-1,2,4-trioxane 86ad. Additional 

thermolysis reactions are required to verify the optimum yield possible from the 

thermolysis of 86dd.  

 

 

 
Scheme 34 
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Overall it has been shown that the thermolysis of alkoxy-substituted dispiro-1,2,4-

trioxanes is an efficient route into the selective formation of 13-, 14-, 15- and 20-

membered rings. In most cases the high yields (between 50-70% after purification) of 

keto lactone show that the rearrangement reaction is highly selective.  

 

Synthesis of more highly functionalised keto lactones from dispiro-1,2,4-trioxanes  

 

To investigate further the scope of this procedure, the thermolysis of more 

functionalised dispiro-1,2,4-trioxanes was undertaken. Complex macrolides like 

picromycin (1), erythromycin (2) and oleandomycin (3) discussed above, all contain a 

14-membered ring core with several functional groups. For example picromycin (1)3 

contain a 14-membered ring with a number of ketone groups in selected positions 

throughout the structure. Dispiro-1,2,4-trioxanes with an additional ketone functional 

group in one of the rings could be a useful precursor to keto lactones related to 1. 

 

 
 

To investigate the selective positioning of the ketone group on a 14-membered 

macrolide there were two possible routes attempted via the thermolysis of dispiro-1,2,4-

trioxanes: this first involved the thermolysis of a dispiro-1,2,4-trioxanes which already 

contains the ketone group. The second route requires the thermolysis of a dispiro-1,2,4-

trioxane which contains a protected ketone group followed by the hydrolysis to 

unprotect the ketone. The syntheses of 86cf and 86df were carried out as discussed in 

Chapter 1 and their respective thermolyses have been investigated as a potential entry 

into providing highly functionalised keto lactones. 

 

Thermolysis of the unsubstituted dispiro-1,2,4-trioxane 86af resulted in the selective 

formation of the corresponding oxalactone.78 However, since thermolyses of methoxy- 

and ethoxy-substituted dispiro-1,2,4-trioxanes formed the fully ring-expanded keto 
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lactones, it was anticipated that a similar shift from the formation of oxalactone to keto 

lactone would be seen. 

 

The thermolysis of dispiro-1,2,4-trioxane 86ce gave a single component at Rf 0.40 

which upon isolation by column chromatography gave the product as an oil in 43% 

yield. Analysis of the product by mass spectrometry confirmed that the molecular ion 

was at m/z 314 with an accurate mass of 314.17239. This confirmed that the product 

was a rearrangement product from 86ce and indicated that the protecting group 

remained intact throughout the thermolysis process. The 1H NMR spectrum showed an 

additional multiplet at δ3.9 which corresponded to the CH2 groups of the protecting 

group. The 13C NMR spectrum also showed additional signals at δ64.9 and δ64.7 for the 

CH2 groups and a quaternary carbon at δ111. In addition, the two carbonyl carbon 

signals at δ172.5 and δ207.7 in the 13C NMR spectrum plus the two doublets at δ4.3 and 

δ4.7 in the 1H NMR spectrum confirmed the rearrangement had formed the keto lactone 

90ce (Scheme 35). Although the deprotection of the acetal group was not attempted, it 

has been noted that similar acetal containing keto lactones have been deprotected under 

mild conditions in high yield.79 

 

 
Scheme 35 

 

The thermolysis of dispiro-1,2,4-trioxane 86df gave a single component at Rf 0.40 

which upon isolation by column chromatography gave the product as an oil in 21% 

yield. The mass spectrum of the product contained a molecular ion was present at m/z 

284 with an accurate mass of 284.16183 confirming that the fraction was a 

rearrangement product of dispiro-1,2,4-trioxane 86df. The 13C NMR spectrum of the 

product showed signals for the three carbonyl groups were present situated at δ172, 

δ207 and δ209 confirming the product was the diketo macrolide 90df (Scheme 36).   
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Scheme 36 

 

The exclusive isolation of macrolides 90ce and 90df from the thermolysis of dispiro-

1,2,4-trioxane 86ce and 86df demonstrates that introducing extra functionality into a 

remote position in ring C does not perturb the radical rearrangement reaction 

significantly. The formation of macrolides 90ce and 90df represents a significant 

advance in the synthesis of multi-substituted macrolides from the thermolysis of 

dispiro-1,2,4-trioxanes. 

 

Further examples of a highly functionalised macrolides are the salicycylhalamides A 

and B (94a,b), isolated from the marine sponge Haliclona,80 which contain a 12-

membered macrolide with a fused benzo-ring. Dispiro-1,2,4-trioxanes with a fused 

benzo-ring, such as the indanylidene-containing dispiro-1,2,4-trioxanes 86cg and 86dg, 

could be useful precursors to macrolide analogues of 94a,b. 

 

86cg, R=OMe
86dg, R=OEt

O

OO

R

O

O

OH

CH3

H
N

O

OH

*

94a Salicylihalamide A *= E isomer
94b Salicylihalamide B *= Z isomer  

 

Previous thermolysis of the methyl-substituted indanylidene-containing dispiro-1,2,4-

trioxane 86bg afforded the corresponding oxalactone as a crystalline solid in high 

yield.49 It was concluded that following β-scission of the indanylidene ring the carbon-

centred radical rapidly cyclises by recombination with the adjacent oxy radical to form 

the oxalactone. It was hoped that the presence of the methoxy- or ethoxy-substituent 

could make the β-scission of ring A more competitive with the β-scission of the 

indanylidene ring. 

 

The thermolysis of dispiro-1,2,4-trioxane 86cg afforded a clean thermolysate with only 

one apparent component at Rf 0.25 by TLC. The appropriate fractions were isolated by 



Chapter Two  Results and Discussion 
 

 172 

column chromatography to give the product as a viscous oil in 41% yield. The 1H NMR 

spectrum of the isolated product seemed to show there was a mixture of at least two 

components present. Subsequent attempts to further purify the mixture by column 

chromatography using a variety of solvent systems were unsuccessful. Despite this, a 

number of key signals can be picked out from the 1H and 13C NMR spectra which 

suggest that the macrolide 90cg is the major component of the mixture (Scheme 37).  

 

 
Scheme 37 

 

The 1H NMR spectrum shows characteristic signals which could be assigned to 90cg 

including the two doublets for the methylene next to the lactone at δ4.4 and δ4.8 with 2J 

germinal coupling constant of 16.8 Hz. The 13C NMR spectrum also showed signals 

corresponding to an ester and ketone carbonyl carbon at δ174 and δ208 respectively. 

 

There is no evidence that any of the other component(s) in the mixture being the 

corresponding oxalactone which had been seen as the major product from the 

thermolysis of indanylidene containing dispiro-1,2,4-trioxanes.49 There is however a 

number of underlying signals in the aliphatic and aromatic parts of the 1H and 13C NMR 

spectra and even a extra carbonyl signal at δ171. Additionally there are a number of 

extra doublet signals between δ4.0-5.0 in a 5:1 ratio with the macrolide hydrogens in the 
1H NMR specrum.  

 

Similarly the thermolysis of dispiro-1,2,4-trioxane 86dg also seemed to produce a clean 

thermolysate with a single component at Rf 0.21. Isolation of the relevant fractions by 

column chromatography eluting with 1:5 ethyl acetate: light petroleum gave the product 

as an oil in 29% yield. The 1H and 13C NMR spectra again showed that additional 

products were present. Further column chromatography of the crude mixture eluting 

with 1:5 ethyl acetate: light petroleum isolated the macrolide without the majority of the 

impurities seen for macrolide 90dg.  Although the macrolide was still not isolated as a 

pure component the impurity corresponding to the additional doublets at ca. δ4.0-5.0 

were absent from the isolated compound. While the 1H and 13C NMR spectra of the 
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isolated component shows all the signals associated with macrolide 90dg additional 

signals at δ1.6, δ2.7 and δ8.4 in the 1H NMR specrum in addition to δ14.1 (CH3), δ17.6 

(CH3), δ22.7, δ29.3, δ29.7, δ31.9 (CH2), δ51.2 (CH2) and δ112.9 (qC) in the 13C NMR 

spectrum demonstrates again at least one extra unidentified component is present.   

 

Overall, it is clear that the 13-membered aromatic containing macrolides have been 

produced however the structures of the impurities are unclear. This demonstrates a 

change from previous thermolysis of previously studied indanylidene containing 

dispiro-1,2,4-trioxanes which have produced oxalactones in high yield.49 The formation 

of the extra product(s) in the thermolysis of dispiro-1,2,4-trioxanes 86cg and 86dg 

suggests that additional competitive rearrangement processes are occurring. 

 

Structure determination of macrolides 90a,b via 1H and 13C NMR spectroscopy  

 

Although several of the macrolides have been identified using X-ray crystallography, 

most macrolides were isolated as low melting solids or oils which were unsuitable for 

X-ray crystallography.  

 

The 1H NMR spectrum of macrolide 90ca contained two doublets at δ4.3 and δ4.7 and a 

germinal 2J coupling constant of 16.0 Hz for the methylene group next to the ester 

(Figure 17). A sharp singlet for the methoxy group at δ3.3 and a multiplet for the CH at 

δ3.1 confirmed the alkoxy substituent was present. Four further multiplets between δ2.2 

and δ2.7 were also present for the two further methylenes next to the carbonyl groups. 

The formation of oxalactone would only show signals for two hydrogens in this region 

of the spectra therefore confirming the formation of the keto lactone.75 

 

Importantly the 13C NMR spectra of macrolide 90ca contained two signals at δ 173 and 

δ 208 consistant with the formation of an ester and ketone carbonyl groups respectively 

(Figure 18). By a combination of 13C NMR DEPT experiments and C – H correlation 

experiments (Figure 19), all the signals in the 13C NMR spectrum was assigned. In 

particular,  the methoxy carbon signal at δ56, the signal for the methylene group 

between the ester and the ketone at δ68 and the CH group signal at δ78. The formation 

of oxalactone would have only shown a signal for the ester carbonyl at ca. δ170 plus an 

additional spiro-carbon at ca. δ80. The lack of either of these signals show that no 

oxalactone was present.75 
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Figure 17: 1H NMR spectrum of macrolide 90ca 
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Figure 18:13C NMR spectrum of macrolide 90ca 
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Figure 19: C-H correlation of 1H and 13C  NMR spectra of macrolide 90ca 
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The main characteristic of the 1H NMR spectra for all macrolides are the two doublets 

observed between δ4.0-5.0 corresponding to the methylene group between the ester and 

ketone groups (Table 5). This is a downfield shift of the corresponding methylene group 

in the dispiro-1,2,4-trioxane which are between δ3.5-4.0. The positions of the doublets 

vary significantly with changing ring size with the difference in chemical shifts of the 

doublets being ca. 0.4 ppm for the 14-membered ring, 0.2 ppm for the 13-membered 

ring, 0.1 ppm for the 15-membered ring and 0.05 ppm for the 20-membered ring. The 

germinal coupling constant of the methylene also changes with increasing ring size with 

the 2J of 15.4 Hz, 16.0 Hz, 16.1 Hz and 16.6 Hz for the 13-, 14-, 15- and 20-membered 

rings respectively. 

 

Other significant signals in the 1H NMR specrum are for the α-methylene groups on 

either side of the carbonyl groups. The electron-withdrawing influence of the carbonyl 

shifts the signals downfield away from the remainder of the aliphatic methylene groups 

which are between δ1.0-2.0, to δ2.0-3.0. The signals for these four hydrogens are 

differently distributed depending on the size of ring. Each proton is expected to form 

ddd multiplets in the 1H NMR spectrum. This splitting pattern is apparent in 14-

membered whilst two ddd and a 2H multiplet is seen for 13-membered rings. As the 

ring size increases to the 15- and 20- membered rings, the signals merge together 

forming a complex multiplet integrating to four hydrogen atoms. 

 

The chemical shifts of  the 1H NMR signals for the substituents (CHOCH3 and 

CHOCH2CH3) and the CH groups seems unaffected by ring size with chemical shifts 

only varying randomly by up to 0.1 ppm. The chemical shift of the methoxy OCH3 and 

the C-H group remains constant at ca. δ3.3 and δ3.1-3.2 respectively. Like the dispiro-

1,2,4-trioxanes the signals for the ethoxy OCH2 group give two individual signals which 

are expected to be doublets of quartets. These signals remain constant between δ3.3-3.5 

in all but one macrolides displaying two doublets of quartets. The 20-membered ring 

macrolide 90bd however formed a complex multiplet where the two signals have 

overlapped. 

 

The main signals contained in the 13C NMR spectra which confirm the formation of the 

keto lactone are the two carbonyl carbon signals for the ketone and the ester groups. The 

keto carbonyl carbon signal is very important because it provides evidence for the 

opening of ring A via a β-scission reaction. In every case, there are signals at ca. δ173 
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for the lactone carbonyl carbon and ca. δ207 for the ketone carbonyl carbon (Table 6). 

The chemical shift of the keto carbonyl carbon signal for the 20-membered rings differs 

by approx. 2.0 ppm from the other ring sizes showing the signal at δ204.6 and δ204.7 

for 90ad and 90bd respectively. The formation of oxalactone would be indicated by a 

spiro-C signal at ca. δ80 but this was not observed in the spectra of any isolated 

product. Overall the 13C NMR spectra of the macrolides show very little differences 

indicating that each of these distinctive carbons are in similar chemical environments 

and that ring size has little effect on the 13C NMR spectra. 

 

Compound R 
Position 

1 and 2 3 4 5 

 

OMe 

90ca 

2.21, 1H 

2.41, 1H 

2.52, 1H 

2.69, 1H 

m, 3.12 s, 3.26 
d, 4.29, 4.70, 

 J 16.0 

OEt 

90da 

2.21, 1H 

2.42, 1H 

2.55, 1H 

2.72, 1H 

m, 3.23 
t, 1.15 

3.38, 3.48 

d, 4.30, 4.73, 

 J 16.0 

 

OMe 

90cb 

2.27, 1H 

2.43, 1H 

2.55, 2H 

m, 3.20 s, 3.29 
d, 4.45, 4.63,  

J 15.4 

OEt 

90db 

2.24, 1H 

2.41, 1H 

2.54, 2H 

m, 3.28 
t, 1.15 

3.40, 3.47 

d, 4.43, 4.62, 

 J 15.4 

 

OMe 

90cc 
2.31-2.58, 4H m, 3.16 s, 3.28 

d, 4.50, 4.58,  

J 16.1 

OEt 

90dc 
2.35-2.58, 4H m, 3.26 

t, 1.15 

3.26, 3.45 

d, 4.50, 4.59, 

J 16.1 

O

O
O

R

 

OMe 

90cd 
2.42, 4H m, 3.15 s, 3.29 

d, 4.56, 4.61, 

 J 16.6 

OEt 

90dd 
2.41, 4H m, 3.23 

t, 1.15 

3.45 

d, 4.56, 4.61, 

 J 16.6 

Table 5: Selected 1H NMR signals of macrolides 90c and 90d 



Chapter Two  Results and Discussion 
 

 179 

 

O

O O

R

(CH2)n

1

2

3

45

13 membered: n= 2
14 membered: n= 3
15 membered: n= 4
20 membered: n= 9

 

Compound R 
Position 

1 2 3 4 5 

 

OMe 

90ca 
56.3 68.4 78.1 172.8 207.4 

OEt 

90da 

15.6 

64.0 
68.5 76.2 172.9 207.5 

 

OMe 

90cb 
56.2 68.5 79.1 172.7 207.6 

OEt 

90db 

15.6 

63.8 
68.4 77.1 173.3 207.1 

 

OMe 

90cc 
56.1 68.4 78.9 173.3 207.0 

OEt 

90dc 

15.6 

63.7 
68.5  77.0 172.7 207.7 

O

O
O

R

 

OMe 

90cd 
56.3 68.1 80.2 173.0 204.6 

OEt 

90dd 

15.7 

63.8 
68.1 78.5 173.1 204.7 

Table 6: Selected 13C NMR signals of macrolides 90c and 90d 

 

The introduction of additional substituents into the macrolide rings simplifies the 1H 

NMR spectra in most cases. Although the sections of the structure which are similar to 

macrolides 90ca-d,da-d give a similar pattern of signals, there are additional signals 

which demonstrate the presence of the further functionality on the keto lactone. The 

influence of the new functionalities to adjacent methylene groups has resulted in a 

clearer spectrum due to less overlapping of signals in the region δ1.0-2.0. The most 

prominent separation has occurred in the 1H NMR spectrum of 90df where almost all 

hydrogens can be seen individually or as a CH2 group (Figure 20). The 1H NMR 

spectrum of 90ce shows an additional multiplet for the acetal group at δ3.9 whilst the 1H 

NMR spectrum of 90dg shows aromatic hydrogens at ca. δ7.2 (Table 7). 
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Figure 20: 1H NMR specrum of macrolide 90df 
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Compound 
Position 

1 and 2 3 4 5 

 

1.24, 2H  

1.40, 2H  

1.60, 2H  

1.75, 1H  

1.99, 1H  

2.24, 1H  

2.41, 1H 

2.49, 1H  

2.62-2.92, 5H 

m, 3.21 
1.16 

3.41, 3.51 

d, 4.39, 4.56, 

 J 15.6 

 

2.00, 1H 

2.15, 1H 

2.36, 1H 

2.48, 2H 

2.78, 1H 

m, 3.36 3.29 
d, 4.31, 4.66, 

 J 16.2 

 

1.80, 2H 

2.27, 1H 

2.58, 1H 

3.77, 1H 

3.83, 1H 

m, 3.35 
1.15 

3.30 

d, 4.29, 4.78, 

 J 16.6 

Table 7: Selected 1H NMR signals of macrolides 90c and 90d 

 

The 13C NMR spectra of the more functionalised macrolides 90ce,cg and 90dg have 

additional distinguishable signals. Macrolide 90df has a carbonyl carbon signal for the 

additional keto functionality lying slightly downfield from the other keto carbonyl 

carbon signal at δ209. Further to this, additional CH2 signals between δ30-40 are 

indicative of groups next to a carbonyl groups (Table 8).  

 

Macrolide 90ce has a spiro-carbon which is observed along with  additional CH2 groups 

at δ64.7 and δ64.9 at position 7 which have split into two individual signals and moved 

slightly downfield from the original dispiro-1,2,4-trioxane (Table 8).  
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Macrolide 90df has two additional quaternary carbon signals in the aromatic region of 

the spectrum at δ131.3 and δ132.0 as well as 4 additional aromatic CH signals δ127.1, 

δ127.7, δ131.3 and δ132.0 (Table 8). 

Compound 
Position 

1 2 3 4 5 6 7 

 

15.6 

63.9 
69.0 76.7 172.2 207.2 209.0 - 

 

56.3 68.6 78.7 172.5 207.7 111.1 
64.7 

64.9 

 

15.7 

64.8 
68.0 76.7 170.8 208.3 

131.3 

137.3 

127.1 

127.7 

131.3 

132.0 

Table 8: Selected 13C NMR signals of macrolides 90c and 90d 

 

Mechanism for the selective formation of macrolides from dispiro-1,2,4-trioxanes 

 

Thermolysis of a series of methoxy- and ethoxy-containing dispiro-1,2,4-trioxanes 

under standard conditions selectively formed the corresponding 13-, 14-, 15- and 20- 

membered keto lactones in good overall yield without any isolable quantities of either 

oxalactone or alkene products (Table 9).  

 

The yields for the macrolides obtained by the rearrangement of dispiro-1,2,4-trioxanes 

where ring C is a simple 5-, 6- or 7-membered ring are consistently high, in the range 

ca. 60-70 %. Although the rearrangement of other dispiro-1,2,4-trioxanes produced the 

keto lactone as the only isolable product, the overall yield was lower, in the range ca. 

20-50%. The reasons for the lower isolated yields of highly functionalised keto lactones 

are unclear. The 21% yield for ketolactone 90df may be due to the rigidity of the sp2 

carbonyl carbon centre on ring C which would reduce the flexibility of the radical 

intermediates making the recombination more difficult. 
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1,2,4-Trioxane Macrolide 
R=OMe R=OEt 

Yield/ % Yield/ % 

 
 

67 60 

 
 

67 72 

 
 

60 52 

 
O

O
O

R

 

50 26 

 
 

43 - 

 
 

- 21 

 
 

# 29* 

Table 9: Percentage yield of isolated macrolide compounds 

# Keto lactone present but isolated as a complex mixture of compounds 

*Keto lactone 90dg isolated with unknown impurity  

 

Overall the thermolysis of methoxy- and ethoxy-substituted dispiro-1,2,4-trioxanes 

86c,d signifies a major shift toward the selective synthesis of fully ring expanded keto 

lactones. Whilst no oxalactone is isolated from the thermolysis of methoxy- and ethoxy-

substituted dispiro-1,2,4-trioxanes 86c,d, it is the preferred product from unsubstituted 

and methyl-substituted dispiro-1,2,4-trioxanes 86a,b. In the methyl-substituted cases, 

the isolation of some of the macrolide in addition to the oxalactone suggests the methyl 
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group is having an effect on the barrier of β-scission of ring A. The exclusive formation 

of keto lactone 90c,d from the thermolysis of methoxy- and ethoxy-substituted dispiro-

1,2,4-trioxanes 86c,d suggests the alkoxy substituent further lowers the energy barrier 

of β-scission of ring A. Since no oxalactone 91c,d is formed in the reaction, the energy 

barrier for the β-scission of ring A must be directly competitive with that of ring C 

(Scheme 38). Although the exact preference is unclear from the thermolysis 

experiments, the lack of any alternative rearrangement products like 95 from the β-

scission of ring A and not ring C indicates the β-scission of rings A and C are close in 

energy.  

O O

O

O

O O

OR

RO

90 Ketolactone

(CH2)n

O O

O
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(CH2)n

O O

O
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O
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at ring A
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at ring C
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RecombinationRecombination

Recombination95

 
Scheme 38 

 

Although the alkoxy group does not seem to affect the alternative β-scission reaction 

which facilitate the fragmentation of the molecule into formaldehyde (not observed) and 

the dispiro-1,2,4-trioxane component ketones (identified by gas chromatography) this 

accounts for only a small portion of the product with the major product in most cases 

being the ketolactone. Additionally, the increased steric bulk of the ethoxy substituent 

seems to have little effect on the yield of the product demonstrating the important effect 

of the oxygen on the β-scission.  

 

The notable exception to the selective formation of macrolides from the thermolysis of 

dispiro-1,2,4-trioxanes is when ring C is an indanylidene group. Although for the first 
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time the thermolysis of an indanylidene containing dispiro-1,2,4-trioxane 86cg and 

86dg formed the fully ring-expanded keto lactone 90cg and 90dg, the thermolysis 

formed a number of unidentified products. This impurity seemed to account for 20% of 

the isolated product and could not be separated in the case of macrolide 90cg. However 

the isolation of macrolide 90dg was slightly more successful with less of the impurities 

apparent by 1H and 13C NMR spectra. Despite the formation of keto lactone without any 

signs of oxalactone, the formation of unidentified product(s) suggest the indanylidene 

containing dispiro-1,2,4-trioxane is behaving differently from the other compounds. 

 

The synthesis of a number of regioisomeric dispiro-1,2,4-trioxanes like 92 were 

described in Chapter 1. In the thermolysis of the ethoxy-substituted dispiro-1,2,4-

trioxane 86da and 86db the regioisomers 92 and 93 were also thermolysed. No 

macrocyclic products derived from the dispiro-1,2,4-trioxane regioisomer 92 or 93 were 

isolated from the thermolysis. The apparent production of cyclic ketones from the 

thermolysis of dispiro-1,2,4-trioxanes 92 and 93 is consistent with the total ring 

fragmentations reported for other dispiro-1,2,4-trioxanes.81,82 It is therefore concluded 

that on cleavage of the peroxide bond, the structure would twist to reduce the energy 

associated with the 1,3-diaxial interaction and therefore rapidly cleave the C-O to 

fragment the molecule (Scheme 39). Importantly this suggests that purification of 

dispiro-1,2,4-trioxanes prior to the thermolysis is not necessary for the success of the 

rearrangement reaction to the fully ring expanded keto lactone. The thermolysis of other 

regioisomeric dispiro-1,2,4-trioxanes was not attempted. 

 
Scheme 39 

 

From the results of the thermolysis reactions undertaken, the exact effect that the 

different substituents were having on the rearrangement reaction was unclear. Some 

previous studies outlined a stabilising effect of an oxygen atom on a carbon-centred 

radical.83,84 This stabilising effect, known as the “α-effect” may act to lower the energy 

barrier to the formation of the carbon-centred radicals by the β-scission. In order to 

investigate the effect of the α-substituent on the rearrangement reaction, a detailed 

theoretical study of the decomposition mechanism was carried out and the results will 

be discussed in Chapter 3. 
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Thermolysis of dispiro-1,2,4-trioxane 

 
General Procedure 
 
The thermolysis tubes of dimensions 30mm (diameter) x 1550mm (length) were 

constructed from thick pyrex glass fitted with a Rotaflo tab to enable the tubes to be 

sealed and recycled. The solvent used for the thermolysis was decane. The dispiro-

1,2,4-trioxane was dissolved in an appropriate amount of decane and pipetted into the 

thermolysis tube. The thermolysis tube was connected to a vacuum line and two freeze-

pump-thaw cycles were carried out using liquid nitrogen (-196°C). The tube was then 

placed in a temperature-controlled silicone oil bath at 180 °C for 16 hours. Thermolysis 

products were isolated using column chromatography on ‘flash’ silica gel.  

 

Preparation of 8-methoxyoxacyclotetradecane-2,13-dione (90ca) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioxane)-6’-spiro-1’’,2’’-methoxy 

cyclohexane (86ca) (300 mg; 11.67 mmol) was divided into 3 equal 

portions, each portion was dissolved in decane (10 mL) and pipetted  

into a thermolysis tube. The solutions were then degassed and the 

tubes sealed, as stated, before being immersed in a silicone oil bath 

at 180 °C for 16 hours. Qualitative GC analysis of the thermolysate indicated one major 

product and two minor products. The two minor products were identified as 

cyclohexanone and 2-methoxycyclohexanone by comparison of the retention times with 

those of authentic samples. The crude product was purified by flash column 

chromatography (1:3 ethyl acetate/ light petroleum) to afford the title compound Rf = 

0.46 (200 mg; 7.78 mmol; 66.7%) as a white solid: mp 57°C from light petroleum/ 

diethyl ether, υmax (CHCl3) /cm-1 1728, 1738; δH(400 MHz, CDCl3) 1.27-1.71 (13 H, m), 

1.78 (1 H, m), 2.21 (1 H, ddd, J 6.6, 8.8 and 15.3), 2.41 (1 H, ddd, J 3.8, 8.2 and 15.2), 

2.52 (1 H, ddd, J 3.8, 8.2 and 15.2), 2.69 (1 H, ddd, J 6.9, 8.7 and 15.5), 3.12 (1 H, m, 

CH), 3.26 (3 H, s, OCH3), 4.29 (1 H, d, J 16.0, CH2O), 4.70 (1 H, d, J 16.0, CH2O) 

δc(100 MHz, CDCl3); 21.9, 23.4, 23.5, 24.2, 26.7, 30.0, 30.8, 32.9, 37.4 (CH2), 56.3 

(OCH3), 68.4 (CH2), 78.1 (CH), 172.8, 207.4 (C=O); m/z 256 (M+), accurate mass 

C14H24O4 requires 256.16728, found 256.16746.   

 

 

 

O

O O

MeO

C14H24O4

256.34 gmol-1
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Preparation of 7-methoxyoxacyclotridecane-2,12-dione (90cb) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioxane)-6’-spiro-1’’,2’’-methoxy 

cyclopentane (86cb) (420 mg; 164.1 mmol) was divided into 2 equal 

portions, each portion was dissolved in decane (10 mL) and pipetted 

into a thermolysis tube. The solutions were then degassed and the tubes 

sealed, as stated, before being immersed in a silicone oil bath at 180 °C 

for 16 hours. The crude product was purified by flash column chromatography (1:3 

ethyl acetate/ light petroleum) to afford the title compound Rf = 0.20 (250 mg; 9.77 

mmol; 59.5%) as a colourless oil: υmax (CHCl3) /cm-1 1722, 1732; δH(400 MHz, CDCl3) 

1.21-1.89 (12 H, m), 2.27 (1 H, ddd, J 6.6, 9.3 and 13.7), 2.43 (1 H, ddd, J 3.5, 10.0 and 

15.1), 2.55 (2 H, m), 3.20 (1 H, m, CH), 3.29 (3 H, s, OCH3), 4.45 (1 H, d, J 15.4, 

CH2O), 4.63 (1 H, d, J 15.4, CH2O) δc(100 MHz, CDCl3) 23.0, 23.2, 23.3, 24.1, 29.1, 

30.5, 33.7, 38.7 (CH2), 56.2 (OCH3), 68.5 (CH2), 79.1 (CH), 172.7, 207.6 (C=O); m/z 

242 (M+), accurate mass C13H22O4 requires 242.15164, found 242.15181. C13H22O4 

requires C 64.4% H 9.2%, found C 64.0% H 9.3%. 

 

Preparation of 9-methoxyoxacyclopentadecane-2,14-dione (90cc) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioxane)-6’-spiro-1’’,2’’-methoxy 

cycloheptane (86cc) (495 mg; 183.3 mmol) was divided into 2 equal 

portions, each portion was dissolved in decane (10 mL) and pipetted 

into a thermolysis tube. The solutions were then degassed and the 

tubes sealed, as stated, before being immersed in a silicone oil bath at 

180 °C for 16 hours. The crude product was purified by flash column chromatography 

(1:3 ethyl acetate/ light petroleum) to afford the title compound Rf = 0.25 (332 mg; 12.3 

mmol; 67.0%) as a semi-solid: υmax (CHCl3) /cm-1 1715, 1739; δH(400 MHz, CDCl3) 

1.21-1.79 (16 H, m), 2.31-2.58 (4 H, m), 3.16 (1 H, p, J 5.7, CH), 3.28 (3 H, s, OCH3), 

4.50 (1 H, d, J 16.1, CH2O), 4.58 (1 H, d, J 16.1, CH2O) δc(100 MHz, CDCl3) 22.4, 

23.2, 23.6, 24.0, 26.9, 27.6, 30.6, 30.8, 33.5, 38.9 (CH2), 56.1 (OCH3), 68.4 (CH2), 78.9 

(CH), 173.3, 207.0 (C=O); m/z 270 (M+), accurate mass C15H26O4 requires 270.18292, 

found 270.18311.  
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Preparation of 14-methoxyoxacycloicosane-2,19-dione (90cd) 

 

2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-

1’’-2’’-cyclododecane (86cd) (50 mg; 1.47 mmol) was dissolved 

in decane (10 mL) and pipetted into a thermolysis tube. The 

solutions were then degassed and the tubes sealed, as stated, before 

being immersed in a silicone oil bath at 180 °C for 16 hours. The 

crude product was purified by flash column chromatography (1:3 

ethyl acetate/ light petroleum) to afford the title compound Rf = 0.53 (25 mg; 0.073 

mmol; 50.0%) as a yellow viscous oil: υmax (CHCl3) /cm-1 1732, 1741; δH(400 MHz, 

CDCl3) 1.21-1.73 (26 H, m), 2.42 (4 H, m), 3.15 (1 H, m, CH), 3.29 (3 H, s, OCH3), 

4.56 (1 H, d, J 16.6, CH2O), 4.61 (1 H, d, J 16.6, CH2O), δc(100 MHz, CDCl3) 23.1, 

23.7, 24.2, 24.4, 27.6, 278, 27.9, 28.0, 28.1, 28.2, 31.6, 32.0, 33.8, 38.3 (CH2), 56.3 

(OCH3), 68.1 (CH2), 80.2 (CH), 173.0, 204.6 (C=O); m/z 340 (M+), accurate mass 

C20H36O4 requires 340.26136, found 340.26245.  

 
Preparation of 16-methoxy-1,4,9-trioxaspiro[4.13]octadecane-8,11-dione (90ce) 

 

2-(Methoxy)cyclohexane-1-spiro-3’-(1’,2’,4’-trioxane)-5’-spiro-1’’-

2’’-1’’’,4’’’-dioxaspiro[4.5]decane (86ce) (80 mg; 2.55 mmol) was 

dissolved in decane (15 mL) and pipetted into a thermolysis tube. 

The solutions were then degassed and the tubes sealed, as stated, 

before being immersed in a silicone oil bath at 180 °C for 16 hours. 

The product was isolated using flash column chromatography (1:3 ethyl acetate/ light 

petroleum) to afford the title compound Rf = 0.38 (34 mg; 1.08 mmol; 42.5%) as a 

white solid: m.p. 34-35°C from diethyl ether/ light petroleum, υmax (CHCl3) /cm-1 1718, 

1737; δH(400 MHz, CDCl3) 1.32-1.82 (10 H, m), 2.00 (1 H, ddd, J 3.2, 6.4 and 12.2), 

2.15 (1 H, ddd, J 3.2, 6.4 and 12.2), 2.36 (1 H, ddd, J 5.9, 9.2 and 14.9), 2.48 (2 H, m), 

2.78 (1 H, ddd, J 6.1, 9.2 and 15.1), 3.29 (3 H, s, OCH3), 3.36 (1 H, m, CH), 3.91 (4 H, 

m, OCH2CH2O), 4.31 (1 H, d, J 16.2, CH2O), 4.66 (1 H, d, J 16.2, CH2O) δc(100 MHz, 

CDCl3) 22.3, 24.1, 25.8, 29.5, 30.4, 30.5, 31.1, 39.2 (CH2), 56.3 (OCH3), 64.9, 64.7 

(OCH2CH2O), 68.6 (OCH2), 78.7 (CH), 111.1 (qC), 172.5, 207.7 (C=O); m/z 314 (M+), 

accurate mass C20H36O4 requires 314.17266, found 314.17239.  
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Attempted preparation of 10-methoxy-6,7,8,9,10,11-

hexahydrobenzo[d][1]oxacyclotridecine-2,5(1H,4H)-dione (90cg) 

 

Indane-2-spiro-3’1(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

ethoxycyclohexane (86cg) (80 mg; 2.76 mmol) was dissolved in 

decane (15 mL) and pipetted into a thermolysis tube. The solutions 

were then degassed and the tubes sealed, as stated, before being 

immersed in a silicone oil bath at 180 °C for 16 hours. The crude 

product was purified by flash column chromatography (1:3 ethyl acetate/ light 

petroleum) to afford a complex mixture of compounds Rf = 0.25 (33 mg; 1.14 mmol; 

41.2% yield): Observed signals for 90cg δH (400MHz, CDCl3) 1.2-1.7 (m, CH2), 2.30 (1 

H, m), 2.59(1H, dd, J 13.6, 8.9), 3.33(m, CH), 3.47 (s, OCH3), 3.66 (2 H, m, CH2), 3.82 

(1 H, d, J 15.6, CH2O), 3.88 (1 H, d, J 15.6, CH2O), 4.42 (d, J 16.7, CH2O), 4.84 (d, J 

16.7, CH2O), 7.18-7.40(m, Ar-CH); δC(100MHz, CDCl3) 21.6, 22.5, 29.3, 36.5, 38.4, 

38.5 (CH2), 56.9 (OCH3) , 68.0 (OCH2), 76.7 (CH), 127.3, 127.8 (Ar-CH), 131.4, 132.0 

(Ar-CH), 137.0 (Ar-qC), 170.8, 208.2 (C=O) 

 

Preparation of 8-ethoxyoxacyclotetradecane-2,13-dione (90da) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioxane)-6’-spiro-1’’,2’’-ethoxy 

cyclohexane (86da) (100 mg; 3.70 mmol) was dissolved in decane (15 

mL) and pipetted into a thermolysis tube. The solutions were then 

degassed and the tubes sealed, as stated, before being immersed in a 

silicone oil bath at 180 °C for 16 hours. The crude product was 

purified by flash column chromatography (1:5 ethyl acetate/ light petroleum) to afford 

the title compound Rf = 0.30 (60 mg; 0.22 mmol; 60.0%) as a white solid: υmax (CHCl3) 

/cm-1  1720, 1732; δH(400 MHz, CDCl3) 1.15 (3 H, t, J 7.0, CH3) 1.22-1.86 (16 H, m, 

CH2), 2.21 (1 H, ddd, J 6.5, 8.9 and 15.3), 2.42 (1 H, ddd, J 3.7, 8.2 and 15.2), 2.55 (1 

H, ddd, J 3.6, 9.4 and 15.2), 2.72 (1 H, ddd, J 6.9, 8.9 and 15.6), 3.23 (1 H, m, CH), 

3.38 (1 H, dq, J 7.0, 7.0, 7.0 and 9.2, OCH2CH3), 3.48 (1 H, m, OCH2CH3), 4.30 (1 H, 

d, J 16.0, CH2O), 4.73 (1 H, d, J 16.0, CH2O), δc(100 MHz, CDCl3); 15.6 (CH3), 22.0, 

23.5, 23.7, 24.3, 26.7, 30.5, 31.5, 33.0, 37.4 (CH2), 64.0 (CH2CH3), 68.5 (OCH2), 76.2 

(CH), 172.9, 207.5 (C=O); m/z 270 (M+), accurate mass [C15H24O4NH4]+ requires 

288.2169, found 288.2166.  
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Preparation of 7-ethoxyoxacyclotridecane-2,12-dione (90db) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioaxane)-6’-spiro-1’’,2’’-ethoxy 

cyclopentane (90db)(100 mg; 3.9 mmol) was dissolved in decane (15 

mL) and pipetted into a thermolysis tube. The solutions were then 

degassed and the tubes sealed, as stated, before being immersed in a 

silicone oil bath at 180 °C for 16 hours. The crude product was purified 

by flash column chromatography (1:5 ethyl acetate/ light petroleum) to afford the title 

compound Rf = 0.42 (72 mg; 0.28 mmol; 72.0%) as a colourless oil: υmax (CHCl3) /cm-1  

1716, 1734; δH(400 MHz, CDCl3) 1.14 (3 H, t, J 7.0, CH3) 1.20-1.88 (14 H, m, CH2), 

2.24 (1 H, ddd, J 6.6, 9.4 and 13.6), 2.41 (1 H, m), 2.54 (2 H, m), 3.28 (1 H, m, CH), 

3.40 (1 H, dq, J 7.1, 7.1, 7.1 and 9.3, OCH2CH3), 3.47 (1 H, dq, J 7.1, 7.1, 7.1 and 9.3, 

CH2CH3), 4.43 (1 H, d, J 15.4, CH2O), 4.62 (1 H, d, J 15.4, CH2O) δc(100 MHz, 

CDCl3) 15.6 (CH3), 22.9, 23.3, 23.4, 24.1, 29.5, 31.2, 33.7, 38.5 (CH2), 63.7 (CH2CH3), 

68.5 (OCH2), 77.0 (CH), 172.7, 207.7 (C=O); m/z 256 (M+), accurate mass 

[C14H22O4NH4]+ requires 274.3013, found 274.2009. 

 

Preparation of 9-ethoxyoxacyclopentadecane-2,14-dione (90dc) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioxane)-6’-spiro-1’’,2’’-ethoxy 

cycloheptane (86dc) (100 mg; 3.51 mmol) was dissolved in decane (15 

mL) and pipetted into a thermolysis tube. The solutions were then 

degassed and the tubes sealed, as stated, before being immersed in a 

silicone oil bath at 180 °C for 16 hours. The crude product was purified 

by flash column chromatography (1:5 ethyl acetate/ light petroleum) to afford the title 

compound Rf = 0.57 (52 mg; 0.07 mmol; 52.0%) as a white solid: υmax (CHCl3) /cm-1  

1729, 1738; δH(400 MHz, CDCl3) 1.16 (3 H, t, J 7.0, CH3) 1.23-1.81 (18 H, m, CH2), 

2.35-2.58 (4 H, m, CH2), 3.26 (1 H, m, CH), 3.45 (2 H, q, J 7.0, OCH2CH3), 4.50 (1 H, 

d, J 16.1, CH2O), 4.59 (1 H, d, J 16.1, CH2O), δc(100 MHz, CDCl3) 15.7 (CH3), 22.5, 

23.4, 23.8, 24.0, 26.9, 27.6, 31.2, 31.5, 33.6, 39.0 (CH2), 63.8 (CH2CH3), 68.4 (OCH2), 

77.1 (CH), 173.3, 207.1 (C=O); m/z 284 (M+), accurate mass [C15H24-H]+ requires 

285.2060, found 285.2061. 
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Preparation of 14-ethoxyoxacycloicosane-2,19-dione (90dd) 

 

Cyclohexane-1-spiro-3’-(1’-2’-4’-trioxane)-6’-spiro-1’’,2’’-ethoxy 

cyclododecane (86dd) (100 mg; 2.82 mmol) was dissolved in decane 

(15 mL) and pipetted into a thermolysis tube. The solutions were 

then degassed and the tubes sealed, as stated, before being immersed 

in a silicone oil bath at 180 °C for 16 hours. The crude product was 

purified by flash column chromatography (1:5 ethyl acetate/ light petroleum) to afford 

the title compound Rf= 0.35 (26 mg; 0.07 mmol; 26.0%) as a colourless oil: υmax 

(CHCl3) /cm-1  1729, 1741; δH(400 MHz, CDCl3) 1.15 (3 H, t, J 7.0, CH3) 1.19-1.75 (30 

H, m, CH2), 2.41 (4 H, m, CH2), 3.23 (1 H, m, CH), 3.45 (2 H, m, OCH2CH3), 4.56 (1 

H, d, J 16.6, CH2O), 4.61 (1 H, d, J 16.6, CH2O), δc(100 MHz, CDCl3) 15.7 (CH3), 

23.1, 24.4, 27.6, 27.9, 28.0, 28.1, 28.2, 32.2, 32.7, 33.8, 38.3 (CH2), 63.8 (CH2CH3), 

68.1 (OCH2), 78.5 (CH), 173.1, 204.7 (C=O); m/z 256 (M+), accurate mass 

[C14H22O4NH4]+ requires 274.3013, found 274.2009. 

 

Preparation of 8-ethoxyoxacyclotetradecane-2,5,13-trione (90df) 

 
Cyclohexane-4-one-1-spiro-3’-(1’,2’,4’-trioxane)-6’-spiro-1’’-(2’’-

ethoxycyclohexaneone (86df) (72 mg; 2.53 mmol) was dissolved in 

decane (15 mL) and pipetted into a thermolysis tube. The solutions were 

then degassed and the tubes sealed, as stated, before being immersed in a 

silicon oil bath at 180 °C for 16 hours. The crude product was purified 

by flash column chromatography (1:1 ethyl acetate/ light petroleum) to afford the title 

compound Rf = 0.42 (15 mg; 0.053 mmol; 20.8%) as a white solid: m.p. 36-38°C  from 

diethyl ether/ light petroleum, υmax (CHCl3) /cm-1  1718, 1737; δH(400 MHz, CDCl3) 

1.16 (3 H, t, J 7.0, CH3) 1.24 (2H, m), 1.40 (2H, m), 1.60 (2H, m), 1.75 (1H, m), 1.99 

(1H, m), 2.24 (1 H, dt, J 7.1 and 16.8), 2.41 (1 H, dt, J 7.3 and 16.8), 2.49 (1 H, ddd, J 

2.9, 8.4 and 18.4), 2.62-2.92 (5 H, m), 3.21 (1 H, m, CH), 3.41 (1 H, dq, J 7.0 and 9.2, 

CH2CH3), 3.51 (1 H, dq, J 7.0, 7.0, 7.0 and 9.3, CH2CH3), 4.37 (1 H, d, J 15.6, CH2O), 

4.56 (1 H, d, J 15.6, CH2O), δc(100 MHz, CDCl3) 15.6 (CH3), 21.3, 23.1, 25.4, 28.6, 

30.8, 36.7, 37.4, 37.9 (CH2), 63.9 (CH2CH3), 69.0 (OCH2), 76.7 (CH), 172.2, 207.2, 

209.0 (C=O); m/z 284 (M+), accurate mass C15H24O5 requires 284.16181, found 

284.16183. 
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Attempted preparation of 10-ethoxy-6,7,8,9,10,11-

hexahydrobenzo[d][1]oxacyclotridecine-2,5(1H,4H)-dione (90dg) 

 

Indane-2-spiro-3’1(1’,2’,4’-trioxane)-6’-spiro-1’’-2’’-

ethoxycyclohexane (86dg) (35 mg; 1.15 mmol) was dissolved in 

decane (10 mL) and pipetted into a thermolysis tube. The solutions 

were then degassed and the tubes sealed, as stated, before being 

immersed in a silicone oil bath at 180 °C for 16 hours. The crude 

product was purified by flash column chromatography (1:5 ethyl acetate/ light 

petroleum) to afford the title compound with some impurities Rf = 0.21 (10 mg; 0.33 

mmol; 28.7% yield): δH (400MHz, CDCl3) 1.23 (3 H, t, J 7.0, CH3) 1.26-1.90 (6H, m, 

CH2), 1.65 (s, unknown)  2.33 (1H, m, CH2, CH2), 2.63 (1H, m, CH2), 2.72 (s, 

unknown), 3.26 (1H, dd, J 13.5 5.9, CH), 3.51 (2 H, dq, J 9.1 7.0, OCH2CH3), 3.71 (2 

H, m, CH2), 3.82 (1 H, d, J 15.8, CH2O), 3.86 (1 H, d, J 15.8, CH2O), 4.39 (1 H, d, J 

16.7, CH2O), 4.87 (1 H, d, J 16.7, CH2O), 7.25-7.37 (4H, m, Ph-H), 8.41 (s, unknown); 

δC(100MHz, CDCl3) 14.1 (unknown CH3), 15.7 (CH3), 17.6 (unknown CH3), 21.5, 22.6, 

29.6, 36.4, 38.4, 39.4 (CH2), 22.7, 29.3, 29.7, 31.9, 51.2 (unknown CH2), 64.8 

(OCH2CH3), 68.0 (OCH2), 75.4 (CH), δ112.9 (unknown qC), 127.1, 127.7 (Ar-CH), 

131.3 (Ar-qC), 131.3, 132.0 (Ar-CH), 137.3 (Ar-qC), 170.8, 208.3 (C=O) 
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β-Scission of alkoxyl radicals 

 

In this section previous literature on the reactivity of alkoxyl radicals will be reviewed 

along with relevant computational studies of artemisinin and related compounds. The 

review will first concentrate on the reaction of simple alkoxyl radicals and discuss (i) 

how an α-substituent can stabilise the β-scission of alkoxyl radicals and (ii) the opening 

of ring systems concentrating on the fine balance between a β-scission process releasing 

ring strain and cleaving the molecule. The review will go onto detail some of the 

computational studies involving artemisinin and related model compounds. This section 

will cover both the formation of the alkoxyl radicals via iron-mediated decomposition 

and the chemistry of the alkoxyl radicals formed.  

 

The cleavage of a C-C bond in a radical β-scission reaction leading to the formation of a 

carbonyl and release of an alkyl radical is one of the most important reactions of alkoxyl 

radicals. The chemistry of alkoxyl radicals has a number of important applications for 

example synthesis of pharmaceutically active natural products,1 the formation of 

medium and large ringed structures2 and as models for intermediates in atmospheric 

chemistry3 and biological systems.4 The alkoxyl radical has been shown to exhibit a 

number of other synthetically useful transformations including cyclization and 1,5-

hydrogen transfer reactions.5,6  

 

The β-scission of an alkoxyl radical in a ring expansion or fragmentation depends on the 

stability of the alkoxyl radical and the potential for competitive reactions like 1,5-

hydrogen transfer to occur. Other competitive reactions include hydrogen transfer from 

a second molecule (Scheme 1 (1)), intramolecular hydrogen abstraction (2) and addition 

to double bonds (3). The nature of the substrate dictates whether the β-scission cleaves 

the molecule in two (4), performs a radical-mediated fragmentation (5), or a radical-

mediated ring expansion (6). The order of rates for β-scission of alkoxyl radicals have 

clearly been shown to be primary < secondary <  tertiary7 with the β-scission of a 

tertiary alkoxyl radical being shown to occur 100 times faster than primary radicals.8  
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Scheme 1 

 

In highly substituted unsymmetrical tertiary alkoxyl radicals it is possible for three 

different β-scissions to occur, forming three different products (Scheme 2).9 In general it 

is expected that the preferred β-scission is the one which produces the most substituted 

and/or most thermodynamically stable alkyl radical, normally in the order methyl < 

primary alkyl < secondary < tertiary.10 Lower activation energies and greater 

exothermicities have been calculated from the formation of more substituted alkyl 

radicals.11,12 

 

 
Scheme 2 

 

The length and electronic population of the bonds alpha to the alkoxyl radical have 

further been shown to be linked to the site of the β-scission. Using DFT calculations the 

optimised geometry of the alkoxyl radical 1b shows that one of the C-C bonds is 

1.564 Å whilst the other are shorter at 1.542 Å. Further to this, NBO calculations have 

shown that the longer bond has a lower electronic population of 1.892 than the other 

shorter C-C bonds (Figure 1). Similar results have also been obtained from alkoxyl 
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radical 1b where the preferred site of β-scission is to release the more substituted ethyl 

radical.13 

 

 
Figure 1 

 

(i) Effect of α-substituents on radical stability  

 

The nature of the group (or atom) in the α-position can have a stabilizing effect on the 

carbon radical. The so called ‘α-effect’ has been shown to be prominent for all but a few 

substituents tested. Particular stabilizing effects have been noted for unsaturated α-

substituents and those bearing lone pairs. 

 

Computed radical stabilization energies (RSE) have been used as a measure of the 

stabilization of the α-substituent relative to a methyl radical. The RSE is the difference 

between the C-H bond dissociation energies (BDE) of a methane molecule (3) and a 

substituted methane molecule (2). The RSE will be negative for all radicals, which are 

more stable than the methyl radical (Scheme 3).14 

 

 
Scheme 3 

 

The stabilization of radicals has been shown to occur due to interactions between the 

orbital carrying the unpaired electron and energetically and spatially adjacent orbitals on 

the substituent. The effect of a vinyl substituent involves the delocalization of the 

unpaired spin into an adjacent π-system in a three-centre three-electron stabilization 

(Figure 2a). The orbital diagram describes how the stabilization is caused by the 

unpaired electron located in a p-orbital of the carbon interacting with the π- and π*-

orbitals of the substituent. The result of this interaction is a doubly occupied bonding 

orbital, a singly occupied approximately non-bonding orbital and an unoccupied anti-
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bonding orbital (Figure 2a). A RSE of -77.5 kJ mol-1 has been calculated for an allyl 

radical.15 

 

 
Figure 2: MO diagram showing π- interactions between CH2 and vinyl (a) or alkyl (b) α-substituent  

 

A related situation occurs for the stabilization of carbon-centred radicals by alkyl 

substituents (Figure 2b). The π-orbitals are constructed through combination of 

individual C-H bonds and interact in a similar way as that seen for vinyl radicals. The 

stabilization is much smaller than vinyl radicals with RSE of -13.8 kJ mol-1 for an ethyl 

radical. Although the RSE is not significantly affected by the length of the alkyl chain, 

the addition of a more strained group like cyclopropyl provides π-type orbitals from 

more strained C-C bonds that interact more efficiently with the radical centre resulting 

in a RSE of -23.2 kJ mol-1.15,16 

 

A further type of stabilizing interaction can occur where the carbon-centred radical 

interacts with an adjacent lone pair in a two-centre three-electron interaction. This 

creates a low-lying doubly occupied bonding orbital and a singly occupied anti-bonding 

orbital (Figure 3). For first row elements, the greatest RSE is seen with amino groups 

and the smallest with fluorine (NH2 = -45.8 kJ mol-1, OH = -32.3 kJ mol-1 and F = -12.9 

kJ mol-1) demonstrating a link between the electronegativity of the substituent and the 

size of the stabilization.15 A similar effect however, is not seen for second row 

substituents.15 In each case, the stabilization of the carbon-centred radical by an α-

substituent is accompanied by a contraction in the bond between these two centres. For 

example, the C-O bond length in methanol is 1.419 Å and the same bond in 

hydroxymethyl radical is 1.370 Å.17  
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Figure 3: MO diagram showing interaction between a ·CH2 and a α-substituent containing a lone pair 

 

In some cases, the α-effect provides considerable stabilisation to the reaction allowing 

β-scission reactions to occur even when intramolecular hydrogen abstraction looks more 

likely. Primary alkoxyl radical 4 is ideally set up for intramolecular hydrogen 

abstraction with a ·O···5H distance of 2.8 Å. Despite this, the β-scission of 4 to form 6 is 

the preferred reaction with no trace of the intramolecular hydrogen-abstraction product 

5 being isolated (Scheme 4).18,19 Similar findings were found for the reaction of 

carbohydrate-derived alkoxyl radicals.20,21  

 

 
Scheme 4 

 

A similar result from the reaction of primary alkoxy radicals 7a (R=H) and 7b (R=Me) 

was studied computationally (Scheme 5). The reaction of 7a produced exclusive β-

scission to form 8. In contrast, the preferred reaction of 7b was a 1,5-hydrogen 

abstraction forming 9.  It was proposed that the half-filled p-orbital (SOMO) of 7a was 

interacting with the hydrogen atom of the hydroxyl group forming a stabilising six-

membered interaction which is not possible in 7b. Computational models confirm the 

presence of the ·O···HO non-bonding interaction measuring 2.22 Å (7aa) and 2.37 Å 

(7ab) in the two studied conformations of 7a (Scheme 5). The ·O···HO non-bonding 

interaction appears to elongate the C-C bond distance to 1.585 Å (7aa) and 1.576 Å 

(7ab) at the site of β-scission suggesting a lowering in the transition state barrier. With 
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no close-range interaction, 7b contains a longer C-C bond distance of 1.529 Å implying 

the β-scission would be more difficult.22  

 

 
Scheme 5 

(ii) Release of ring strain 

 

The β-scission of an alkoxyl radical which subsequently causes a ring opening is also 

important in determining the preferred reaction of alkoxyl radicals. Computed energies 

for ring opening β-scission reactions of monocyclic alkoxyl radicals show increased 

activation barriers with increased ring size (Table 1). The ring openings also become 

less exothermic with the increased ring size, with the opening of a six-membered 

alkoxyl radical actually computed to be slightly endothermic. Additionally the C-C 

bond distance at the transition state becomes longer as the ring size increases indicating 

a later transition state.11 This follows the Hammond postulate that assumes the more 

endothermic the reaction the more closely will the transition state resemble the 

products.23 These energy barriers are consistent with experimental results which 

determined the rate constants for the ring openings of cyclopentoxyl and cyclohexyloxy 

radicals to be ko= 4.7 x 108 s-1 and ko= 1.1 x 107 s-1 respectively.24  

Reactant Product Ea ∆E R 

 O  
2.8 -23.1 1.742 

  
7.7 -23.7 1.900 

 O  
15.4 -4.3 2.030 

 O  
20.7 1.9 2.052 

Table 1: Energy barriers and overall reaction energy (kcal mol-1) for the β-scission of different ring sizes. 

R= C···C bond distance in transition state. 
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For the alkoxyl radicals 10, 12 and 13, the ring opening is in competition with the 

fragmentation of the molecule releasing either isopropyl or ethyl radicals. In 10, a 700-

fold increase for the β-scission of bond A was observed compared to bond A in 11 

where an ethyl radical is released (Figure 4). Consistent with lower ring strain in a six-

membered ring, a smaller four-fold increase in β-scission within the ring was evident 

for the ring opening of 12, compared to 11, with the cleavage of bond B causing the 

release of a isopropyl radical still being favoured 11:1. The replacement of the isopropyl 

group in 12 with an ethyl group in 13 does change the preference heavily in the favour 

of the opening of the six-membered ring.25  

 
Figure 4 

 

In another example of competitive β-scission reactions, 1-alkylcycloalkoxyl radicals 

such as 15 (Scheme 6) exhibit a fine balance between the β-scission within the ring or of 

the C-alkyl bond. Thus, where R= H or Me β-scission of the 5-membered ring 

consistent with the release of ring strain has been shown to occur forming 14. However, 

when R= Et, the formation of 1-indanone (16) is observed consistent with release of an 

ethyl radical.26  

 

 
Scheme 6 

 

In the examples outlined in Figure 4 and Scheme 6, where   competition exists between 

two different β-scission pathways, the release of ring strain loses out in each case to the 

release of alkyl radicals when more substituted alkyl radicals can be formed.   

 

In a further competitive β-scission reaction, alkoxyl radical 17 has a choice to break 

either bond A or B. The cleavage of bond A was expected to be the preferred reaction 

mechanism as it would release the ring strain associated with the four-membered ring 

and generate an intermediate allylic radical 19 which would be resonance stabilised. In a 
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surprising result, however, β-scission of alkoxyl radical 17 formed the seven membered 

product 18 in 80% yield from β-scission of bond B and 19 from the opening of bond A 

in only 11% yield (Scheme 7).  Although both processes release ring strain from the 

cyclobutane ring, the breaking of bond B also opens the 5-membered ring therefore 

releasing the ring stain of both rings in one process. The replacement of the methyl at 

the position 5 with a hydrogen in 17 also resulted in the formation of the seven 

membered product in the higher yield despite the formation of a secondary radical 

centre. Furthermore, the reaction in the absence of the double bond in 17 actually 

achieved an increased yield of 22% from the opening of ring A with 69% of the 

alternative product from opening of B, despite the lack of the stabilization effect of the 

allylic group. This indicated that the stability of the intermediate 19 was having no 

effect on the overall reaction and that the energy barrier for the opening of bond A was 

more important.27 

 

 
Scheme 7 

 

To delineate the factors controlling the cleavage of bond A over bond B, model 

calculations using 20-23 were carried out. For each model studied, the opening of bond 

B was consistently favoured over bond A (Table 2). The results for the opening of 20 

show that the simultaneous cleavage of the fused four- and five-membered rings to form 

a 7-membered ring leads to a reduction in the activation energy, relative to the cleavage 

of a four-membered ring alone. The addition of the allylic group in 21 and 23 reduces 

the bond A cleavage barrier significantly but not enough for it to be less than that of 

bond B. The cleavage of bond B has a consistently smaller C···C distance in the 

transition state demonstrating an earlier transition state than that of the cleavage of bond 

A (Table 2). As expected, the intermediate radical from the opening of bond A in 21 

and 23 is stabilised by resonance to give a more exothermic reaction. The fact that the 

opening of bond B and formation of the seven membered ring product is observed 
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experimentally confirms the stability of the intermediate has little effect on the outcome 

of the reaction. The lower barrier associated with the release of ring strain of a 4-

membered and 5-membered ring suggests the reaction is operating under kinetic 

control.11   

 

Reactant  Product Ea ∆E R 

O

B

A

 

20 

A 

 

10.1 -20.5 1.921 

B 

O  

5.5 -21.4 1.878 

 

21 

A 

 

6.5 -35.6 1.882 

B 

 

4.9 -20.6 1.880 

 

22 

A 

 

7.3 -24.4 1.900 

B 

 

5.0 -23.2 1.871 

 

23 

A 

 

6.7 -32.4 1.979 

B 

 

5.4 -20.6 1.878 

Table 2: Energy barriers and overall reaction energy (kcal mol-1) for the β-scission at positions A and B 

R= C···C bond distance in transition state 

 

Computational studies into the decomposition of Artemisinin 

 

Although in earlier work semi-empirical methods were used to study 1,2,4-trioxanes 

computationally,28,29 it was after the advent of DFT methods the geometry of the 1,2,4-

trioxane ring could be reproduced accurately.30,31  The structural and spectroscopic 

properties of artemisinin (24) and its derivatives have  since been extensively studied 

using DFT calculations.32  
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Due to the computational expense of modelling the reaction mechanism for the full 

artemisinin molecule (24), initial theoretical studies were carried out on 6,7,8-

trioxybicyclo[3.2.2]nonane (25) which provides a good mimic of the geometry of the 

1,2,4-trioxane ring in artemisinin (24).33  

 

 
 

One such calculation explored the mechanism for cleavage of the peroxide bond by 

metal ions to give alkoxyl radicals. This process is regarded as the initial decomposition 

reaction of 1,2,4-trioxanes and crucial to antimalarial activity. The exact route for the 

opening of the peroxide was investigated by interaction of a number of iron, copper and 

zinc species with the peroxide bond of 25. The metal ions can interact with the peroxide 

bond in different ways depending on the angle of approach. In the case of bare Fe2+ both 

the quintet and triplet spin states were investigated with the results for the triplet 

electrons reported. The approach of bare Fe2+ to O1 (26) or O2 (27) or both (28), each 

caused the opening of the peroxide bond with the lowest energy species shown to be 

where the iron is bound to both O1 and O2 in 28 (Figure 5). Although the use of Fe2+ is 

not biologically realistic, related ring openings by complexes containing Fe2+, Fe3+ and 

Cu+ species with varying spin states demonstrated a similar O-O bond breaking. 

However in these a preference for the formation of a Fe-O1 bond in 26 over a Fe-O2 

bond in 27 and 28 was apparent. No change in the O-O bond length was evident with 

Zn2+.34  

 

 
Figure 5 

 

One possible source of iron in the human body is heme. The interaction of 25 with heme 

showed the preferential formation of a Fe-O1 bond (this was 10.6 kJ mol-1 lower in 
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energy than the alternative Fe-O2 bond) with an oxygen radical positioned at O2. This 

radical reacts to form a more stable carbon-centred radical via a β-scission reaction 

which further reacts to form a bond between itself and one of the meso-position of the 

heme (Figure 6). The cleavage of the Fe-O bond in the heme complex results in the 

formation of a stable covalent product with no antimalarial activity.35 Further studies 

into the nature of the Fe-O bond between artemisinin and heme have been reported.36 

 

N N

NN

Fe

HOOC COOH

OH

O

O

 
Figure 6 

 

The reactions of the alkoxyl radicals 29 and 31 have been further investigated by 

comparing the β-scission and 1,5-hydrogen abstraction processes (Scheme 8). A 

transition state energy of 7.2 kcal mol-1 was calculated for the 1,5-hydrogen abstraction 

of the hydrogen in the 2 position of 29 to the oxygen radical in the 6 position of 30. 

Overall the formation of 30 is exothermic by 5.2 kcal mol-1 from 29 and therefore 

deemed to be irreversible. The expected β-scission reaction of 31 has similar, but 

higher, activation energy of 7.8 kcal mol-1 with the formation of 32 being exothermic by 

10.1 kcal mol-1 from 31.  The resulting carbon-centred radical from the β-scission is 

therefore substantially lower in energy than that derived from 1,5-H abstraction.  

 

 
Scheme 8 

 

Arguments put forward by Haynes et. al. (Chapter 1) invoke the formation of a 

carbocation during the artemisinin mechanism which accounts for the antimalarial 
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activity. However computational studies into the preferred Lewis acid protonation site 

of artemisinin (24) and arteether 33 both show that the protonation is very unlikely to 

occur at either oxygen of the peroxide bond (Table 3); indeed protonation is more likely 

to occur at O5 in artemisinin (24) and O4 in arteether 33.37 In contrast, calculations on 

deoxyartethers 34 and 35, where the oxygens at the 3- or 4-positions, respectively, are 

replaced by a methylene, demonstrate more accessible energies associated with 

protonation of O2 indicating that protonation of the peroxide bond is more likely to 

occur. Interestingly when O4 is replaced with a methylene group in 35 the protonation 

of O2 results in a low energy species and additionally promotes the cleavage of the O2-

C bond leading to the formation of a carbocation as suggested by Haynes.38 

 

 

 
 

 

 

Proton 

Site 

Relative Energy/ kcal mol-1 

Artemisinin Arteether 
Arteether- O3 

replaced with CH2 

Arteether- O4 

replaced with CH2 

24 33 34 35 

1 31.4 16.7 10.8 12.1 

2 17.8 10.4 5.2 (14.1) 6.6 (6.6) 

3 13.1 1.8 - 0.0 

4 12.0 0 0.0 - 

5 0 2.4 3.2 6.5 

Table 3: Protonation energies for different oxygen sites in artemisinin and related compounds 
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A very extensive study mapping all proposed intermediates in the decomposition of 24 

and 2539 has illustrated the stability of the various radical intermediates proposed during 

their iron-mediated decomposition (Schemes 9, 10 and 11). The initial ring opening of 

the peroxide bond was modelled using a hydrogen atom which mimics the ring opening 

using Fe(II). On approach to the peroxide bond at either O1 or O2, the O1-O2 bond 

distance steadily increases to form low energy transition states (TS[24-37]= 5.1 kcal 

mol-1 and TS[24-38]= 4.2 kcal mol-1) which relax to form low energy intermediates 37 

and 38 in exothermic processes (Scheme 9).40 

O

H

O

O

H
O

O

24 Artemisinin

1

2

O

H

O

O

H
OH

O1

2

O

H

O

O

H

O
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2

3

4

5
H

H

37 -87.1

38 -82.7

[4.2]‡

[5.1]‡

 
Scheme 9: Scheme 10: Reaction intermediates in the computed decomposition of Artemisinin. 

Energies are in kcal mol-1 

 

From intermediate 38, the O1-centred radical has been shown to undergo 1,5-hydrogen 

abstraction reaction through a transition state of ca. 5.5 kcal mol-1, forming the carbon 

centred radical 39 in a mildly exothermic reaction (Scheme 10). Compounds 41 and 44 

are known metabolites from artemisinin and various routes have been suggested for 

their formation. The route studied for the formation of 41 is via epoxide 40 and involves 

a large increase in energy for its formation suggesting a slow reaction. The other route 

suggested for the formation of 40 was by epoxidation of 42 by Fe(IV)=O and 

subsequent release of Fe(II)41 but was not investigated in this study. The formation of 

44 was investigated by two routes, first the addition of hydrogen atom followed by the 

release of water. Although this route looks favourable with low energy barriers and 

intermediates, the reaction relies on a source of hydrogen atoms. Therefore, in the 

absence of hydrogen atoms, the loss of ·OH followed by ring closure was considered. 

Despite the formation of 42 from 39 requiring a lower barrier than 40 from 39 the 

barrier is still ca. 27 kcal mol-1 and suggests that radical 39 may have a long lifetime.40 
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Scheme 10: Reaction intermediates in the computed decomposition of Artemisinin. 

Energies are in kcal mol-1 

 

The formation of the radical at O2 leads on to a number of competitive β-scission 

reactions via intermediate 45 (Scheme 11). In particular, 46 is a low energy intermediate 

that is thought to be responsible for the biological activity of artemisinin and is easily 

formed. Subsequent reaction to 47 (which would stop activity due to 46) is calculated to 

have a high barrier (~50 kcal mol-1). This suggests the lifetime of the radical may be 

long enough to give an antimalarial effect. The further reaction of oxygen-centred 

radical 48 can follow a number of different steps. The formation of 49 through the β-

scission of the C-O bond looks unlikely as a large barrier is computed. The alternative 

reactions, involving β-scission of C-C bonds and hydrogen transfer, both form the same 

low energy intermediate 52 through two different mechanisms. Similar to the 

transformation of 46 to 47 a large barrier has to be overcome in the formation of the 

product 53. The final stage of each of the processes studied to produce artemisinin 

metabolites 41, 44, 47 and 53 involve large activation energies. This suggests that the 

radical intermediates may have a long enough lifetime to provide the antimalarial 

activity observed for artemisinin.40 
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Scheme 11: Reaction intermediates in the computed decomposition of Artemisinin 

Energies are in kcal mol-1 
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Computational study of β-scission reactions during the thermolysis of dispiro-1,2,4-

trioxanes       

 

Experimental results have shown that the products obtained through the thermolysis of 

dispiro-1,2,4-trioxanes  54a-d vary with the nature of the substituent in the α-position of 

ring A. In general, the thermolysis of the unsubstituted dispiro-1,2,4-trioxane 54a 

results in the selective formation of oxalactone 56a.42,43 The observed product is 

consistent with initial opening of the 1,2,4-trioxane ring (ring B) by O-O homolysis 

giving 55a, followed by selective β-scission in ring C before that in ring A (Scheme 12). 

 

 
Scheme 12 

 

Although the thermolysis of the methyl-substituted dispiro-1,2,4-trioxane 54b again 

resulted in oxalactone 56b, the fully ring expanded keto lactone 57b is also isolated in 

low yield.43,44 The formation of 57b suggests that different energetic conditions make 

the energy barrier associated with the β-scission of ring A more competitive with the 

barrier for the β-scission of ring C. 

 

The results reported in Chapter 2 for the thermolysis of methoxy- and ethoxy-

substituted dispiro-1,2,4-trioxane 54c and 54d have shown the selective formation of 

the fully ring expanded keto lactones 57c and 57d in high yield without the formation of 

any oxalactone 56c or 57c in isolable amounts. This suggests that the introduction of an 

alkoxy-substituent results in the energy barrier for the β-scission of ring A being 

directly competitive with the barrier for the β-scission of ring C.  

 

It was clear from these experimental results that there is a change in the products 

isolated from the thermolysis of different dispiro-1,2,4-trioxanes. Since there was no 
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definitive explanation for this observation it was appropriate to investigate the reaction 

mechanism through density functional theory (DFT) calculations. In order to investigate 

the mechanism this study was separated into two sections.  

 

(i) Firstly, small models were studied to investigate the opening of both rings A and C 

individually. To do this the calculations were carried out on simplified oxy radicals 58 

and 59 which were used to model rings A and C respectively (Figure 7). 

 

 
Figure 7 

 

In adopting this approach it is assumed that the oxy-radicals formed during the 

thermolysis of a dispiro-1,2,4-trioxane act independently of each other. The aim of this 

study was first to prove that ring C opens significantly faster than ring A when R=H and 

then by changing R to Me or OMe investigate their influence on the barrier associated 

with the opening of ring A. A number of different ring sizes and substituents have been 

considered to establish what influence these have on the energy barriers involved in the 

reaction. Although the investigation concentrated on examples with experimental 

results, DFT calculations provided the opportunity to study hypothetical α-substituents 

as a predictive tool for selective formation of keto lactones 57 from dispiro-1,2,4-

trioxanes 54. 

 

(ii) A full model study mapping out the intermediates involved in the radical 

rearrangement reactions of dispiro-1,2,4-trioxanes 54a-c which aimed to further analyse 

the competitive β-scission reactions. Analysis of the bi radical system allows the 

radicals to recombine at any point during the reaction making the system more realistic. 

In addition, the use of the dispiro-1,2,4-trioxane as the starting point allowed for the 

homolytic cleavage of the peroxide bond giving the two alkoxy-radicals to be studied.  

 

Computational Details 

 

The calculations contained within this chapter have been carried out using density 

functional theory (DFT) methods using Gaussian 9845 and Gaussian 0346 with the 
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hybrid functional B3LYP deploying a 6-31G** basis set. All bond lengths contained 

within this chapter are displayed in Angstrom (Å) with energies containing a zero-point 

correction factor displayed in kcal mol-1.  

 

Calculations on the full dispiro-1,2,4-trioxane were carried out as open shell singlet 

calculations. A general approach to optimise open shell singlet calculations is to use an 

unrestricted DFT method and the ‘guess=mix’ option in Gaussian 98 and Gaussian 03. 

In such a calculation the <S2> term becomes close to 1.0 rather than the expected value 

of 0.0. In nearly every case the values of <S2> was ca. 1.0 and any deviations from 1.0 

will be discussed in the text. Further checks that the models represent the open shelled 

singlet were carried out by calculating natural spin densities and the elimination of the 

possible wavefunction corresponding to the  O+···O- by checking the ionic charge 

distribution.  

 

In an effect regularly observed with zero-point corrected energies’ the transition-state 

energy in some cases is actually lower than one of the minima to which it is linked. If 

the pure electronic SCF energies of the reactant and the transition state are compared, 

the transition state is the less stable.  However, when the zero-point correction is 

applied, the relative energy of the transition state is destabilised by less than that of 

reactant, resulting in transition state being more stable than the reactant.  This happens 

because a transition state, as a turning point with one imaginary frequency, is 

considered in a frequency calculation as run in the Gaussian program to have one less 

vibrational mode than a minimum (with 3N-7 rather than 3N-6 vibrational modes).  

This results in transition states being less destabilised by zero-point energy corrections 

than minimum structures are.  If a minimum and a transition state are close in energy, 

this difference in the degree of destabilisation can lead to the transition state having a 

lower energy than the minimum. 

 

From the transition states, intrinsic reaction coordinate (IRC) calculations were used to 

find a local minimum. In each case the straight-chain product was also calculated with 

energies regularly being higher in energy than the intermediate calculated from the IRC 

calculation. Despite this, the overall thermodynamics of the reaction remained 

unchanged therefore throughout this study the intermediates from the IRC calculations 

will be discussed. 
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Theoretical studies into the ring opening of cyclohexyloxyl radicals 58a and 59  

 

The oxy radicals used in the small model study, 58a and 59, were both orientated and 

optimised into a classic chair conformation. From the crystal structures of the dispiro-

1,2,4-trioxanes discussed in Chapter 1 it was noted that the configuration of the 

peroxide oxygens are axial with respect to both ring A and C. The configuration of the 

reactant models 58a and 59 was therefore set up so that the oxygen radical is positioned 

in an axial arrangement. As a consequence, the methoxy group in 59 and the ether group 

in 58a were equatorial with respect to rings C and A respectively (Figure 8). 

 

 
Figure 8 

 

A comparison between the opening of the ring A (58a) and C (59) models shows a clear 

preference for the opening of ring C. The barrier associated with the opening of ring C 

at C(2)-C(3) via TS[59-59′], is 7 kcal mol-1 lower in energy than the barrier for the ring 

opening of A at C(2)-C(3) via TS[58a-58a′] (Figure 9). Additionally the opening of 

ring C results in a intermediate 59′ which is 5.6 kcal mol-1 lower in energy than the 

reactant, whilst the opening of ring A to form 58a′ is endothermic by 4.9 kcalmol-1. This 

demonstrates the presence of the adjacent exocyclic O(8) strongly promotes the ring 

opening and is consistent with experimental results showing the preferential formation 

of oxalactone 56a from the thermolysis of unsubstituted dispiro-1,2,4-trioxanes 54a. In 

both cases the β-scission is accompanied by the expected shortening of the carbonyl 

C(2)-O(1) distances and increased planarity of the incipient terminal C(3) due to a build 

up of radical character. In fact a shortening of the C(2)-O(1) bond in reactant 59 

suggests the oxy radical is already delocalised. A shorter C(2)-C(3) distance in TS[59-

59′] compared to TS[58a-58a′] implies an earlier transition state for the former and is 

consistent with the lower activation energy seen for the opening of ring C. The 

complete transfer of radical character is confirmed by the short carbonyl bond distance 

in the intermediate. 
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Figure 9: The reaction profile for ring opening of oxy radical 58a and 59/ kcal mol-1 

with molecular bond lengths/ Å 

 

As previously shown in Chapter 2, the complete fragmentation of the dispiro-1,2,4-

trioxanes during the thermolysis has been observed by GC analysis of the crude product 

mixture to form ketones and formaldehyde (not seen by GC). To investigate the 

energies involved in these processes the barriers associated with the cleavage of C(2)-

C(8) in 58 and C(2)-O(8) in 59 were calculated (Scheme 13). 

 

 
Scheme 13 

 

Modelling studies to cleave the C(2)-C(8) bond in radicals 58a found a transition state 

at 4.4 kcal mol-1. Although this energy is competitive with the activation energy for the 

ring opening of ring C the nature of the model allows for a close range interaction of ca. 

2.27 Å between hydrogens on the methoxy group and O(8)  as illustrated in 
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TS[58a-58a′′′] (Figure 10) (Tables 4 and 5). This stabilising interaction would lower the 

energy of the transition state unrealistically as the interaction could not occur in the full 

system, where the hydrogens would be replaced by carbons of ring C. The close range 

interaction was artificially prevented by fixing the dihedral angle of the leaving group 

and quaternary carbon to 180°. In this arrangement the energy associated with 

TS[58a-58a′′′] was ca. 12 kcal mol-1 higher in energy than the unrestricted transition 

state. Although neither transition state can be considered to model the true situation, the 

actual transition state is expected to be between the two energies. The transition states 

associated with the cleavage of C(2)-C(8) have been calculated for each small model 

contained within this chapter and all contain the additional close-range interaction and 

vary slightly in energy.  Although these values are quoted in this chapter, the barriers 

are expected to be lower than the ‘real’ value. The transition states associated with the 

complete fragmentation of the molecule are further investigated in the full model 

systems. 
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Figure 10: The reaction profile C(2)-C(8) bond cleavage in 58a/ kcal mol-1with bond lengths in Å 
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Figure 11: The reaction profile for C(2)-O(8) bond cleavage in 59/ kcal mol-1with bond lengths in Å 

 

Modelling studies for the cleave of C(2)-O(8) in 59 showed the barrier to β-scission to 

be 17.1 kcal mol-1, with the overall reaction being endothermic by 8.0 kcal mol-1 

(Figure 11). This is in contrast to the cleavage of C(2)-C(3) which was substantially 

lower in energy and exothermic (Tables 4 and 5). These processes are also further 

investigated in the large model systems. 

 

 

 
Reactant TS Intermediate Product 

Bond lengths energy bond lengths energy bond lengths energy 

58a 
C(2)-C(3)= 1.58 

C(2)-O(1)= 1.37 

11.0 

*4.4 

C(2)-C(3)= 2.15 

C(2)-O(1)= 1.25 
4.5 C(2)-O(1)= 1.22 2.7 

59 
C(2)-C(3)= 1.59 

C(2)-O(1)= 1.32 

4.0 

#17.1 

C(2)-C(3)= 1.98 

C(2)-O(1)= 1.25 
-7.9 C(2)-O(1)= 1.21 -9.0 

Table 4: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(8) bond # TS of β-scission of C(2)-O(8) bond 

The product from the reaction is from the straight-chain open system 

 

 



Chapter Three                                                                              Results and discussion 

 220

 Reactant TS Intermediate 

58a 

O(1)= 0.89  

C(2)= -0.03 

C(3)= 0.09 

O(1)= 0.35  

C(2)= -0.08 

C(3)= 0.69 

O(1)= 0 

C(2)= 0 

C(3)= 1.00 

59 

O(1)= 0.72  

C(2)= -0.03 

C(3)= 0.12 

O(1)= 0.37  

C(2)= -0.05 

C(3)= 0.57 

O(1)= 0 

C(2)= 0 

C(3)= 1.02 

Table 5: Natural spin densities at selected positions for the ring opening of ring C 

 

The effect of α-Me and α-OMe substituents on β-scission of ring A 

 
The change in the products obtained from different dispiro-1,2,4-trioxanes highlighted 

above indicate that the barrier associated with opening of ring A is changing with 

varying substituents. This study is designed to access the effect of α-substituents, R, has 

on the opening of ring A, where R= Me or OMe (Scheme 14). 

 

Through analysis of X-ray crystal structures of substituted dispiro-1,2,4-trioxanes 

discussed in Chapter 1, the α-substituent was shown to be positioned trans with respect 

to the peroxide oxygens and in an axial orientation with respect to ring A. Although the 

alternative regioisomer where the α-substituent is cis with respect to the peroxide 

oxygens has also been considered, more emphasis will be given to the results obtained 

with the α-substituent in a trans position.  

 

The addition of an α-substituent makes the model unsymmetrical meaning there are 

potentially two competing β-scission sites which can initiate ring opening (Scheme 14). 

Due to the formation of a secondary carbon-centred radical (58b,c′) from cleaving 

C(2)-C(3) compared to a primary carbon-centred radical (58b,c″) from the cleaving of 

C(2)-C(3′), it was expected that the transition state associated with the later process 

would be substantially higher in energy. 

 
Scheme 14 
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The calculated activation barrier for the ring opening of methyl-substituted radical 

ax-58b at C(2)-C(3) show a reduction in energy of 5.5 kcal mol-1 compared to the 

unsubstituted model 58a (Figure 11). There is a clear preference for the opening of the 

substituted C(2)-C(3) bond over the alternative C(2)-C(3′) cleavage. The shorter 

C(2)···C(3) distance of 2.11 Å and the longer C(2)-O(1) bond of 1.26 Å in the transition 

state for C(2)-C(3) cleavage demonstrates an earlier transition state than that of  the 

cleavage of C(2)-C(3′). The opening of ax-58b to form ax-58b’ is also mildly 

exothermic by 0.4 kcal mol-1 which is in contrast to the opening of 58a which was 

endothermic by 4.9 kcal mol-1. Although the barrier has decreased by 5.5 kcal mol-1 

from the unsubstituted model 58 the transition state is still 2.5 kcal mol-1 higher in 

energy than the opening of C(2)-C(3) for ring C in model 59. The lowering of the 

barrier for the opening of ring A is consistent with the isolation of keto lactone from the 

thermolysis of methyl-substituted dispiro-1,2,4-trioxane 54b. However, as oxalactone is 

still the major product from the thermolysis this suggests that the two separate ring 

opening reactions do not occur equally, and that the opening of ring C followed by the 

recombination to make a new C-O bond is still favoured. 
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Figure 11: The reaction profile for ring opening of oxy radical ax-58b/ kcal mol-1 

with molecular bond lengths/ Å 
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Calculated activation barriers for the ring opening of methoxy-substituted radicals ax-

58c also show a reduction in energy of 8.7 kcal mol-1 compared to the unsubstituted 

model 58a. There is again clear preference for the opening of the substituted C(2)-C(3) 

bond over the alternative C(2)-C(3′) bond (Figure 12). Interestingly, the barrier via                 

TS[ax-58c- ax-58c′] for the opening of the C(2)-C(3) bond  is now 0.7 kcal mol-1 lower 

in energy than the opening of C(2)-C(3) in ring C in 59. This suggests a change in the 

preferred site of β-scission towards the opening of ring A.  In addition to the low 

transition state barrier of 4.5 kcal mol-1 the overall ring opening step to form ax-58c′ is 

exothermic by 5.0 kcal mol-1. The shorter C(2)···C(3) bond of 2.06 Å in TS[ax-58c- ax-

58c′] compared to 2.11 Å in TS[ax-58b- ax-58b′] suggests an earlier more accessible 

transition state. TS[ax-58c-ax-58c′] also shows a shortening of the C(3)-Sub bond 

distance from 1.43 Å in ax-58c to 1.37 Å consistent with the developing radical 

character being shared by the substituent itself.  
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Figure 12: The reaction profile for ring opening of oxy radical ax-58c/ kcal mol-1 

with molecular bond lengths/ Å 
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Although the energy barrier for the opening of the C(2)-C(3′) bond varies for the 

different R groups discussed, it remains consistently higher in energy than the 

substituted C(2)-C(3) bond. Therefore the barriers will be included in future tables but 

will not be discussed. Moreover, when the position of the substituent is equatorial and 

cis to the oxy radical in eq-58b and eq-58c, the energies associated with the reactions 

do not change significantly. Also the same trends in bond lengths and angles seen in 

cases where the substituent is trans to the oxy radical are repeated in the cis models. 

 

The energies associated with the various β-scission reactions are illustrated in Table 6 

and show a systematic lowering of the transition state energy and overall reaction 

energy as the substituent is changed from R=H to R=Me to R=OMe. This finding is 

consistent with the increase isolated yields of keto lactone and lower isolated yield of 

oxalactone as you move from hydrogen to methyl to methoxy. 

 

 

 
R 

Reactant TS Intermediate Product 

 Bond lengths energy bond lengths energy bond lengths energy 

58a H 
C(2)-C(3)= 1.58 

C(2)-O(1)= 1.37 

11.0 

*4.4 

C(2)-C(3)= 2.15 

C(2)-O(1)= 1.25 
4.5 C(2)-O(1)= 1.22 2.7 

ax-58b Me (ax) 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.54 

7.7 

*10.7 

# 9.6 

C(2)-C(3)= 2.11 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.51 

-1.3 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.49 
-4.3 

ax-58c 
OMe 

(ax) 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.43 

4.5 

*10.4 

# 3.5 

C(2)-C(3)= 2.06 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.37 

-5.0 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.37 
-3.6 

eq-58b Me (eq) 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.54 

7.1 

*10.5 

# 2.9 

C(2)-C(3)= 2.10 

C(2)-O(1)= 1.25 

C(3)-Sub= 1.50 

-2.5 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.49 
-2.3 

eq-58c 
OMe 

(eq) 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.42 

5.4 

*12.0 

# 5.4 

C(2)-C(3)= 2.04 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.36 

-4.4 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.36 
-4.3 

Table 6: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 
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Initial calculations of the full model systems indicated that a further close range 

interaction exists between the methoxy substituent and the ether oxygen of the 1,2,4-

trioxane ring, as illustrated in 60. To facilitate this interaction in the small model 

systems the ether group in oxy radical ax-58c was rotated to bring the interacting parts 

close together as illustrated in Figure 13. This close range interaction between the ether 

oxygen and one methoxy hydrogen (O···H = 2.46 Å) initiates a pseudo seven-membered 

ring within the molecule. The length of the substituted C(2)-C(3) bond increases from 

1.57 Å to 1.62 Å indicating substantial delocalisation of the radical character from the 

oxy radical. Further evidence of this is the shorter C(2)-O(1) bond of 1.35 Å. 

Additionally the shorter C(3)-O bond of 1.41 Å indicates the radical character is further 

delocalised onto the methoxy substituent. The structural changes within the reactant 

suggested the barrier for the cleavage of C(2)-C(3) would be affected.  

 

 
Figure 13 

 

Although the transition state for the cleavage of C(2)-C(3) gives a shortening of the 

close range interaction between the ether oxygen and one methoxy hydrogen (O···H= 

2.35 Å) the other bond lengths within the molecule remain approximately the same as 

the model with no close range interaction. The barrier for TS[ax-58c-ax-58c′] has 

however reduced by 2.7 kcal mol-1 to 1.8 kcal mol-1 (Figure 14). The transition state 

relaxes to form ax-58c′ at -2.2 kcal mol-1 giving an overall exothermic process. 

Although the close interaction between the ether oxygen and one methoxy hydrogen 

(O···H= 2.70 Å) has lengthened it is still present in ax-58c′.  
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Figure 14: The reaction profile for ring opening of oxy radical ax-58c/ kcal mol-1 

with molecular bond lengths/ Å 

 

Similarly in the methyl model ax-58b, a rotation of the ether group can facilitate a close 

range interaction between the ether oxygen and one methyl hydrogen (O···H= 2.63 Å) 

as illustrated in Figure 15. The interaction within ax-58b is 0.17 Å longer than the 

corresponding methoxy-substituted ax-58c because there is no flexibility in the position 

of the methyl carbon meaning the close range interaction cannot be optimised. Methyl 

substituted ax-58c has a lengthened substituted C(2)-C(3) bond of 1.60 Å whilst no 

other bond lengths have changed significantly. 
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Figure 15 

 

Despite the lengthening of the C(2)-C(3) to 1.60 Å, the energy associated with 

TS[ax-58b-ax-58b′] energy is not affected by the close range interaction (Figure 16). In 
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TS[ax-58b-ax-58b′] the close range interaction has increased in length from 2.63 Å in 

ax-58b to 2.76 Å. The fixed position nature of the methyl group means that as the 

length of the C-C bond is increased the close range interaction between the ether oxygen 

and one methyl hydrogen automatically has to increase as well. Although the 

intermediate ax-58b′ is exothermic with respect to the reactant the reaction has also 

interrupted the interaction between the ether oxygen and methyl hydrogen. 

 

 
Figure 16: The reaction profile for ring opening of oxy radical ax-58b/ kcal mol-1with bond lengths in Å 

 

The energies associated with the β-scission reactions which contain the additional close 

interaction are illustrated in Table 7 and continue to show a systematic lowering of the 

transition state energy and overall reaction energy as the substituent is changed from R= 

H to R=Me to R=OMe. Additionally they show how an additional close range 

interaction further reduces the transition state barrier where there is a methoxy 

substituent. This important observation indicates that the additional close range 

interaction facilitates the lowering of the barrier to be directly competitive with the 

opening of ring C. Moreover, the results correlate well with the experimental results for 

the thermolysis of alkoxy-substituted dispiro-1,2,4-trioxanes which showed exclusive 

isolation of the fully ring expanded product. 
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R 

Reactant TS Intermediate Product 

 Bond lengths energy bond lengths energy bond lengths energy 

ax-58b Me (ax) 

C(2)-C(3)= 1.60 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.54 

H Bond= 2.63 

7.6 

*11.6 

# 5.0 

C(2)-C(3)= 2.11 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.50 

H Bond= 2.75 

-0.4 

C(2)-O(1)= 1.21 

C(3)-Sub= 1.49 

H Bond= 4.53 

-3.4 

ax-58c OMe (ax) 

C(2)-C(3)= 1.62 

C(2)-O(1)= 1.35 

C(3)-Sub= 1.41 

H Bond= 2.46 

1.8 

*11.8 

# 4.8 

C(2)-C(3)= 2.06 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.36 

H Bond= 2.35 

-2.2 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.37 

H Bond= 2.71 

-2.2 

eq-58b Me (eq) 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.54 

H Bond= 2.40 

6.6 

*10.1 

# 1.9 

C(2)-C(3)= 2.10 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.50 

H Bond= 2.36 

-1.5 

C(2)-O(1)= 1.21 

C(3)-Sub= 1.49 

H Bond= 3..62 

-3.3 

eq-58c OMe (eq) 

C(2)-C(3)= 1.64 

C(2)-O(1)= 1.34 

C(3)-Sub= 1.39 

H Bond= 2.70 

2.8 

*13.6 

# 8.7 

C(2)-C(3)= 2.08 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.35 

H Bond= 2.75 

-1.9 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.37 

H Bond= 2.78 

-4.1 

Table 7: All energies given are related to reactant energy in each case in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 

 

Analysis of the spin density distributions during the β-scission reactions of ax-58b 

and ax-58c 

 
It is well-known that α-substituents, in particular those bearing lone pairs, stabilize C-

centered radicals, the so-called “α-effect”.15,17 The effect of an oxygen atom on the 

stability of the adjacent carbon centred radical has been demonstrated in the above 

examples. A clear reduction in the barrier for the β-scission of a methoxy-substituted 

oxy radical ax-58c compared to an unsubstituted oxy radical 58 demonstrates the effect 

is enough to make the ring opening for ax-58c via TS[ax-58c-ax-58c′] competitive with 

the opening ring C in 59 via TS[59-59′]. To quantify this substituent effect on opening 

ring A we have performed a natural atomic orbital analysis47 to obtain the spin density 

distributions for the stationary points associated with 58, 58b, and 58c (Table 7).  

 

The results for each substituent show the anticipated transfer of spin density from O(1) 

in the reactants onto C(3) in the transition states and products. The reactants 58a, 58b 
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and 58c have increasing spin densities on the substituent (0.06 for ax-58c) on 

progressing from the H to Me to OMe substituents, demonstrating a delocalisation of 

radical character onto that site.  For TS[58-58′] the redistributed spin density is 

localized on C(3) however, in TS[ax-58c-ax58c′] a significant contribution (0.13) is 

localized on the methoxy substituent. This delocalization serves to stabilize TS[ax-58c-

ax58c′] and thus significantly lowers the barrier to ring opening. For TS[ax-58b-

ax58b′] the situation is intermediate between those of TS[58-58′] and TS[ax-5c-

ax58c′]. The changes in spin density from reactant to transition state also show that 

TS[ax-58c-ax58c′] is more reactant-like than the others indicating an earlier transition 

state consistent with the Hammond Postulate23 (Table 8). The α-substituent further 

stabilizes the radical character of the intermediate with increased spin density on the 

substituent along the series R= H, R=Me and R= OMe.  

 

 

 R Reactant TS Intermediate 

58a H 

O(1)= 0.89  

C(2)= -0.03 

C(3)= 0.09 

α-H= 0 

O(1)= 0.35  

C(2)= -0.08 

C(3)= 0.69 

α-H= -0.03 

O(1)= 0 

C(2)= 0 

C(3)= 1.00 

α-H= -0.03 

ax-58b Me 

O(1)= 0.88 

C(2)= -0.03 

C(3)= 0.09 

Sub= 0.01 

O(1)= 0.40 

C(2)= -0.06 

C(3)= 0.58 

Sub= 0.02 

O(1)= 0.01 

C(2)= 0 

C(3)= 0.93 

Sub= 0.03 

ax-58c OMe 

O(1)= 0.80 

C(2)= -0.03 

C(3)= 0.11 

Sub= 0.06 

O(1)= 0.38 

C(2)= -0.02 

C(3)= 0.45 

Sub= 0.13 

O(1)= 0.06 

C(2)= 0 

C(3)= 0.76 

Sub= 0.13 

eq-58b Me 

O(1)= 0.88 

C(2)= -0.03 

C(3)= 0.09 

Sub= 0.00 

O(1)= 0.35 

C(2)= -0.08 

C(3)= 0.69 

Sub= 0.01 

O(1)= 0 

C(2)= 0 

C(3)= 1.00 

Sub= 0.04 

eq-58c OMe 

O(1)= 0.74 

C(2)= -0.02 

C(3)= 0.11 

Sub= 0.09 

O(1)= 0.36 

C(2)= -0.02 

C(3)= 0.64 

Sub= 0.15 

O(1)= 0 

C(2)= 0 

C(3)= 0.79 

Sub= 0.16 

Table 8: Natural spin densities at selected positions for the ring opening of ring C 
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Investigation of oxy radical 61 

 

It was clear that the significant lowering of the barrier towards β-scission of the 

methoxy-substituted oxy radical 58c, is due to a combination of effects. Firstly, the 

oxygen substituent provides stabilisation of the radical character developing on the 

incipient carbon and, secondly, the CH3 group of the methoxy substituent forms a close 

range interaction with the oxygen of the ether group. In order to further quantify the 

stabilisation effect of an oxygen in the α-position, β-scission reactions of 61 were 

investigated. Oxy radical 61 contains a pyranone ring with O(4) expected to provide a 

similar stabilisation effect seen for the methoxy substituent. Importantly, as the 

stabilising oxygen atom is contained within the ring, no short range interactions can be 

formed with the ether oxygen (Figure 17). It is expected however that the energy for the 

β-scission will be slightly higher due to the formation of a primary radical centre.  

 

 
Figure 17: The reaction profile for ring opening of oxy radical 14/ kcal mol-1 

with molecular bond lengths/ Å 

 

The reactant oxy radical 61 shows an elongated C(2)-C(3) of 1.60 Å and a shortened 

C(2)-O(1) bond of 1.35 Å. The C(2)-C(3) bond however has not elongated as much as 

in ax-58c (1.62 Å) (Table 9). The C(2)-C(3) bond cleaves to give a transition state at 6.9 

kcal mol-1, 6.2 kcal mol-1 lower in energy than the unsubstituted model 58 and 5.1 kcal 

mol-1 higher than  the barrier for the methoxy model ax-58c. Additionally the reaction is 

nearly energetically neutral compared to the exothermic reaction observed for the 
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methoxy model. The spin density distributions for the stationary points associated with 

the β-scission show a transfer of character from O(1) to C(3), similar to that seen for the 

reaction of ax-58c. The pyranone model 61 however has a greater spin density on the 

terminal C(3) than was seen for ax-58c which is indicative of a later, less favourable 

transition state. O(4), which is expected to share the radical character with C(3), has a 

spin density of 0.14 in the transition state which is the approximately the same as was 

seen for the methoxy-oxygen in ax-58c (Table 10). It is apparent therefore that despite 

the oxygen atom providing a major stabilising effect on the β-scission reaction without 

the additional close range interaction  seen in the reaction of ax-58c the barrier remains 

higher than the  β-scission of ring C. 

 

 
 

Reactant TS Intermediate Product 

Bond lengths energy bond lengths energy bond lengths energy 

61 

 

C(2)-C(3)= 1.60 

C(2)-O(1)= 1.35 

C(3)-O(4)= 1.40 

6.9 

*13.6 

# 6.7 

C(2)-C(3)= 2.15 

C(2)-O(1)= 1.27 

C(3)-O(4)= 1.37 

-0.1 
C(2)-O(1)= 1.21 

C(3)-O(4)= 1.36 
-0.1 

Table 9: All energies given are related to reactant energy in each case in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 

 

 

 

 

 

 

 

Table 10: Natural spin densities at selected positions for the ring opening of ring C 

 

Conclusion 

 

Calculations on the small model systems have provided good correlation between 

calculated transition state barriers for β-scission of the C(2)-C(3) bond and the observed 

experimental products. The calculation of the barriers for the opening of rings A and C 

of an unsubstituted dispiro-1,2,4-trioxane showed a significantly larger barrier for the 

opening of ring C over ring A, consistent with the formation of oxalactone and not the 

fully ring expanded keto lactone.  

 

  Reactant TS Intermediate 

61 

 

O(1)= 0.84 

C(2)= -0.03 

C(3)= 0.09 

O(4)= 0.03 

O(1)= 0.32 

C(2)= -0.04 

C(3)= 0.55 

O(4)= 0.14 

O(1)= 0 

C(2)= 0 

C(3)= 0.87 

O(4)= 0.24 
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Furthermore, the presence of 2-Me and 2-OMe substituents on ring A significantly 

decreases the ring-opening barrier making the process directly competitive with the 

opening of ring C in the methoxy example. It is apparent a methoxy group accelerates 

the opening of ring A because of the so called ‘α-effect’ where the carbon centred 

radical is stabilised by the adjacent oxygen of the methoxy substituent. In addition to the 

α-effect an intramolecular close range interaction (C-H···O) forming a pseudo seven-

membered ring helps facilitate the opening of the C-C bond by causing an elongation of 

the bond in the reactant species. These effects seem to make the formation of the fully 

expanded keto lactone 4 more likely for R=OMe. 

 

The effect of alternative α-substituents, R  

 

The effect of further R groups, which have not been investigated experimentally, has 

been considered computationally to predict how other substituents may provide a 

similar α-effect on the β-scission reaction. The R groups studied were NX2, OH, F, 

SiX3, PX2, SX and Cl (X= H, Me) and the carbon-based substituents phenyl, CN and 

CO2Me. 

 

The model chosen for this study, eq-58, has the substituent equatorial with respect to 

the ring and cis to the oxygen radical. This conformation was chosen prior to the 

determination of X-ray crystal structures detailed in Chapter 1 in which the substituent 

was shown to be axial trans to the oxygen radical. Although the barriers calculated are 

not on the expected conformation the stabilising α-effect of the substituent and 

subsequent trends are expected to be unaffected as seen for the R= Me and R= OMe 

models discussed above. 

 

 
 

As seen above the manipulation of the model to facilitate a close range interaction 

between the external exocyclic oxygen and the substituent can help to cleave the 

C(2)-C(3) bond. As this important additional interaction has been seen in the initial 

calculations on the full model system, it has been further investigated with these 
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additional R groups. The results are reported in Tables 11 to 18. In all cases, reaction 

profiles have also been calculated without this beneficial interaction, but these generally 

have higher barriers and will not be discussed further in this section. Energies and 

geometries for these models are contained in Table 1, Appendix 3.  

 

NX2, OH, F (X= H, Me) 

 

Amino (NH2, NMe2), hydroxy and fluorine substituents all provide lone pairs which can 

stabilise the carbon centred radicals, as described above.15 Previous studies on carbon 

centred radicals with heteroatom α-substituents showed increased stability with 

decreased electronegativity of the substituent.15 Thus the most stable radical contained a 

NMe2 substituent whilst the least stable contained fluorine. Calculated activation 

barriers for the ring opening of first row element substituted radicals 58e to 58h at 

C(2)-C(3) show a similar trend with NMe2 ≈ NH2 < OH < F (Table 11).  

 

The geometry and spin densities of the reactant species show a clear link between the 

delocalisation of the radical character towards the substituent and the barrier for ring 

opening (Table 11). Ring opening via C(2)-C(3) bond cleavage where R = NH2 (58e) or 

NMe2 (58f) has been shown to be effectively a barrierless process. The nitrogen-based 

oxy radicals 58e and 58f contain elongated C(2)-C(3) bonds of 1.73 Å and 1.79 Å 

respectively, whilst both contain shortened C(2)-O(1) bonds of 1.31 Å. The lengthening 

of the C(2)-C(3) bond is accompanied by increased radical character on the C(3)-NH2 

and C(3)-NMe2 groups of 0.28 and 0.42 respectively, with the C(3)-NMe2 having a 

shorter C(3)-N bond by 0.02 Å (Table 11).  

 

In contrast the oxy radicals containing OH (58g) or F (58h) substituents have 

successively shorter C(2)-C(3) bonds of 1.64 Å and 1.55 Å and longer C(2)-O(1) bonds 

of 1.34 Å and 1.37 Å respectively. The changes in the geometry of the oxy radicals 

indicate less delocalisation of the radical character from O(1). The radical spin densities 

further prove this with the C(3)-OH and C(3)-F groups having natural spin densities of 

0.15 and 0.06 respectively.                     

 

The C(2)···C(3) bond distances in the β-scission transition state are shorter in the 

reactions with a lower activation barrier consistent with the Hammond Postulate23 

(Table 11). In each transition state the β-scission is accompanied by the expected 
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shortening of the carbonyl C(2)-O(1) distance and increased planarity at C(3) due to the 

further build-up of radical character. The radical character on the carbon is increasingly 

shared by the substituent in generally the same order as the activation barrier, i.e NH2 > 

NMe2 > OH > F. Although NMe2 shows less radical character on C(3) than NH2 there is 

more radical character on the NMe2 group than NH2. Interestingly TS[58f-58f′] has a 

greater spin density on the nitrogen than on C(3) demonstrating a major stabilisation of 

radical character. Upon complete cleavage of C(2)-C(3) the radical centre C(3) 

continues to be delocalised to varying degrees onto the heteroatom (Table 12). The β-

scission of nitrogen-substituted oxy radicals seem to be barrierless suggesting that if a 

nitrogen substituted dispiro-1,2,4-trioxane was thermolysed the β-scission of the 

C(2)-C(3) bond would occur spontaneously after the homolytic cleavage of the peroxide 

bond. 

 

 
R 

Reactant TS Intermediate Product 

 Bond lengths energy bond lengths energy bond lengths energy 

58e NH2 

C(2)-C(3)= 1.73 

C(2)-O(1)= 1.31 

C(3)-Sub= 1.42 

H Bond= 2.08 

-0.1 

*13.6 

# 5.2 

C(2)-C(3)= 1.97 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.39 

H Bond= 2.09 

-3.4 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.39 

H Bond= 2.36 

-1.5 

58f NMe2 

C(2)-C(3)= 1.79 

C(2)-O(1)= 1.31 

C(3)-Sub= 1.40 

H Bond= 2.31 

-0.2 

*15.7 

# 11.0 

C(2)-C(3)= 1.96 

C(2)-O(1)= 1.28 

C(3)-Sub= 1.38 

H Bond= 2.28 

-4.3 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.39 

H Bond= 2.55 

-2.7 

58g OH 

C(2)-C(3)= 1.64 

C(2)-O(1)= 1.34 

C(3)-Sub= 1.39 

H Bond= 1.86 

2.8 

*13.2 

# 6.0 

C(2)-C(3)= 2.09 

C(2)-O(1)= 1.25 

C(3)-Sub= 1.35 

H Bond= 1.83 

0.5 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.36 

H Bond= 1.91 

0.7 

58h F 

C(2)-C(3)= 1.55 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.39 

H Bond= 2.78 

8.7 

*12.1 

# 1.6 

C(2)-C(3)= 2.10 

C(2)-O(1)= 1.25 

C(3)-Sub= 1.34 

H Bond= 2.88 

1.8 

C(2)-O(1)= 1.20 

C(3)-Sub= 1.39 

H Bond= 3.75 

-0.5 

Table 11: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 
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 R Reactant TS Intermediate 

58e NH2 

O(1)= 0.65 

C(2)= 0 

C(3)= 0.17 

Sub= 0.11 

O(1)= 0.43 

C(2)= 0 

C(3)= 0.33 

Sub= 0.16 

O(1)= 0.06 

C(2)= 0.03 

C(3)= 0.68 

Sub= 0.24 

58f NMe2 

O(1)= 0.47 

C(2)= 0 

C(3)= 0.15 

Sub= 0.27 

O(1)= 0.37 

C(2)= 0.03 

C(3)= 0.24 

Sub= 0.27 

O(1)= 0.05 

C(2)= 0.02 

C(3)= 0.66 

Sub= 0.23 

58g OH 

O(1)= 0.81 

C(2)= -0.03 

C(3)= 0.12 

Sub= 0.03 

O(1)= 0.37 

C(2)= -0.05 

C(3)= 0.46 

Sub= 0.11 

O(1)= 0.08 

C(2)= 0.01 

C(3)= 0.74 

Sub=0.13 

58h F 

O(1)= 0.90 

C(2)= -0.04 

C(3)= 0.06 

Sub= 0 

O(1)= 0.38 

C(2)= -0.07 

C(3)= 0.56 

Sub= 0.07 

O(1)= 0.03 

C(2)= 0 

C(3)= 0.86 

Sub= 0.08 

Table 12: Natural spin densities at selected positions for the ring opening of ring C 

 

SiX3, PX2, SX and Cl (X= H, Me) 

 

The incorporation of silyl (SiH3, SiMe3), phosphino (PH2, PMe2), thiol (SH, SMe) and 

Cl based R groups has also been considered in this study. With the exception of the silyl 

groups each substituent should provide a stabilising effect from a lone pair of electrons, 

as described above. Each of the substituents studied has a lower barrier than the 

unsubstituted model 58 and β-scission is overall moderately exothermic in each case.  

 

Unlike the geometries and spin densites shown in Tables 11 and 12 for NX2, OH, F (X= 

H, Me) the reactants do not show a clear link between the delocalisation of the radical 

character towards the substituent and the transition state energy barrier for ring opening 

(Table 14). In general there is less elongation of C(2)-C(3), a longer C(2)-O(1) bond 

distance and less radical character on C(3), all indicative of the higher transition states 

seen for models with silyl, phosphorus, thiol and Cl R groups. 

 

Calculated ring opening activation energies show the highest energy barriers for 58i, 

(R=SiH3 8.3 kcal mol-1) and 58l, (R=Cl 8.7 kcalmol-1) and these correspond loosely to 

the substituents with the lowest spin density in the transition state. Although chlorine in 

58l has a spin density similar to that of PH2 there is no short range interaction between 

the chlorine and the ether oxygen in the transition state (Cl···O= 3.23, P-H···O= 2.33 Å). 
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The addition of a silyl α-substituent in oxy radical 58i produces an activation energy 

higher than that seen in the methyl model ax-58b. The close range interaction in 58i 

(Si-H···O = 2.78 Å) is 0.15 Å longer than that seen for ax-58b. In addition 58i has a 

shorter C(2)-C(3) bond of 1.56 Å indicative a more difficult cleavage (Table 13).  

 

In contrast, where the R= PH2 (58j) or R= SH (58k) the transition state barriers are 

lower at 5.7 kcal mol-1 and 3.8 kcal mol-1 respectively. The SH substituent in 58k 

induces a longer C(2)-C(3) bond of 1.61Å compared to 1.57 Å in 58j R= PH2. 

Consistent with this is the larger natural spin density on the thiol substituent throughout 

the reaction of 58k indicative of a more favourable process. The order of the barrier 

heights for second row substituents was therefore SH < PH2 < SiH3 ≈ Cl which does not 

follow the pattern of electronegativity seen for first row substituents but is consistent 

with previously studied α-effects.15 

 

 

 
R 

Reactant TS Intermediate Product 

 Bond lengths energy bond lengths energy bond lengths energy 

58i SiH3 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.92 

H Bond= 2.78 

8.3 

*9.5 

# 5.5 

C(2)-C(3)= 2.08 

C(2)-O(1) 1.26 

C(3)-Sub= 1.90 

H Bond= 2.77 

-2.5 

C(2)-O(1) 1.21 

C(3)-Sub= 1.86 

H Bond= 3.31 

-4.9 

58j PH2 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.90  

H Bond= 2.34 

5.7 

*8.4 

# 1.4 

C(2)-C(3)= 2.03 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.84 

H Bond= 2.33 

-5.6 

C(2)-O(1)= 1.21 

C(3)-Sub= 1.80 

H Bond= 2.96 

-7.5 

58k SH 

C(2)-C(3)= 1.61 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.84 

H Bond= 2.95 

3.8 

*8.5 

# 2.9 

C(2)-C(3)= 1.99 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.77 

H Bond= 3.34 

-8.1 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.75 

H Bond= 3.15 

-8.5 

58l Cl 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.83 

H Bond= 3.10 

8.7 

*10.4 

# -0.1 

C(2)-C(3)= 2.03 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.75 

H Bond= 3.23 

-2.8 

C(2)-O(1)= 1.21 

C(3)-Sub= 1.74 

H Bond= 4.42 

-5.4 

Table 13: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 
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Table 14: Natural spin densities at selected positions for the ring opening of ring C 

 

The introduction of methyl groups to each of the second row substituents lowers the 

activation barrier for β-scission of C(2)-C(3) without dramatically changing the 

geometries of the reactant or transition state. The one change that does occur is a 

shortening of the close range interaction between the substituent and the ether oxygen. 

This is because introduced methyl group makes the overall substituent bigger and 

therefore able to access a closer Sub-H···O(ether) interaction. Indeed, in 58n (R= PMe2) 

there are two interactions of less than 2.4 Å in the reactant (Figure 18).  

 

 
     58n                                TS[eq-58n-eq-58n′] 

Figure 18 

 

In general the additional methyl group gives lower activation barriers and further 

stabilisation of the radical character on C(3). Activation barriers for the opening of 58n 

 R Reactant TS Intermediate 

5i SiH3 

O(1)= 0.86 

C(2)= -0.03 

C(3)= 0 

Sub= 0 

O(1)= 0.43 

C(2)= -0.08 

C(3)= 0.60 

Sub= 0.01 

O(1)= 0 

C(2)= 0 

C(3)= 0.94 

Sub= 0.03 

5j PH2 

O(1)= 0.88 

C(2)= -0.04 

C(3)= 0.01 

Sub= 0 

O(1)= 0.44 

C(2)= -0.07 

C(3)= 0.48 

Sub= 0.07 

O(1)= 0 

C(2)= 0 

C(3)= 0.87 

Sub= 0.07 

5k SH 

O(1)= 0.84 

C(2)= -0.04 

C(3)= 0.11 

Sub= 0.03 

O(1)= 0.44 

C(2)= -0.06 

C(3)= 0.43 

Sub= 0.13 

O(1)= 0 

C(2)= 0 

C(3)= 0.82 

Sub= 0.15 

5l Cl 

O(1)= 0.89 

C(2)= -0.04 

C(3)= 0.02 

Sub= 0 

O(1)= 0.45 

C(2)= -0.09 

C(3)= 0.52 

Sub= 0.07 

O(1)= 0 

C(2)= 0 

C(3)= 0.88 

Sub= 0.09 
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(R=PMe2) and 58o (R=SMe) decrease with the barrier of 58n falling significantly lower 

than 58o (Table 15). In TS[eq-58n-eq-58n′] one of the PMe···O(ether) close range 

interactions bonds shortens to 2.18 Å  whilst the spin density on the PMe2 substituent 

has increased to 0.18, which is 0.12 higher than in PH2 (Table 16). In TS[eq-58o-eq-

58o′] the SMe···O(ether) close range interactions bond lengthens to 2.86 Å  whilst the 

spin density on the SMe substituent has increased to 0.19, only 0.06 higher than for SH 

(Table 16). This suggests that the larger decrease in the energy for β-scission in 58n 

compared to 58o is due to the PMe2 group being able to accommodate more spin 

density in TS[eq-58n-eq-58n′] than can the SMe group in TS[eq-58o-eq-58o′] whilst 

also being able to maintain a shorter close range interaction. Therefore the order of 

activation barrier has changed from SH < PH2 < SiH3 to PMe2 < SMe < SiMe3 when 

methyl groups replace the hydrogens. 

 

 

 
R 

Reactant TS Intermediate Product 

 Bond lengths energy bond lengths energy bond lengths energy 

58m SiMe3 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.94 

H Bond= 2.48 

6.7 

*8.0 

# 3.5 

C(2)-C(3)= 2.07 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.92 

H Bond= 2.50 

-5.7 

C(2)-O(1)= 1.21 

C(3)-Sub= 1.87 

H Bond= 2.59 

-7.6 

58n PMe2 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.90 

H Bond= 2.25 

1.5 

*7.6 

# 4.5 

C(2)-C(3)= 2.00 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.82 

H Bond= 2.18 

-10.2 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.79 

H Bond=2.54 

-9.8 

58o SMe 

C(2)-C(3)= 1.59 

C(2)-O(1)= 1.35 

C(3)-Sub= 1.83 

H Bond= 2.56 

2.9 

*9.8 

# 2.9 

C(2)-C(3)= 2.00 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.76 

H Bond= 2.86 

-7.3 

C(2)-O(1)= 1.22 

C(3)-Sub= 1.74 

H Bond= 2.75 

-7.9 

Table 15: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 
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Table 16: Natural spin densities at selected positions for the ring opening of ring C 

 

Phenyl, CN and COOMe 

 

The introduction of further carbon-based substituents as in 58p (R= Ph), 58q (R= CN) 

and 58r (R= COOMe) has also been considered. Previous studies demonstrated that 

unsaturated groups provide the greatest stabilisation for carbon centred radicals.15 The 

presence of an unsaturated α-carbon was therefore expected to stabilise the product of 

β-scission, however it was not known what effect it would have on the transition state. 

Consistent with this expectation, the β-scission of C(2)-C(3) in models 58p-58r is very 

exothermic with the radical character of the terminal  carbon delocalised onto the 

substituent (Table 17). As predicted by earlier studies15 the greatest stability exists with 

the phenyl substituent with the product being 14.9 kcal mol-1 more stable than the 

reactant and the radical character on the aromatic ring in 58p′ being 0.33 (Table 18). 

 

Unlike the substituents discussed above model oxy radicals 58p-58r show consistently 

short C(2)-C(3) bond distances of 1.57 Å and long C(2)-O(1) distances of 1.37 Å. This 

suggests the radical is localised on the oxygen atom and computed spin densities for 

58p-58r show virtually no radical character situated on C(3) or the substituent. The 

calculated activation barrier from oxy radical 58p was calculated to be 3.8 kcal mol-1. 

This low barrier is consistent with the increased stabilisation of C(3) by the aromatic 

substituent.  In contrast with 58q and 58r calculated barriers of 7.6 kcal mol-1 and 7.9 

kcal mol-1 respectively are found similar to that of ax-58b. The higher barriers are in 

line with the lower spin densities associated with the substituents in the transition state. 

 R Reactant TS Intermediate 

58m SiMe3 

O(1)= 0.88 

C(2)= -0.04 

C(3)= 0.01 

Sub= 0 

O(1)= 0.45 

C(2)= -0.08 

C(3)= 0.45 

Sub= 0.01 

O(1)= 0 

C(2)= 0 

C(3)= 0.94 

Sub= 0.02 

58n PMe2 

O(1)= 0.82 

C(2)= -0.03 

C(3)= 0.03 

Sub= 0.03 

O(1)= 0.41 

C(2)= -0.04 

C(3)= 0.38 

Sub= 0.18 

O(1)= 0.10 

C(2)= 0 

C(3)= 0.81 

Sub= 0.05 

58o SMe 

O(1)= 0.80 

C(2)= -0.03 

C(3)= 0.04 

Sub= 0.07 

O(1)= 0.41 

C(2)= -0.05 

C(3)= 0.38 

Sub= 0.19 

O(1)= 0.01 

C(2)= 0 

C(3)= 0.78 

Sub= 0.17 
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The results demonstrate that despite the stabilisation of the intermediate 58q′ and 58r′ 

by the unsaturated groups the barrier for cleaving the C(2)-C(3) bond is still high.  

 

 

 
R 

Reactant TS Intermediate Product 

 Bond lengths energy bond lengths energy bond lengths energy 

58p Ph 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.52 

3.8 

*10.1 

# 0.8 

C(2)-C(3)= 1.98 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.47 

-12.8 
C(2)-O(1)= 1.21 

C(3)-Sub= 1.42 
-14.9 

58q CN 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.47 

7.6 

*11.3 

# 0.8 

C(2)-C(3)= 2.00 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.43 

-9.3 
C(2)-O(1)= 1.24 

C(3)-Sub= 1.40 
-12.1 

58r COOMe 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.52 

H Bond= 3.34 

7.9 

*11.1 

# 5.1 

C(2)-C(3)= 2.02 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.49 

H Bond= 3.07 

-6.8 

C(2)-O(1)= 1.21 

C(3)-Sub= 1.45 

H Bond= 2.90 

-9.7 

Table 17: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(3′) bond # TS of β-scission of C(2)-C(8) bond 

The product from the reaction is from the straight-chain open system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18: Natural spin densities at selected positions for the ring opening of ring C 

 

 

 

 

 

 R Reactant TS Intermediate 

58p Ph 

O(1)= 0.87 

C(2)= -0.03 

C(3)= 0.02 

Sub= 0 

O(1)= 0.47 

C(2)= -0.06 

C(3)= 0.43 

Sub= 0.10 

O(1)= 0.02 

C(2)= 0 

C(3)= 0.68 

Sub= 0.33 

58q CN 

O(1)= 0.79 

C(2)= -0.04 

C(3)= 0 

Sub= 0 

O(1)= 0.50 

C(2)= -0.10 

C(3)= 0.48 

Sub= 0.08 

O(1)= 0 

C(2)= 0 

C(3)= 0.75 

Sub= 0.22 

58r COOMe 

O(1)= 0.88 

C(2)= -0.03 

C(3)= 0.01 

Sub= 0.02 

O(1)= 0.49 

C(2)= -0.10 

C(3)= 0.51 

Sub= 0.06 

O(1)= 0.01 

C(2)= 0 

C(3)= 0.81 

Sub= 0.16 
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Varying the size of ring C 

 

Experimentally changing the size of ring C from six- to five- or seven-membered has 

little effect on the overall reaction products. For both the unsubstituted 54a and methyl-

substituted dispiro-1,2,4-trioxanes 54b the yields of the keto lactone 57 and oxalactone 

56 vary only slightly with ring size. Likewise the yield of keto lactone 57c and 57d from 

the thermolysis of methoxy- and ethoxy-substituted dispiro-1,2,4-trioxanes 54c and 54d 

shows no significant difference. The addition of extra functionality to ring C does 

however give different experimental results where an indanylidene ring is present. A 

methyl-substituted dispiro-1,2,4-trioxane 54b containing a indanylidene ring C has been 

shown to form the oxalactone 56b exclusively in high yield without any sign of keto 

lactone 57b.43 Although the thermolysis of the indanylidene containing methoxy- and 

ethoxy-substituted dispiro-1,2,4-trioxanes reactions seems to form the fully ring 

expanded keto lactone, other unidentified products were also formed suggesting the 

indanylidene ring was behaving differently (Chapter 2). In this section a variety of ring 

C like models have been investigated to establish the effect of the indanylidene ring. 

 

However, the modelling of different ring sizes show that changing the size of ring C has 

an effect on the energy barrier associated with β-scission. The barrier for β-scission of a 

five-membered oxy radical 62 at C(2)-C(3) is only 2.0 kcal mol-1, half of that associated 

with the six-membered ring 59 (Table 19). The β-scission of the five membered oxy 

radical 62 is accompanied by a slightly longer C(2)-O(1) bond of 1.27 Å and a shorter 

C(2)-C(3) bond distance of 1.93 Å in the transition state, implying an earlier transition 

state than 59 consistent with the lower activation energy. This is further supported by 

the increase in radical character on O(1) of 0.47 and smaller radical character on C(3) of 

0.57 (Table 20). The low activation barrier for the opening of the five-membered oxy 

radical 62 is consistent with the additional ring strain associated with a five-membered 

ring.11 

The ring strain associated with the opening of a seven-membered ring 63 is similar to 

that of a six-membered ring 59.11 This is shown in the barrier for β-scission in the 

seven-membered oxy radical 63 being 4.1 kcal mol-1, exactly the same as the six-

membered ring 59 (Table 19). Consistent with this, the key bond lengths and spin 
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densities associated with the β-scission of the seven-membered ring oxy-radical are 

similar to those computed for 59 (Tables 19 and 20). 

Like the six-membered oxy radical 59, the five-membered (62) and seven-membered 

(63) oxy radicals open the C(2)-C(3) bond in an exothermic reaction (-4.3 kcal mol-1 

and -1.2 kcal mol-1 respectively) and each form even lower energy products when in a 

straight-chain conformation. These findings further demonstrate that the opening of ring 

C by β-scission is a favourable process and are consistent with experimental results 

showing the preferential formation of oxalactone 56 from the thermolysis of selected 

dispiro-1,2,4-trioxanes 54a and 54b. 

 
Modelling studies for the cleavage of the C(2)-C(3) bond of indanylidene oxy radical 64 

gave a barrier for β-scission of 3.3 kcal mol-1. Although the transition state is lower than 

the corresponding six-membered ring in 59 by 0.8 kcal mol-1 the transition state is 1.3 

kcal mol-1 higher in energy than the cleavage of the five-membered ring in 62. This is 

not consistent with the experimental results for the thermolysis of cyclopentylidene 

containing dispiro-1,2,4-trioxanes which produced some keto lactone whilst the 

indanylidene dispiro-1,2,4-trioxanes formed exclusively the oxalactone. The answer to 

this may lie in the thermodynamics of the two reactions. Whilst the ring opening of the 

five membered ring in 62 is mildly exothermic at -4.3 kcal mol-1 the intermediate linked 

to the transition state of the β-scission of the indanylidene oxy radical in 64 is more 

exothermic at -22.5 kcal mol-1. The β-scission of C(2)-C(3) in 64 therefore looks 

irreversible and intermediate formed then goes on to forming the oxalactone. The 

stability of the intermediate is typical of the radical character on the C(3) being 

stabilised by the π-orbitals of the aromatic group.17 This is seen by the total spin density 

over the aromatic ring being 0.33 in the intermediate 64’. The stabilisation effect of the 

aromatic group is less pronounced in the transition state with a total spin density on the 

aromatic ring of 0.05. 

 

The addition of a ketone functionality into ring C of dispiro-1,2,4-trioxane 54d has been 

shown experimentally to form the keto lactone 57d exclusively. With the barrier of β-

scission of C(2)-C(3) being 4.0 kcal mol-1 for 65 the modelling study shows the ketone 

has no effect on the overall energy of the cleavage. Bond lengths and spin densities 

involved in the reaction are also similar to those seen for the corresponding six-

membered oxy radical example. 
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Model 
Reactant TS Intermediate Product 

Bond lengths energy bond lengths energy bond lengths energy 

 

62 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.31 

2.0 

#15.3 

C(2)-C(3)= 1.93 

C(2)-O(1)= 1.27 
-4.3 C(2)-O(1)= 1.21 -14.3 

 

63 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.32 

4.1 

#15.3 

C(2)-C(3)= 1.98 

C(2)-O(1)= 1.25 
-1.2 C(2)-O(1)= 1.21 -22.9 

64 

C(2)-C(3)= 1.61 

C(2)-O(1)= 1.33 

3.3 

#14.6 

C(2)-C(3)= 1.92 

C(2)-O(1)= 1.26 
-23.6 C(2)-O(1)= 1.21 -22.5 

65 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.32 

4.0 

#17.3 

C(2)-C(3)= 1.97 

C(2)-O(1)= 1.25 
-9.51 C(2)-O(1)= 1.21 -12.0 

Table 19: All energies given are related to reactant energy in each case 

# TS of β-scission of C(2)-O(8) bond 

The product from the reaction is from the straight-chain open system 

 

 

 Reactant TS Intermediate 

 

62 

O(1)= 0.72 

C(2)= -0.04 

C(3)= 0.13 

O(1)= 0.47 

C(2)= -0.06 

C(3)= 0.51 

O(1)= 0 

C(2)= 0 

C(3)= 1.00 

 

63 

O(1)= 0.74  

C(2)= -0.03 

C(3)= 0.11 

O(1)= 0.38 

C(2)= -0.05 

C(3)= 0.57 

O(1)= 0 

C(2)= 0 

C(3)= 1.00 

64 

O(1)= 0.81 

C(2)= -0.04 

C(3)= 0.07 

Aromatic= 0 

O(1)= 0.46 

C(2)= -0.06 

C(3)= 0.51 

Aromatic= 0.05 

O(1)= 0 

C(2)= 0 

C(3)= 0.71 

Aromatic= 0.33 

65 

O(1)= 0.72 

C(2)= -0.03 

C(3)= 0.11 

O(1)= 0.37 

C(2)= -0.05 

C(3)=0.57 

O(1)= 0 

C(2)= 0 

C(3)= 0.97 

Table 20: Natural spin densities at selected positions for the ring opening of ring C 
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Varying the size of ring A 

 

For completeness the influence of the size of ring A has also been considered for five 

and seven-membered rings.  

 

The ring opening of five-membered oxy radical 66 has a lower barrier than the six-

membered 58 by ca. 2 kcal mol-1. This difference is approximately the same seen for the 

opening of oxy radicals 59 and 62 in ring C. The C(2)···C(3) bond distance in the ring 

opening transition state was 2.11 Å in 66 compared to 2.15 Å in 58 consistent with an 

earlier transition state. Additionally in the transition state for the β-scission of 66 the 

spin density on the O(1) is 0.42 and C(3) is 0.64 which is different than for the 58 which 

was 0.35 on O(4) and 0.69 on C(3). This again is consistent with an early transition state 

and low activation energy. Similar to the opening of ring C, changing the size of the 

ring A to seven gives only small differences in energy (ca. 0.6 kcal mol-1) (Table 21 and 

22). Unlike the ring opening of the six-membered oxy radical 58, the β-scissions of 

five- and seven-membered oxy radicals 66 and 67 are mildly exothermic. This suggests 

the apparent lack of β-scission of ring A and subsequent formation of oxalactone due to 

the large barrier and not the overall energy of the reaction. 

 

The small differences in the activation barrier for the opening of different ring A sizes is 

consistent with experimental results which suggest the ring size does not make the 

opening of ring A competitive with ring C.48  
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Model 
Reactant TS Intermediate Product 

Bond lengths energy bond lengths energy bond lengths energy 

 

66 

C(2)-C(3)= 1.59 

C(2)-O(1)= 1.37 

8.7 

*3.5 

C(2)-C(3)= 2.11 

C(2)-O(1)= 1.25 
-1.1 C(2)-O(1)= 1.21 -1.40 

67 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.37 

10.4 

*2.6 

C(2)-C(3)= 2.11 

C(2)-O(1)= 1.25 
-3.3 C(2)-O(1)= 1.21 -4.95 

Table 21: All energies given are related to reactant energy in each case 

* TS of β-scission of other ring C(2)-C(8) bond  

The product from the reaction is from the straight-chain open system 

 

 Reactant TS Intermediate 

 

66 

O(1)= 0.89 

C(2)= -0.04 

C(3)= 0.10 

α-H= 0 

O(1)= 0.42 

C(2)= -0.09 

C(3)= 0.64 

α-H= -0.03 

O(1)= 0 

C(2)= 0 

C(3)= 1.00 

α-H= -0.03 

 

67 

O(1)= 0.90  

C(2)= -0.03 

C(3)= 0.10 

α-H = 0 

O(1)= 0.39 

C(2)= -0.07 

C(3)= 0.64 

α-H = 0 

O(1)= 0 

C(2)= 0 

C(3)= 1.01 

α-H = 0 

Table 22: Natural spin densities at selected positions for the ring opening of ring C 

 

Computational study of the thermolysed rearrangement of dispiro-1,2,4-trioxanes  

 

It was clear from the small model calculations that in isolation the opening of ring C is 

lower in energy than ring A for the unsubstituted models. The addition of a substituent 

onto the α-position of ring A affects the energy barrier for the ring opening, making the 

process more competitive with that of ring C. To further investigate the outcomes of the 

small model calculations on a real system, full model studies were undertaken. The 

models chosen to investigate initially were dispiro-1,2,4-trioxanes 54aa, 54ba and 54ca 

which cover the rearrangement reactions of unsubstituted, methyl- and methoxy-

substituted dispiro-1,2,4-trioxanes respectively. In addition, models 54cb and 54cc were 

also studied to investigate the change in the size of ring C (Figure 19). The full model 

studies sought to map out all the transition states and intermediates involved in the 

rearrangement process. 
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Figure 19: Optimised structures of 54aa, 54ba, 54ca, 54cb and 54cc 

 

The geometries of each dispiro-1,2,4-trioxanes studied are related directly to the crystal 

structures, outlined in Chapter 1, with each of the spiro six-membered rings optimised 

into a chair conformation with the peroxide oxygens axial with respect to both rings A 

and C. The addition of the substituent (where appropriate) was positioned axial with 

respect to ring A and trans to the peroxide oxygens (Figure 19). Upon optimisation, the 

computed geometry of the 1,2,4-trioxane ring related favourably with the related crystal 

structures reported in Chapter 1 demonstrating the accuracy of the method in replicating 

the structure (full geometry comparisons are in Appendix 3, Tables 2 and 3). 

 

Following the homolytic cleavage of the peroxide bond, the model systems would have 

six competing β-scission sites. Four sites can initiate ring opening of ring A or C (C(2)-

C(3), C(2)-C(7), C(2′)-C(3′) and C(2′)-C(7′)) and two which promote the fragmentation 

to component ketones (C(2)-C(8) and C(2′)-O(8′)). In this section, each of the β-scission 

reactions has been investigated individually and compared. Once the most favoured β-

scission reaction(s) were established, the second β-scission of the unopened ring could 

be investigated in a similar way (Scheme 15).  
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Scheme 15 

 

The relaxation through IRC calculations of the transition states for each of the β-

scission reactions included no restrictions and therefore allowed possible radical 

recombination to take place. On occasion, the transition states for the β-scission 

reactions were calculated initially using a triplet spin state. This allowed the correct 

position of the radicals to be established and prevented the oxygen radicals recombining 

to reform the 1,2,4-trioxane ring. Once the transition state was located the geometry was 

optimised using a open shell singlet spin state with no change to the geometry apparent. 

Each model discussed in this section is in the open shell singlet spin state.  

 

 

Dispiro-1,2,4-trioxane 54aa 

 

Opening of the peroxide bond of dispiro-1,2,4-trioxane 54aa 

 

The thermolysis of 1,2,4-trioxanes proceeds through the homolytic cleavage of the 

peroxide bond to give two oxy radicals. In order to model this, the distance between 

O(1) and O(1′) were routinely increased stepwise and optimised. The energy of the 

system increased steadily along with the O(1)···O(1′) bond distance until the energy 

levelled out at ca. 2.20 Å. Attempts to optimise this geometry resulted in the 

recombination of oxy radicals reforming the 1,2,4-trioxane ring. Although further 

increases in the O(1)···O(1′) resulted in only minimal increases in energy, a local 
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minimum, 55aa, was found from optimisation of the structure with an O(1)···O(1′) 2.80 

Å (Figure 20). Upon optimisation, the molecule twists O(1) and O(1′) apart by making 

ring C almost perpendicular to ring A.  Attempts to find a transition state for this 

process were unsuccessful. Any transition state therefore is expected to be very close in 

energy to the intermediate. 

 

1.36

1.31

1.55

1.55

1.58

1.58

[-0.02]

[-0.03]

[+0.12]

[+0.10]

[-0.82]

[+0.75]

54aa 55aa

1.61

1.48

[-0.11] [+0.01]

24.4 kcal mol-1  
 

 

Figure 20: Optimised geometries of 54aa and 55aa highlighting bond lengths/ Å 

Here and throughout the spin densities are shown in square brackets 

 

Intermediate 55aa contains a short C(2′)-O(1′) bond of 1.31 Å and elongated C(2′)-C(3′) 

and C(2′)-C(7′) bond lengths indicative of the radical character of O(1′) being 

delocalised onto ring C. This is supported by the moderate build-up of radical character 

on C(3′) and C(7′) (+0.12 and +0.10 respectively). In contrast the C(2)-O(1) bond length 

is substantially longer than C(2′)-O(1′) at 1.36 Å whilst the C(2)-C(3) and the C(2)-C(7) 

bond distances are shorter (1.55 Å) than those seen in ring C. This suggests β-scission 

may be more difficult for the opening of ring A. Interestingly, there is an elongated 

C(2)-C(8) bond (1.61 Å) and a delocalisation of radical character from O(1) onto C(8) 

consistent with favourable β-scission at this site. 

 

Further increases in the O(1)···O(1′) distance beyond 2.80 Å during the scan resulted 

firstly in the cleavage of the C(2)-C(8) bond followed by the C(2′)-O(8′) bond resulting 

in the formation of two molecules of cyclohexanone and a molecule of formaldehyde. 

The formation of ketones from the thermolysis of 1,2,4-trioxanes is expected and 

regularly reported.49 In fact, cyclohexanone has been observed in the thermolysis of 

54aa reaction using gas chromatography.50 A transition state TS[55aa-frag] for this 

process was found at 27.1 kcal mol-1, only 2.5 kcal mol-1 above the intermediate 55aa 

(Figure 21). TS[55aa-frag] contains a shortened C(2)-O(1) bond of 1.28 Å  and a 
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shortened C(8)-O(8′) bond of 1.34 Å indicative of the build-up of radical character on 

C(8). TS[55aa-frag] contains an <S2> value of ca. 0.82 highlighting a deviation away 

from 1.0, seen for other open shell singlet calculations. It is suspected that this is due the 

reaction being asynchronous, the breaking of the C(2)-C(8) bond also breaking the 

C(2′)-O(8′) upon relaxation, resulting in a small proportion of closed shell singlet 

character in TS[55aa-frag]. This is repeated in the fragmentation reactions of 55ba and 

55ca discussed later. 

 

Attempts to find a transition state for the cleavage of C(2′)-O(8′) alone failed and 

instead converges on TS[55aa-frag]. The same result for the opening of C(2′)-O(8′) 

occurs in each model discussed in this chapter. 

 

 

 

 

C(2
)-C

(8
)

 
 

Figure 21: The reaction profile for the fragmentation of 55aa / kcal mol-1 

with molecular bond lengths/ Å and spin densities 
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β-Scission reactions of oxy radicals derived from 55aa 

 

In addition to the formation of cyclohexanone, the thermolysis of dispiro-1,2,4-trioxane 

54aa also produces oxalactone 56aa during the thermolysis reaction. This indicates that 

the cleavage of ring C will be substantially lower than that of ring A.  

 

A comparison between the opening of rings A and C from intermediate 55aa showed a 

ca. 5 kcal mol-1 preference for the opening of C(2′)-C(3′) and C(2′)-C(7′) in ring C over 

C(2)-C(3) and C(2)-C(7) in ring A (Figure 22). Additionally, like the small model 

calculations, opening of ring A via TS[55aa-68] and TS[55aa-69] is endothermic whilst 

the opening of ring C via TS[55aa-70] and TS[55aa-56aa] is exothermic. This again 

demonstrates the presence of the adjacent exocyclic O(8′) strongly promotes the 

opening of ring C consistent with experimental results showing the preferential 

formation of oxalactone 56aa. Interestingly, the opening of C(2′)-C(3′) via 

TS[54aa-56aa] has the lowest energy barrier of 29.0 kcal mol-1 and relaxes to form the 

oxalactone 56aa (-51.3 kcal mol-1), seen in the experiment, directly.  

 

In all cases, the β-scission is accompanied by the expected shortening of the carbonyl 

C(2)-O(1) or C(2′)-O(1′) distances and increased planarity of the incipient terminal 

carbon due to a build up of radical character. A shorter C(2′)-C(3′) and C(2′)-C(7′) 

distance in TS[55aa-70] and TS[55aa-56a] and less spin density on C(3′) and C(7′) 

than seen for C(3) and C(7) in TS[55aa-68] and TS[55aa-69] demonstrates an earlier 

transition state for the opening of ring C, consistent with the lower activation energy. In 

general, the complete transfer of radical character is confirmed by the short carbonyl 

bond distance in the intermediates and the planarity of the terminal carbon.  

 

The opening of C(2′)-C(3′) via TS[55aa-56aa] brings the developing carbon-centred 

radical at C(3′) into close proximity with the oxy radical (O1) meaning little 

reorganisation was required by the model to form the oxalactone 56aa. It is expected 

that the solvent cage in this case would provide sufficient external pressure to force two 

closely residing radicals together quickly forming the oxalactone. This is an important 

observation as it suggests the lifetime of the radical on C(3′) is very short and confirms 

the formation of oxalactone via the lowest energy process.   
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Figure 22: The reaction profile for the competitive β-scission reactions of 55aa / kcal mol-1 

with molecular bond lengths/ Å and spin densities 
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Although the transition state energy for the formation of 70 is higher than 

TS[55aa-56aa] the difference in the energy is only 0.6 kcal mol-1 meaning both 

transition states could potentially be accessible. TS[55aa-70] relaxes to form an 

intermediate 70 at 18.6 kcal mol-1 and contains the carbon-centred radical C(7′) situated 

away from the oxy radical at O(1). To access the oxalactone 70 would require a large 

degree of reorganisation meaning that the intermediate may have enough time to 

undergo further β-scission reactions on ring A and form the fully ring expanded keto 

lactone. 

 

Intermediate 70 contains a slightly elongated C(2)-C(3) bond of 1.58 Å with +0.10 spin 

density on C(3), compared to 1.55 Å for C(2)-C(7) and +0.02 spin density on C(7). This 

suggests the opening of C(2)-C(3) will be easier than C(2)-C(7). 

 

A comparison between the β-scission at C(2)-C(3) via TS[70-72] and C(2)-C(7) via 

TS[70-71] does show a preference for the cleavage of C(2)-C(3) by 2.0 kcal mol-1 

however the barriers lie ca. 10-12 kcal mol-1 higher than intermediate 70 (Figure 23). 

As oxalactone is the only product other than cyclohexanone observed during the 

thermolysis of dispiro-1,2,4-trioxane 54aa, it is suggested that these barriers are higher 

than the energy required to rearrange to form the oxalactone 56aa. If, however, the 

barriers for TS[70-72] and TS[70-71] were achievable the formation of keto lactone 

57aa (E= -58.5 kcal mol-1) via radical recombination  is thermodynamically favourable. 

 

Although TS[55aa-68] and TS[55aa-69] relaxes to form intermediates 68 and 69 (29.9 

kcal mol-1 and 26.3 kcal mol-1 respectively) these β-scission reactions have much higher 

activation barriers than TS[55aa-70] and TS[55aa-56aa] so further reactions from 

intermediates 68 and 69 were not investigated.  

 

The reaction profile shows a clear preference for the formation of oxalactone 56aa 

rather than keto lactone 57aa. It is apparent that the oxalactone is formed through two 

subtly different reaction mechanisms: (i) directly from TS[54aa-56aa] occurs because 

the radical is formed in close proximity to O(1) meaning only minimum rearrangement 

is required for recombination; (ii) alternatively via the formation of 70 followed by the 

reorganisation of the system. The latter case looks more favourable than the β-scission 

reactions via TS[70-71] and TS[70-72]. 
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Figure 23: The reaction profile for the competitive β-scission reactions of 70 / kcal mol-1 

with molecular bond lengths/ Å and spin densities 
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Dispiro-1,2,4-trioxane 55ba 

 

Opening of the peroxide bond for dispiro-1,2,4-trioxane 54ba 

 

Like the modelling of the unsubstituted dispiro-1,2,4-trioxane 54aa, the peroxide bond 

in 54ba opens in the absence of a transition state to form an intermediate where ring C 

has twisted to facilitate the lengthening of the O(1)···O(1´) distance (Figure 24). 

Additionally the opening of the O(1)···(O1´) bond distance has introduced a long range 

integration (2.86 Å) between the C(9)-H and C(8′) creating the same pseudo six-

membered ring seen in the small model investigations. 
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Figure 24: Optimised geometries of 54ba and 55ba highlighting bond lengths/ Å and spin densities 

 

This additional interaction combined with an increased spin density on the methyl-

substituted C(3) (+0.09) has lengthened the C(2)-C(3) bond in 55ba to 1.60 Å thus 

suggesting an easier cleavage. This increase in radical character on C(3) is accompanied 

by a shortening of the C(2)-C(8) bond to 1.56 Å compared to 54aa and a decreased 

radical character on C(8).  The transition state TS[55ba-frag] for the fragmentation 

process was found at 26.6 kcal mol-1, 2.9 kcal mol-1 above the intermediate 55ba 

(Figure 24). The other bond lengths associated with rings A and C in 55ba remain 

similar to intermediate 55aa with delocalisation of the radical character in ring C from 

O(1´) to C(3´) and C(7′). 
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Figure 25:  The reaction profile for the fragmentation of 55ba / kcal mol-1  

with molecular bond lengths/ Å and spin densities 

 

β-Scission reactions of oxy radicals derived from 55ba 

 

In addition to the formation of component cyclic ketones, the thermolysis of dispiro-

1,2,4-trioxane 54ba produces both oxalactone 56ba, as the major product, and keto 

lactone 57ba. This suggests the cleavage of ring C will still be lower in energy than ring 

A but the difference will be smaller than that for 55aa. 

 

A comparison between the opening of rings A and C from intermediate 55ba show 

similar energies to those of 55aa except for a reduction in the transition state energy for 

the opening of C(2)-C(3) via TS[55ba-74] to 29.9 kcal mol-1
 and the formation of 74 

being exothermic from 55ba (Figure 26). TS[55ba-74] shows a shortening of the C(2)-

O(1) bond and lengthening C(2)-C(3) bond along with a transfer of radical character 

from O(1) to C(3) as expected for a β-scission reaction. In addition, TS[55ba-74] has a 

shortened C(3)-C(9) bond of 1.50 Å along with increased spin density on the methyl 

substituent. The C(3)-(9) bond distance is further decreased and spin density on the 

methyl substituent increased in 74 illustrating further delocalisation of the C(3) radical. 
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Figure 26: The reaction profile for the competitive β-scission reactions of 55ba / kcal mol-1  

with molecular bond lengths/ Å and spin densities where the spin density quoted is for  

all the centres on the methyl group 
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The opening of C(2′)-C(3′) via TS[55ba-56ba] again has the lowest transition state 

barrier (27.6 kcal mol-1)  and relaxes to form the oxalactone 56ba (-51.0 kcal mol-1) 

consistent with experimental results.   

 

As the experiment also forms keto lactone 57ba in low yield, it is suggested that the 

barriers associated with TS[55ba-75] may also be accessible. TS[55ba-75] lies 1.5 kcal 

mol-1 higher in energy than TS[54ba-56ba] and relaxes to form an intermediate 75 at 

18.1 kcal mol-1. Intermediate 75 contains an elongated C(2)-C(3) bond of 1.61 Å with 

+0.09 spin density on C(3) compared to 1.55 Å for C(2)-C(7) and +0.03 spin density on 

C(7) (Figure 27). A comparison between the β-scission at C(2)-C(3) via TS[75-77] and 

C(2)-C(7) via TS[75-76] shows a preference for the cleavage of C(2)-C(3) by 

5.0 kcal mol-1. TS[75-77] lies 6.4 kcal mol-1 higher in energy than 75 and must be 

accessible for the formation of keto lactone 57ba via this route.  Like TS[55aa-74], 

TS[75-77] shows the developing radical character on C(3) being delocalised onto the 

methyl group stabilising the transition state energy. Overall the formation of 77 is 

exothermic from 75 and is an expected intermediate in the formation of keto lactone 

57ba. TS[75-76] from the cleavage of C(2)-C(7) lies 5.5 kcal mol-1 higher in energy 

than TS[75-77] and relaxes to form 77 in an endothermic reaction, from 75, not 

expected to occur in the rearrangement.  

 

Therefore the reaction from intermediate 75 potentially accesses two different routes: (i) 

β-scission of the C(2′)-C(3′) bond via TS[75-77] followed by recombination of the 

carbon-centred radicals giving the keto lactone 57ba  or/and (ii) the recombination of 

the C(7′) radical with the O(1) radical giving more of the oxalactone 56ba.    

 

For completeness, the reaction profile from 74 has also been investigated as illustrated 

in Appendix 3 Figure 1. The formation of 74 through TS[55ba-74] lies 2.3 kcal mol-1 

higher in energy than the lowest transition state. It is therefore deemed unlikely that a 

significant proportion of substrate would reach this barrier to account for the yield of 

keto lactone. 
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Figure 27: The reaction profile for the competitive β-scission reactions of 75 / kcal mol-1 

with molecular bond lengths/ Å and spin densities where the spin density quoted is for  

all the centres on the methyl group 
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Dispiro-1,2,4-trioxane 55ca 

Opening of the peroxide bond for dispiro-1,2,4-trioxane 54ca 

Like the modelling of the other dispiro-1,2,4-trioxanes 54aa and 54ba, the peroxide 

bond in 54ca opens in the absence of a transition state to form an intermediate where 

ring C has twisted to be almost perpendicular to ring A (Figure 28). In the optimised 

geometry of 54ca the methoxy group is situated away from the rest of the structure but 

during the step-wise increase of the O(1)···O(1′) distance, the C(3)-O(9) bond rotates the 

methyl group at C(10) towards O(8′). Upon optimisation, this facilitates a short contact 

(2.50 Å) between C(10)-H and O(8′) creating the same pseudo seven-membered ring 

discussed in the small models. The size and flexibility of the methoxy group over a 

methyl group has allowed this interaction to be considerably shorter than that in 55ba.  

 

 
 

 

Figure 28: Optimised geometries of 54ca and 55ca highlighting bond lengths/ Å and spin densities 

 

Unlike 55ba, intermediate 55ca exhibits some spin density (-0.06) on O(9) signifying 

further delocalisation of radical character on O(1) and hence the larger stabilising 

influence of a methoxy group. This effect in addition to the spin density on C(3) (-0.12) 

and the short range interaction, C(10)-H···O(8′) leads to an elongation of the C(2)-C(3) 

bond distance to 1.63 Å and a short C(3)-O(9) bond of 1.41 Å.           

 

This increase in radical character on C(3) and O(9) is accompanied by a shortening of 

the C(2)-C(8) bond to 1.55 Å compared to 54aa (1.60 Å) and a decreased radical 

character on C(8).  The transition state TS[55ca-frag] for the fragmentation process was 

found at 26.0 kcal mol-1, 2.6 kcal mol-1 above the intermediate 55ca (Figure 29). The 

other bond lengths associated with rings A and C in 55ca remain similar to those in 
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intermediate 55aa and 55ba with delocalisation of the radical character in ring C from 

O(1′) to C(3′) and C(7′) again being seen.  

 

C(2)
-C
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Figure 29: The reaction profile for the fragmentation of 55ca / kcal mol-1 

with molecular bond lengths/ Å and spin densities  

β-Scission reactions of oxy radicals derived from 55ca 

In addition to the fragmentation products, the thermolysis of methoxy-substituted 

dispiro-1,2,4-trioxane 54ca formed the fully ring expanded keto lactone 57ca in high 

yield.  This suggests that the β-scission of ring A must be directly competitive with ring 

C thus preventing the synthesis of oxalactone 56ca. 

 

A comparison between opening rings A and C from intermediate 55ca show similar 

energies to those of 55aa and 55ba except for a reduction in the transition state energy 

for the opening of C(2)-C(3) via TS[55ca-81] to 25.4 kcal mol-1
 (Figure 30). This 

brings the barrier for opening of the C(2)-C(3) bond 1.7 kcal mol-1 lower in energy than 

those for the opening of ring C via TS[55ca-56ca] and the fragmentation pathway via 

TS[55ca-frag]. This is a significant observation as it confirms that the formation of keto 

lactone 57ca occurs because ring A opens faster than ring C meaning that oxalactone 

56ca is prevented from being formed.  
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Figure 30: The reaction profile for the competitive β-scission reactions of 55ca / kcal mol-1 

with molecular bond lengths/ Å and spin densities 
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TS[55ca-81] is more reactant like than the other competing transition states consistent 

with the Hammond postulate.23 The oxygen of the methoxy group continues to stabilise 

the spin density on C(3) resulting in increased spin density on O(9) (TS[55ca-81]= 

-0.13, 81= 0.13) and a shortening C(3)-O bond (TS[55ca-81]= 1.37 Å, 81= 1.37 Å). 

The newly formed carbon-centred radical at C(3) is positioned away from the other 

radical at O(1′) in 81 meaning that significant rearrangement would be required to give 

the recombined product. Instead, β-scission of ring C may occur. 

 

Intermediate 81 contains the opened ring A and a delocalisation of spin density from 

O(1′) to C(3′) and C(7′) in ring C. TS[81-83] and TS[81-84] for the β-scission of ring C 

show barriers of ca. 5 kcal mol-1 for both the opening of the C(2′)-C(3′) and C(2′)-C(7′) 

bonds, consistent with the analogous processes in 55ca and the small model systems 

(Figure 31). Both TS[81-83] and TS[81-84] show relatively short C···C interatomic 

distances of 2.01 Å. Throughout the reaction, the radical character on C(3) continues to 

be delocalised onto O(9). These processes form intermediates 83 and 84 respectively at 

15.0 kcal mol-1 in exothermic reactions from 81. From 83 and 84 recombination of the 

carbon-centred radicals would form the experimentally observed keto lactone. 

 

For completeness, a reaction profile forming the fully ring expanded ketolactone 57ca 

from 82 has also been considered with the results illustrated in Appendix 3 Figure 2. 
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Figure 31: The reaction profile for the competitive β-scission reactions of 55ca / kcal mol-1 

with molecular bond lengths/ Å and spin densities 
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Conclusion 

 

Calculations on the full model systems have provided a good explanation for the 

observed products in the thermolysis of dispiro-1,2,4-trioxanes 54aa, 54ba and 54ca. 

Additionally the transition state barriers for β-scission have shown a very good 

correlation with the small model systems signifying that the models chosen were 

representative of the full system. The results further reveal that the assumption made in 

the small models, which was that rings A and C were acting independently of each 

other, was valid.  

 

The calculation of the various β-scission reactions for the opening of rings A and C of a 

unsubstituted dispiro-1,2,4-trioxane 54aa confirm a significantly larger barrier for the 

opening of ring A over ring C, consistent with the formation of oxalactone 56aa and not 

the fully ring-expanded keto lactone 57aa. In fact, the lowest transition state found for 

55aa linked directly to the oxalactone 56aa itself. 

 

The introduction of methyl- or methoxy-substituents into the α-position of ring A 

delivers a systematic stabilisation of radical character from C(3) onto the substituent 

consistent with the step-wise increase in the ‘α-effect’ provided by the methyl and 

methoxy groups.  

 

Although the methyl substituent provides a moderate α-effect, the transition state for the 

C(2)-C(3) bond is lowered significantly from 54aa, however not low enough to compete 

directly with the transition state for the opening of ring C. Like 54aa, the lowest energy 

β-scission transition state links directly to the formation of oxalactone 56ba. The 

opening of ring C in this example would occur first resulting in the oxalactone being the 

major product formed. The formation of keto lactone 57ba would therefore occur via 

the small proportion of species which open via the β-scission of the C(2′)-C(7′) bond.  

 

The greater α-effect provided by the methoxy group delivers a relatively low transition 

state barrier for the opening of the C(2)-C(3) bond which significantly is the lowest 

energy β-scission reaction. It would be suggested that the opening of ring A in this 

example would occur first closely followed by ring C thus preventing oxalactone 56ca 

from being formed in substantial quantities.  
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Dispiro-1,2,4-trioxanes 54cb and 54cc 

 

For completeness the various β-scission reactions of dispiro-1,2,4-trioxanes 54cb and 

54cc were also investigated with the results contained within Appendix 3 Figures 3-8 

The results almost mirror those reported for 54ca with the formation of the 

corresponding keto lactone 56cb explained through low energy pathways in each case. 

However, in a slight change to the results, the opening of ring C via β-scission of the 

C(2′)-C(3′) bond in 54cb was slightly lower than the opening of the methoxy-substituted 

C(2)-C(3) bond. This is consistent with the greater amount of ring strain released from a 

5-membered ring compared to a 6- or 7- membered ring.11 Despite the change in energy 

for the opening of ring C in 55cb resulting in the energy barriers for the opening of 

rings A and C being similar, the fact that experimentally only keto lactone 57cb is 

observed suggests both rings open in rapid succession. 
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Computational background 

 

Introduction 

 

This section contains a brief explanation of density functional theory (DFT), the 

computational method used within this chapter.51,52 An explanation of the fundamental 

quantum mechanics and methods such as Hartree-Fock (HF) will also be discussed as 

this provides a framework in which practical systems for DFT, as applied for molecular 

systems, has been developed.  

 

Background Quantum Mechanics 

 

The Schrödinger Equation 

 

A major goal of quantum chemistry is to find a solution to the time-independent 

Schrödinger equation: 

 �� � ������������������������������    

 

Here Ĥ is the Hamiltonian, a differential operator representing the total energy, which 

acts on the wave function, Ψ, to produce an eigenvalue, E, the total energy of the system.  

 

In the Schrödinger equation the Hamiltonian operator, Ĥ, is used:  
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The first two terms in Ĥ describe the kinetic energies of N electrons and M nuclei 

within a molecule, where MA is the mass of the nucleus A. The Laplacian operator �
, 
which is contained in these two terms, is defined in equation 3 where x,y and z are 

Cartesian coordinates.  
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The third term of equation 2 describes the attractive electrostatic interaction between the 

electrons and nuclei in the molecule and the final two terms represent the repulsive 

potential which arises from electron-electron and nucleus-nucleus interactions 

respectively. In total, the final three terms of the operator describe the potential energy 

part of the system. 

 

Exact solutions to the Schrödinger equation are not possible and therefore some 

approximations have to be made in order to simplify it. 

 

The Born-Oppenheimer Approximation 

 

The large difference in the mass of a nucleus compared with an electron provides the 

basis behind the Born-Oppenheimer approximation. With the nuclei being at least 1800 

times heavier than an electron the nuclei moves relatively much more slowly than their 

associated electrons. The approximation makes the assumption that the nuclei are 

effectively static compared to electrons.  

 

Based on this assumption the Schrödinger equation can be greatly simplified. The 

kinetic energy term associated with the nuclei is considered to be zero and the nucleus-

nucleus repulsion term, contained within the potential energy part of the operator, can 

be replaced with a constant. This results in the ‘electronic Hamiltonian operator’, Ĥelec. 

 

�&'&( � 	
��
 ��
��� �������
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�
���

�
��� � ) � *&� � *&&�������������+� 

 

Here T is the kinetic operator, VeN is the attractive electron-electron potential and Vee is 

the repulsive electron-electron potential. Often VeN is referred to as Vext, as it describes 

the external potential of a set of nuclei attracting the electrons. 
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Changing the nature of the operator, Ĥ, to being an electronic operator, Ĥelec, changes 

the solution of the Schrödinger equation to an electronic wave function, Ψelec, and the 

corresponding electronic energy, Eelec. 

 

Variation Principle 

 

In principle, the variation principle provides a method from which the ground state 

energy of the system can be derived.  

 

The expectation value of a particular property (in this case the energy of a molecule) 

represented by an appropriate operator (such as Ĥ) acting on any possible normalized 

wave function (Ψtrial) is given by the following equation: 

 ,�-.�/'0�0�-.�/'1 � �-.�/' 2 �3 � ,�30�0�31������������������4� 
 

The variation principle means that the energy Etrial will always be greater than or equal 

to the lowest possible energy, i.e. ground state E0.  

 

The Hartree-Fock Approximation  

 

In practice, a search for all possible wave-functions to find E0 is impossible. An 

alternative approach is to limit the search to a subset of wave functions which should 

allow the best wave-function to be identified by applying the variation principle. 

 

The Hartree-Fock method assumes that the wave function of a chemical system can be 

described by a single Slater determinant, ΦSD, composed as a combination of one 

electron spin orbitals comprised of a special part and a spin component which can either 

be α or β spin.53  The ΦSD approximates the wave function by use of an antisymmetrized 

product of the one electron spin orbitals, χN(xN).  

 

� 5 678 � 	9:; <
=��>���= �>����? ��=��>��=��> ��= �> ���? ��=��> ��������@�������������@���������A���������@��������=��>���= �>����? ��=��>�� <���������������B� 
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and can be abbreviated as: 

 

678 � 	9:;� CDEF=��>��= �> �?=��>��G��������������H� 
 

A ΦSD must be antisymmetric with respect to the interchange of two electrons, resulting 

in the interchange of two rows changing the sign of ΦSD. If two columns are the same, 

corresponding to two electrons occupying the same spin orbital, the ΦSD equals zero 

thus obeying the Pauli exclusion principle. 

 

The HF method is a self-consistent field (SCF) approach which calculates the electronic 

structure of a given molecule/system iteratively. The method starts with a set of guess 

orbitals which are solved using equation 8 which contains the Fock operator (9).  Using 

this method a new set of orbitals are formed which are compared to the previous set. 

The cycle continues until the orbitals do not change and the lowest energy is found.  

 I= � �=��������������������������J� 
I � �	
�K ��L�MK� � NOP�Q

� �R����������������S� 
 

This one electron operator in equation 9 is comparable with the electronic Hamiltonian 

operator. The first two terms represent the kinetic and potential energy due to electron-

nucleus attraction and the VHF
 term is the Hartree-Fock potential of one electron in the 

presence of the remaining electrons. The VHF
 term consists of two components, the 

Coulomb and exchange operators, shown below: 

 

*TU�>�� ���V��>�� � W��>����
� �������������������X� 

 

The Coulomb operator is defined as the potential that an electron at position (x1) 

experiences due to the average charge distribution from another spin orbital χj (summed 

for all electrons). 
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The second term, for the exchange operator, has no classical interpretation and can only 

be defined through its effect when operating on a spin orbital. 

 

W��>��=��>�� � Y=�Z �> � 	�� =��> �C> =��>������������������� 
 

The major problem with the Hartree-Fock approximation is it doesn’t take account for 

the dynamic nature of the electron-electron interactions, or electron correlation. The 

approximation uses an average of electron-electron interactions across all the electrons 

resulting in the EHF always being higher than the real energy. The difference between 

the real energy and the EHF is defined as the electron correlation energy, EC. 

 

Density Functional Theory 

 

The central concept behind density functional theory is use of electron density, [�\��, to 

calculate the electronic energy of the system. The electron density is a physically 

observable property which can in principle be measured experimentally via X-ray 

crystallography and can be used to calculate E without using approximations. [�\�� 
measures the probability of finding any of the electrons (of arbitrary spin) within the 

volume element dx1 while the other electrons have arbitrary spin and positions in the 

state represented by Ψ. This is shown mathematically in equation 13 where the integral 

is over all spin coordinates of the electrons and all spatial coordinates 

 

[�\�� � ]Y?�Y^��>�_ > _ ` >��^ C>� C> `C>�������������������%��
 [�\�� has some interesting properties, which are useful in understanding of density 

functional theory (DFT). Namely, the electron density tends to zero as the three spacial 

coordinates tend to infinity, which can be written as:  

 a�>� bc� � �d����������������������+� 
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Secondly, the electron density integrates to give the total number of electrons in the 

molecule, N: 

 

Ya �>��C>� � :�����������������4� 
 

And thirdly, due to the attractive charge exerted by the positive charge of the nucleus in 

an atom on an electron, the electron density at the position of a nucleus exhibits a 

maximum with a finite value. The gradient of the electron density at these positions is 

zero, leading to a discontinuity called a ‘cusp’. The properties of the cusp are related to 

the nuclear charge of the nucleus. 

 

The Hohenberg-Kohn Theorems 

 

The two Hohenberg-Kohn theorems produced the starting point for modern DFT and 

provided a mathematical proof that the molecular properties of a molecule can, in 

principle, be found from the electron density of the molecule.54 

 

The first of Hohenberg-Kohn theorems shows that the external potential of the 

molecule, Vext(x) is a unique functional of the electron density ρ(x). As Vext(x) 

determines the operator, Ĥ, the full many particle ground state energies must also be a 

unique functional of ρ(x). 

 

This theorem was demonstrated by considering two different external potentials, Vext 

and V′
ext which give rise to the same electron density ρ(x). The external potentials are 

part of two distinct Hamiltonian operators, Ĥ and Ĥ′ respectively, which differ only by 

the fact that they have different external potentials, i.e. Ĥ = T + Vee + Vext and  Ĥ′ = T + 

Vee + V′ext. These two Hamiltonian operators correspond to different ground state wave 

functions, Ψ and Ψ′ and the associated energies, E0 and E0′, which are non-equivalent. 

 

As the wave functions, Ψ and Ψ′, are different they can be used as trial wave functions 

for the Ĥ and Ĥ′ operators. The variation principle can then be applied as illustrated 

below for Ψ′ and Ĥ. 
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 �3 e f�g0�0�gh � f�g0�g0�gh � f�g0� � �g0�gh����������������������B� 
 

As the Hamiltonians differ only because of their respective external potentials, this can 

be written as: 

 �3 e �g3 � f�g^) � *&& � ) � *&& � *g&i-^�gh�������������������H� 
 

Which simplifies to:  

 

�g3 e �3 �Ya�j� F*&i- � *g&i-GCj������������������J� 
 

The corresponding equation for the trial combining Ψ and Ĥ′ is: 

 

�g3 e �3 �Ya�j� F*&i- � *g&i-GCj�������������S� 
 

Upon addition, these equations reduce to: 

 �3 � �g3 � �g3 � �3��������������������X� 
 

This is clearly inconsistent therefore showing that two different external potentials 

cannot give the same electronic ground state and further confirming that the ground 

state energy is a unique functional of the ground state electron density. 

 

The expression linking the ground state energy with the ground state electron density 

can be further broken down into the following contributions: 

 �3kal � )ka3l � �&&ka3l � *&i-C>���������������������� 
 

The first two terms, the kinetic energy T[ρ0] and the electron-electron repulsion Eee[ρ0],  

are independent of N, RA and ZA and are therefore not specific to one system. These 

terms are collectively known as the Hohenberg-Kohn functional, FHK[ρ0]. Effectively, if 
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the Hohenberg-Kohn functional is given a particular density then it generates the 

expectation value for the ground state kinetic energy and the ground state electron-

electron repulsion energy. 

 mTnkal � )kal � �&&kal � f�^) � *&&^�h���������������������� 
 

The second of Hohenberg-Koln theorems is related to the variation principle detailed in 

equation 5. It states that a trial density ρtrial gives an energy equal to or higher than the 

ground state electron density [��opqKrs 2 o�[��. 
 

The Kohn-Sham Method 

 

It was a paper by Kohn and Sham in 1965 which provided the basis of modern density 

functional theory by finding a description of a molecule’s energy based upon electron 

density.55 By introducing one-electron orbitals into DFT they realised that using a 

system of non-interacting electrons they can calculate very accurately the majority of 

the kinetic energy.  

 

The system of non-interacting electrons is constructed from a Slater determinant similar 

to that used in Hartree-Fock theory: 

 

�t � 	9:; uvw�kx�x ?x�l�������������%� 
 

The kinetic energy for non-interacting electrons, Ts, can then be expressed using 

equation 24: 

 

)t � �	
�fx�^� ^x�h�
� ����������������+� 

 

In reality the electrons are interacting and 24 does not provide the total kinetic energy, 

T. However the difference, TC between the exact kinetic energy and that calculated, TS, 

by assuming non-interacting electrons is small. The remaining kinetic energy, TC is 
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absorbed into an exchange–correlation functional, EXC, and a general DFT energy 

expression can be written: 

 �kal � )tkal � ��&kal � ykal � �i(kal��������������4� 
 

Where EXC can be defined as:   

 �i(kal � )(kal � �z('kal������������������������������B� 
 

Where the Encl is made up of the non-classical electrostatic contributions and the 

potential energy (self interaction, exchange and electron-electron correlation). 

 

Unfortunately EXC cannot be calculated accurately so some approximations have to be 

made.  

 

The Local Density Approximation (LDA) 

 

One such approximation is to use a uniform electron gas model. A uniform electron gas 

is a volume (V) with n electrons uniformly distributed, which consequently has an 

electron density ρ = n/V making it structurally similar to a metal. It is obtained when n 

and V approach infinity, and has uniformly distributed positive changes, which 

neutralise the system. The local density approximation (LDA), EXC[ρ] takes the form: 

 

�{|}8�kal � Ya �>�~{|�a�>��C�������������H� 
 

This is the electron-exchange correlation energy per particle of a uniform-electron-gas 

with the density ρ(x). The exchange-correlation term can be split into two components, 

exchange, εx (ρ(x)) and correlation εc (ρ(x)). The exchange part can be calculated using 

the Slater exchange (S): 

 

� � ~i�a�>�� � ��� ��a�>�� � ���������������J� 
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No such equation exists for the correlation part. However highly accurate quantum 

Monte-Carlo simulations of the homogeneous electron gas are often used to 

approximate εc(ρ(x)). 

 

The Generalised Gradient Approximation (GGA) 

 

The LDA does not accurately approximate the exchange-correlation energy for real 

molecular systems very well, as they do not generally have a uniform electron density. 

One way of improving the LDA is to use a correction which uses the gradient of change 

in the electron density. One such method is the Generalised Gradient Approximation 

(GGA) which can be expressed as: 

 

�{|����a�_ a�� � YI �a� _ a� _ �a��a��C����������������S� 
 

Here, the exchange correlation term is often split into explicit exchange and correlation 

terms, and the two terms are approximated separately: 

 �{|��� � �{��� � �|�������������������%X� 
 

The gradient corrected exchange functional,��{���, can be expressed as: 

 

�{��� � �{}8� ��m����� a�� �� �>�C>����������������%�� 
 

Where the first term is the local density approximation of the exchange functional and 

the second term involves the reduced density gradient, which is the GGA term, F, and a 

local inhomogenity parameter, sσ. 

 

The function F used in this work was described by Becke and often referred to as B.56 

The B exchange functional contains an empirical parameter, β, which originates from 

the experimentally determined values of exchange energies of the six noble gases. 
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m� � ��� 	 � ������������ ������������%�� 
 

The Becke exchange functional can be combined with correlation functions such as 

P8657 (Perdew 1986), LYP58 (Lee, Yang and Parr 1988) and PW9159 (Perdew and Wang 

1991) to give commonly used functionals like BLYP, BP86 and BPW91.   

 

Exchange functionals can be further improved by including some exchange energy, 

calculated using HF theory, in a so-called hybrid functional. From HF theory the 

exchange energy from the Slater determinant can be solved exactly. Some DFT methods 

have been developed to include a proportion of Hartree-Fock exchange. An example of 

a hybrid functional is B3 which when combined with a correlation functional e.g LYP 

gives the B3LYP hybrid functional: 

 �i(��}�� � �	 � ���i}8� � ��{TU � ���i� � �	 � ���(}8� � ��(}������������%%� 
 

Basis Sets 

 

In molecular orbital theory molecular orbitals are constructed by using a linear 

combination of atomic orbitals. In molecular calculations the atomic orbitals are 

represented in a basis set as a series of basis functions. In theory, each MO would be 

perfectly described using an infinite number of basis functions, a so-called complete 

basis set. However this is not computationally practical meaning that there is required to 

be an approximation. 

 

There are two types of basis function which are commonly used in electronic structure 

calculations: Slater Type Orbitals (STO); and Gaussian Type Orbitals (GTO). Although 

STOs provide a better approximation of the AO, particularly close to and far away from 

the nucleus, they are more computationally demanding than GTOs. Therefore basis sets 

using GTOs were developed where a number of GTOs are combined to give a good 

approximation of an STO. 

 

Basis sets are selected based on accuracy verses computational expense. The most 

popular are the basis sets designed by J. A. Pople and coworkers.60 The so-called 

http://en.wikipedia.org/wiki/Molecular_orbital
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‘minimal basis sets’ are the simplest, but least accurate, and contain one basis function 

for each atomic orbital. A common minimal basis set is STO-3G where three GTO is 

used to represent each STO.  

 

These ‘minimal basis sets’ can be improved by varying the number of basis functions 

used to describe the different atomic orbitals. This can be achieved using Double Zeta 

basis sets in which there are two basis functions for each AO. Given that chemical 

reactivity uses the valence rather than the core electrons it is reasonable to assume that 

if valence orbitals are described via two basis functions whilst the core orbitals are 

described by one, the accuracy will not be affected significantly whilst computational 

time would be saved. Such basis sets are termed ‘Split Valence’ basis sets with one of 

the most popular examples being 6-31G. 6-31G represents the core electrons by a fixed 

combination of 6 GTOs whilst the valence electrons are represented by 3 GTOs 

contracted together plus 1 GTO.  

 

The basis set can be further improved by introducing polarization functions onto heavy 

atoms, by adding d-orbital polarization, and hydrogens, by adding p-orbital polarization. 

The 6-31G* (6-31G + d-functions for first row atoms) and 6-31G** (6-31G + d for first 

row and p for hydrogen) basis sets allows for an accurate representation of geometries 

without great computational expense.  

 

Benchmarking Calculations 

 

To test the efficiency of different functionals a series of benchmarking calculations were 

undertaken. The two reactions investigated were the β-scission reactions of 90 and 59 

which model rings A and C of the dispiro-1,2,4-trioxane ring respectively (Scheme 16). 

The functionals chosen to test include B3LYP, BLYP, BP86 and BPW91 with the 

results illustrated in Tables 23-25. A 6-31G** basis set was used throughout. 

 

The results show that the activation barriers for ring opening of 90 through TS[90-90′] 

are consistently higher in energy than the opening of 59 through TS[59-59′]. These are 

all consistent with the rate of β-scission in ring C being much faster than that of ring A. 

Although the choice of functional makes some difference to the absolute values of ∆Ea 

only a small difference to the difference in activation energy, ∆∆Ea, between the two 
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reactions. Additionally the formation of 90′ and 59′ are consistently endothermic and 

exothermic respectively.   
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Scheme 16 

 

 B3LYP BLYP BP86 BPW91 

TS[90-90′] 10.3 8.0 9.4 9.6 

90′ 2.9 2.1 5.6 5.1 

Table 23 Energies for the β-scission reaction of 90 using different functionals  

All calculations used 6-31G** basis set / kcal mol-1 

 

 B3LYP BLYP BP86 BPW91 

TS[59-59′] 4.0 3.1 4.0 4.1 

59′ -7.9 -6.5 -3.3 -4.0 

Table 24 Energies for the β-scission reaction of 59 using different functionals  

All calculations used 6-31G** basis set / kcal mol-1 

 

Functional ∆∆Ea 

B3LYP 6.3 

BLYP 4.9 

BP86 5.4 

BPW91 5.5 

Table 25: Differences in activation energies, ∆∆Ea, for the β-scission reaction of  

90 and 59 using different functionals  

All calculations used 6-31G** basis set / kcal mol-1 

 

To test the efficiency of different basis sets a series of benchmarking calculations were 

undertaken using the reaction highlighted in Scheme 16. The basis sets chosen to test 

include 6-31G, 6-31G*, 6-31G** and 6-311G** with the results illustrated in Tables 

26-28. A B3LYP functional was used throughout. 
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The overall energies calculated for the different basis sets remain constant and suggest a 

significantly faster β-scission reaction in ring C over ring A.  Calculations using a basis 

set without polarization e.g. 6-31G show significantly higher activation barriers and 

∆∆Ea energies than those with polarization. The basis sets with polarization show 

similar energies and ∆∆Ea energies with smaller differences apparent between 6-31G* 

and 6-31G** than between 6-31G and 6-31G*.  Although 6-311G** will provide a 

slightly better energy than 6-31G** the calculations take twice as long to complete. As 

large model systems would be required to be calculated the 6-31G** basis set was used 

throughout.  

 

 6-31G 6-31G* 6-31G** 6-311G** 

TS[90-90′] 13.9 10.4 10.3 11.0 

90′ 7.8 3.3 2.9 0.6 

Table 26: Energies for the β-scission reaction of 90 using different basis sets 

All calculations used the B3LYP functional / kcal mol-1 

 

 6-31G 6-31G* 6-31G** 6-311G** 

TS[59-59′] 6.7 4.1 4.0 3.0 

59′ -2.9 -7.6 -7.9 -10.34 

Table 26: Energies for the β-scission reaction of 59 using different basis sets 

All calculations used the B3LYP functional / kcal mol-1 

 

Basis Set ∆∆Ea 

6-31G 7.2 

6-31G* 6.3 

6-31G** 6.3 

6-311G** 7.0 

Table 28: Differences in activation energies, ∆∆Ea, for the β-scission reaction of  

90 and 59 using different basis sets  

All calculations used the B3LYP functional / kcal mol-1 
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X-Ray Crystal data for 153 
 

Table 1. Crystal data and structure refinement for 153 
 
Empirical formula  C5 H10 O6 

Formula weight  166.13 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 5.548(5) Å α= 90°. 

 b = 15.315(14) Å β= 92.83(3)°. 

 c = 8.813(8) Å γ = 90°. 

Volume 747.9(12) Å3 

Z 4 

Density (calculated) 1.475 Mg/m3 

Absorption coefficient 0.138 mm-1 

F(000) 352 

Crystal size 0.6 x 0.40 x 0.15 mm3 

Theta range for data collection 2.66 to 30.74°. 

Index ranges -7 ≤ h ≤ 7, 0 ≤ k ≤ 21, 0 ≤ l ≤ 12 

Reflections collected 2855 

Independent reflections 2855 [R(int) = 0.0000] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9729 and 0.8515 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2855 / 0 / 105 

Goodness-of-fit on F2 0.905 

Final R indices [I>2sigma(I)] R1 = 0.0365, wR2 = 0.1143 

R indices (all data) R1 = 0.0485, wR2 = 0.1238 

Largest diff. peak and hole 0.307 and -0.315 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 153.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 1591(2) 4360(1) -1758(1) 28(1) 

O(2) 3160(1) 3608(1) -1503(1) 23(1) 

O(3) 724(1) 2981(1) 266(1) 19(1) 

O(4) 792(1) 2122(1) -473(1) 19(1) 

O(5) 2994(1) 1479(1) 1546(1) 22(1) 

O(6) 1451(2) 709(1) 1558(1) 28(1) 

C(1) 3446(2) 4063(1) 1150(1) 25(1) 

C(2) 3034(2) 3332(1) 33(1) 18(1) 

C(3) 4758(2) 2562(1) 155(1) 24(1) 

C(4) 3065(2) 1782(1) 25(1) 18(1) 

C(5) 3682(2) 1074(1) -1065(1) 26(1) 
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X-Ray Crystal data for 155 
  

 
Table 1.  Crystal data and structure refinement for compound 155 

 

Empirical formula  C7 H13 Cl O 

Formula weight  148.62 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Tetragonal 

Space group  I-4 

Unit cell dimensions a = 14.1037(12) Å α= 90°. 

 b = 14.1037(12) Å β= 90°. 

 c = 7.5957(8) Å γ = 90°. 

Volume 1510.9(2) Å3 

Z 8 

Density (calculated) 1.333 Mg/m3 

Absorption coefficient 0.434 mm-1 

F(000) 648 

Crystal size 0.60 x 0.50 x 0.40 mm3 

Theta range for data collection 2.04 to 36.37°. 

Index ranges -23 ≤ h ≤ 23, -23 ≤ k ≤ 23, -12 ≤ l ≤ 12 

Reflections collected 19375 

Independent reflections 3090 [R(int) = 0.0555] 

Completeness to theta = 25.00° 79.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8456 and 0.7808 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3090 / 0 / 83 

Goodness-of-fit on F2 0.747 

Final R indices [I>2sigma(I)] R1 = 0.0325, wR2 = 0.0881 

R indices (all data) R1 = 0.0370, wR2 = 0.0979 

Absolute structure parameter 1.01(5) 

Largest diff. peak and hole 0.263 and -0.396 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 155.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

Cl(1) 5689(1) 2986(1) 10168(1) 21(1) 

O(1) 5446(1) 3703(1) 5061(1) 14(1) 

C(1) 5539(1) 3035(1) 6493(1) 10(1) 

C(2) 4695(1) 2349(1) 6469(2) 13(1) 

C(3) 4690(1) 1727(1) 4811(2) 16(1) 

C(4) 5625(1) 1183(1) 4638(2) 17(1) 

C(5) 6470(1) 1866(1) 4611(2) 15(1) 

C(6) 6476(1) 2508(1) 6240(2) 12(1) 

C(7) 5541(1) 3650(1) 8156(2) 15(1) 
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X-Ray Crystal data for 148c 
 
 

Table 1.  Crystal data and structure refinement for 148c. 

Empirical formula  C8 H16 O3 

Formula weight  160.21 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Trigonal 

Space group  P3(2) 

Unit cell dimensions a = 10.8807(10) Å α= 90°. 

 b = 10.8807(10) Å β= 90°. 

 c = 6.2353(13) Å γ = 120°. 

Volume 639.30(16) Å3 

Z 3 

Density (calculated) 1.233 Mg/m3 

Absorption coefficient 0.093 mm-1 

F(000) 258 

Crystal size 0.4 x 0.3 x 0.2 mm3 

Theta range for data collection 2.16 to 22.86°. 

Index ranges -11 ≤ h ≤ 10, -10 ≤ k ≤ 11, -6 ≤ l ≤ 6 

Reflections collected 1438 

Independent reflections 837 [R(int) = 0.0255] 

Completeness to theta = 22.86° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.982 and 0.967 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 837 / 1 / 103 

Goodness-of-fit on F2 0.907 

Final R indices [I>2sigma(I)] R1 = 0.0394, wR2 = 0.1071 

R indices (all data) R1 = 0.0551, wR2 = 0.1221 

Absolute structure parameter 0(3) 

Largest diff. peak and hole 0.207 and -0.218 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 148c.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

 

O(1) 2260(3) 10537(3) 10679(5) 20(1) 

O(2) 2573(3) 11982(3) 11260(6) 29(1) 

O(3) 1005(3) 10072(3) 6431(4) 21(1) 

C(1) 3064(5) 10664(5) 8741(7) 16(1) 

C(2) 2787(5) 9140(5) 8485(7) 20(1) 

C(3) 3416(5) 8743(5) 10355(7) 24(1) 

C(4) 4982(5) 9814(5) 10737(8) 28(1) 

C(5) 5222(5) 11311(5) 10984(8) 29(1) 

C(6) 4624(5) 11730(5) 9091(8) 22(1) 

C(7) 3345(6) 8949(6) 6333(8) 31(1) 

C(8) 2462(4) 11125(5) 6914(8) 20(1) 
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X-Ray Crystal data for 160aa 

 

Table 1.  Crystal data and structure refinement for compound 160aa 

 

Empirical formula  C14 H24 O4 

Formula weight  256.33 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C(2)/c 

Unit cell dimensions a = 22.7198(15) Å α= 90°. 

 b = 6.0596(4) Å β= 117.027(3)°. 

 c = 22.0700(14) Å γ = 90°. 

Volume 2706.6(3) Å3 

Z 8 

Density (calculated) 1.258 Mg/m3 

Absorption coefficient 0.090 mm-1 

F(000) 1120 

Crystal size 0.45 x 0.40 x 0.30 mm3 

Theta range for data collection 3.48 to 36.65°. 

Index ranges -37 ≤ h ≤ 37, -10 ≤ k ≤ 8, -37 ≤ l ≤ 32 

Reflections collected 17287 

Independent reflections 6358 [R(int) = 0.0305] 

Completeness to theta = 25.00° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.973 and 0.959 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6358 / 0 / 164 

Goodness-of-fit on F2 0.928 

Final R indices [I>2sigma(I)] R1 = 0.0435, wR2 = 0.1263 

R indices (all data) R1 = 0.0686, wR2 = 0.1483 

Largest diff. peak and hole 0.477 and -0.242 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)for 

compound 160aa.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 2489(1) 840(1) 3975(1) 13(1) 

O(2) 3390(1) -1562(1) 4473(1) 20(1) 

O(3) 3030(1) -3141(1) 3921(1) 23(1) 

O(4) 1028(1) -2438(1) 3363(1) 24(1) 

C(1) 3181(1) 592(1) 4203(1) 13(1) 

C(2) 3383(1) 1162(1) 3651(1) 15(1) 

C(3) 3514(1) 2097(2) 4818(1) 17(1) 

C(4) 4132(1) 1233(2) 3928(1) 19(1) 

C(5) 4262(1) 2236(2) 5082(1) 21(1) 

C(6) 4442(1) 2858(2) 4517(1) 20(1) 

C(7) 2375(1) -3123(1) 3854(1) 21(1) 

C(8) 2053(1) -901(1) 3575(1) 15(1) 

C(9) 1441(1) -587(1) 3686(1) 16(1) 

C(10) 1105(1) 1609(2) 3398(1) 19(1) 

C(11) 1852(1) -705(2) 2815(1) 20(1) 

C(12) 1528(1) 1503(2) 2521(1) 23(1) 

C(13) 928(1) 1881(2) 2647(1) 24(1) 

C(14) 534(1) -2787(2) 3574(1) 26(1) 
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X-Ray Crystal data for 160ab 

 

Table 1.  Crystal data and structure refinement for compound 160ab 

 

Empirical formula  C13 H22 O4 

Formula weight  242.31 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 6.250(3) Å α= 72.439(15)°. 

 b = 10.204(6) Å β= 89.901(19)°. 

 c = 10.248(5) Å γ = 84.455(17)°. 

Volume 619.9(6) Å3 

Z 2 

Density (calculated) 1.298 Mg/m3 

Absorption coefficient 0.095 mm-1 

F(000) 264 

Crystal size 0.60 x 0.42 x 0.10 mm3 

Theta range for data collection 2.09 to 35.32°. 

Index ranges -9 ≤ h ≤ 9, -15 ≤ k ≤ 16, 0 ≤ l ≤ 16 

Reflections collected 21516 

Independent reflections 7060 [R(int) = 0.0000] 

Completeness to theta = 25.00° 98.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9906 and 0.9454 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7060 / 0 / 156 

Goodness-of-fit on F2 1.039 

Final R indices [I>2sigma(I)] R1 = 0.0713, wR2 = 0.1976 

R indices (all data) R1 = 0.1115, wR2 = 0.2256 

Largest diff. peak and hole 0.359 and -0.372 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 160ab.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 2509(2) 8059(1) 762(1) 14(1) 

O(2) 4560(2) 8280(1) -1184(1) 19(1) 

O(3) 6255(2) 7282(1) -341(1) 22(1) 

O(4) 6179(2) 7776(1) 3524(1) 22(1) 

C(1) 2551(2) 7933(2) -576(2) 16(1) 

C(2) 1952(2) 6576(2) -739(2) 20(1) 

C(3) 918(2) 9039(2) -1485(2) 18(1) 

C(4) 1304(3) 6981(2) -2253(2) 29(1) 

C(5) 130(2) 8432(2) -2581(2) 21(1) 

C(6) 6391(2) 7708(2) 865(2) 21(1) 

C(7) 4355(2) 7427(2) 1668(2) 15(1) 

C(8) 4263(2) 5891(2) 2350(2) 19(1) 

C(9) 4206(2) 8206(2) 2740(2) 16(1) 

C(10) 2313(3) 5572(2) 3240(2) 22(1) 

C(11) 2228(2) 7892(2) 3604(2) 18(1) 

C(12) 2212(3) 6358(2) 4300(2) 21(1) 

C(13) 6441(3) 8493(2) 4491(2) 26(1) 
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X-Ray Crystal data for 161 

 
Table 1.  Crystal data and structure refinement for compound 161 

 

Empirical formula  C12 H22 O6 

Formula weight  262.30 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 10.4152(5) Å α= 90°. 

 b = 6.9136(3) Å β= 104.978(2)°. 

 c = 18.5092(9) Å γ = 90°. 

Volume 1287.50(10) Å3 

Z 4 

Density (calculated) 1.353 Mg/m3 

Absorption coefficient 0.108 mm-1 

F(000) 568 

Crystal size 0.50 x 0.40 x 0.35 mm3 

Theta range for data collection 2.28 to 37.66°. 

Index ranges -15 ≤ h ≤ 17, -11 ≤ k ≤ 11, -30 ≤ l ≤ 30 

Reflections collected 25258 

Independent reflections 6266 [R(int) = 0.0336] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction Multi_scans 

Max. and min. transmission 0.9633 and 0.9481 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6266 / 0 / 165 

Goodness-of-fit on F2 1.186 

Final R indices [I>2sigma(I)] R1 = 0.0452, wR2 = 0.1565 

R indices (all data) R1 = 0.0595, wR2 = 0.1656 

Largest diff. peak and hole 0.539 and -0.350 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 161.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 2904(1) 3196(1) 2328(1) 15(1) 

O(2) 2302(1) 1531(1) 1881(1) 12(1) 

O(3) 1201(1) 3494(1) 885(1) 12(1) 

O(4) -131(1) 2825(1) 926(1) 12(1) 

O(5) 149(1) 3926(1) 2152(1) 12(1) 

O(6) -38(1) 1989(1) 2424(1) 17(1) 

C(1) 2112(1) 1947(1) 1104(1) 10(1) 

C(2) 1608(1) 50(1) 712(1) 12(1) 

C(3) 2684(1) -1498(1) 826(1) 14(1) 

C(4) 3904(1) -735(2) 604(1) 17(1) 

C(5) 4432(1) 1087(2) 1049(1) 16(1) 

C(6) 3374(1) 2675(1) 921(1) 14(1) 

C(7) -601(1) 4127(1) 1392(1) 11(1) 

C(8) -2060(1) 3569(1) 1274(1) 14(1) 

C(9) -2769(1) 4963(2) 1685(1) 16(1) 

C(10) -2644(1) 7041(2) 1440(1) 16(1) 

C(11) -1187(1) 7620(1) 1588(1) 16(1) 

C(12) -412(1) 6242(1) 1212(1) 13(1) 
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X-Ray Crystal data for 162 

 

Table 1.  Crystal data and structure refinement for compound 162 

 

Empirical formula  C10 H16 O6 

Formula weight  232.23 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 9.3084(4) Å α= 90°. 

 b = 12.0062(5) Å β= 102.410(2)°. 

 c = 20.5828(9) Å γ = 90°. 

Volume 2246.56(17) Å3 

Z 8 

Density (calculated) 1.373 Mg/m3 

Absorption coefficient 0.114 mm-1 

F(000) 992 

Crystal size 0.60 x 0.40 x 0.30 mm3 

Theta range for data collection 1.98 to 36.29°. 

Index ranges -15 ≤ h ≤ 15, -19 ≤ k ≤ 19, -33 ≤ l ≤ 33 

Reflections collected 63188 

Independent reflections 10609 [R(int) = 0.0276] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9666 and 0.9348 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10609 / 0 / 293 

Goodness-of-fit on F2 1.502 

Final R indices [I>2sigma(I)] R1 = 0.0503, wR2 = 0.1928 

R indices (all data) R1 = 0.0676, wR2 = 0.2035 

Largest diff. peak and hole 0.736 and -0.445 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 162.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 3333(1) -140(1) 1008(1) 18(1) 

O(2) 3368(1) 731(1) 1509(1) 14(1) 

O(3) 1217(1) 1572(1) 911(1) 12(1) 

O(4) 433(1) 1443(1) 1460(1) 13(1) 

O(5) 725(1) -485(1) 1510(1) 14(1) 

O(6) 1514(1) -413(1) 2205(1) 19(1) 

O(7) 968(1) 7508(1) 234(1) 19(1) 

O(8) 1812(1) 7657(1) 915(1) 14(1) 

O(9) 2058(1) 5737(1) 1069(1) 13(1) 

O(10) 1294(1) 5750(1) 1629(1) 14(1) 

O(11) -872(1) 6492(1) 980(1) 16(1) 

O(12) -875(1) 7441(1) 1427(1) 25(1) 

C(1) 2731(1) 1724(1) 1190(1) 11(1) 

C(2) 3406(1) 2091(1) 604(1) 14(1) 

C(3) 3900(1) 3294(1) 770(1) 21(1) 

C(4) 4332(1) 3299(1) 1530(1) 21(1) 

C(5) 3099(1) 2622(1) 1729(1) 14(1) 

C(6) -309(1) 404(1) 1376(1) 12(1) 

C(7) -1387(1) 436(1) 1846(1) 17(1) 

C(8) -2893(1) 593(1) 1387(1) 20(1) 

C(9) -2778(1) -84(1) 773(1) 20(1) 

C(10) -1227(1) 182(1) 672(1) 15(1) 

C(11) 2820(1) 6757(1) 1072(1) 12(1) 

C(12) 3823(1) 7076(1) 1741(1) 15(1) 

C(13) 5293(1) 7363(1) 1568(1) 16(1) 

C(14) 5373(1) 6550(1) 1002(1) 18(1) 

C(15) 3812(1) 6598(1) 571(1) 16(1) 

C(16) -224(1) 5564(1) 1362(1) 12(1) 

C(17) -561(1) 4563(1) 886(1) 15(1) 

C(18) -1707(1) 3889(1) 1150(1) 19(1) 

C(19) -1255(1) 4062(1) 1902(1) 21(1) 

C(20) -893(1) 5306(1) 1965(1) 17(1) 
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X-Ray Crystal data for 163 

 

Table 1.  Crystal data and structure refinement for compound 163 

 

Empirical formula  C14 H24 O4 

Formula weight  256.33 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 9.261(2) Å α= 90°. 

 b = 6.3293(13) Å β= 103.287(8)°. 

 c = 11.453(3) Å γ = 90°. 

Volume 653.4(3) Å3 

Z 2 

Density (calculated) 1.303 Mg/m3 

Absorption coefficient 0.094 mm-1 

F(000) 280 

Crystal size 0.80 x 0.30 x 0.04 mm3 

Theta range for data collection 3.66 to 24.65°. 

Index ranges -10 ≤ h ≤ 9, -4 ≤ k ≤ 7, -13 ≤ l ≤ 13 

Reflections collected 2379 

Independent reflections 1073 [R(int) = 0.0487] 

Completeness to theta = 24.65° 97.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9963 and 0.9288 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1073 / 0 / 82 

Goodness-of-fit on F2 1.135 

Final R indices [I>2sigma(I)] R1 = 0.0629, wR2 = 0.1577 

R indices (all data) R1 = 0.0825, wR2 = 0.1735 

Largest diff. peak and hole 0.285 and -0.538 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 163.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 6421(2) 5615(3) 546(2) 20(1) 

O(2) 5414(2) 4601(3) 1204(2) 20(1) 

C(1) 3930(3) 5223(4) 656(2) 17(1) 

C(2) 2970(3) 3893(4) 1286(2) 23(1) 

C(3) 2420(3) 4938(5) 2305(2) 23(1) 

C(4) 1055(3) 6335(5) 1883(2) 24(1) 

C(5) 1351(3) 8463(4) 1345(2) 22(1) 

C(6) 2126(3) 8320(4) 310(2) 22(1) 

C(7) 3733(3) 7603(4) 675(2) 19(1) 
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X-Ray Crystal data for 149bc 

 

 

Table 1.  Crystal data and structure refinement for compound 149bc 

 

Empirical formula  C16 H28 O4 

Formula weight  284.38 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 13.256(2) Å α= 90°. 

 b = 10.9154(16) Å β= 106.642(7)°. 

 c = 11.0803(16) Å γ = 90°. 

Volume 1536.1(4) Å3 

Z 4 

Density (calculated) 1.230 Mg/m3 

Absorption coefficient 0.086 mm-1 

F(000) 624 

Crystal size 0.90 x 0.60 x 0.60 mm3 

Theta range for data collection 1.60 to 34.20°. 

Index ranges -20 ≤ h ≤ 20, -17 ≤ k ≤ 17, -17 ≤ l ≤ 17 

Reflections collected 52929 

Independent reflections 6321 [R(int) = 0.0371] 

Completeness to theta = 25.00° 100.0 %  

Max. and min. transmission 0.9500 and 0.9264 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6321 / 0 / 182 

Goodness-of-fit on F2 1.236 

Final R indices [I>2sigma(I)] R1 = 0.0408, wR2 = 0.1455 

R indices (all data) R1 = 0.0547, wR2 = 0.1622 

Largest diff. peak and hole 0.582 and -0.226 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 149bc.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 2268(1) -1154(1) 10118(1) 16(1) 

O(2) 3356(1) -687(1) 10542(1) 16(1) 

O(3) 2775(1) 1283(1) 9876(1) 16(1) 

O(4) 1571(1) -108(1) 6851(1) 17(1) 

C(1) 1706(1) -505(1) 8984(1) 13(1) 

C(2) 2201(1) -779(1) 7914(1) 14(1) 

C(3) 2183(1) -2158(1) 7647(1) 18(1) 

C(4) 1064(1) -2674(1) 7336(1) 21(1) 

C(5) 561(1) -2402(1) 8385(1) 21(1) 

C(6) 594(1) -1028(1) 8685(1) 18(1) 

C(7) 1724(1) 861(1) 9302(1) 15(1) 

C(8) 3328(1) 567(1) 10938(1) 14(1) 

C(9) 4486(1) 940(1) 11255(1) 19(1) 

C(10) 4821(1) 2022(1) 12162(1) 22(1) 

C(11) 5126(1) 1663(1) 13558(1) 24(1) 

C(12) 4216(1) 1262(1) 14052(1) 21(1) 

C(13) 3527(1) 239(1) 13296(1) 18(1) 

C(14) 2822(1) 672(1) 12014(1) 17(1) 

C(15) 2095(1) 161(1) 5927(1) 22(1) 

C(16) 1345(1) 880(1) 4883(1) 24(1) 
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X-Ray Crystal data for 149bg 

 

Table 1.  Crystal data and structure refinement for compound 149bg 

 

Empirical formula  C18 H24 O4 

Formula weight  304.37 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 12.7162(12) Å α= 90°. 

 b = 21.3047(19) Å β= 100.008(3)°. 

 c = 11.9605(10) Å γ = 90°. 

Volume 3191.0(5) Å3 

Z 8 

Density (calculated) 1.267 Mg/m3 

Absorption coefficient 0.088 mm-1 

F(000) 1312 

Crystal size 0.55 x 0.45 x 0.30 mm3 

Theta range for data collection 1.63 to 26.51°. 

Index ranges 0 ≤ h ≤ 15, -26 ≤ k ≤ 0, -14 ≤ l ≤ 14 

Reflections collected 6546 

Independent reflections 6546 [R(int) = 0.0000] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9740 and 0.8281 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6546 / 0 / 399 

Goodness-of-fit on F2 1.073 

Final R indices [I>2sigma(I)] R1 = 0.0620, wR2 = 0.1539 

R indices (all data) R1 = 0.1493, wR2 = 0.2064 

Largest diff. peak and hole 0.369 and -0.441 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 149bg.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1A) 4282(2) 1504(1) 2102(2) 17(1) 

O(2A) 4682(2) 1413(1) 3336(2) 17(1) 

O(3A) 4469(2) 2473(1) 3668(2) 16(1) 

O(4A) 1754(2) 2252(1) 2364(2) 18(1) 

C(1A) 3459(3) 1983(1) 1979(3) 15(1) 

C(2A) 3146(3) 2069(2) 698(3) 18(1) 

C(3A) 2632(3) 1486(2) 90(3) 19(1) 

C(4A) 1691(3) 1260(2) 626(3) 20(1) 

C(5A) 2035(3) 1153(2) 1898(3) 18(1) 

C(6A) 2507(3) 1747(1) 2503(3) 15(1) 

C(7A) 3954(3) 2578(2) 2523(3) 18(1) 

C(8A) 5217(3) 1980(2) 3751(3) 17(1) 

C(9A) 6196(3) 2106(2) 3182(3) 19(1) 

C(10A) 7101(3) 1813(2) 3999(3) 20(1) 

C(11A) 8118(3) 1672(2) 3828(3) 25(1) 

C(12A) 8843(3) 1409(2) 4706(3) 29(1) 

C(13A) 8539(3) 1294(2) 5752(3) 30(1) 

C(14A) 7521(3) 1431(2) 5922(3) 24(1) 

C(15A) 6796(3) 1686(2) 5040(3) 21(1) 

C(16A) 5640(3) 1849(2) 5006(3) 20(1) 

C(17A) 951(3) 2196(2) 3051(3) 23(1) 

C(18A) 223(3) 2751(2) 2819(3) 29(1) 

O(1B) 4388(2) 669(1) 6599(2) 18(1) 

O(2B) 4689(2) 1039(1) 7655(2) 17(1) 

O(3B) 4225(2) 217(1) 8748(2) 16(1) 

O(4B) 1685(2) 230(1) 7002(2) 20(1) 

C(1B) 3500(3) 265(2) 6731(3) 16(1) 

C(2B) 3294(3) -113(2) 5632(3) 21(1) 

C(3B) 2858(3) 284(2) 4590(3) 22(1) 

C(4B) 1872(3) 644(2) 4775(3) 22(1) 

C(5B) 2131(3) 1059(2) 5821(3) 22(1) 

C(6B) 2520(3) 662(2) 6867(3) 19(1) 

C(7B) 3851(3) -153(2) 7752(3) 18(1) 

C(8B) 5064(3) 615(2) 8565(3) 16(1) 

C(9B) 5403(3) 1055(2) 9583(3) 17(1) 
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C(10B) 6587(3) 1140(2) 9609(3) 17(1) 

C(11B) 7275(3) 1580(2) 10184(3) 23(1) 

C(12B) 8340(3) 1573(2) 10061(3) 28(1) 

C(13B) 8712(3) 1127(2) 9379(3) 28(1) 

C(14B) 8020(3) 682(2) 8805(3) 23(1) 

C(15B) 6964(3) 691(2) 8917(3) 17(1) 

C(16B) 6077(3) 266(2) 8372(3) 19(1) 

C(17B) 1311(3) 278(2) 8056(3) 21(1) 

C(18B) 430(3) -198(2) 8034(3) 30(1) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter One                                                                                                        Appendix 

305 
 

X-Ray Crystal data for 149cd 

 

 

Table 1.  Crystal data and structure refinement for compound 149cd 

 

Empirical formula  C20 H36 O3 

Formula weight  324.49 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbcn 

Unit cell dimensions a = 12.6243(8) Å α= 90°. 

 b = 11.2695(8) Å β= 90°. 

 c = 26.6915(18) Å γ = 90°. 

Volume 3797.4(4) Å3 

Z 8 

Density (calculated) 1.135 Mg/m3 

Absorption coefficient 0.074 mm-1 

F(000) 1440 

Crystal size 0.58 x 0.21 x 0.12 mm3 

Theta range for data collection 1.53 to 23.30°. 

Index ranges -13 ≤ h ≤ 14, -12 ≤ k ≤ 12, -29 ≤ l ≤ 29 

Reflections collected 48697 

Independent reflections 2729 [R(int) = 0.0736] 

Completeness to theta = 23.30° 99.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9912 and 0.9543 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2729 / 0 / 209 

Goodness-of-fit on F2 1.171 

Final R indices [I>2sigma(I)] R1 = 0.0405, wR2 = 0.1083 

R indices (all data) R1 = 0.0754, wR2 = 0.1462 

Largest diff. peak and hole 0.311 and -0.239 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 149cd.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 2497(1) 10052(1) 2486(1) 22(1) 

O(2) 1824(1) 9931(2) 2937(1) 22(1) 

O(3) 2652(1) 11570(1) 3299(1) 22(1) 

C(1) 2638(2) 11319(2) 2390(1) 20(1) 

C(2) 1569(2) 11934(2) 2293(1) 26(1) 

C(3) 987(2) 11388(3) 1849(1) 30(1) 

C(4) 1677(2) 11400(3) 1377(1) 33(1) 

C(5) 2742(2) 10784(3) 1473(1) 28(1) 

C(6) 3342(2) 11307(2) 1921(1) 25(1) 

C(7) 3201(2) 11829(2) 2845(1) 25(1) 

C(8) 2423(2) 10336(2) 3362(1) 22(1) 

C(9) 1626(2) 10267(2) 3793(1) 22(1) 

C(10) 1111(2) 9052(2) 3869(1) 25(1) 

C(11) 643(2) 8897(2) 4392(1) 28(1) 

C(12) 1472(2) 8787(2) 4811(1) 28(1) 

C(13) 2097(2) 7630(2) 4795(1) 28(1) 

C(14) 3150(2) 7660(2) 5080(1) 31(1) 

C(15) 3982(2) 8521(2) 4859(1) 27(1) 

C(16) 4402(2) 8140(2) 4348(1) 27(1) 

C(17) 4932(2) 9135(2) 4054(1) 28(1) 

C(18) 4154(2) 10074(2) 3851(1) 25(1) 

C(19) 3428(2) 9603(2) 3438(1) 23(1) 

C(20) 3798(2) 12541(2) 1805(1) 34(1) 
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X-Ray Crystal data for 90ca 

 

Table 1. Crystal data and structure refinement for 90ca.  

Empirical formula     C14 H24 O4  

Formula weight      256.33  

Temperature      273(2) K  

Wavelength      0.71073 Å  

Crystal system      Monoclinic  

Space group      P2(1)  

Unit cell dimensions     a = 5.9569(12) Å   α= 90°.  

b = 27.197(5) Å   β= 100.74(3)°.  

c = 8.9521(18) Å   γ = 90°.  

Volume       424.9(5) Å3  

Z       4  

Density (calculated)     1.195 Mg/m3  

Absorption coefficient     0.086 mm-1  

F(000)       560  

Crystal size      0.55 x 0.35 x 0.15 mm3  

Theta range for data collection    1.50 to 30.48°.  

Index ranges      -8 ≤ h ≤ 8, 0 ≤ k ≤ 38, 0 ≤ l ≤ 12  

Reflections collected     6617  

Independent reflections     6617 [R(int) = 0.0000]  

Completeness to theta = 30.48°    92.3 %  

Absorption correction     None  

Refinement method     Full-matrix least-squares on F2  

Data / restraints / parameters    6617 / 1 / 328  

Goodness-of-fit on F2     0.807  

Final R indices [I>2sigma(I)]    R1 = 0.0574, wR2 = 0.1181  

R indices (all data)     R1 = 0.1751, wR2 = 0.1656  

Absolute structure parameter    0(2)  

Largest diff. peak and hole    0.254 and -0.282 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 90ca.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1A) 5396(7) 9343(2) 4170(4) 28(1) 

O(2A) 1820(7) 10305(1) 3117(4) 25(1) 

O(3A) 7386(6) 10011(1) 5175(3) 23(1) 

O(4A) 6298(7) 9227(1) -2251(3) 27(1) 

C(1A) 7231(10) 9530(2) 4727(5) 20(1) 

C(2A) 9545(10) 9281(2) 4956(5) 25(1) 

C(3A) 9525(11) 8771(2) 4247(6) 30(1) 

C(4A) 8763(10) 8762(2) 2511(5) 28(1) 

C(5A) 10269(10) 9064(2) 1639(5) 24(1) 

C(6A) 9461(10) 9050(2) -97(6) 28(1) 

C(7A) 7199(9) 9330(2) -660(5) 20(1) 

C(8A) 7481(10) 9888(2) -559(5) 22(1) 

C(9A) 5262(10) 10182(2) -750(5) 24(1) 

C(10A) 3971(10) 10132(2) 589(5) 25(1) 

C(11A) 5243(10) 10353(2) 2082(5) 21(1) 

C(12A) 3917(10) 10295(2) 3383(5) 18(1) 

C(13A) 5184(11) 10249(2) 5005(5) 23(1) 

C(14A) 5109(12) 8775(2) -2491(6) 32(2) 

O(1B) 474(7) 7122(1) 4460(3) 23(1) 

O(2B) -3141(7) 6172(2) 3350(3) 24(1) 

O(3B) 2417(6) 6448(1) 5451(3) 21(1) 

O(4B) 1520(7) 7296(1) -1974(3) 26(1) 

C(1B) 2264(10) 6926(2) 5021(5) 20(1) 

C(2B) 4595(10) 7163(2) 5278(5) 22(1) 

C(3B) 4600(11) 7685(2) 4606(6) 27(1) 

C(4B) 3859(11) 7730(2) 2865(5) 26(1) 

C(5B) 5363(10) 7440(2) 1951(5) 25(1) 

C(6B) 4571(10) 7466(2) 217(6) 24(1) 

C(7B) 2356(9) 7188(2) -383(5) 21(1) 

C(8B) 2590(9) 6629(2) -281(5) 20(1) 

C(9B) 318(10) 6344(2) -496(5) 26(1) 

C(10B) -930(9) 6386(2) 838(5) 19(1) 

C(11B) 311(10) 6143(2) 2324(5) 20(1) 
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C(12B) -1064(10) 6184(2) 3587(5) 19(1) 

C(13B) 195(10) 6200(2) 5244(5) 23(1) 

C(14B) 279(11) 7747(2) -2239(6) 29(1) 
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X-Ray Crystal data for 90cb 

 
Table 1.  Crystal data and structure refinement for compound 90cb 

 

Empirical formula  C15 H26 O4 

Formula weight  270.36 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1) 

Unit cell dimensions a = 8.9217(7) Å α= 90°. 

 b = 5.3270(5) Å β= 97.197(4)°. 

 c = 15.8597(12) Å γ = 90°. 

Volume 747.81(11) Å3 

Z 2 

Density (calculated) 1.201 Mg/m3 

Absorption coefficient 0.085 mm-1 

F(000) 296 

Crystal size 0.52 x 0.32 x 0.25 mm3 

Theta range for data collection 1.29 to 32.40°. 

Index ranges -13 ≤ h ≤ 10, -7 ≤ k ≤ 8, -22 ≤ l ≤ 23 

Reflections collected 15394 

Independent reflections 4667 [R(int) = 0.0251] 

Completeness to theta = 25.00° 97.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.979 and 0.928 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4667 / 1 / 173 

Goodness-of-fit on F2 0.841 

Final R indices [I>2sigma(I)] R1 = 0.0399, wR2 = 0.1112 

R indices (all data) R1 = 0.0474, wR2 = 0.1219 

Absolute structure parameter 1.9(7) 

Largest diff. peak and hole 0.323 and -0.235 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 90cb.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 1101(1) 11037(2) 3700(1) 22(1) 

O(2) 5165(1) 8813(2) 4323(1) 19(1) 

O(3) 1300(1) 7827(2) 4624(1) 15(1) 

O(4) 3793(1) 5656(2) 847(1) 20(1) 

C(1) 531(1) 9288(2) 4017(1) 15(1) 

C(2) -1082(1) 8412(3) 3830(1) 16(1) 

C(3) -1980(2) 9604(3) 3044(1) 20(1) 

C(4) -1950(2) 8064(3) 2230(1) 21(1) 

C(5) -408(1) 7914(3) 1914(1) 18(1) 

C(6) -385(2) 6079(3) 1175(1) 19(1) 

C(7) 1067(2) 6161(3) 745(1) 20(1) 

C(8) 2551(1) 5814(3) 1334(1) 15(1) 

C(9) 2596(2) 3423(3) 1860(1) 16(1) 

C(10) 4103(2) 2991(3) 2415(1) 18(1) 

C(11) 4610(1) 5165(3) 3018(1) 16(1) 

C(12) 3457(1) 5793(3) 3619(1) 16(1) 

C(13) 3930(1) 7809(3) 4253(1) 14(1) 

C(14) 2844(1) 8553(3) 4879(1) 16(1) 

C(15) 4189(2) 7970(3) 493(1) 25(1) 
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X-Ray Crystal data for 90da 

 

Table 1.  Crystal data and structure refinement for compound 90da. 

 

Empirical formula  C15 H26 O4 

Formula weight  270.36 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 8.9041(9) Å α= 90°. 

 b = 5.5036(5) Å β= 95.3650(10)°. 

 c = 31.153(3) Å γ = 90°. 

Volume 1520.0(3) Å3 

Z 4 

Density (calculated) 1.181 Mg/m3 

Absorption coefficient 0.084 mm-1 

F(000) 592 

Crystal size 0.60 x 0.60 x 0.30 mm3 

Theta range for data collection 1.31 to 29.23°. 

Index ranges -12 ≤ h ≤ 12, 0 ≤ k ≤ 7, 0 ≤ l ≤ 42 

Reflections collected 4072 

Independent reflections 4072 [R(int) = 0.0000] 

Completeness to theta = 25.00° 99.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.975 and 0.855 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4072 / 0 / 173 

Goodness-of-fit on F2 1.067 

Final R indices [I>2sigma(I)] R1 = 0.0485, wR2 = 0.1377 

R indices (all data) R1 = 0.0844, wR2 = 0.1664 

Largest diff. peak and hole 0.455 and -0.497 e.Å-3 
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

compound 90da.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

  

 x y z U(eq) 

  

O(1) 1148(1) 12017(2) 1951(1) 24(1) 

O(2) 1391(1) 8696(2) 2374(1) 20(1) 

O(3) 5177(1) 9802(2) 2150(1) 26(1) 

O(4) 2604(1) 6080(2) 336(1) 26(1) 

C(1) 2934(2) 9397(3) 2489(1) 21(1) 

C(2) 3478(2) 6813(3) 1821(1) 22(1) 

C(3) 4500(2) 6472(3) 1463(1) 23(1) 

C(4) 4091(2) 4255(3) 1179(1) 29(1) 

C(5) 2427(2) 4096(3) 1003(1) 29(1) 

C(6) 1849(2) 6220(3) 721(1) 25(1) 

C(7) 130(2) 6150(3) 619(1) 32(1) 

C(8) -770(2) 6797(3) 1001(1) 31(1) 

C(9) -677(2) 9484(3) 1126(1) 24(1) 

C(10) -1567(2) 10179(3) 1505(1) 24(1) 

C(11) -908(2) 9139(3) 1938(1) 20(1) 

C(12) 620(2) 10156(3) 2079(1) 18(1) 

C(13) 2718(2) 8340(3) 120(1) 29(1) 

C(14) 3630(2) 7928(3) -259(1) 31(1) 

C(15) 3966(2) 8769(3) 2142(1) 19(1) 

C(15) 3966(2) 8769(3) 2142(1) 19(1) 
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R 
Reactant TS Intermediate Product 

Bond lengths energy bond lengths energy bond lengths energy 

NH2 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.47 

0.6 

*13.1 

# 4.4 

C(2)-C(3)= 2.00 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.39 

-6.2 
C(2)-O(1)= 1.23 

C(3)-Sub= 1.39 
-30.9 

NMe2 

C(2)-C(3)= 1.64 

C(2)-O(1)= 1.34 

C(3)-Sub= 1.43 

-0.6 

*12.9 

# 5.8 

C(2)-C(3)= 2.01 

C(2)-O(1)=1.27 

C(3)-Sub= 1.39 

-7.0 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.39 
-5.6 

OH 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.43 

0.6 

*9.3 

# -0.2 

C(2)-C(3)= 2.06 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.36 

-6.4 
C(2)-O(1)= 1.23 

C(3)-Sub= 1.37 
-2.9 

       

Cl 

C(2)-C(3)= 1.55 

C(2)-O(1)= 1.37 

C(3)-Sub=1.84 

10.2 

*10.6 

# 3.6 

C(2)-C(3)= 2.06 

C(2)-O(1)= 1.25 

C(3)-Sub= 1.76 

7.2 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.74 
-1.7 

SiH3 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.91 

7.7 

*8.8 

# 1.5 

C(2)-C(3)= 2.09 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.89 

-5.4 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.86 
-5.5 

SiMe3 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.93 

7.0 

*8.4 

# 2.6 

C(2)-C(3)= 2.09 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.91 

-6.9 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.88 
-7.1 

PH2 

C(2)-C(3)= 1.57 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.89 

7.4 

*8.8 

# 7.7 

C(2)-C(3)= 2.03 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.84 

-3.9 
C(2)-O(1)= 1.21 

C(3)-Sub= 1.80 
-5.9 

PMe2 

C(2)-C(3)= 1.60 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.90 

4.9 

*7.0 

# -0.3 

C(2)-C(3)= 2.07 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.85 

-9.1 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.79 
-8.8 

SH 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.86 

6.7 

*10.0 

# 1.9 

C(2)-C(3)= 2.02 

C(2)-O(1)= 1.26 

C(3)-Sub= 1.78 

-6.1 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.76 
-6.0 

SMe 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.86 

5.2 

*6.0 

# 1.5 

C(2)-C(3)= 2.01 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.77 

0.6 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.74 
-8.3 

F 

C(2)-C(3)= 1.55 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.40 

9.8 

*12.2 

# 4.4 

C(2)-C(3)= 2.12 

C(2)-O(1)= 1.25 

C(3)-Sub= 1.35 

1.7 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.35 
-2.3 

Ph 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.37 

C(3)-Sub=1.52 

4.5 

*10.3 

# 3.4 

C(2)-C(3)= 2.00 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.47 

-12.8 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.42 
-12.4 

CN 

C(2)-C(3)= 1.58 

C(2)-O(1)= 1.36 

C(3)-Sub= 1.47 

7.8 

*11.2 

# 2.8 

C(2)-C(3)= 2.01 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.43 

-11.0 
C(2)-O(1)= 1.21 

C(3)-Sub= 1.39 
-10.2 

COOMe 

C(2)-C(3)= 1.56 

C(2)-O(1)= 1.37 

C(3)-Sub= 1.52 

6.6 

*10.2 

# 1.7 

C(2)-C(3)= 2.03 

C(2)-O(1)= 1.27 

C(3)-Sub= 1.49 

-9.4 
C(2)-O(1)= 1.22 

C(3)-Sub= 1.45 
-9.2 

Table 1: Energies of β-scission reactions of substituted cyclohexoyloxy radicals without additional close range interaction  

All energies given are related to reactant energy in each case * TS of β-scission of other ring C(2)-C(3) bond # TS of β-

scission of C(2)-C(8) bond. The product from the reaction is from the straight-chain open system 
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 Compound O1-O2 O2-C3 C3-O4 O4-C5 C5-C6 C6-O1 

1 

 

1.47480(8) 1.4410(9) 1.4271(9) 1.4325(9) 1.5303(10) 1.4492(9) 

2 

 

1.481(3) 1.431(4) 1.410(4) 1.438(4) 1.515(4) 1.449(4) 

3 

 

1.487(3) 1.432(4) 1.409(4) 1.429(4) 1.513(4) 1.450(4) 

4 

 

1.479(2) 1.438(3) 1.430(3) 1.427(3) 1.520(4) 1.462(3) 

5 1.47 1.42 1.43 1.42 1.54 1.45 

6 

 

1.46 1.43 1.43 1.43 1.54 1.46 

7 

 

1.47 1.43 1.42 1.43 1.53 1.45 

8 

 

1.46 1.43 1.41 1.43 1.53 1.45 

9 

 

1.47 1.43 1.43 1.43 1.53 1.45 

Table 2: Comparison of Bond lengths of the 1,2,4-trioxane ring from X-ray crystal structures (1-4) 

 and computed geometries (5-9)/ Å 
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 Compound 6-1-2 1-2-3 2-3-4 3-4-5 4-5-6 5-6-1 6123 

1 

 

108.67(5) 108.55(5) 108.74(6) 113.26(6) 111.34(6) 107.84(6) 66.76(6) 

2 

 

108.3(2) 108.4(2) 109.6(3) 110.5(2) 110.8(3) 108.1(3) 64.17(3) 

3 

 

108.0(2) 107.1(2) 109.2(3) 112.1(2) 111.5(3) 107.9(3) -66.90(3) 

4 

 

107.71(16) 108.02(16) 108.83(19) 113.35(18) 112.0(2) 106.54(19) -68.7(2) 

5 

 

108.1 108.2 109.4 114.3 111.4 106.1 -69.5 

6 

 

108.5 108.4 109.6 114.1 111.5 105.4 -69.1 

7 

 

108.5 108.3 109.4 114.4 111.5 107.3 -68.4 

8 

 

108.2 108.0 109.4 113.3 111.4 107.2 -68.2 

9 

 

108.0 108.4 109.0 115.0 112.0 107.5 -69.6 

Table 3: Comparison of Bond angles of the 1,2,4-trioxane ring from X-ray crystal structures (1-4) 

 and computed geometries (5-9)/ Å 
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Figure 1: The reaction profile for the competitive β-scission reactions of 74 / kcal mol-1 

with molecular bond lengths/ Å and spin densities where the spin density quoted is for  

all the centres on the methyl group 
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Figure 2: The reaction profile for the competitive β-scission reactions of 82 / kcal mol-1 

with molecular bond lengths/ Å and spin densities  
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Figure 3: The reaction profile for the competitive β-scission reactions of 55cb / kcal mol-1 

with molecular bond lengths/ Å and spin densities  
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Figure 4: The reaction profile for the competitive β-scission reactions of 55cb / kcal mol-1 

with molecular bond lengths/ Å and spin densities  
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Figure 5: The reaction profile for the competitive β-scission reactions of 55cb / kcal mol-1 

with molecular bond lengths/ Å and spin densities  
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Figure 6: The reaction profile for the competitive β-scission reactions of 55cc / kcal mol-1 

with molecular bond lengths/ Å and spin densities  
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Figure 7: The reaction profile for the competitive β-scission reactions of 55cc / kcal mol-1 

with molecular bond lengths/ Å and spin densities  
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Figure 8: The reaction profile for the competitive β-scission reactions of 55cc / kcal mol-1 

with molecular bond lengths/ Å and spin densities 
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ABSTRACT

A DFT study of model cyclohexyloxy radicals (8a −c, 9) show that (a) the presence of an adjacent oxygen atom, and (b) r-substituents on the
cyclohexyl ring, particularly methoxy, accelerate the rate of â-scission ring-opening reactions. Consistent with theoretical results, thermolysis
of the methoxy-substituted dispiro-1,2,4-trioxane 10 afforded the structurally novel, 14-membered macrocyclic keto lactone 11 as the major
isolable product.

Several naturally occurring and synthetic organic cyclic
peroxides have been found to exhibit useful antimalarial and
anticancer properties.1,2 In particular, the 1,2,4-trioxane
substructural unit has been identified as an essential phar-
macophore in the antimalarial activity of artemisinin and
related analogues.3 It has been proposed that the antimalarial
activity of artemisinin and other cyclic peroxides is related
to iron(II)-induced cleavage of the peroxide bond followed
by radical rearrangement to generate reactive carbon-centered
radicals.1a-d,4,5

We have previously reported that, on thermolysis, dispiro-
1,2,4-trioxanes1 rearrange in a stepwise fashion to give
oxalactones4 and/or unsaturated hydroxy esters5 by partial
ring expansion. Alternatively, depending on the nature of
the substituent on ring A, total ring expansion can yield
macrocyclic keto lactones7 (Scheme 1).6 The observed
products are consistent with an initial opening of the 1,2,4-
trioxane ring (ring B) by O-O bond homolysis, followed
by selectiveâ-scission in ring C before that in ring A.7 Since
analogous symmetrical dispiro-1,2,4,5-tetroxanes are known
to give macrocyclic products,8 the presence of an adjacent
oxygen atom may activate oxy radicals to undergoâ-scission(1) (a) Jefford, C. W.Drug DiscoVery Today2007, 12, 487. (b) O’Neill,

P. M.; Posner, G. H.Acc. Chem. Res.2004, 37, 397. (c) Robert, A.; Dechy-
Cabaret, O.; Cazelles, J.; Meunier, B.Acc. Chem. Res.2002, 35, 167. (d)
McCullough, K. J.; Nojima, M.Curr. Org. Chem.2001, 5, 601. (e) Jefford,
C. W. AdV. Drug Res.1997, 29, 271.

(2) (a) Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V.Mini-ReV.
Med Chem., 2007, 7, 571. (b) Capon, R. J.Eur. J. Org. Chem. 2001, 633.
(c) Faulkner, D. J.Nat. Prod. Rep. 2000, 1 and previous reviews in series.
(d) Casteel, D. A.Nat. Prod. Rep. 1999, 16, 55.

(3) Klayman, D. L.Science1985, 228, 1049.

(4) (a) Robert, A.; Benoit-Vical, F.; Meunier, B.Coord. Chem. ReV. 2005,
249, 1927. (b) O’Neill, P. M.; Posner, G. H.J. Med. Chem. 2004, 47, 2945.

(5) Tang, Y.; Dong, Y.; Wang, W.; Sriraghavan, K.; Wood, J. K.;
Vennerstrom, J. L.J. Org. Chem. 2005, 70, 5103.

(6) (a) Kerr, B.; McCullough, K. J.J. Chem. Soc., Chem. Commun. 1985,
590. (b) Haq, A.; Kerr, B.; McCullough, K. J.J. Chem. Soc. Chem. Commun.
1993, 1076.
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processes. In this respect, it is noteworthy that treatment of
trioxane1b with iron(II) bromide results in the formation
of a bromoester derived exclusively fromâ-scission in ring
C as a major component of the product mixture; no species
relating toâ-scission in ring A were reported.5 In addition,
it is known that 3-methoxy-1,2-dioxanes also readily undergo
iron(II)-mediatedâ-scission processes to give methyl esters.9

In a more general synthetic sense, oxy radicals have been
exploited as key intermediates in ring-expansion reactions,10

and in ring-cleavage reactions of carbohydrates.11

In this paper, we report the results of a density functional
theory (DFT) study12 of â-scission ring-opening reactions
of model cyclohexyloxy radicals analogous to those proposed

in the thermal rearrangement of trioxanes1. We aim, first,
to account for the fact that ring C of intermediate oxy
biradical 2 opens faster than ring A and, second, to
investigate howR-substituents might activate the opening
of ring A and hence provide a higher proportion of
macrocyclic lactones7 from dispiro-1,2,4-trioxanes1.

In order to probe the relative rates of ring opening in
species such as intermediate2 calculations were carried out
on the putative oxy radicals8 and 9 (Scheme 2), model

species for rings A and C, respectively.13 In adopting this
approach we assume the oxy radical centers in2 will behave
independently. The computed energy profiles are presented
in Figure 1 and show a clear preference for opening ring C,
with this process having a barrier of only 4 kcal/mol, 7 kcal/
mol less than that for opening ring A. In both casesâ-scission
is accompanied by the expected shortening of the carbonyl
C-O distances and a buildup of radical character at the
incipient terminal carbon, evidenced through an increase in
planarity. The breaking C-C bond is shorter inTS 9 than
in TS 8a, implying an earlier transition state in the former.
This is consistent with the lower activation barrier for ring
opening in9 and the fact that this process is significantly
exothermic compared to the endothermic ring opening in
8a.14 Therefore, for unsubstituted models the presence of an
adjacent exocyclic oxygen strongly promotes ring opening,
and this is consistent with the experimental observation of
oxalactones4 and hydroxyl esters5 as the major products
in the ring-opening reactions of1b.6

A second set of calculations was then performed to assess
the effect ofR-substituents, R, on the opening of ring A,
where R) Me (8b) or OMe (8c). In the following we focus
on isomers with R in an axial position, although analogous
calculations on the equatorial-substituted species show similar
trends (see Supporting Information). Computed activation
barriers for ring opening in8b and8cshow a clear preference
for cleavage of the substituted C-C bond (see Figure 2).
Moreover, the presence of Me and OMe substituents

(7) Thermolyses of artemisinin and other polycyclic 1,2,4-trioxanes
generally result in extensive fragmentation of the trioxane ring and/or
intramolecular H-abstraction processes after the initial O-O bond homolysis.
See for example: (a) Luo, X.-D; Yeh, H. J. C.; Brossi, A.; Flippen-
Anderson, J. L.; Gilardi, R.Heterocycles1985, 23, 881. (b) Lin, A. J.;
Theoharides, A. D.; Klayman, D. L.Tetrahedron1986, 42, 2181. (c) Lin,
A. J.; Klayman, D. L.; Hoch, J. M.; Silverton, J. V.; George, C. F.J. Org.
Chem. 1985, 50, 4504. (d) Cafferata, L. F. R.; Jeandupeux, R.; Romanelli,
G. P.; Mateo, C. M.; Jefford, C. W.Afinidad2003, 60, 206. (e) Cafferata,
L. F. R.; Rimada, R. S.Molecules2003, 8, 655.

(8) Story, P. R.; Busch, P.AdV. Org. Chem.1972, 8, 67.
(9) (a) Murakami, M.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi,

M. Bioorg. Med. Chem. Lett.2004, 14, 3513. (b) Kawanishi, M.; Kotoku,
N.; Itagaki, S.; Horii, T.; Kobayashi, M.Bioorg. Med. Chem.2004, 12,
5297.

(10) Sugimone, H. InHandbook of Organic Photochemistry and Pho-
tobiology; Horspool, W. M., Song, P.-S., Eds.; CRC Press: London, 1994;
pp 1229-1253 and references therein.

(11) Recent examples include: (a) Alonso-Cruz, C. R.; Kennedy, A. R.;
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Scheme 1. Radical Rearrangement Reactions of
Dispiro-1,2,4-trioxanes1

Scheme 2. Model Species Used in the Calculations
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significantly decrease the ring-opening barrier. For8c an
important additional feature of the transition state,TS 8c, is

a short contact between the ether oxygen and one methoxy
hydrogen (O3‚‚‚H1 ) 2.35 Å). This interaction is shown to
facilitate ring opening, as an alternative transition state where
the ether group is rotated to obviate this effect was found to
be 2.5 kcal/mol higher in energy.15

It is well-known thatR-substituents, in particular those
bearing lone pairs, stabilize C-centered radicals, the so-called
“R-effect”.16,17 In the present case this factor is already
apparent in theâ-scission transition states, and it is enough
to make ring opening for8c via TS 8c a more accessible
process than opening ring C in9 via TS 9. To quantify this
substituent effect on opening ring A we have performed a
natural atomic orbital analysis18 to obtain the spin density

distributions for the stationary points associated with8a, 8b,
and8c (see Table 1). The results show the anticipated transfer

of spin density from O1 in the reactants onto C2 in the
transition states and products. ForTS 8a the redistributed
spin density is localized on C2; however, inTS 8c a
significant contribution (0.13) is localized on the methoxy
substituent. This delocalization serves to stabilizeTS 8cand
thus significantly lowers the barrier to ring opening. For8b
the situation is intermediate between those of8a and8c.

Most importantly, the calculations allow us to predict that
a methoxy substituent will make opening ring A competitive
with that of ring C. This should enhance the possibility of
both processes occurring to form fully expanded macrocycles
such as7 in preference to partially opened4 and 5. With
this in mind we synthesized the methoxy-substituted dispiro-

(15) Preliminary calculations on the analogous OMe-substituted dispiro-
1,2,4-trioxanes show this interaction is retained in the full systems; thus,
this stabilization is not an artefact of our truncated models.

(16) Nelson, S. F. InFree Radicals; Kochi, J. K., Ed.; Wiley: New York,
1973; Vol. 2.

(17) For recent examples where theR-effect is highlighted see: (a) Rauk,
A.; Boyd, R. J.; Boyd, S. L.; Henry, D. J.; Radom, L.Can. J. Chem.2003,
81, 431. (b) Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L.J.
Chem. Phys. A2001, 105, 6750. (c) Zipse, H.Top. Curr. Chem.2006,
263, 163.

(18) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.QCPE
Bull. 1990, 10, 58.

Figure 1. Computed ring-opening energy profiles in model species8a and9 (kcal/mol; selected distances in Å).

Figure 2. Computed activation barriers (kcal/mol) for ring opening
in 8a (R ) H) and axially substituted8b (R ) Me) and8c (R )
OMe). TS 8c is also shown (selected distances in Å).

Table 1. Computed Natural Spin Densities at Selected
Positions for Ring-Opening of8a and the Axial Isomers of8b
and8c (see Figure 2 for Numbering)

position reactant ts product

8a (R ) H) O1 0.89 0.35 0.00
C1 -0.03 -0.07 0.00
C2 0.03 0.69 0.99
Ra 0.00 -0.02 -0.05

8b (R ) Me) O1 0.85 0.40 0.01
C1 -0.03 -0.06 0.00
C2 0.09 0.58 0.93
R 0.02 0.03 0.03

8c (R ) OMe) O1 0.80 0.38 0.13
C1 -0.03 -0.02 0.00
C2 0.11 0.45 0.77
R 0.06 0.13 0.14

a For R ) Me and OMe the total spin on the substituent is indicated,
although the major contribution comes from theR-atom.
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1,2,4-trioxane10 as outlined in Scheme 3. Thermolysis of a
solution of 10 in decane (1% w/v) at 180°C afforded a
relatively clean thermolysate, the major component of which
was isolated in 67% yield as a low-melting solid.19 This was
subsequently identified by spectroscopic and X-ray crystal-
lographic analysis as the structurally novel 14-membered
macrocyclic lactone11 (Figure 3).

From the thermolysis results it is therefore clear that the
R-methoxy group accelerates the opening of ring A in the
dioxy diradical derived from10, as predicted from the
calculations on the model systems8c and9. The preponder-
ance of keto lactone11 suggests that the rates of opening
rings A and C must be comparable, with the resulting carbon-
centered radicals being in relative close proximity to enable
efficient in-cage coupling. Further studies of substituent
effects onâ-scission processes of oxy radicals are in progress
to design systems that will readily undergo radical cyclization
reactions.
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Scheme 3. Formation and Thermolysis of10 to Give 11

Figure 3. X-ray crystal structure of 14-membered methoxy
substituted lactone11 (ORTEP, 50% probability ellipsoids for non-
hydrogen atoms).20
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