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ABSTRACT 

 

In many datasets, there is a very large number of attributes (e.g. many thousands). 

Such datasets can cause many problems for machine learning methods. Various 

feature selection (FS) strategies have been developed to address these problems. The 

idea of an FS strategy is to reduce the number of features in a dataset (e.g. from many 

thousands to a few hundred) so that machine learning and/or statistical analysis can be 

done much more quickly and effectively. Obviously, FS strategies attempt to select 

the features that are most important, considering the machine learning task to be done.   

The work presented in this dissertation concerns the comparison between several 

popular feature selection strategies, and, in particular, investigation of the interaction 

between feature selection strategy and simple statistical features of the dataset. The 

basic hypothesis, not investigated before, is that the correct choice of FS strategy for a 

particular dataset should be based on a simple (at least) statistical analysis of the 

dataset. 

 

First, we examined the performance of several strategies on a selection of datasets. 

Strategies examined were: four widely-used FS strategies (Correlation, Relief F, 

Evolutionary Algorithm, no-feature-selection), several feature bias (FB) strategies (in 

which the machine learning method considers all features, but makes use of bias 

values suggested by the FB strategy), and also combinations of FS and FB strategies. 

The results showed us that FB methods displayed strong capability on some datasets 

and that combined strategies were also often successful.  

 

Examining these results, we noted that patterns of performance were not immediately 

understandable.  This led to the above hypothesis (one of the main contributions of 

the thesis) that statistical features of the dataset are an important consideration when 

choosing an FS strategy.  We then investigated this hypothesis with several further 

experiments. Analysis of the results revealed that a simple statistical feature of a 

dataset, that can be easily pre-calculated, has a clear relationship with the performance 
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of certain FS methods, and a similar relationship with differences in performance 

between certain pairs of FS strategies. 

 

In particular, Correlation based FS is a very widely-used FS technique based on the 

basic hypothesis that good feature sets contain features that are highly correlated with 

the class, yet uncorrelated with each other. By analysing the outcome of several FS 

strategies on different artificial datasets, the experiments suggest that CFS is never the 

best choice for poorly correlated data. 

 

Finally, considering several methods, we suggest tentative guidelines for choosing an 

FS strategy based on simply calculated measures of the dataset.   
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Chapter 1 

  

Introduction and Background  

 

1.1 Introduction 

 

During recent decades, a prominent characteristic of molecular biology has been the 

rapidly expanding amount of biological data. Thus, a growing problem is presented to 

scientists: how to accurately interpret and make full use of the growing amount of 

information. For example, if we could understand the structure and the function of 

expressed proteins, it may be a breakthrough in diagnosis and treatment for a specific 

disease.  

 

Machine learning, in general, is a tool that can analyse large quantities of data 

automatically and play a significant role in such breakthroughs. Within machine 

learning, and especially when we are concerned with certain types of biological data, 

Feature Selection (FS) (Guyon I and Elisseeff A (2003)) is a key aspect. This involves 

minimizing the number of features that we consider in a dataset, but still attempting to 

maximise the predictive power of the model that we build by doing machine learning 

on the dataset. Feature selection is a common task in many classification and 

regression problems; it is necessary because machine learning tools often cannot cope 

when the data has thousands of attributes. This is quite common in bioinformatics 

data, and we therefore focus this work on bioinformatics data.  

 

The hypothesis explored in this thesis is that: an appropriate choice of FS method for 

a dataset can be determined by first calculating simple statistical measures of that 

dataset. Broadly speaking, we test this hypothesis by experimenting with several
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different FS methods, and then running a machine learning method on the dataset 

using only the selected features. The result of the machine learning method is an 

accuracy value (for example, the accuracy of predicting the target class on a test set). 

This accuracy value can be considered as an evaluation of the suitability of the FS 

method that was used. We then examine the relationship between the accuracy of the 

FS method and a simple statistical feature of the dataset. Mainly we use the highest 

statistical correlation between a feature and the target class as the simple statistical 

characteristic of the dataset, and we call this the dataset correlation value (DCV). As 

we will see, by investigation of simple statistical correlation based feature selection 

(CFS) (Hall M A (2000)) and other popular methods on specific data, when the DCV 

is quite low, the experiments indicate that CFS is never the best FS method, and it is 

sometimes the worst. This is intuitively reasonable, but has not been highlighted in the 

research literature, and there are many examples of cases where researches use CFS as 

the FS method despite the dataset having a low DCV. 

 

In the remainder of this introductory chapter, Section 1.2 broadly introduces the topics 

of machine learning and classification. Then we will discuss the issues and problems 

of large-scale data in section 1.3. Section 1.4 presents a brief introduction to 

bioinformatics and related data examined in this thesis. In section 1.5 we provide an 

overview of the contributions of this thesis, and then in Section 1.6 we provide a 

general overview of the contents of the remaining chapters of the thesis.   

 

 

 

1.2 Machine Learning 

 

A program learns from experience E with respect to some class of tasks T and 

performance measure P, if its performance at task T, as measured by P, improves 

with experience E.    

                                                                                                       ---- Mitchell T (1997) 

 

Machine learning research is motivated partly by how to create machines to simulate 

the act of human learning, so that machines could get new knowledge or skills, and 
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then reorganise the structure of their previous knowledge to improve performance. 

For the moment, the most common applied definition of machine learning is the study 

of computational methods for improving automatically the performance of machines 

through experience.  

 

 

1.2.1 What is Learning? 

 

Learning is like intelligence, covering such a broad range of processes that it is 

difficult to define precisely. Michalski R S and Kodratoff Y (1990) view learning as a 

process of modifying the learner’s knowledge by exploring the learner’s experience. 

Zoologists and psychologists study learning in animals and humans and define 

learning as “to gain knowledge, or understanding of, or skill in by study instruction or 

experience” (Nilsson N J (1996)). As the core of any learning agent, whether the 

agent is animal or mechanical or software, is an algorithm that defines the process that 

is used for learning. When an agent learns, it acquires knowledge. Learning is a 

process that allows an agent to adapt its performance through instruction or 

experience. 

 

Learning occurs when a system makes accurate generalisations about the problem 

domain. Information must be assimilated from the environment, and then the internal 

representation of the domain must be modified to accommodate the new data relative 

to what is already known. Over a sufficiently large set of training examples, the 

system should be able to generalise the problem space for unknown examples 

(induction; reasoning from the particular to the general). 

 

The motivation of the learning algorithm is to transform input data into a particular 

form of useful output. The output could be, for example, recognition of optically 

scanned handwritten text, or the next moves in a game of chess. This outcome of 

learning is often called the target function. If learning is successful, the target function 

should be able to take input data and produce a correct output. 

 

 



CHAPTER 1                                                     INTRODUCTION AND BACKGROUND OF LEARNING  

 

Silang Luo                                                 PHD-06-2009                                                             Page  21 

1.2.2 History of Machine Learning 

 

Machine learning is a subdivision of artificial intelligence (Rich E and Knight K 

(1991)). Its application widely extends over all the artificial intelligence areas. It 

usually uses induction and integration rather than deduction. A machine or software 

tool would not be viewed as intelligent unless it could adapt to change with the 

environment. However, early artificial intelligence systems showed a lack of learning 

ability. From the 1920s to the 1970s, artificial intelligence research was mostly based 

on deduction. People thought once machines would have the ability of logical 

deduction, the machine would have “intelligence”. The outstanding work in this 

period was the logic theory machine by Newell A and Simon H A (1956). Because of 

that work, they won the Turing award in 1975. In the mid 1970s, a lot of expert 

systems contributed in this area. However, people recognised it was a difficult process 

to teach a machine knowledge which is summarised by a human. As a result, some 

experts considered that machines could learn knowledge by themselves. In the 1980s, 

most research and most applied work in this area were based on induction (learning 

from examples) (Elio R and Watanabe L (1991)).  

 

Michalski R S, et al. (1983) divides the machine learning areas into six typical classes: 

1) rote learning (Li X (2007)); 2) Learning from instruction; 3) Learning by deduction; 

4) Learning by analogy; 5) Explanation-based learning; 6) Learning from induction. 

 

An important distinction within these classes is the difference between supervised 

learning and unsupervised learning. In the next section, we briefly review these two 

kinds of learning methods. 

 

 

1.2.3 Supervised Learning and Unsupervised Learning 

 

In supervised machine learning (Dougherty D, Kohavi R and Sahami M (1995)), there 

is always the concept of target labels. For example, some data instances may be 

labelled “cancer”, and other data instances labelled “not cancer”. In supervised 

machine learning, the algorithms take externally supplied instances and their labels 



CHAPTER 1                                                     INTRODUCTION AND BACKGROUND OF LEARNING  

 

Silang Luo                                                 PHD-06-2009                                                             Page  22 

(usually called training instances or the training set), and try to produce general 

hypotheses, which then make predictions about the labels of future instances. In other 

words, the goal of supervised learning is to build a good model of the distribution of 

class labels in terms of features. Every instance in any dataset used by machine 

learning algorithms is represented using the same set of features. The features may be 

continuous, categorical or binary. When instances are given with known labels (the 

corresponding correct outputs) then the learning is called supervised.  

 

In unsupervised learning systems, in contrast to supervised learning, the instances are 

without labels. Often the goal in unsupervised learning is to decide which objects 

should be grouped together—in other words, the learner forms the classes itself. In the 

absence of any specific guidance, these systems attempt to discover patterns in the 

data. For example, clustering is a very common method for unsupervised learning. 

 

Another kind of machine learning is reinforcement learning (Barto A G and Sutton R 

S (1997)). The training information provided to the learning system by the 

environment (which is considered to be an external trainer) is in the form of a scalar 

reinforcement signal that is a measure of how well the system operates. This results in 

a reward and the agent attempts to learn a policy, a general way to operate, for 

maximising this reward.  

 

 

1.2.4 Classification Techniques 

  

Classification is the process of assigning samples to a set of defined class labels. 

There has been significantly more research carried out into binary classification 

(members and non-members of a class) than multi-class classification. 

 

Classification is a very common task in biological problems where given two different 

sets of examples, namely positive and negative examples, the learner needs to 

construct a classifier to distinguish between the positive examples and the negative 

set. This classifier can then be used as the basis for classifying as yet unseen data in 

the future. Usually, for a supervised classification problem, the training examples are 
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in the form of a set of tuples where ix  is the class label and iy  is the set of attributes 

for the instances. The task of the learning algorithm is to produce a classifier 

(hypothesis, function) to classify the instances into the correct class. 

Classification problems are represented by sets of samples from the problem domain, 

known as cases or instances, which each consist of a set of features or attributes. For 

example, a set of features might be a number of measurements of a botanical sample, 

and the class values might be species. Usually, when we do machine learning to try to 

learn a model that predicts the class value, most or all of the features in the dataset are 

relevant to the task. That is, we might expect that each feature is needed in order to 

produce an effective model.  But, in the area of bioinformatics especially, there are 

many datasets now where the following two things are true: (1) the dataset contains 

many thousands of features; (2) we have little or no a priori understanding about 

which features are relevant, and in fact we could expect only a small percentage of 

them to be relevant.   

 

This leads to a need for feature selection (FS) methods, and leads us to think about 

subsets of features. An optimal subset of features would be the smallest subset that 

can be found that leads to an accurate predictive model. While, for most classification 

problems, optimal subsets will contain relevant features, some care has to be taken 

when linking relevance automatically to optimal feature subsets. In the research of 

Kohavi R and John G H (1997), some examples are given, illustrating the fact that 

relevance of a feature does not necessarily imply that it is in the optimal feature subset.  

 

 

 

1.3 Problems with Large-scale Datasets 

 

As the amount of data stored in databases continues to grow fast, the analysis of large-

scale datasets (Almuallim H and Dietterich T G (1991)) is crucial to uncovering 

important relationships. The datasets provide a wealth of information on the relevant 

system. The valuable hidden knowledge in these datasets could be used to improve 

many decision-making and similar processes. For example, in business and commerce, 
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interesting relationships between customers and products might be contained in the 

database of previous sales; the key elements of mass spectrometry1 might exhibit the 

relationship between the patients and survivors. Unfortunately, the ability to 

understand and make use of this information does not keep in pace with its growth. 

These problems, which are focussed on large-scale datasets, have become 

increasingly important.   

 

What kind of knowledge we should try to discover in large-scale datasets? The basic 

idea is to build predictive models, so that we can predict the value of some important 

attribute (e.g. monthly sales, presence of cancer, etc…) based on the values of other 

attributes, In this context, our major task is to discover knowledge to help produce a 

high predictive accuracy rate. Moreover, if our predictive model is comprehensible for 

the user, we think this knowledge could be compatible and add to human knowledge. 

In many applications, comprehensible models are necessary. It is important that 

decisions made on the basis of the model can be understood and rationalised by 

humans. A popular way to have models that are also comprehensible, and this is the 

method we use in our experiments, is to use a set of IF-THEN (prediction) rules, 

where each rule is of the form: 

 

                  IF <conditions are satisfied> 

                                         THEN <predict value for attribute> 

 

In the knowledge discovery process, the machine learning algorithm and the pre-

processing part can be considered as vital steps as seen in Figure 1.1. 

 

The question of how to choose which algorithm is most suitable for a given dataset is 

getting more important for scientists. 

 

The first step, Data integration involves, collecting and organizing the data from 

several different sources. 

                                                 
1  Mass spectrometry, which is being applied to the measurement of DNA, RNA, protein and 

small molecule metabolites, is a key technology for the measurement of molecular structure 

and molecular abundance.  
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Figure 1.1. Overview of the knowledge discovery process. 

  

The second step, Pre-processing, can consist of many activities. Common examples 

include reducing the noise in data (Quinlan J R (1989)), choosing a strategy for 

handling missing (unknown) feature values(Bruha I and Franel F (1996)), and 

selecting and ordering features according to their information contents.  Our research 

focuses on how to select a subset of attributes relevant for classification. This process 

is motivated by the fact that the rules discovered by a machine learning algorithm 

should only contain just a few attributes; it is well known that this tends to lead to 

better accuracy. Hence, we first select an attribute subset and then provide only those 

selected attributes for the machine learning algorithm. Considering an example, 

suppose we try to predict the relationship between customer and products, and 

suppose there is an attribute named “Customer Name”. A specific rule could be (IF 

Customer Name = <<a specific name>> then product = <<a specific product>>). This 

type of rule usually has no predictive power. Technically speaking, it is over-fitting2 

the data.  

 

The third step, called Data mining, is to apply the machine learning algorithm to the 

reduced dataset or the dataset with selected attributes. Typically this results in a 

collection of predictive rules.  

 

                                                 
2  Over-fitting: A classifier that performs well on the training examples but poorly on unseen instances. 
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The last step, Post-processing, is to extract a subset of interesting rules, among all 

discovered ones and simplify the large rule set, in order to improve knowledge 

comprehensibility for the user. "Entities must not be multiplied beyond necessity” by 

Occam's razor. 

 

The knowledge discovery process is inherently iterative, and the output of a set can be 

sent as feedback to a previous step. This partly illustrates the distinction between filter 

and wrapper methods (which will be widely discussed in the next chapter). If the 

output of a step is used to influence a previous step in a next iteration, then we are 

using a wrapper-based approach; otherwise, it is a filter approach.   

 

The difficult question here is how to avoid the process being affected by irrelevant 

attributes. This could be thought as how to choose a good feature selection (FS) 

algorithm for the data. Various FS and machine learning strategies have been 

developed; but this serves partly to make the problem worse: given a new large-scale 

dataset with perhaps thousands of features, it is a tough decision to choose the best FS 

strategies, especially since they usually come with little or no guidance.   

 

Are combined strategies better than a single approach? A lot of experiments described 

in later chapters showed us that combined methods often perform better. Dietterich T 

G (2000) suggests three main reasons: statistical, computational and representational, 

to explain why no individual methods can claim that it is superior to others. As an 

example, Wu Y and Zhang A (2004) present an efficient feature selection method to 

facilitate classifying high-dimensional numerical data. Their method employs 

balanced information gain to measure the contribution of each feature (for data 

classification); and it calculates feature correlation with a novel extension of balanced 

information gain. Then they use a forward sequential selection algorithm to select 

uncorrelated features with large balanced information gain. This filter approach 

significantly improves the accuracy and efficiency. In our research, we implemented 

several combined strategies and compare with the original individual strategies on the 

same datasets. The experiments and analysis will be described in chapters 4 and 5.  
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Most large-scale datasets that have appeared recently come from the science of 

bioinformatics. Biological data are being produced at a phenomenal rate (Reichhardt 

T, et al. (1999)). For example as of August 2000, the GenBank repository of nucleic 

acid sequences contained 8,214,000 entries (Benson D A, et al. (2000)) and the 

SWISS-PROT database of protein sequences contained 88,166 (Bairoch A, et al. 

(2000)). On average, these databases are doubling in size every 15 months.  

 

There are many other areas, apart from bioinformatics, where feature selection is an 

important concern. Just one example is text categorization, which is a domain where 

the datasets usually have a very large number of features. The features of examples to 

be classified are words, and the number of different words can be hundreds of 

thousands. However, an initial pruning of the most and least frequent words may 

reduce the effective number of words. While some simple document classification 

tasks can be accurately performed with vocabulary sizes of less than one hundred, 

many complex tasks on real-world data from the Web, UseNet and newswire articles 

do best with vocabulary sizes in the thousands (McCallum A and Nigam K (1998)). 

Typical tasks include the automatic sorting of URLs into a web directory and the 

detection of unsolicited email. 

  

In the next section, we will introduce the bioinformatics and some related areas. 

 

 

 

1.4 Bioinformatics 

 

1.4.1 Introduction 

 

Bioinformatics is the science of understanding and organising biological information 

by applying computational techniques. The application of computational techniques 

encompasses a wide range of subject areas including structural biology, genomics, 

proteomics, metabolomics, and more.  
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Bioinformatics (Huerta M, et al. (2000)), emphasising algorithm design and 

theoretical methods over the application of the technology, is not just the combination 

of computer science and biology. There are many areas of research (e.g. developing 

mathematical algorithms or statistical methodologies) that are relevant for analyzing 

data and thus uncovering biological knowledge. Bioinformatics includes the latter 

techniques, and it also has the role to provide the necessary computational and 

statistical means for data handling capabilities (Yu U, Lee S H, Kim Y J and Kim S 

(2004)).  It is certainly not as simple as “number-crunching for molecular biologists”, 

but is about the application of many techniques such as modelling, simulation, data 

abstraction, data manipulation and pattern discovery techniques. 

  

According to Luscombe N M (2001), bioinformatics has three aims. First, it allows 

researchers to access existing information and to submit new information as it is 

produced. The second aim is to develop tools and resources that aid in the analysis of 

data. The third aim is to use these tools to analyse the data and interpret the results in 

a biologically meaningful manner. 

 

Bioinformatics is a relatively young field, and the pace of research is driven by the 

large and rapidly increasing amount of data being produced from, for example, efforts 

to sequence the genomes of a variety of organisms. The data generated by the 

experimental scientists requires annotation and detailed analysis in order to turn it into 

knowledge which can then be applied to improving health care via, for example, new 

drugs and gene therapy, medical practices, and food production - all of which are now 

high-profile issues nationally.  

 

 

1.4.2 Systems Biology 

 

Systems biology studies biological systems by systematically perturbing them 

(biologically, genetically, or chemically); monitoring the gene, protein, and 

informational pathway responses; integrating these data; and as an end result, 

formulating mathematical models that try to describe the structure of the biological 

system and its response to individual perturbations (Ideker T et al. (2000) and Ideker 
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T et al. (2001)). Systems biology is the process involved in understanding the 

interactions and relationships between many parts of biological systems. It aims to 

look at biological systems as wholes, rather than specific or certain parts of a cell or 

organism. Top-down systems biology identifies molecular interaction networks on the 

basis of correlated molecular behaviour observed in genome-wide "omics" studies. 

Bottom-up systems biology examines the mechanisms through which functional 

properties arise in the interactions of known components (Bruggeman F J and 

Westerhoff H V (2007)). 

 

 

Figure 1.2. The process of system biology. 

As hinted at by Figure 1.2, all biological information is hierarchical. Initially DNA 

will change over to mRNA, which in turn is translated into amino acids within 

ribosomes. Proteins are built by blocks of amino acids, and these then lead to protein 

interactions and proteins performing particular functions; in turn this leads to some 

informational pathways. These pathways form informational networks, which in turn 

become cells. Now cells form networks of cells. Finally an individual is a collection 

of cells. A host of individuals forms a population, and a variety of populations 

becomes an ecology. The primary challenge for biology and medicine is to create 

tools and mechanisms to capture and integrate these different levels of biological 

information towards gaining insight into their curious functions.  

However, most of the biological data so far gathered are qualitative rather than 

quantitative and probably many breakthroughs in experimental devices, advanced 
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software, and analytical methods are required before the achievements of systems 

biology can live up to their potential (Kitano H (2002)). Nevertheless, systems 

biology is needed and modelling approaches are powerful. Model building, as an aid 

to understand complex systems, is also the most preferred methodology in other areas, 

like ecology or economics. The overall promise is worth the effort, and lessons from 

system analysis of advanced technologies and engineering theory suggest that the 

system can be usefully divided into subsystems, so one does not have to tackle and 

solve the whole system at once. 

 

 

1.4.3 Overview of Proteomics  

Proteomics (Pandey A and Mann M (2000)) is defined as the large-scale study of the 

complete complement of proteins within a cell or tissue sample. It is an attempt to 

describe or explain their structures, function and expression of protein content under 

different conditions (stressed, diseased, and/or drugged) to further understand 

different biological processes. One of the main goals of proteomics is the 

identification of novel markers that can be used for prediction, prevention, diagnosis, 

prognosis and therapy optimization in human diseases.  Similar to other "-omics", the 

development of proteomics was significantly influenced by the recent developments 

in technology. The real development of proteomics started only after the use of the 

two-dimensional (2D) protein electrophoresis method (Celis J E, Bravo R (Eds) 

(1984)) followed by mass spectrometry (MS) (Aebersold R and Mann  M (2003)). 

The 2-D gel electrophoresis (2D-GE) method, which enables to distinguish up to 

10,000 proteins from a cell sample, is now the preferred method for protein separation. 

It is based on two distinct physical and chemical features of proteins: first, according 

to the isoelectric point (which is indicated by a pH value), the proteins in a sample are 

separated. Proteins then migrate towards the anode according to their total charge up 

to the point where the gel pH equals the pI of a given protein. Then, common 

electrophoresis on a polyacrylamide gel (PAGE) is applied, but the electric current is 

applied at a perpendicular angle to the original orientation of the electrodes. Proteins 

then migrate in the second direction through the gel only according to their size. In 

short, 2D-GE is used to first separate the proteins by isoelectric point and then by size. 
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Mass Spectrometry is an essential technique in the analysis of proteins and other 

biological molecules by virtue of their versatility, sensitivity, speed, and improving 

ease of use. It enables a scientist to localise modifications within a protein and also 

helps to find out the nature of such modifications. A mass spectrometer can be divided 

into three fundamental parts, namely the ionisation source, the analyser, and the 

detector. The sample firstly is introduced into the ionisation source and the molecules 

in the sample are ionised, then these ions are extracted into the analyser region 

according to their mass-to-change ratios (m/z). Ultimately, a data system collects the 

signals from separated ions. 

Through these 2D-GE and MS techniques, much research will be done increasingly in 

the future, to try to identify differentially expressed proteins for early diagnosis and 

treatment of specific diseases. Differential expression, for example, means that 

machine learning methods find different patterns of proteins between the experimental 

and control samples, or between the samples from patients with specifics disease and 

the control samples from healthy patients. The pursuit of new drugs and recent 

technological advances on large-scale studies of proteins will continue to be a major 

driver in the biotechnology and health industries. 

 

1.5 Contributions of this Thesis 

 

1. The first contribution concerns the popular and simple FS strategy: 

correlation-based feature selection (CFS). In experiments reported in this 

thesis, we see that CFS is never the best choice for poorly correlated data, 

which means that it may do more harm than good. Although the result is 

straightforward, the claim can be made that this is a significant contribution, 

because CFS is often employed, without consideration, to select features in 

order to reduce the size of vast datasets. In this method, features are chosen 

that have the best correlation with the ‘target’ feature, based on the basic 

statistical correlation with the target feature. However, we show that the 

features chosen by CFS will be not ideal in the case when the correlations in 

the dataset tend to be low, and in fact this can lead to underperformance in 
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later data mining. In effect, we show that a simple test of the dataset can show 

whether or not it is sensible to use CFS.  

 

2. The second contribution of the work is the description of Feature Bias (FB) 

techniques, and their experimental evaluation by application on the various 

datasets in this thesis.  FB attempts to have the best of both worlds; the idea of 

evaluating each feature is used, so that the features that seem most useful are 

given more importance in the machine learning process; however, unlike FS 

methods, FB still uses all features, so all of the important features are available 

to the machine learning process.  We find that FB techniques are generally 

good in their performance, displaying strong capability on some datasets. 

 

3. The third contribution, in close relation to the second, is the concept of 

combined FS/FB strategies, where FS is used with some caution, and FB is 

used on the reduced dataset. The thesis contributes empirical evidence for 

many such combined strategies, and we see strong performance on certain 

datasets.  

 

4. The fourth contribution is the claim, justified by some statistical analysis, as 

follows: simple statistical measures of a dataset can be used to predict the 

relative performance of certain different FS methods. This is a more general 

and extended version of the first contribution. Put in another way: by making a 

simple calculation based on the dataset itself, we can determine a good 

prediction of whether or not it is sensible to use CFS for FS on that dataset. 

More generally, the measure calculated from the dataset can help us determine 

which FS (or FB) method to use, from a small set of FS and FB methods.   

 

Related to the fourth contribution, the thesis offers a simple decision guide for 

choosing an FS method (from the ones reported in this thesis) on the basis of a simple 

measure of the dataset, which we call the Dataset Correlation Value (DCV). 
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1.6 Overview of Whole Thesis 

 

The above issues sketch the scope of the present work. Basically, the nature of the 

research reported here falls into three areas: 

 

1 Comparison and investigation of various  FS approaches on large-scale data 

 

2 Investigation of new/alternative FS and related methods. 

 

3 Exploring the relationship between dataset statistics and the performance of 

the FS method. 

 

The first area aims at finding advantages and disadvantages of the different 

approaches and yielding a better understanding of the effects and the differences of 

the various methods. To compare different FS methods, this was done by comparing 

the performance of machine learning on the reduced datasets. The method of machine 

learning we chose to use was to evolve a set of rules to classify the dataset. So, part of  

this research included brief  examination of factors of the evolutionary algorithm such 

as population size and rate of mutation. The purpose of the second area was to learn 

from the comparison results, and see if this learning can be used to drive different 

directions for FS strategies. In this area we developed FB strategies and tested them, 

and also combined FS/FB strategies, and also combinations of basic FS strategies. But 

most of what we learned from the first comparison studies was used to drive area 

three, which involves understanding the relationship between the performance of the 

FS methods and the datasets themselves. 

  

Chapter 2 begins by presenting the concept of feature selection techniques. Three 

broad categories of technique are discussed – Complete, Heuristic, and Random. It 

also reviews two typical types of algorithms - filter and wrapper methods - those that 

do not involve the machine learning scheme to estimate the worth of features, and 

those that do. Section 2.4 surveys several feature selection methods. The problem of 

how to choose a feature selection method is discussed in next section. Then in the 
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next we brief review the concept of evolutionary algorithms, and Section 2.7 presents 

conclusions. 

 

Chapter 3 focuses on the comparison of five popular feature selection strategies. In 

the first section 3.1, it gives the basic introduction about the feature selection methods. 

Then section 3.2 describes the datasets and algorithms used in the experiments and 

section 3.3 outlines the performance of each method and some notes on preliminary 

experiments. The conclusions are discussed in section 3.4. 

 

Chapter 4 addresses the investigation of advantages and disadvantages of FS and FB 

methods. We define feature bias (FB) methods in section 4.1 and provide an overview 

of basic variant FB methods and the combined methods in section 4.2. More datasets 

are used in the next experiments for comparing the performance of FS and FB. These 

datasets are presented in section 4.3. In this section we also divide the Datasets into 

three groups according to their types and discuss the range of correlation values in 

each type of dataset. Section 4.4 and section 4.5 gives us the results from experiments 

and the analysis. And section 4.6 discusses the conclusion. 

 

Chapter 5 explores the relationship between the dataset statistics and the various 

methods. It begins with the introduction in section 5.1, then surveys the concept of 

statistical correlation coefficient: Pearson’s correlation and Spearman’s correlation are 

in mentioned in section 5.2. In section 5.3, it presents the overview of Spearman’s 

correlation and the details of applications used in our experiments. Then in section 5.4 

we apply the Pearson’s correlation for proving the significance of the correlation 

between a basic statistic of the dataset, and the performance of CFS and other 

methods.   In section 5.5 we introduce a simple ‘Black box’ decision strategy to give a 

guide towards choosing the appropriate FM (feature management) method when we 

have calculated basic statistics of the dataset. Section 5.6 presents the brief discussion. 

 

Chapter 6 summarises this thesis and offers future perspectives. It includes four 

sections: the discussion, and the overview of the whole research, the contributions, 

and future work.  
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Chapter 2 

 

Literature Review 
 

In section 2.1 we give a broad overview of feature selection. Then in section 2.2 we 

describe the three main categories of feature selection method. When feature selection 

is applied, it is usually because the data needs to be reduced or optimised for input to 

a machine learning method. There are two main ways in which feature selection and 

machine learning are combined, and these are discussed in section 2.3. In section 2.4 

we survey several popular feature selection methods for large-scale datasets. The 

SVM and SVM-RFE methods are presented in subsection 2.4.1. Then in subsection 

2.4.2 we provide an introduction of Relief methods and variants. Subsection 2.4.3 

presents many widely used feature selection methods, some of which are based on 

basic statistical calculation. In section 2.5 we analyse literature concerned with how to 

choose feature selection methods. Finally in section 2.6 we briefly review 

evolutionary algorithms (the learning method used in this thesis to test FS 

performance).  The last section presents conclusions. 

 

 

 

2.1 Overview of Feature Selection 

 

Feature selection is often found to be an essential pre-processing step in machine 

learning, wherein a subset of features is selected from the data for classification or 

prediction of learning algorithm before applying a machine learning algorithm (Jones 

S S and Smith L B (1992)). The aim of feature selection is to pre-select a relatively 

small number of attributes, thus speeding up further processing and (hopefully) 

eliminating data that have minimal or no discriminatory power (John G H, Kohavi R
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and Pfleger K (1994)). A feature selection algorithm chooses a subset of cardinality f 

from the original k features where f < k. The technique tries to find the most important 

or relevant f features, hence reducing the dimensionality of the data with a view to 

reducing the complexity of the problem. This reduction can lead to an immense 

speedup in processing time, as well as potentially much better generalization 

performance. 

 

A typical feature selection method consists of four basic parts (defined by Dash M 

and Liu H (1997)) as in the following, where each part could be seen as an option to 

select features: 

 

1) Find a starting point to generate a feature subset.   

The starting point – in some methods this is the complete set of features, and 

features are gradually removed. In others the starting point is the empty set, and 

features are gradually added 

2) Use a selection method (e.g. complete, heuristic, random) 

The method for guiding changes to the starting feature set. 

3) Involve an evaluation strategy  

The evaluation strategy: how a score is calculated to estimate the quality of a set 

of features. 

4) Stopping criterion 

 

In more detail: 

 

1)  The popular three starting points are respectively (i) start with no features, (ii) start 

with all features, or (iii) start with a random subset of features. The option with no 

features will add attributes and test the resulting set, usually one by one. In this case, 

the search is said to proceed forward through the search space. In contrast, the search 

could begin with all the features and successively remove them, and this is called to 

proceed backward through the search space. Alternatively, it could start with a 

random subset and move outward and/or backward from this point. 

 

2) The ‘complete’ method is an exhaustive search over the feature subset space. When 

the feature space is limited to a very small number, this is a guaranteed way to find 
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the optimal subset. However, with a initial features, there exist 2ª −1 possible non-

empty feature subsets, and obviously this is no use in general. The heuristic and 

random selection methods are far more efficient method to guide the search but they 

do not guarantee finding the optimal subset. The next Section will describe some 

feature selection strategies that have been used recently. 

 

3) Evaluation strategy. Will the process of machine learning be independent of the 

feature selection? How to evaluate the feature subsets becomes a critical 

differentiating factor. One strategy, denominated the filter method (Kohavi R (1995)), 

operates by filtering the irrelevant features out of the data before machine learning 

begins. In the progress of filter, the machine learning algorithm is independent from 

the feature selection methods. On the other hand, the method, dubbed the wrapper 

method (Kohavi R and John G H (1996)), which estimates the accuracy of feature 

subsets by using an induction algorithm with a statistical re-sampling technique, is not 

independent. Section 2.3 discusses the filter and wrapper approaches in details for the 

connection between feature selection and machine learning. 

 

4) Stopping criterion. A suitable stopping criterion should avoid that the feature 

selection process runs unnecessarily long. Depending on different search methods, the 

stopping criterion will be influenced by the generation procedures and evaluation 

strategy. Still, there are lots of choices for selecting a stopping criterion, such as a 

predefined number of features selected, or a maximum number of iterations reached. 

 

 

 

2.2 Categories of FS Methods 

 

The feature selection (Liu H and Motoda H (1998)) methods fall into three categories 

as follows: 

 

1. Complete methods: this includes exhaustive and some non-exhaustive methods. 

The exhaustive methods are guaranteed to find an optimal subset by generating and 

checking all possible candidate subsets, however it only applied if the time is not an 



CHAPTER 2                                                                                                                         LITERATURE REVIEW  

Silang Luo                                                 PHD-06-2009                                                             Page  38 

issue and the size of the whole relevant feature set is small. In some cases there can be 

more features but we are still guaranteed to find an optimal subset using search 

strategies such as Branch and Bound.  

 

  
 

Figure 2.1. A hierarchy of feature selection methods. 

 

A study by Dash M and Liu H (2003) looked at various search strategies. In their 

research, they looked at five different algorithms: exhaustive (Focus), complete 

(ABB), heuristic (Set Cover), probabilistic (LVF), and a hybrid of complete and 

probabilistic search methods (QBB). The results could be seen as offering guidelines 

for a user to select the best algorithm under particular circumstances. Despite the cost 

of time, the Focus and ABB methods were preferable because they ensured smallest 

consistent subsets. But in the usual case of limited computing time a user is best 

guided to choose from LVF and QBB. 

 

Research by Pudil P and Novovicova J (1998) looked to present some guidelines on 

the method of feature selection to choose based on the knowledge of the problem 

needing to be solved. A preliminary flowchart was built indicating the methods of 

feature selection to choose based on the characteristics of the problem. For example, 

if the total number of features is greater than 30, sequential feature selection methods 

are recommended otherwise a branch and bound search is suggested. 
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An optimal feature selection method cannot be improved in terms of accuracy but the 

time complexity leaves a lot to be desired. An improved branch and bound method, 

(IBAB) proposed by Chen X (2003), aims to reduce the search time that the 

conventional branch and bound method usually requires. Partial paths, which are sub 

paths of branch and bound paths, are searched for. If a partial path is found such that 

its criterion function value is less than the current stored best for partial paths then all 

full paths containing this partial path are ignored. However, by reducing the time 

taken to perform the branch and bound search, optimality is compromised. 

 

2. Heuristic methods: sequential search methods. Although these algorithms may not 

guarantee minimal size subsets, they will be efficient in generating consistent subsets 

of size close to minimal in much less time when the number of relevant features and 

the number of features both are large. 

 

Jain A and Zongker D (1997) evaluate different feature selection methods, looking 

specifically at their advantages and disadvantages for particular problems. The 

experiments conducted in the study demonstrated the existence of the curse of 

dimensionality, also known as Hughes paradox or the peaking phenomenon. For a 

feature selection algorithm there appears to be an optimal number of features that can 

be selected. Adding more features causes the classification error to rise. This effect 

seems counterintuitive. The more information about a problem is used, fewer 

mistakes should be expected. This effect has been attributed to the fact that traditional 

Datasets are finite in size and, as such, only imperfect estimates of probability 

distributions may be found.  

 

Kudo M and Sklansky J (2000) also compare feature selection algorithms for 

classifiers. The study incorporates a comparison of branch and bound methods, 

sequential algorithms and genetic algorithms on a variety of small, medium and large 

Datasets. In conclusion it is seen that the sequential algorithms can give better results 

than the other methods for the small and medium sized datasets. 

 

Gadat S and Younes L (2007) introduce a new model addressing feature selection 

from a large dictionary of variables that can be computed from a signal or an image. 

Features are extracted according to an efficiency criterion, on the basis of specified 
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classification or recognition tasks. This is done by estimating a probability 

distribution P on the complete dictionary, which gives most probability to the more 

efficient, or informative, components. A stochastic gradient descent algorithm is 

implemented by using the probability as a state variable and optimizing a goodness of 

fit criterion for classifiers based on variables randomly chosen according to P. Then 

classifiers are generated from the optimal distribution of weights learned on the 

training set. Several pattern recognition problems including face detection, 

handwritten digit recognition, spam classification and micro-array analysis, are tested 

for this experiment. The results show that the performance is significantly improved 

over an initial rule in which features are simply uniformly distributed. Optimal 

Feature Weighting method (Scherf M and Brauer W (1997)) is moreover competitive 

in comparison with other feature selection algorithms and leads to an algorithm which 

does not depend on the nature of the classifier which is used, whereas, for instance, 

RFE or L0-SVM are only based on SVM. 

 

3. Random methods: These methods generate the candidate subsets randomly but 

often use a supervised guidance which allows mutation in the logic for searching 

alternative areas of the feature space. This random method cannot guarantee the 

discovery of the optimal subset. 

 

The research by Juliusdottir T et al. (2005) investigates a simple evolutionary 

algorithm/classifier combination on two microarray cancer datasets, where this 

combination is applied twice – once for feature selection, and once for further 

selection and classification. Their contribution are: (further) demonstration that a 

simple EA/classifier combination is capable of good feature discovery and 

classification performance with no initial dimensionality reduction; demonstration 

that a simple repeated EA/k-NN approach is capable of competitive or better 

performance than methods using more sophisticated pre-processing and classifier 

methods. 

 

Even though the complete methods guarantee the expectation of the optimal candidate 

subset, it costs a high price to implement such methods which require high 

computational complexity. For this reason, and especially with the size of datasets 

today in the bioinformatics field, heuristic and random methods are getting more 
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considered and widely implemented frequently in spite of not having the guarantee of 

optimality. 

 

 

 

2.3 Filter and Wrapper 

 

There are two broadly different ways in which FS strategies are applied in 

combination with machine learning. These are the Filter and Wrapper methods.  The 

filter method, defined by Kohavi R and John G H (1996), which evaluate the worth of 

features based on general characteristics of the data, is a pre-processing step, 

independent of the choice of the machine learning method. And the wrapper methods, 

those which evaluate the worth of features by using the special learning algorithm that 

is to ultimately be implemented to the data is to assess subsets of variables according 

to their usefulness to a given predictor. Within both categories, algorithms can be 

further differentiated by the exact nature of their evaluation function, and by how the 

space of feature subsets is explored. 

 

 

2.3.1 Feature Filter Approach 

 

The filter method is the earliest approach to feature selection. It uses the intrinsic 

properties of the training set to decide which features to reserve or to discard. As the 

filter methods utilise an indirect measure to find the appropriate feature subset, it is 

often done a priori before an induction algorithm is performed. It filters out redundant 

or irrelevant attributes before machine learning occurs, that is the search is done 

independently of the machine learning algorithm. The advantage of the filter model is 

that it does not need to re-run the algorithm for every induction algorithm when 

choosing to run on a reduced feature dataset, as a consequence, the filter approach is 

generally computational efficient, and it is practical for datasets with very high 

dimensionality. 
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The filter selection procedure is illustrated in Figure 2.2. As shown in this procedure, 

the Filter model includes three steps. The first step is to select the filter algorithm as 

an operator to guide the search. Usually, the performance of the filter algorithm 

directly results in the selection of variable subsets. Many filter operators are 

deterministic (such as CFS), which means that, for a given dataset, they will always 

rank the features in the same way. In other cases, such as using evolutionary 

algorithm feature selection, the ranking of the features can be different when applied 

different times to the same data.   

Figure 2.2. The filter Selection procedure. 

 

The second step is ranking all the features to choose the most fit n features. In most 

high dimensional data (e.g. with thousands of attributes), few hundred features could 

lead to better performance in the further work; however, in some (usually smaller) 

datasets, around 10 features may produce better performance. The third step is to 

compress the original dataset by removing the features that were not selected. The 

methods studied in this thesis are all filter style methods. The details will be discussed 

in chapter 3 and chapter 4. 

 

There are a number of different commonly used filter algorithms such as CFS and 

Relief. These representative filter approaches works as follows: they first evaluate the 

individual features according to an evaluation criterion, and there afterwards, the best 

n features are selected, then the resulting subset of features is then fed as input to the 

machine learning system. This class of techniques essentially produces a feature 

weighting scheme, which is used afterwards to rank and select features.  

Start 

Filter Model 

 

Data Reduction with 
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Final Sub Features 
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Kira K and Rendell L A (1992) introduced the Relief algorithm which follows this 

general paradigm but incorporates a complex feature-evaluation function. In their 

work, they then use ID3 (Quinlan J R (1983)) to induce a decision tree from the 

training data using only the selected features. Kononenko I (1994) reports two 

extensions to this method that handle more general types of features. The next 

subsection will describe more details of the Relief algorithm. 

 

Yu L and Liu H (2003) introduce a novel concept, predominant correlation, and 

propose a fast filter method which can identify relevant features as well as 

redundancy among relevant features without pairwise correlation analysis. The 

efficiency and effectiveness of their method is demonstrated through extensive 

comparisons with other methods using real-world data of high dimensionality. 

 

Since the filter approach does not take into account the learning bias introduced by the 

final induction algorithm, it may not be able to select the most suitable subset for the 

final induction algorithm. For this reason, the wrapper model was proposed. 

 

 

2.3.2 Feature Wrapper Approach 

 

The strategy of the wrapper model is to use an induction algorithm to estimate the 

merit of the searched feature subset on the training data and using the estimated 

accuracy of the resulting classifier as its metric. The rationale for wrapper approaches 

is that the induction method that will ultimately use the feature subset should provide 

a better estimate of accuracy than a separate measure that has an entirely different 

inductive bias Langley P (1994).  

 

As exhibited in the Figure 2.3, machine learning plays an important role in the 

Wrapper approach. The wrapper approaches often have better results than the filter 

approaches because they are tuned to the specific interaction between an induction 

algorithm and its training data. The disadvantage of the wrapper model is that it is less 

tractable because of the prohibitive cost of running the classification algorithm many 

times when the dimensionality is considerably high. As a result of the wrapper 
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methods must repeatedly call the induction algorithm and must be re-run when a 

different induction algorithm is used, they tend to be much slower than filter methods. 

So, the wrapper approach is not our method of choice in this thesis as we look into 

large-scale datasets. 

 
Figure 2.3. The procedure of wrapper selection. 

 

For instance, Aha D W and Bankert R L (1996) report a technique which starts with a 

randomly selected subset of features and includes an option for beam search rather 

than greedy decisions. They report impressive improvements on a cloud classification 

task that involves over 200 numeric features. Skalak's D B (1994) work on feature 

selection for nearest neighbour is a wrapper approach that also starts with a random 

feature set, but replaces greedy search with random hill climbing that continues for a 

specified number of cycles. 

 

Finally this subsection has basically introduced the concepts of filter and wrapper 

methods. Both of them could find potential best results in finite computation time. 

However, the filter method has an advantage in dealing with large many-attribute 

datasets.  In the next chapter, we will describe more details about some other widely-

used feature selection methods on high dimensional datasets. Some of them could be 

applied in both filter or wrapper modes, such as SVM and EA, however, some of 

them are usually only used as filter, for example, CFS and Relief. 
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2.4 Feature Selection Methods on Large-scale Dataset 

  

2.4.1 SVM and SVM-RFE 

 

SVM 

 

The state-of-the-art classification algorithms, Support vector machines (SVM) by 

Boser B E (1992) are a group of related supervised learning methods that can be 

applied to classification or regression. These have been demonstrated to be an 

effective tool when used for a variety of applications in object recognition to 

classification of cancer morphologies and a variety of other areas.  

 

 
 

Figure 2.4. It illustrates the operation of SVM Classifier. Yellow ones are support vectors. 

 

In linear SVM classification, a hyperplane with maximum margin means are 

constructed to linearly separate two classes. For an instance as shown in Figure 2.4, 

the data points are two sets of vectors, the round ones and the square ones, and the 

question is how to find out the optimal hyperplane that separates these two classes.  

The distance between the dashed lines is called the margin. The vectors (points) that 

Small Margin Large Margin 
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constrain the width of the margin are the support vectors.  When the margin between 

the support vectors is maximised, this oriented line in the right of Figure 2.4 is the 

better classifier than one in the left for this classification problem. 

 

As there exists many problems that have no hyperplane that can split two classes 

completely, a modified maximum margin idea, allowing for mislabelled examples, 

was presented by Cortes C and Vapnik V (1995). This soft margin method defined a 

misclassification error iξ “slack variables”, and employs a parameter C to control the 

cost of misclassification. 

   

Viewing a typical classification problem with a training set of instance-label pairs 

( ix iy ) i = 1…m, where ix ∈ nR  and iy  ∈{1, −1} m , the support vector machines 

attempt to find the discriminant function bxwxf i +⋅=)( which  is formulated by 

SVMs into the following optimization problem.  

 

Minimising                                            
2
1 ||w||+ ∑

=

m

i
iC

1

ξ                                                (1) 

Under the constraints:     

                                                    iii bxwy ξ−≥+⋅ 1)][(  and 0≥iξ                               (2) 

where C is a tradeoff parameter between error and margin. If iξ =0, there is no error 

for ix . At this condition, the optimization problem is min
2
1 ||w|| subject to 

1)][( ≥+⋅ bxwy ii , which is the formalization of  original linear optimal hyperplane 

algorithm . 

 

This optimization problem is usually solved in its dual form: 

                             max )(
2
1
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                             subject to 0≥iy   and 0
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i ya                                                     (4) 

 where w is recovered  by using the dual variables as ia   :      w =  ii

m

i
i xya∑

=1

             (5) 

So far, we have only considered large-margin classifiers with a linear decision 

boundary (the hyperplane). The study by Boser B E, Guyon I and Vapnik V (1992), 
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applied the ‘kernel trick’ to create non-linear classifiers. The mapping φ , which 

represent the data from the input space to feature space, is usually nonlinear and the 

feature space is a much higher (possibly infinite)  dimensional space than the original 

input space. The kernel function computes the inner product of two vectors in the 

feature space and implicitly defines the mapping function:    

               

                                            k( ix , jx )= )( ixφ )( jxφ = )( ji xx ⋅                      Linear Kernel  (6) 

 

There are other commonly used kernel functions as following: Polynomial Kernel, 

Gaussian, Kernel, radial basis function, sigmoid. If the non-linear kernel function is 

used, the above optimization problems will change correspondingly. In these cases, 

because of the nonlinear mapping relation between the input space and the feature 

space, the linear discriminate function constructed by an SVM in the feature space 

corresponds to a nonlinear function in the original input space. Therefore the 

classification could grow easier with a proper transformation.  

 

SVMs (Burges C J C (1998)) provide a new approach to the problem of pattern 

recognition with clear connections to statistical learning theory. They differ radically 

from comparable approaches such as neural networks: SVM training always finds a 

global minimum for separating the classes, and their simple geometric interpretation 

provides lots of ideas for further investigation. An SVM is largely characterised by 

the choice of its kernel, and SVMs thus link the problems they are designed for with a 

large body of existing work on kernel based methods. 

 

Jong K, et al. (2004) proposed two combination strategies: union of features occurring 

frequently, and ensemble of classifiers built on single feature subsets. The resulting 

methods are applied to pattern proteomic data for tumor diagnostics. Results of 

experiments on three proteomic pattern datasets indicate that combining feature 

subsets affects positively the prediction accuracy of both SVM and SVM-RFE. It 

suggests SVM has been used throughout this investigation for feature 

ranking/selection and for classification. However, JOIN and ENSEMBLE can be 

applied to feature subsets produced by any other method. 
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Chen Y W and Lin C J (2006) investigate the performance of combining support 

vector machines (SVM) and various feature selection strategies. Some of them are 

filter- type approaches: general feature selection methods independent of SVM, and 

some are wrapper-type methods: modifications of SVM which can be used to select 

features. The experience indicates that for such problems, SVM can handle a rather 

large set of features. 

 

SVM-RFE 

 

The Support Vector Machine Recursive Feature Elimination (SVM-RFE) method was 

originally proposed to perform gene selection for cancer classification by Guyon I 

(2002). This idea of SVM -RFE could be used as a filter or wrapper approach based 

on backward sequential selection. The method is to start with all features, select the 

"least useful" feature (ranking features by a linear SVM on the training set), and 

remove that feature. In this way, a chain of feature subsets of decreasing size is 

obtained. At each interaction, the coefficients of the weight vector w of a linear SVM 

are used as the feature ranking, and more than one feature is discarded for speed 

reasons.  

 

The flowchart of the SVM-RFE method was shown as follows: 

 

1) Initialization:  

                   Ranked feature R = []; Feature ranking list r = [] ; 

                   Subset of survival features S = [1…m]; 

2) Repeat until all feature are ranked S = [] : 

a) Train the SVM classifier with the training data :  a = SVM − Train(x, y); 

b) Compute the weights w =  ii

m

i
i xya∑

=1

; 

c) Compute the ranking scores for features in S: ic  = 2)( iw ; 

d) Find the feature with smallest ranking criterion  : f  = argmin(c); 

e) Remove the variable f : S =[1,…, f−1 , f+1,…,m] and update r = [ S(f) , r] ; 

3) Output: Feature ranked list r. 
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Ranking criterion ic could be chosen differently to rank variables. Using 2)( iw  as the 

ranking score corresponds to removing the feature whose removal changes the 

objective function least. However, many different criterions are used frequently to 

compare the performance. Weston J, et al. (2001) used the radius/margin bound for 

feature selection using a gradient descent algorithm. 

  

Two approaches by using ic  differently, zero-order method and first-order method 

could be explained as respectively the filter or wrapper approach. In the case of the 

zero–order method, the criterion ic  is directly used for variable ranking, and the 

method consists in identifying the variable that produces the smallest value of f(c) 

when removed. The first-order method uses the derivatives of the criterion f(c) with 

regards to a variable. In other words, this approach differs from the previous one since 

a variable is ranked according to its influence on the criterion which is measured with 

the absolute value of the derivative. 

 

A study by Duan K and Rajapakse J C (2005) compare the performance of a linear 

SVM-RFE and a basic T-statistics method on two cancer classification mass 

spectrometry datasets: this demonstrated that SVM-RFE can select a good small 

subset of peaks with which the classifier achieves high prediction accuracy and the 

performance is much better than with the feature subset selected by T-statistics. And 

some features selected from SVM-RFE are ranked top by the T-statistics as well.  

 

Mao Y, Zhou X, Pi D, Sun Y, and Wong T C (2005), introduce two extensions of 

SVM-RFE: a binary classification tree based on SVM (BCT-SVM) and FSVM with 

SVM-RFE. FSVM is an improved pairwise classification method to deal with 

unclassifiable regions. Binary classification tree SVM is to build a binary tree by 

searching with SVM at each internal node, to find where best to separate the data in 

the current node into two children nodes with appointed gene selection method. 

Another group Tang Y, Zhang Y, Huang Z and Hu X (2005) from Georgia State 

University, presents the novel Granular Support Vector Machines-Recursive Feature 

Elimination (GSVM-RFE) algorithm for the gene selection task. GSVM-RFE can 

separately eliminate irrelevant, redundant or noisy genes in different granules at 

different stages and can select positively related genes and negatively related genes in 
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balance. In their research, GSVM-RFE extracts a compact “perfect” gene subset of 17 

genes with 100% accuracy on prostate cancer dataset. 

 

 

2.4.2 Instance–based Learning Algorithms 

Instance-Based Learning (IBL) is defined as the generalizing of a new instance 

(target) to be classified from the stored training examples. Generalizing beyond these 

examples is postponed until a new instance is classified. Sometimes these are called 

Lazy Learning. Each time a new instance is encountered, its relationship to the 

previously stored examples is examined in order to assign a target function value for 

the new instance.   

Some techniques only construct a local approximation of the target function that 

applies in the neighbourhood of the new query instance and they never construct an 

approximation designed to perform well over the entire instance space. This has a 

significant advantage when the target function is very complex, but can still be 

described by a collection of less complex local approximations. The disadvantages of 

instance–based approaches are that the cost of classifying new instances can be high. 

This is based on the fact that nearly all computation takes place at classification time 

rather than when the training examples are first encountered. Therefore, techniques 

for efficiently indexing training examples are a significant practical issue to reduce 

the computation required at query time. A second disadvantage to many instance-

based approaches, especially the commonly used nearest neighbour approach, is that  

they typically consider all attributes of the instances when attempting to retrieve 

similar training examples from the memory. If the classification of the target instance 

depends on only a few of the many available attributes, then the instances that are 

truly most “similar” may well be a large distance apart. 

Aha D W (1992) defines the framework of instance-based learning algorithms that 

have three components: 

� A similarity function:  

Compute the similarity between a training instance and the instance in the 

concept description. This function calculated the distance that means how 
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close together two instances are. Similarity function plays an important role, 

especially in situations where some of the inputs are enumerated. For example, 

if you were trying to distinguish an image of a human being, and one attribute 

was shape of face, a proper similarity function could influence the distance 

between two instances.   

 

� A Concept description updater:  

This maintains information on classification performance and chooses which 

instances to include in the concept description. It determines which of the 

instances to keep as examples. The modified concept description will take 

place the previous one.  

 

� A classification function:  

      This uses the similarity functions result and the classification performance 

records of the instances in the concept description to yield a classification. 

IB1 IB2 IB3 

There are many variations on the basic theme of IB. There are three that Aha D W, 

Kibler D and Albert M K (1991) propose in their paper: IB1: Store all example 

instances and simply find the closest instance -- then the class of this instance is the 

class of the closest instance. The large number of instances that need to be stored, 

however, can require a large amount of space. IB2: Because of  throwing away 

instances in the training set that would have already have been correctly classified, the 

storage requirements could be significantly smaller than IB1 where the instances vary 

greatly in their distance from the concept boundary. IB3: is a noise –tolerant extension 

of IB2 wherein the noisy instances are almost always misclassified. This version 

makes some assumptions about the data and uses a statistical methods to “weed out” 

irrelevant or noisy instances. Not only does IB3 reduce the size of IB1 and IB2 

storage requirements, it also shows reduced sensitivity to noise.   

The most common IBL methods are: 1) k-Nearest Neighbour; 2) Locally Weighted 

Regression; 3) Radial Basis Functions. The next section will describe the basic 

concept of k-nearest neighbour learning algorithm. The locally weighted regression 

methods are a generalization of k-nearest neighbour in which an explicit local 
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approximation to the target function is constructed for each instance that needs to be 

classified. The local approximation to the target function may be based on a variety of 

functional forms such as constant, linear, or quadratic functions or on spatially 

localised kernel functions. RBF, radial basis functions, is a type of artificial neural 

network constructed from instance–based approaches (spatially localised kernel 

functions). The artificial network could be seen as a global approximation to the target 

functions that is formed at training time. Therefore the RBF is a combination of both 

and have been used successfully in applications such as interpreting visual scenes. 

K-Nearest Neighbour 

The k-Nearest Neighbour algorithm is the most basic Instance-Based Learning (IBL) 

method for approximating real-valued or discrete-valued target function. The 

algorithm assumes all instances correspond to points in the n-dimensional Euclidean 

space Rn (Baily T and Jain A K (1978)). Let an arbitrary instance x be described by 

the feature attribute lists: < a1(x), a2(x), a3(x), ..., an(x)>, where ar(x) denotes the value 

of the r th  attribute of instance x The distance between the two instances xi and xj is 

given by:       

[ ]
2

1

)()(),( ∑
=

=

−≡
nr

r
jrirji xaxaxxd  

This is the general form for calculating distance in n-dimensional space. 

In nearest-neighbour learning, the target function may be either discrete-valued or 

real-valued. Consider learning discrete-valued target functions of the form f: Rn->V, 

where V = {v1, v2, v3, ..., vs} is a finite set and Rn is real n-dimensional space. The k-

Nearest Neighbour algorithm for approximating a discrete-valued target function is 

given below. This algorithm illustrates the operation of the k-nearest neighbour 

algorithm for the case where the instances are points in a two–dimensional space and 

wherein the target function is Boolean valued.   
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Figure 2.5. The k-Nearest Neighbour algorithm for discrete-valued function. 

The algorithm for continuous-valued target functions is the same as shown above, 

except that Step 2 is replaced with the following expression: 
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Relief, Relief-F 

 

Relief is considered as one of the most successful feature weighting algorithms 

Dietterich T G (1997). It is often applied in a prepossessing step before the model is 

learned. Relief is an instance based learning to assign a relevance weight to each 

feature (Kira K and Rendell L A (1992a)). Due to its simplicity and effectiveness, it 

has been used successfully in a variety of settings: to select splits in the building 

phase of decision tree learning (Kononenko I, Simec E, and Robnik S M (1997)), to 

select splits and guide the constructive induction in learning of the regression trees 

(Robnik S M and Kononenko I (1997)), as attribute weighting method (Wettschereck 

D, Aha D W, and Mohri T (1997)) and also in inductive logic programming (Pompe 

U and Kononenko I (1995)). 

Training Algorithm: 

 

For each example <x, f(x)>, add the example to the list training examples  

Classification Algorithm: 

Given a query instance xq to be classified  

Step 1: Let x1, x2, ..., xk denote the k instances from the training examples that are 

nearest to xq. 

Step 2: Return:    ∑
=

=∈
←

ki

i
i
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q xfvxf
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baδ     ( argmax means maximum of function ). 
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Relief—Basic Ideas 

 

The basic idea, given by (Kira K and Rendell L A (1992b)), is to measure the 

relevance of features in the neighbourhoods around target samples. The weights of 

features would be iteratively estimated according to their ability to discriminate 

between neighbouring patterns. For each target sample, given a randomly selected 

example Ri, Relief searches for the nearest sample in feature space of the same 

category, called the “nearest hit” sample Rp. It also finds the nearest sample of the 

other category, called the “nearest miss” sampleRn . Then it updates the quality 

estimation iw  for all attributes i depending on their values for Ri, Rp, and Rn (lines a 

and b).  

 

The procedure of algorithm Relief is described as following: 

 

 

 

Figure 2.6. The procedure of basic Relief algorithm. 

 

 

Input: for each training instance a vector of attribute values and the class value 

 

Output: the vector W of estimations of the qualities of attributes 

 

1. Set all feature weights iw to 0. 

2. Repeat the following for m iterations 

a. Choose a random data record Ri. 

b. Find a sample Rp and Rn, respectively the one record closest (in Euclidean) to Ri which  

are in the positive class, and the one record closest to Ri in the negative class. 

c. For each field i set : 

                             mRnRiidiffmRpRiidiffww ii /),,(/),,( +−=  

      Where ),,( RpRiidiff indicates the absolute difference between the value of attribute i   

       in record Ri, and in record Rp , as a proportion of the range of values in the dataset for  

      attribute I. For numerical attribute: 
( ) ( )
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The short point of the original Relief method is that it cannot deal with incomplete 

data and is limited to two-class problems. Its extension, which solves these and other 

problems, is called Relief-F.  

   

The work by Bins J and Draper B A (2001), addresses the feature selection problem 

by proposing a three-step algorithm. The first step uses a variation of the well known 

Relief algorithm to remove irrelevance; the second step clusters features using K-

means to remove redundancy; and the third step is a standard feature selection 

algorithm. This three-step combination is shown to be more effective than standard 

feature selection algorithms for large datasets with lots of irrelevant and redundant 

features. It is also shown to be no worse than standard techniques for datasets that do 

not have these properties.  

 

Relief-F 

 

A heuristic algorithm, called Relief-F (Kononenko I (1994)), has been proposed to 

deal with incomplete and noisy data. Relief-F averages k, instead of just one, nearest 

neighbours in computing the sample margins. Therefore, it is more robust and 

applicable than Relief. Empirical studies have shown that Relief-F can achieve 

significant performance improvement over the original Relief. User-defined 

parameter k controls the locality of the estimates. For most purposes it can be safely 

set to 10 (see Kononenko I (1994)) Multiclass datasets are handled by finding the 

nearest neighbours from each class that are different from the current sampled 

instance, and weighting their contributions by the prior probability of each class 

estimated form the training data. The feature weights computed by Relief-F minimise 

the expected distance between a sample and the k nearest samples of the same class, 

while maximizing the expected distance between a sample and the k nearest samples 

of the other class. The update formula is similar to that of Relief, except that we 

average the contribution of all the hits and all the misses. The contribution for each 

class of the misses is weighted with the prior probability of that class P(C) (estimated 

from the training set). 
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Where Rn (C) stands for the nearest miss samples with class C. 

 

To deal with incomplete data we change the diff function. Missing values of attributes 

are treated probabilistically. We calculate the probability that two given instances 

have different values for given attribute conditioned over class value. 

 

If one instance (e.g. Ri) has unknown value:  
                                    ( ) ))(/,(1),,( RivalueRpivaluePRpRiidiff −=

 

If both instances have unknown value: 

                         ( ) ( )( )∑ ×−=
)(

/(/(1),,(
ivalues
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RpclassVPRiclassVPRpRiidiff  

A new feature weighting algorithm, was proposed by Sun Y and Li J (2006). All 

stemming are from a new interpretation of Relief as an online algorithm that solves a 

convex optimization problem with a margin-based objective function. The new 

interpretation explains the simplicity and effectiveness of Relief-F, and enables us to 

identify some of its weaknesses. Some experiments based on the UCI and microarray 

datasets are performed to demonstrate the effectiveness of this proposed algorithm. 

For classification purposes, some computationally expensive methods (e.g. wrapper 

methods) can be used to further filter out some redundant genes. By using some 

sophisticated classification algorithms such as SVM, much improvement on 

classification performance is expected. 

 

 

2.4.3 Other Methods 

 

T-statistics and MIT 

 

T-statistics, which basically means the ratio of the coefficient of correlation to its 

standard error, is a filter based feature selection method (Brewer J K (1985)). It 
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selects the feature variables that are most relevant to the concept under study. A 

ranking score is computed for each feature. It uses the following feature ranking 

criterion. 

                                                

−

−

+

+

−+

+

−
=

nn

uu
xT

jj

jj

j
22 )()(

)(
δδ

 

where +
ju  and −

ju  are the mean values of the i th  feature respectively over positive 

and negative samples; +jδ  and −
jδ are the corresponding standard deviations; n + and 

n − denote the number of positive and negative training samples. This T-statistics 

function fundamentally measures the normalised feature value difference between two 

groups. When making selection, we simply take those features with the highest scores 

as the most discriminatory features.  

 

MIT correlation is also known as signal-to-noise statistics. The score for each feature 

can be calculated by a slightly different formula as shown below: 
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Correlation-Based Feature Selection Methods 

 

Correlation-Based Feature Selection Methods are algorithms that couples this 

evaluation formula with an appropriate correlation measure and a heuristic search 

strategy (Hall M A (1998)). The correlation value, a single number that describes the 

degree of relationship between two variables, is one of the most common and most 

useful statistics. In other words, a feature is useful if it is correlated with or predictive 

of the target class; otherwise it is considered to be irrelevant. The correlation values 

for each variable in the training data are calculated, and, usually, a predetermined 

number of features with the highest correlations are chosen. The usual measure used 

is as follows: 
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where pfc ,  is the correlation between feature f and the target feature p, n is the number of (f, 

p) value pairs in the data, while if is the value of feature f in the ith  such pair. The value of 

pfc ,  will always be between −1.0 and +1.0. If the correlation is negative, we use the 

absolute value of it to compare with other values. A good feature subset is one that 

contains features highly correlated (predictive of) the class, yet uncorrelated with (not 

predictive of) each other. In the next chapters will compare CFS with other algorithms 

in detail. 

 

The use of feature generation and feature selection for TIS (Translation Initiation 

Sites) prediction was explored by Zeng F, et al. (2002). In this paper, the authors 

combined the use of correlation based feature selection (CFS) with a wide range of 

classifiers and combinations of classifiers. Their results are achieved with only a 

small subset of features. 

 

In the research by Yu L and Liu H (2003), they introduce a novel concept, 

predominant correlation, and propose a fast filter method which can identify relevant 

features as well as redundancy among relevant features without pair-wise correlation 

analysis. The feature selection results are further verified by applying two different 

classification algorithms to data, with and without feature selection. Their application 

widely extends the correlation based feature selection method on high dimensional 

data, and smoothly handles data with different types. 

 

The 2χ -Statistics  

 

Since its introduction in 1900 by Karl Pearson, the chi-square ( 2χ ) test has become 

the most widely used measure of the significance to which experimental results 

support or refute a hypothesis. Applicable to any experiment where discrete results 

can be measured, it is used in almost every field of science. It is a nonparametric 

statistical technique using frequencies instead of means and variances. Generally the 
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chi-squared statistic summarises the discrepancies between the expected number of 

times each outcome occurs (assuming that the model is true) and the observed number 

of times each outcome occurs, by summing the squares of the discrepancies, 

normalised by the expected numbers, over all the categories (Dorak M T (2006)). 

 

Mathematically, we can calculate the chi-square statistic 2χ  by  

( ) EEO /
22 ∑ −=χ  

where 2χ  is the chi-square statistic, O is the observed frequency and E is the expected 

frequency. The 2χ  method evaluates features individually by measuring their chi-

squared statistic with respect to the classes. After calculating the 2χ  value of all 

considered features, these values would be sorted with the largest one at the first 

position, as the larger the2χ  value, the more important the feature is, in terms of the 

amount of information that feature contains about the classification. 

 

There are two types of chi-square test: 1) The Chi-square test for goodness of fit; 2) 

The Chi-square test for independence. The Chi-square test for goodness of fit 

compares the expected and observed values to determine how well an experimenter's 

predictions fit the data; the chi-square test for independence is used to determine the 

relationship between two variables of a sample. In this context independence means 

that the two factors are not related. Typically in social science research, it is interested 

in finding factors which are related. 

 

Principal Components Analysis (PCA) 

 

PCA (Anton H (2005)) involves a mathematical procedure which is widely used to 

analyse the relationship between the individual points in a large set of data. It is a 

common statistics technique for identifying patterns in data of high dimension, and 

expressing the data in such a way as to highlight their similarities and differences. 

PCA is applied abundantly in all forms of analysis from neuroscience to computer 

graphics such as face recognition and image compression. Because it is a simple, non-

parametric method of extracting relevant information from confusing datasets. The 

main advantage of PCA is to identify new meaningful underlying variables so that the 
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data could be compressed by reducing the dimensionality of the dataset without much 

loss of information. Sometimes it reveals the hidden, simplified structure that often 

underlies the original data. 

  

Method description: Assuming there is an n-dimensions in the data, {x1, x2,… , xn}:  

 

Step 1:  Subtract the mean. 

 

Calculate the mean value (the average) of each dimension in the data, then 

subtract the mean from each of the data dimensions. For each dimension, each 

of the values xn is subtracted from the meannx   (the mean of the values of all 

the data points). This produces a dataset whose mean is zero. 

 

Step 2: Calculate the covariance matrix. 
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Where ( )ji xx ,cov  is the covariance value calculated between the i th dimension and the 

j th  dimension by using the function: 
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Step 3: Calculate the eigenvectors and eigenvalues of the covariance matrix. 

 

Since the covariance matrix is square, calculate the eigenvectors and the 

corresponding eigenvalues. The eigenvectors provide us with information 

about the patterns in the data, and the eigenvector with the highest eigenvalue 

is the principal component of the dataset. Further information about 

eigenvectors in general, how to find them, and related matters, can be found in 

many places, including the textbook (Anton H (2005)). 
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Step 4: Choosing components and forming a feature vector. 

 

Once the eigenvectors are found from the covariance matrix, sort the 

eigenvectors by eigenvalue from highest to lowest. This shows the 

significance of the components. A feature vector, is constructed by taking the 

eigenvectors that are chosen from the list of eigenvectors, then form a matrix 

with these eigenvectors in the columns. It will lose some information since we 

ignore the components of less significance, However the missing information 

could be trivial if the eigenvalues are small numbers. While choosing the first 

k eigenvectors, the final dataset has reduced to only k dimensions from its 

original n-dimensions. 

                                          Feature vector = ( )keigeigeig ...,, ,21  

 

Step 5: Deriving the new dataset. 

 

To derive the new dataset, simply multiply the feature vector we selected with 

k dimensions in the last step, and the transposed mean-adjusted data. 

 

A note on the general performance of basic statistical FS methods 

 

An interesting competition in feature selection was proposed by Guyon I, Gunn S, 

Hur A B and Dror G (2004). Five datasets were gathered from different application 

domains and called for classification results using a minimal number of features. The 

competition took place over a period of 13 weeks and attracted 78 research groups. 

The challenge demonstrated both that feature selection can be performed effectively 

and that eliminating meaningless features is not critical to achieve good classification 

performance. A filter as simple as the Pearson correlation coefficient proves to be 

very effective, even though it does not remove feature redundancy and therefore 

yields unnecessarily large feature subsets. Principal Component Analysis was 

successfully used by several researchers to reduce the dimension of input space to a 

few hundred features, without any knowledge of the class labels. It is surprising that 

some of the best entries used all the features. 
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2.5 How to Choose a Feature Selection Method 

 

In this chapter, we have introduced many popular methods which have already been 

proved as successful feature selection algorithms on different datasets. As there is no 

single method which could be seen as the best solution to various practical difficulties, 

a problem that seems worth considering is that of how to guide a user towards the 

right choice of feature selection method for their data. This can be a very important 

choice, since the wrong choice may lead to important features being removed. This 

can have major consequences. For example, the application may be to find an 

accurate diagnostic test based on proteomics data, and wrong choice of features might 

lead to diagnostic tests that will have more true negatives and false positives than we 

want.  

 

Independently of the quality of the machine learning methods, or the way in which the 

machine learning is combined with feature selection (e.g. filter or wrapper), there is a 

potential issue that has usually been neglected in the research literature so far. This is 

the matter of the dataset itself. 

 

Consider a dataset in which the important features have very nonlinear relationships 

with the target class. In such a case, we can expect the statistical correlation between 

each important feature and the target class to be very low. However, many of the 

standard FS methods will rate these features poorly, because of the low correlation, 

and may therefore not select them in the reduced dataset. To show a made-up example, 

consider a dataset in which there are 10 features. 8 of these features have a correlation 

of 0.5 with the target class, but feature 9 is always a random number, which has a 

correlation of 0 with the target class. We can construct feature 10, however, to be 

feature_9sstarget_cla − . So, both features 9 and 10 may be uncorrelated with the 

target class and will be removed by feature selection. But, the target class can be 

predicted perfectly by a nonlinear combination of them, and this may not be possible 

with any of the other features.  

 

This type of reasoning leads us to suspect that the right choice of feature selection 

method must depend in some way on statistical aspects of the dataset. For example, if 



CHAPTER 2                                                                                                                         LITERATURE REVIEW  

Silang Luo                                                 PHD-06-2009                                                             Page  63 

the statistical correlations between the features and the target class in a dataset tend to 

be very low, this means that the important relationships between features in this 

dataset are probably not linear, and so FS methods that use statistical correlation may 

be a wrong choice. 

 

Meanwhile, there are good reasons for finding a way to choose the right feature 

selection method in advance of running the machine learning experiments. 

 

Assume that there are k indispensable features existing in an n-dimensional dataset, 

and that feature selection method 1 chooses some of these k features and some 

irrelevant features, and similarly for feature selection method 2. The only way to 

compare these two feature selection methods is to compare the results of later running 

machine learning methods on the reduced datasets. So, unnecessary time will be spent 

if we only need the best result.  

 

For biologists, the discriminatory k features are more important than the algorithms 

used to select them. Usually, the experiments would be done on one or two 

methods.The features which belongs to the data depends on the primal dataset.  

 

Here, we expect the relationship between the data and the correlation (the basic 

statistics method) could interpret how well the algorithms could be chosen in front of 

data. So, to get useful feature selection in general cases, and to save time, in this thesis 

we investigate the hypothesis that the right choice of feature selection method 

depends on statistical aspects of the dataset. This seems to be ignored in the literature 

on feature selection so far. In our review, we tend to find that papers only consider the 

size of the dataset, and/or the number of features. However, we investigate the idea 

that a statistical analysis of the data will provide additional information that will help 

in the right choice of FS strategy. 
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2.6 Brief Review of Evolutionary Algorithm 

 

Evolutionary algorithms can be grouped into the following main groups Genetic 

Algorithms (GAs) (Holland J H (1975)), Genetic Programming (GP) (Koza and John 

R (1992)), Evolution Strategies (ESs) (Rechenberg I (1973), Schwefel H P (1981)). 

Each of these methods come from different independent backgrounds, but follow the 

same basic style of algorithm, generally known as evolutionary algorithm. They are 

global optimization tools which use population-based search and borrow ideas from 

the method of evolution in nature. They are now very popular for a very wide range of 

problems. Unlike many more traditional optimization methods, there is no major 

restriction on what type of optimization problem evolutionary algorithm can be 

applied to. All that is needed is a fitness function (to measure the quality of any 

individual solution), and a way to encode (represent) any possible solution in the 

search space as a vector of numbers (or in fact as any data structure). Using selection 

methods, and using ‘operators’ (which produce one or more offspring solutions from 

one or more parent solutions, for example by random mutation), an evolutionary 

algorithm will evolve good solutions from initial populations of randomly generated 

solutions. Since machine learning problems can also be seen as optimization problems 

(trying to find an optimised model that maximises accuracy of classification on a 

training set of data), evolutionary algorithms are very common in machine learning, 

e.g. to evolve rules, or decision trees, or other models. We use a simple evolutionary 

algorithm in this thesis to evolve rules, and this gives us performance measures for the 

FS and FB methods.  

 

After it is decided how to encode (represent) solutions to a problem, and how to set 

the fitness function, an evolutionary algorithm operates the five steps:   

1. Create a random population of solutions.  

2. Compute a fitness measure for each. 

3. Select some ‘parent’ solutions from the population, and create new 

members by mutating and/or recombining the parents, and evaluate 

the fitness of the new members produced.  
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4. Update the population by including some of the new offspring and 

deleting some of the previous population members.   

5. If a termination condition is not reached, go to Step 3.  

There are several things to say, and much background research, about each of these 

steps. Since evolutionary algorithms are not a major part of this thesis, we do not give 

a long review here, but will say a little about some of the issues.  For example, the 

first step, initialising the population, can be done in various ways as illustrated in 

Figure 2.7. 

 

Usually, random initialisation is used (shown schematically in Figure 2.7 (a) for a 

two-dimensional real-valued search space), but we may instead use grid-based 

initialisation to ensure a good spread around the search space (Figure 2.7 (b)). 

 

 
Figure 2.7.  Four classical types of representation. 

 

However, if we have some prior knowledge that helps generate solutions that we 

know will be reasonably good, we can use knowledge-based random initialisation 

(Figure 2.7 (c)), or the grid based version (Figure 2.7 (d)). But a problem with this is 

(b) Grid Initialization 

(c) Knowledge-based Random Initialization (d) Knowledge-based Grid Initialization 

(a) Random Initialization 
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that the search may be too focused on the area around the solutions that are preferred 

by the prior knowledge, and this may miss even better solutions in the search space. A 

randomly initialised population may allow the EA to discover fundamentally different 

solutions in comparison with what a human would have proposed.  In general, which 

is also true with most aspects of evolutionary algorithms, the best choice of 

initialization method depends on the problem one is solving. Random initialization is 

used in most general investigations on EA, however a good rule of thumb is to 

incorporate as much expert knowledge as possible in initialization, as well as operator 

design, but too avoid having this knowledge bias the search too much. 

 

Crossover and mutation are the two basic operators of most evolutionary algorithms, 

although some types only use mutation (such as evolutionary programming). The 

design of specific operators depends on the encoding and also on the problem. 

Examples of the simple standard operators for different types of encoding (binary and 

real valued) are given in Table 2.1. 

 

Crossover Operator Mutation Operator 

One 

point 

Before 10010 10101 

After 10101 10010 
 

Binary 
Before 1001010101 

After 1000010101 
 

Two 

point 

Before 
100 1010 101 

001 0101 010 

After 
001 1010 010 

100 0101 101 
 

Real Value 

Mutation Rate (0,0.2) 

Before 0.5 0.3 

After 0.48 0.31 
 

 

Table 2.1. The types of cross over operators and mutation operators.  

 

One of the key parts of the search is the selection method, which is used to choose 

parents in step 3. Another (maybe different) selection method is used in step 4, to 

produce the next generation from the combination of the previous population and the 

new offspring. A selection method basically provides a way to choose a solution from 

the population in a random way, but biased towards choosing more fit members.   
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Common choices are:  

 

• Roulette Wheel Selection 

• Rank Selection 

• Steady-State Selection 

• Elitism 

• Tournament selection 

 

We outline tournament selection here, since that is what we use in later chapters. The 

following pseudocode method, for example, results in choosing a single selected 

individual from a population P by using tournament selection with a tournament size 

of t size.     

 

Steps of tournament selection method are as following:  

 

1. Pick t size individuals randomly from P, and place them in T. 

2. Determine the fittest individual in T (breaking ties randomly), and call it c 

3. Return c as the selected individual. 

      

To select k individuals, for example, we simply run the above procedure k times.  

A summary of some important general notes about evolutionary algorithms design are 

listed as following Table 2.2.  

In conclusion, evolutionary algorithms (Spears W A, et al. (1993)) are general and 

successful global optimization tools. They are applied in a vast number of domains, 

and have shown good and robust performance on a broad range of real-world 

problems, such as automatic design, optimisation (Fogel D B, et al. (1999)), pattern 

recognition (Kudo M and Sklansky J (2000)), control and many others. They are very 

often used in machine learning, and they are used in this thesis as the machine 

learning method, in which they evolve a set of simple rules for each classification task. 
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Crossover 

Rate 

Crossover rate should be high generally, about 80%-95%. 

(However some results show that for some problems 

crossover rate about 60% is the best.) 

Mutation 

Rate 

On the other side, mutation rate should be very low. Best 

rate seems to be about 0.5%-1%. 

Population 

Size 

It may be surprising, that very big population size usually 

does not improve performance of GA (in the sense of 

speed of finding solution). Good population size is about 

20-30, however sometimes sizes 50-100 are reported as 

the best. Some research also shows that the best 

population size depends on the size of encoded string 

(chromosomes). It means that if you have chromosomes 

with 32 bits, the population should be higher than for 

chromosomes with 16 bits. 

Selection 

Basic roulette wheel selection can be used, but sometimes 

rank selection can be better. There are also some more 

sophisticated methods that change parameters of selection 

during the run of GA. Basically, these behave similarly 

like simulated annealing. Elitism should be used for sure if 

you do not use other method for saving the best found 

solution. You can also try steady state selection. 

Encoding 

 

Encoding depends on the problem and also on the size of 

instance of the problem. 

Operator 

Type 

Operators depend on the chosen encoding and on the 

problem. 

 

Table 2. 2. General notes while using evolutionary algorithms. 

 

 

 

2.7 Conclusion 

 

Broadly speaking, there are two very prominent application areas in which feature 

selection is commonly applied. The first one is many-attribute bioinformatics datasets 

(e.g. gene selection from micro-array datasets (Xing E P and Karp R M (2001)), and 

the other is text categorization (Yang Y and Pedersen J O (1997)). 
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In this thesis, we focus on bioinformatics datasets, mainly proteomics data, with the 

task of predicting a target class. That is, the classification of these proteomics datasets 

have been done by bio-researchers and the problem is how to improve the accuracy of 

prediction of new samples. Because these datasets have usually thousands of features, 

the question of feature selection becomes a critical point, and is widely discussed in 

this thesis. As we have seen in the review, research concerned with feature selection is 

aimed at trying to improve the efficiency of the method, and the performance (in 

terms of how much it helps the machine learning classification task), and investigate 

new methods and test them on certain datasets. But there has been very little guidance 

about how to choose the right feature selection method for a given dataset, and we 

have found no studies at all which attempt to look at statistical aspects of the dataset 

to help with the choice. We claim that this is an important issue and we explore it here. 
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Chapter 3  

 

Feature Selection Strategies and the Dataset 

Correlation Value 

 

 

3.1 Introduction 

  

Feature selection (Guyon I and Ellisseff A (2003)) is often found to be an essential 

pre-processing step when data mining is applied to many-attribute datasets (e.g. 

several hundred or thousands of attributes). In proteomics, for example, a single data 

sample may be a vector of several thousands of real values (representing mass/charge 

ratios from a spectrometer). Similarly large datasets are well-known to appear in 

other areas of bioinformatics (Brazma F and Vilo J (2000)), as well as a variety of 

other disciplines (Beynon M, et al. (2002)). Feature selection aims to pre-select a 

relatively small number of attributes, thus speeding up further processing and 

(hopefully) eliminating data that have minimal or no discriminatory power. Often, 

feature selection is done on the basis of the straightforward statistical correlation, 

discarding features that have the lowest correlation with the target class(es). However, 

when these correlation values tend to be rather low for all features (common in many 

datasets of importance), the basis for pre-selection of any specific set of features is 

unclear, and it can be imagined that straightforward feature selection may do more 

harm than good. In this chapter we confirm this by investigating the performance of 

five feature selection strategies on several datasets with varying “dataset correlation 

values”. The dataset correlation value is a simple summary measure of the 

correlations between features and the target class in a dataset. We find that using a 

straightforward statistical correlation based feature selection method is never the best
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choice for poorly correlated data (datasets with low dataset correlation values). The 

most reliable methods among those tested, for poorly correlated datasets, are either 

No Feature Selection, or Evolutionary Algorithm Feature Selection. 

 

The remainder is set out as follows. In section 3.2 we broadly describe the algorithms, 

datasets, and general approach taken in the reported work. Section 3.3 then describes 

our experiments, and reports the results. These results are discussed in section 3.4.  

 

 

 

3.2 Algorithms and Datasets 

 

3.2.1 The Overall Framework 

 

In a wider context, there is much research effort looking at the use of evolutionary 

algorithms or similar methods to search the space of rules (and/or similar 

discriminatory patterns) in large-scale datasets, with emphases on bioinformatics and 

proteomics. In such data, particularly proteomics data, a common characteristic is that 

each data sample is a vector of many attributes (often several thousands). For efficient 

evolution of rules, it is therefore very helpful to pre-select a subset of the attributes, 

discarding the rest, hence reducing the size of the dataset. This reduction can lead to 

an immense speedup in processing time, as well as potentially much better 

generalization performance. Improved accuracy arises since, if we use an appropriate 

feature-selection strategy for this pre-selection phase, we can expect that a great deal 

of noise has been removed from the data and that we are concentrating on features 

that are more pertinent to the classification task at hand.   

 

Feature selection is often done a priori, so that a machine learning method can then 

use a reduced dataset, but it may also be incorporated into the machine learning 

approach itself. As we have discussed, these are, respectively, the well-known filter 

and wrapper approaches (Kohavi R and John G H (1997)).  In this chapter we use a 

simple filter approach, but we expect that the findings, with respect to choice of 
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feature selection strategy, might be pertinent to any system that employs machine 

learning, especially where the datasets are poorly correlated.  

 

The contribution of this chapter is an empirical study of how the relative effectiveness 

of five feature selection techniques (including the ‘null’ technique, in which no 

features are discarded) varies according to a rough measure of the degree to which the 

dataset is correlated. That is, for each of several datasets with various different 

degrees of correlation (what we mean by this is explained soon), we compare the 

performance of five feature selection strategies. Though feature selection comparison 

studies are frequently reported (e.g. by Jain A (1997), Koller D (1997) and Forman G 

(2003)), the issue of their performance relative to the dataset’s inherent correlation 

seems to have been overlooked. We suspect that this is partly due to the fact that it is 

not easy to find suitable sets of datasets with widely varying amounts of correlation. 

We address this in a simple way: we choose a variety of datasets with a range of 

values, and we add more datasets to these by adding noise to some original datasets. 

By adding different amounts of noise to a dataset, on a trial and error basis, we simply 

produce artificial datasets with a correlation value close to any desired value.    

 

 

3.2.2 Feature Selection Techniques 

 

The null technique is no-feature-selection (NFS); when NFS is ‘applied’, this just 

means that the evolutionary algorithm rule learner (see section 3.2.4) works with the 

full training set.  

  

The next technique is straightforward ranking of features based on the most 

commonly used standard statistical correlation measure. This is the sample 

correlation coefficient, or the Pearson product moment correlation coefficient. We 

will refer to it hereafter as the correlation coefficient. It is given as: 
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where pfc , is the correlation between feature f and the target feature p, n is the 

number of (f, p) value pairs in the data, while if is the value of feature f in the i th such 

pair. 

 

The third technique we test is a variant of the well-known Relief-F method by  

Kononenko I (1994) , which was designed to cope well with noisy data (hence we 

have a prior expectation that Relief-F may be better on poorly correlated datasets). 

The procedure for obtaining the Relief-F value for each field is as follows: 

 

1. Set all feature weights iw to 0. 

 

2. Calculate the target class probabilities – for two-class data, we denote 

these respectively as p and q, respectively the proportion of positive 

and negative records in the dataset.  

 

3. Repeat the following for m iterations (we use m = 0.1 times the 

number of fields). 

a. Choose a random data record R. 

b. Find the sets Rp and Rn, respectively the 10 records closest (in 

Euclidean) to R which are in the positive class, and the 10 records 

closest to R in the negative class. 

c. For each field i set: Xww ii −= , where X is:  
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Where jRp  denotes the j th record in the set Rp, and ),,( jRpRid indicates 

the absolute difference between the value of attribute i in record R, and 
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in record jRp , as a proportion of the range of values in the dataset for 

attribute i. 

 

The resulting set of feature weights become the Relief-F values for each feature, with 

higher values indicating more usefulness in helping discriminate between values of 

the target class. Clearly, Relief-F is designed to be more sensitive than the correlation 

coefficient to feature interactions. Relief-F in particular is especially appropriate for 

multi-class target attributes, which we are interested in for subsequent work, however 

these aspects are not dealt with in the preceding pseudocode, which specifies how we 

use it in the 2-class cases studied in this paper. 

 

The fourth technique we test is to use an Evolutionary Algorithm (EA) to do the 

feature selection step. Using the EA as a separate feature selection step is a relatively 

little explored idea, however it has been found successful in recent work. The idea is 

to apply a short EA run, using precisely the same rule-learning EA detailed later, and 

collect features from those that appear in rules in the final population of that EA. The 

surviving attributes are, almost by definition, ones that are likely to have useful 

discriminatory value, either alone or in combination with other attributes. When EA is 

the feature selection technique, we ensure that the computational cost is taken into 

account, in the comparative studies, by appropriately reducing the number of 

generations then allowed in the next stage.  

 

Our final feature selection technique is simply a combination of the correlation 

coefficient and Relief-F, which we denote CRFS. Having obtained correlation values 

for each feature for each of these methods, we simply sum the ranks of those values, 

and this gives us the CRFS value. 

 

 

3.2.3 Datasets and Data Correlation 

 

This work was motivated by studies on two proteomics datasets, respectively the 

ovarian cancer dataset from Petricoin E, et al. (2002), which we denote OV, and the 

pancreatic cancer dataset from Hingorani S, et al. (2003), which we denote PA. OV is 
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relatively highly correlated – that is, when we look at the simple statistical correlation 

of a feature with the target feature, the values tend to be quite high. In contrast, PA 

has rather low correlation values. These issues are reflected in the performance that 

tends to be achieved on these datasets in machine learning studies – typically 95—

100% accuracy on test data for OV, but 60—65% for PA.   

 

a) Ovarian Cancer:  

 

This research is quite significant for women, especially who have a poor risk of 

ovarian cancer due to their family history. How to find a proteomics pattern which 

can distinguish ovarian cancer patients from normal patients, becomes the purpose of 

research on this dataset. This dataset (each value representing mass/ charge ratios 

from a spectrometer) consists of 91 control samples (Normal) and 162 ovarian cancer 

samples, with the task being to train a classifier (in our case, learn a set of rules) to 

correctly predict the class of an unseen sample. The dataset is separated into 128 

training samples and 125 test samples. 

 

b) Pancreatic Cancer:  

 

This particular dataset comes from mouse samples, developed as part of research to 

firstly generate a mouse model of PanIN (Pancreatic intraepithelial neoplasias). This 

led to a reliable means of detecting PanINs in the serum proteome of mutant animals. 

These results are pertinent to an accurate prediction model of the earliest stages of 

human neoplasias. The PA data has 181 samples divided randomly into train and test 

sets by us, and there are 6776 genes (features) in each sample.   

 

When we consider the individual statistical correlation values (correlation with the 

target feature) for features in these two datasets, the difference is clear. Note that we 

consider the absolute value, so that high values (near 1) mean a strong correlation or 

anti-correlation with the target feature, and low values (near 0) mean very poor 

correlation. In the OV dataset, the highest individual feature correlation coefficient 

(which we call the Dataset Correlation Value (DCV)) is 0.896, while in the PA 

dataset it is 0.185. Various suggestions follow from such a clear distinction between 

these datasets. In general we should not expect that the ideal analysis method for the 
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OV dataset will correspond to the ideal analysis method for PA, while, of course, the 

potential accuracy of predictive models is possibly limited at the outset by these 

correlation values (although, it is entirely possible that strong predictive models are 

possible for the PA dataset which exploit underlying patterns that are obscured or 

ignored by simple pairwise correlation). 

 

Our specific interest here is feature selection, and how the choice of feature selection 

method might be guided by a simple measure of the inherent correlations in the data. 

As mentioned, we characterise a dataset’s inherent correlation in terms of this highest 

individual (absolute) correlation coefficient of its non-target features with the target 

feature, and we call this the Dataset Correlation Value (DCV). Thus, the OV dataset 

has a DCV of 0.896, and PA has a DCV of 0.185. This characterization is sufficient 

for the purposes in this chapter, however it is an open question whether the median 

correlation coefficient or some other averaging measure will be more generally useful. 

We investigate that question in a later chapter. In the cases studied here, the maximal 

value tended to be a good guide, rather than an outlier. 

 

In order to investigate the relationship between feature selection method and dataset 

correlation value, a number of other many-attribute datasets were obtained in addition 

to OV and PA. To keep things straightforward, we looked for many-attribute datasets 

that had only real-valued features and a natural two-class classification task. However, 

the range of DCVs among these datasets was still quite small. After this brief 

investigation, two datasets were added to this study, respectively the Ionosphere and 

Optical Digit datasets from the UCI repository (Asuncion A and Newman D J (2008)). 

We decided that a fast way to obtain test datasets that had a wide range of DCVs, 

spanning from very low to very high, was to artificially add noise to an existing 

dataset that itself had a high DCV. The best candidate for that was the OV dataset. 

We therefore generated several variants of the OV dataset by adding different 

amounts of noise to the attributes.  The result was an additional 11 datasets that we 

called rOV1, rOV2, …, rOV11. These are shown in Table 3.1, along with the four 

original datasets, listed in ascending order of DCV. 
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DCV Dataset 

0.099 rOV1, 1000 fields 

0.185 Pancreatic, 8,642 fields 

0.335 rOV2, 1000 fields 

0.349 rOV3, 1000 fields 

0.378 Opt digit, 64 features 

0.399 rOV4, 1000 fields 

0.449 rOV5, 1000 fields 

0.496 rOV6, 1000 fields 

0.51 Ionosphere, 32 features 

0.539 rOV7, 1000 fields 

0.598 rOV8, 1000 fields 

0.618 rOV9, 1000 fields 

0.699 rOV10, 1000 fields 

0.784 rOV11, 1000 fields 

0.896 OV,  15,143 fields 

 

Table 3.1.  Datasets used in the experiment of chapter 3. 

 

In order to generate the rOV datasets, we first chose the top 1000 features from OV 

according to correlation coefficient with the target class. Then, we produced a new 

randomised OV (rOV) dataset by adding a small random value to each field of each 

feature, and calculated the new dataset’s DCV. This entire process was repeated for 

increasing values of the random value’s range parameter, until datasets were acquired 

with correlation values close to 0.1, 0.3, 0.6, 0.7 and 0.8 (existing datasets were 

available with values already close to 0.2, 0.4, 0.5 and 0.9). In this way we got the 

eleven additional datasets used later in this chapter and later in this thesis.  

 

 

3.2.4 The Evolutionary Algorithm Rule Learner 

 

The ‘quality’ of a feature selection method in respect of a dataset can be estimated by 

evaluating the performance of a model learned, by any given machine learning 

method, from that dataset, considering only the selected features. In our work the 

machine learning method that we choose is an evolutionary algorithm that learns 

simple rules that relate the relative values of different attributes. Here we briefly 
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describe our evolutionary algorithm (Fogel L J, Owens A J and Walsh M J (1966)) 

for learning rules in these data. It is deliberately a simple and straightforward 

approach; the research was not concerned with finding the best performing design for 

an evolutionary algorithm rule learner. The requirements were only to define a 

suitable machine learning method that could be used for experiments about 

comparing feature selection methods.   

  

We evolve “IF THEN” rules with a fixed number of antecedents (in all cases in this 

chapter, five antecedents). The meaning of a rule with antecedents “A B C” is “If A 

and B and C are all true, then this data sample is a Positive case, OTHERWISE it is a 

Negative case”.  For example, when the target field is “cancer” or “normal” (as in the 

OV dataset), “cancer” is the positive case. By including OTHERWISE in the 

semantics of a rule, we avoid issues of coverage – that is, the rule specifies a class for 

any data sample, not just those that meet the antecedent conditions; this simplifies the 

evaluation function, which is merely the rule’s accuracy on the training set. 

 

An individual antecedent is of the form: 

],,[ Cff YX  

where Xf  and Yf  denote fields in the data, and C is a comparator, either “>” or  “<”. 

Hence, the following example rule (encoded as a list of antecedents): 

 

[[2184, 781, >], [30, 2844, <], [101, 22, >]] 

 

encodes the rule: “If the value of field 2184 is larger than the value of field 781, and 

the value of field 30 is smaller than the value of field 2844, and the value of field 101 

is larger than the value of field 22, then this sample is a positive case, otherwise it is a 

negative case”. 

 

When a rule is mutated as part of the evolutionary algorithm, a gene is chosen at 

random, and then altered at random. E.g. we may choose the comparator in one of the 

antecedents, and change it, or we may choose (usually) a field identifier and change it. 

In the current work, we use a steady state evolutionary algorithm with a population of 

100, and the mutation operator incorporates a brief local search. Specifically, 
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following the generation and evaluation of a random initial population, the following 

is done in each iteration. A single parent is chosen by binary tournament selection. 

We then generate ten mutants of this parent; the fittest of these mutants then enters 

the population, overwriting the current least fit in the population. This continues for a 

given number of cycles. In the experiments reported, the number of iterations is 1,500. 

When EA is used as the feature selection scheme, the FS EA runs for 500 iterations.  

  

Basic information about the EA is summarised in following table: 

 

Population  100 

Antecedents Per Rule 5 

Maximum Iteration 1500 

Tournament Size  5 

Operator  Mutation 

Offspring 10 

 

Table 3. 2  Summary of EA parameters. 

 

 

 

3.3 Experiments 

 

3.3.1 Comparison of Five Feature Selection Methods 

 

Feature selection methods were applied in the following way. In the case of no-

feature-selection (NFS), we naturally did no feature selection! For each of the 

correlation coefficient (CFS), Relief-F (RFS) and combined (CRFS) methods (see 

later), a subset of N features was obtained for each dataset. For the EA (EAFS) 

method, a 1,000 iteration run of the EA was performed, and the N most-referenced 

features in the final population were collected, and these became the selected features. 

 

For each dataset D and each feature selection technique F, the following experimental 

design was then used in every experiment reported below. In all cases except those of 
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Ionosphere and Optical Digits data, N was 100; in the former two cases, N was 10 and 

30 respectively.  

 

D was divided into a training set and a test set, by a random 50/50 split. Feature 

selection method F was then applied to the training set, resulting in a ranking of the 

features. The training set was then reduced by extracting only the selected N features 

for each sample. The following was then repeated 5 times with independent random 

seeds: The evolutionary algorithm was run on the reduced dataset, returning a single 

rule that performed best on the training set. The performance of that rule was then 

measured on the test set, and this was recorded as the performance value for this trial.  

 

CFS RFS CRFS EAFS NFS DCV 

2 5 5 1 3 0.099 

5 4 3 2 1 0.185 

4 1 5 2 3 0.335 

2 5 4 3 1 0.349 

5 4 1 3 3 0.378 

4 5 1 3 2 0.399 

3 5 4 1 2 0.449 

3 5 2 1 4 0.496 

1 5 4 3 2 0.51 

1 4 5 3 2 0.539 

1 5 4 2 3 0.598 

1 4 5 3 2 0.618 

3 5 4 2 1 0.699 

1 5 4 3 2 0.784 

1 4 5 3 2 0896 

 

Table 3.3. The rank of performance (1 = best, 5 = worst) per dataset for each feature selection on each 

of the datasets, represented by correlation value. 

 

Following 10 trials for a specific dataset/feature-selection strategy pairing, the mean 

result is recorded as the summary result for that experiment. Table 3.4 records these 

summary results, in which all the values are rounded to one decimal place. These are 

displayed graphically in Figure 3.2. Meanwhile, Table 3.3 provides an alternative 
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view in which we list the rank (from 1 (best) to 5 (worst)) in terms of performance for 

each correlation value, and these are shown graphically in Figure 3.1.  
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Figure 3.1. A scatter plot of the rank (from Table 3.3) and DCV for each FS method.   

 

As shown in Table 3.4, the accuracy varies much as the DCV is increased. Some of 

the better accuracies reach 90%, which is not attained in the cases of the four lowest 

DCV values by any of the methods which reduce the feature set. When the DCV is 

high, the FS methods can be expected to retain features that correlate very well with 

the target, and the EA may find it easy to build suitable rules that exploit these 

features. However, for low DCV datasets (e.g. 0.19), it is reasonable to expect that FS 

methods are very challenged to find a suitable reduced set of features for later 

machine learning. We can see this reflected in Figure 3.1. For example, the blue 

diamond appears consistently towards the lower right of the figure (good rank and 

high DCV), but tends to perform poorly for low DCV. 

 

When we look at raw results, we note (though this is not the major point of the 

current work) that the performance of the basic EA rule evolution strategy used here 

is not very different from reported performance for the established (i.e. non-rOV) 

datasets here. These are rows 2 (PA), 5 (opt digit), 9 (Ionosphere) and 15 (OV).  
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CFS 

Test 

RFS 

Test 

CRFS 

Test 

EAFS   

Test 

NFS 

Test 
DCV 

79.4 69.1 69.1 80.2 78.4 0.099 

46.9 46.0 50.2 50.5 56.9 0.185 

63.2 64.2 62.4 64.0 63.4 0.335 

89.8 83.0 87.5 89.1 91.7 0.349 

85.3 88.8 90.0 89.8 89.8 0.378 

86.2 84.2 90.7 89.8 90.2 0.399 

86.2 82.7 85.6 91.0 88.6 0.449 

90.2 87.5 90.7 91.0 89.0 0.496 

91.5 64.6 78.1 85.3 91.3 0.51 

77.6 65.3 65.1 74.6 75.5 0.539 

93.2 86.4 86.6 92.3 90.2 0.598 

85.0 65.8 65.0 74.9 77.1 0.618 

87.0 75.2 81.0 88.0 90.4 0.699 

84.2 68.0 68.6 79.7 82.6 0.784 

98.9 83.7 81.0 89.0 92.2 0.896 

 

Table 3.4. Summary of test results for each feature selection on all the datasets, represented by DCV. 
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Figure 3.2. A graphic presentation of the ranks in Table 3.4. The real accuracies of five algorithms are 

compared for each DCV in the figure.  

 

However a main issue of interest is the deterioration in performance of CFS as the 

DCV reduces. Though it is often used as a feature selection method, especially in 

bioinformatics research, CFS clearly seems to be a poor strategy when the dataset’s 
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correlation value (as defined here) is below 0.5. For such poorly correlated datasets, 

the best strategy (among those tested) seems to be to use either EAFS or use no 

feature selection at all. Meanwhile we are surprised at the quite poor performance of 

Relief-F overall. This can partly be explained by the method we used to reduce 

correlation in several of the datasets – Relief-F can be expected to pick up on some 

feature interactions that are not picked up by standard correlation based feature 

selection, however by adding randomness we did not introduce any such interactions. 

But, Relief-F’s performance was relatively poor in all cases except one. This perhaps 

underlies the poor performance also of CRFS, although there does seem to be 

evidence that CRFS, or similar combined strategies, have a niche of performance with 

regard to datasets with a small range of low–medium correlation values. 

 

From one viewpoint, considering the rankings in Table 3.3, EAFS appears the most 

successful of these techniques, since it was never worse than third ranked in any case 

(all other methods, though NFS has similar overall performance). 

 

 

3.3.2 A Note on Preliminary Experiments with the EA Rule Learner  

 

In this subsection we briefly mention the experiments that were done to decide certain 

of the main parameters for the EA rule learner. Although not central to this thesis, this 

may be of interest to readers. The main experiments done were to determine the fixed 

number of antecedents for the rules. In general, the number of antecedents does not 

have to be fixed; however, that would mean a more flexible but more complicated EA, 

with several more parameters and design issues to adjust (for example, different 

genetic operators that increase or decrease the number of antecedents, and 

probabilities for those operators). By choosing a simple EA with fixed number of 

antecedents, we avoid complications in interpreting the results, so that differences in 

performance are more likely to be a result of the different feature selection methods, 

instead of the result of complex interactions between the problem and the EA design. 

 

As we mentioned last section, an individual in the population consists of five 

antecedents, for example:  



CHAPTER 3                                       FEATURE SELECTION STRATEGIES FOR POORLY CORRELATED DATA 

Silang Luo                                                 PHD-06-2009                                                             Page  84 

{ }CancerCffCffCffCffCff YXYXYXYXYX ⇒],,][,,][,,][,,][,,[ 555444333222111  

 

This rule infers the positive case “cancer” (e.g., in OV) if the five antecedents, each a 

Boolean expression, are all true. Obviously, if rules were only allowed to have one 

antecedent, we could only get accurate rules if some features existed which have a 

very strong correlation with the target class.  

  

Rules with several antecedents are, however, capable of representing interactions 

between features that lead to a better chance of classifying accurately in difficult 

datasets (e.g. CITE, CITE, CITE). The question naturally comes up: how many 

antecedents shall we have in our rules? Experiments were done as follows to guide 

this choice.   

 

DCV 
CFS 

Test 1 

CFS 

Test 5 

CFS 

Test 10 

0.099 80.8 79.4 82.4 

0.185 55.5 46.9 51.7 

0.335 56.8 63.2 64.6 

0.349 88.8 89.8 88.2 

0.399 85.4 86.2 85.7 

0.449 88.0 86.2 85.9 

0.496 93.6 90.2 87.0 

0.539 76.2 77.6 79.0 

0.598 92.6 93.2 93.1 

0.618 68.8 85.0 75.4 

0.699 82.2 87.0 92.0 

0.784 83.2 84.2 82.2 

0.896 100 98.9 95.4 

Average 80.9 82.1 81.7 

 

Table 3.5  The performance of CFS with one, five, ten antecedents on all datasets.  The best mean 

accuracy in a row is highlighted in bold. 

 

To observe the influence of the numbers of antecedents, we first tested the 

performance of CFS with three different numbers of antecedents used in the 

evolutionary algorithm rule learner. In Table 3.5 we record the results of these 
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experiments for one antecedent, five antecedents, and ten antecedents.  The results are 

the mean accuracies on the test set of five independent runs each on a selection of the 

datasets we have discussed, identified in the table by their DCVs. 

 

As exhibited in Table 3.5, the average performance of CFS with 5 antecedents is 

better than these of other two conditions. Also, the number of times a condition 

achieved the best over the three conditions is highest for five antecedents. The 

differences are not very large, however another consideration is computational cost. 

Checking the accuracy of a rule increases in time complexity with the number of 

antecedents. Also, considering that using one-antecedent rules would clearly be 

limited in potential (and anyway the space of one-antecedent rules is better explored 

by brute force search), the suggestion from these experiments is that five-antecedent 

rules may be the best choice of the three.   

 

DCV 
EAFS 

Test 1 

EAFS 

Test 5 

EAFS 

Test 10 

NFS 

Test 1 

NFS 

Test 5 

NFS 

Test 10 

0.099 79.4 80.2 75.4 85.9 78.4 70.7 

0.185 58.6 50.5 48.6 54.5 56.9 54.0 

0.335 54.4 64.0 64.8 50.9 63.4 64.8 

0.349 89.6 89.1 91.0 89.1 91.7 87.6 

0.399 88.8 89.8 89.0 87.6 90.2 82.9 

0.449 89.1 91.0 89.6 87.4 88.6 87.8 

0.496 82.4 91.0 87.8 86.9 89.0 87.2 

0.539 74.2 74.6 70.9 69.8 75.5 66.1 

0.598 90.4 92.3 90.5 89.4 90.2 88.8 

0.618 68.5 74.9 74.4 72.3 77.1 69.3 

0.699 80.0 88.0 89.6 85.8 90.4 87.0 

0.784 79.2 79.7 74.1 82.2 82.6 82.2 

0.896 95.1 89.0 87.6 93.9 92.2 90.4 

Average 79.2 81.0 79.4 79.6 82.0 78.3 

 

Table 3.6. The performance of EAFS and NFS with one, five, and ten antecedents rules on test data.   

Each row has two bold numbers, showing the best result for each of EAFS and NFS.   

 

We also tested these three conditions with EAFS and NFS, to see if this conclusion 

can be validated. The results are in Table 3.6, where “TestN” means the mean 
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accuracy on the test set when the evolutionary algorithm rule learner used N-

antecedent rules. 

 

 It is very clear from Table 3.6 that the performance of five antecedents in a rule is 

much better than these from one antecedent and ten antecedents. We therefore chose 

five-antecedents for all later experiments. 

 

 

3.3.3 A Note on Preliminary Experiments for Choosing the Number 

of Features 

 

Another important parameter to fix is the number of features that will be selected by 

the feature selection methods. If only a very small number of features is chosen (e.g. 5 

or 10 features from a dataset with many thousands of features), the results might be 

over-influenced by random chance effects. If very many features are chosen, we 

possibly lose the ability to discriminate well between the algorithms. We therefore did 

some preliminary investigation of the number of features as follows. We chose seven 

different cases of number of features to investigate on the OV dataset, and looked at 

the performance of CFS (accuracy on the test set averaged over five runs). Table 3.7 

shows the results, also showing the mean accuracy on the training set.  The numbers 

“36”, “65” and “783” look like strange choices of values to set for the number of 

features. The explanation for these comes from other preliminary experiments, where 

we were using EAFS as the feature selection method and different sizes if the 

population and different numbers of rule antecedents. In the EAFS case when used for 

feature selection, a short EA run is done, and all the features that appear in the rules in 

the population at the end of this run are the chosen features. These numbers were 

therefore chosen for CFS experiments that could directly compare with corresponding 

CFS experiments.  

 

As shown below, we clearly see the results from correlation features are good until 

around 300 features or more are selected. Clearly the most successful number of 

features, for this limited test, is 100.   
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Features 36 65 100 200 300 500 783 

Performance 

train 
99.3 99.6 100 99.8 99.8 99.6 98.9 

Features 36 65 100 200 300 500 783 

Performance 

test 
97.28 97.76 98.88 97.44 95.52 94.88 92.48 

 

Table 3.7. The performance of correlation feature selection on ovarian data. The accuracies of our 

features are displayed in performance train and test.  

 

There are several factors that will influence this result. E.g. when a large number of 

features is chosen, the EA run may need more time (i.e. more fitness evaluations) to 

approach its optimal performance. But, given a desire to limit the computational time 

needs of future experiments, we decided from this test to fix the number of selected 

features at 100.  Most experiments that were discussed in this chapter and elsewhere 

in this thesis therefore use 100. However on some datasets the number of attributes is 

small and these are treated differently, as we will say in the text. 

 

 

 

3.4 Conclusion 

 

Feature selection is a very important part of many current commercial and scientific 

data mining tasks. When searching for biomarkers among many thousands of 

possibilities, for example, successful work will lead either to new accurate diagnostic 

tests, or in many cases novel and actionable insight relating to the specific sets of 

features found to be most important. But, given the enormous number of attributes in 

many cases, computational limitations require researchers to pre-select a small set of 

features, and this is normally done by using straightforward statistical measures of 

correlation (such as CFS). However, in such datasets the interactions between the 

features themselves and the target class(es) are rarely simple linear interactions, and 

we believe that many standard techniques in use will often discard important features, 

leading to lost opportunities in terms of predictive accuracy and scientific insights.    

 



CHAPTER 3                                       FEATURE SELECTION STRATEGIES FOR POORLY CORRELATED DATA 

Silang Luo                                                 PHD-06-2009                                                             Page  88 

In the work reported here, we have investigated the performance of a small range of 

feature selection strategies, and find that their relative performance is related to the 

degree of correlation between features and the target class in the underlying data. CFS 

appears to work very well when the DCV is high, but it is also clear that CFS is never 

the best choice, and often a poor choice, for datasets where the DCV is low. In 

particular, we can claim here some tentative steps towards choosing a feature 

selection technique based on the simple prior calculation of DCV. However, much 

work remains to investigate what strategies are most useful for poorly correlated data, 

especially given that many of the poorly correlated datasets in this chapter were 

generated by random perturbation. 

 

The limitations of the work described in the chapter include the fact that we only use   

a simple summary measure to characterise a dataset (DCV), the use of randomization 

in creating datasets with specific correlation values (which means they don’t 

necessarily reflect deeper structure in real datasets that may share the same value), 

and the fact that just a limited number of FS strategies were tested. However we can 

claim to have confirmed that using the standard statistical correlation coefficient as an 

FS strategy is potentially harmful on poorly correlated datasets, and that EA-based 

feature selection strategies are worth further exploration. Variants of Relief-F and 

combinations of that with standard correlation also seem to have some value for 

certain levels of DCV.   
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Chapter 4  

 

Investigating Feature Bias Strategies 
 

 

4.1 Introduction 

 

Previous experiments indicate that the major problem in the original proteomics data 

(OV and PA) is that too many genes are included, and some of them are irrelevant to 

the analysis. An FS strategy is often found to be an essential step to erase some 

useless features, thus reducing the evolution processing time and improving the 

performance. However in some poorly correlated datasets, we also see that well-

known feature selection methods are not the best approaches. Sometimes, a no-

feature-selection (NFS) strategy gives better performance. This raises the question, 

why is the performance of an FS strategy worse than NFS in these cases?  

 

The idea of FS methods is to find “good” features, usually identified by correlation-

based measures of features with the target attribute, which have more discriminative 

power than others. Often only a small percentage of features are finally used in 

machine learning process, saving computation time and improving accuracy. 

However, alternative FS strategies can vary much in the features that they end up 

selecting. For example, in our tests on proteomics data we find that the overlap 

between features selected by different FS methods tends to be small. In particular, a 

feature that is ranked very highly (perhaps at the top) by one algorithm will often rank 

in a mediocre position according to another FS algorithm. The only clear standard to 

estimate the relevance of those features to the learning task in question is the ultimate 

performance after applying machine learning to find a predictive model. In such tests 

(including some reported in this paper), it is commonly found that features ranked 

poorly by some (or even all) FS methods, still seem very pertinent to the



CHAPTER 4                                                                                  INVESTIGATING FEATURE BIAS STRATEGIES 

Silang Luo                                                 PHD-06-2009                                                             Page  90 

classification task. That is, when a “no feature selection” strategy is applied in some 

cases, a better predictive model is found, which makes use of features that were 

considered irrelevant by FS methods.  

 

However, NFS is troublesome as a general strategy because it is certainly not always 

the best approach. First, it loses the computational speedup that is available if we do 

FS. Second (and particularly on highly correlated datasets) the choices made by FS 

methods tend to be appropriate, so NFS slows the process down with little effect.  

Instead, we describe here the alternative Feature Bias (FB) strategy. Like NFS, FB  

allows the machine learning algorithm to use any feature at all – so, all of the 

pertinent features are available; unlike NFS, FB does not throw away completely the 

guidance that can be obtained from an FS method. 

 

A Feature Bias strategy is therefore a different approach to “feature management” 

(FM) which basically inherits and extends the idea of feature selection. The concept 

of FB is to add some finer control elements to the interface between the dataset and 

the machine learning method. In feature selection, the control is essentially binary – 

for any feature, the FS stage either says “use this feature”, or “do not use this feature”. 

In FB, the control element is to provide a bias value. So, after applying FB to find 

bias values, the machine learning method might still use all of the features in the 

dataset, but it will be guided by the bias values towards more preferably using some 

features rather than others.   

 

The idea of investigating FB strategies is chosen because we expect it to improve 

upon basic FS strategies, especially for datasets with low DCV. In these datasets, we 

can easily expect CFS (for example) to lose some important features, but in a Feature 

Bias strategy, all features will be available. At the same time, we were very interested 

to see if the relationship between DCV and FS performance, seen in chapter 3, was 

still there if we use FB strategies.   

 

The main contribution of this chapter is an empirical comparison study of several FS 

and FB techniques; a secondary contribution is to note how the relative performance 

of these methods varies according to the DCV.  The latter contribution extends to FB 

strategies the findings in Luo S and Corne D W (2008) (and chapter 3), which 
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showed that the DCV can provide clear guidance towards the likely performance of 

FS methods relative to NFS.   

 

As we mentioned, the datasets we are interested in have many attributes (thousands), 

and the search space for machine learning methods is very large. If no feature 

selection is done, the time for computation may be prohibitively expensive. The same 

is true for FB methods, in which (by default, in this work), all features are still 

retained in the dataset. But we expect FB to still have an advantage over NFS, 

because although the background processing time may still be large because of the 

many features, the guidance provided by FB should mean that the machine learning 

method arrives at good solutions more quickly than NFS. We take notice of this issue 

and ensure that our experiments compare FS and FB on the basis of a similar level of 

computation cost.  

 

In the next section, we will briefly overview FS strategies and present three FB 

methods to compare against the original FS algorithms by applying them to several 

datasets: The FB strategies are: Correlation Feature Bias (CFB), Relief F Feature Bias 

(RFB), Evolutionary algorithm Feature Bias (EAFB) and two combined methods: 

CFS / CFB, and RFS / RFB. Section 4.3 will give an overview of datasets used in this 

chaper. Experiments and analysis will be described in section 4.4. Conclusions and 

future work are discussed in section 4.5. 

 

 

 

4.2 Feature Bias Methods 

 

In feature selection (FS), we divide the features into two sets, the selected features, 

and the eliminated features. The eliminated features are removed, and play no part in 

the machine learning. In a pure feature bias (FB) strategy, there are no ‘eliminated 

features’; instead, the first set is called ‘preferred’, and the second is called ‘non-

preferred’. All features may be used in the machine learning. However, in FB, some 

features will be preferred over others.  

 



CHAPTER 4                                                                                  INVESTIGATING FEATURE BIAS STRATEGIES 

Silang Luo                                                 PHD-06-2009                                                             Page  92 

The Feature Bias strategies work through two parameters to control the selection of 

features. The first parameter, x, indicates what proportion of the features to use; the 

second parameter, y, indicates (when the machine learning method is running, and 

needs to choose a feature) the probability of choosing a feature from the selected set.  

For example, if we use an FS algorithm to obtain 100 features out of 10,000 features,  

this is the same as using  Feature Bias like this: the first parameter x = 100 / 10,000 = 

0.01 (select 1% of the features via FS), and the second parameter y = 1 (with 

probability 1, choose one of the selected features). Alternatively, FB with parameters 

(0.02, 0.8) would operate as follows: using FS, 2% of the features are pre-selected as 

preferred features; when the machine learning method is running, and a feature needs 

to be chosen (for example, to add a new feature to a rule), there is a probability 0.8 

that the chosen feature will be a pre-selected one, and there is a probability 0.2 that it 

will be one of the non-pre-selected features. 

 

 

4.2.1 Basic Feature Bias Methods 

 

Three basic feature bias strategies are used to compare with the experiments from 

feature selection methods: CFB is a similar strategy to CFS, based on straightforward 

statistical correlation; RFB originates from the Relief F method, and EAFB is based 

on EAFS. With the FB strategies, the first step is the same as the corresponding 

feature selection method: the features which are likely to have discriminatory power 

are chosen by each algorithm. Such as in the Correlation-based strategy or the Relief 

F method, the features with higher correlation or relief values indicates more 

discriminative power; the first step in an FB strategy is simply to calculate, as before 

these basic values for each feature, just as is done in the FS strategies (see Figure 4.1). 

 

 

 

Figure 4.1.  The difference between FS strategies and FB strategies. 
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The second part is, just like with NFS, we apply the evolutionary algorithm to learn 

rules (this could of course be any other machine learning algorithm) on the full (all 

features included) training set. In the mutation step of the EA (see Figure 4.2), we use 

an equation (1) to guide the selection of new features to include in a rule:   

 

 

 

Figure 4.2.  The procedure of FB strategy being embedded in the evolutionary algorithm.  

 

                                                       [ ] [ ]{ }1,0,1,0),( ∈∈= yxyxfoffspring                                             (1) 

 

Where offspring is the identification number of a field in the dataset, and x and y are 

parameters. The first parameter x is the proportion of the features which are to be in 

the preferred set of features. If 1.0=x , and there are 1000 features in the data, that 

means 100 features will be in the preferred set. In CFB, these would be the top 100 

features according to correlation value; in RFS, these would be the top 100 features 

according to the Relief  F value, and in EAFB, these would be the 100 features 

selected on the basis of a previous EA run. The second parameter y is the probability 

of choosing a feature from this preferred set. E.g. If 6.0=y , that means, there is 60% 

chance to select a feature from this set, and 40% chance to select a feature from 

outside the preferred set (e.g. any other features).   
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4.2.2 The Combined Methods: CFS / CFB, RFS / RFB 

 

These two strategies can be seen as combinations of feature selection and feature bias 

methods. In CFS/CFB, before we do the FB strategy, we still use FS to reduce the 

dataset, but we reduce it by a relatively small amount. Taking the ovarian data as an 

example, we cut off over 90% irrelevant features in the FS step (saving 1,000 features 

from 15,154). And an FB strategy will be applied on this 1,000 features dataset. In 

contrast to the original FS strategies which discard more than 99% of the features, 

many more features are available at the machine learning stage.  

 

 

 

Figure 4.3.   The procedure of Combined FS and FB (CFS/CFB) strategy. 

 

With the CFS/CFB method, we do the CFS first, then apply the correlation feature 

bias strategy. RFS/RFB uses the Relief F method for initially selecting features, and 

then operates as RFB with the reduced feature set. These strategies attempt to use the 

advantages of both feature selection and feature bias; that is, in comparison to FS, 

they leave more features available to the machine learning stage and hence are less 

likely to miss pertinent features; in comparison to pure FB, however, there is saving 

in computation time because some features are removed. 
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4.3 Datasets and Data Correlation Values 

 

4.3.1 Datasets 

 

Three more proteomics datasets and nine Optical digit datasets are now added for the 

comparison between FS/FB strategies. Ultimately, in our experiments, we obtain 29 

datasets which can be divided into three groups: 1) The proteomics datasets; 2) 

Reduced ovarian datasets; 3) Some small numeric datasets. The reasons for choosing 

these datasets are their predominance in the literature and the prevalence of numeric 

features. As we mentioned, the study is motivated by large-scale datasets. Because of 

that, we put more attention on the experiments from proteomics datasets and reduced 

ovarian datasets. However, the results from the other datasets could be seen as  

complementary for our conclusions. The investigation of small datasets can be seen 

as another interesting topic for the comparison of FS/FB strategies.  

 

Proteomics Data 

 

The proteomics datasets include the ovarian dataset (denoted OV), pancreatic dataset 

(denoted PA) ,the Leukemia dataset (denoted AML/ALL) ,the lung cancer dataset 

(denoted LUNG), and the Central Nervous System Embryonic Tumors, (denoted 

CNS). The dataset information is summarised in Table 4.1: 

 

Dataset DCV Samples Genes Classes(number) Train/Test Dataset 

AML/ALL 0.828 72 7129 All(47)/Aml(25) 38/34 AML/ALL 

OV 0.896 253 15154 Normal (91)/Cancer(162) 128/125 OV 

PA 0.185 181 8642 Pan In(97)/Control(84) 80/101 PA 

LUNG 0.882 181 12533 ADCA(150)/MPM(31) 32/149 LUNG 

CNS 0.602 60 7129 Survivor(21) /Failure(39) 30/30 CNS 

 

Table 4.1. The proteomics datasets.  

 

These datasets are collected from online sources. The DCV value mentioned in the 

table represents the highest correlation value in the datasets; that is, when we measure 

the basic statistical correlation between any feature and the target class, this is the 
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highest value for any feature. Classes represent the original (target) class name from 

dataset and shows how many examples are in each class. Train/Test is how we 

divided the samples. Some divisions are made by us where no guidance was available 

from papers or other sources, and in other cases the original source already provided a 

Train/Test split.  

 

Proteomics datasets and gene expression datasets, which both have the capability to 

lead to reliable discrimination between different classes of patients, have attracted 

tremendous interests among bio-informaticians. Proteomics is the systematic large-

scale analysis of protein expression under normal and perturbed states, and generally 

involves the separation, identification and characterization of all of the proteins in a 

cell or tissue sample. As the high-throughput (HT) data acquisition technologies, such 

as DNA microarray, protein microarray, mass spectrometry, tissue microarray, 2D gel 

or fluorescent microscopy, have being increasingly used in the proteomics areas, 

advanced analysis in these HT data is necessary to be fostered and revisited to meet 

the important needs of the wider biomedical community. These technologies allow 

scientists to monitor the whole genome or a single gene, viewing the interactions 

among thousands of genes simultaneously, thus with hopes of improving the accuracy 

and speed of cancer classification. However some common characteristics of both 

proteomics data and gene expression data, which explain our interest in this data for 

this thesis, are:  

 

1. Each data sample is a vector of many attributes (often several thousands). 

2. Given a particular machine learning task, most of the attributes are 

probably irrelevant to the analysis. 

 

The following is a description of all datasets in details.  

 

The ALL/AML Leukemia  Dataset 

 

This dataset (Golub T R, et al. (1999)) is a collection of gene expression profiles of 

72 bone marrow samples, over 7129 probes from 6817 human genes. The data, based 

on gene expression monitoring by DNA microarrays, was divided into a training set 

of 38 samples, and a blind testing set of 34 samples by the biologists. The task is to 
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classify two types of leukemia: Acute Myeloid leukemia and Acute Lymphoblastic 

leukemia. Both obtained from acute leukemia patients at the time of diagnosis. The 

raw gene expression data can be found at http://www.stjudereasearch.org/data/ALL1.  

 

Ovarian Cancer and Pancreatic Cancer and Reduced Ovarian Datasets 

 

(See Chapter 3). 

 

 Lung Cancer Dataset: 

 

Lung cancer (Gordon G J, et al. (2002)) is the most common cause of cancer death. 

The traditional methods for the distinction between malignant pleural mesothelioma 

(MPM) and adenocarcinoma (ADCA) of the lung could be cumbersome. The new 

technique, based on the expression levels of a small number of genes, can be useful in 

the early and accurate diagnosis of MPM and lung cancer. There are 181 tissue 

samples (31 MPM and 150 ADCA). The training set contains 32 of them, 16 MPM 

and 16 ADCA. The remaining 149 samples are used for testing. Each sample is 

described by 12533 genes. 

 

Central Nervous System Embryonic Tumour dataset  

 

This classification task is based on DNA microarray gene expression data concerning 

central nervous system tumours (Pomeroy S L, et al. (2002)). Survivors are patients 

who are alive after treatment whiles the failures are those who succumbed to their 

disease. The dataset contains 60 patient samples, containing 21 medulloblastoma 

survivors and 39 treatment failures. There are 7129 genes in the dataset. The division 

of dataset is randomly done by us, with 30 in the training set and 30 in the test set. 

 

Optical Digit and Ionosphere Datasets: 

 

The Optical digit data (Kaynak C (1995)) is extracted normalised bitmaps of 

handwritten digits from a preprinted form by preprocessing programs. From a total of 

43 people, 30 contributed to the training set and a different 13 to the test set. 32x32 

bitmaps are divided into non-overlapping blocks of 4x4 and the numbers of on pixels 
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are counted in each block. This generates an input matrix of 8x8 where each element 

is an integer in the range 0 to 16. This reduces dimensionality and gives invariance to 

small distortions. For each Attribute, all inputs attributes are integers in the range 0 to 

16, and the last attribute is the class code: 0 to 9. 

 

As the optical digit data has 3823 training samples and 1797 test samples with 10 

classes, to simplify the classification problem and more concentrate on the algorithm 

itself, we reinterpreted the dataset to consider it as ten datasets, each providing a two 

class classification problem.  In the first of these datasets, for example, all of the Opt 

Digit data is used, but the task is to classify a test sample as either class 0, or not class 

0. In the second dataset, the task is to classify a sample as class 1, or not class 1, and 

so on. The 10 resulting cases are shown in Table 4.2 which shows the DCVs arising 

from these datasets. 

 

DCV 10 Classes 

0.567 0 

0.451 1 

0.560 2 

0.388 3 

0.513 4 

0.381 5 

0.512 6 

0.663 7 

0.280 8 

0.378 9 

 

Table 4.2.    Optical recognition of handwritten digits.  

 

First, choose class 0 (class from 0 to 9) as the predicted class 0, then incorporate the 

other classes 1 to 9 into another class 1. The entire process was repeated 10 times for 

different classes. Finally we acquire 10 new two-class datasets and the correlation 

values of each of them are showed in above table. 

 

Ionosphere data is from Johns Hopkins University Ionosphere database. This radar 

data was collected by a system in the research by Sigillito V G, et al. (1989). The 
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system consists of a phased array of 16 high-frequency antennas with a total 

transmitted power on the order of 6.4 kilowatts. 

 

 

4.3.2 Data Correlation 

 

As shown in Figure 4.4, the three groups of datasets have quite different ranges of 

correlation values. The difference between each type of data is very clear. The 

proteomics data often have high DCVs, which mean strong correlation with the target 

features. However, the DCV is sometimes very low, with the pancreatic dataset 

having a DCV of just 0.185 which is the second worst all over the datasets.  In 

contrast the DCVs of OP and IO are mostly within a middle range. We also use the 

reduced ovarian datasets, as described in chapter 3, so that we examine a full range of 

DCV values.  
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Figure 4.4.    The DCVs of the three groups of datasets.  

 

The first type of data is real proteomics data (blue curve); the pink curve exhibits the 

wide range of DCVs in the reduced ovarian data. The yellow curve comes from the 

optical digit data and ionosphere data, is which the attributes are limited to very small 

numbers.  
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4.4 Experiments Comparing FS and FB Strategies 

 

4.4.1 Introduction  

 

Classification accuracy on test sets is our primary measure used to compare the 

performance of FS and FB. We first applied the following three algorithms: CFB, 

RFB and EAFB, obtained by first applying feature selection and next by training a 

classifier on the full training set.  

 

For each of CFB and RFB, a subset of N top features was obtained by the 

corresponding FS method, and the remaining features are placed in another subset. 

For the EAFB method, firstly a run of 500 iterations of the EA was done, and the N 

best features were chosen in the same way that these are chosen for EAFS; the 

remaining features, as before, are placed into another subset. In these experiments, N 

was always set to 100. In other words, we modified the x parameter in each case (see 

equation 1) according to the size of the dataset, to ensure that the number of pre-

selected features was 100.  This enables fair comparison with the FS methods.  

 

The difference between FS and FB is basically that the evolutionary algorithm was 

run on the reduced dataset for FS methods, and the full dataset in FB methods. In all 

cases, the result of an individual experiment is the rule that performed best on the 

training set, with its performance measured on the test set. This was in every case 

averaged over five separate independent runs. The summary of test performance 

results is in Tables 4.3 to Table 4.5. 

 

 

4.4.2 OP and IO Datasets 

 

General notes for reading following tables are 1) Results from training datasets are 

not included; 2) Bold entries indicate the best performance for the dataset in that row; 

3) The lowest rank stands for the best performance; 4) When the rank of a method is 

either 1st, 2nd or 3rd (1, 2, or 3), this is highlighted in the table by using, e.g. “*1*”. 
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DCV 
CFS 

Test 

CFB 

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

0.280 78.709 90.150 90.206 90.262 90.306 90.273 

0.378 85.264 89.945 88.788 89.705 89.805 89.511 

0.381 80.412 91.697 89.627 93.044 89.594 93.122 

0.388 86.722 89.182 89.538 89.560 89.683 89.649 

0.451 88.837 90.206 90.762 90.161 89.872 90.295 

0.51 91.523 70.728 64.636 71.126 85.298 68.079 

0.512 89.438 90.095 90.306 90.495 90.929 90.262 

0.513 94.224 92.51 90.918 93.311 90.774 93.734 

0.560 91.497 91.241 91.664 91.931 91.263 92.354 

0.567 99.065 99.154 93.155 99.032 92.498 98.965 

0.663 92.577 93.767 91.107 91.875 91.152 93.378 

 

Table 4.3.   The results from FS/FB strategies on OP and IO datasets.  

 

0

10

20

30

40

50

60

70

80

90

100

0.28 0.378 0.381 0.388 0.451 0.51 0.512 0.513 0.56 0.567 0.663

DCV

A
cc

u
ra

cy

CFS

CFB

RFS

RFB

EAFS

EAFB

 
 

Figure 4.5. A graphic presentation of the results in Table 4.3. The largest differences between 

algorithm on the same dataset occur when the DCV is 0.51, which is the IO dataset. The other datasets 

are the OP datasets, which show similar performance differences among all algorithms. This is partly 

explained by the fact that the non-target attributes are of course all the same in these datasets. 

 

As shown in Table 4.3, which compares the performance of FS and FB strategies on 

OP and IO datasets, an FS strategy takes 6 of the “best places” and FB strategies win 

5 of the best places. Our interpretation of this is that both types of strategy can be 

seen as successful strategies for further research. The difference is, as yet, FS 
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methods are already widely applied in many areas and FB methods are early in their 

application. 

 

 

4.4.3 Reduced Ovarian Datasets 
 

 

DCV 
CFS 

Test 

CFB 

Test 

RFS 

Test 

RFB 

Test 

EAFS 

 Test 

EAFB 

Test 

0.099 79.360 79.2 69.12 78.080 80.16 78.24 

0.335 63.200 64.16 64.16 63.36 64.0 64.16 

0.349 89.760 88.480 83.04 90.720 89.12 88.96 

0.399 86.24 91.04 84.16 91.2 89.76 92.0 

0.449 86.24 92.64 82.72 89.760 91.04 91.679 

0.496 90.24 89.12 87.52 93.76 91.04 91.36 

0.539 77.6 76.96 65.28 78.56 74.56 76.16 

0.598 93.2 90.88 86.4 91.36 92.32 92.64 

0.618 84.96 78.4 65.76 76.32 74.88 79.52 

0.699 87.04 88.32 75.2 88.32 88.0 89.44 

0.784 84.16 86.08 68.0 84.960 79.68 85.44 

 

Table 4.4. The results from FS/FB strategies on reduced ovarian datasets. There are in total 11 datasets 

with DCVs ranging from 0.099 to 0.784.   

 

On the reduced ovarian datasets, FB seems to be much more useful in the shown 

results than was the case for the OP and IO datasets. Both CFB and EAFB have three 

best places, appearing over the whole range of DCV values. This contrasts with CFS, 

for which the two best places only happen when the DCV is above 0.5. 
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Figure 4.6. A graphic view of the results from Table 4.4. On the reduced ovarian datasets, the 

performances of RFS (the white column) are generally the worst overall, while the performance of 

EAFB (the pink column) are the best overall, however when the DCV is above 0.5, the algorithms 

involving statistical correlation (CFS and CFB) have strong performance.   

 
 

4.4.4 Proteomics Datasets 
 

 

DCV 
CFS 

Test 

CFB 

Test 

RFS 

Test 

RFB 

Test 

EAFS 

 Test 

EAFB 

Test 

0.185 46.904 51.190 45.952 49.047 50.476 53.571 

0.602 51.333 47.334 44.0 41.333 60.667 44.666 

0.828 83.53 70.588 87.059 71.765 69.412 66.471 

0.882 95.168 89.128 71.812 85.906 92.483 84.027 

0896 98.88 93.12 83.68 91.84 88.96 93.28 

 

Table 4.5. The results from various FS and FB strategies on real proteomics datasets. There are in total 

5 datasets with DCV ranging from 0.185 to 0.896. Note the clear benefits of EAFS/EAFB for low 

DCVs, and the benefits of CFS for high DCVs. 

 

On real proteomics datasets, CFS is still quite reliable for the datasets with DCV 

above 0.5. But, EAFB is clearly the best method for the dataset with the lowest DCV.    
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Figure 4.7. A graphic presentation of the results in Table 4.5. Notice that four of the five datasets have 

DCVs above 0.5, and it is therefore not surprising that CFS is best or second best for these four datasets. 

 
 

 

4.5 Combined Analysis 

 

4.5.1 Datasets with DCV below 0.5 

 

Considering the results of the experiments summarised above, we note that FB often 

improves the performance of the basic FS methods, particularly in the cases of the 

datasets with DCV below 0.5. In attempt to gain a better understanding of the overall 

results, we look again at the results in terms of rank values. Also, we add further 

experiments so that we can compare with two other methods considered in the last 

chapter: CRFS and NFS. Eight methods were therefore applied to each dataset. In the 

tables and discussion below, an algorithm is given a rank of 1 if it achieves the best 

performance of the six methods on a particular dataset (or a group of datasets, 

depending on the context), and a rank of 8 means worst performance. Table 4.6 

illustrates the ranks of each algorithm when we consider the whole group of datasets 

with DCV below 0.5. 
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DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.099 *2* *3* 7 6 *1* 5 7 4 rOV1 

0.185 7 *3* 8 6 4 *2* 5 *1*  PA 

0.335 8 *3* *1* 6 4 *2* 4 6 rOV2 

0.349 *3* 6 8 *2* 4 5 7 *1* rOV3 

0.399 7 *3* 8 *2* 6 *1* 4 5 rOV4 

0.449 6 *1* 8 4 *3* *2* 7 5 rOV5 

0.496 5 6 8 *1* 4 *2* *3* 7 rOV6 

0.451 8 4 *1* 5 6 *3* *2* 7 OP1 

0.388 8 6 4 *3* *1* *2* 7 5 OP3 

0.381 8 5 6 *3* 7 *1* 4 *1* OP5 

0.378 8 *2* 7 5 *3* 6 *1* *3* OP9 

0.280 8 6 5 4 *2* *3* 7 *1* OP8 

Total  78 43 73 48 45 34 58 46  

  

Table 4.6.    Ranks of performance on the datasets with DCV below 0.5 per dataset for each FS/FB 

strategy.  
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Figure 4.8. A graphic presentation of the ranks in Table 4.6. CFS never appears as the best ranked 

algorithm for these datasets. In fact, in 6 of the 12 cases, CFS is the worst-ranked algorithm.  

 

In Table 4.6, the “Total” column can be seen as a measure of the overall rank over 

this group of datasets, with lower values being better. EAFB gets the best overall rank, 

and that suggests that, overall, EAFB is the best method. CFB and EAFS also seem 

very good overall. If we compare each FS method with its corresponding FB version, 

we can see that the FB version always has a better rank. It is notable, again, that CFS 
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is never the best-ranked algorithm for these datasets with DCV below 0.5, and is 

often the worst-ranked algorithm. However, CFB has much better performance than 

CFS, appearing 6 times among the best three ranks. Overalls, the most successful 

method here is EAFB, appearing 7 times as rank 1 or rank 2.  

 

 

4.5.2 Datasets with DCV over 0.5 

 

For the datasets with DCV above 0.5, Table 4.7 summarises the results, involving 

again the eight methods tested in the previous section. 

 

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.51 *1* 6 8 5 *3* 7 4 *2* IO 

0.539 *2* *3* 7 *1* 6 4 8 5 rOV7 

0.598 *1* 5 8 4 3 *2* 7 6 rOV8 

0.618 *1* *3* 7 5 6 *2* 8 4 rOV9 

0.699 6 *3* 8 *3* 5 *2* 7 *1* rOV10 

0.784 4 *1* 8 *3* 6 *2* 7 5 rOV11 

0896 *1* *3* 7 5 6 *2* 8 4 OV 

0.663 5 *1* 8 6 7 *3* *2* 4 OP7 

0.567 *3* *2* 7 4 8 5 *1* 6 OP0 

0.560 6 8 5 *3* 7 *1* 4 *2* OP2 

0.513 *2* 6 7 5 8 *3* *1* 4 OP4 

0.512 8 6 4 *2* *1* 5 7 *3* OP6 

0.602 *1* 4 8 5 *2* 7 *3* 6 CNS 

0.828 *2* 5 *1* 4 6 7 *3* 8 Aml 

0.882 *2* *3* 5 7 *1* 4 6 8 Lung 

Total 45 59 98 62 75 56 76 68  

 

Table 4.7. Ranks of performance (1=best) per dataset for each FS/FB strategy, only for datasets with 

DCV above 0.5.  

 

When observing the results in Table 4.7, and consider the ‘Total’ row, which gives an 

idea of the overall performance of the method in each column, we discover that a 

Feature Bias strategy improves on the basic FS approach in just two cases now (RFB 
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vs RFS and EAFB vs EAFS), EAFB is no longer the best overall strategy, but it still 

performs well, and seems to be the second-best overall strategy for these datasets.   

 

CFS is certainly the best overall method for the higher DCV datasets, but we note that 

CFB does perform better than CFS in five of the fifteen cases. Meanwhile, if we look 

at DCVs above 0.6, most of the CFS and CFB ranks are among the top three.   
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Figure 4.9. A graphic presentation of the ranks in Table 4.7. When the dataset DCV is above 0.5, the 

best algorithm overall is not EAFB or NFS (which performed well for datasets with DCV below 0.5), 

although these methods still show reasonable performance. Instead, CFS, which was the worst 

algorithm for DCV below 0.5, is clearly the best algorithm overall for these datasets. CFB also shows 

strong performance, especially when the DCV is above 0.6.    

 

The results suggest that, for this collection of datasets, there is a relationship between 

the DCV and the best choice of Feature Management (FM) approach. So, this adds to 

evidence gathered in Chapter 3, to suggest that it seems justifiable, as a first step 

while faced with a new dataset, to check the DCV of the dataset, and use it as a guide 

towards the appropriate FM strategy. Broadly speaking, if the DCV is rather high, 

CFS and CFB could be considered the best choices (from among the methods we 

have examined). However, EAFB would generally be a good choice in most 

conditions, especially when the DCV is low. If for some reason the DCV is not 

known in advance, then we suggest that EAFB is the best choice. The FB strategies 

seem very competitive when compared with the traditional feature selection methods. 

EAFB in particular seems to deserve more study.    
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4.5.3 Additional Experiments with CFS/CFB and RFS/RFB, Relief F  

 

Further investigations were done to examine some basic versions of combined FS/FB 

strategies, and some basic parameter variation of the Relief F method. In a combined 

FS/FB strategy, the idea is to do FS first, but to select 1,000 features rather than 100. 

FB then operates as normal on the 1,000-features reduced dataset. This leads to much 

improved computational processing time for the machine learning, which is a benefit 

from a pure FS method, and retains the benefit of a pure FB method since a much 

larger collection of features is retained.    

 

The experiments with RFS (10/3) are motivated by the fairly poor performance of 

Relief F that we have seen so far in experiments, and by considering Khayat et al. 

(2008) which proposes a more stable Relief F method. It suggests that, the choice of 

the parameter k for the k-NN classifier built into the Relief F method is sensitive to 

how many attributes are included. As a basic exploration of this, we try Relief F with 

k = 3 and k = 10. 

 

These experiments are done for the proteomics datasets only, and the results are 

shown in Table 4.8. The table also includes the previous comparable results for the 

other algorithms tested in this chapter, so that we can compare easily. 

 

CFS again shows strong performance, with joint-best overall rank on the proteomics 

datasets, which is to be expected since they are mostly with high DCVs. The method 

that joins CFS in best overall rank is CFS/CFB. However CFS is only the best-

ranking method for one of the datasets, and the same is true for CFS/CFB. There is a 

tentative argument to suggest that CFS/CFB is more robust than CFS, since CFS 

ranks 11th out of 12 in one case (with the lowest DCV), while CFS/CFB never 

performs worse than 7th out of 12.  
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DCV Dataset 
CFS 

Test 

CFB 

Test 

RFS 

Test  

(10 / 3) 

RFB 

Test  

(10 / 3) 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 

CFS/CFB 

RFS/RFB 

0.185 PA 11 *3* 12  / 10 9  /  7 5 *2* 6 *1*  7  -  4 

0.602 CNS 4 5 7  / *2* 10 / 11 *1* 6 9 12 *3*  -  7 

0.828 
AML/ 

ALL 
*2*  9 

*1*  / 

*3*  
8  /  5 10 11 6 12 7  -  4 

0.882 LUNG *1* 6 12  / 10 7  /  5 *3* 9 4 8 *2*  -  11 

0.896 OV *2* 4 11  /10 6  /  6 9 *3*  12 5 *1*  -  8 

 Total 20 27 43  /35 40 /  34 28 31 35 38 20  -  34 

Above 

0.5 
Total 9 24 31  / 25 31  / 27 23 29 29 37 13  -  30 

 

Table 4.8. The performance of twelve different FS, FB and combined methods on proteomics datasets. 

Three new methods are introduced to compare with results that have been considered in other tables: 

relief F with k = 3, CFS/CFB, and RFS/RFB. 

 

Relief F with k = 3 does achieve better overall ranks than with k = 10, in both the RFS 

and RFB versions (and the combined RFS/RFB strategy used k = 3 in this case). 

However Relief F is still outperformed by EAFS and EAFB. When we look only at 

the cases with DCV > 0.5 (which means we just omit the pancreatic dataset), the 

preference for CFS and CFS/CFB is very clear, with EAFS still providing a robust 

performance with the next-best overall rank. 

 

 

 

4.6 Conclusions and Discussions  
 

In the chapter, we described the idea of Feature Bias (FB) strategies and investigated 

the performance of three FB strategies in comparison with the performance of the 

corresponding Feature Selection (FS) strategies. The three basic strategies compared 

were standard correlation-based FS / FB, Relief-F based FS / FB and EA-based FS / 

FB (in which an initial short EA run is used to identify good features). The 

comparisons were done over a collection of (mainly) many-attribute datasets, largely 

using proteomics data. Our investigation also considered the dataset correlation value 

(DCV) of each dataset – this is simply the largest value, over all features in the dataset, 
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of the statistical correlation between a feature and the target attribute in that dataset. 

Some of the datasets were generated by adding noise to the Ovarian data, so that we 

could obtain datasets with a wide spread of DCV values. By looking at mean 

performance on the test sets, we can claim that the FB strategies tend to outperform 

the corresponding FS strategies. In particular, EAFB has the strongest overall 

performance among these strategies and considering all datasets tested that had low 

DCV, suggesting that it is unwise to put too much trust in basic statistical correlation 

measures for feature selection, especially when the dataset in question has a low DCV. 

However, with high DCV, CFS certainly appears to be the best strategy. Naturally 

these findings are for a particular collection of datasets, but the suggestion is that 

these findings may be more generally true. Future work is warranted to further 

explore the FB strategies and also the relationship between performance and DCV. 

 

We also explored combined FS/FB strategies, in which FS is used first, but it is less 

selective and still leaves the dataset with a large number of features. These 

explorations were focused on the proteomics datasets (which tend to have high DCV) 

and we found that CFS, CFB and CFS/CFB dominated the results. We also found that 

Relief F performance was quite affected by variation in k, but the improvement was 

not able to compete with the overall better methods on the datasets tested. 

 

The drawback of a Feature Bias strategy is that, since no features are eliminated, we 

lose the potential speedup that arises when FS strategies are used. However, in any 

particular application this level of speedup may not be important, either because the 

computation time involved is acceptable in context, or because the importance of 

accurate results outweighs such issues. Meanwhile, it is clear that there is a continuum 

between pure FS and FB strategies which can be explored to find ideal speed/quality 

tradeoffs. For example, FS could be used to reduce an enormous dataset to one that is 

more manageable, but still has so many features that further FS would normally be 

used; however FB, rather than FS, would then be applied to minimise the potential 

damage of removing too many relevant features. 
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Chapter 5  

 

Further Investigation of Relationship between  

DCV and Feature Selection Performance 

 

5.1 Introduction 
 

The problem of selecting relevant features has been the focus of interest for complex 

machine learning and data mining tasks. Feature selection (Singhi S and Liu H (2006)) 

allows for faster model building by reducing the number of features, but also helps 

remove irrelevant, redundant and noisy features, this in turn allows for building 

simpler and more comprehensible classification models with good classification 

accuracy. Much work has been done and many state of the art algorithms are 

proposed to improve the performance for many attribute datasets. Pearson’s 

correlation coefficient, one of simplest and widely used FS method, proves to be 

usually very effective strategy while applying in a filter model, even though it does 

not remove feature redundancy and therefore yields unnecessarily large feature 

subsets. However, when these correlation values tend to be rather low for all features 

(common in many datasets of importance), the basis for pre-selection of any specific 

set of features is undermined, and straightforward feature selection may do more 

harm than good.  

 

Through the observation of experiments, EAFB has the strongest overall performance, 

suggesting that it is unwise to put much trust in basic statistical correlation measures 

for feature selection, especially when the dataset in question has a low DCV. 

However, with highly correlated data, CFS certainly appears to be the best strategy. 

Naturally these findings are only for a particular collection of datasets, however the



CHAPTER 5                                                        FURTHER INVESTIGATION OF STATISTICAL CORRELATION  

Silang Luo                                                 PHD-06-2009                                                             Page  112 

suggestion is that these findings may be more generally true. An interesting 

phenomenon is that FS performance seems related to the DCV of a dataset. The DCV 

may therefore be able to play an important role for choosing the correct FS strategy in 

advance. In this chapter, we will analyse the results more closely to see the 

significance of this effect. 

 

After considering the results of the various experiments, we investigate the 

relationship between the performance of the methods and the DCV by testing for 

correlations between these two variables; we use either Pearson’s correlation 

coefficient or Spearman’s correlation coefficient, depending on the analysis being 

done. Spearman’ correlation is nonparametric, so it tests the correlation between the 

rank-ordering of performance and the rank-ordering of DCV. This allows us to see  

how the relative performance of the different FS methods varies according to DCV. 

E.g. we look at this question for each method X: “is it true that when the DCV is low 

(high) the relative performance of method X tends to be low (high)?”. We also ask 

another question that can be simply expressed as follows, for techniques X that are 

not CFS: “is it true that when the DCV is low (high), method X is likely to be better 

(worse) than CFS? For that question, we interpret the data to provide a simple value 

(0, 1 or 2) concerning the relative performance of X against CFS, and use Pearson’s 

correlation coefficient to examine the correlation between this value and DCV.   

 

In the rest of this chapter, we will first cover some basic background on correlation in 

section 5.2, and then look at the work that tries to answer the questions considered 

above in sections 5.3 and 5.4. After that, in section 5.5 we try to draw a blueprint for 

guiding the choice of FS method for different types of datasets. Section 5.6 discusses 

conclusions and future work. 
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5.2 What is Correlation? 

 

A correlation coefficient tells us whether two variables vary together. The most 

common tests for correlation are the Pearson product-moment correlation coefficient 

and the Spearman rank-order correlation coefficient. Both vary from −1 (perfect 

negative correlation) through 0 (no correlation) to +1 (perfect positive correlation) 3.  

 

As a general "rule of thumb," correlation is often viewed along the following 

continuum (MacFarland T W (1998)): 

 

1) 0.00 to +0.39 = no positive correlation between x and y. 

2) 0.00 to −0.39 = no negative correlation  between x and y. 

3) +0.40 to +0.79 = mild positive correlation between x and y. 

4) −0.40 to −0.79 = mild negative correlation between x and y. 

5) +0.80 to +0.99 = strong positive correlation between x and y. 

6) −0.80 to −0.99 = strong negative correlation between x and y. 

 

Also, the size of sample n is necessary to consider when the significance of a 

correlation was not too obvious. Taken the example, if n = 15, then the correlation of 

−0.413 could be seen as significant, however, it is not when n is below 10.   

 

A high correlation between variables x and y does not imply that one variable is 

causing the other, it simply means that these two variables are related in some way. 

There are many reasons why variable x and y could be highly correlated. A high 

correlation could be the result of (a) x causing y, or (b) y causing x, or (c) a third z 

causing both x and y, or (d) many more variables being involved. The only method 

that can strictly be used to infer cause are experimental methods where one variable is 

manipulated by the research, a second variable is subsequently observed, and all other 

variables are controlled. 

                                                 
3 Note that the negative (− or decrease) and positive (+ or increase) signs in correlation are only used 

to suggest direction.  The negative sign does not mean "bad" and the positive sign does not mean 

"good". 
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Pearson’s correlation coefficient is calculated based on the actual values of the 

variables. In contrast, Spearman’s correlation coefficient is based on the rank ordering 

of the variables. Spearman’s correlation can be used when there is non-parametric 

data, or when parametric data is considered after being processed into ranks. In fact, 

of course these correlation measures play a part in common feature selection 

strategies. Both CFS and CFB select the features that have highest (Pearson’s) 

correlation with the target class.   

 

 

 

5.3 Predictability of Performance from DCV 

  

5.3.1 Introduction of Spearman’s Correlation 

 

Spearman’s rank correlation coefficient (Lyerly (1952)) is appropriate when both 

variables are ordinal. Charles Spearman, the famous quantitative psychologist, 

developed this type of correlation. For both variables, either the data are already 

available in ranks, or the researcher converts the raw data to ranks before the analysis. 

Spearman's Rank-Difference Coefficient of Correlation (sometimes called “rank 

difference coefficient after one method of calculating it”) is viewed as the non-

parametric test for determining if there is an association between phenomena. 

 

The equation for calculating the Spearman’s rank correlation is: 

 

                                                   
)(

6
1

3

2

nn

d
p

−
−= ∑                                                         

Where p denotes the population Spearman correlation and d represents the difference 

between the ranks on variables x and y for individual i, n denotes the number of ranks. 

 

Full details are in the article by Lamb G S (1984). The formula is only strictly 

appropriate when there are no ties among the ranks for either variable. If the number 

of ties goes too high, the formula given is only approximate.  
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The simple procedure for calculating the coefficient is: 

• Collect the data for the two variables, e.g. as two columns of values.  

• Convert the numbers into ranks. Ranking is achieved by giving the ranking '1' 

to the biggest number in a column, '2' to the second biggest value and so on. 

The smallest value in the column will get the lowest ranking. This should be 

done for both sets of measurements.  

• Tied scores are given lower rank value. For example, if we rank the numbers: 

6, 7, 8, 8, 20; the ranks are 5, 4, 2, 2, 1. The two 8s are considered as joint 2nd, 

rather than joint 3rd.   

• Find the difference in the ranks (d): This is the difference between the ranks 

of the two values on each row of the table.  

• Square the differences (d²) To remove negative values and then sum them 

(
2

∑d ) 

 

 

5.3.2 The Link between DCV and Algorithm Performance: Reduced 

Ovarian Datasets 

 

In this section, we will investigate the link between DCV and the performance of each 

algorithm according to Spearman’s correlation. First, on the reduced datasets, we test 

the interaction between DCV and the performance of one algorithm: CFS as an 

example, then we will present all the links and give an analysis about the experiments.  

 

The link between DCV and CFS and other algorithms 

 

Let the variables x, y be given below (x represents dataset DCV, and y represents 

average accuracies from an algorithm). While x = 0.349 and y = 89.76 means the 

following:  for the dataset with DCV= 0.349, the accuracy of machine learning 

experiments on test sets was found to be 89.76%. Table 5.1 illustrates this for CFS, 

where the accuracies are the mean of five test set accuracies on the reduced ovarian 

datasets. 
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ix   (DCV) 0.099 0.035 0.349 0.399 0.449 0.496 0.539 0.598 0.618 0.699 0.784 

iy  (CFS) 79.36 63.2 89.76 86.24 86.24 90.24 77.6 93.2 84.96 87.04 84.16 

 

Table 5.1. Data from our previous experiment. It includes DCV of rOV datasets, and average 

accuracies from CFS.  

 

First we convert the accuracies to ranks, where the highest raw score received a rank 

of 1. Now replace each ix  by its rank value, and similarly foriy . For the current 

example case, this leads to Table 5.2. 

 

 

 

 

 

Table 5.2.   The data from Table 5.1 is expressed here as ranks.  For example, the highest DCV value 

(1) is associated with the 8th best (out of 11) performance from CFS on these datasets. 

 

Recall that we calculate Spearman’s rank correlation coefficient for one algorithm as 

follows, here showing the results for the current example of CFS and reduced ovarian 

datasets:      

 

                                                   )(
2

ii xyabsd −=∑ =269                                        (1) 

                                                       =− nn3 1320                             (2) 
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6
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nn

d
pDCV −

−= ∑
= 0.22                         (3) 

 

When we do the same, for each of a number of different FS methods on the reduced 

ovarian datasets, we get the results shown in Table 5.3. For example, in this table, we 

find that, when measured by performance on the reduced ovarian datasets, the 

correlation level between DCV and the performance of EAFS is 0.21. 

 

 

 

 

ix  (DCV) 11 10 9 8 7 6 5 4 3 2 1 

iy  (CFS) 9 11 3 5 5 2 10 1 7 4 8 
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 CFS CFB RFS10 RFS3 RFB10 RFB3 

DCVp  0.222 0.018 0.027 0 0.1 0 

 EAFS EAFB CRFS NFS CFS/CFB RFS/RFB 

DCVp  0.041 0.21 0.105 0.141 0.255 0.068 

 

Table 5.3. Spearman’s correlation between DCV and performance on 12 algorithms.   

 

As shown in this table, on reduced ovarian datasets, every algorithm has no strong 

significance in its performance correlated with DCV. Almost all cases show positive 

value, so that the tendency is for a correlation that suggests higher DCV value means 

better performance. But in all cases the value is below 0.4, so that we cannot even 

infer a mildly significant correlation. This is quite different from our expectation, but 

as we shall see this is not the same for other groups of datasets. In the case of the 

reduced ovarian datasets, they were of course made to have different values of DCV 

to by adding different amounts of noise, and this means they may not be really 

reflective of real datasets. Before looking at other datasets, we first consider an 

alternative measure to DCV. Of course, DCV is a very simple summary of a dataset, 

because it presents only the highest value of any correlation between an attribute and 

the target attribute. This does not look at the distribution of correlations. We therefore 

explored a simple alternative called the mean data correlation value (MDCV). This is 

the mean value, over all attributes, of the correlation between that attribute and the 

target class.   

 

The Link between MDCV and CFS on Reduced Ovarian Datasets 

 

DCV 0.099 0.035 0.349 0.399 0.449 0.496 0.539 0.598 0.618 0.699 0.784 

MDCV 0.047 0.08 0.205 0.229 0.24 0.245 0.205 0.256 0.288 0.253 0.388 

CFS 79.36 63.2 89.76 86.24 86.24 90.24 77.6 93.2 84.96 87.04 84.16 

 

Table 5.4. The MDCV and the DCV of the reduced ovarian datasets, shown with the mean 

performance on test sets of CFS.  The rank ordering of MDCV will be different from the rank ordering 

of DCV. This is now shown in Table 5.5. 

 

For the reduced ovarian datasets, we show Table 5.4 which gives the MDCV together 

with the DCV so they can be compared. 
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 DCV 11 10 9 8 7 6 5 4 3 2 1 

MDCV 11 10 8 7 6 5 8 3 2 4 1 

CFS 9 11 3 5 5 2 10 1 7 4 8 

 

Table 5.5.  This is the data in Table 5.4 now converted to ranks. 

 

After repeating the processes described above, now considering the correlation 

between MDCV and performance, we calculate the p values for 12 algorithms and 

show the results in Table 5.6. 

 

 CFS CFB RFS10 RFS3 RFB10 RFB3 

MDCVp  0.445 0 0.231 0.222 0.277 0.222 

 EAFS EAFB CRFS NFS CFS/CFB RFS/RFB 

MDCVp  0.318 0.468 0.109 0.272 0.454 0.336 

 

Table 5.6. Spearman’s correlation values for relationship between MDCV and performance on the 

reduced ovarian datasets.  There now is weak significance shown for CFS and EAFB and CFS/CFB. 

 

Now we have the MDCV, this seems to show some slight difference. The MDCV 

carries more information about the correlations within a dataset, and this leads to 

showing some mild significance (above 0.4) in the case of CFS, EAFB and CFS/CFB. 

This is some small support for the idea that a simple summary statistic of the dataset 

can provide predictive idea of FS algorithm performance, but the significance is not 

strong. We return to a reminder that the reduced ovarian datasets may not be 

indicative of real datasets. Adding noise for each attribute in the ovarian data, and also 

limiting the datasets to 1,000 attributes produced the reduced ovarian datasets. As we 

know, the ovarian data has 15,154 attributes, and the noise addition means that, 

especially as the DCV/MDCV becomes lower, the datasets are less and less like 

realistic ones. Next we look at real-world datasets. 

 

The Link between DCV and Algorithm Performance: Real Datasets 

 

Here we directly give the results on five real (proteomics) datasets (cutting out the 

details of calculation). These results appear in Table 5.7. 
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 CFS CFB RFS10 RFS3 RFB10 RFB3 

DCVp  1 0.9 0.6 0.9 0.9 0.9 

MDCVp  0.7 0.6 0.6 0.6 0.6 0.6 

 EAFS EAFB CRFS NFS CFS/CFB RFS/RFB 

DCVp  0.9 0.9 0.8 0.9 1 0.8 

MDCVp  0.9 0.6 0.8 0.6 0.7 0.5 

 

Table 5.7. The Spearman’s correlation values on five proteomics datasets, calculated for each of 12 FS 

algorithms, showing the correlation of DCV with performance, and also of MDCV with performance. 

 

From Table 5.17, the lowest p value is 0.5. This means that all correlations here are 

positive (higher DCV or MDCV associates with better performance), and they are all 

at least mildly significant. The DCV seems to be clearly the better predictor, which 

leads to p values always at least as high as the values from MDCV and often higher. 

Considering the DCV, in all cases (except only for RFS with k = 10), a strong 

correlation is shown between DCV and the performance of the algorithm. When we 

look at the real proteomics datasets, we can therefore see evidence that the DCV can 

be a good predictor of algorithm performance. However we must also recognise that 

the number of datasets is only 5.  But, again, it is supporting evidence that we see the 

strong evidence of correlation in almost all of the 12 algorithm cases. 

 

 

5.3.3 Analysis  

 

Spearman’s correlation has been is use for half century among scientists. The results 

from it could be seen as convincing enough for further discussion and research. It is 

clear that on the datasets produced by us (the reduced ovarian datasets), the 

significance shown by Spearman’s coefficient is not strong. As discussed above, the 

possible reasons for this come from the way we added noise in these datasets, and so 

influencing the relationships in the data. Thus we could not claim significance on 

these “fake” datasets. However, even in these cases, 10 of the 12 methods showed a 

weak positive correlation, which is much more than can be expected by chance. In the 

next main section (5.4) we will use Pearson’s correlation coefficient to investigate the 

relative performance of different FS algorithms. From our experience with the 
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reduced ovarian datasets in this section, we expect it will not be useful to investigate 

them in the next section. So, we will only investigate Pearson's correlation for real 

datasets.  

     

To the contrary, on the original proteomics datasets, there is clear evidence of 

relationship between DCV and the FS method performance. Even if could not entirely 

understand how the DCV affects the performance, we can conclude there is a 

relationship that has been found.  This makes it possible to wonder if the likely 

performance of FS algorithms could be determined in advance by the DCV of the 

dataset. Of course, the performance of one algorithm could be limited into a certain 

range, and it is easy to imagine why CFS always performs very well on highly 

correlated data. However, CFS is not a stable algorithm on the poorly correlated 

datasets, and the correlations show that all of the algorithms perform less well when 

the DCV is low. The important thing, however, is the relative performance between 

different algorithms. Maybe some algorithms will tend to be better than CFS when the 

DCV is low. In the next section, we will use Pearson’s correlation coefficient to look 

at this question of the relative performance of algorithms and how it relates to DCV.   

 

 

 

5.4 Predicting Whether or not a Method may CFS 

 

5.4.1 The Pearson Product-moment Correlation Coefficient  

 

The Pearson product-moment correlation coefficient value is a number between −1 

and 1. It measures the strength and the direction of correlation between two variables 

such as a collection of pairs (f, p), and is calculated as below. 
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 If f and p have a strong positive linear correlation, c is close to +1. In contrast, if c is 

close to −1, it would be towards a perfect negative correlation. If there is no linear 

correlation or only a weak linear correlation, c is close to 0.    

 

If the correlation is strong (usually we define correlation value over 0.8 or below −0.8 

as strong, and between −0.5 and 0.5 as weak), that means a high (positive or negative) 

correlation.  In this section we use this correlation coefficient to test the correlation 

between: (i) the DCV of a dataset, and (ii) a number, 0, 1, or 2, that sums up the 

relative performance of CFS and another algorithm on that dataset. 

 

 

5.4.2 The Link between CFS and the Performances of Other 

Algorithms on Real Data 

 

DCV 
CFS 

Test 

CFB 

Test 

RFS 

Test(10/3) 

RFB 

Test(10/3) 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 

CFS/CFB 

RFS/RFB 

0.185 46.9 51.1 

45.9 

/ 

48.5 

49.0 

/ 

50.0 

50.4 53.5 50.2 56.9 

50.0 

/ 

50.9 

0.602 51.3 47.3 

44.0 

/ 

54 

41.3 

/ 

40 

60.6 44.6 42.0 39.3 

52.0 

/ 

44.0 

0.828 83.5 70.5 

87.0 

/ 

82.3 

71.7 

/ 

77.0 

69.4 66.4 73.5 65.2 

72.3 

/ 

79.4 

0.882 95.1 89.1 

71.8 

/ 

81.3 

85.9 

/ 

91.0 

92.4 84.0 91.8 85.5 

92.6 

/ 

75.0 

0.896 98.8 93.1 

83.6 

/ 

86.8 

91.8 

/ 

91.8 

88.9 93.2 81.0 92.1 

99.0 

/ 

90 

 

Table 5.8.     Original test set performance from 12 algorithms on proteomics datasets. The bold figure 

gives the best performance from any algorithm on the dataset in that row.  
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As we found previously in this chapter, examination of results on the reduced ovarian 

datasets shows that they are probably not useful for understanding what the situation 

is with real datasets. So in this experiment, we only do tests on the real datasets. The 

procedure includes three parts: 

 

First, of course, we assemble all of the relevant data. This is summarised in Table 5.8. 

This table provides the performance (test set accuracy averaged over 5 runs) of each 

of the 12 algorithms we have been considering in this chapter. In this case we are 

looking only at the five real proteomics datasets. 

 

Next we convert the data into values that show the relative performance against CFS.  

If the performance of an algorithm is better than CFS, we represent this with the value 

2. If it is worse, we represent this with the value 0. If the difference is small (less than 

0.1%) we represent this with the value 1. Table 5.9 shows these relative-to-CFS 

performance values of the 11 (non-CFS) algorithms based on the data of Table 5.8. In 

fact, it turns out in the case of the proteomics datasets that the performances compared 

with CFS were always more than 0.1% different, so Table 5.9 only contains values 0 

and 2. 

 

DCV Rank CFB RFS10 RFS3 RFB10 RFB3  

0.185 1 2 0 2 2 2  

0.602 2 0 0 2 0 0  

0.828 3 0 2 0 0 0  

0.882 4 0 0 0 0 0  

0.896 5 0 0 0 0 0  

DCV Rank EAFS EAFB CRFS NFS CFS/CFB RFS/RFB 

0.185 1 2 2 2 2 2 2 

0.602 2 2 0 0 0 2 0 

0.828 3 0 0 0 0 0 0 

0.882 4 0 0 0 0 0 0 

0.896 5 0 0 0 0 2 0 

 

Table 5.9. Representing the performance data in Table 5.8 by 0, 1, or 2, depending on whether an 

algorithm performed worse, similar, or better than CFS on the proteomics datasets.   
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Next, we calculate the Pearson’s correlation coefficient between the DCV and the 

0/1/2 performance number. Notice that we cannot use Spearman’s coefficient here, 

because if we looked at the performance numbers in terms of ranks, there would be 

too many ties. In fact we do this in two ways to get two different Pearson’s 

coefficients. In one case, we represent the DCV as the actual DCV value; in the other 

case we represent the DCV by its rank value. These correlation values are all shown 

in Table 5.10. 

 

As Table 5.10 shows, there are many correlation values that seem to be strong. In all 

cases except for RFS10, there seems to be a clear negative correlation between the 

DCV (or the rank of DCV) and the relative-to-CFS performance indicator. That is, the 

lower the DCV, the more confident we are that the algorithm will be better than CFS; 

the higher the DCV, the more confident we are that the algorithm will be worse than 

CFS. Also, the values seem to be more significant when they are generated by the 

rank of the DCV values than by the DCV values themselves. 

 

 CFB RFS10 RFS3 RFB10 RFB3 NFS 

DCV −0.707 0 −0.866 −0.707 −0.707 −0.707 

Rank −0.919 0.278 −0.867 −0.919 −0.919 −0.919 

 EAFS EAFB CRFS CFSB RFSB  

DCV −0.866 −0.707 −0.707 −0.289 −0.707  

Rank −0.867 −0.919 −0.919 −0.536 −0.919  

 

Table 5.10.  For each of the 11 non-CFS methods, this table shows the correlation between the dataset 

DCV (or the rank of DCV) and the relative performance of the method and CFS (0, 1 or 2).   

 

However, there are only 5 datasets involved here, and we need to be more careful 

about what values are significant. To investigate this, we notice that there are only 32 

possible values of the correlation coefficient in each case (based on DCV or based on 

rank of DCV). This is because there are only 5 datasets, and only 2 performance 

values (0 and 2). So, there are precisely 32 different possible ways to distribute the 

performance values against the datasets.  Table 5.11 shows these values. It shows 16 

of the values in each case. The other 16 are the same set of values multiplied by −1. 
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DCV DCV Rank Rank 

0.0 

0.707 

0.354 

0.866 

0.0 

0.577 

0.289 

0.866 

0.354 

0.289 

0.0 

0.577 

0.289 

0.289 

0.0 

0.707 

0.143 

0.214 

0.193 

0523 

0.111 

0.441 

0.42 

0.919 

0.0 

0.405 

0.379 

0.64 

0.278 

0.558 

0.536 

0.867 

 

Table 5.11.  The 16 different absolute values that can be obtained, when finding the correlation 

between DCV (or rank of DCV) and the performance-against-CFS indicator (either 0 or 2) on five 

datasets.    

 

When we look at Table 5.11 and also consider the negative values, we can make the 

following notes. When the correlation is based on DCV, there are only 2 cases (out of 

32) where the value is higher than 0.8. This is below 7%. So we can say that, if the 

value is above 0.8 (or below −0.8) we can be more than 90% sure that the value could 

not have been obtained by chance, and so there is a real positive (or negative) 

correlation. For other values we would have to conclude that significance is not really 

demonstrated. For values above 0.7, for example, we can have only 75% confidence. 

This shows a weak significance, but is not enough for a firm conclusion. When we 

look at the correlation values that are based on rank of DCV, the situation is very 

similar. If the value is above 0.8 (or below −0.8) we can conclude a positive (or 

negative) correlation.  

 

We illustrate this graphically in Figure 5.1. It shows the absolute values available for 

the correlation values (in Table 5.11), each reported two times for its positive and 

negative form. What we are saying in the above text is that the four highest values on 

the right at each plot are the significant ones. 
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0
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0.9
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DCV Rank

 

 
Figure 5.1. The distribution of all the possible correlation values, when there are only 5 datasets and 

two performance indicators (two values for the second variable). On the left are the values that come 

from using DCV as the first variable, on the right are the values that come from using the rank of DCV 

(that is, just the numbers 1 to 5) for the first variable. 
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Figure 5.2. The distribution of all the possible correlation values, when there are only 5 datasets and 

two performance indicators (two values for the second variable). On the left are the values that come 

from using DCV as the first variable, on the right are the values that come from using the rank of DCV 

(that is, just the numbers 1 to 5) for the first variable. 
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In Figure 5.2, which is to the same scale as Figure 5.1, we can see the correlation 

values that we saw in Table 5.11. This helps to illustrate the general level of 

significance in Table 5.11. 

  

Therefore we can see a general tendency towards the significance of the findings. A 

clear statement that we can make, for example, are that the performance of EAFS vs 

CFS is strongly negatively correlated with DCV; that is, as the DCV reduces, the 

EAFS is more likely to outperform CFS. The same is true for RFS with k = 3.   

 

 

5.4.3 Interim Summary 

 

From all tables above, we should conclude that, for the reduced ovarian datasets, there 

is no significance in the relationship between the DCV (or the MDCV) and the 

performance of any of the FS algorithms we have tested. However, there are different 

conclusions when we look at real datasets.  In all cases, except for RFS with k = 10, 

when we use the DCV, we find that higher DCV means higher performance of the 

algorithm. That is, there is a positive correlation. Also, when we look at real datasets 

and at the different question of the correlation between DCV and the relative 

performance of an algorithm against CFS, we again find significant results. Especially 

when we base correlation on the rank of DCV, we can see a strong negative 

correlation between DCV and the chance that CFS is better than another FS method. 

In other words, this is the same as a strong positive correlation between DCV and the 

chance that another FS method is better than CFS. This is most clearly true when the 

other algorithm is EAFS.  

 

In the rest of the chapter we look more into how we might use the DCV as a guide to 

choosing a good FS method for a given dataset. 
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5.5 A Simple Decision Process for FS Method Selection 

 

5.5.1 Introduction 

 

Faced with a new dataset with many thousands of attributes, it would be of great help 

to a scientist to have good advice about what FS method to choose for that dataset. 

Usually, this decision could be made by referring to recent papers about feature 

selection, and finding methods that are popular and methods that seem to work well. 

But we can claim that this might miss important issues. Just because an FS method 

has worked well on some datasets, this does not mean it is the best FS method for the 

data in question. As we have seen, the DCV of the dataset could be seen as an 

important issue in this decision. In this part of the chapter we review the results that 

we have found from experiments, and see if this can be used to provide a tentative 

decision process. This process will only be relevant for the FS methods studied in the 

thesis. Also it may be only relevant for the datasets used in this thesis. But we can 

claim that this is likely to generalise to some extent. Of course, this way to produce a 

decision process can be repeated for other methods and datasets. 

 

 

5.5.2 A Review of Performances on all Datasets 

 

Table 5.12 records all the accuracies from all datasets used in the thesis. From this 

table we could easily find which algorithm is the best choice for which dataset. But 

for exploring deeper relationships between the DCV and the algorithm, we should 

rank the accuracies according to the performance of each algorithm and separate the 

datasets in a more manageable way.   

 

General notes on following Table 5.12 to Table 5.21 are 1), “* *” highlight the best 

three algorithms for each data; 2), The lower average rank interprets the better 

performance, where rank 1 is best (for a dataset/row) and rank 8 is worst; 3), Bold 

average rank represents the best average rank overall algorithms (the best algorithm 

for this group of datasets).  
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DCV 
CFS 

Test 

CFB 

Test 

RFS 

Test 

RFB 

Test 

EAFS 

  Test 

EAFB 

Test 

CRFS  

Test 

NFS 

Test 

0.280 78.709 90.150 90.206 90.262 90.306 90.273 89.994 92.131 

0.378 85.264 89.945 88.788 89.705 89.805 89.511 89.966 89.805 

0.381 80.412 91.697 89.627 93.044 89.594 93.122 92.521 93.122 

0.388 86.722 89.182 89.538 89.560 89.683 89.649 88.914 89.215 

0.451 88.837 90.206 90.762 90.161 89.872 90.295 90.462 89.816 

0.512 89.438 90.095 90.306 90.495 90.929 90.262 90.006 90.395 

0.513 94.224 92.51 90.918 93.311 90.774 93.734 94.28 93.678 

0.560 91.497 91.241 91.664 91.931 91.263 92.354 91.875 92.31 

0.567 99.065 99.154 93.155 99.032 92.498 98.965 99.221 93.745 

0.663 92.577 93.767 91.107 91.875 91.152 93.378 93.467 93.089 

0.602 51.333 47.334 44.0 41.333 60.667 44.666 42.0 39.333 

0.828 83.53 70.588 87.059 71.765 69.412 66.471 73.529 65.294 

0.882 95.168 89.128 71.812 85.906 92.483 84.027 91.811 85.503 

0.099 79.36 79.2 69.12 78.080 80.16 78.24 69.12 78.4 

0.185 46.904 51.190 45.952 49.047 50.476 53.571 50.238 56.904 

0.335 63.2 64.16 64.16 63.36 64.0 64.16 62.4 63.36 

0.349 89.76 88.480 83.04 90.720 89.12 88.96 87.52 91.68 

0.399 86.24 91.039 84.16 91.2 89.76 92.0 90.72 90.24 

0.449 86.24 92.640 82.72 89.760 91.04 91.679 85.6 88.64 

0.496 90.24 89.120 87.52 93.76 91.04 91.36 90.72 88.96 

0.51 91.523 70.728 64.635 71.1258 85.298 68.079 78.145 91.258 

 0.539 77.6 76.96 65.28 78.56 74.56 76.16 65.12 75.52 

0.598 93.2 90.88 86.4 91.36 92.32 92.64 86.56 90.24 

0.618 84.96 78.4 65.76 76.32 74.88 79.52 64.96 77.12 

0.699 87.04 88.32 75.2 88.32 88.0 89.44 80.96 90.4 

0.784 84.16 86.080 68.0 84.960 79.68 85.44 68.64 82.56 

0896 98.88 93.12 83.68 91.84 88.96 93.28 81.0 92.16 

 

Table 5.12. Summary of test set results for the main 8 FS and FB methods. This table records the test 

results (average over 5 test sets) for all the datasets used in the thesis. The purpose for building this 

table is to try to discovery the hidden information which could be used in a decision process. 

 

Table 5.13 shows us the data from Table 5.12, but now it is expressed in terms of 

ranks, where “1” is best and “8” is worst for any particular dataset.  
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DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.099 *2* *3* 7 6 *1* 5 7 4 rOV1 

0.185 7 *3* 8 6 4 *2* 5 *1*  PA 

0.335 8 *3* *1* 6 4 *2* 4 6 rOV2 

0.349 *3* 6 8 *2* 4 5 7 *1* rOV3 

0.399 7 *3* 8 *2* 6 *1* 4 5 rOV4 

0.449 6 *1* 8 4 *3* *2* 7 5 rOV5 

0.496 5 6 8 *1* 4 *2* *3* 7 rOV6 

0.451 8 4 *1* 5 6 *3* *2* 7 OP1 

0.388 8 6 4 *3* *1* *2* 7 5 OP3 

0.381 8 5 6 *3* 7 *1* 4 *1* OP5 

0.378 8 *2* 7 5 *3* 6 *1* *3* OP9 

0.280 8 6 5 4 *2* *3* 7 *1* OP8 

0.51 *1* 6 8 5 *3* 7 4 *2* IO 

0.539 *2* *3* 7 *1* 6 4 8 5 rOV7 

0.598 *1* 5 8 4 3 *2* 7 6 rOV8 

0.618 *1* *3* 7 5 6 *2* 8 4 rOV9 

0.699 6 *3* 8 *3* 5 *2* 7 *1* rOV10 

0.784 4 *1* 8 *3* 6 *2* 7 5 rOV11 

0896 *1* *3* 7 5 6 *2* 8 4 OV 

0.663 5 *1* 8 6 7 *3* *2* 4 OP7 

0.567 *3* *2* 7 4 8 5 *1* 6 OP0 

0.560 6 8 5 *3* 7 *1* 4 *2* OP2 

0.513 *2* 6 7 5 8 *3* *1* 4 OP4 

0.512 8 6 4 *2* *1* 5 7 *3* OP6 

0.602 *1* 4 8 5 *2* 7 *3* 6 CNS 

0.828 *2* 5 *1* 4 6 7 *3* 8 AML/ALL 

0.882 *2* *3* 5 7 *1* 4 6 8 LUNG 

Total 123 102 171 110 120 90 134 114  

Average 4.55 3.77 6.33 4.07 4.44 3.33 4.96 4.22  

 

Table 5.13. The information from Table 5.12, but in terms of ranks. 

 

If we look at the bottom row of Table 5.13 we can see that the ranks of EAFB and 

CFB are the best overall. That means, if the correlation values and the size of dataset 

are unknown, the best two methods to consider are EAFB and CFB. However, the 

other methods generally perform well, except for RFS. But even RFS is the best 

ranked for some datasets. Overall, it is clearly better to consider the DCV of the 
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dataset first before choosing the method, and also to consider the size (number of 

features) of the dataset.    

 

To further investigate, we divide the datasets into several groupings, as follows: 

   

1. By correlation: DCV less than 0.5; 

2. By correlation: DCV more than 0.5; 

3. By number of features:  less than 1,000; 

4. By number of features:  more than 1,000; 

5. DCV less than 0.5, less than 1,000 features; 

6. DCV less than 0.5, more than 1,000 features; 

7. DCV more than 0.5, less than 1,000 features; 

8. DCV more than 0.5, more than 1,000 features. 

 

Now we look at each group in turn.  

 

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.099 *2* *3* 7 6 *1* 5 7 4 rOV1 

0.185 7 *3* 8 6 4 *2* 5 *1*  PA 

0.335 8 *3* *1* 6 4 *2* 4 6 rOV2 

0.349 *3* 6 8 *2* 4 5 7 *1* rOV3 

0.399 7 *3* 8 *2* 6 *1* 4 5 rOV4 

0.449 6 *1* 8 4 *3* *2* 7 5 rOV5 

0.496 5 6 8 *1* 4 *2* *3* 7 rOV6 

0.451 8 4 *1* 5 6 *3* *2* 7 OP1 

0.388 8 6 4 *3* *1* *2* 7 5 OP3 

0.381 8 5 6 *3* 7 *1* 4 *1* OP5 

0.378 8 *2* 7 5 *3* 6 *1* *3* OP9 

0.280 8 6 5 4 *2* *3* 7 *1* OP8 

Total  78 43 73 48 45 34 58 46  

Average  6.5 3.58 6.08 4.0 3.75 2.83 4.83 3.83  

 

Table 5.14. Twelve datasets with DCV < 0.5 that have been tested in our experiments. Some are from 

reduced ovarian datasets, and some from Optical digit datasets.  
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Table 5.14 shows the results on all datasets with DCV less than 0.5. It seems clear 

from this that EAFB is the best in this case. If we consider FS methods only (in the 

case that we are worried about the computation time of FB methods on very large 

datasets), then EAFS is best. 

 

Table 5.15 shows the results on all datasets with DCV > 0.5. The results exhibited 

from this table, reveal the CFS is still the best solution while the correlation of dataset 

is above 0.5. EAFB has good performance on these datasets, but the first choice is 

clearly CFS.   

  

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.51 *1* 6 8 5 *3* 7 4 *2* IO 

0.539 *2* *3* 7 *1* 6 4 8 5 rOV7 

0.598 *1* 5 8 4 3 *2* 7 6 rOV8 

0.618 *1* *3* 7 5 6 *2* 8 4 rOV9 

0.699 6 *3* 8 *3* 5 *2* 7 *1* rOV10 

0.784 4 *1* 8 *3* 6 *2* 7 5 rOV11 

0896 *1* *3* 7 5 6 *2* 8 4 OV 

0.663 5 *1* 8 6 7 *3* *2* 4 OP7 

0.567 *3* *2* 7 4 8 5 *1* 6 OP0 

0.560 6 8 5 *3* 7 *1* 4 *2* OP2 

0.513 *2* 6 7 5 8 *3* *1* 4 OP4 

0.512 8 6 4 *2* *1* 5 7 *3* OP6 

0.602 *1* 4 8 5 *2* 7 *3* 6 CNS 

0.828 *2* 5 *1* 4 6 7 *3* 8 AML/ALL 

0.882 *2* *3* 5 7 *1* 4 6 8 LUNG 

Total 45 59 98 62 75 56 76 68  

Average 3.0 3.93 6.53 4.13 5.0 3.73 5.06 4.53  

 

Table 5.15. Ranks of performance per dataset for each FS/FB strategy, represented by correlation value 

(DCV above 0.5).  

 

When we look at datasets with < 1,000 features, in Table 5.16, there are three 

methods with close performance. It is interesting that the best method seems to be 

NFS. That is, if there are not many features, it is clearly best to make sure that all of 

them are used. If there are not many features, there seems to be no advantage to doing 
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feature selection. It is also interesting that CFS seems to have the worst performance 

on these datasets. This is probably partly because the DCV of these datasets tends to 

be low. 

 

Most of these datasets come from the optical digital data. The result for datasets less 

than 1,000 features is not very clear. Three algorithms (NFS, CRFS, EAFB) have 

similar good performance. Our suggestion for this kind of datasets is to apply three 

them if possible, and if only one method will be applied, it will be Null–feature –

selection method. The majorities are above 0.5, but they do not rise very far, to a 

maximum of 0.663. 

 

DCV 
CFS 

Test 

CFB 

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.663 5 *1* 8 6 7 *3* *2* 4 OP7 

0.567 *3* *2* 7 4 8 5 *1* 6 OP0 

0.560 6 8 5 *3* 7 *1* 4 *2* OP2 

0.513 *2* 6 7 5 8 *3* *1* 4 OP4 

0.512 8 6 4 *2* *1* 5 7 *3* OP6 

0.51 *1* 6 8 5 *3* 7 4 *2* IO 

0.451 8 4 *1* 5 6 *3* *2* 7 OP1 

0.388 8 6 4 *3* *1* *2* 7 5 OP3 

0.381 8 5 6 *3* 7 *1* 4 *1* OP5 

0.378 8 *2* 7 5 *3* 6 *1* *3* OP9 

0.280 8 6 5 4 *2* *3* 7 *1* OP8 

Total 65 52 62 45 53 39 40 38  

 5.90 4.72 5.63 4.09 4.81 3.54 3.63 3.45  

 

Table 5.16.  Ranks of performance on the datasets less than 1,000 features. 

 

Table 5.17 shows the performance on all datasets with 1,000 or more features. EAFB 

is the best in this case, with CFB second best.  
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DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.099 *2* *3* 7 6 *1* 5 7 4 rOV1 

0.185 7 *3* 8 6 4 *2* 5 *1*  PA 

0.335 8 *3* *1* 6 4 *2* 4 6 rOV2 

0.349 *3* 6 8 *2* 4 5 7 *1* rOV3 

0.399 7 *3* 8 *2* 6 *1* 4 5 rOV4 

0.449 6 *1* 8 4 *3* *2* 7 5 rOV5 

0.496 5 6 8 *1* 4 *2* *3* 7 rOV6 

0.539 *2* *3* 7 *1* 6 4 8 5 rOV7 

0.598 *1* 5 8 4 3 *2* 7 6 rOV8 

0.618 *1* *3* 7 5 6 *2* 8 4 rOV9 

0.699 6 *3* 8 *3* 5 *2* 7 *1* rOV10 

0.784 4 *1* 8 *3* 6 *2* 7 5 rOV11 

0896 *1* *3* 7 5 6 *2* 8 4 OV 

0.602 *1* 4 8 5 *2* 7 *3* 6 CNS 

0.828 *2* 5 *1* 4 6 7 *3* 8 AML/All 

0.882 *2* *3* 5 7 *1* 4 6 8 LUNG 

Total 58 55 107 64 67 51 94 76  

Average 3.62 3.43 6.68 4.0 4.18 3.18 5.87 4.75  

 

Table 5.17. Ranks of performance on the datasets no less than 1,000 features. 

 

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.451 8 4 *1* 5 6 *3* *2* 7 OP1 

0.388 8 6 4 *3* *1* *2* 7 5 OP3 

0.381 8 5 6 *3* 7 *1* 4 *1* OP5 

0.378 8 *2* 7 5 *3* 6 *1* *3* OP9 

0.280 8 6 5 4 *2* *3* 7 *1* OP8 

Total 40 23 23 20 19 15 21 17  

Average 8.0 4.6 4.6 4.0 3.8 3.0 4.2 3.4  

 

Table 5.18. Ranks for datasets with DCV < 0.5 and with <1000 features. EAFB obtains the lowest 

average rank 3, and CFS performs very badly as the worst algorithm in each case.   

 

When we look at datasets with DCV < 0.5 and with < 1,000 features in Table 5.18, 

there are some clear findings. Although, these must be taken to be quite tentative 
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because the number of datasets is small and they are of the same general type. The 

finding is that EAFB is clearly the best method, and NFS is also very good. We saw 

similar results for table 5.16 (all datasets with < 1,000 features), but with DCV < 0.5 

we see the poor performance of CFS more emphasised. 

 

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.663 5 *1* 8 6 7 *3* *2* 4 OP7 

0.567 *3* *2* 7 4 8 5 *1* 6 OP0 

0.560 6 8 5 *3* 7 *1* 4 *2* OP2 

0.513 *2* 6 7 5 8 *3* *1* 4 OP4 

0.512 8 6 4 *2* *1* 5 7 *3* OP6 

0.51 *1* 6 8 5 *3* 7 4 *2* IO 

Total 25 29 39 25 34 24 19 21  

Average 4.16 4.83 6.5 4.16 5.66 4.0 3.16 3.5  

 

Table 5.19. Ranks for datasets with DCV > 0.5 and with <1000 features. The best algorithm is now 

CRFS and 2nd best is NFS. Performance of EAFS is quite poor, but EAFB is quite good.  

 

For datasets with < 1,000 features but with DCV > 0.5 (Table 5.19), the results are 

interesting and different, with CRFS now seeming to be the best algorithm. But again, 

this is a small collection of datasets. 

  

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.099 *2* *3* 7 6 *1* 5 7 4 rOV1 

0.185 7 *3* 8 6 4 *2* 5 *1*  PA 

0.335 8 *3* *1* 6 4 *2* 4 6 rOV2 

0.349 *3* 6 8 *2* 4 5 7 *1* rOV3 

0.399 7 *3* 8 *2* 6 *1* 4 5 rOV4 

0.449 6 *1* 8 4 *3* *2* 7 5 rOV5 

0.496 5 6 8 *1* 4 *2* *3* 7 rOV6 

Total 38 25 48 27 26 19 37 29  

Average 5.42 3.57 6.85 3.85 3.71 2.71 5.28 4.14  

 

Table 5.20. Ranks for datasets with DCV < 0.5 and with > 1000 features. EAFB again exhibits strong 

ability for dealing with DCV less than 0.5, however many features. 
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Table 5.20 shows the situation when we have DCV < 0.5 and > 1,000 features. EAFB 

shows strong performance and CFS shows weak performance. The second best 

method is CFB and the third is EAFS. EAFS is therefore the best of the pure FS 

methods in this situation. 

 

Finally, Table 5.21 shows us the results for the datasets with DCV > 0.5 and with      

> 1000 features. The strong performance of CFS in this case is obvious from this table. 

 

DCV 
CFS 

Test 

CFB  

Test 

RFS 

Test 

RFB 

Test 

EAFS 

Test 

EAFB 

Test 

CRFS 

Test 

NFS 

Test 
Dataset 

0.539 *2* *3* 7 *1* 6 4 8 5 rOV7 

0.598 *1* 5 8 4 3 *2* 7 6 rOV8 

0.618 *1* *3* 7 5 6 *2* 8 4 rOV9 

0.699 6 *3* 8 *3* 5 *2* 7 *1* rOV10 

0.784 4 *1* 8 *3* 6 *2* 7 5 rOV11 

0896 *1* *3* 7 5 6 *2* 8 4 OV 

0.602 *1* 4 8 5 *2* 7 *3* 6 CNS 

0.828 *2* 5 *1* 4 6 7 *3* 8 AML/All 

0.882 *2* *3* 5 7 *1* 4 6 8 LUNG 

Total 20 30 59 37 41 32 57 47  

Average 2.22 3.33 6.55 4.11 4.55 3.55 6.33 5.22  

 

Table 5.21. Ranks for datasets with DCV > 0.5 and with > 1000 features. CFS has clearly the strongest 

performance in this case. 

 

As shown in the Tables 5.14 to 5.21, the algorithm EAFB obtains the lowest overall 

rank, with performance usually among the top 3 for any dataset.  Among the seven 

tables, the EAFB was the best performing method four times, and its worst 

performance was third, in two cases. EAFB is certainly a promising practical feature 

reduction method for common machine learning algorithms.   
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5.5.3 Summary 

 

Table 5.22 gives an overall summary of the findings of the previous section. Figure 

5.3 shows a graphical view of Table 5.22. 

  
 Group of datasets CFS CFB RFS RFB EAFS EAFB CRFS NFS 

1 ALL 4.55 3.77 6.33 4.07 4.44 3.33 4.96 4.22 

2 DCV < 0.5 6.5 3.58 6.08 4.0 3.75 2.83 4.83 3.83 

3 DCV > 0.5 3.0 3.93 6.53 4.13 5.0 3.73 5.06 4.53 

4 Features less 1000 5.9 4.72 5.63 4.09 4.81 3.54 3.63 3.45 

5 Features more 1000 3.62 3.43 6.68 4.0 4.18 3.18 5.87 4.75 

6 DCV < 0.5 & Features < 1000 8 4.6 4.6 4.0 3.8 3.0 4.2 3.4 

7 DCV > 0.5 &  Features < 1000 4.16 4.83 6.5 4.16 5.66 4.0 3.16 3.5 

8 DCV <0.5 & Features > 1000 5.42 3.57 6.85 3.85 3.71 2.71 5.28 4.14 

9 DCV >0.5 &  Features > 1000 2.22 3.33 6.55 4.11 4.55 3.55 6.33 5.22 

 

Table 5.22. Nine groups of datasets are shown to divide categories of performance. The bold entry in 

each row shows the best algorithm for the type of data shown in that row.   
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Figure 5.3. A graphical view of the data in Table 5.22. The different conditions on the x axis are the 

condition numbers in the left hand column of Table 5.22. The vertical distances give an idea of how 

clear the choice is for each condition. For example, in condition 9, the lowest (best) point is for CFS, 

showing that CFS is a clear best choice when DCV > 0.5 and features > 1000. The brown circle for 

EAFB is generally in a good position for all of the conditions.  
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In the conditions 1 (all datasets) and 2 (DCV < 0.5), EAFB seems the best algorithm 

on the datasets tested in this thesis. FB strategies overall tend to do well, as we can 

see in these results.  In condition 3, the result reveals the CFS is still the best solution 

while the correlation of dataset is above 0.5. Beyond that, EAFB also has good 

performance on those datasets. The result for datasets with less than 1,000 features 

(condition 4) is not very clear, three algorithms (EAFB, CRFS, NFS) have similar 

performance. Our tentative suggestion for this kind of dataset is to test all three of the 

suggest methods if possible. But if only one method must be applied, it can simply be 

NFS (which is, do not do feature selection). In condition 5, EAFB is again the best 

solution for part of datasets, but CFB is close behind. EAFB is the best solution for all 

the conditions with correlation below 0.5 (conditions 2, 6 and 8). The combined 

strategy, CRFS (which we expect could useful combine the information from CFS 

and RFS) is the best overall for condition 7. In condition 9, CFS is clearly the best 

method. 

 

 

5.5.4 A Suggested Decision Process 

 

The experiments above show EAFB to be competitive in many different conditions. 

Because EAFB makes use of all the features in the training data, it avoids the possible 

problems of removing from consideration features that might be good. At the same 

time, it gives bias towards features that were found to be useful according to a short 

EA run beforehand. But in some conditions EAFB is clearly not the best method. The 

sum of the observations above comes to a simple decision process that we can 

summarise by Figure 5.4.   

 

 

Figure 5.4. A basic decision process suggested by our findings. The condition numbers on the arrows 

refer to the condition numbers in Table 5.22. 

New 

Dataset 
Calculate the DCV and 

Number of Features 

EAFB 

CRFS 

EAFB 

CFS 

6) 

7) 

8) 

9) 
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This decision process is certainly not claimed to be generally true. Far more research 

needs to be done if a confident and accurate and useful decision process of this type 

can be considered for general use. But, based on the datasets we looked at and the FS 

and FB methods we studied here, the result is as provided in Figure 5.4. It can be 

easily argued that the validity of this decision process will extend to at least datasets 

that are similar to those studied here, for example, proteomics datasets of similar size. 

For such large proteomics datasets with low DCV (condition 8), we can feel quite 

confident that EAFB will be a much better choice than CFS.  

 

 

 

5.6 Brief Discussion 

The comparisons in this chapter were done over a collection of (mainly) many-

attribute datasets, largely using proteomics data. The Feature bias strategies are very 

competitive compared to the traditional feature selection methods. EAFB seems to 

deserve more consideration than the other two FB strategies. One reason for this is the 

advantage of all FB methods, which is that they do not throw away any features. 

Another reason for this is that EAFB does not use a linear, simplified method to find 

bias values for features. The short EA run beforehand (from which features are chosen 

from the final population) is able (unlike, e.g., CFS) to exploit nonlinear relationships 

between subsets of features, through the standard evolutionary process. We can see 

that this might be especially useful when the DCV is low. That is, when the DCV is 

low, if there are relationships to be found between features then these relationships 

will not be obvious ones. They will not be the type of relationships that can be 

discovered by standard correlation methods. 

  

We finished this chapter with the simple decision process that arises from our results. 

The reason for presenting this is mainly to present the following general idea, not the 

specific decision process itself. The idea is: the best choice of feature selection 

method for a dataset will depend on features of that dataset. To choose a good feature 

selection method, it is better to choose a method based on a process that understands 
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the dataset, not based on, for example, publications that show that a FS is good, 

without considering the relationship between the dataset in that publication and the 

dataset in question. But, there is no guidance available, as we found in literature 

review, that considers how to choose the FS method based on statistical features of 

the dataset. In this thesis we show that statistical features of the dataset are important 

for this choice, and we show a simple decision process based on the datasets we 

studied and the algorithms we implemented. With more datasets and algorithms 

studied, a more refined simple decision process could be produced which will be a 

good guide for researchers who want to choose feature selection methods.      
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Chapter 6 

 

Discussion and Future Work 

 

6.1 Discussion  

 

The large amount of data being increasingly produced, which may contain valuable 

hidden knowledge, continues to grow fast. Intuitively, the data stored in a database 

could be used to improve the decision-making process of an organization. Thus, there 

is an obvious demand for (semi-) automatic methods for extracting knowledge from 

data. This is the emergence of a now well-established field called data mining and 

knowledge discovery (Weiss S M and Indurkhya N (1998)). We focused on the data 

mining problem of classification. Bioinformatics data contains many very important 

classification problems, and it has been given increased attention recently for its 

complexity and size. Often, with the number of attributes so large in bioinformatics 

data, it is very hard to deal with for machine learning methods. However, the key 

information we could discover in bioinformatics data could help understand diseases 

better, and save the lives of patients.  So, one task for computer science and machine 

learning is to find ways to find the relevant information among large datasets with 

many irrelevant features. Actually this includes the assumption that there are many 

irrelevant features, and that reduction of the number of attributes can be helpful at all. 

But this assumption is found to be true in many empirical studies so far.  

 

Also, it is good if the discovered knowledge is comprehensible for the user. If the 

discovered “knowledge” is just a black box, which makes predictions without 

explaining them, the user may not trust it (Michie D, Spiegelhalter D J and Taylor C 

C (1994)). In the prediction task of bioinformatics, we hope the features which are 

explored in the data will help the biologists to design new models of gene expression 

or protein 3D structure. The major task of computer scientists is to find
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good features, however, the goal of biologist is to build a model to understand these 

features.  

 

Thus we turn to feature selection methods, which are a key type of method for the 

general problem of dealing with many attribute datasets in general, not only 

bioinformatics. Feature selection methods based on basic statistics can find good 

features for many datasets, and this has been proven to very successful. The standard 

method is CFS (correlation-based feature selection), which directly discovers the 

features that are highly correlated with the target attribute in the dataset. High 

correlation means probably high performance when that set of features is used to 

represent the dataset in a machine learning process.   

 

There are alternative methods. Relief F, for example, considers the distances between 

features. This strategy is good at looking for the most distinctive features among all. 

However, it is not always clear that distinctive features are useful for accurate 

classification.   

 

Another strategy is to use an Evolutionary Algorithm (EA) for feature selection. In 

this method, we simply run the EA on the full feature set, and use the EA as the 

machine learning method. But, instead of using the evolved rules (or other structures) 

as the model to use for prediction, we just look at the features used in that model, in 

fact in all the models in the final population of the short EA run. In this way, 

indirectly, a number of features are ‘selected’ by the EA. The EA, over a number of 

iterations, has selected and preferred subsets of features that seem to work well 

together for the prediction task.  

 

We tested these strategies on several datasets, and we tried to understand the results 

by looking at a simple statistical feature of each dataset: the dataset correlation value 

(DCV). We found that CFS was a good strategy, but only when the DCV was high. 

For datasets with low DCV, EAFS, and sometimes other methods, were better 

strategies. Considering these results, one clear thing is that the selection of features 

based on correlation is risky. The poor results for CFS on datasets with low DCV 

mean that (most likely) some features are being thrown away because they have low 

correlation with the target class, but these features can be important to get good 
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accuracies. This leads to the idea that maybe it is good to never throw any features 

away, and this leads to the idea of using feature bias (FB) methods.  

 

An FB method keeps all features selected, so all features are still available to the 

machine learning method. But, FB provides guidance to the machine learning method 

(it gives bias values) that can be used by the machine learning method to favour some 

features over others. Experiments showed that this approach performs very well.   

 

We looked again at the results of all of the experiments, and tested the significance of 

two findings. One finding was that there seems to be clear correlation between the 

DCV and the performance of an FS algorithm (for any FS algorithm). Another 

finding was that, when the DCV is low, certain other algorithms are clearly better 

than CFS. We investigated the significance of these findings, and found that the 

statistics were generally in support of these findings, especially when we consider the 

real-world datasets. Finally, we derived a simple decision process from all of our 

results. This provides, based on looking at the DCV of a dataset and a basic 

consideration of the number of features, guidance about which FS method to choose, 

given the FS methods that we have studied. The decision process we derive is a set of 

very simple rules, and they only choose among the FS methods we have studied. The 

main point of this is the idea of it, to make a decision on FS based much on the DCV 

of the dataset. Future studies with more datasets and FS methods, also with maybe 

different statistical measures of the dataset, can produce refined versions of this 

decision process. 

 

In the next sections, we summarise the thesis chapter by chapter, and then restate the 

contributions.  

 

 

 

6.2 Overview of the Research 

  
In chapter 1, we started by describing the motivations for this work, introducing the 

main themes upon which our research is inspired. It also introduced supervised 
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learning and classification. Furthermore we introduced some basic concepts of 

bioinformatics and proteomics. The remaining chapters can be roughly divided into 

three parts: Chapter 2 is about a survey of algorithms and methods, mainly for feature 

selection. Chapters 3 and 4 show empirical studies, mainly on proteomics datasets, 

and showed basic results and findings. Then Chapter 5 analysed the significance of 

the results, and showed a first step towards how choosing feature selection method 

could be done by using the DCV of the dataset as a key factor in the choice.  

 

In more detail, Chapter 2 surveyed feature selection techniques. We introduced 

feature selection algorithms as made of four parts: 1), starting subset of features; 2), 

selection methods for changing the subset of features; 3), evaluation strategy; 4), stop 

criterion. We then described three categories of FS method: 1), complete; 2), heuristic; 

3), randomised, and two overall strategies for combining FS with machine learning  

(filter and wrapper). We gave an overview of the various existing state of the art 

techniques such as SVM-RFE and Instance-based algorithms, and discussed their 

strengths and weaknesses. Furthermore, we briefly described evolutionary algorithms, 

which later were applied as the machine learning method in out research.   

 

Chapter 3 discussed the performance of five standard strategies on our collected 

datasets. The first technique was a statistical correlation-based approach, called CFS. 

We showed that only on highly-correlated data, this technique performed as good as, 

and often better than the other approaches. Among those five strategies, CFS (Relief-

F, EAFS, CRFS, and NFS), EAFS appears the most successful of these techniques 

overall, since it was never worse than third ranked in any case (though NFS has 

similar overall performance). Also, we described some background experiments that 

informed the design of our EA for rule induction. 

 

Chapter 4 outlined the rationale for a feature-bias (FB) approach, focused more on the 

opportunities of using features selected by the FS techniques, without discounting any 

features. FS is a common step in many classification and regression tasks. It is 

necessary because machine learning tools often cannot cope when the data has 

thousands of attributes. However, the strategy used by FS techniques is essentially 

binary – for any feature, the result of a prior FS stage is either “use this feature”, or 

“do not use this feature”. It is hoped that most “irrelevant” features are removed prior 
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to the application of machine learning, and that the subsequent machine learning stage 

will be much faster (since there are fewer features to process) and also more 

successful (since many features will be removed by FS that seem unimportant for the 

classification task at hand). However, FS methods typically rely on standard statistical 

ideas and are from able to guarantee that all and only relevant features remain. FB, on 

the other hand, is an alternative approach in which we never entirely remove any 

feature from consideration. Instead, after a prior feature bias step, subsequent machine 

learning is guided by the bias values towards more preferably using some features 

rather than others. Chapter 4 showed promising results for this technique, even 

considering that we used a reduced number of iterations for the EA, to make up for 

the extra computation cost of including all features.  

 

Chapter 5 looked at the results of chapters 3 and 4 again, to analyse if the main 

findings were significant. First we looked at the relationship between DCV and FS 

performance for different FS algorithms. On the reduced ovarian datasets, we did not 

find evidence for this relationship, but we noted that the reduced ovarian datasets have 

properties that may not be realistic for real world datasets. But on real datasets, we 

found that there was a significant correlation between the DCV and the performance 

of an FS algorithm. This was true for most FS methods. If this correlation was done 

for the MDCV, the results were not so significant, but there was still a tendency 

towards positive correlation. Then we tested a different but important finding. The 

results of our methods suggested that for datasets with low DCV, non-CFS methods 

were often definitely better than CFS. This means a negative correlation between: 

DCV and “the performance of method X relative to CFS”, where X is some specific 

other FS method.  We found that this correlation was significant on the real datasets, 

especially for EAFS. Finally we looked at all of the results and derived a simple 

decision process, which might be useful when choosing between FS algorithms. The 

main point about this process is: it uses the DCV of a dataset to guide the choice of FS 

method. 
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6.3 Contributions 

 

The scientific contributions of this study are as follows. The first contribution 

concerns the popular FS strategy: correlation-based feature selection (CFS). This 

strategy is often used, without question, to reduce the number of features from very 

large datasets. But we found, for example, among the datasets we studied, that it was 

never the best choice of FS method when the dataset had a low DCV. This means that 

using CFS in cases where a dataset has low DCV may do harm more than good. This 

is very important when we consider that sometimes the datasets involved are 

proteomics, or other bioinformatics data, and the task at had is to find good diagnostic 

tests or to better understand diseases. This contribution originates from chapter 3, it is 

confirmed in chapter 4, and we show in chapter 5 that it is supported by statistical 

significance.   

 

A second contribution of the work is the description and application of feature bias 

(FB) techniques to the classification problems. In chapter 4, we defined several FB 

and combined strategies, and evaluated the performance of those strategies. We found 

that the FB version of a strategy was usually better than its basic FS version. CFB is 

good on high DCV datasets, for example, while CFS is poor. Meanwhile, EAFB 

seems to be the best strategy overall. The improvements of FB over FS come at a cost, 

however. Since a pure FB strategy still uses all of the features, it still has very high 

computational cost on very large datasets. But it might still be the best choice for 

medium sized datasets. Considering this, we also looked at combined FS and FB 

strategies, which trade off some of the cost for some of the benefit. We found that 

these generally performed well, but more research is needed.  The many comparative 

experiments reported also comprise a contribution in this thesis. 

  

Another contribution is the definition and use of the DCV, as a simple example of an 

indicator of a dataset that can be used to guide the choice of feature selection method. 

The studies of significance in chapter 5 added weight to this contribution. This 

chapter also explored a little the use of the MDCV as a variant on the DCV, but 

generally found that the DCV was more useful for prediction. But of course there 

might be other and better ways to find useful measures from the dataset.   
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Finally, we contribute a simple decision process for guiding the choice of FS method 

based on the DCV, and also the number of attributes. This decision process needs to 

be refined much, and it is only relevant for choosing between the FS and FB methods 

that we have tested. But there is no reason we cannot suggest it may be relevant for 

other many-attribute datasets. The main aspect of this contribution is the idea of it. 

Scientists needing to choose an FS strategy would benefit from a decision process that 

takes account of the DCV of the dataset, and further work could refine this decision 

process.   

 

 

 

6.4 Future Work 

 

Research on feature selection dates back to the 70s. This topic is not only a 

fundamental and traditional problem, but also a very challenging task despite more 

than a few decades’ research efforts. Therefore, although the concept of feature 

selection is rather old, the application on proteomics data is quite new, mainly due to 

the recent advances in bioinformatics. Very often, feature selection methods are used 

by biologists to explore relationships inside their data. However, in this thesis we 

offer a new insight that views the relationship between the FS method and the dataset 

itself.   

 

There are many limitations of our work which could be further tested in later work. 

The machine learning strategy we only test in our experiments is the evolutionary 

algorithm. It is easy to implement and was useful for our purposes of comparing FS 

methods. However, it could be claimed that our findings are only true when we are 

using this particular machine learning method. We would argue with this. The quality 

of accuracy that is possible for a machine learning method will depend mainly on the 

features from the dataset that it uses. However, it still might be important work to test 

some other widely-used machine learning strategies such as C4.5, SVM, and so on, to 

see the relationship between DCV and FS performance. 
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Another limitation is the limited number of large-scale datasets, especially with low 

DCV. Even though we have already tested 27 datasets in our experiments, the large-

scale datasets with low DCV accounts for a very small proportion. Since low DCV 

datasets are the most interesting area – very challenging for CFS, and for any FS 

method, closer examination of a larger number of them will be important. This 

examination could first replicate our work, and then explore more thoroughly the 

performance of different FS, FB and variant algorithms on these datasets, and come 

up with a refined decision process for low DCV datasets.  

 

Another are for future work is to investigate variants and better measures for a dataset. 

We have only tested mainly the DCV. This is the correlation value (the highest one) 

between one attribute and the target class. Obviously, datasets may be very different 

and still have the same DCV. E.g. in the case of a 10,000 attribute with DCV = 0.8, it 

could be that one attribute has correlation 0.8 with the target class, and all others are 

below 0.2. In another case it could be that they are all between 0.7 and 0.8. We might 

expect these two datasets to be suited to quite different FS methods.  When we 

investigated this a little, by also testing MDCV, we found that the DCV was more 

useful. But this needs much more work. Research would be valuable to look at the 

distribution of correlation values in a dataset, and to somehow characterise the 

distribution (e.g. by mean and variance), and use this characterization of maybe two 

or more values as the guiding points for choosing FS strategy. 
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ABBREVIATIONS  

 

 

 

CFB        Correlation-based feature bias method 

CFS         Correlation-based feature selection method 

CFS/CFB  

                 The combination of correlation feature bias and feature selection method 

CRFS       The combination strategy of CFS and RFS 

DCV         Highest data correlation value 

EAFB       Evolutionary algorithm feature bias method 

EAFS       Evolutionary algorithm feature selection method 

FB            Feature bias methods 

FM            Feature management represents both feature selection and feature bias 

                 methods 

FS            Feature selection methods 

MDCV    Mean data correlation value 

NFS         Null feature selection method  

RFB         Relief feature bias method 

RFB(3) / RFB(10)  

     The relief feature bias method with 3 nearest neighbour /10 nearest   

      neighbour algorithm 

RFS          Relief-F feature selection method 

RFS/RFB  

                  The combination of relief feature bias and feature selection method 

RFS(3) / RFS(10) 

                  The relief feature selection method with 3 nearest neighbour /10 nearest  

                  neighbour algorithm   
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GLOSSARY  

 

 
Attribute (field, variable, feature)   

A quantity describing an instance. An attribute has a domain defined by the 

attribute type, which denotes the values that can be taken by an attribute 

Bioinformatics 

The science of understanding and organising biological information by 

applying informatics techniques to data arising from biotechnology, usually on 

a large-scale 

Classifier  

A mapping from unlabeled instances to (discrete) classes. Classifiers have a 

form (e.g., decision tree) plus an interpretation procedure (including how to 

handle unknowns, etc.). Some classifiers also provide probability estimates 

(scores), which can be thresholded to yield a discrete class decision thereby 

taking into account a utility function  

Data Mining  

The term data mining sometimes refers to the whole process of knowledge 

discovery, and sometimes only to the specific machine learning phase 

Feature  

See Attribute 

Machine Learning  

In Knowledge Discovery, machine learning is most commonly used to mean 

the application of induction algorithms, which is one step in the knowledge 

discovery process. This is similar to the definition of empirical learning or 

inductive learning in Readings in Machine Learning by Shavlik and Dietterich 

T G. Note that in their definition, training examples are externally supplied, 

whereas here they are assumed to be supplied by a previous stage of the 

knowledge discovery process 
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Proteomics 

Proteomics is the systematic large-scale analysis of protein expression under 

normal and perturbed states, and generally involves the separation, 

identification and characterization of all of the proteins in a cell or tissue 

sample 

Rote Learning  

A learning technique which avoids understanding of a subject and instead 

focuses on memorization. The major practice involved in rote learning is 

learning by repetition 

Supervised Learning  

Techniques used to learn the relationship between independent attributes and a 

designated dependent attribute (the label). Most induction algorithms fall into 

the supervised learning category 

Systems Biology 

This is the science interested in understanding the interactions and 

relationships between many parts of biological systems 
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