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ABSTRACT 
 

The aim of the thesis is to investigate yarn spinning from electrospun nanofibres. The 

concepts of staple and core yarn spinning on electrospun nanofibres has been 

investigated by examining nanofibre uniformity, alignment, twist insertion and yarn 

take up by engining and engineering a new take up mechanism. Nylon 6 nanofibres 

have been fabricated and used throughout this work. The effects of varying the 

electrospinning parameters such as applied voltage, polymer solution concentration and 

electrospinning distance on fibre morphology have been established for process 

optimization. A novel nanofibre aligning mechanism has been devised and 

systematically revised to enable optimization of alignment process parameters. 

MWCNTs have been successfully dispersed into nylon 6 nanofibres and have been 

aligned along the nanofibre body by manipulating the electric and stretching forces with 

the aid of the alignment mechanism. Novel mechanisms for spinning continuous twisted 

nanofibre/composite nanofibre yarn and core electrospun yarn have been researched, 

developed and implemented by making samples. It has been found that defining the 

velocity and count of the nanofibres entering the spinning zone is important for 

controlling the yarn count and twist per unit length. By modelling the electrospinning 

jet, mathematical equations for theoretically calculating the velocity of the jet and 

nanofibres and their count have been established, necessary for process control. Aspects 

of practical measurement and comparison of jet and nanofibre velocities have been 

described and discussed. Tensile testing of single nanofibre and nanofibre mats has been 

attempted for mechanical characterization. Initial results show the range of tensile 

strength of nylon 6 nanofibre assemblies and indicate the effect of change of process 

parameters. A review of those engineering mechanisms related to various nanofibre 

architectures and their industrial and commercial importance has also been reviewed, 

described and discussed. 
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CHAPTER 1: INTRODUCTION OF ELECTROSPINNING   

NANOFIBRES AND AIMS AND RESEARCH OBJECTIVES 
 

1.1 Introduction 

Since the beginning of the nineteenth century, metals have been replaced into polymers 

in various applications for their lightweight and flexibility. In recent years, one 

dimensional (1D) nanostructures, such as nanowires, nanotubes and nanofibres (NFs) 

have become a great interesting topic to scientists and engineers. Hence, when the 

diameter of the polymer fibre is reduced to the nanoscale, several desirable 

characteristics such as high surface area to volume ratio, flexibility in surface 

functionalities and superior mechanical properties can be achieved. In fact, there are 

several techniques of fabricating polymer nanofibres [1]. These fabrication techniques 

such as electrospinning [2, 3], melt blowing [4], phase separation [5], self assembly [6] 

and template synthesis [7] have been fulfilled for different purposes. Nanofibres 

produced by electrospinning among the others are the most industrial and scientific 

interest due to their length, diameter, pore network and high surface area per unit 

volume [2]. For instance, one can take the advantage of the porous surface topologies of 

the nanofibre mat to control the wetting properties and adsorption behavior. 

Furthermore, the fibres with small diameter have a low bending modulus which 

manifests the nanofibre mats and yarns a soft fabric hand. 

Electrospinning [8-13] provides a straightforward electrohydrodynamical mechanism to 

produce fibres with diameters less than 100 nm [14], even 5 nm [15]. Under the 

influence of an electric field, a pendant droplet of the polymer solution at the spinneret 

is deformed into a conical shape. When the voltage surpasses a threshold value, where 

electric forces overcome the surface tension, a fine charged jet is ejected. As these 

electric forces increase, the jet elongates and accelerates by the electric forces.  The 

stretching of the jet is accompanied by a rapid evaporation of the solvent, which leads to 

a reduction in the diameter of the jet. For that effect, the required physical properties of 

the solvent for a selected polymer are a good miscibility, low boiling point, low surface 

tension and high conductivity ‘low dielectric constant’ [16-21]. Then, the jet undergoes 

a variety of instabilities, it splits, and deposits as a random nanofibre mat or other 

geometrical forms on a grounded metallic substrate. 

So far, several synthetic and natural polymers, blended polymers and polymers filled 

with nanoparticles, carbon nanotubes (CNTs) and compounds have been successfully 

electrospun into nanofibres [22-24]. In addition, while the melt spinning technique is 
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the preferred method to produce synthetic filaments, efforts have been also made to 

electrospin nanofibres using polymer melts [25-27]. However, there is currently less 

research work in electro melt spinning, probably due to its difficulty in fabricating 

fibres with nanometer diameters [28, 29]. 

In this chapter, it is aimed to explain in depth the electrospinning technique including its 

history, principle and parameters. Hence, it is the most versatile and advantageous 

process for producing continuous nanofibres without purification compared to the other 

nanofibre fabrication methods [2, 30]. In addition, the aims and research objectives of 

the present thesis will be highlighted at the end of the chapter. 

 

1.2 History of electrospinning nanofibres 

The stability of electrically charged liquid drops and thus the behavior of electrically 

driven jets have been studied in the past centuries. In 1745, Bose et. al. created an 

aerosol spray by applying a high electric field to a liquid droplet at the end of a glass 

capillary tube [31].  In 1882, Raleigh studied the instabilities that occur in electrically 

charged liquid droplets. He calculated the maximum amount of the charges that a drop 

of liquid can maintain before the electric forces overcome the surface tension of the 

drop and lead to the ejection of a jet [32]. In 1917, Zeleny investigated the role of the 

surface instability of charged droplets in an electric field and the behavior of the ejected 

thin liquid jet by measuring its path geometrical dimensions [33]. 

These research studies have led without doubt to the invention of electrospinning 

threads from polymer solutions. As such, in 1902, Cooley and Morton et. al. patented an 

electrospraying/electrospinning set-up by using auxiliary electrodes to direct an ejected 

liquid jet into a rotating collector [34, 35]. In the 1930s, Formhals came out with several 

innovative set-ups that used multiple spinnerets and parallel electrodes to produce 

aligned nanofibres and yarns [8-11]. Furthermore, he has introduced an electrospinning 

design that does not require use of spinneret to produce nanofibres ‘electrospinning 

from polymer solution surface acted by rotating roller’ [12]. In the 1960s, Taylor et. al. 

analyzed the conditions at which the point of a droplet is deformed into a conical 

geometry by an electric field [36-38]. They identified the critical electrical potential 

field for the electrostatic formation of a cone of liquid at the tip of the spinneret ‘known 

as a Taylor cone’. Hence, by examining many low molecular weight liquids, they 

concluded that the conical interface between air and the liquid was stable at a semi-

angle conical angle of 49.3o degree. Moreover, they have shown that both conductivity 

and viscosity of the liquid play a critical role in the electrostatic atomization process 
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which further influences the equilibrium angle and other aspects of the liquid droplet-jet 

formation. Taylor cone was considered later as an important part in electrospinning, 

forasmuch it defines the onset of the extensional velocity gradients in the nanofibre 

formation process [39].  

Before the 1990s, very little research work or publications; however, have been 

published about electrospinning technique [13]. In the 1990s, Reneker et. al. [14, 40] 

drew the attention to the electrospinning as a spinning process of fibres at nanoscales. 

Furthermore, they have established the stepping stones in polymer nanofibres which are 

revolutionizing the research on materials at nanoscale level and allowing us to 

scientifically understand and control their geometries and properties without changing 

their chemical composition. 

 

1.3 Electrospinning technique 

1.3.1 The basic set-up of the electrospinning  

Figure 1.1, shows a schematic illustration of the basic set-up of electrospinning process. 

It consists of three major components for fulfilling the process: a high voltage power 

supply, a spinneret ‘a metallic needle or pipette’ and a collector ‘a grounded metallic 

substrate’. 

 

 
Figure 1.1, Schematic illustration of the set-up used for the electrospinning process. 
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In the electrospinning process, a high voltage is used to eject an electrically charged jet 

of polymer solution or melt out of the spinneret. Basically, this can be done by either 

connecting a metallic wire to the spinneret ‘vertical method’ or immersing the wire in 

the polymer solution ‘horizontal method’. A direct current (DC) power supply is usually 

used for electrospinning, nonetheless an alternating current (AC) power supply is also 

possible [2, 14, 41]. Some set-ups [42] have simply opted to placing the spinneret 

vertically and laying the collector underneath, letting the polymer liquid flows with help 

of gravitation [43]. While sometimes, the spinneret is subjected to a defined angle to 

control the flow [44-46]. Or in other cases, the spinneret is fixed horizontally [47] and a 

syringe pump is used to initiate the droplet. It can be noted that the syringe pump is also 

used in the case of vertical feeding [47-50]. Finally, a grounded metallic substrate or 

any other pre-designed grounded pattern is used to collect the electrospun nanofibres. 

More importantly, there are some key points which need to be kept in mind before and 

during electrospinning addressed herein: 

- The viscosity and surface tension of the spinning solution must not be too large 

preventing the jet from formation, not too small making the polymer solution to drip 

from the spinneret. 

- The high voltage power supply must be high enough to overcome the viscosity and 

surface tension of the polymer solution and thus to form and sustain the jet from the 

spinneret, but not too high making the process unstable. 

- The grounded collector used to collect the nanofibres must be electrically conductive. 

- The gap between the tip of the spinneret and the grounded collector must not be too 

close, as this will result in collection of wet fibres. 

- The solvent present in the spinning solution must evaporate quickly enough allowing 

the fibre to reach the collector in a dry state, but not too quickly making the fibre to 

harden before reaching the nanometer scale. 

- Some solutions emit harmful smells, so the processes (polymer solution preparation 

and electrospinning) must be conducted within chambers having a ventilation system.  

- A DC voltage in the range of ten to several tens of KVs is necessary to generate the 

electrospinning process, therefore this required careful care to avoid touching any of the 

charged jet while manipulation [2]. 

 

1.3.2 How electrospinning works 

Generally, traditional spinning methods of polymer fibres include melt spinning, dry 

spinning, wet spinning and gel state spinning. These methods rely on mechanical forces 
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to produce filaments by extruding polymer melt or solution through a spinneret and 

subsequently drawing the resulting filaments as they solidify or coagulate. Typical 

filament diameters that result from these methods are in the range of 5-500 µm [51]. 

Electrospinning process involves polymer science, applied physics, fluid mechanics, 

electrical, mechanical, chemical and material engineering and rheology [52]. The 

operational principle of electrospinning is quite simple. In this non-mechanical, 

electrostatic technique, a high electric field is generated between a polymer solution 

contained in a spinning dope reservoir ‘a spinneret’ and a grounded collector. Once the 

strength of the electric field surpasses a threshold value, the charges on the surface of 

the suspended droplet is induced. Contraction of the surface charges caused by the 

counter electrode on the collector generates a force directly opposite to the surface 

tension of the polymer solution [53]. Subsequently, the hemispherical surface of the 

droplet at the tip of the spinneret elongates to form a conical shape known as Taylor 

cone [36-39] and a thread jet is ejected. The electrically charged jet undergoes a series 

of electrically induced whipping instabilities, which lead the jet to elongate and thin 

during its travel to the collector. The stretching process is accompanied by a rapid 

evaporation of the solvent and splitting into many charged jets/fibres in a region at 

which the radial forces from the electrical charges carried by the jet become larger than 

the cohesive forces within the jet [42]. It can be noted that in the case of melt 

electrospinning, the charged jet stretches, splits and the fibres solidify when they travel 

in the air towards the grounded collector. 

 

1.3.3 Process of nanofibres formation 

Electrospinning process essentially includes three stages. In the first stage, a polymer jet 

ejects from the spinneret. In the second stage, the jet is accelerated and stretched 

smoothly by the electric forces. In the third stage, splitting and whipping instability of 

the jets occur making farther the fibres to spiral downstream until they stop in the 

collection region as nanofibres [54]. Hereinafter, these three stages are described with 

concise emphasis on their fundamental aspects. 

 

1.3.3.1 Electric charges theory 

In an uncharged ionic liquid and if no external electric field is applied, there are the 

same numbers of positive and negative ions in each volume element of the liquid [55]. 

In 1960s [36-39], Taylor discovered that it is impossible to account that any liquid is 

either a complete insulator or perfect conductor. The reason is that any dielectric liquid 
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still contains nonzero free charges. These charges are existent in the interfaces of the 

liquid. If there is also a nonzero electric field tangent to the interface, then there will be 

a nonzero tangential stress on the interface. The only possible force that can balance the 

tangential stress is the viscous force. As a result, the liquid will be necessarily in motion 

under these conditions [56]. This has become known as the ‘leaky dielectric model’ for 

the electrically driven liquids theory [39]. Therefore, when an external electric field is 

applied to the polymer solution, the voltage polarizes the ions. In other words, negative 

ions are forced towards the positive electrode, and positive ions are forced towards the 

negative electrode. The difference in the number of positive and negative ions in a 

specific region is called the excess charges [55]. Usually, adding a soluble salt increase 

the electrical conductivity of the solution through increasing the number of ions per unit 

volume. The higher conductivity, decreases the time required for the excess charge to 

move to a further region in response to a change in the electric field [55]. 

 

1.3.3.2 The initiation of the jet 

Due to the surface tension forces, the polymer solution droplet is initially in equilibrium 

with the gravitational forces, thus the polymer solution will be prevented from flowing 

out of the spinneret [31]. Reneker et. al. have demonstrated that when a high electric 

field is applied to the polymer solution in the spinneret, the charges in the solution are 

forced to aggregate at the surface of the droplet. As a result, the surface is pulled into 

the approximate shape of ‘a section of sphere’. When the electrical forces overcome the 

surface tension, a bulge forms and the charges move through the liquid and concentrate 

on this protruding part of the surface [14]. The accumulation of the charges causes the 

surface to protrude more forming a conical shape that was mathematically described by 

Taylor and referred as Taylor cone [36-39]. As the applied electric field is increased, a 

thread jet of liquid is pulled from the tip of the spinneret, and the electrospinning 

process begins, as shown in figure 1.2. The jet is elongated by the electric forces and 

gravity, while surface tension, viscosity and inertia forces also play apart [54].  

Reneker et. al. have concluded that the base region stabilises at a size and a shape 

determined by the rate at which liquid is supplied to the tip of the spinneret. In addition, 

the flow pattern in the base and parameters such as elongation flow and time dependent 

elasticity of the liquid affect critically on the diameter and shape of the base [55]. It has 

been also reported, that at sufficient high voltages; multiple jets from the spinneret were 

observed during the electrospinning process [57, 58]. 
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Figure 1.2, A schematic illustration of the initiation steps of the jet. (a) Under the 

electric field the surface is pulled into the approximate shape of a section of a sphere, 

(b) the accumulation of the charges causes the surface to protrude more forming Taylor 

cone, (c) a thread jet of liquid is pulled from the tip of the spinneret. 

 

1.3.3.3 The jet travel 

Upon initiation, the charges which are embedded in the direction of the electric field 

transfer the forces from the electric field to the polymer solution mass. If the electric 

field is strong enough, a jet of liquid is ejected and accelerated from a surface that was 

essentially semi sphere before applying the electric field. The acceleration of the jet is 

mediated by the transfer of the forces through the viscoelastic jet in which the 

viscoelastic state is changing at the same time as the solvent evaporates from the jet. 

During the jet travel, its diameter decreases and its length increases in a way that the 

amount of mass per unit time passing any point in the z axis remains constant [14]. Feng 

has proposed that as the jet thins the surface charge density varies which in turn affects 

the electric field and the pulling force and increases the viscosity slowly along the 

straight part of the jet. As both the surface charge density and the jet radius vary away 

from the tip of the spinneret ‘jet thins’, the stability characteristics of the jet is also 

changed [54, 59].  

This is the mechanism in which the electric charges carry the polymer solution from the 

spinneret to the collector, and thereby a complete electrical circuit which provides the 

energy is needed to drive the flow, accelerate the jet and increase its surface area. In 

fact, the best calculation of the jet velocity is from measurement of the mass of the 

nanofibres that are collected in a known time interval the diameter of the jet and 

concentration of the solution [14], which will be investigated later on in this thesis. 
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1.3.3.4 Dividing the jet into many fibres in the splitting region 

As mentioned above, stretching and evaporating of the solvent molecules cause the jet 

diameter to become smaller. It must be noted that the charges on the jet expand the jet in 

the radial direction and stretch it in the axial direction. Furthermore, the radial forces 

from the charges become large enough to overcome the cohesive forces of the jet [14]. 

Based on this concept, as the diameter decreases the radial forces increase to split the jet 

into two or more charged jets which are approximately equal in diameters and charges 

per unit length [42]. Each smooth segment that is straight or slightly curved suddenly 

develops an array of whips. After a short sequence of an unstable whipping back and 

forth, each jet follows a bending, winding, spiralling and looping path in three 

dimensions [55]. In other words, the jet in each branch grows longer and thinner as the 

loop diameter and circumference increases, similar to, but at a smaller scale than the 

first. As a result, the motion velocity increases and the evaporation process strongly 

intensifies. Concisely, the jet splitting process which is the result of complicated 

interaction of variables that include viscosity, surface tension, electric forces, air friction 

and gravity occurs several times in fast succession and produces a large number of super 

fine fibres ‘nanofibres’ moving towards the collector, as shown in figure 1.3 [59, 60].  

 

 
Figure 1.3, Photographs of different modes of jets chaotic motion ‘instability’ as they 

travel towards the grounded collector [60]. 

 

An analogy to the jet travel mechanism in electrospinning has been recently described 

by He et. al. in the following manner, as shown in figure 1.4 [61]. When the fibre moves 

to the boundary AB (conical envelope), for example at M, the velocity in the x direction 

becomes zero. The reason was explained as the following: at point M, there are three 

main forces acting on the fibre; viscous force, electric force and inertia force. Hence, the 

direction of viscous force is in the inverse direction of its motion, i.e., in the direction of 

MA and the direction of electric force and inertia force is in z direction. Now, based on 
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the parallelogram law, the combining force moves in the direction of its diagonal, i.e. 

the direction of MO. At the point M, it has the maximal acceleration, and when it 

reaches the point O, the velocity in the x direction takes the maximum value while its 

acceleration becomes zero, and due to inertia force it moves to the other boundary AC. 

Concisely, He et. al. have described the instability motion in electrospinning like 

pendulum motion ‘a parachute jump’. 

 

 
Figure 1.4, A schematic illustration of the jet travel mechanism in electrospinning [61]. 

 

1.3.3.5 Stops in the collection region 

As described above, electrospun nanofibres are charged during flight and travel 

downward until they impact with the collector to form a nonwoven mat ‘fabric’ of 

disordered nanofibres. Actually, the nanofibres lying on the collector tend to repel the 

fibres that arrive later, due to repulsion forces [55]. If the nanofibres arrived with a high 

velocity onto a stationary collector; the nanofibres tend to coil or fold [62]. The 

collected coils and loops provide information about the sizes of the whipping 

instabilities that occurred. The integrity of the nonwoven nanofibre mat depends on the 

random overlapping of the fibres and interactions between the fibres that occur at the 

contact points between the fibres. Therefore the structure of the collected nano-web is 

usually irregular. 

In order to obtain ordered and aligned nanofibres, special collector patters are necessary 

to be designed. Rotating rollers and aerodynamic currents have been used for collecting 

aligned nanofibres. In addition, conductive, nonsolvent liquids, water or other 

appropriate liquids have been also utilized to remove the solvent and coagulate the 

polymer fibres resulting in a wet electrospinning ‘electro wet spinning’ [63-65]. 
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1.3.4 Effect of electrospinning parameters on nanofibres morphology 

Electrospinning process, polymer solution and ambient parameters have been noted to 

have the role of successful electrospinning and controlled nanofibres morphology 

(nanofibre diameters and nanofibre diameters uniformity). 

 

Polymer solution parameters which are related to the polymer solution properties are: 

 

- Polymer [type, molecular weight, molecular weight distribution and structure 

(branched, linear, etc.)]. 

- Solvent (types, vapor pressure, miscibility), additives (surfactants, salts). 

- Polymer solution concentration. 

- Polymer solution properties (rheological behavior, relaxation time, viscosity, surface 

tension, electric conductivity and dielectric permittivity). 

 

Electrospinning process parameters which are related to the operational conditions are: 

- The applied electric field (strength, geometry). 

- Distance from the spinneret to the collector ‘electrospinning distance’. 

- Volume feed rate of the polymer solution. 

- Spinneret orifice internal diameter. 

- The motion of the collector. 

 

Ambient parameters are:  

- Environmental temperature. 

- Relative humidity. 

- Air velocity in the electrospinning chamber. 

 

1.3.4.1 Polymer solution parameters  

As nanofibres are produced from evaporation or solidification of the polymer liquid jet, 

the nanofibres morphology depends primarily on the polymer contents in the jet and its 

physical and chemical properties. 

 

The polymer type, molecular weight, and its structure play an important role in 

determining the minimum polymer concentration to electrospin fine continuous 

nanofibres. Hence, a polymer with large molecular weight is subjected to a high degree 

of number of the entanglements within the polymer chains [28]. It is therefore more 
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difficult for the electric forces to pull on individual polymer chains into fibre. As a 

result, larger fibre diameters are formed. It has been agreed that as the molecular weight 

decreased the fibres diameter decreased [24]. Furthermore, the nanofibres production 

rate increases when dissolving polymer with low molecular weight, hence high polymer 

solution concentration can be achieved. 

 

As electrospinning is ‘electro dry spinning’ process which uses solvents to dissolve the 

polymers, the solvent vapor pressure plays a critical role in the evaporation rate of 

solvent from the jet. Truly, decreasing of the evaporation rate of the solvent from the jet 

during electrospinning allows the charged jet to remain liquid, to continue, to stretch 

and to become thinner and thus fibres at nanoscale level. On the other hand, low 

evaporation rate results in collecting wet nanofibres.  

 

Practically, polymer solution concentration plays the most important role in determining 

the nanofibres morphology. Electrospinning results showed that the diameter of the 

electrospun nanofibres dramatically decreases with decreasing polymer solution 

concentration [24]. In comparison, as the polymer solution concentration increases, the 

viscosity increases and higher electrical forces are required to overcome both the 

surface tension and the viscoelastic forces for stretching the jet into nanofibres. Hence, 

the spinnability of polymer solution is relevant to its viscoelastic properties [68]. 

Although the range of polymer solution concentrations that produce nanofibres 

obviously varies with the polymer used, the viscosity and surface tension forces 

determine the upper and lower limits of polymer solution concentration, provided all 

other parameters are held constant. At the low polymer concentration, too dilute 

solution in the absence of polymer chain entanglements will result in the jet breaking 

into droplets and give rise to the spherical liquid particles instead of continuous fibres 

on the grounded collector. As a result, the fibres will have an irregular and undulating 

morphology with large variations in diameters along the fibre length. Moreover, 

nanofibres produced from lower concentrated polymer exhibit more beads formation 

[17]. The practical reason is that at lower polymer concentration, electrospun nanofibres 

are harder to dry before reaching the collector. Even the measured mass of collected 

nanofibres was found to decrease as the polymer concentration decreased. On the other 

hand, at the high polymer solution concentration, the nanofibres have a regular, 

cylindrical morphology and in average a larger and more uniform diameter [16]. Hence, 

viscoelastic forces resist formation of beads and allow formation of smooth nanofibres. 
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While when the polymer solution concentration is too high, the high viscosity and the 

rapid evaporation of the solvent make the extension of the jet more difficult and thereby 

wider fibre diameters are formed. Experimentally, research reports have addressed a 

strong linear relationship between nanofibre diameters and polymer solution 

concentration. Deitzel et. al. have demonstrated that the average nanofibre diameters is 

related to the polymer solution concentration in a power law relationship with an 

exponent of about 0.5 [71]. While Demir et. al. have reported a power law relationship 

with an exponent of 3 [58]. However, literature publications have reported initial 

polymer solution concentrations ranging from 1 to 40 wt. %, and typically most of them 

were less than 30 wt. % [16, 17, 66-72].  

 

Polymer solution viscosity and surface tension play an important role in determining the 

range of polymer solution concentrations from which continuous uniform fibres can be 

obtained in electrospinning. The experimental referenced works show that increasing 

the zero-shear viscosity, whether by a higher molecular weight polymer or higher 

polymer solution concentration, will increase the resulting fibre diameter [16, 71]. 

While the spinnability or ‘solution viscosity’ will be poor if the polymer solution 

concentration is low. Moreover, when the solution viscosity is too low, electrospun 

nanofibres will be unstable and form beaded texture [16] or cups [73]. At low 

viscosities of (0.1 Pa.sec), surface tension is the dominant factor on the fibre 

morphology and below a certain polymer solution concentration attributed to this 

viscosity value, drops are formed instead of fibres [77]. At high viscosities of (6 Pa.sec), 

processing the jet is prohibited by the inability to control and maintain the flow of the 

polymer solution out of the spinneret and by the cohesive nature of the high viscose 

polymer solution [2]. It has also been demonstrated that increasing the polymer solution 

concentration (and consequently the viscosity) and thus lowering the surface tension 

favor the formation of beads-free uniform fibres [58, 75, 76]. This is consistent in 

reality with most properly chosen electrospun polymer solutions, where the viscoelastic 

forces completely dominate the surface tension. In other words, a direct correlation has 

been observed between uniform fibre diameter and polymer solution viscosity [58, 74]. 

In comparison, when low molecular weight polymers are used or polymer solution 

concentration is significantly reduced, the viscoelastic forces dramatically diminish and 

thereby the surface tension plays a strong role in the morphology of the resulting fibres. 

Hence, when the surface tension forces are dominant, they attempt to reduce surface 

area per unit mass, and thus beaded fibres are consequently produced [78]. 
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Beads are known as defect structures, because they disturb the unique property of 

electrospun nanofibres and decrease the surface area to volume ratio [58]. The 

formation of beaded fibres is attributed to the instability of the jet associated with the 

poor spinnability of the polymer solution and the domination of the surface tension 

forces over viscose forces [3]. Reneker et. al. [16, 77] have systematically investigated 

the influence of polymer solution properties of polyethylene oxide (PEO) on the density 

of beads contained in the electrospun nanofibres. They have recognized that, higher 

polymer concentration produce fewer beads, as shown in figure 1.5. In addition, they 

have found that viscose forces prevented the formation of beads and allowed for the 

formation of smooth nanofibres. 

 

 
Figure 1.5, SEM images of electrospun PEO nanofibres from different polymer 

solution concentrations, in which the lowest viscosity (13 centipoises) corresponded to 

1 wt. % PEO, whereas the highest viscosity (250 centipoises) corresponded to 4 wt. % 

PEO [77]. 

 

Hsiao et. al. have reported that the overall tension in the electrospun fibres depends on 

the self-repulsion of the excess charges on the jet [79]. Thus, smaller fibre diameters can 

be also produced with higher electrical conductivity of the polymer solution. As a 

matter of fact, the electrical conductivity of the polymer solution mirrors the charges 

density on the jet and thus higher elongation forces are imposed to the fibres under an 
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applied electrical field. In other words, under the same applied voltage and spinning 

distance, a polymer solution with higher electrical conductivity will cause higher 

elongation to the jet along its length and thus electrospinning fibres with smaller 

diameter. For instance, Ramakrishna et. al. have showed a significant drop in the 

diameters of the electrospun PLLA nanofibres when the electrical conductivity of the 

polymer solution (PLLA/ dichloromethane) was increased by adding DMF or pyridine 

[24]. Beads were also observed in their experiments at low conductive polymer 

solution. They explained the reason that, a low conductive polymer solution reflects an 

insufficient elongation of the fibres by the electrical forces to produce uniform fibres 

without beads. He et. al. have also concluded that as the charges density increased, the 

beads became smaller and more spindle like - smooth fibres were formed [80]. It has 

been recommended that adding a salt to the polymer solution increases the net charges 

density and thus enhances the electrical conductivity of the polymer solution [81]. 

Briefly, the electrical conductivity of the polymer solution is a key factor in determining 

the electrospinning current, net charges density and fibres morphology [66].  

 

1.3.4.2 Electrospinning process parameters 

It has been already reported that electrospun nanofibre diameters are not dramatically 

changed when the applied electric field is varied [58, 82-86]. It has been found that 

applied electric field may affect some factors such as polymer solution mass fed out the 

spinneret, elongation level of the jet and morphology of the jet (a single or multiple 

jets), etc. [24]. However, a balance between these factors determines the final diameter 

of the electrospun fibres [78].  

In fact, two distinguish concepts have been issued related to the applied electric field 

effect. Firstly, the electrospun fibre diameters slightly decrease as the electric field 

strength increases due to the increasing of the pulling and stretching forces [78, 87]. 

Secondly, increasing the applied electric field does increase the electric forces and 

create more elongation; but it also draws more polymer solution out of the spinneret and 

in turn the fibre diameters will increase, as reported by Demir et. al. [58]. It has been 

concluded that the nanofibre diameters are a combination result of the polymer solution 

feeding rate and the applied electric field, provided all other variables are held constant 

[24]. Nevertheless, based on the literature works, the applied electric field affects on the 

length of the liquid jet, number of the jets ejected from the droplet surface and the jet 

speed [17, 55]. In addition, applying a higher electric field is shortened the length of the 

jet path, thus the whipping instability and splitting will happen earlier which results in a 
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chaotic motion to a larger extent [16]. The other interesting phenomenon is that, under a 

higher electric field multiple jets are generated from the droplet at the spinneret tip 

which will provide smaller diameter of electrospun fibres, but non uniform fibre 

diameters distribution [52]. It has been also noted that with too high level of electric 

field, the resulting nanofibres became beaded and rougher [71]. The reason can be 

attributed to the increase of the jet instability at the spinneret tip under too high electric 

field. Briefly, increasing the applied electric field to a high level would change the 

shape of the pendant drop from which the jet originated, and thus a stable shape could 

not be achieved. As a result, the stability of the liquid jet would be weakened which 

might lead to an increase in the density of the beads in the electrospun nanofibres. 

 

Generally, it has been found that electrospinning distance performs a role on the 

nanofibres structure and morphology [78]. It can be noted that the electric field strength 

increases when the electrospinning distance decreases, provided the applied voltage 

remains constant. It can be also pointed that during the fibres travel towards the 

collector ‘electrospinning distance’, the electric field strength has the opportunity to 

stretch the fibres more and thus produce thinner fibres. In addition, due to the extent of 

the solvent evaporation; the consequent drying, depositing and orienting of the fibres 

‘nanofibre properties’ can be affected by varying the electrospinning distance. 

It has been indicated that in case of a short electrospinning distance, the drying time is 

not long enough to fully evaporate the solvent before depositing the nanofibres. As a 

result, partially dried fibres are spread on the collector and formed a densely packed 

membrane instead of a porous nanofibrous membrane [88]. Megelski et. al. have also 

observed beads formation in electrospun PS nanofibres and thick ribbon shaped 

morphology when the electrospinning distance is decreased [89]. On contrast, as the 

electrospinning distance is increased, the time for solvent evaporation is increased. As a 

result, dry solid nanofibres can be collected at the grounded collector. It has also been 

proved that when the electrospinning distance increases the jet undergoes a larger 

amount of electrically driven whipping and bending instabilities and thus an increase in 

the jet branches and a decrease in the nanofibre diameters [55, 90]. Moreover, the 

resulting nanofibrous web is with irregular fibre diameters. Systematic optimization for 

the electrospinning process showed that the optimum spinneret tip to collector distance 

is attributed to the polymer solution concentration, its flow rate and the applied electric 

field [78]. However, several literature research works have reported in their 

experimental set-ups an electrospinning distance of 50 to 500 mm [16, 17, 66-71, 89]. 
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The volume feed rate of the polymer solution from the spinneret is an important process 

parameter which influences the jet stability, path and velocity. Literature research works 

have reported somewhat conflicting results in either increase or decrease in the jet 

diameter with varying the volume feed rate of the polymer solution [67-69]. 

With too high volume feed rate, the pendant droplet size increases, and then the 

possibility of the multi jets generation becomes larger. In addition, higher jet mobility, 

(vibrated dancing) around the Taylor cone can be observed. As a result, the jet 

undergoes a capillary instability and develops beads [91]. In other words, the volume of 

the Taylor cone fluctuates with time during electrospinning and a steady volume is 

never reached, giving the possibility to the intermittent jet formation. Moreover, 

transforming a large spherical-shaped into convex-shaped cone requires a higher applied 

electric field to reach critical surface charges for issuing a jet from the apex of the 

spinneret. It has been argued that the volumetric charges density and the volume feed 

rate interact with each other to play a significant role in the morphology of the 

electrospun nanofibres [70]. This can be explained by the competition between polymer 

solution feed rate, its volumetric charges density and the droplet shape from which the 

jet emanates. In addition, electrospinning under high volume feed rate does not render a 

sufficient viscous stretching for the fibres by the electric forces. On the other hand, with 

too low volume feed rate, the pendant droplet may be disappeared and the jet is 

generated from the sidewall of the spinneret tip. This is possibly due to the insufficient 

polymer solution delivered to the cone volume after the jet has formed at the apex of the 

spinneret. It has been also found that the lower the polymer solution volume feed rate is, 

the smaller the fibres are formed [68, 70, 92]. Most importantly, a certain minimum 

value of the polymer solution volume suspended at the tip of the spinneret must be 

maintained constant during electrospinning in order to form equilibrium for the Taylor 

cone. Under constant electric field, the optimum volume feed rate for a stable cone-jet 

mode is depended on the conductivity, surface tension and viscosity of the polymer 

solution. Practically, a steady liquid jet can be observed when a volume feed rate of 0.1 

ml/hr to 5 ml/hr is used for a single spinneret [16, 21, 40, 67-70, 92, 93].  

 

It has been reported that the spinneret orifice internal diameter which supplies the 

polymer solution to the droplet shaped as Taylor cone affects on the initial jet radius. 

Three orifice internal diameters ranging from 0.29 to 0.59 mm were used to determine 

their effect on the nanofibre diameters, while all other variables remained constant 

among each experiment by Ko et. al. [84]. The results displayed an increasing trend to 



 
17 

the final fibre diameters corresponding to the increase in the initial jet diameter when 

spinneret orifice size was increased. However, based on our knowledge, the initial jet 

diameter at the tip of the Taylor cone is significantly affected by the applied electric 

field. Therefore, spinneret orifice internal diameter cannot be considered as an 

independent parameter for changing the jet diameter when the applied electric field 

remains constant. 

 

1.3.4.3 Ambient parameters 

The ambient parameters around the spinneret, such as temperature, relative humidity 

and air velocity in the electrospinning chamber influence on the structure and 

morphology of the electrospun nanofibres. The ambient relative humidity in the 

electrospinning chamber plays an important role in determining the solvent evaporation 

rate in a charged jet during its flight towards the collector. The evaporation rate from the 

charged jet decreases at higher relative humidity, which consequently allows the jet to 

continue and elongate. It has been demonstrated that fibre diameters become smaller 

when evaporation and solidification rates are slow because of the higher relative 

humidity [94, 95]. On the other hand, the charged jet and consequently the fibres 

solidify at larger diameters when are electrospun at low relative humidity due to the 

rapid solvent evaporation. In 1971, Baumgarten et. al. reported that a relative humidity 

in the range of 30-40 % RH were needed for electrospinning of acrylic fibres of 

diameters in the range of 1.1 - 50 μm [13]. They have found that in a dry air (RH < 5 

%), the electrospinning droplet dried out and electrospinning process could be carried 

out for only 1 - 2 min. On the other hand, in a humid air (RH > 60 %); the polymer 

solution did not dry properly and the electrospun nanofibres remarkably tangled. 

Moreover, humid air decreases the pore size of the deposited fibres web compared to 

nanofibres electrospun under a low relative humidity of 30 %. Huan et. al. have added a 

furnace to their electrospinning set-up in order to control the ambient parameters [96]. 

In this case, a gradual temperature and controllable air velocity attenuate and adjust the 

jet stability, solvent evaporation and thus nanofibres solidification. 

 

1.4 Diversity of polymers used in electrospinning 

A wide range of polymers such as biopolymers, modified biopolymers, water- soluble 

synthetic polymers, organo-soluble synthetic polymers, biodegradable polymers, natural 

polymers, gels consisting of a variety of natural and synthetic polymers and composite 

polymers have been successfully electrospun into nanofibres having many different 
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nanostructures. In addition, proteins, enzymes, drugs, fullerenes, carbon nanotubes, 

metals, and semiconductors are processed by electrospinning as blends with synthetic 

and natural polymers. Specific conditions are often necessary, such as the use of special 

solvents or the processing of the polymers as blends for a successful electrospinning. 

Out of dry electrospinning, however, melt electrospinning process can electrospin 

polymers in the melt form. Table1.1, shows the most known polymers that have been 

electrospun with their solvents and proposed applications. 

 
 

Table 1.1 The most known polymers electrospun in a solution form. 
No Polymer Polymer 

classification 

Solvent Application Ref * 

1- Collagen Biopolymer Hexafluoroisopropyl 

alcohol 

Tissue 

engineering 

97 

2- Regenerated silk 

(Bombyx mori) 

Biopolymer Hexafluoracetone Wound dressing 98 

3- Silk fibroin Biopolymer Formic acid Wound dressing 99 

4- chitosan Biopolymer Formic acid or  acetic 

acid 

Wound dressing 100 

5- Cellulose Biopolymer NMO/water Membranes 101 

6- Cellulose acetate, 

 CA 

Biopolymer acetic acid Membranes 76 

7- Polyethylene oxide, 

PEO 

Synthetic polymer water Biomedical 

applications 

102 

8- Polyvinyl alcohol, 

PVA 

Synthetic polymer water Chemical 

applications 

103 

9- Polyvinyl phenol, 

PVP 
Synthetic polymer water Antimicrobial 

agents 

104 

10- Polylactic acid, PLA Biodegradable 

polymer  

Dimethylformamide, 

DMF 

Medical 

applications 

24 

11- Polycaprolactone, 

PCL 

Biodegradable 

polymer 
Chloroform: 

Methanol (3: 1)  

Tissue 

engineering 

105 

12- Aliphatic PA 

(Nylon 6) 

Organosoluble 

synthetic polymer  

Formic acid Filteration 78 

13- Polyacrylonitrile, 

PAN 

Organosoluble 

synthetic polymer 
Dimethylformamide, 

DMF 
Protective 

textiles 

106 

14- Polycarbonate,  

PC 

Organosoluble 

synthetic polymer 
Dimethylformamide: 

tetrahydrofuran (1: 1) 

Filteration 107 

15- Polystyrene, PS Organosoluble 

synthetic polymer 
Dimethylformamide, 

DMF 

Filteration 108 
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16- Polybenzimidzole, 

PBI 

Organosoluble 

synthetic polymer 
Dimethylaccetamide, 

DAA 
Protective 

clothing 
109 

17- Polyethylene 

Terephtalate, PET  

Organosoluble 

synthetic polymer 
Dichloromethane Composites 110 

18- Polyurethanes, PU Organosoluble 

synthetic polymer 

Dimethylformamide, 

DMF 
Protective 

clothing 
111 

19- Polyvinylchloride, 

PVC 

Organosoluble 

synthetic polymer 
Dimethylformamide: 

tetrahydrofuran  
Protective 

clothing 
112 

20- Polyvinylidene 

fluoride, PVDF 

Organosoluble 

synthetic polymer 
Dimethylformamide: 

Dimethylaccetamide  

Flat ribbons 43 

*: The most up-to-date reference. 

 

 

 

1.5 Engineering aspects related to the electrospinning of nanofibre assemblies 

1.5.1 Introduction 

Electrospinning is currently a well established technique in university laboratories and 

industry that can fabricate continuous fibres with diameters down to a few nanometers. 

These nanofibres possess one of the highest surface areas to mass ratios among all 

cohesive porous materials due to their small diameters, and mats made of nanofibres can 

be highly porous with excellent pore interconnection void volume in the range of 50 % 

to even greater than 90 % [113, 114]. Moreover, electrospinning can be applied to 

synthetic and natural polymers, polymer alloys, metals, ceramics and polymers 

functionalized by the addition of drugs, nanoparticles and active agents [115]. The 

unique characteristics of nanofibres and the functionalities from the polymers 

themselves make nanofibres as a required candidate for many advanced applications 

[116-123]. 

 

1.5.2 Nanofibre blended fabrics 

Hybrid nanofibrous fabrics with nano layered structures were fabricated by either 

sequential or simultaneous electrospinning. In addition to the increase in the production 

rate, multiple spinnerets arranged in either side by side [124, 126-129] or opposite sides 

[130, 131] have been used to electrospin nanofibres from dissimilar polymers onto a 

rotating collector for making blended fabric. It has been noted that spinning different 

fibres from opposite sides spinnerets arrangement require different electrospinning 

parameters, as shown in figure 1.6. The weight ratio of each polymer fibre resulted in 

the blended fabric and fibre mixture and distribution throughout the depth of the fabric 
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can be controlled by changing the number ratio and position of the spinnerets [130]. In 

fact, combination of the advantageous properties of each polymer is a promising 

solution for the preparation of novel nanofibrous fabrics for many applications. 

Furthermore, blending of different polymer nanofibres provides a strategy for 

controlling porosity and pore size distribution through the fabric. For instance, Frey et. 

al. have electrospun nylon 6 and PEO from opposite sides spinnerets to produce blended 

nanofibres fabric, as shown in figure 1.6 [130]. Then PEO component was removed by 

immersing nanofibrous fabric into the water for 24 hours followed by drying in a 

vacuum oven for another 24 hours to increase the void volume and associated pore size. 

They have reported a change in the voids volume from a narrow distribution of pores 

less than 200 nm in diameter to a broad distribution of pores ranging from 100 nm to 1 

micron in diameter. 

 

 
Figure 1.6, (Left) Two electrospinning apparatuses were set on opposite sides of a 

spinning collector, rotating the collector blends the nanofibres in the resulting 

nonwoven fabric [131]. (Right) confocal laser scanning microscope image of dyed 

nylon 6 / PEO nanofibrous fabric [130].    

 

Researches have reported many examples of nanofibres blending to get the benefit of 

each polymer such as water-resistant hybrid nanofibrous fabric [128]. In addition, thin 

collagen nanofibres as the inner layer and thick PU fibres as the outer layer have been 

cylindrically constructed to serve as a good carrier tissue for artificial blood vessels 

[129]. Wagner et al. have constructed nanofibrous fabric from biodegradable poly (ester 

urethane) urea (PEUU) as an elastomeric polymer and poly (lactide-co-glycolide) 

(PLGA) to reduce the shrinkage ratio [131]. 
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Briefly, these studies indicate a useful progress in controlling the nanofibrous fabric 

physical properties and its voids through blending of different polymers. To do so, 

electrospinning applied voltage, spinneret to collector distance, volume feed rate and 

polymer solution concentration must be optimized for every polymer. 

 

1.5.3 Nonwoven fabrics coated by nanofibre layers 

As previously mentioned, the nanofibrous mat provides a well interconnected porous 

network with a surface area per unit mass that is about 100 - 1000 times larger than that 

of carbon or glass fibres [132]. Moreover, this high specific area enhances the bonding 

area between the nanofibres and the surrounding environment [114, 115]. Based on this 

concept, conventional nonwoven fabrics are coated by electrospun nanofibre 

membranes to modify the properties of these textile fabrics, as shown in figure 1.7. The 

new nanofibre coating technology can be applied to any nonwoven base polymers, such 

as glass [133], natural or synthetic fibres [125] and even paper [134]. 

 

 
Figure 1.7, (Left) mode of a conventional nonwoven fabric coated by nanofibres [125], 

(middle) side view SEM image consisting of layered nanofibres nonwoven material 

developed by Hollingsworth-Vose Co. [51], (right) top view SEM image of nanofibres 

web density which can be adapted and controlled versus the microfibres nonwoven base 

[135].   

  

A second nanofibre layer applied on nonwoven fabric can enhance the thermal 

insulation [115], change the water vapor permeability ‘waterproof or breathable fabric’ 

[115], increase the barrier properties [114], absorb acoustic and antinoise resources 

[125] and achieve the desired structural, physical and mechanical properties such as 

pores size, durability and stiffness [136]. Furthermore, functional nanoparticles 

‘enzymes’ can be added into a polymer solution before electrospinning the nanofibres to 
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give the composed fabric a specific functionality such as protection against chemical or 

biological hazards and aerosol filtrations. 

However, as the electrospun nanofibre layer has two dimensional structure that lacks the 

z-direction depth, it offers little strength and bonding adhesion with the base fabric. Due 

to this configuration, surface loading stability is required for preventing damage or 

dislodge from the base fabric; there is still a need for enhancing nanofibre - fabric base 

adhesion. To overcome this deficiency, two solutions have been applied technically by 

the industry. Firstly, for protecting nanofibres against mechanical damage, an extra 

layer of nonwoven coarse ‘micro’ fibres has been applied. In other words, new three 

layers ‘in which both the base and the top are coarse fibre layers for supporting the mid 

nanofibre layer’ have been interconnected [137]. Or to provide a smoother surface to the 

top coating layer, the top layer can be replaced into few layers of the nanofibrous 

structures that electrospun with thinner fibre diameters than the mid layer as shown in 

figure 1.8 [114]. Secondly, before electrospinning the nanofibre layer onto the 

nonwoven fabric, the fabric can be dipped in an adhesive solution and compressed by 

either a compression roller, a heating embossing roller, a high pressure water injection, 

by electromagnetic waves, ultrasonic waves or plasma. Then after delivering of the 

nanofibre, the composed fabric is dried and bonded [137]. 

Further discussed are the advantages of using nanofibre coating for different 

applications. Coating the filter material with a layer of nanofibres has been used to 

improve depth filtration and self-cleaning or pulse-cleaning ability. Hajra et al. have 

reported that the filtration performance ‘efficiency and pressure drop’ of glass fibres 

filter was not improved by coating of coarse fibres with average diameter of  7 μm  on 

the glass filter, but significantly improved by the same mass of nanofibres with average 

diameters of 150 nm [138]. Hsiao et al. have also reported an improvement in the 

oil/water filtration performance by using a crosslinked electrospun PVA nanofibrous 

substrate as a mid layer [139]. In addition, fabrics for protective clothing applications 

are also coated by different nanofibrous layers to improve many specific properties such 

as mechanical support and resistance against air and moisture transport [132].  

In fact, the potential impact of nanofibre coating is extensive. Elmarco and others have 

developed many machine models with different production rates for integrating 

nanofibres on line onto coarse fibre nonwoven fabrics for building a three dimensional 

structure, as shown in figure 1.9. An example of the industrial nanofibres coating 

machines made by Elmarco is shown in table 1.2. 
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Figure 1.8, SEM images of three layers used as a filtration membrane in which a melt 

blown nonwoven polyester base is used as a support layer, PAN electrospun nanofibres 

as a mid layer, and a top coating layer of chitosan [114]. 

 

Table 1.2, NanospiderTM

Machine model 

 machine models produced by Elmarco company [125].  

NS 8A 1600 NS 16A 1600 

Number of spinning units 2 4 

Number of spinning heads 8 16 

Width 1.6 m 1.6 m 

Type of polymer PA6 PA6 

Fibre diameter 0.03 g/ m2 0.03 g/ m, fibres 50-150 nm 2, fibres 50-150 nm 

Linear speed 18 m/min 33 m/min 

Operation cycle 16 h 16 h 

Dimensions (L 4.1, W 2.6, H 2.5) m (L 8.1, W 2.6, H 2.5) m 

 

In summary, the study presented here indicates the useful progress in developing the 

physical, mechanical and structural properties of nonwoven fabrics through coating the 

fabric by electrospun nanofibres. Hence the transition from microfibre to nanofibre 

nonwovens led to a significant change in the transport properties as a result of the 

reduction in the pore size and the large increase in the inner surface area. So a 

lightweight, hydrophilic, hydrophobic, breathable, permeable and highly resistant to 

deadly chemicals fabric can be achieved. To do so successfully, homogeneity in the size 
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diameter distribution of nanofibres and uniform nanofibre coating thickness are 

required. Furthermore, bonding and adhering the nanofibre layer onto the nonwoven 

fabric are still great challenge which needs further investigation. 

 

 
Figure 1.9, Schematic illustration of the nanospiderTM machine produced by Elmarco 

company [125], (upper left) photograph of nanospiderTM

Typically, as shown previously, electrospun nanofibre assemblies are collected as a two 

dimensional form with randomly arranged structures. In addition, it is difficult to 

control the density of nanofibres in the direction of thickness, thus fabricating a solid 

three dimensional structure form through electrospinning is hard to achieve. So far, 

 machine [125], (upper middle) 

technical electrospinning set-up with a large scale width presented in TransMIT- 

Marburg- Germany [117], (upper right) technical textile fabrics coated by electrospun 

nanofibres [117].  

 

1.5.4 Three dimensional nanofibre fabrics 
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however, the only electrospun three dimensional structure form with proper length, 

width and height that has been successfully fabricated is a nanofibrous tube. 

Nevertheless, some solid three dimensional nanofibrous fabrics have also been 

fabricated with some success. 

Recently, researchers have reported three dimensional construction fabric forms via 

electrospinning by using different methods. They have used a micro patterned template 

as a collector [140], a chemical blowing agent with heat post treatment [141], 

combination of electrospinning and wet spinning ‘electro wet spinning’ [142] and  a 

three dimensional collecting template as an assistant collector [143]. Hereinafter, a brief 

explanation about the most recent effective methods for fabricating three dimensional 

nanofibre fabrics is presented. 

Kobayashi et. al. have established a novel system based on electro wet spinning for the 

three dimensional structure control of nanofibre fabric [142]. After electrospinning 

nanofibres in the liquid bath, the collected nanofibre fabric was frozen and then 

vacuum-freeze dried. A three dimensional spongiform fabric with remarkable low bulk 

density in comparison with the nonwoven electrospun fabric has been produced. They 

have demonstrated, within this system, that the apparent density, porosity and formation 

of the fabric depend critically on the surface tension of the liquid bath. Hence, for 

instance, when water was used as a liquid bath, the nanofibres floated on the water 

surface due to its high surface tension. 

Chang et. al. have designed a novel method for fabricating nanofibrous tubes with 

different three dimensional tubular architectures by controlling the configuration of the 

collectors [143]. They have used three dimensional collecting templates (a working 

collector with similar configuration of the desired fibrous tubes and a stick assistant 

collector) in order to manipulate the electric field and the electric forces ‘Coulomb 

interactions’, as shown in figure 1.10. As a result, tubular structures with different 

lengths, diameters, cross sectional shapes and multiple interconnected patterns have 

been synchronously fabricated. They have demonstrated, in this design, that formation 

of the tube architecture depends on the electrospinning solvent permittivity, feeding 

rate, applied voltage, charge density and the correlated nanofibre velocity. 

In fact, with the ability to fabricate three dimensional structure fabrics, many effective 

applications such as tissue organ scaffolds can be achieved. However, three dimensional 

nanofibre fabrics still have some problems in controlling the fabric’s thickness density 

for commercial and industrial applications, and need further research. 
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Figure 1.10, Schematic illustrations and photos of collecting processes for the 

fabrication of nanofibrous tubes with different patterns by electrospinning using 3D 

collectors, ((w) is the working collector, (pa) is the plane assistant collector, and (sa) is 

the stick assistant collector) [143].  

 

 

1.5.5 Woven nanofibre fabrics 

As previously shown from the literature on nanofibre fabrics, it is found that most 

developments have focused on functionality and engineering of nonwoven nanofibre 

fabrics. So far, however, nanofibres have not been widely used in woven fabric 

formation. Hence, according to the weaving process fundamentals, single nanofibres 

cannot be applied directly due to their geometrical structure and physical properties. In 
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other words, manufacturing of woven nanofibre fabrics is mainly based on spinning 

nanofibre yarns with controlled orientation and architecture. In fact, as shown 

previously in chapter five, spinning continuous twisted nanofibre yarn at acceptable 

production rates and mechanically suitable for weaving process requirements is a 

serious challenge which needs further systematic research. 

Nevertheless, researchers have recently demonstrated the feasibility of weaving 

nanofibre bundles or tows ‘oriented yarns’ into three dimensional woven fabrics. Kim 

et. al. have constructed plain woven fabric based on polycaprolactone nanofibre bundles 

[144]. In their work, electrospun porous PCL nanofibres were produced using electro 

wet spinning. After delivering and coagulating, the nanofibres were drawn out from the 

coagulant bath (distilled water) by means of a roller rotating at 30 m/min and dried in a 

vacuum oven at 20°C. Then the plain woven fabric was constructed with interlacing 

warp yarns and filling yarns at right angles, as shown in figure 1.11. They have claimed 

that the produced PCL woven fabric provides an engineering scaffold able to support 

cells-tissue proliferation. 

However, having a low production rate (the highest nanofibre yarn spinning speed of 63 

m/min [145] is still much slower than that of the industrial dry spinning for yarn of 

1500 m/min [146]) and the unclear physical and mechanical properties of nanofibre 

yarns, the ability to fabricate woven nanofibre fabric remains a challenge. Moreover, 

imparting the twist and thus producing continues twisted nanofibre yarn with good 

strength is another crucial role in manufacturing woven fabric.      

 

 
Figure 1.11, (Left) Schematic diagram of the plain weave fabric, (right) close photo of 

PCL plain weave nanofibre fabric [144].  
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1.5.6 Core-shell, hollow and porous nanofibres 

Electrospun nanofibres usually have a solid interior body and smooth surface. Recently, 

researchers have demonstrated that nanofibres with controllable hierarchical (such as 

core-shell, bicomponent, hollow and porous) structures could be produced if proper 

processing parameters or designs of spinnerets were implemented. Functionalizing 

nanofibre by different materials or controlling nanofibre body size, mass and content 

has produced nanofibres with super active surface properties. Hierarchical organization 

in nanofibre morphologies and textures can be utilized in advanced applications such as 

nanofluidics, catalysis, drug delivery and release, nano supports, energy storage and gas 

sensors. Herein, from the engineering point of view, these types of nanofibre structures 

with an emphasis on their formation mechanisms and functionality are reviewed.  

 

1.5.6.1 Core-shell nanofibres 

To impart functional properties to the nanofibres, two components consisting of two or 

more different types of polymers, polymer/nanoparticles, polymer/(bacterias, viruses, 

cells and enzymes carrying specific functions) and polymer/nonpolymeric Newtonian 

liquid have been electrospun. To synthesize this tubular or core-shell ‘core-sheath’ 

(cable-like) nanofibre structure, different methods including multi steps template 

synthesis [147, 148], surface initiated atom transfer radical polymerization ‘ATRP’ 

[149] and coaxial electrospinning [150-159] have been utilized. Coaxial electrospinning 

has been considered as the most versatile method for producing compound core-shell 

nanofibres [115]. Table 1.3, shows examples of the core-shell nanofibres produced by 

coaxial electrospinning. 

In coaxial electrospinning, two concentrically aligned capillary channels located 

coaxially one inside the other are used for the simultaneous electrospinning of two 

different immiscible liquids. One of the liquids flows through the inner capillary and the 

other liquid flows through the annular gap between the outer and the inner capillary. 

When the same voltage is applied to both capillaries, a jet is generated on the tip of the 

deformed droplet. The jet stretches and the solvent evaporates causing the jet to solidify, 

thus producing compound core-shell nanofibres, as shown in figure 1.12. 

It can be noted that by using a concept similar to the coaxial spinneret, the spinneret can 

be designed with two capillaries side by side in order to electrospin bicomponent 

nanofibres [126, 160, 161]. It has been demonstrated within this system that the feed 

rate ratio of the two components must be constant along the length of the fibre for 

preventing the fluctuations of the jet on the surface of the Taylor cone [117]. 
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Table 1.3, Examples of core-shell nanofibres produced by coaxial electrospinning using 

different materials. 

Synthesis method Core Shell Ref. 

Coaxial spinneret Heavy mineral oil Poly(vinylpyrrolidone)(PVP) [150, 

153] 

Coaxial spinneret Poly(styrene-block-

isopreneblock-styrene) 

Poly(methylmethacrylate-co-
methacrylic acid) 

[152] 

Coaxial spinneret Polystyrene (PS) Poly(phenylenevinylene)PPV [154] 

Coaxial spinneret Poly(vinyl alcohol)(PVA) Poly(phenylenevinylene)PPV [154] 

Coaxial spinneret Poly(anilinesulfonic 

acid)(PASA) 

Poly(ethylene oxide) (PEO) [155] 

Coaxial spinneret Poly(acrylonitrile) (PAN) Poly(ethylene oxide) (PEO) [155] 

Coaxial spinneret Poly(methylmethacrylate) 

(PMMA) 

Poly(acrylonitrile) (PAN) [156] 

Coaxial spinneret Paraffin oil Poly(vinylpyrrolidone)(PVP) [157] 

Coaxial spinneret Cellulose acetate (CA) Poly(ethylene oxide) (PEO) [158] 

Coaxial spinneret Poly(methylmethacrylate) 

(PMMA) 

Polypyrrole (PPY) [159] 

 

During coaxial electrospinning, the nanofibre core diameter and shell thickness can be 

conveniently varied by controlling the flow rates of liquids in the inner and the outer 

capillaries. In general, the physical pattern of coaxial electrospinning depends on the 

compound droplet suspended at the edge of a core-shell spinneret. The compound 

droplet must be elongated at the same magnitude in order to obtain core-shell nanofibres 

with continuous and uniform diameters. Common problems that may occur in the 

coaxial electrospinning are; if, due to the weakness of the electric forces, the outer 

droplet is transformed into a jet while the inner droplet is not transformed. In that case, 

the deformation of the inner droplet into a core is left to viscous forces only [115]. In 

addition, when the shell liquid is a polymeric solution and the core liquid is a normal 

liquid (e.g. oil, water), the core jet may break into droplets as the shell stretches quickly 

[155]. Hence, rapid stretching of the shell may cause strong viscous stress tangential to 

the core [150]. 

In summary, in this new electrospinning system, parameters of electrospinning and 

liquids properties such as size of core-shell capillaries, applied electric field, volume 

feed rate, immiscibility of the core-shell liquids and their viscosity and conductivity 

play crucial roles in determining the uniform formation of core-shell jet and the 
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morphology of the produced nanofibres. However, more systematic work is still 

required in order to control the process and to achieve a better understanding.   

 

 
Figure 1.12, (Left) Schematic illustration of the electrospinning setup with two coaxial 

capillaries for spinning nanofibres having a core-shell structure [157], (right) series 

photos of the formation of the compound conical electrified coaxial jet, the liquids are a 

PVP solution as a shell and a mineral oil as a core [155].  

 

1.5.6.2 Hollow nanofibres 

Nanofibres with hollow interiors ‘like tubes’ are of great technical importance for many 

applications such as nanofluidics and hydrogen storage [162]. Recently two effective 

methods have been used to synthesize hollow ‘‘electrospun’’ nanofibres from a wealth 

of materials. Coaxial electrospinning of two immiscible liquids followed by dissolving 

the core with a selective solvent [150, 151], by dissolving and calcining ‘heating 

treatment’ the core [163, 164] or by calcining the core [157, 165] has been successfully 

utilized. For instance, with the use of coaxial electrospinning, nanofibres made of 

TiO2/PVP as a shell and mineral oil as a core were obtained. Removal of the oil phase 

by solvent extraction resulted in the formation of hollow nanofibres consisting of 

TiO2/PVP composite walls [150]. In this method, the size and wall thickness of these 

nanofibres can be varied by controlling the process parameters such as feeding rate of 

the core liquid. Most importantly, choosing the right solvent and calcining the 

electrospun nanofibres with controlling the heating rate and the dwell time for 

extracting the core are crucial steps for successful hollow nanofibres synthesis [166]. In 

the second method, electrospun polymer fibres are used as template for the preparation 

of hollow nanofibres. Then this template is coated with one or more layers ‘a layer-by-

layer technique’ of polymers, metals, or even oxygen plasma irradiation [167] as a 

sheath to the nanofibre core. With a similar concept, the sacrificial template material is 

extracted by dissolving and heat drying [167], dissolving and centrifugal rotation drying 
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[168, 169] or by calcining [170, 171] to synthesize the hollow nanofibre structure. It has 

been demonstrated that the quality of the resultant hollow nanofibres is strongly 

dependent on the yield and control of coating and etching steps [170]. Figure 1.13, 

shows hollow nanofibre images synthesized by different methods which are adapted 

from the open literature.  

 

 
Figure 1.13, (Left to right) SEM images of hollow titania nanofibres functionalized 

with amino-terminated silane and gold nanoparticles [151], 8YSZ hollow nanofibres 

calcined at 1400 °C [170], hollow multilayer (PEI/TiO2)4 nanofibres [169]. 

 

In fact, the hollow nanofibre synthesis facilitates functionalization of the inner and outer 

surfaces of the hollow nanofibres with salts, ferrofluids, enzymes, dyes, and precursors 

[162]. Moreover, the surface area measurements gave hollow nanofibres a BET surface 

area ‘a technique for the measurement of the specific surface area of a material m2

It has been reported by Xia et. al. that by electrospinning immiscible polymers and 

miscible solvents, highly porous nanofibres could be obtained [151]. In their work, the 

PS solution in a mixture of DMF/THF was used as a core liquid and a PVP/TiO

/g’ 

larger than (approximately two times) those of the solid core-shell nanofibres [165]. 

 

1.5.6.3 Porous nanofibres 

The surface area of nanofibre can be greatly enhanced when its topology is transformed 

into a porous structure. Increase of surface areas expands nanofibre scope for a range of 

beneficial applications such as modifying the wetting properties for filtration and 

altering the biodegradation kinetics of bioerodible nanofibres. [115]. As such, several 

researchers have generated porous nanofibres with different topologies by selecting 

particular solvents or solvent mixtures, or polymer mixtures under controlled 

environmental mediums.  

2  

solution in ethanol was used as the shell liquid. As the solvents evaporated during 

electrospinning, the two polymer phases were separated to generate nanofibres of PS 
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embedded in a PVP/TiO2 matrix. Then, by calcining the fibres; the PS phase had been 

removed to form highly porous nanofibres with no defined core-shell morphology, as 

shown in figure 1.14, (right). It can be noted that if a mixture of immiscible polymers is 

electrospun from the same solvent, binodal or spinodal nanofibre structures have been 

produced after evaporation of the solvent and phase separation. Consequently, by using 

a specific solvent; porous nanofibres with periodic thickness fluctuations and fractal 

surfaces can be obtained, as shown in figure 1.14, (middle) [115]. 

Researchers have also produced porous nanfibres by electrospinning polymer blends, 

followed by selective removal of one component. Wendorff et. al. have produced 

porous nanofibres of PLA/PVP blend solution [172]. They have reported that the degree 

of nanofibre porosity can be controlled by varying the amounts of the two polymers 

loaded into the polymer solution. Furthermore, by exploiting this concept, Khan et. al. 

have reported that removal of the salt from electrospun nanofibres of nylon 6/ GaCl3 

blend using water or other solvents resulted in nanopores with controlled pore size 

along the surface of the nanofibres [173]. 

Another method of obtaining porous structures could be by electrospinning nanofibres 

in a bath of liquid (such as nitrogen) [174]. Here, phase separation of the polymer and 

the solvent occurs and thus porous nanofibres are formed by removing the solvent under 

vacuum. Finally, using either a highly volatile solvent [175] or a swelling agent [176] or 

injecting tiny droplets of water under a very humid environment [177] within the 

polymer solution followed by drying the electrospun nanofibres has also led to porous 

structures. Figure 1.14, shows some examples of porous nanofibres formed by different 

methods (referred to their references) which are adapted from the open literature. 

 

 
Figure 1.14, (Left to right) SEM images of porous Titania nanofibres fabricated by 

calcining fibres electrospun from PS in DMF/THF in the core with a titanium/PVP in 

the outer shell [151], electrospun nanofibre of a PLA/PVP blend after the selective 

extraction of PVP [115], porous nylon 6 nanofibres after removing the salt from the 

nylon 6/ GaCl3 [173].   
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In summary, porous nanofibres enlarge of the inner surface and thus the average surface 

area for the fibre matrix. For instance, Khan et. al. found that the BET surface area of 

the electrospun nanofibres is 1.8 m2/g, whereas the BET surface area for the same 

nanofibres but porous is 12 m2

Other research groups have produced helical nanofibre structures by electrospinning  

two components polymer solution, one conducting polymer (e.g. polyaniline sulfonic 

acid PASA) and one nonconducting polymer (e.g. PEO) from either single spinneret 

/g, reflecting an increase of a factor of 6 [173]. Moreover, 

their structure feature possesses the functionality to make porous nanofibres an 

important candidate for tissue engineering, catalysis and drug delivery and release 

applications.  

 

1.5.7 Helical nanofibre assemblies 

With the development of numerous novel electrospinning setups, great success has been 

achieved in controlling the fluffy texture of the nanofibres. Recently, architectural 

nanofibres including sinuous and zigzag folding, helical coiling and meandering, 

nanospring, coiled and surprising shish-kebab structures have been fabricated. In order 

to produce nanofibres with controlled configurations, electrospinning modification or 

polymer crystallization synthesis must be applied. 

It has been demonstrated that the helical structures of nanofibres can be formed when 

the jets hit the collector surface during electrospinning [178]. Hence, when the jets 

impinged on the collector surface; the jets are under longitudinal compressive forces 

and thus the nanofibres recoil ‘buckling instability’. Based on this concept, and to 

elucidate this helical transformation mechanism; Reneker et. al. established an 

electrospinning set-up with a varied spinneret to collector distance of 1.5 cm to 5 cm, as 

shown in figure 1.15 (left) [179]. They have reported that the buckling frequency and 

wavelength, packing density ‘dense or loose’ and coils characteristic vary with this 

distance. In addition, they have observed that highly conductive, charged and viscous 

jets produced highly tightly looped buckling patterns. 

Kim et. al. and another research group have introduced splitting the electric field in 

electrospinning as a method for helical structures formation [180, 181]. Particularly, by 

introducing unique set-ups consisting of parallel electrodes or one electrode and tilted 

glass slide as shown in figure 1.15 (middle and right), the nanofibre morphology 

changed into aligned helical coiling structures. They have also found that the coiling 

patterns were dependant on the jet viscosity and the geometric configuration of the 

collector electrodes. 
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[182, 183] or side by side bicomponent spinneret [161] on a conducting collector. It has 

been suggested that the viscoelastic shrinkage and the charge neutralization on the 

conductive phase were responsible for the formation of the helical structures.    

 

 
Figure 1.15, Schematic drawings of the helical nanofibre fabrications, (left) jets hitting 

[179], (middle) electric field splitting by parallel electrodes [180], (right) electric field 

splitting by one electrode and tilted glass slide [181].     

 

Li et. al. have recently fabricated fancy hierarchical nanofibres by combining 

electrospinning and polymer crystallization technique [184]. They have decorated shish-

kebab nanofibres by either an incubation (slow crystallization) or a solvent evaporation 

(fast crystallization) method. In fact, in this method, they have presented an effective 

strategy for fabricating well controlled fancy nanofibres. Hence, the hierarchical shape 

can be controlled by adjusting the crystallization conditions such as crystallization time, 

temperature and concentration. 

Most recently, Wendorff and Bahnmueller et. al. have precisely made parallel, 

rectangular, undulating, buckling and fancy nanofibre structures on a high speed 

displaced silicon wafer collector [185]. In this method, the collector was ordered to a 

rapid displacement along the x-axis followed by a sequential rapid shift along the y-

axis, and so on. They have claimed that by controlling the spinneret-collector distance, 

the applied voltage and the resolution of the displacement velocity in all directions, 

different pattern architectures can be fabricated. Figure 1.16, shows overview images of 

the different architectural nanofibres fabricated by the above mentioned methods. 

In conclusion, these architectural nanofibres render a three dimensional feature and 

provide higher surface areas with spacer porosity control compared with a nonwoven 

nanofibre mat. Furthermore, they open the road towards novel applications such as 

sensorics, optical components and nanoelectromechanical systems. 
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Figure 1.16, (Left to right) Images of helical nanofibres [182], shish-kebab nanofibres 

[184], (House of Santa Claus) written by nanofibres using the displaced collector 

method [185].   

 

1.6 Aims and research objectives 

The main aim of the thesis is to investigate yarn spinning from electrospun nanofibres. 

Based on the concept of staple yarn spinning, random fibres are aligned, drafted and 

twisted by devising a suitable spinning mechanism. This concept has been applied on 

electrospun nanofibres, by studying the morphology of nanofibres, alignment and 

orientation of nanofibres and finally the application of twist into the nanofibres and the 

taking up of the resulted yarn. The control of the yarn linear density and twist per unit 

length are important process requirements for optimum yarn design. Mechanical 

characterization of the electrospun nanofibres and techniques for enhancing their 

strength and functionality by (CNTs) also need to be studied for effective yarn 

production.  

These research objectives are being fulfilled in six chapters, the arrangements of which 

are described below.  

 

Chapter 2: Investigating the fabrication of nanofibres by electrospinning: the thesis 

focus on nylon 6 polymer for electrospinning nylon 6 nanofibres and for further 

spinning them into continuous yarn. Although other polymers have been investigated 

and could be used, we felt that consistency throughout of this research was important.  

In this chapter, the physical properties of the polymer solution and the electrospinning 

process parameters are investigated in order to establish their effect on nylon 6 

nanofibre morphology, average diameter and uniformity. The polymer solution 

concentration, applied voltage and electrospinning distance are optimized to enable 

uniform nanofibre diameter distribution. Consequently, uniform diameter nanofibres 

can be produced for alignment and parallelization for the next step of this study.  
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Chapter 3: Alignment of nanofibres: in this chapter, a comprehensive review on the 

design and use of manifold nano mechanisms for the alignment of nanofibres is 

provided. We revise and further develop a novel nano alignment and parallelization 

mechanism for nanofibres by considering its further use for nanofibre twist insertion 

necessary for later; steps of this research. We systematically scrutinize the degree of 

alignment of nanofibres, nanofibres length and linear density of collected nylon 6 

nanofibres. This enables us to optimize the alignment mechanism by characterizing the 

nanofibres alignment morphology. Thus, the optimum parameters of the alignment 

mechanism are in agreement with the requirements for the continuous nanofibre yarn 

making for the following research step. 
 

Chapter 4: Nanofibres filled with carbon nanotubes (CNTs): in this chapter, we aim to 

functionalize and strengthen the aligned nylon 6 nanofibres before gathering them into a 

continuous yarn. We have used multiwall carbon nanotubes (MWCNTs) as filler 

nanoparticles, because CNTs are suitable candidates due to their hardness, strength, 

thermal and electrical conductivity to enhance yarn characteristics. We used a high 

speed shearing method to improve the dispersion of MWCNTs into the polymer 

solution under a loading. We have manipulated the electric forces during 

electrospinning and the stretching forces on the fibres by the alignment mechanism to 

enable better alignment of the MWCNTs along the nanofibre axis. We have 

characterized microscopically the morphology of electrospun nanofibres and the 

dispersion of the MWCNTs and their alignment inside the nanofibre body. This enabled 

us to look into how to twist and collect nanofibres for yarn making, discussed in the 

next chapter.             

 

Chapter 5: Spinning nanofibre yarns: in this chapter, we provide a comprehensive 

review on the design of various nano mechanisms for nanofibre yarns. In this chapter 

two techniques for making yarn have been examined; the conventional spun and the 

core spun concepts. We design and implement a novel mechanism for spinning 

nanofibre/composite nanofibre yarn as a further development of the alignment 

mechanism. We characterized microscopically the resulted yarn and further examined 

the inserted twist and the yarn linear density. We explained how we can control 

different yarn geometries such as yarn linear density and twist per unit length.  

Another technique investigation was the one based on the conventional core spun yarn 

concept where we devised a new electro mechanical mechanism for spinning ‘core 
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electrospun nano yarns’. We have characterized microscopically the helical wraps of 

nanofibres wound around the core filament. We have analytically investigated the 

parameters of this mechanism such as feed-in angles, twist speeds and take up speeds 

for optimum spinning of core electrospun nano yarns. 

Although the results fulfilled the objectives and were pushing the electrospinning of 

yarn further, it was necessary to try to theoretically and mechanically explain some 

process parameters for a more generic and robust process optimization. To that effect 

modeling of the jet and mechanical measurement of the fibres and mats were 

undertaken. 

 

Chapter 6: Modelling the electrospinning of nanofibres: In practice, controlling yarn 

linear density and twist per unit length requires defining of the velocity of the 

nanofibres entering the spinning zone. To fulfil these requirements we aim in this 

chapter to establish mathematically the velocity; ‘kinematics feature’ of the nanofibres 

prior to collection. We have provided a comprehensive review on the mathematical 

models of electrospinning from jet initiation to nanofibre collection. In addition, we 

examine the electrospinning modes theory and their kinetic features. We were able to 

establish a mathematical model for recognizing and calculating theoretically the jet 

velocity at its splitting point, the number of nanofibres generated from the jet and their 

velocities. The accuracy of this model and its equations has been validated by 

considering the actual jet and the collected nanofibre velocities. 

 

Chapter 7: Mechanical characterization of nylon 6 nanofibres: in this chapter, we aim 

to mechanically characterize the nanofibres by tensile testing of a single nanofibre and 

nanofibre mat. We start by providing a critical review of the developed mechanical 

characterization testing methods of single nanofibre. We have carried out a tensile test 

for nanofibre/ composite MWCNTs nanofibre mats to further characterize the effect of 

the MWCNTs filling fibre architecture. In addition, we design and implement a novel 

simple laboratory set-up for performing tensile test of single nanofibres. As a result, we 

have established the stress - strain curve for single nylon 6 nanofibres allowing us to 

define the tensile strength, axial tensile modulus and ultimate strain of these fibres. 

Finally, we explained how we can improve the mechanical properties of nylon 6 

nanofibres and discussed how to overcome the tensile testing challenges of nanofibres. 
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Chapter 8: General discussion and conclusion: in this chapter, we try to summarize and 

conclude the investigation by answering the questions of the research aims and 

objectives. We discuss what was achieved in this study and state the challenges we 

faced in this work and how we have overcome these challenges, and discuss the new 

challenges of future work related to this study and further. 

 

 

1.7 References 

[1.1] A. Vaseashta, In nanostructured and advanced materials, Edited by A. Vaseashta, 

D. Malinovska, J.M. Marshall, Dordrecht, 204, 1-30 (2005) 

[1.2] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer 

nanofibres by electrospinning and their applications in nanocomposites, Composites 

Science Technology, 63, 2224-2253 (2003) 

[1.3] D. Li, Y. Xia, Electrospinning of nanofibres: reinventing the wheel, Advanced 

Materials, 16, 1151-1170 (2004) 

[1.4] T. Ondarcuhu, C. Joachim, Drawing a single nanofibre over hundreds of microns, 

EPL-Europhysics Letters, 42, 215-220 (1998)  

[1.5] P.X. Ma, R. Zhang, Synthetic nano-scale fibrous extracellular matrix, Journal of 

Biomedical Materials Research, 46

[1.6] G.M. Whitesides, B.J. Grzybowski, Self-assembly at all scales, Science, 

, 60-72 (1999) 

295, 

2418-2421 (2002) 

[1.7] C.R. Martin, Membrane-based synthesis of nanomaterials, Chemistry of Materials, 

8, 1739-1746 (1996) 

[1.8] A. Formhals, Method and apparatus for spinning, US Patent, 2160962 (1939)  

[1.9] A. Formhals, Artificial thread and method of producing same filed, US Patent, 

2187306 (1940) 

[1.10] A. Formhals, Producing of artificial fibres from fibre forming liquids, US Patent, 

2323025 (1943) 

[1.11] A. Formhals, Method and apparatus for spinning, US Patent, 2349950 (1944) 

[1.12] A. Formhals, Process and apparatus for preparing artificial threads, US Patent, 

1975504 (1934) 

[1.13] P.K. Baumgarten, Electrostatic spinning of acrylic microfibres, Journal of 

Colloid and Interface Science, 36, 71-79 (1971) 

[1.14] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer produced by 

electrospinning, Nanotechnology, 7, 216-223 (1996) 



 
39 

[1.15] Y. Zhou, M. Freitag, J. Hone, C. Staii Jr, A.T. Johnson, N.J. Pinto, A.G. 

MacDiamid, Fabrication and electrical characterization of polyaniline-based 

nanofibres with diameter below 30 nm, Applied Physics Letters, 83, 3800-3802 (2003) 

[1.16] H. Fong, I. Chun, D.H. Reneker, Beaded nanofibres formed during 

electrospinning, Polymer, 40, 4585-4592 (1999) 

[1.17] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, The effects of solution properties and 

polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibres, Polymer, 45, 

2959-2966 (2004) 

[1.18] S.J. Kim, C.K. Lee, S.I. Kim, Effect of ionic salts on the processing of poly(2-

acrylamido-2-methyl-1-propane sulfonic acid) nanofibres, Journal of Applied Polymer 

Science, 96, 1388-1393 (2005) 

[1.19] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, The change of bead 

morphology formed on electrospun polystyrene fibres, Polymer, 44, 4029-4034 (2003) 

[1.20] T. Lin, H. Wang, X. Wang, The charge effect of cationic surfactants on the 

elimination of fibre beads in the electrospinning of polystyrene, Nanotechnology, 15, 

1375-1381 (2004) 

[1.21] L. Wannatong, A. Sirivat, P. Supaphol, Effects of solvents on electrospun 

polymeric fibres: preliminary study on polystyrene, Polymer International, 53, 1851-

1859 (2004) 

[1.22] C. Huang, S. Chen, C. Lai, D.H. Reneker, H. Qiu, Y. Ye, H.Q. Hou, Electrospun 

polymer nanofibres with small diameters, Nanotechnology, 17, 1558-1563 (2006) 

[1.23] Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, S. Ramakrishna, Crosslinking 

of the electrospun gelatin nanofibres, Polymer, 47, 2911-2917 (2006) 

[1.24] S.H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Systematic parameter study for 

ultra-fine fibre fabrication via electrospinning process, Polymer, 46, 6128-6134 (2005) 

[1.25] L. Larrondo, R.S.J. Manley, Electrostatic fibre spinning from polymer melts: I, 

experimental observations on fibre formation and properties, Journal of Polymer 

Science part B: Polymer Physics, 19, 909-920 (1981) 

[1.26] L. Larrondo, R.S.J. Manley, Electrostatic fibre spinning from polymer melts: II, 

examination of the flow field in an electrically driven jet, Journal of Polymer Science 

part B: Polymer Physics, 19, 921-932 (1981) 

[1.27] L. Larrondo, R.S.J. Manley, Electrostatic fibre spinning from polymer melts: III, 

electrostatic deformation of a pendent drop of polymer melt, Journal of Polymer 

Science part B: Polymer Physics, 19, 933-940 (1981) 



 
40 

[1.28] J. Lyons, C. Li, F. Ko, Melt- electrospinning part I: processing parameters and 

geometric properties, Polymer, 45, 7597-7603 (2004) 

[1.29] J.E. Sanders, S.E. Lamont, A. Karchin, S.L. Golledge, B.D. Ratner, Fibro-porous 

meshes made from polyurethane micro-fibres: effects of surface charge on tissue 

response, Biomaterials, 26, 813-818 (2005) 

[1.30] Y. Dzenis, Spinning continuous fibres for nanotechnology, Science, 304, 1917-

1919 (2004) 

[1.31] V.I. Kozhenkov, N.A. Fuks

[1.32] F. Raleigh, On the equilibrium of liquid conducting masses charged with 

electricity, Philosophical Magazine, 14, 184-186 (1882) 

[1.33] J. Zeleny, Instability of electrified liquid surfaces, Physical Review Letters, 10, 

1-6 (1917) 

[1.34] J.F. Cooley, Apparatus for electrically dispersing fluids, US Patent, 692631 

(1902) 

[1.35] W.J. Morton, Method of dispersing fluids, US Patent, 705691 (1902) 

[1.36] G. I. Taylor, Disintegration of water drops in an electric field, Proceedings of the 

, Electrohydrodynamic atomization of liquids, 

Russian Chemical Reviews, 45, 1179-1184 (1976) 

Royal Society of London Series A, 280, 383-397 (1964) 

[1.37] G. I. Taylor, The circulation produced in a drop by an electric field, Proceedings 

of the Royal Society of London Series A, 291, 159-166 (1966) 

[1.38] G. I. Taylor, Electrically driven jets, Proceedings of the Royal Society of London 

Series A, 313, 453-475 (1969) 

[1.39] J.R. Melcher, G.I. Taylor, Electrohydrodynamics: a review of the role of 

interfacial shear stresses, Annual Review of Fluid Mechanics, 1, 111-122 (1969) 

[1.40] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun 

fibres, Journal of Electrostatics, 35, 151-160 (1995) 

[1.41] R. Kessick, J. Fenn, G. Tepper, The use of AC potentials in electrospraying and 

electrospinning processes, Polymer, 45, 2981-2984 (2004) 

[1.42] A. Frenot, I.S. Chronakis, Polymer nanofibres assembled by electrospinning, 

Current Opinion in Colloid & Interface Science, 8, 64-75 (2003) 

[1.43] S. Koombhongse, W. Liu, D.H. Reneker, Flat ribbons and other shapes by 

electrospinning, Journal of Polymer Science part B: Polymer Physics, 39, 2598-2606 

(2001) 

[1.44] A. Buer, S.C. Ugbolue, S.B. Warner, Electrospinning and properties of some 

nanofibres, Textile Research Journal, 71, 323-328 (2001) 



 
41 

[1.45] A.G. MacDiarmid, W.E. Jones, I.D. Noris, Electrostatically-generated 

nanofibres of electronic polymers, Synthetic Materials, 119, 27-30 (2001) 

[1.46] D. Diaz, M.J. Leon, Electrospinning nanofibres of polyaniline and polyaniline/ 

polystyrene and polyethylene oxide blends, National Conference of Undergraduate 

Research, University of Kentucky, Lexington, USA (2001) 

[1.47] M. Bognitzki, H. Hou, M. Ishaque, Polymer-metal and hybrid nano-and   

Mesotubes by coating degradable polymer template fibres, Advanced Materials, 12, 

637-640 (2000) 

[1.48] M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J.H. Wendorff, Preparation of 

fibres with nanoscaled morphologies: electrospinning of polymer blends, Polymer 

Engineering Science, 41, 982-989 (2001) 

[1.49] M. Bognitzki, J.H. Wendorff, A. Greiner, Submicrometer shaped polylactide 

fibres by electrospinning, Polymer Materials Science Engineering, 82, 115-116 (2000) 

[1.50] S.B. Warner, A. Buer, S.C. Ugbolue, G.C. Ruteldge, M.Y. Shin, A fundamental 

investigation of the formation and properties of electrospun fibres, M98-D01, 

Department of Chemical Engineering and Material Sciences, Massachusetts Institute of 

Technology, Cambridge (2000) 

[1.51] A. Ziabicki, Fundamentals of fibre formation, John Wiley & Sons, London 

(1976) 

[1.52] S.Y. Gu, J. Ren, G.J. Vancso, Process optimization and empirical modeling for 

electrospun polyacrylonitrile (PAN) nanofibre precursor of carbon nanofibres, 

European Polymer Journal, 41, 2559-2568 (2005) 

[1.53] X. Fang, D.H. Reneker, DNA fibres by electrospinning, Journal of 

Macromolecular Science part B: Physics, 36, 169-173 (1997) 

[1.54] J.J. Feng, The stretching of an electrified non-Newtonian jet: a model for 

electrospinning, Physics of Fluids, 14, 3912-3926 (2002) 

[1.55] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of 

electrically charged liquid jets of polymer solutions in electrospinning, Journal of 

Applied Physics, 87, 4531-4547 (2000) 

[1.56] M.M. Hohman, M.Y. Shin, G.C. Ruteldge, M. Brenner, Electrospinning and    

electrically forced jets I: stability theory, Physics of Fluids, 13, 2201-2220 (2001) 

[1.57] I. Hayati, A.I. Bailey, T.F. Tadros,  Investigation into the mechanisms of 

electrohydrodynamic spraying of liquids, Journal of Colloid and Interface Science, 117, 

205-221 (1987) 



 
42 

[1.58] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Electrospinning of polyurethane 

fibres, Polymer, 43, 3303-3309 (2002) 

[1.59] J.M. Deitzel, D. Kleinmeyer, J.K. Hirvanen, N.C.B. Tan, Controlled deposition 

of electrospun poly (ethylene oxide) fibres, Polymers, 42, 8163-8170 (2001)   

[1.60] T.A. Kowalewski, A.L. Yarin, S. Blonski, Experiments and modelling of  

electrospinning process, The 5th Euromech Fluid Mechanics Conference, 24-28, 

Toulouse, France (2003) 

[1.61] J.H. He, Y.Q. Wan, J.Y. Yu, Allometric scaling and instability in 

electrospinning, International journal of nonlinear and numerical Simulation, 5, 243-

252 (2004) 

[1.62] S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Controlling the fibre 

diameter during electrospinning, Physics Review Letters, 90, 144502-1 - 144502-5 

(2003) 

[1.63] G. Srinivasan, D.H. Reneker, Structure and morphology of small diameter 

electrospun aramid fibres, Polymer International, 36, 195-201 (2003) 

[1.64] M.S. Khil, S.R. Bhattarai, H.Y. Kim, S.Z. Kim, K.H. Lee, Novel fabricated 

matrix via electrospinning for tissue engineering, Journal of Biomedical Materials 

Research part B: Applied Biomaterials, 72, 117-124 (2005) 

[1.65] J. Kameoka, H.G. Craighead, Fabrication of oriented polymeric nanofibres on 

planar surfaces by electrospinning, Applied Physics Letters, 3, 371-373 (2003) 

[1.66] S. Theron, E. Zussman, A.L. Yarin, Experimental investigation of the governing 

parameters in the electrospinning of polymer solutions, Polymer, 45, 2017-2030 (2004) 

[1.67] W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, Y. Zhang, Experimental study on 

relationship between jet instability and formation of beaded fibres during 

electrospinning, Polymer Engineering and Science, 45, 704-709 (2005) 

[1.68] T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. 

Nithitanakul, C. Pattamaprom, Effect of solvents on electrospinnability of polystyrene 

solutions and morphological appearance of resulting electrospun polystyrene fibres, 

European Polymer Journal, 41, 409-421 (2005) 

[1.69] K. Arayanarakul, N. Choktaweesap, D. Aht-Ong, C. Meechaisue, P. Supaphol, 

Effects of poly(ethylene glycol) inorganic salt sodium dodecyl sulfate and solvent system 

on electrospinning of poly(ethylene oxide), Macromolecular Materials and Engineering, 

291, 581-591 (2006) 

[1.70] J.H. Yu, S.V. Fridrikh, G.C. Rutledge, The role of elasticity in the formation of 

electrospun fibres, Polymer, 47, 4789-4797 (2006) 



 
43 

[1.71] J.M. Deitzel, J.D. Kleinmeyer, D. Harris, N.C. Tan, The effect of processing 

variables on the morphology of electrospun nanofibres and textiles, Polymer, 42, 261-

272 (2001) 

[1.72] E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Palowski, G.L. Bowlin, Tailoring   

tissue engineering scaffolds using electrostatic processing techniques: A study of poly 

(glycolic acid) electrospinning, Journal of Macromolecular Science Pure Applied 

Chemistry, A38, 12, 1231-1243 (2001) 

[1.73]  J. Liu, S. Kumar, Microscopic polymer cups by electrospinning, Polymer, 46, 

3211-3214 (2005) 

[1.74] M.G. McKee, G.L. Wilkes, R.H. Colby, T.E. Long, Correlations of solution 

rheology with electrospun fibre formation of linear and branched polyesters, 

Macromolecules, 37, 1760-1767 (2004) 

[1.75] K.H. Lee, H.Y. Kim, Y.M. La, D.R. Lee, N.H. Sung, Influence of a mixing 

solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl 

chloride) nonwoven mats, Journal of Polymer Science part B: Polymer Physics, 40, 

2259-2268 (2002) 

[1.76] H. Liu, Y.L. Hsieh, Ultrafine fibrous cellulose membranes from electrospinning 

of cellulose acetate, Journal of Polymer Science part B: Polymer Physics, 40, 2119-

2129 (2002) 

[1.77] H. Fong, D.H. Reneker, Elastomeric nanofibres of styrene-butadiene- styrene 

triblock copolymer, Journal of Polymer Science part B: Polymer Physics, 37, 3488-3493 

(1999) 

[1.78] M.B. Bazbouz, G.K. Stylios, Alignment and optimization of nylon 6 nanofibres 

by electrospinning, Journal of Applied Polymer Science, 107, 3023-3032 (2008) 

[1.79] X. Zong, K. Kim, D. Fang, S. Rana, B.S. Hsiao, B. chu, Structure and process 

relationship of electrospun bioabsorbable nanofibre membranes, Polymer, 43, 4403-

4412 (2002) 

[1.80] J. He, Y. Wan, J.Y. Yu, Scaling law in electrospinning relationship between 

electric current and solution flow rate, Polymer, 46, 2799-2801 (2005) 

[1.81] X.H. Qin, S.Y. Wang, T.S.D. Lukas, Effect of LiCl on the stability length of 

electrospinning jet by PAN polymer solution, Materials Letters, 59, 3102-3105 (2005) 

[1.82] X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna, Electrospun (PLLA-CL) 

nanofibre: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell 

proliferation, Biomaterials, 25, 1883-1890 (2004) 



 
44 

[1.83] C.J. Buchko, L.C. Chen, Y. Shen, D.C. Martin, Processing and microstructural 

characterization of porous biocompatible protein polymer thin films, Polymer, 40, 

7397-7407 (1999) 

[1.84] D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin, Bioresorbable nanofibre 

based systems for wound healing and drug delivery: optimization of fabrication 

parameters, Journal of Biomedical Materials Research, 70B, 286-296 (2004) 

[1.85] S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano and  

microfibre meshes for tissue-engineering matrix and scaffold based on newly devised 

multilayering and mixing electrospinning techniques, Biomaterials, 26, 37-46 (2005) 

[1.86] S.F. Fennessey, R.J. Farris, Fabrication of aligned and molecularly oriented 

electrospun polyacrylonitrile nanofibres and the mechanical behavior of their twisted 

yarns, Polymer, 45, 4217-4225 (2004) 

[1.87] B. Ding, H.Y. Kim, S.C. Lee, C.L. Shao, D.R. Lee, S.J. Park, Preparation and 

characterization of a nanoscale poly (vinyl alcohol) fibre aggregate produced by an 

electrospinning method, Journal of Polymer Science part B: Polymer Physics, 40, 1261-

1268 (2002) 

[1.88] G.G. Chase, D.H. Reneker, Nanofibres in filter media, Fluid / Particle Separation 

Journal, 16, 105-117 (2004) 

[1.89] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Micro- and nanostructure 

surface morphology on electrospun polymer fibres, Macromolecules, 35, 8456-8466 

(2002) 

[1.90] D.H. Reneker, W. Kataphinan, A. Theron, E. Zussman, A.L. Yarin, Nanofibre              

garlands of polycaprolactone by electrospinning, Polymer, 43, 6785-6794 (2002)           

[1.91] A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid 

droplets in electrospinning of nanofibres, Journal of Applied Physics, 90, 4836-4846 

(2001) 

[1.92] P. Supaphol, C. Mit-Uppatham, M. Nithitanakul, Ultrafine electrospun 

polyamide-6 fibres: effect of emitting electrode polarity on morphology and average 

fibre diameter, Journal of Polymer Science Part B: Polymer Physics, 43, 3699-3712 

(2005) 

[1.93] C. Mit-Uppatham, M. Nithitanakul, P. Supaphol, Effects of solution 

concentration, emitting electrode polarity, solvent type, and salt addition on electrospun 

polyamide-6 fibres: a preliminary report, Macromolecular Symposia, 216, 293-299 

(2004) 



 
45 

[1.94] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Controlling 

surface morphology of electrospun polystyrene fibres: effect of humidity and molecular 

weight in electrospinning process, Macromolecules, 37, 573-580 (2004) 

[1.95] S. Tripatanasuwan, Z. Zhong, D.H. Reneker, Effect of evaporation and 

solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous 

solution, Polymer, 48, 5742-5746 (2007) 

[1.96] J.H. He, Y.Q. Wan, J.Y. Yu, Application of vibration technology to polymer 

electrospinning, International Journal of Nonlinear Science and Numerical Simulation, 

5, 253-261 (2004)           

[1.97] K.S. Rho, L. Jeong, G. Lee, B.M. Seo, Y.J. Park, S.D. Hong, S. Roh, J.J. Cho, 

W.H. Park, B.M. Min, Electrospinning of collagen nanofibres: effects on the behavior 

of normal human keratinocytes and early-stage wound healing, Biomaterials, 27, 1452-

1461 (2006) 

[1.98] J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen, F. Ko, 

Regeneration of bombyx mori silk by electrospinning part 3: characterization of 

electrospun nonwoven mat, Polymer, 46, 1625-1634 (2005) 

[1.99] L. Jeong, K.Y. Lee, J.W. Liu, W.H. Park, Time-resolved structural investigation 

of regenerated silk fibroin nanofibres treated with solvent vapor, International Journal 

of Biological Macromolecules, 38, 140-144 (2006) 

[1.100] K. Ohkawa, D. Cha, H. Kim, A. Nishida, H. Yamamoto, Electrospinning of 

Chitosan, Macromolecular Rapid Communication, 25, 1600-1605 (2004) 

[1.101] C.W. Kim, M.W. Frey, M. Marquez, Y.L. Joo, Preparation of submicron-scale 

electrospun cellulose fibres via direct dissolution, Journal of Polymer Science part B: 

Polymer Physics, 43, 1673-1683 (2005) 

[1.102] V.K. Daga, M.E. Helgeson, E. Matthew, N.J. Wagner, Electrospinning of neat 

and laponite-filled aqueous poly(ethylene oxide) solutions, Journal of Polymer Science 

part B: Polymer Physics, 44, 1608-1617 (2006) 

[1.103] S.L. Shenoy, W.D. Bates, G. Wnek, Correlation between electrospinnability 

and physical gelatin, Polymer, 46, 8990-9004 (2005) 

[1.104] Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang, Y. Wei, Influence of 

solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibres with 

electrospinning, Journal of Polymer Science part B: Polymer Physics, 42, 3721-3726 

(2004) 



 
46 

[1.105] Z.M. Huang, C.L. He, A. Yang, Y. Zhang, X.J. Han, J. Yin, Q. Wu, 

Encapsulating drugs in biodegradable ultrafine fibres through co-axial electrospinning, 

Journal of Biomedical Materials Research part A, 77, 169-179 (2006) 

[1.106] J. McCann, M. Marquez, Y. Xia, Highly porous fibres by electrospinning into a 

cryogenic liquid, Journal of the American Chemical Society, 128, 1436-1437 (2006) 

[1.107] R.V.N. Krishnappa, K. Desai, C. Sung, Morphological study of electrospun 

polycarbonates as a function of the solvent and processing voltage, Journal of  

Materials Science, 38, 2357-2365 (2003) 

[1.108] S.C. Baker, N. Atkin, P.A. Gunning, N. Granville, K. Wilson, D. Wilson, J. 

Southgate, characterization of electrospun polystyrene scaffolds for three-dimensional 

in vitro biological studies, Biomaterials, 27, 3136-3146 (2006) 

[1.109] H.L. Schreuder-Gibson, P. Gibson, K. Senecal, M. Sennett, J. Walker, W. 

Yeomans, D. Ziegler, P.P. Tsai, Protective textile materials based on electrospun 

nanofibres, Journal of Advanced Materials, 34, 44-55 (2002) 

[1.110] K.H. Hong, T.J. Kang, Hydraulic permeabilities of PET and nylon 6 

electrospun fibre webs, Journal of Applied Polymer Science, 100, 167-177 (2006) 

[1.111] S. Kidoaki, I.K. Kwon, T. Matsuda, Structural features and mechanical 

properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed 

solvents, Journal of Biomedical Materials Research part B, 76, 219-229 (2006) 

[1.112] R. Ramaseshan, S. Sundarrajan, Y. Liu, R.S. Barhate, N.L. Lala, S. 

Ramakrishna, Functionalized polymer nanofibre membranes for protection from 

chemical warfare stimulants, Nanotechnology, 17, 2947-2953 (2006) 

[1.113] F. Jian, N.H. Tao, L. Tong, W.X. Gai, Applications of electrospun nanofibres, 

Chinese Science Bulletin, 53, 2265-2286 (2008) 

[1.114] C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications, 

Annual Review Materials Research, 36, 333-368 (2006) 

[1.115] A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the 

preparation of ultrathin fibres, Angewandte Chemie International Edition, 46, 5670-

5703 (2007) 

[1.116] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer 

nanofibres by electrospinning and their applications in nanocomposites, Composites 

Science and Technology, 63, 2223-2253 (2003) 

[1.117] S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for 

biomedical applications, Polymer, 49, 5603-5621 (2008) 



 
47 

[1.118] S. Ramakrishna,  K. Fujihara, W. Teo, T. Yong, Z. Ma, R. Ramaseshan, 

Electrospun nanofibres: solving global issues, Materials today, 9, 40-50 (2006) 

[1.119] C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Nanofibre 

technology: designing the next generation of tissue engineering scaffolds, Advanced 

Drug Delivery Reviews, 59, 1413-1433 (2007) 

[1.120] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, D. Farson, Electrospinning for 

tissue engineering scaffolds, Materials Science and Engineering C, 27, 504-509 (2007) 

[1.121] T.J. Sill, H.A. Recum, Electrospinning: Applications in drug delivery and tissue 

engineering, Biomaterials, 29, 1989-2006 (2008) 

[1.122] I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer 

nanofibres using electrospinning process-a review, Journal of Materials Processing 

Technology, 167, 283-293 (2005) 

[1.123] W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. 

Taylor, J.C. Nino, Processing and structure relationships in electrospinning of ceramic 

fibre systems, Journal of American Ceramic Society, 89, 395-407 (2006) 

[1.124] D.J. Smith , D.H. Reneker, A.T. McManus, A.L.S. Gibson, C. Mello, M.S. 

Sennett, Electrospun fibres and an apparatus therefore, US Patent, 6753454 (2004) 

[1.125] Elmarco company, www.elmarco.com, accessed 18/02/2009 

[1.126] P. Gupta, G.L. Wilkes, Some investigations on the fibre formation by utilizing a 

side-by-side bicomponent electrospinning approach, Polymer, 44, 6353-6361 (2003) 

[1.127] B. Ding, E. Kimura, T. Sato, S. Fujita, S. Shiratori, Fabrication of blend 

biodegradable nanofibrous nonwoven mats via multi-jet electrospinning, Polymer, 45, 

1895-1902 (2004) 

[1.128] M. Ignatova, N. Manolova, N. Markova, I. Rashkov, Electrospun non-woven 

nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications, 

Macromolecular Bioscience, 9, 102-111 (2009) 

[1.129] S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano- and 

microfibre meshes for tissue-engineering matrix and scaffold based on newly devised 

multilayering and mixing electrospinning techniques, Biomaterials, 26

[1.131] Y. Hong, K. Fujimoto, R. Hashizume, J. Guan, J.J. Stankus, K. Tobita, W.R. 

Wagner, Generating elastic biodegradable polyurethane /poly (lactide-co-glycolide) 

, 37-46 (2005) 

[1.130] W.M. Frey, L. Li, Electrospinning and porosity measurements of nylon-

6/poly(ethylene oxide) blended nonwovens, Journal of Engineered Fibres and Fabrics, 2, 

31-37 (2007) 

http://www.elmarco.com/�


 
48 

fibrous sheets with controlled antibiotic release via two stream electrospinning, 

Biomacromolecules, 9, 1200-1207 (2008) 

[1.132] L. Liu, Z.M. Huang, C.L. He, X.J. Han, Mechanical performance of laminated 

composites incorporated with nanofibrous membranes, Materials Science and 

Engineering A, 435–436, 309-317 (2006) 

[1.133] C. Shin, G.G. Chase, Water-in-oil coalescence in micro-nanofibre composite 

filters, AIChE Journal, 50, 343-350 (2004) 

[1.134] A. Kumar, C. Asemota, J. Padilla, M. Invernale, T.F. Otero, G.A. Sotzing, 

Photopatterned conjugated polymer electrochromic nanofibres on paper, 4th World 

Congress on Biomimetics, Artificial Muscles and Nano-Bio Conference, 127, 012014-1 

– 012014-6 (2008) 

[1.135] Hollingsworth-Vose Company, www.hollingsworth-vose.com, accessed 

19/02/2009 

[1.136] H.T. Grafe, K.M. Graham, Nanofibre webs from electrospinning, presented at 

the Nonwovens in Filtration - Fifth International Conference, Stuttgart, Germany (2003) 

[1.137] Finetex Technology CO. Ltd., www.finetextech.com, accessed 19/02/2009 

[1.138] M.G. Hajra, K. Mehta, G.G. Chase, Effects of humidity, temperature, and 

nanofibres on drop coalescence in glass fibre media, Separation and Purification 

Technology, 30, 79-88 (2003) 

[1.139] X. Wang, X. Chen, K. Yoon, D. Fang, B.S. Hsiao, B. Chu, High flux filtration 

medium based on nanofibrous substrate with hydrophilic nanocomposite coating, 

Environmental Science and Technology, 39, 7684-7691 (2005) 

[1.140] S. Igarashi, J. Tanaka, H. Kobayashi, Micro-patterned nanofibrous 

biomaterials, Journal of Nanoscience and Nanotechnology, 7, 814-820 (2007) 

[1.141] G. Kim, W. Kim, Highly porous 3D nanofibre scaffold using an electrospinning 

technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 

81B, 104-113 (2007) 

[1.142] Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato , H. 

Kobayashi, Novel wet electrospinning system for fabrication of spongiform nanofibre 3-

dimensional fabric, Materials Letters, Article in press (2009) 

[1.143] D. Zhang, J, Chang, Electrospinning of three-dimensional nanofibrous tubes 

with controllable architectures, Nano Letters, 8, 3283-3287 (2008) 

[1.144] M.S. Khil, S.R. Bhattarai, H.Y. Kim, S.Z. Kim, K. Hyung Lee, Novel fabricated 

matrix via electrospinning for tissue engineering, Journal of Biomedical Materials 

Research Part B: Applied Biomaterials, 72B,  117-124 (2005) 

http://www.hollingsworth-vose.com/�
http://www.finetextech.com/�


 
49 

[1.145] W. Teo, R. Gopal, R. Ramase, K. Fujihar, S. Ramakrishna, A dynamic liquid 

support system for continuous electrospun yarn fabrication, Polymer, 48, 3400-3405 

(2007) 

[1.146] V.B. Gupta, V.K. Kothari, Manufactured fibre technology, Chapman and Hall, 

London (1997) 

[1.147] H. Hou, Z. Jun, A. Reuning, A. Schaper, J.H. Wendorff, A. Greiner, Poly(p-

xylylene) nanotubes by coating and removal of ultrathin polymer template fibres,   

Macromolecules, 35, 2429-2431 (2002) 

[1.148] R.A. Crauso, J.H. Schattka, A. Greiner, Titanium dioxide tubes from sol-gel 

coating of electrospun polymer fibres, Advanced materials,13, 1577-1579 (2001) 

[1.149] G.D. Fu, J.Y. Lei, C. Yao, X.S. Li, F. Yao, S.Z. Nie, E.T. Kang, K.G. Neoh, 

Core-sheath nanofibres from combined atom transfer radical polymerization and 

electrospinning, Macromolecules, 41, 6854-6858 (2008) 

[1.150] D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibres 

by electrospinning, Nano Letters, 4, 933-938 (2004) 

[1.151] J.T. McCann, D. Li, Y. Xia, Electrospinning of nanofibres with core-sheath, 

hollow, or porous structures, Journal of  Materials Chemistry, 15, 735-738 (2005) 

[1.152] M. Ma, V. Krikorian, J.H. Yu, E.L. Thomas, G.C. Rutledge, Electrospun 

polymer nanofibres with internal periodic structure obtained by microphase separation 

of cylindrically confined block copolymers, Nano Letters, 6, 2969-2972 (2006) 

[1.153] S. Zhan, D. Chen, X. Jiao, Co-electrospun SiO2 hollow nanostructured fibres 

with hierarchical walls, Journal of Colloid and Interface Science, 318, 331-336 (2008) 

[1.154] Y. Xin, Z. Huang, W. Li, Z. Jiang, Y. Tong, C. Wang, Core–sheath functional 

polymer nanofibres prepared by co-electrospinning, European Polymer Journal, 44, 

1040-1045 (2008) 

[1.155] J.E. Diaz, A.F. Nieves, A. Barrero, M. Marquez, I.G. Loscertales, Fabrication 

of structured micro and nanofibres by coaxial electrospinning, 4th World Congress on 

Biomimetics Artificial Muscle and NanoBio Conference, 127, 012008-1 – 012008-8 

(2008)  

[1.156] E. Zussman, A.L. Yarin, A.V. Bazilevsky, R. Avrahami, M. Feldman, 

Electrospun polyaniline/poly(methyl methacrylate)-derived turbostratic carbon micro-

/nanotubes, Advanced Materials, 18, 348-353 (2006) 

[1.157] J. Di, H. Chen, X. Wang, Y. Zhao, L. Jiang, J. Yu, R. Xu, Fabrication of Zeolite 

hollow fibres by coaxial electrospinning, Chemistry of Materials, 20, 3543-3545 (2008) 



 
50 

[1.158] L. Zhang, Y.L. Hsieh, Ultra-fine cellulose acetate/poly (ethylene oxide) 

bicomponent fibres, Carbohydrate Polymers, 71, 196-207 (2008) 

[1.159] H. Dong, W.E. Jones, Preparation of submicron polypyrrole/poly(methyl 

methacrylate) coaxial fibres and conversion to polypyrrole tubes and carbon tubes, 

Langmuir, 22, 11384-11387 (2006) 

[1.160] H.S. Gibson, P. Gibson, P. Tsai, P. Gupta, G. Wilkes, Cooperative charging 

effects of fibres from electrospinning of electrically dissimilar polymers, INJ Winter, 13, 

39-45 (2004) 

[1.161] T. Lin, H. Wang, X. Wang, Self-crimping bicomponent nanofibres electrospun 

from polyacrylonitrile and elastomeric polyurethane, Advanced materials, 17, 2699-

2703 (2005) 

[1.162] D. Li, Y. Xia, Electrospinning of nanofibres: reinventing the wheel, Advanced 

Materials, 16, 1151-1170 (2004) 

[1.163] S. Zhan, D. Chen, X. Jiao, C. Tao, Long TiO2 hollow fibres with mesoporous 

walls: sol gel combined electrospun fabrication and photocatalytic properties, Journal 

of Physical Chemistry B, 110, 11199-11204 (2006) 

[1.164] S. Zhan, D. Chen, X. Jiao, S. Liu, Facile fabrication of long α-Fe2O3, α-Fe and 

γ -Fe2O3 hollow fibres using sol–gel combined co-electrospinning technology, Journal 

of Colloid and Interface Science, 308, 265-270 (2007) 

[1.165] Y. Gu, F. Jian, Hollow LiNi0.8Co0.1Mn0.1O2-MgO coaxial fibres: sol gel 

method combined with co-electrospun preparation and electrochemical properties, 

Journal of Physical Chemistry C, 112, 20176-20180 (2008) 

[1.166] Y. Zhang, Q. Li, H. Li, Y. Cheng, J. Zhang, X. Cao, Sintering-resistant hollow 

fibres of LaMgAl11O19 prepared by electrospinning, Journal of Crystal Growth, 310, 

3884-3889 (2008) 

[1.167] A.M. Rahmathullah, E.J. Robinette, H. Chen, Y.A. Elabd, G. R. Palmese, 

Plasma assisted synthesis of hollow nanofibres using electrospun sacrificial templates, 

Nuclear Instruments and Methods in Physics Research B, 265, 23-30 (2007) 

[1.168] L. Gea, C. Pan, H. Chena, X. Wang, C. Wang, Z. Gua, The fabrication of 

hollow multilayered polyelectrolyte fibrous mats and its morphology study, Colloids and 

Surfaces A: Physicochemistry Engineering Aspects, 293, 272-277 (2007) 

[1.169] T. Zhang, L. Ge, X. Wang, Z. Gu, Hollow TiO2 containing multilayer 

nanofibres with enhanced photocatalytic activity, Polymer, 49, 2898-2902 (2008) 



 
51 

[1.170] J.Y. Li, Y. Tan, F.M. Xu, Y. Sun, X.Q. Cao, Y.F. Zhang, Hollow fibres of 

yttria-stabilized zirconia (8YSZ) prepared by calcination of electrospun composite 

fibres, Materials Letters, 62, 2396-2399 (2008) 

[1.171] C. Qizheng, D. Xiangting, W Jinxian, L. Mei, Direct fabrication of cerium 

oxide hollow nanofibres by electrospinning, Journal of Rare Earth, 26, 664-669 (2008) 

[1.172] M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J.H. Wendorff, A. Schaper, M. 

Hellwig, Preparation of fibres with nanoscaled morphologies: electrospinning of 

polymer blends, Polymer Engineering and Science, 41, 982 – 989 (2004) 

[1.173] A. Gupta, C.D. Saquing, M. Afshari, A.E. Tonelli, S.A. Khan, R. Kotek, Porous 

nylon-6 fibres via a novel salt-induced electrospinning method, Macromolecules, 42, 

709-715 (2009) 

[1.174] J.T. McCann, M. Marquez, Y. Xia, Highly porous fibres by electrospinning into 

a cryogenic liquid, Journal of American Chemical Society, 128, 1436-1437 (2006) 

[1.175] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Controlling 

surface morphology of electrospun polystyrene fibres: effect of humidity and molecular 

weight in the electrospinning process, Macromolecules, 37, 573-578 (2004) 

[1.176] P. Dayal, J. Liu, S. Kumar, T. Kyu, Experimental and theoretical investigations 

of porous structure formation in electrospun fibres, Macromolecules, 40, 7689-7694 

(2007) 

[1.177] S. Megelski, J.S. Stephans, C.D. Bruce, J.F. Rabolt, Micro-nanostructured 

surface morphology on electrospun polymer fibres, Macromolecules, 35, 8456-8466 

(2002) 

[1.178] D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibres, 

Polymer, 49, 2387-2425 (2008) 

[1.179] T. Han, D.H. Reneker, A.L. Yarin, Buckling of jets in electrospinning, Polymer, 

48, 6064-6076 (2007) 

[1.180] M.K. Shin, S.I. Kim, S.J. Kim, Controlled assembly of polymer nanofibres: 

from helical springs to fully extended, Applied Physics Letters, 88, 223109-1 - 223109-

3 (2006) 

[1.181] J. Yu, Y. Qiu, X. Zha, M. Yu, J. Yu, J. Rafique, J. Yin, Production of aligned 

helical polymer nanofibres by electrospinning, European Polymer Journal, 44, 2838-

2844 (2008) 

[1.182] R. Kessick, G. Tepper, Microscale polymeric helical structures produced by 

electrospinning, Applied Physics Letters, 84, 4807- 4809 (2004) 



 
52 

[1.183] Y. Xin, Z.H. Huang, E.Y. Yan, W. Zhang, Q. Zhao, Controlling poly p-

phenylene vinylen/polyvinyl pyrrolidone composite nanofibres in different morphologies 

by electrospinning, Applied Physics Letters, 89, 053101-1 – 053101-3 (2006) 

[1.184] B. Wang, B. Li, J. Xiong, C.Y. Li, Hierarchically ordered polymer nanofibres 

via electrospinning and controlled polymer crystallization, Macromolecules, 41, 9516-

9521 (2008) 

[1.185] C. Hellmann , J. Belardi, R. Dersch, A. Greiner, J.H. Wendorff, S. Bahnmueller, 

High precision deposition electrospinning of nanofibres and nanofibre nonwovens, 

Polymer, Article in press (2009) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
53 

CHAPTER 2: INVESTIGATING THE FABRICATION OF 

NANOFIBRES BY ELECTROSPINNING 
 

2.1 Introduction 

Fibre diameters in the nanorange have great advantages in volume to space and strength 

to weight ratios. Although conventional textile fibres have a fibre diameter ranging from 

1000 to 50000 nm [1], electrospinning is one of those technologies that enable the 

production of continuous nanofibres of the order of 100 nm to even 5 nm from polymer 

solutions or melts in high electric fields [2-7].  

Although nanofibres of more than 100 different types of polymers have been 

successfully produced by electrospinning [8], a systematic study of electrospinning 

parameters for optimizing nylon 6 is yet to be achieved. It has been found that the 

morphology, such as the fibre diameter and uniformity of electrospun polymer fibres are 

dependent on polymer solution properties, electrospinning processing parameters and 

ambient conditions [9, 10].  

The polymer jet trajectory has a very complicated three dimensional whipping and 

bending instability form [11]. As a result, most nanofibres obtained so far are in a 

nonwoven form, which can be useful for many applications such as filtration [12-14], 

tissue scaffolds [15], implant coating films [16], and wound dressing [17]. Design of 

polymeric nanofibres to meet specific needs for useful applications requires a thorough 

knowledge of the electrospinning parameters and their effect on nanofibre diameters 

and morphologies.  

In order to optimize and predict the morphology of the electrospun nylon 6 nanofibres, 

design of the experiments has been employed in the present chapter. Consequently, the 

effects of the solution properties and processing parameters on the morphology of 

electrospun nylon 6 nanofibres have been systematically studied to produce a wide 

range of fibre diameters with a uniform fibre diameters distribution [10]. 

 

2.2 Experimental work 

2.2.1 Materials and electrospinning process parameters 

Nylon 6 has a good resistance to many commercial solvents and can be only dissolved 

in a few solvents such as formic acid [18]. It has been also found that water molecules 

in the atmosphere did not act as a solvent for nylon 6 during electrospinning [19]. 

Nylon 6 and formic acid were purchased from Sigma–Aldrich (Gillingham, United 

Kingdom). The polymer solution was fed from a 5 mL capacity syringe (Fisher Co., 
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Leicestershire, United Kingdom) to a vertically orientated (25 gauge) blunt-ended metal 

needle ‘spinneret’ via Teflon tubing. The volume feed rate was digitally controlled by a 

positive displacement microprocessor syringe pump (M22 PHD 2000, Harvard 

Apparatus, Edenbridge Kent, United Kingdom). The needle was connected to one 

electrode of a high voltage direct-current power supply (MK35P2.0-22, Glassman, New 

Jersey, USA).  

Various polymer solution concentrations ranging from 15 to 25 wt. % were prepared by 

the dissolution of the polymer in formic acid. Nanofibres were obtained with an earthed 

collection system, which consisted of a copper collector plate measuring 150 mm × 150 

mm. Typical operating regimes were flow rates of 0.2 mL/h, applied voltages of 12, 15 

and 18 kV, and a spinning working distance of 5, 8 and 11 cm. The experiments were 

conducted under ambient condition at room temperature and 25 % RH humidity. 

Figure 2.1, shows the designed system used in the experiments. This system was built to 

house the electrospinning apparatus in order to control the safe release of solvent and 

prevent turbulent air from disturbing the collection of nanofibres. 

 

 
Figure 2.1, A photograph of the experimental electrospinning set-up used in the 

experiments.  
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2.2.2 Physical properties of the polymer solutions 

Polymer solutions viscosity was determined by a rheometer instrument (AR-1000 

Rheometer, TA instruments, UK). The measurements were conducted in a continuous 

ramp mode at room temperature 25º C using cone and plate geometry. Each sample was 

placed between a fix Peltier plate and a rotating cone (diameter of 40 mm, vertex angle 

of 2º) attached to a driving motor spindle. Changes of shear stress and thus viscosity 

versus changes in shear rate were measured. A computer interfaced to the rheometer 

instrument was used to record the resulting shear stress and shear rate data. Viscosity of 

the polymer solutions was reported from 2.842 to 4.856 Pa.sec.  

Surface tension for each polymer solution concentration was measured by the torsion 

balance instrument using surface and interfacial tension measurement method. A 40 mm 

circumference platinum ring supplied by (Torsion balance, UK) has been used for these 

measurements. The surface tension of the polymer solution concentrations was reported 

from 44.8 to 53.0 mN/m. 

Electrical conductivity of the polymer solutions was measured by using the four probe 

method. The charge induction and charge retention characteristics are various according 

to the polymer solution concentration. Therefore, when an identical voltage was applied 

to the polymer solution, electrical responses were different. The electric conductivity of 

the polymer solution (k, mS/m) was calculated from the following equation [29]:  

RS
L

r
1k ==                                                                                                                   (2.1) 

Where r is the specific resistance of the solution (m Ohm. m), R is the electric resistance 

of the solution (m Ohm), L is the distance between the electrodes (m) and S is the 

surface area of the electrode (m2). The electric conductivity of the polymer solutions 

was reported from 445 to 116 mS/m. 

 

2.2.3 Characterization 

2.2.3.1 Scanning electron microscopy (SEM) 

All scanning electron microscopes work basically at the same principle. The SEM 

consists of a gun section, a column section and a chamber section as shown in figure 

2.2. 

The gun section is under a vacuum that ranges from 1 x 10-3 Pascal to 1 x 10-9 Pascal 

[20]. The column section can be under a full vacuum of the gun section or under a 

partial pressure as the case of environmental SEM. 
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Figure 2.2, Schematic diagram of the SEM. 

 

There are three types of electron guns: Tungsten, LaB6 and field emission, all of which 

produce electrons for imaging of the specimen, therefore they have different 

characteristics and imaging capabilities.  Among the three gun types; field emission gun 

produces the highest brightness as compared to the tungsten and LaB6 guns [20].  

The gun emits a large amount of electrons that are gathered in the gun chamber and 

passed into the column where they are focused into a tight beam, in the order of 1 

nanometer. Then these electrons impinge on the surface of the sample where several 

processes occur simultaneously. Electrons from the beam enter the sample and bounce 

back to the surface to be sent to the monitor. These electrons are called primary or 

backscattered electrons, and they usually carry information about the sample such as 

atomic number contrast. Another electrons signal that occurs is the secondary electrons, 

which is the most frequently collected. Secondary electrons come from inelastic 

scattering inside the sample with the sample own electrons to give us the sample surface 
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picture. This scattering causes liberating of the sample electrons into the chamber where 

they are withdrawn into the secondary electron detector. These electrons are then sent to 

the monitor where they are placed back in order to be viewed.  

Important notes must be mentioned here, under normal working conditions, the 

microscope scans the electron beam in a square pattern on the sample. With this 

scanning, there must be synchronization between the beam and the monitor for giving 

us a true image for the sample. In addition, X-ray signals are generated during imaging 

of any sample in the electron microscope. These x-rays are from the inelastic scattering 

collisions that generate the image and are characteristic of the element from which they 

came and can be analyzed based on their wavelength or their energy. 

 

2.2.3.2 Samples preparation 

Samples of random nanofibres were collected on aluminium stubs. These samples were 

sputter coated with gold palladium for 45 sec at 18 mA using a sputter coater (Polaron 

Sc7620, Quorum technologies Ltd, UK). Nanofibre samples were examined by SEM 

(Hitachi S-530, Berkshire, UK) at an accelerating voltage of 10 kV. Micrographs were 

taken at three random areas of each sample between 20,000 and 40,000 magnifications. 

Photographs were processed using imaging software (Corel paint shop pro X version 

10.00, UK). For  measuring the average diameter of the fibres viewed on a photograph, 

a transect line was drawn from the bottom right to the top left of the SEM image and 

fibre diameters were measured at the point the line transected, perpendicular to the fibre 

length. These results were used to compile fibre diameters distribution profiles. 

 

2.3 Results and discussion [10] 

2.3.1 Physical properties of the polymer solutions 

The viscosity and surface tension of the polymer solutions were based on the polymer/ 

solvent system used. Table 2.1 shows viscosity and surface tension of nylon 6 dissolved 

in formic acid at different concentrations; they were 2.842 - 4.856 Pa.s and 44.8 - 53.0 

mN/m, respectively. These values increased with increasing polymer solution 

concentration. Specifically, the viscosity increased from 3.358 to 4.856 Pa.s when a 

polymer solution concentration increased from 20 to 25 wt. %. 

The electric conductivity of polymer solutions was 116 - 445 m Siemens/m. The electric 

conductivity decreased with increasing polymer solution concentration due to the high 

dielectric constant (58.5 at 15º C) and dipole moment (1.41 Debye) of formic acid [21]. 

 



 
58 

Table 2.1 Physical properties of nylon 6/ formic acid at different concentrations. 

 

Nylon 6 / formic acid 

concentration (wt.%) 

Viscosity  

[Pa.s] 

Surface tension 

[mN/m] 

Electric 

conductivity 

[mS/m] 

15 2.842 44.8 445 

20 3.358 48.5 294 

25 4.856             53.0 116 

Formic acid (96 %)     0.00178    37.67    9000 

 

 

2.3.2 Morphology of electrospun nonwoven fibre mats 

Figures 2.3 - 2.5, show a series of SEM images of the micro morphology of the  

 

 
Figure 2.3, Average fibre diameter (AFD) at electric fields of 12, 15 and 18 KV and 

polymer solution concentrations between 15 and 25 wt. % with a constant spinning 

distance of 5 cm. 
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nanofibres obtained from the electrospinning of nylon 6 solutions with three different 

concentrations. Different fibre morphologies occur at different concentrations and have 

a significant effect on the surface area to the volume ratio of the fibre. At a 15 % 

concentration, fibres less than 200 nm in diameter are formed, with some spindle-like 

beads ‘drops of polymer over the nonwoven mat’ being formed at lower voltage. These 

beads disappear as the fibre diameter is increased with increasing polymer 

concentration.    

 

 
Figure 2.4, Average fibre diameter (AFD) at electric fields of 12, 15 and 18 KV and 

polymer solution concentrations between 15 and 25 wt. % with a constant spinning 

distance of 8 cm. 

 

It has been found that the average fibre diameter has a similar tendency to viscosity and 

surface tension [10]. In other words, the average fibre diameter becomes gradually 

broader with increasing concentration, which is in consistency with the results obtained 

by Ryu et. al. [22]. The average fibre diameter has increased from 200 to 1300 nm for 

15 - 25 wt. % nylon 6 solutions. Electrospinning using high concentrated nylon 6 

solutions produces smooth and curled nanofibres with thicker fibre diameters. A nylon 6 
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concentration of 25 wt. % or more results in ribbon like nanofibres (see figure 2.3). The 

formation of ribbon like nanofibres is due to rapid solvent vaporization from the surface 

of the jet and has previously been described [23]. It has been also observed that as the 

wet nanofibres are no longer strained by the electric field when they are laid on the 

collector, they undergo a solidification process as a result of the surface tension and the 

relaxation process controlled by the viscoelastic property of the wet nanofibres. 

 

 
Figure 2.5, Average fibre diameter (AFD) at electric fields of 12, 15 and 18 KV and 

polymer solution concentrations between 15 and 25 wt. % with a constant spinning 

distance of 11 cm. 

 

Briefly, the morphology of electrospun nylon 6 nanofibre mats changes from curled at 

high concentration, to one containing beads at low concentration. 

 

2.3.3 Effect of the polymer concentration on the fibre morphology 

As the electrospinning results shown in figure 2.6, the diameter of the electrospun fibres 

dramatically decreases with decreasing polymer concentration. When the spinning 

distance is small and the polymer solution has a low concentration (15 wt. %), the 

solution reaches the collection plate before full evaporation of the solvent. This explains 
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the formation of droplets and beads at the low polymer concentration and short spinning 

distance. Fewer beads were observed in electrospun fibres at higher concentration. The 

changing of the fibre morphology can probably be attributed to a competition between 

the surface tension and viscosity.   

 

 
Figure 2.6, Relationship between the average fibre diameter (AFD) and polymer 

solution concentration at three electric fields with a constant spinning distance of 8 cm. 

 

Reneker et. al. systematically investigated the influence of solution properties of 

polyethylene oxide (PEO) on the density of beads contained in the electrospun fibres 

[24]. It has been found that the viscosity and surface tension are the most important 

factors that affect the morphology of the resultant fibres [24, 25]. Vancso et. al. 
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indicated that viscoelastic forces prevented the formation of beads and allowed the 

formation of smooth fibres [26]. 

 

2.3.4 Effect of the voltage and spinning distance on the fibre morphology 

We optimized the process parameters by studying the influence of the electric field and 

spinning distance on fibres morphology. Figure 2.7, shows the relationship between the 

average fibre diameter and applied voltage with a constant concentration of 20 wt. %.  

 

 
Figure 2.7, Relationship between the average fibre diameter (AFD) and applied voltage 

with polymer solution concentration of 20 wt. % at spinning distances of 5, 8 and 11 

cm. 
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Figure 2.8, shows the relationship between the average fibre diameter and spinning 

distance with an applied voltage of 15 KV. The fibre diameter is not changed 

dramatically with various applied voltages. 

Comparing the fibre diameters at 5 and 8 cm spinning distances with the same applied 

voltage and concentration (see figure 2.7) shows that fibre diameters obtained at 8 cm 

spinning distance are lower than those obtained at 5 cm spinning distance in the 

concentration range of 15 - 25 wt. %. For 20 wt. % nylon 6 concentration, an increase in 

the applied voltage from 15 to 18 kV leads to a decrease in the average fibre diameter 

from 850 to 800 nm and from 850 to 750 nm under 8 and 11 cm spinning distances, 

respectively. One might suggest that this result is due to the longer spinning distance, 

which enables the solvent to evaporate more efficiently even at the same electric field 

strength, thus leading to a smaller fibre diameter in comparison with the fibre diameter 

obtained at a 5 cm spinning distance.  

The applied voltage may affect some factors such as the mass of polymer fed from the 

tip of the spinneret, the elongation level of the jet by an electrical force and the 

morphology of the jet (single or multiple jets), etc [9]. A balance among these factors 

may determine the final diameter of the electrospun fibres. 

Increasing the applied voltage does increase the electrical force and create smaller fibre 

diameters, but it also draws more polymer solution out of the spinneret. If the increasing 

electrical force draws much more polymer solution out of the spinneret, the fibre 

diameter will increase with increasing applied voltage, as reported by Demir et. al. [27]. 

In general, increasing the applied voltage to a certain level changes the shape of the 

pendant droplet from which the jet originates, so a stable shape can not be achieved. As 

a result, the stability of the liquid jet is weakened, and this might lead to an increase in 

the density of beads in the electrospun nanofibres. 

 

2.4 Process optimization [10] 

Processing parameters need be optimized to electrospin nylon 6 into nanofibres with the 

desired morphology. The applied voltage reflects on the force to pull a solution out from 

the spinneret, so a higher applied voltage causes higher polymer solution consumption. 

On the other hand, the applied voltage affects the charge density and thus the electrical 

force, which influences the elongation of the jet during electrospinning. Briefly, 

electrospun nanofibres with a smaller diameter can be produced with a lower polymer 

solution concentration, but nonuniform/ beaded fibres are found if these parameters 

were either too high or too low. 
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Figure 2.8, Relationship between the average fibre diameter (AFD) and spinning 

distance with an applied voltage of 15 KV at polymer solution concentrations of 15, 20 

and 25 wt. %. 

 

For obtaining a uniform fibre structure, higher polymer concentration and lower 

electrical field strength are preferred. These results are in agreement with published 

reports for polymers other than nylon 6 [7, 27-29]. 

The analyzed SEM image shown in figure 2.9, indicates that the optimal conditions for 

producing a uniform fibre diameters distribution are a polymer solution concentration of 
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20 wt. %, an applied voltage of 15 kV, volume feed rate of 0.2 mL/h and a spinning 

distance of 8 cm. These parameters were made constant for producing uniform nylon 6 

fibres, which assisted the subsequent investigation of the alignment of nylon 6 

nanofibres. 

 

 
Figure 2.9, SEM image of 20 wt. % nylon 6/ formic acid nanofibres at a voltage of 15 

KV and a distance of 8 cm with a uniform nanofibre diameters distribution of 900 ± 50 

nm. 
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CHAPTER 3: ALIGNMENT OF NANOFIBRES 
 

3.1 Introduction 

Deposition of electrospun nanofibres on a flat collector is essentially random and 

disordered due to the chaotic and unstable motion of the electrospinning jet as it travels 

to the collector [1]. However, this is generally useful for membrane and filtrations, due 

to the small pore size obtained by the random morphology of the formation of the 

nonwoven electrospun nanofibres mat. The disordered structure of the electrospun 

nanofibres is problematic for producing highly ordered architectures, yarn forms and 

unique electrical and optical devices for microelectronics and photonics [2, 3]. 

Moreover, there is interest for some applications in achieving parallel and oriented 

nanofibres with highly improved mechanical properties [4].  

Considering the chaotic nature of the electrospun jet motion, the buildup of electrical 

surface charges on the collector and the nanometer size of the electrospun fibres into 

account, the collector design can control the electrospun nanofibres architecture. By 

also controlling the geometrical shape and strength of the macroscopic electric field 

between the spinneret and the collector, it should be possible to control the jet path, to 

improve its stability and to achieve aligned nanofibres [5]. In recent years, researchers 

have developed several collection mechanisms to control the deposition of the 

electrospun nanofibres and to obtain continuous fibre alignment by manipulating the 

dynamic motion of the collector or the electric field strength and geometrical shape or 

both [6, 7]. To that effect, alignment of nanofibres which is the focus of this chapter is 

extremely important for engineering nano structures and enabling the twisting of 

aligned fibre bundles into yarn. 

In this chapter, a comprehensive useful review is presented on the design of various 

mechanisms for nanofibres alignment, followed by an effective mechanism of 

generation of a bundle of aligned three-dimensional nanofibres over a large area by the 

introduction of a gap between two known surfaces. In addition, morphology of the 

electrospun aligned nanofibres and mechanism parameters affecting the nanofibres 

density, nanofibres length and degree of alignment are investigated. 

 

3.2 The concept of nanofibres alignment and reviewing nanofibre alignment 

mechanisms 

The importance of fibre alignment has been understood by man for centuries, when for 

the formation of coarse yarns made by hand spinning, the wool fibres had to be as 
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aligned as possible, which was achieved by stretch drawing, using our hands. This 

process has been mechanized during the industrial revolution and it has also been 

adopted nowadays for the nano formation of fibres and yarns. 

 

3.2.1 Nano aligning mechanisms based on dynamic mechanical collection 

Several researchers have shown that it is possible to obtain aligned nanofibres by using 

a rotating cylinder [8-20, 55-57], rapidly oscillating a grounded frame [21] and flow of 

liquid [24, 25]. A schematic diagram of these mechanisms is shown in table 3.1. 

It has been suggested that by rotating the cylinder collector at very high speed, up to 

thousands of revolutions per minute, electrospun nanofibres could be aligned 

circumferentially [8-20]. Matthews et. al. demonstrated that when the linear speed of the 

cylinder was approximately 1.4 m/sec, collagen nanofibres showed significant 

alignment along the axis of the fibre [9]. Kim et. al. examined the effect of the linear 

speed of the rotating cylinder on the crystallinity, mechanical properties and alignment 

of electrospun polyethylene terephthalate (PET) [10]. PET electrospun nanofibres were 

found to be more oriented, however, with increasing cylinder linear speed up to 30 

m/min. Problems of this mechanism occur when the surface speed of the cylinder is 

slower than the stretching speed; and thus randomly deposited fibres are being 

collected. On the other hand, when the rotating speed of the cylinder is too high, 

continuous fibres cannot be collected due to fibre breaks. Even so, the degree of 

alignment achieved with this method is limited to partial alignment only and it still 

needs improving. Kessick et. al. addressed the reasons of the presence of disordered 

nanofibres on a rotating cylinder to the residual charge accumulation between the 

deposited fibres and the incoming fibres. In order to reduce the residual charge 

accumulation on the rotating cylinder they used an alternating current (AC) high voltage 

power supply to charge the polymer solution for electrospinning [19].  

A newly developed scanned electrospinning mechanism that enables rapid fabrication of 

aligned polymeric nanowires is described by Kameoka et. al. [22, 23]. Although this 

presents new opportunities for the manufacture and applications of nanowire devices, 

the electrospinning process conditions (spinning distance and solvent vaporization) for 

obtaining dry nanofibres should be investigated.  

Reneker et. al. and other researchers used water as a coagulation bath to collect the 

electrospun nanofibres [24, 25]. In this mechanism, electrospinning took place over a 

water bath. Electrospun fibres first fell on the surface of the water bath and 

subsequently drawn by the motion of the water bath or a rotating cylinder inside the  
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Table 3.1, Nano aligning mechanisms based on dynamic mechanical collection.  

1-  Rotating drum 

 

Advantages  
Large area of aligned fibres may be 
fabricated. 

 
Disadvantages 
Highly aligned fibres may be difficult to 
achieve. 
Fibre breakages may occur if rotating 
drum speed is too high. 
Twist can not be applied for yarn 
spinning. 
[8-20, 55-57], photograph reprinted from [19]. 

2- Scanned disk fabrication [22, 23] 

 

Advantages  
Rapid fabrication of aligned polymeric 
nanowires. 
 
 
 
 
Disadvantages 
Vaporization of solvent is not complete.  
Thicker jet formation.  
Twist cannot be applied to form a yarn. 
 

3- Coagulation bath collector 

 

Advantages  
Nanofibres can be collected 
without sticking.  
 
Disadvantages 
Applicable to some polymers. 
Partial alignment of fibres. 
Growth of bead deposits.   
Twist cannot be applied to form a yarn. 
[24, 25]. 

 

bath. Visual analysis showed achieving aligned electrospun fibres in the direction of the 

water flow. 
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3.2.2 Nano aligning mechanisms based on manipulation of the electric field 

As mentioned earlier, the movement of nanofibres is due to the electric field between 

the spinneret and the collector. By manipulating the strength, frequency, position and 

geometric shape of the electric field and the polarity of the charges, aligned and pre- 

ordered nanofibres can be achieved. A schematic diagram of the mechanisms based on 

electric field manipulation is shown in table 3.2. 

Deitzel et. al. [26, 27] used metallic rings placed below the tip of the spinneret as 

auxiliary electrodes and charged them with positive applied voltage, positively charging 

the collector, in their first experiment. The positively charged rings created a cylindrical 

electrical field that prevented the electrospinning jet from travelling out of its drawn 

path. In their second experiment they applied negative charges to the collector creating a 

pulling force on the electrospinning jet, through the charged rings. Stankus et. al. [28] 

also used a single positively charged cylindrical steel mesh near the tip of the spinneret 

to control the deposition area on a negatively charged collector. Although electric rings 

were employed to stabilize and focus the charged jets to generate oriented fibres with 

precise patterning, the deposition fibre area was reduced. This mechanism however 

offers advantages of fibre formation in controlled locations. This is important because 

the chaotic flight of the electrospinning jet and the residual charge accumulation on the 

deposited fibres may cause the fibres to deposit on areas outside the collector.  

In another effort by Kim et. al. and other researchers [29, 30], the collector electrodes 

were modified. They presented a simple mechanism of fabricating aligned 

polycarprolactone nanofibres. Suspended aligned nanofibres were generated on a 

dielectric substrate by controlling of the electric field between the collector electrodes, 

which were subjected to an applied alternating-current field. The alignment of 

nanofibres was dependent on the applied frequency, field strength, and shape of the 

collector electrode. 

Another approach to fibre alignment was developed as early as 1938 by Formhals et. al. 

who patented an electrospinning set-up where bars were placed in parallel with gaps 

between them as a collector. By changing the geometric shape of the electric field of the 

collector, aligned fibres can be formed between the bars [31]. Haung et. al. [32] simply 

placed a rectangular frame structure under the spinning jet for collecting aligned 

nanofibres. Further work was done by the rotation of this frame on which electrospun 

polyethylene oxide nanofibres were deposited continuously. Xia et. al. and other 

researcher later on [2, 33-39, 58, 59] demonstrated the importance of the geometrical 

configuration of a conductive collector on the alignment of electrospun nanofibres. A 
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simple and versatile mechanism that generates uniaxially aligned nanofibres over large 

areas by introducing a gap in a charged collector has been presented. This exerts a 

pulling force on the electrospinning jet across the gap towards the parallel electrodes. 

 

Table 3.2, Nano aligning mechanisms based on manipulation of the electric field. 

1- Auxiliary rings electrodes 

 

Advantages 
Controlled fibres deposition area and  
location. 
Twist can be applied. 
 
Disadvantages 
Complicate assembly. 
Small deposited area. 
[26-28]. 

2- Auxiliary AC circular electrodes 

 

Advantages 
Highly aligned fibres are easily 
obtained. 
Aligned fibres are easily transferable. 

Disadvantages 
Complicated set-up. 
Thicker layer of aligned fibres are not 
possible. 
There is a limit in the length of the 
fibres  
Twist can not be applied to spin a yarn.  
[29, 30]. 

3- Auxiliary AC parallel electrodes 

 

Advantages 
Highly aligned fibres are easily 
obtained. 
Aligned fibres are easily transferable. 

No limit in the length of fibres produced 

Disadvantages 
Complicated set-up. 
Thicker layer of aligned fibres are not 
possible. 
[29, 30]. 
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4- Parallel auxiliary electrodes  

 

Advantages 
Simple set-up. 
Highly aligned fibres are easily 
obtained. 
Aligned fibres are easily transferable. 
Disadvantages 
Thicker layer of aligned fibres are not  
possible. 
There is a limit in the length of the 
fibres produced.  
Twist can not be applied to spin a yarn. 
[2, 31-39, 58, 59], photo reprinted from [2]. 

5- Negative parallel auxiliary electrodes 

 

Advantages 
Highly aligned fibres are easily 
obtained. 
Aligned fibres are easily transferable. 
Twist can be applied to spin a yarn  
Disadvantages 
There is a limit in the length of the 
fibres produced. 
Application of negative voltage.  
[41], photograph reprinted from [41]. 

6- Ring parallel electrodes 

 

Advantages 
Simple set-up. 
Highly aligned fibres are easily 
obtained. 
Aligned fibres are easily transferable. 
Twist can be applied to spin a yarn. 

Disadvantages 
There is a limit in the length of the 
fibres produced. 
[42], photograph reprinted from [42]. 

7- Auxiliary electrode with support plate 

 

Advantages 
Simple set-up. 
Highly aligned fibres are easily 
obtained. 
Aligned fibres are easily transferable. 
Big area of aligned fibres is possible. 

Disadvantages 
Twist cannot be applied to spin a yarn.  
[43], photograph reprinted from [43]. 
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By alternating the configuration of electric forces acting on the fibres spanning across 

the gap, nanofibres are stretched across the gap to form a parallel array. The effects of 

the gap width and applied voltage on the degree of fibre alignment were investigated by 

Morshed et. al. [39]. They experimented with the electrospinning conditions (i.e., the 

tip-to-collector distance, voltage, and gap width) that produce high alignment of fibres 

for 10-15 wt. % polyacrylonitrile/ dimethylformamide concentrations. It has been 

reported that 11 kV provides the highest alignment of nanofibres with a fixed 

corresponding concentration of 15 wt. % and gap ‘space’ width of 3 cm. The length of 

the aligned electrospun fibres across a gap is controlled by the gap distance, which is 

typically less than 10 cm. At a greater distance, the electrospinning jet may fail to 

deposit fibres across the gap or the fibres may break under their own weight, especially 

if the fibres are of smaller diameter [2]. When parallel electrodes are used as collectors 

however, aligned fibres become more random with increasing the deposition of fibres 

along the electrodes [40]. This is probably due to the accumulation of residual charges 

on the deposited fibres distorting the desired electric field shape.  

The set-up of Ramakrishna et. al. [41] consisted of placing two blades in line with one 

another and with a gap between them. Negative charges were applied to the blades to 

create greater attractive forces on the positively charged jet and thus a highly aligned 

fibre bundle was collected. An important advantage of this mechanism is that the two 

ends connecting the fibre bundle to the electrodes are precise and consistent; this can 

help in collecting stretched fibres and provides the opportunity for subsequent testing 

their strength.  

Dalton et. al. [42] used two parallel rings to collect highly aligned fibres suspended 

across the gap along the circumference of the rings. By rotating one of the rings after 

the fibres were deposited, they were able to obtain twisted multi-filament yarn. 

Yu et. al. [43] used one earthed electrode and support plate surface to collect well 

aligned nanofibres of more than 25 cm long over a lateral range as large as 63 cm.  In 

this mechanism the rear part of the fibre moves towards the support plate due to the 

combined inertia, electrical, and gravitational forces. It was found that the aligning 

process was greatly affected by the geometrical shape of the collector such as height and 

length. In addition, it is expected that the production throughput of aligned nanofibres 

may be greatly increased by arranging multi-spinnerets and multi-collecting electrodes. 
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3.2.3 Nano aligning mechanisms based on combining manipulation of electric field 

and dynamic collection 

By controlling the geometric profile and strength of the electric field and by using 

different dynamic collecting systems, greater alignment in the nanofibres assembly can 

be achieved. Researchers successfully fabricated fibrous assemblies by using of both 

rotating collectors and manipulation of the electric field profile. A schematic diagram of 

the mechanisms based on combining electric field manipulation and dynamic collection 

is shown in table 3.3. 

Zussman et. al. and other researchers [44-46] modified the design of a cylinder collector 

and used a tapered disk, with knife like edge, as a collector.  The disk edge substantially 

improves the concentration of the electrical field and thus the electrospinning jet 

converged towards the disk attracting almost all nanofibres. The charged nanofibres are 

continuously wound on the edge of the rotating disk at a relatively high speed. When a 

nanofibre is attached to the disk edge, it exerts a repulsive force on the next fibre 

attracted to the edge. This repulsion results in a separation between the deposited 

nanofibres. Hence the nanofibre diameter and charges are not completely identical, the 

repulsive force will vary, which may explain the variation in distance separating the 

nanofibres. Zussman et. al. demonstrated later that at high rotational speed of the knife 

edge disk collector, necking of the electrospun nanofibres was observed [47]. Therefore 

the disk rotational speed and fibre alignment have a direct influence on the mechanical 

properties of the engineered fibres. They have further reported on a technique for a 

hierarchical assembly of nanofibres into crossbar nanostructures [48, 49, 60]. The 

collector disk is equipped with glass cover slips or any non conducting table that 

collects the nanofibres and can be rotated about the z axis. In this technique, the 

uniaxially aligned arrays of nanofibres could be stacked to a cross-bar in a layer-by 

layer fashion to generate a 3D net structure. The area in which the nanofibres are 

deposited is limited and needs further investigation. With the understanding that the 

manipulation of the electric field could exert some control to the alignment of the 

nanofibres deposited on the rotating cylinder, Sundaray et. al. used a sharp needle as a 

counter electrode placed on an insulating rotating cylinder [50]. This method allows a 

tube made of circumferentially aligned nanofibres to be obtained. As the layer of fibres 

increases, however, the counter electrode does not hold a significant draw on the fibres. 

As a result, the thickness of the aligned fibres obtained is restricted.  

Teo et. al. [51] demonstrated the effect of a sharp needle auxiliary electrode on the 

deposition of electrospun fibres on the rotating cylinder. Instead of having the electrode 
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directly below the spinneret, they placed the needle under the rotating cylinder to direct 

the trajectory of the fibres for achieving greater degree of alignment. A tubular structure 

with well aligned nanofibres in a circumferential direction and at an angle to the 

longitudinal axis of a tube has been proposed. 

Table 3.3, Nano aligning mechanisms based on combining manipulation of electric 

field and dynamic collection. 

1- Sharp disk collector 

 

Advantages  
Highly aligned fibres are possible. 
Able to fabricate array of fibres by  
attaching a rotatable table on the disk.  
 
Disadvantages 
Unable to retain high fibre alignment  
at the same rotating speed when the  
deposited fibres are thicker.  
Twist cannot be applied to spin a yarn  
[44-47].  

2- Sharp disk collector with attached table 

 

Advantages  
Highly aligned fibres are possible. 
Able to fabricate array of fibres.  
 

Disadvantages 
Unable to retain high fibre alignment  
at the same rotating speed when the  
deposited fibres are thicker.  
Twist cannot be applied to spin a yarn.  
[48, 49, 60]. 

3- Rotating drum with sharp pin on it 

 

Advantages  
Large area of fibre arrays can be 
fabricated. 
 

Disadvantages 
Set-up is complicated. 
Thicker area of fibre arrays assembly may 
not be possible. 
Twist cannot be applied to spin a yarn. 
[50].  
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4- Rotating drum with needle as an auxiliary electrode 

 

Advantages  
Direction of alignment can be  
Controlled. 
Tubular structure can be fabricated. 
 
 
Disadvantages 
Thicker area of aligned fibre assembly 
may not be possible. 
Twist cannot be applied to spin a yarn. 
[51].  
 

5- Rotating drum with earthed frame as an auxiliary electrode 

 

Advantages 
Tubular structure can be fabricated. 
 

 
Disadvantages 
Thicker area of aligned fibre assembly 
may not be possible. 
Twist cannot be applied to spin a yarn. 
[52].  

6- Rotating drum with parallel surface plates as auxiliary electrodes 

 

Advantages 
Large area of aligned fibres can be 
fabricated. 
Tubular structure can be fabricated. 
Thicker area of aligned fibre assembly 
may be possible. 
 

Disadvantages 
Set-up is complicated. 
Twist cannot be applied [52]. 

7- Rotating drum with sharp edge plates as auxiliary electrodes 

 

Advantages 
Large area of aligned fibres can be 
fabricated. 
Tubular structure can be fabricated. 
Thicker area of aligned fibre assembly 
may be possible. 
 
Disadvantages 
Set-up is complicated. 
Twist cannot be applied to spin a yarn. 
[51, 53]. 
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8- Rotating wire drum collector 

 

Advantages  
Highly aligned fibres are possible. 

 
Disadvantages 
Thicker layer of aligned fibres are not 
possible. 
Fibres may not be aligned throughout the 
whole assembly. 
Twist cannot be applied to spin a yarn. 
[40], photograph reprinted from [40]. 

9-  Drum collector with wire wound on it 

 

Advantages 
Highly aligned fibres are possible. 
Area of aligned fibres is adjustable by the 
wire thickness.  
 
Disadvantage 
Aligned fibres are concentrated on the 
wire instead of the whole drum. 
Twist cannot be applied to spin a yarn.  
[54]. 
 

 

In a U.S. patent, it has been reported that by the asymmetric placement of a rotating and 

charged cylinder between two charged plates, electrospun nanofibres can be produced 

circumferentially to the longitudinal axis of the cylinder forming a tubular structure 

[52]. 

In a similar mechanism, a conventional rotating collector was employed with the 

addition of an auxiliary electrode positioned directly behind the collector to direct the 

fibre alignment [52]. The auxiliary electrode opposite to the spinning spinneret was 

designed to stretch the charged electrospun fibres by forming a strong electrostatic field 

between the nozzle and the collector. The electrospun fibres were focused between the 

gaps of the two electrodes to form parallel fibres, which were collected conveniently 

onto the rotating collector.  

Ramakrishna et. al. [51] placed conducting parallel knife-edged as auxiliary electrodes 

under a rotating collector. They have demonstrated that the strength of the electric field 

is directly related to the quantity of electrodes and inversely related to the distance from 

the electrodes, the electric field lines will never cross each other and the density of lines 
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at a specific location represents the strength of the electric field. With the help of 

auxiliary electrodes, Carnell et. al. controlled the width of the aligned nanofibre mat 

collected on the rotating cylinder [53]. 

In another report, a successful mechanism for spinning sheets of 1 cm wide strips of 

aligned nanofibres was presented by Chase et. al. [40]. In this mechanism, copper wires 

spaced evenly in the form of a circular drum as a collector of nanofibres have been 

used. A further investigation of this work is needed on the effects of the rotation speed, 

gap distance between the wires, wire diameter, and polymer type. It has been noted that 

after 15 min of electrospinning, the alignment of nanofibres was reduced probably due 

to the increase in the residual charges accumulated on the collected nanofibres. 

Bhattarai et. al. [54] produced highly aligned fibres of controllable size by winding a 

copper wire as an electrode on an insulating cylinder to collect a highly aligned fibre 

bundle by rotating the cylinder at an optimum speed of 2000 rpm. The length of the 

fibre bundle was said to be controlled by varying the wire diameter and the wire wraps 

step. Although highly aligned fibres can be obtained, the deposited fibres on the wire 

are difficult to extract. 

 

3.3 Novel mechanism for aligning nanofibres [7] 

Having established the optimum electrspinning conditions for uniform nylon 6 

nanofibres which are a polymer solution concentration of 20 wt. %, an applied voltage 

of 15 kV, a volume feed rate of 0.2 mL/h and an electrospinning distance of 8 cm, we 

present a novel mechanism that is based on a three dimensional alignment principle 

shown in figure 3.1. 

The nanofibres alignment mechanism involves collecting the electrically charged 

nanofibres between two faced-electrically grounded collector disks. Two copper circular 

disks (30 mm outer diameter, 2 mm thick) were used as collection disks. They were 

positioned by grounded alligator clips, with the top of the disks being 8 cm from the 

spinneret. In this mechanism, changing of the geometrical shape of the electric field by 

placing the two grounded disks under the spinneret splits the vertical electric field lines 

into two parts and thus aligns the electrospun nanofibres between the two disks. 

 

3.4 Experimental work 

3.4.1 Materials and electrospinning operation 

The polymer solution (Nylon 6 and formic acid at concentration of 20 wt. %) was fed 

from a 5 mL capacity syringe to a vertically orientated (25 gauge) blunt ended metal 



 
80 

needle ‘spinneret’ via Teflon tubing. The volume feed rate was digitally adjusted using 

the Harvard syringe pump to be 0.2 mL/h. The spinneret was connected to one electrode 

of the power supply at a high voltage of 15 kV. The two disks were positioned 8 cm 

down from the spinneret. 

Investigations of the effect of the disks gap width and collection time on the degree of 

alignment and the density of fibres were carried out. The gap width was set at 2, 3, 4, 5 

and 6 cm at 15, 30, 60 and 120 sec collection times. A heating lamp was employed to 

dry the collected nylon 6 nanofibres during the electrospinning process. 

  

 
Figure 3.1, Experimental set-up for electrospining three dimensional aligned nanofibre 

bundles. 

 
3.4.2 Characterization 

Samples of aligned nanofibres were collected on aluminium stubs. The aluminium stubs 

with parallel strips of super-glue tapes were passed through the suspended fibres 

between the collection disks. These samples were sputter coated with gold palladium for 

45 sec at 18 mA. Nanofibres were examined by a Hitachi S-530 scanning electron 

microscope at an accelerating voltage of 10 kV. Micrographs were taken at three 

different areas of each sample between 20,000 and 40,000 magnifications.  
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3.5 Results and discussion 

3.5.1 Alignment of electrospun nanofibres 

Unlike electrospun fibres directly deposited onto a grounded collector as a random 

mesh, centimetres long fibre bundles were deposited in a curved parallel path between 

two copper disks in seconds, as shown in figure 3.1. After 15 sec of spinning, parallel 

aligned nanofibres between the two disks were observed. The magnified micrograph in 

figure 3.2, shows that the aligned nanofibres are perpendicular to the axis of the 

collection disks and have a uniform diameter distribution.  

 

 
Figure 3.2, Photograph of an array of aligned (20 wt. % Nylon 6/ formic acid) 

nanofibres, 5 cm in length, deposited between two charged disks after 120 sec with an 

applied voltage of 15 KV and an electrospinning distance of 8 cm. The obtained fibre 

diameter was 800 ± 40 nm. 

 

Alignment and stretching of the fibres are derived by electrostatic interactions between 

the positive electrode on the spinneret and the grounded disks. As a result, the polymer 

fibre travels toward the disk collector, one end of the fibre is attached to one of the 

disks, and the other end of the fibre is pulled toward the other disk. In other words, the 

bending shape of the flying nanofibres is transformed into a linear shape between the 

grounded circular disks.  Once the charged fibres have moved into the gap between the  
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Figure 3.3, (A-D) SEM images of aligned nylon 6 nanofibres collected under a 4 cm 

gap distance at 15, 30, 60 and 120 sec respectively, and (E-H) charts of the ratio of 

aligned nanofibres per angle of alignment related to the SEM images. 
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disks, the fibres will induce opposite charges on the surface of the disks. These opposite 

charges will attract the fibres to the grounded disks, leading to the alignment of the 

fibres in the gap between the grounded circular disks. The nanofibres suspended across 

the gap remain highly charged after deposition, thus the electrostatic repulsion between 

the deposited and the upcoming fibres can further enhance the alignment mechanism. 

The SEM images in figure 3.3, show that well-aligned nanofibres have been formed, 

having diameters in the range of 800 ± 40 nm over four different collection times. The 

aligned fibres collected have lower average fibre diameters because their relaxation and 

expansion values are lower than in the case of random collection, leading to a decrease 

in the fibre diameters. Additionally, this confirmed that the nanofibres were physically 

stretched and thinned by the electric fields associated with the parallel grounded disks. 

 

3.5.2 Effect of the collection time and space distance on the degree of alignment 

The degree of parallelism of the aligned fibres was measured by image analysis. The 

experiments indicated that the collection time had a major effect on the alignment-

parallelism degree of the fibres. Figure 3.3 (A), shows that the fibres are not well 

aligned along the axis of the fibres bundle, whereas perfectly parallel nanofibres can be 

seen in figure 3.3 (D). This means that the degree of fibre alignment increases with the 

collection time. On the other hand, because of the electrostatic repulsion force 

increasing between the deposited fibres with time, a long collection time will lead to 

worse alignment. Figure 3.4, shows SEM images of electrospun nanofibres after 120 sec 

of spinning, with gap (space) distance between the disks ranging between 2 and 6 cm. 

These images indicate a greater degree of alignment with the increase in disk space and 

the significant effect of the collection time. 

 

3.5.3 Parameters affecting the density of deposited fibres 

The experiment carried out shows that the number of nanofibres distributed in the 

bundle depends on parameters such as the collection time and the gap width. However, 

the applied voltage, spinning distance and flow rate, are the main effects on the mass of 

the deposited fibres and the number of branches generated from the electrospinning jet. 

With an increase in the applied voltage for a given spinning distance, nanofibre 

branching will increase, resulting in difficulties for aligning nylon 6 nanofibres. On the 

other hand, with an increase in the voltage, the drawing forces will increase, improving 

the alignment across the gap. The images in figures 3.3, and 3.4, show that as the 

deposition time is increased and the width of the gap is decreased, the number of nylon 
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6 fibres increases, and this makes the bundle denser. In fact, this can be explained by the 

theory of mass conservation.  

The results obtained by Morshed et. al. [39] showed a low relative proportion of aligned 

polyacrylonitrile nanofibres mass for all electrospun polyacrylonitrile nanofibres (ca. 

10-20 wt. %) with changes of the gap width. These results are expected because the 

conductive metallic collector surfaces are small; the metallic collector will not have a 

significant drawing on the fibres as the layer of fibres increases. In this mechanism, a 

higher proportion of aligned nanofibre mass has been obtained because of the large 

effective face surfaces of the disks, which stretch and span the fibres across the gap of 

the disks. 

 

 
Figure 3.4, SEM images of aligned nylon 6 nanofibres with a constant collection time 

of 120 sec and gap spaces between the disks of (a) 2 cm, (b) 3 cm, (c) 4 cm, (d) 5 cm 

and (e) 6 cm. (f) SEM image of approximately uniform fibres 800 ± 40 nm in diameter 

with a 5 cm gap space and 120 sec collection time.    

 
It has been noted that at a gap distance of 10 cm, few nylon 6 nanofibres were collected 

across the gap of the collection disks. When the collection disks were separated by a 

distance larger than 10 cm, the electrospinning jet had difficulty in depositing the nylon 

6 fibres across the gap of the collection disks. 
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In conclusion, the optimum disk distance for spinning nylon 6 nanofibres is 4-5 cm. 

This provides the basis for twisting the nanofibre bundle for the formation of uniform 

nano yarns. 
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CHAPTER 4: NANOFIBRE FILLED WITH CARBON NANOTUBES 
 

4.1 Introduction 

Electrospinning nanofibres are not as strong as desired because of their small diameter 

and unoptimized molecular chain orientation along the fibre.  The elongation balance 

theory in textile engineering [1] and composite analysis [2] suggests that incorporating 

materials with fillers provides the most effective means of transferring tensile 

properties. 

Based on this theory concept, research work has shown that the addition of filler into 

the fibre body leads to an increase of the strength of the fibre.  

Carbon nanotubes (CNTs) which are made up of carbon atoms arranged in graphitic 

sheets structure have been received great attention since their discovering in 1991 by a 

Japanese microscopist Sumio Iijima of NEC [3. 4].  Figure 4.1, shows computational 

image of single wall carbon nanotubes SWCNTs and multi wall carbon nanotubes 

MWCNTs. 

 

 
Figure 4.1, Computational image of SWCNTs and MWCNTs [5]. 

 

SWCNTs and MWCNTs are similar in structure except that MWCNTs are composed of 

more than one wall arranged concentrically like rings of tree trunk and held together by 

weak van der Waals bonds [5]. The diameter and length of carbon nanotubes CNTs 

varies depending on their production method ‘synthesization’. SWCNTs can be 

produced with diameter in the range of ~ 0.4 - 3 nm; with ~ 1.2 nm as an average 

diameter. On the other hand, MWCNTs are produced with diameter in the range of 
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several nanometers to tens of nanometers. The length of CNTs are typically in the 

micrometers range which normally result in aspect ratio of >100 to as high as 10,000 

depending on synthesizing method [6]. CNTs are proven to have magnificent 

mechanical properties such as; high aspect ratio of 10,000, young’s modulus of 1 TPa 

for SWCNTs and 0.3 - 1 TPa for MWCNTs, tensile strength of 30 GPa for MWCNTs 

and fracture strains of 10 % - 30 % [6]. In other words, the tensile strength of CNTs can 

be as high as 100 times that of steel, and the graphene sheet is as stiff as diamond at low 

strain. They have been observed to have thermal conductivity of about 28.9 W/cm.k [7], 

electrical conductivity of 107 amp/cm2, specific surface area of 10 - 20 m2

It is essential to have a good dispersion, uniform distribution and alignment of the CNTs 

in the polymer solution in order to optimize the mechanical, electrical and thermal 

properties of the final composite. To obtain a stable and uniform suspension of CNTs in 

/g and very 

good thermal stability [8].  

It has been found that incorporating CNTs as filler into polymer fibres allows one or 

more or all of the above properties to be achieved [9]. In recent years, significant effort 

has been made into fabricating polymer fibre-carbon nanotube composites for 

improving the composite physical properties [10-17], mechanical properties [18-27] and 

electrical properties [28-31]. Composite nanofibres have been successfully electrospun 

with diameters as low as several tens of nanometers to as high as several micrometers 

depending on the polymer type, polymer molecular weight, electrospinning dope 

properties and electrospinning conditions.  

For many applications of industrial fibres, CNTs composite nanofibres have been 

electrospun using different polymers such as; nylon 6 [25, 29], nylon 4, 6 [32], PAN 

[30, 33-35], PVA [26, 36], epoxy resins [37-40], silk [41, 42], thermo plastic polymers 

[43, 44], polypropylene [45] and blends of PVA with PEO [46]. 

However, separation of CNTs bundles, their dispersion and their alignment are still 

critical issues with regard to the mechanical and functional properties of any polymer 

CNTs composite. The main challenge for processing nanofibre composites at the 

present time is to improve the dispersion and alignment of CNTs in the polymer matrix 

for enhancing mechanical and electrical properties of the nanofibres [37, 47]. It has 

been indicated that stretching of the nanofibres during collection is a promising method 

for both improving the alignment of CNTs across the fibre body and fibre’s molecular 

orientation [34, 44, 49, 50]. 

 

4.2 Dispersion and alignment of CNTs in the polymer solution 
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the polymer solution, several strategies have been employed to disperse the CNTs 

which include chemical modification of CNTs through attaching functional groups to 

the surface of the CNTs, non-chemical functionalization of CNTs through wrapping the 

CNTs with a surfactant and optimum physical blending ‘high speed shearing’ of CNTs 

and polymer solution [48].  

The organization of nanofillers ‘parallel to each other’ into the nanofibre body serves 

not only as a mean of properties translation factor but also as helpful factor in designing 

and predicting properties of the final composite. The flow of the polymer solution, the 

presence of electrostatic charge, and the nanometer diameter of fibre are critical 

parameters in electrospinning for aligning CNTs into the fibre. It has been also 

researched that applying geometrical stretching to the electrospun nanofibres during 

collection improves the alignment of CNTs across the nanofibre body [50].  

Scientifically, SWNTs have smooth and uniform interaction surfaces along their length, 

therefore they have high affinity to attract each other and aggregate forming packed 

ropes or entangles into their networks due to strong inter tube van der Waals attraction 

[5]. Moreover, the fineness of the SWNTs promotes agglomeration and formation of 

unoriented ropes, which prevents full translation of properties [48]. Having these 

properties into account, it is easier to uniformly disperse and align MWCNTs in the 

polymer solution. 

In this chapter, ultrasound dispersion combined with high speed shearing is used to 

disperse MWCNTs into nylon 6 solution. As it has been found the simplest and most 

convenient method to improve the dispersion of CNTs in a polymer matrix [48]. By 

manipulating the electrical forces during electrospinning and applying geometrical 

stretching to the electrospun nanofibres by the alignment mechanism, high polymer 

chain orientation and better alignment of MWCNTs along the fibre axis is achieved 

[50]. 
 

4.3 Experimental work 

4.3.1 Preparation of polymer - MWCNTs solution 

Nylon 6 solution of 20 wt. % concentration was prepared by dissolving the polymer in 

98 % formic acid. MWCNTs (Sunnano Co Ltd, China) with a diameter of 20 ± 10 nm 

and length of 1-10 µm of 95 % purity were dispersed to disrupt possible agglomerates 

using an ultrasonic homogenizer (model 300 V/T, Biologics INC, UK) operating at 25 

Hz, as shown in figure 4.2. Different masses of MWCNTs were added to 20 ml of 

formic acid and sonicated for 3 hours. Specific amounts of nylon 6 were weighted and 
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added to certain quantities of formic acid for maintaining the desired polymer weight 

ratio. These mixtures were stirred for 2 hours and kept in an air tight bottle to prevent 

evaporation of formic acid for a period of time until the polymer was uniformly 

dissolved in the solvent. The sonicated and stirred solutions of MWCNTs and nylon 6 in 

formic acid were mixed by stirring. The final solutions produced contained varying 

concentrations of MWNTs from 0 to 4 wt. % in 20 wt. % nylon 6 solution. 

 

4.3.2 Electrospinning of the polymer - MWCNTs solution 

The MWCNTs/ nylon 6 solution was fed through a 5 mL capacity syringe to a vertically 

orientated (25-gauge) blunt-ended metal needle via Teflon®

A TEM was utilized to qualitatively determine the size distribution and structure of 

carbon nanotubes in the composite nanofibre on 100 square mesh Cu grids for samples 

of randomly collected nanofibres, and 100 parallel mesh Cu grids for samples of aligned 

 tubing and the flow rate 

was controlled using a digitally controlled, positive displacement syringe pump 

(Harvard Apparatus M22 PHD 2000). The needle was held by one electrode connected 

to a high voltage DC power supply (Glassman MK35P 2.0-22). Typical operating 

regimes at volume feed rate of 0.2 ml/hr, applied voltages of 15 KV and a working 

electrospinning distance of 8 cm were employed. These parameters were used for 

producing uniform diameter distribution of nylon 6 nanofibres, based on own published 

research [51]. Various polymer nanofibre collection system ranging from random fibres 

collection on a copper plate measuring 15cm × 15cm, to aligned fibres collection over 

two circular electrically grounded disks separated by 4 cm space distance and collection 

time of 120 sec were investigated. 

 

4.3.3 Characterization 

4.3.3.1 Scanning electron microscopy (SEM) 

Samples of both aligned and random nanofibres were collected on aluminum stubs. For 

collecting the aligned nanofibres, aluminum stubs with parallel strips of supper glue 

tapes were passed through the suspended fibres between the collection disks. These 

samples were sputter coated with gold palladium for 45 seconds at 18 mA. Nanofibres 

were examined using a Hitachi S-530 scanning electron microscope at an accelerating 

voltage of 10 kV. Micrographs were taken at three random areas of each sample 

between 20,000 and 40,000 times magnification.  

 

4.3.3.2 Transition electron microscopy (TEM) 
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collected nanofibres as shown in figure 4.2. The TEM (Philips CM120, Eindhoven,  

The Netherlands) as shown in figure 4.2, was used with an accelerating voltage of 120 

KV. Micrographs were developed, digitally scanned, and presented without any other 

image manipulation. 

 

 
Figure 4.2, Photographs from the left to the right are: an ultrasonic homogenizer model 

300 V/T, samples of randomly and aligned nanofibres collected on 100 square and 

parallel mesh Cu grids and Philips CM120 transition electron microscope used in the 

experimental work. 

 

4.4 Results and discussion [50] 

4.4.1 Composite aligned nanofibres 

Figure 4.3, shows recorded photographs of randomly collected nylon 6 nanofibres 

containing various concentrations of MWCNTs from 0 to 4 wt. % in 20 wt. % nylon 6 

solution. They have showed that as the loading of the carbon nanotubes is increased, the 

surface colours of the nanofibre mats changed from colourless ‘white’ to grey/black. 
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Figure 4.4, shows a series of micro morphological SEM images of randomly collected 

nylon 6 nanofibres containing various concentrations of MWNTs from 0 to 4 wt. % in 

20 wt. % nylon 6 solution. Visual analysis of these images shows that as the loading of 

the carbon nanotubes is increased, the surface morphology of the nanofibres become 

rougher, because MWCNT particles were only partly dispersed in the nanofibre matrix.  

 

 
Figure 4.3, Recorded photographs of nonwoven nanofibre mats for (a) nylon 6 and (b-

e) nylon 6/ MWCNTs composite, with increasing concentration of fillers from to (a) 

colourless of 0 wt. % MWCNTs, (b) ash/grey of 1 wt. % MWCNTs, (c) dirty grey of 2 

wt. % MWCNTs, (d) deep grey of 3 wt. % MWCNTs and (e) grey/black of 4 wt. % 

MWCNTs. 

 

It has been confirmed that [33], successful dispersing of the nanotubes inside the fibre 

body and orienting them along the axis of the fibre will minimize the protruded 

segments which are not embedded within the nanofibre. Achieving uniform distribution 

of MWCNT particles which is attributed to the fine dispersion of the nanotubes in the 

composite fluid is critical for preventing MWCNTs protrusion, notches and beads 
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across the fibre body. Although the electrospinning mechanism provides the 

electrostatic stretching forces (whipping elongation) for overcoming any entanglement 

of MWCNTs, applying other stretching forces can enhance the alignment of the 

nanotubes along the fibre axis within the nanofibre. This was achieved by the novel 

mechanism which described in the previous chapter [51]. 

 

 
Figure 4.4, (a-e) are SEM images of randomly collected nylon 6 nanofibres containing 

various concentrations of MWCNTs from 0 to 4 wt. % respectively in 20 wt. % nylon 6/ 

formic acid solution, at 0.2 mL/h volume feed rate, 15 KV applied voltage and 8 cm 

electrospinning distance. (f) SEM image of aligned nylon 6 nanofibres with 

approximately uniform fibres diameter of 850 ± 50 nm at 4 cm space distance between 

the collection disks. 

     

Figure 4.5, shows SEM images of aligned nylon 6 nanofibres containing various 

concentrations of MWCNTs from 1 to 4 wt. % in 20 wt. % nylon 6 solution, which are 

electrospun over the circular electrically grounded disks separated by a 4 cm distance 

[50]. The magnified images in figure 4.5, show that the aligned nanofibres are 

perpendicular to the axis of the collection disks and have a uniform fibre diameters 

distribution of 850 nm ± 50 nm. These images also indicate that the enhanced stretching 

applied by the alignment mechanism could lead to a high polymer chain orientation and 

a better arrangement of the MWCNTs inside the fibre itself. 
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Figure 4.5, (a-d) are SEM images of aligned nylon 6 nanofibres containing various 

concentrations of MWNTs from 1 to 4 wt. % respectively; in 20 wt. % nylon 6/ formic 

acid solution, at 0.2 mL/h volume feed rate, 15 KV applied voltage and 8 cm 

electrospinning distance, electrospun between two circular disks at 4 cm distance 

between them. The protruded segments of MWCNTs which are not embedded and 

dispersed inside the nanofibre body are indicated by arrows in images (c), (d). 

 

Due to different densities between MWCNTs and nylon 6, TEM images can show the 

MWCNTs inside the body of the electrospun nanofibres. Figure 4.6, shows TEM 

images of random and aligned nylon 6 nanofibres containing various concentrations of 

MWCNTs from 1 to 4 wt. % in 20 wt. % nylon 6 solution. Analysis of a large number 

of nanofibres, indicated by arrows in these images, shows that multi wall carbon 

nanotube particles were embedded well within the fibres as the loading of MWCNTs 
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decreases in the nylon 6 nanofibres. We can also observe that MWCNTs are aligned and 

straight along the direction of the fibre axis in the aligned nanofibres samples, whilst 

curvatures or knots are observed in the randomly collected nanofibre samples. We can 

conclude that by applying both electrostatic drawing (whipping) by electrospinning and 

geometrical-mechanical stretching by the alignment mechanism, a perfect longitudinal 

alignment of MWCNTs can be achieved across the fibre. Moreover, good insertion and 

uniform longitudinal distribution will improve the thermal conductivity, electrical 

conductivity and mechanical property of the MWCNTs/ polymer composite [35, 48]. It 

has been found by the TEM images however, that poor dispersion and interfacial 

contact of the MWCNTs occurs as the loading concentration increases more than 3 wt. 

%. 

 

 
Figure 4.6, TEM images of random and aligned nylon 6 nanofibres containing various 

concentrations of MWCNTs; 1 to 4 wt. % in 20 wt. % nylon 6 solution. (a, b) show 

random and aligned nanofibres respectively with 1 wt. % of MWCNTs in nylon 6 

nanofibres, (c) shows random nanofibres with 2 wt. % of MWCNTs, (d) shows 

individual nanofibres with 3 wt. %  of MWCNTs, (e, f) show aligned nanofibres with 4 

wt. % of MWCNTs. The arrows indicate that MWCNTs are straight in the direction 

parallel to the fibre axis being subjected to aligned collection, while curvature or knots 

are observed in the randomly collected nanofibres. (e, f) show poor dispersion for the 

MWCNTs with loading concentration more than 3 wt. %. 
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In fact, this is to be expected for two reasons: firstly, the stress resulted from 

agglomeration of MWCNTs at high load concentration and secondly, high loading of 

MWCNTs will increase the surface tension and viscosity of the polymer composite 

solution, leading to difficulties during the electrospinning process. Consequently, the 

optimum MWCNTs concentration for spinning aligned nylon 6 nanofibres composite is 

1 wt. %. This provides the basic composite nanofibre material for the spinning of 

continuous yarns in the next chapter. 

 

4.4.2 Challenges of improving the dispersion of MWCNTs in the polymer solution 

Although, the properties of CNTs are well researched and understood, but uniform 

dispersion of CNTs into individual tube in the polymer solution remains a critical 

challenge. It has been argued that a technique for disrupting the surface uniformity 

‘surface modification’ of the CNTs thereby reducing the van der Waals interaction 

between the tubes and preventing the tubes from re-agglomeration is needed to 

overcome this challenge [12]. Moreover, surface modification of CNTs induces tube 

matrix interaction resulting in better interfacial bonding and allowing load transferring 

across the CNTs matrix interface.  

To do so, researchers have used a chemical modification through attaching functional 

groups to the surface of the CNTs, or a non chemical functionalization through 

wrapping the CNTs with a surfactant [12, 48].  

Chemical modification is a chemical reaction process where the atoms on the surface of 

the tube are oxidized to carboxylic acid groups thus making covalent bonds to the 

polymer by esterification [48]. This process is time-consuming; hence it involves 

breaking the covalent bonds on the wall of the CNTs and forming new ones. Most 

importantly, it tends to damage the pristine structure of the nanotube and greatly reduce 

the tube properties [48].  

While non chemical modification reduces the van der Waals attraction between tubes 

resulting in well separated tubes in the solution. Consequently, based on this 

modification technique, changing the polymer solution concentration or finding a 

specific surfactant ‘agent’ to be chemically suitable for the polymer solution is a 

solution key for optimum dispersion. Gum Arabic, as a dispersing agent, is one of the 

surfactant examples that being used in experimental research work [52]. 

Furthermore, investigating other dispersion agents and higher loading concentration of 

CNTs in the polymer solution will be an interesting further investigation, for improving 

nanofibres composite field. 
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CHAPTER 5: SPINNING NANOFIBRE YARNS 
 

5.1 Introduction   

Electrospinning enables production of continuous nanofibres, nonwoven fabrics and 

functionalized composite fibres and yarns. The art of changing the process parameters 

and applying and modifying different collection mechanisms enable researchers to 

develop interesting and novel materials with unique properties for a number of end uses. 

Although collection of random nanofibres is already being used for membranes, 

filtrations, tissue scaffolds and wound dressings, the application of these nanofibres 

need highly ordered and aligned architectures for yarn formation. Currently, various 

ordered structures such as aligned nanofibres, arrayed nanofibres and controlled 

deposition of the electrospun fibres have been achieved using different mechanical 

collection devices and the manipulation of the electric field [1-3]. 

Alignment of nanofibres is important for engineering nano structures, but most 

importantly, for enabling the twisting of aligned fibre bundles in achieving the ultimate 

formation of continuous nano yarns, which is the focus of this thesis. Due to the chaotic 

nature of the electrospinning jet motion and the nanometer size of the electrospun 

nanofibres, there had been very few attempts to spin yarns that are made out of 

electrospun nanofibres [3-5].  Despite considerable effort in trying to form yarns from 

nanofibre oriented bundles, further improvements in architecture, mechanical geometry, 

dimensions and dynamic motion of the collection system are needed for effective fibres 

assembling, orienting and yarn formation.  

This chapter provides a critical account of the existing mechanisms for electrospun 

nanofibre yarn formation, and it also puts forward own design mechanisms as a 

stepping stone to the ultimate formation of continuous nano yarns. Nylon 6 aligned 

nanofibres and nylon 6 aligned nanofibres filled with MWCNTs at concentrations of 1 

wt. % are electrospun into continuous yarn using a novel electro mechanical collection 

mechanism. The continuous yarn can be collected at a production rate of over 8 m/min. 

Basic studies in optimizing the yarn parameters such as twist speed and yarn linear 

density are investigated and further discussed. In addition, a novel electro mechanical 

mechanism for spinning core electrospun nano yarn is designed, investigated and 

implemented. These nano yarns are expected to find many applications in industrial and 

medical textiles for artificial muscles, actuators, protective clothing, high performance 

fabrics, tissue engineering, composites, automotive, aerospace and civil engineering 

applications. 
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5.2 Review of mechanisms for spinning nanofibre yarns 

Several mechanisms have been developed to control the deposition of the electrospun 

nanofibres moving away from collecting disordered nanofibres to collecting ordered 

yarns by changing from static collection to dynamic collection or manipulating of the 

electric field with dynamic collection [3-5]. The results are promising, but further 

improvements are needed for effective fibre alignment in the yarn body architecture.  

In this review, it is focused on the different designed mechanisms to obtain various 

modifications of nanofibre assemblies. This will allow researchers in the nanofibre 

engineering field to gain knowledge on the various concepts of nanofibre assemblies 

and how they are constructed for fabrication of yarn forms for meeting specific needs. 

 
5.2.1 Nano yarn mechanisms based on dynamic mechanical devices 

A schematic diagram of the mechanisms based on dynamic mechanical devices is 

shown in table 5.1. 

It has been suggested that a strand of electrospun porous filaments of nanofibres can be 

fabricated by spinning a polymer on the surface of a static water or organic solvent as a 

coagulation bath, then drawing it manually to a revolving take up roller [6-9]. In other 

words, a new mechanism which consists of a coagulating bath, a guiding bar system for 

guiding the nanofibre bundles and a take up winder is designed to make uniaxial 

nanofibres bundles of yarn.  

Smit et. al. obtained a three dimensional round yarn structure by electrospinning 

nanofibres via a water bath and subsequently drawing the nonwoven web ‘mesh’ of 

nanofibres with the aid of a glass rod across the surface of the water and scooped off 

into air to a rotating roller above it [6]. The resulting yarn was drawn slowly by hand to 

a take up roller, then the roller was rotated at a speed of 3 m/min. The tension applied 

by the roller elongated the nanofibres in the direction of the length of the yarn. Yarns 

were fabricated with a textured appearance from electrospun polyvinyl acetate, 

polyvinylidene fluoride and polyacrylonitrile nanofibres using this mechanism. Khil et. 

al. used a similar set-up and fabricated porous filaments yarn but at a speed of 30 m/min 

[7]. They introduced electro wet spinning as a new possibility, based on the principle of 

phase separation in the polymer solution [10]. 

By using both distilled water and a mixture of distilled water/methanol to collect the 

nanofibres, they did not show any differences in the structure of the collected yarns. 

Polycaprolactone plain woven fabric was constructed with interlacing warp and filling 

filament yarns for tissue engineering. An air turbulence twister has been applied to the 
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resulted filaments yarn by other researchers for increasing cross linking between the 

nanofibres [11]. The yarn structure of this mechanism was observed to depend on many 

parameters such as the diameter of the electrospun nanofibres, the surface tension and 

viscosity of the liquid in the collection bath and the type of polymer. Surface tension of 

the liquid causes the fibre mesh to collapse into a yarn when it is lifted from the liquid 

surface to the rotating roller. Additionally, the viscose liquid may cause a higher drag 

force on the electrospun nanofibres as they are drawn to the edge of the collection bath 

and wound onto the roller. It should be observed however that, by randomly depositing 

fibres on the liquid surface, then rearranging them across the surface of the liquid and 

scooping them off in the air, before winding them by hand onto a take up roller, the act 

of spinning is being lost. 

 

 

Table 5.1, Nano yarn mechanisms based on dynamic mechanical devices.  

1- Yarn collected by liquid bath. 

 

Advantages  
Simple mechanism. 
High production rate. 

 
Disadvantages 
Bundled yarn. 
Liquid properties may cause arrangement 
difficulties. 
Manual collection. 
Lose the art of spinning. 
[6-9, 11], photograph reprinted from [6]. 
 
 

2- Yarn collected by dynamic liquid bath [13]. 

 

Advantages  
High production rate. 

 
 
Disadvantages 
Complicated mechanism. 
Bundled yarn. 
A few fibres do not stick tightly on the 
yarn. 
Manual collection. 
[12, 13], photograph reprinted from [13]. 
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3- Core electrospun yarn by air vortex tube. 

 

Advantages  
Tubular structure. 
Variety of applications.  
 
 
Disadvantages 
Low production rate as nanofibres stick  
on the wall of the tube. 
Complicate mechanism and parameters. 
Yarn helix is unclear. 
[14]. 
 

4- Yarn collected with the aid of disk. 

 

Advantages  
No advantages. 

 
Disadvantages 
Difficult to apply. 
Very low production rate.  
Most nanofibres stick on the wall of the 
first delivering disk. 
Yarn structure is unclear. 
[16]. 

 

5- Yarn collected by compound rotated collector. 

 

Advantages  
Simple mechanism 

 
Disadvantages 
Entangled and unoriented nanofibres in 
the yarn body. 
Wet yarn. 
Yarn will stick on the surface of the 
collector. 
[17, 18], photograph reprinted from [18]. 
 

 

Ramakrishna et. al. patented a modified dynamic liquid winding mechanism by using a 

vortex created from water flowing out from the bottom of a container ‘basin’ [12, 13]. 

The vortex was formed on the container through a hole of 5 mm diameter. A pump was 

used to recirculate the water from the tank back to the container and a rotating winder 

was revolved at a speed of over 60 m/min to collect the yarn emerging from the bottom 
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of the container. As the deposited nanofibres flow within the vortex, the nanofibre mesh 

elongates and consolidates in the direction of the flow of the water. In fact, in this 

mechanism, liquid properties such as surface tension, viscosity and hydrodynamic 

motion of the liquid play a great part in controlling the yarn structure. For example, 

when the random deposition of the nanofibres around the edge of the vortex is faster 

than the flowing water through the hole, entangled fibres will result in the yarn body, 

while with much faster vortex, the amount of fibres drawn down from the vortex 

become inconsistent. Although this is an improved mechanism, its main drawbacks are 

manual taking up of the fibres, unoriented and untwisted fibres in the yarn body and 

difficult control of the parameters.  

Scardino et. al. also designed a mechanism by using an air vortex tube. They applied an 

air vortex spinning tube to impart twist to the drawn nanofibres as a sheath on a core 

filament, forming core filament yarn [14]. Although they presented a core electrospun 

yarn, no detailed discussion of the structure of the resultant yarn is given. It is observed 

that controlling the air vortex for depositing the nanofibre on the filament core in a 

helical manner is very difficult. 

In a recent paper, Fennessey et. al. described the making of twisted 32 cm × 2 cm 

unidirectional electrospun nanofibres tow into yarn using an electrical twister [15]. 

Although they researched the effect of twist angle on the tensile strength and other 

mechanical properties of the yarn, no detailed description and discussion of the structure 

of the resultant yarn is given.  

Some researchers have shown that it is possible to obtain continuous yarn by using a 

rotating earthed disk for delivering the electrospun nanofibres and an unearthed rotated 

roller separated at a certain distance for taking up the resulting yarn [16]. We can 

observe that it seems to be very difficult to implement this mechanism because the 

electrospun nanofibres stick on the surface of the delivering disk. 

Ko et. al. developed continuous composite yarns of polylactic acid (PLA) and 

polyacrylonitrile (PAN) with single wall carbon nanotubes by collecting the electrospun 

nanofibres on a Z-Y plane rotated cylinder based on a rotated plate at X-Y plane [17, 

18]. In accordance with their work wet, entangled and unoriented nanofibres were found 

in the yarn body. This is due to the evaporation rate of the solvent which should be 

studied in depth in further work.  
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5.2.2 Nano yarn mechanisms based on combining electric field manipulation and 

dynamic devices 

The manipulation of the geometric shape of the electric field and the dynamic motion of 

the collector make precise control of the deposition of electrospun nanofibres almost 

possible. A schematic diagram of the mechanisms based on combining electric field 

manipulation with dynamic devices is shown in table 5.2. 

In the late 1930s, Formhals et. al. discussed many mechanisms for making continuous 

nanofibres yarn using parallel electrodes [19-21]. We have investigated these 

mechanisms in the experiments, and found that they are not able to spin uniform yarns.  

Multifilament twisted yarn has also been spun by suspending the electrospun nanofibres 

between two earthed plate electrodes and by rotating one of the electrodes [22, 23]. 

Although the yarn made from this mechanism has a very uniform helix and the fibres 

are aligned in the direction of the length of the yarn, the yarn was of limited length 

limiting its end use. 

 

Table 5.2, Nano yarn mechanisms based on combining electric field manipulation and 

dynamic devices. 

1- Yarn Based on parallel electrodes.  

 

Advantages  
Simple mechanism. 
High production rate. 
 
 
Disadvantages 
Difficult yarn collection. 
Inapplicable. 
Nanofibres may be suspend between the 
two electrode wires. 
[19-21]. 
 

2- Yarn fabricated using negative ring electrodes. 

 

Advantages  
Simple mechanism. 
High production rate. 
 
Disadvantages 
Difficult yarn collection. 
Nanofibres may stick on the negative 
ring. 
[19-21]. 
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3- Yarn collected by rotating one of the dual electrodes form 1 [22].  

 

Advantages  
Simple mechanism. 
Ability to control the twist direction. 
Yarn structure with uniform helix. 
Nanofibres are aligned in the direction 
of the length of the yarn. 
 
 
Disadvantages 
Yarn with limited length. 
 Photograph reprinted from [22]. 
 
 
 

 

4- Yarn collected by rotating one of the dual electrodes form 2. 

 

Advantages  
Simple mechanism. 
Ability to control the twist direction. 
Yarn structure with uniform helix. 
Nanofibres are aligned in the direction 
of the length of the yarn. 
 
 
Disadvantages 
Yarn with limited length. 
[23], photograph reprinted from [23]. 
 
 
 

 

5- Yarn fabricated by opposite charged needles. 

 

Advantages  
Simple mechanism. 

 
 
Disadvantages 
Difficult to apply. 
Entangled and unoriented nanofibres in 
the yarn body. 
Curly yarn structure. 
Manual yarn collection. 
Difficult yarn extraction. 
[24], photograph reprinted from [24]. 
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6- Yarn fabricated using polygonal electrode and relay [25]. 

 

Advantages  
Ability to control the twist direction. 

 
 
 
 
Disadvantages 
Complicate mechanism. 
Manual yarn collection. 
Low production rate. 
 
 

 

7- Continuous yarn collected by rotating one of the dual electrodes. 

 

Advantages  
Simple mechanism. 
Ability to control the twist direction.  
Continuous yarn. 
Yarn structure with uniform helix. 
Nanofibres are aligned in the direction 
of the length of the yarn. 
 
Disadvantages 
Aligned nanofibres collected instead of 
Yarn. 
Random jet suspension. 
[26]. 
 
 

 

8- Yarn fabricated by manipulating the electric field via grounded bar. 

 

Advantages  
Continuous yarn. 
Ability to control the twist direction. 
Yarn structure with uniform helix. 
Nanofibres are aligned in the direction 
of the length of the yarn. 
 
 
Disadvantages 
Complicate mechanism. 
Low production rate as most nanofibres 
stick on the negative surface. 
[27], photograph reprinted from [27]. 
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9- Self bundled yarn spun by manipulating the electric field via grounded bar 

[28]. 

 

Advantages  
No advantages. 

 
Disadvantages 
Complicate mechanism. 
First manual help. 
Random jet suspension. 
Difficult yarn extraction. 
Difficult to apply, when it was tried. 
Entangled and unoriented nanofibres in 
the yarn body. 
[28]. 
 

 

Li et. al. presented a novel mechanism of manufacturing continuous yarn by using two 

oppositely placed metallic needles connected to a positive and negative voltage [24]. In 

this mechanism, positively charged nanofibres come into contact with negatively 

charged ones; they stick to each other at the center of the two needles after short time of 

electrospinning and then towed manually and wound onto a cylindrical collector 

rotating at a linear speed of 0.9 m/sec, forming continuous yarn. After towing the 

bundle of fibres manually to the rotating collector, the yarn is elongated by the 

mechanical tension of the rotating cylinder. In their experiment, they have indicated that 

the yarn structure is curly and that some fibres in the yarn body are not aligned well. It 

can also be observed that extracting the deposited yarn from a solid substrate without 

damaging the yarn is very difficult. 

Kim et. al. reported a mechanism for fabricating twisted nanofibre yarn using polygonal 

electrode with four faces connected to a relay that transforms the applied electric field 

sequentially in the range of 0.001 to 1.0 sec [25]. When the electrical field was applied 

to each face of the electrode in a step-by-step way, the electric field was sequentially 

rotated around the electrode. In this mechanism, changing the direction of twist in the 

resulting yarn occurs by changing the direction of the electric field through limiting of 

the electrode and the relay time. However, this mechanism is complicated and sticking 

of the nanofibres on the electrode faces is difficult to overcome. 

Another interesting mechanism for spinning continuous twisted yarn which has been 

patented [26], is using a rotated earthed disk and an unearthed rotated roller separated at 

a certain distance. However, no results on any yarn formation have been reported.  
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Ravandi et. al. designed a mechanism for spinning continuous uniaxially aligned PAN 

nanofibre yarn by electric field manipulation [27]. By employing a negative charged bar 

with a diameter of 0.3 mm in the electric field between the positive charged spinneret 

and negative charged delivering surface, nanofibres suspended between the negative 

surface and the take up unit as shown in table 5,2 (8). The bar was 21 cm below the 

spinneret, the negative surface was located 23 cm from the spinneret and 12 cm from 

the bar, the area of the negative surface was 6 cm×12 cm and the linear take up speed 

14.064 m/h. Based on the experimental investigation, the unearthed take up unit used in 

this mechanism produced random deposition of fibres on the spinning surfaces. 

Wang et. al. provided a simple mechanism for spinning continuous aligned electrospun 

nanofibre yarn using a grounded needle to induce the self bundling in the 

electrospinning process [28]. They have indicated that if a grounded metallic needle was 

used between the spinneret and the rotating collector, then self bundled nanofibre yarn 

will be formed. By pulling a yarn back and wind it on a grounded rotating collector, a 

nanofibre yarn is manufactured. They have concluded, however, that at the beginning of 

the process, as the surface speed of the rotating collector increases and as the 

conductivity of the polymer solution decreases, the electrospun nanofibres will only be 

deposited on the surface of the needle. In other words, the self bundling process will be 

broken down and as the electrospinning jet starts random whipping, random deposition 

of nanofibres is formed. Bent fibre loops were also observed in the yarn body making 

fluffy yarn appearance. Briefly, the stability of self bundling and the alignment of fibres 

in the yarn could be achieved for specific polymer solutions and operating parameters 

making this mechanism promising for some end uses.  

Despite considerable efforts in trying to form yarn from nanofibre oriented bundles, 

further improvements in architecture, mechanical geometry, dimensions and dynamic 

motion of the collection system are needed for effective fibre assembling, orienting and 

spinning into a yarn. 

 

5.3 Novel mechanism for spinning continuous nanofibre yarn [4] 

Most of yarn mechanisms described above, involve at least three distinct steps, namely; 

aligned nanofibre manipulation, followed by twist insertion by means of an electric 

motor and take up unit. 

Based on the alignment mechanism described in chapter 3, changing of the geometrical 

shape of the electric field by placing the two grounded disks under the spinneret splits 

the vertical electric field lines into two parts and thus aligns the electrospun nanofibres 
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between the two disks [2]. Through this concept, by rendering the first grounded disk as 

a twist disk and the second disk as a take up disk, spinning continuous nano yarn has 

been achieved. A schematic drawing of this mechanism is shown in figure 5.1. 

 

 
Figure 5.1, A schematic illustration of the set-up mechanism for assembling highly 

aligned nanofibres, suspended between two perpendicularly Y-Z plane to X-Z plane 

electrically grounded collector disks, for enabling spinning of continuous nanofibre yarn 

[4].  

 

We have implemented an experimental spinning continuous nanofibre yarn mechanism 

by modification of the electric field in three dimensional domains in the space between 

the spinneret and the yarn twist and take up zone, as shown in figure 5.2. 

The continuous yarn spinning mechanism involves collecting the electrically charged 

nanofibres between two perpendicularly Y-Z plane to X-Z plane electrically grounded 

collector disks.  

The two disks are circular; the first is an earthed copper circular disk with dimensions of 

60 mm diameter, 0.5 mm thickness and the second is a wider earthed circular disk with 

dimension of 40 mm diameter, 4 mm thickness separated by a distance of 4 cm from 

each other. The first copper circular disk is rotated around its axis by attaching it to a 
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motorized insulated shaft set to run at a controllable rotary speed to twist the fibre 

bundle into a nanofibre yarn. The yarn was wound on the take up disk which is also 

attached to a motorized insulated shaft set to run at a rotary speed equivalent to a linear 

take up speed of 8 m/min.  

 

 
Figure 5.2, Photograph of the implemented mechanism used in the experiments for 

twisting highly aligned nanofibres suspended between two perpendicularly electrically 

grounded collector disks into continuous nanofibre yarn. The copper disk is the twist 

disk and the aluminium one is the take up disk, each disk is attached to a motorized 

insulated shaft to run at a controllable rotary speed. 

 

This mechanism has been designed after careful consideration of literature and by 

investigating step by step the requirements for spinning continuous nano yarn, as shown 

in figure 5.3.  

 
5.3.1 Experimental work 

5.3.1.1 Spinning continuous nanofibre yarn / composite continuous nanofibre yarn 

Nylon 6 solution of 20 wt. % concentration was prepared by dissolving the polymer in 

98% formic acid. Nylon 6 solution for first case and nylon 6/MWCNTs solution with  
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Figure 5.3, Recorded photographs showing how the mechanism was designed step by 

step, (a) shows highly aligned nanofibres suspended between grounded disks, (b) by 

rotating one of the disks, a twisted yarn was created, (c) one of the disks was replaced 

by glass rod for enabling continuous yarn production, (d) when the glass rod was 

rotated, broken yarns were taken up, (e) a mechanism was fulfilled consisting of a 

grounded disk and a grounded metallic rod instead of glass rod, (f) highly aligned 

nanofibres were suspended between the grounded disk and the grounded metallic rod, 

(g, h) failure in collecting continuous yarn by applying twist to the aligned nanofibres 

between the disk and the rod and thus the mechanism failed, (i) a continuous yarn 

mechanism has been developed. 

 

optimized concentration of 1 wt. % for second case were fed through a 5 mL capacity 

syringe to a vertically orientated (25-gauge) blunt-ended metal needle via Teflon® 

tubing and the flow rate was controlled using a digitally controlled, positive 

displacement syringe pump Harvard apparatus M22 PHD 2000 (Harvard apparatus Ltd, 
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Edenbridge Kent, UK). The needle ‘spinneret’ was held by one electrode connected to a 

high voltage DC power supply; a Glassman MK35P2.0-22 (Glassman High voltage 

INC, New Jersey, USA). Typical operating regimes at flow rates of 0.2 ml/hr, applied 

voltages of 15 KV and a working distance of 8 cm were employed. These parameters 

were used for producing uniform diameter distribution of nylon 6 nanofibres based on 

chapter two and three [2]. Conically aligned fibres were appeared perpendicularly over 

Y-Z plane and X-Z plane electrically grounded disks which are separated by 4 cm space 

distance. The yarn was wound on take up disk which is set to run at a rotary speed 

equivalent to a linear speed of 8 m/min. The twist effect on the yarn was investigated by 

changing the rotation speed of the Y-Z plane disk of 100, 250, 500, 750 and 1000 rpm. 

 

5.3.1.2 Characterization 

Samples of continuous yarn and continuous composite yarn were collected on SEM 

stubs. Two separate tapes of aluminum sheet were laid on the surface of the 

circumference of the thicker disk (spool) for enabling the collection of two samples of 

yarns at different twist speeds. 

These samples were sputter-coated with gold-palladium for 45 seconds at 18 mA using 

a Polaron Sc7620 sputter coater. Yarns were examined using a Hitachi S-530 scanning 

electron microscope at an accelerating voltage of 10 kV. Micrographs were taken at 

three random areas of each sample between 20,000 and 40,000 times magnification. An 

optical microscope (Diaplan, Germany) with soft imaging system (Altra 20, UK) was 

used to capture images for measuring the yarn diameter. Square holed carton frame was 

positioned under the yarn in the spinning zone/take up disk after seconds of 

electrospinning for enabling the collection of yarns for microscope optical images.  

 

5.3.2 Results and discussion 

5.3.2.1 Spinning continuous nanofibre yarn 

Yarn spun from fibres with fine diameter will have a higher surface area and strength 

compared to another that is spun from fibres with larger diameter [29-31]. Taking into 

account the efforts of other researchers, we propose a mechanism to spin a yarn, based 

on the conventional spun yarn principle, of aligned fibres and fibre migration along the 

yarn forming a helix structure as shown in figure 5.4. 

In this mechanism, the two disks are earthed, hence the earthed charges will attract the 

fibres to the disks, leading to the alignment of the fibres conically in the gap between 

the disks. The electric field and disk geometrical shape enable to precisely control the 
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deposition of the electrospun nanofibres. A controlled rotation is applied to the thin 

disk, which imparts twist in the fibres bundle. The twisted bundle is continuously 

wound on the take up thicker disk (spool) at a linear speed of 8 m/min. 

In a recent patent [26], Lee et. al. have used a rotated earthed disk and an unearthed 

rotated roller separated by a certain distance to spin continuous yarn, but the unearthed 

rotated roller used in their mechanism has produced random deposition of nanofibres, as 

shown in the experiment in figure 5.5.   

 

 
Figure 5.4, A schematic illustration of the fibres in the helical structure of the yarn; 

photograph was reprinted from [32]. 
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Figure 5.5, A photograph of unequal deposited nanofibres in the spinning zone between 

an earthed disk and an unearthed rotated roller for spinning continuous yarn. 

 

Specifically, we produce yarn of twisted electrospun MWCNTs/ nylon 6 composite 

nanofibres, in diameter of 7 ± 0.5 microns which is shown in figure 5.6, [33]. Figure 

5.7, shows that a spinning triangle of nanofibres was formed and the yarn was twisted 

during taking up. The structure of the yarn, as shown by SEM images in figure 5.9, 
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indicates that the fibres in the yarn are parallel, highly aligned and migrated in the 

direction of the yarn axis to form the required geometric helical structure. In this 

mechanism, the yarn linear density is affected by the number of electrospun fibres per 

unit time, their velocities and the take up speed.  

 

 
Figure 5.6, A microscopic image of continuous nanofibres yarn spun at 750 rpm twist 

speed and 8 m/min with diameter of 9.40 microns [33]. 

 

This work has shown that fabrication of continuous yarn can be achieved from any type 

of polymer or composite polymer blends under different linear density and twist level. 

Spinning super fine continuous yarn is of great significance for many applications, 

medical and industrial such as filters and sanitary pads, protective clothing and light 

composites for automotive and aerospace use.     
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Figure 5.7, A microscopic image and photograph showing that the spinning triangle 

was formed and the yarn was twisted during taking up [33]. 

 

5.3.2.2 Controlling the yarn linear density and twist per unit length 

Figure 5.8, shows photographs of continuous yarns produced by the mechanism. 

Different twist speeds at 100, 250, 500, 750 and 1000 rpm were applied to the 

suspended conical nanofibres bundle for providing the required inter fibre lateral 

cohesion interaction and friction. As can be observed from these photos, as the twist 

speed increases the suspended conical nanofibre are bundled together to form denser 

continuous yarn. Additionally, the tension applied through the drawing forces by the 

rotating spool straightens the fibres in the direction of the yarn axis. Figure 5.9, shows 

SEM images of collected continuous yarns at different twist speed, ranging from 100, 

250, 500, 750 and 1000 rpm at a constant linear take up speed of 8 m/min. These 

images show twisted nanofibre yarns with diameters ranging from 5 to 10 microns. 

There seems to be unoriented (wavy) yarns at the lowest twist speed as shown in figure 

5.9(a), and straight, aligned and fine yarns at the highest twist speed as shown in figure 

5.9(e).  

By analyzing these images, we can see that a twist speed between 500 and 750 rpm is 

adequate for spinning continuous yarn in relation to the operating process parameters 

(flow rates of 0.2 ml/hr, applied voltages of 15 KV and an electrospinning distance of 8 
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cm at a linear speed of 8 m/min. These operating parameters are influencing the number 

of nanofibres extruded from the spinneret per unit time to the yarn spinning zone and 

their velocity. 

 

 
Figure 5.8, (a) A photograph of suspended aligned 1 wt. % of MWCNTs in nylon 6 

nanofibres. (b-f) are photographs showing the mechanism for spinning continuous yarn 

at different twist speeds of 100, 250, 500, 750 and 1000 rpm respectively, and taking up 

the yarn at a constant linear speed of 8 m/min. 

 

We believe that the number of nanofibres generated at the spinneret, their velocities, 

twist and take up speed are essential parameters to control the yarn diameter, yarn linear 

density and twist per unit length. Little or no information has, however, been reported 

on the mathematical model for predicting the number of nanofibres brunches erupted 

from the electrospinning jet per unit time and their velocities [34-40]. This 

mathematical model will be investigated in detail in the next chapter, so that the take up 

speed for different twist speeds and yarn linear density can be optimized. 

 

5.3.2.3 Challenges of yarn collection for future work 

Obtaining continuous twisted yarn from electrospun nanofibres is still a challenge for 

many researchers despite the various reported successes obtained with different nano 

spinning architectures [3, 5]. This is attributed to the difficulty of the electrospinning 

process in controlling the jet path flight and the precise deposition of nanofibres and in 



 
123 

the lack of evaporation of the solvent. Although, the presence of solvent as a liquid in 

the yarn may act as a lubricant that allows slipping of the individual fibres without 

breaking them and its surface tension will further compress the yarn into a tight bundle, 

its presence however leads to yarn  sticking on the take up spool. The sticking 

phenomenon in spinning continuous yarn is a really a serious problem and needs further 

research. 

 

 
Figure 5.9, (a-e) show SEM images of electrospun continuous yarns at different twist 

speeds of 100, 250, 500,  750 and 1000 rpm respectively; at linear take up speed of 8 

m/min. (a) represents unoriented (wavy) yarns, (e) represent straight, aligned and fine 

yarns. (f) shows plied yarns produced with 40 microns diameter. 

 

From our own investigations, we can suggest that one has to find a way of completely 

drying the nanofibres before depositing them on the yarn zone or within the yarn zone. 

Consequently, we introduce changing of ‘electrospinning’ as ‘electro dry spinning’ to 

‘electro melt spinning’ as it is more effective for spinning continuous yarn wound on 

the take up spool without sticking, provided the cooling process is investigated. Another 

suggestion, form the investigation, is to change the take up spool material structure by 

either coating the metallic spool with suitable lubricant or changing the metallic spool 

into another material. In order to highlight this, we replaced the grounded metallic spool 

by a glass one and we put a grounded needle 2 mm before the glass spool for 
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manipulating and directing the electrical field, as in the mechanism by Ravandi et. al. 

[27], as shown in figure 5.10. 

Although continuous nanofibre yarn was spun and wound onto the glass spool, 

extracting the yarn without damage was proved difficult. Sticking of the yarn on the 

spool is still present and thus the glass spool did not prove advantageous. We also tried 

to irrigate the metallic take up spool with hot distilled water by a glass pipette during 

electrospinning. Hot water was used as it has lower surface tension than cold water and 

is suitable for consolidating of electrospun nylon 6 nanofibres and the resulting yarn. 

However, little or no success has been achieved by this change. 

 

 
Figure 5.10, A photograph of continuous nanofibres yarn spinning zone with replacing 

the metallic take up spool by glass one and introducing the grounded needle. 

 

Two further suggestions in this trial are put forward for future work. The first one is to 

control the evaporation rate of the solvent from the nanofibres until fully dried. The 

second is to coagulate the solvent during evaporation by putting the spinning zone 
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devices in a compatible liquid bath suitable to the polymer solution used [51], provided 

we can control the imparted twist in the liquid medium during nanofibre yarn formation. 

Controlling the yarn linear density, its uniformity and the twist per unit length are also 

important in nanofibre yarn formation. This can be achieved by knowing the number 

per unit time and velocity of the nanofibres extruded from the spinneret and deposited 

on the spinning yarn zone. A mathematical model is being investigated for predicting 

the kinetic properties of electrospun nanofibres. This will be presented in the next 

chapter. 

Briefly, we believe that the number of nanofibres generated at the spinneret, their 

velocities, twist and take up speed are essential parameters to precisely control the yarn 

diameter, yarn linear density, twist per unit length and its mechanical properties. This 

will enable researchers to improve this mechanism and to increase production of nano 

yarns. 

 

5.4 Core electrospun yarn 

A core spun yarn is defined as ‘a structure made of a separable core constrained to be 

permanently at the central axis and surrounded by fibres which act as a sheath’ [41]. 

The mechanical behavior of such structures is governed by fibre characteristics such as 

length, fineness, tenacity, breaking extension and friction and by the core spun yarn 

characteristics such as fibre deposition and arrangement, core to sheath proportion of 

fibres, frequency of wraps around the core, twist angle of the fibres, packing, mass 

variation, etc [42]. The manufacturing process mainly consists of feeding the filament to 

a conventional spinning unit, where it is covered by natural or synthetic staple fibres by 

a suitable mechanical arrangement. Cotton spandex (elastane) yarns which are 

composite yarns consisting of elastane core wrapped helically by cotton staple fibres are 

a well known example of elastic yarns widely used in the textile industry. 

The physical properties of core spun yarns depend on the sheath properties such as the 

fibre length, its fineness and the type of fibre. In other words, sheath constructed of 

small diameter fibres that must be wrapped by the same length of fibres, will result in a 

higher number of wrapping turns [43, 44]. This will lead to a higher surface area to 

volume ratio and thus more uniform morphology and usually higher yarn strength. 

Although, there is some prior research in which the core electrospun yarn principle is 

introduced, the mechanism used rendered the nanofibres to randomly cover the core 

without producing orderly structured yarn [14, 45]. 
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In this study, we have designed a new mechanism and via extensive experimentation 

and optimization of this system we are able to produce an ordered nano yarn which can 

be defined as ‘a composite nano yarn structure made of a separable core in the central 

axis and surrounded helically by electrospun nanofibres which act as a sheath’. With 

this new mechanism, we were also able to analyze the effects of the nanofibre twist, the 

feeding angle of the core filament ‘core feed-in angles’ and the take up speeds on the 

structure of the resultant nano yarn. 

 

5.4.1 Novel mechanism for continuous core electrospun yarn [52] 

From continuous nanofibre yarn mechanism described in this chapter which forms as 

the basis of this development [4], we have designed a new mechanism for producing 

continuous core electrospun nano yarn. The aim is to wrap helically the deposited 

nanofibres on the feeding core filament, resulting in a core electrospun nano yarn with a 

structure similar to the core ring spun yarn shown in figure 5.11. 

 

 
Figure 5.11, Morphological structure of the aimed core electrospun nano yarn which 

constructed of the man made filament core with the sheath of nanofibres, drawing was 

reprinted from [46]. 

 

5.4.2 Experimental work 

5.4.2.1 Materials and electrospinning operation  

Nylon 6 solution of 20 wt. % concentration was prepared by dissolving the polymer in 

98% formic acid. The nylon 6 solution was fed through a 5 mL capacity syringe to a 

vertically orientated (25-gauge) blunt-ended metal needle (spinneret) via Teflon® tubing 

and the flow rate was controlled using a digitally controlled, positive displacement 

syringe pump Harvard Apparatus M22 PHD 2000. The needle was held by one 

electrode connected to a high voltage DC power supply; a Glassman MK35P 2.0-22. 

Typical operating regimes were applied; flow rates of 0.2 ml/hr, voltage of 15 KV and a 

working distance of 8 cm. These operation parameters were used for producing uniform 

distribution diameter nylon 6 nanofibres, based on the work in chapter two [2]. A single 
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polyester filament (Rhone Poulenc viscosuisse, South Africa) with count of 88 dtex and 

diameter of 90 microns was fed via the tension roller to the center of the holed twist 

disk, then to the take up disk and finally to the winder. Figure 5.12, shows a schematic 

drawing of the mechanism with its changeable parameters. 

 

 
Figure 5.12, A schematic illustration of the mechanism used for spinning core 

electrospun nano yarn. The spinning distance between the two disks was 4 -5 cm. The 

twist disk was rotated around its axis and the core nano yarn was wound on the winder 

through the take up disk. The take up disk was placed at three different horizontal levels 

against the twist disk to form three core feed-in angles of 0o, 15o and 30o

The continuous core electrospun nano yarn mechanism involves feeding a tensioned 

single core filament through the center of a Y-Z plane holed disk, which we call ‘twist 

disk’, to a X-Z plane disk, which we call ‘take up disk’, to the winder. The distance 

between the two perpendicular set of disks at Y-Z and X-Z planes forms the spinning 

zone in which the nanofibres are deposited on the feeding core filament in a controllable 

manner, as shown in figure 5.12. 

 degrees. 

 

5.4.2.2 The principle of the core electrospun nano yarn mechanism 
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The two disks are circular; the first 60 mm in diameter and it is earthed, it has 1 mm 

thickness and 5 mm inside hole diameter. The second disk is a wider earthed disk, 40 

mm in diameter and 4 mm thickness, separated by a distance of  4-5 cm from one  

another.  The twist disk is rotated around its axis by means of a motorized insulated 

shaft/gear arrangement attached to it capable of setting the rotational speed for twisting 

the deposited nanofibres on the core filament. The core electrospun nano yarn was 

wound onto the winder through the take up disk which is also attached to a motorized 

insulated shaft/gear set at a given rotational speeds, as shown in figure 5.13.  

 

 
Figure 5.13, A photograph of the installed continuous core electrospun yarn mechanism 

used in the experiments for twisting in helical form highly aligned nylon 6 nanofibres 

on a feeding polyester single filament at 0o

Manufacturing parameters were altered in order to investigate the effect of the twist of 

the nanofibre bundle, the core filament feed-in angles and the take up speeds, on the 

morphological structure of the yarn. The effect of nanofibre twist angle was investigated 

at two rotational speeds of the twist disk, namely 500 and 750 rpm. The core polyester 

filament was fed into the spinning zone at three feed-in angles; 0

 degree feed-in angle. Each disk is earthed 

and attached to a motorized insulated shaft to run at a controllable rotary speed. 

 

o, 15o and 30o degrees 
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by placing the take up disk at three different horizontal levels against the twist disk as 

shown in figure 5.12. The resulting core electrospun nano yarn was wound onto the 

winder via the take up disk at three take up linear speeds; 1.5, 6 and 12 cm/sec. These 

values were based on continuous yarn mechanism, resulting work in chapter 2 and 

initial experimental trials of this mechanism [2, 4]. 

 

5.4.2.3 Characterization 

Samples of core electrospun nano yarn were collected on SEM stubs. These samples 

were sputter-coated with gold-palladium for 45 seconds at 18 mA using a (Polaron Sc 

7620) sputter coater. Yarns were examined using a Hitachi S-530 Scanning Electron 

Microscope at an accelerating voltage of 10 kV. 

 

5.4.3 Results and discussion [52] 

5.4.3.1 Observations 

Figure 5.14, shows different photographs of aligned nylon 6 nanofibres deposited on the 

gap between the perpendicular twist disk and take up disk for continuous yarn spinning 

and how these nanofibres covered the feeding polyester core filament in a three 

dimensional conical architecture. Consequently, by rotating the twist and take up disks 

the incoming nanofibres deposit onto the feeding filament gradually to form a helical 

structure and thus forming core electrospun nano yarn.  

This mechanism has been designed after careful consideration of literature and by 

investigating step by step the requirements for spinning continuous core electrospun 

nano yarn, as shown in figure 5.15. 

 

5.4.3.2 Analytical investigation of the parameters of the mechanism on the core 

electrospun nano yarn morphological structure 

Figure 5.16, shows three different feed-in angles of 0o, 15o and 30o degrees of the 

polyester filament into the spinning zone. It has been found that as the feed-in angle 

decreased the deposited nanofibres cover of the feeding filament per unit time 

increased. This resulted by electrospinning nanofibres from initially stationary disks, 

i.e., no twisting and by then rotating the twist disk to observe the conical twist of the 

nanofibres around the filament. It has therefore been confirmed that a core filament 

feed-in angle of 0o degree is the most suitable under this mechanism, for producing 

orderly nano yarn. 
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At an optimum core feed of 0o degree, table 5.3, shows SEM images of core electrospun 

nano yarn morphological structures with take up speeds of 1.5, 6 and 12 cm/sec and 

twists at 500 and 750 rpm. 

 

 
Figure 5.14, A photograph of aligned nylon 6 nanofibres deposited in the gap between 

the perpendicular twist disk and take up disk for producing continuous core electrospun 

nano yarn. These nanofibres covered the feeding polyester filament in three dimensional 

conical architecture. By rotating the twist and take up disks the flying nanofibres 

deposited helically on the filament to form core electrospun nano yarn. 

 

Based on a continuous nanofibre yarn mechanism described in this chapter [4], it has 

been found that at twists of 500 and 750 rpm, uniform and coherently tight nanofibres 

are wrapped around the core filament. At lower twisting speeds of 500 rpm, the 

deposited nanofibres move to a higher twist angle at a fixed take up speed. Therefore, 
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higher angular displacement leads to higher twist angles and consequently to higher 

twist per unit length of the core filament yarn. SEM images in table 5.3, show a twist 

angle of 45o – 60o degrees at 500 rpm twist (disk revolutions) and at twist angle of 30o – 

45o degrees at 750 rpm twist (disk revolutions) respectively. The results obtained here 

are in agreement with those in the literature for conventional core spun yarn [47, 48]. 

One of the great advantages of this mechanism is the ability of controlling twist 

direction. Core yarns were electrospun with Z direction as shown in table 5.3, and in S 

direction as shown in figure 5.17. 

 

 
Figure 5.15, Recorded photographs showing the concept of the core electrospun nano 

yarn mechanism developments, (a) a filament was place between the spinneret and the 

surface collector, nanofibres covered the upper part of the filament, (b) the filament was 

placed between two circular disks in which the nanofibres covered the upper part of the 

filament. From these photographs, it is necessary to think how we rotate the filament 

under a continuous linear motion for completing the covering of the nanofibre sheath. 

 

In conventional core spun yarns, it is found that the critical sheath size is dependent on 

the fibre length, its fineness and type of fibre [49, 50]. The critical sheath size in the 

mechanism is dependent on the take up speed. Take up speed will affect the sheath size, 

sheath core ratio, adhesion, sheath number of layers and the count of the core 

electrospun nano yarn. The SEM images in table 5.3, show that as the sheath size 

increases, the sheath core ratio increases, producing best adhesion, and the highest yarn 

linear density, as the take up speed decreases to minimum. Moreover, at low take up 

speed, sheath fibres with more layers would be formed. These layers, due to their helical 
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configuration, generate radial pressure on the core filament and thereby restrict 

slippage. In fact, this is expected as with take up speed of 1.5 cm/sec there is more time 

for fibres to adhere and form sheath layers. On the other hand, a take up speed of 1.5 

cm/sec will produce the lowest core yarn production rate. Therefore, a balance between 

sheath size and production rate should be found for optimization of manufacturing. 

 

 
Figure 5.16, Photographs show three different feed-in angles 0o, 15o and 30o degrees, of 

the polyester filament into the spinning zone. (a) Deposited conical nanofibres onto the 

stationary twist and take up disks. (b) Applying twist to the deposited nanofibres at 

filament feed-in angle of 0o degree. (c) Applying twist to the deposited nanofibres at 

filament feed-in angle of 15o degree. (d) Applying twist to the deposited nanofibres at 

filament feed-in angle of 30o degree.  It is easy to observe by the indicating arrows that 

as the feed-in angle decreases the deposited nanofibres coverage increases on the core 

filament. 
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Table 5.3, SEM images of the morphological structure of core electrospun nano yarn 

with different take up speed and twist speeds under 0o

Nylon 6 nanofibres sheath structure with core feed angle of 0

 degree core feed- in angle. 
o degree. 

Speed Twist speeds of 500 rpm. Twist speeds of 750 rpm. 

Take up 

speed of 

1.5 

cm/sec. 

  

Take up 

speed of 

6  

cm/sec. 

  

Take up 

speed of 

12 

cm/sec 

  
 

Consequently, core electrospun nano yarn has been developed at core feed-in angle of 0o 

degree, take up speed of 1.5 cm/sec and twist at 500 rpm as shown in figure 5.18, by a 

new mechanical arrangement. 

Optimizing these parameters further requires knowing the velocity of the deposited 

nanofibres and their branching out. This will be discussed in the next chapter. It can also 

be noted that increasing number of the spinnerets around the core filament in a circular  
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Figure 5.17, SEM images showing how electrospun nylon 6 nanofibres covered 

helically the polyester filament in the S direction. (a) Twist speeds of 500 rpm and take 

up speed of 6 cm/sec. (b) Twist speeds of 500 rpm and take up speed of 12 cm/sec. 

 

 

 
Figure 5.18, SEM image of polyester core electrospun nano yarn covered with 

nanofibres in a helical sheath with core feed-in angle of 0o degree, take up speed of 1.5 

cm/sec and twist speed of 500 rpm. 
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plain geometry will provide the opportunity to increase the take up speed and thus the 

core yarn production rate. It should also be mentioned that to improve adhesion, pre-

treatment of the synthetic core with plasma for instance will increase the adhesion and 

post treatment of the nanofibre sheath with hydrophilic agents will achieve greater 

moisture absorption and release. Adding of more spinnerets, pre-treating the filament 

and post treating of the core nanofibre sheath are further issues for future investigation. 

 

 

 

5.5 Nanofibre production 

5.5.1 Introduction 

The critical challenge associated with electrospinning is its production rate, compared to 

that of conventional microfibre spinning technology. Nevertheless, improving the 

electrospinning design makes it possible to fabricate various nanofibre assemblies at 

high production rate [54, 55]. Furthermore, special electrospinning designs can provide 

the fabrication of complex architectures such as nonwoven and woven fabrics and fabric 

blends, core-shell, hollow and porous nanofibres and helical nanofibre assemblies. 

Herrin, a review on the various modifications of the electrospinning designs for 

increasing nanofibre production rate is presented. Recent electrospinning advances 

regarding of industrial production, nanofibre engineering and research directions with 

special emphasis on mechanisms. Illustrations of mechanisms are highlighted and 

investigated to facilitate a better understanding of advances in this field. 

 

5.5.2 Mechanisms of nanofibre production 

While electrospinning is an effective process for producing nanofibres, it has a well 

known limitation in the level of fibre production which is typically 0.1- 1.0 g/hour for a 

single spinneret [56]. In other words, electrospinning is a very slow process for 

producing nanofibres at a commercial scale compared with current microfibre spinning 

technology. Taking into account the polymer solution properties and the great reduction 

in the jet diameter which necessitates the low flow rate, the throughput of the polymer 

solution from the electrospinning spinneret must be in the range of 0.1 ml/hour to 10 

ml/hour [57]. Therefore, to significantly increase the production rate, improvement of 

the electrospinning design is required. Table 5.4, shows schematic diagrams of the 

mechanisms developed for increasing the nanofibres production rate. 
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An obvious design for increasing the productivity of the electrospinning is by increasing 

the number of spinnerets. Multiple spinnerets have been arranged in a line [58-65], 

circle (concentric [64-66] or elliptic [61]) or matrix (side-by-side arrays [67-70] or 

regular hexagonal distribution [71]) to increase the production rate of the electrospun 

nanofibres. We have also constructed in our laboratory a prototype multiple jet 

‘spinnerets’ electrospinning apparatus. In this apparatus, 32 identical spinnerets 

‘needles’ connected to 32 identical tubes were arranged in a matrix array, as shown in 

figure 5.19. The distance between the individual spinnerets was 1.5 cm and their 

distance from the ground was 8 cm. This design demonstrated that every 3 spinnerets 

have been deposed as a regular triangle distribution. All spinnerets were subjected to the 

same applied voltage and the polymer solution ‘nylon 6’ was delivered to each spinneret 

under the same applied pressure. The electrospun fibres were collected on a large flat 

grounded conveyor belt. The design configuration allows the belt to move along the 

‘multi spinnerets array system’ at two directions, back and forth. The parameters 

obtained from the study of the single spinneret were used as the basis for the design of 

this multi spinnerets system [72]. The arrangement of spinnerets requires careful design, 

hence a decrease in the inter spinneret distances leads to greater interference between 

the charged jets, resulting in an increased deposition rate over a smaller area and the 

onset of the electrically whipping instability is weakened which is partly responsible for 

the reduction of the fibre diameter to the nanometer scale. This can be overcome by 

increasing the spinneret to ground distance and applying a higher voltage in order to 

increase the collection rate of nanofibres [69]. On the other hand, to produce 

homogeneous nonwoven fabrics, all ejected jets and forming nanofibres need to be very 

closely overlapped. Figure 5.20, shows the principle of nanofibres overlapping and thus 

the fabric construction by this production design set-up.  

For implementing a successful electrospinning process within this set-up, Zussman et. 

al. have experimentally investigated the arrangement of the spinnerets [69]. It has been 

demonstrated that not only the external applied electric field influences the jet path, but 

also the mutual Coulombic force interactions between the different jets. In addition, it 

has been found that the jets are pushed away from their neighbours by these repulsion 

forces, as shown in figure 5.21.   
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Table 5.4, Schematic diagrams of the electrospinning mechanisms for nanofibres 

production. 

1- Electrospinning from multiple spinnerets.  

 

Advantages  
Spinning fabric consisting of nanofibres 
of different materials and desired ratio. 
 
Disadvantages 
The array of spinnerets requires careful   
design. 
Repulsion of the neighbourhood jets. 
Blocking of some spinnerets. 
Short term operation. 
Difficulty of maintenance. [58-71]. 
Right photograph was adapted from [53] and 
drawing was adapted from [59]. 
 
 

2- Electrospinning from porous tubular surface. 

 

Advantages  
High production of nanofibres. 

 
 
Disadvantages 
Large variation in nanofibre diameters. 
Difficulty in controlling the nanofibre 
diameters distribution uniformity. 
Investing the collected nanofibres in 
applications seems to be difficult. [56].  
Photographs were adapted from [56]. 

 

 

3- Electrospinning from a porous hollow tube with drilled holes. 

 

Advantages  
High production of nanofibres. 
More control of jet diameter. 
 
 
Disadvantages 
Complicate set-up design. 
Jets repulsion and hole to hole distance 
are not clear. 
Difficulty in controlling the nanofibre 
diameters distribution uniformity. [74]. 
Photographs and drawing were adapted from [74]. 
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4- Electrospinning from polymer solution surface acted by magnetic field.  

 

Advantages  
High production rate of nanofibres. 
Problem of polymer solution clogging is 
not existent. 
 
 
 
Disadvantages 
Complicated set-up. 
Variation of nanofibre diameters is large. 
[75].  
 
 
 

5- Electrospinning from polymer solution surface acted by gas pressure. 

 

Advantages  
High production rate of nanofibres. 
Problem of polymer solution clogging is 
not existent. 
Ability to control the nanofibre diameters. 
Ability to produce coated fabrics. 
 
Disadvantages 
Complicated set-up. 
Variation of nanofibre diameters is large. 
[76-79]. 
Drawing was adapted from [77]. 

 

6- Electrospinning from polymer solution surface acted by rotating roller. 

 

Advantages  
Simple set-up. 
Easy manufacture. 
Easy operation. 
Low cost. 
High production rate of nanofibres. 
Uniform nanofibre diameters. 
Problem of polymer solution clogging is 
not existent. 
Ability to produce coated fabrics. 
 
Disadvantages 
No disadvantages. [80-83]. 
Photographs were adapted from [83]. 
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Figure 5.19, Prototype of multiple spinnerets electrospinning apparatus. (Left to right) 

A matrix array of spinnerets assembly, polymer solution distribution and collection of 

nonwoven nylon 6 fabric on the conveyor belt. 

 

Furthermore, based on these experiments, clogging of some spinnerets during 

electrospinning has occurred. Hence, clogging of some spinnerets causes unevenness of 

the produced fabric mat and also diminishes the production rate. A possible reason for 

this clogging can be explained as: when the mat thickens the collected nanofibres tend 

to repel the coming jet thus resulting in the fluctuation and weakness of the electric 

field, which is responsible for withdrawing of the polymer solution, between the 

spinnerets and the collector. In fact, many research groups have been faced with the 

spinneret clogging phenomenon in their design. Larsen et. al. [73] and Hsiao et. al. [59] 

have used blowing gas as an enveloping current to stabilize the polymer jets during 
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electrospinning. In addition, a coaxial metallic ring was used as a secondary electrode 

around either each spinneret [64] or all spinnerets [65] in order to uniform the electrical 

field strength. The addition of metallic ring or applying gas jacket around the spinneret 

requires however, very careful design in order to ensure that the electric field 

distribution or the pressurized gas flow are essentially similar for each spinneret. 

  

 
Figure 5.20, Photographs show collected nanofibre fabric mats electrospun from 19 

spinnerets at different inter spinneret distances [71]. 

 

In summary, although this design has the possibility of increasing the production rate of 

spinning nonwoven fabric from different polymers at any desired ratio, its complexity 

and its high probability of clogging make it technologically inconvenient for industrial 

production.  

 

 
Figure 5.21, Photographs of nine spinnerets electrospinning process where the 

spinnerets were arranged at a 1/9 (right) and 3/3 matrix (left). It is clear how the jets are 

pushed away from their neighbours by the repulsion forces [69]. 

 

Chase et. al. have invented an innovative electrospinning design based on a porous tube 

to significantly increase the production rate, as shown in table 5.4(2) [56]. In this set-up, 
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a porous walled cylindrical tube with one end permanently sealed is held vertically and 

filled with the polymer solution. A wire electrode is inserted into the bottom of the tube 

to charge the polymer solution and an air pressure (0.4 - 0.8 KPa) is applied from the 

top of the tube. The pressurized air provides the required force to push the polymer 

solution through the numerous pores on the tube and thus forming drops on the outer 

surface of the tube. As the electric field is applied, the drops emit jets to form many 

electrospun nanofibres which move and deposit on the inner surface of the cylindrical 

collector that encloses the porous tube. Hence, tens to hundreds of jets are emitted from 

the porous tube surface at the same time; the mass production rate of nanofibres was 

found to be very large compared to the single spinneret configuration. They have 

demonstrated that the production rate of nanofibres of this system is about 250 times 

than the rate of the single spinneret. Although the porous tube is much simpler in 

construction and operation, the pores of the porous tube wall are highly irregular which 

result in unevenness of the jets mass distribution and thus different nanofibre diameter 

distribution. Furthermore, by this design the polymer solution passes through the porous 

wall tending to launch in multiple directions with little or no control; making the 

collected nanofibres difficult to use. 

By improving this design, the same group has introduced a porous tube with wall of 

uniform thickness [74]. In this tube, small holes are drilled half way through the porous 

wall to create points of lesser resistance through which the polymer solution can 

preferentially electrospun to form nanofibres on a flat collector, as shown in table 

5.4(3). The holes are arranged in an array and can be varied to form many hole patterns. 

Pressing and charging the polymer solution are similar to the previous design. The tube 

modification shows effective control of the locations at which drops are emitted and the 

collection of the electrospun nanofibres. They have noted that the production rate in this 

design is affected by the spaces between the drilled holes, the number of rows of holes 

and the collector geometry. However, although electrospinning from a porous hollow 

tube with drilled holes is an effective design for increasing production and is relatively 

simple compared to array of multiple spinnerets, it is still difficult in controlling the 

uniformity of the nanofibre diameter distribution. 

In a trend to facilitate the spinning of multiple upward jets from a free polymer solution 

surface rather than the extrusion of the polymer solution through a spinneret, 

researchers have devised many set-ups based on the following mechanisms. 

Yarin et. al. devised a set-up based on the combination of normal magnetic and electric 

fields acting  between a ferromagnetic polymer solution layer and a metallic surface 
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system, as shown in table 5.4(4) [75]. Magnetic fluids were prepared by mixing Ferric-

ferrous oxide black powder in silicone oil and placing the resulted fluid into a dish 

above a permanent magnet. A magnetic field was provided by the magnet and a metal 

saw with teeth oriented downward (toward the fluid surface) placed 10 cm over it. A 

PEO solution was carefully added onto the magnetic fluid to form a layer on the 

surface. It has been shown in figure 5.22, that under the influence of a magnetic field 

numerous conical spikes as Taylor cones were generated on the free surface of the 

magnetic fluid.  An electrode was inserted through the bottom of the dish and a high 

voltage of 32 KV was applied between the magnet and the metal saw. As a result, 

thousands of jets were erupted from the surface of the magnetic polymer solution and 

nanofibres were deposited on the metal saw.  

 

 
Figure 5.22, (Lift to right) conical spikes protruded from the magnetic fluid layer under 

normal magnetic field (there is no polymer above the magnetic fluid and no electric 

field is applied), protruded parts of the polymer layer located above the magnetic fluid 

spikes (there is still no applied electric field), nanofibres are collected on the saw teeth 

after applying the electric field [75]. 

 

They have reported that this mechanism leads to a 12-fold increase of the production 

rate over a comparable multiple spinnerets arrangement. In addition, the present 

mechanism eliminates the clogging problems related to the multiple spinnerets. This 

set-up is complicated as it is not easy to operate two layers liquids under magnetic field 

and variation of the nanofibre diameters is still large and not uniform. 

He et. al. and their research group replaced the magnetic field by a compressed gas to 

reduce the surface tension of the polymer solution and thus forming bubbles and conical 

jets under the electric field, as shown in table 5.4(5) [76-79]. In this set-up, a thin glass 
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nozzle was fixed at the center of the bottom of the reservoir and then the reservoir was 

filled with polymer solution. A gas feeding tube was connected between the reservoir 

bottom and a gas pump. In addition, a metal electrode was fixed on the reservoir bottom 

along the centerline of the tube, and a grounded collector was placed 10 cm over the 

reservoir. It has been shown in figure 5.23, that many small bubbles with different sizes 

were generated on the polymer solution surface under the pressure of gases only. When 

an electric field was applied, it created a tangential stress, resulting in the deformation 

of the bubbles into conical upward-directed jets. The threshold value of the applied 

voltage and the inlet gas pressure depend on the surface tension and viscosity of the 

liquid [76]. Also, the number of multiple jets in this mechanism and subsequently the 

nanofibre production rate is related to the number and size of bubbles which can be 

adjusted by the pressure of the gases, the position of the tip of the gas tube, the applied 

voltage and the properties of the polymer solution [77]. In fact, the key advantage of 

this set-up in comparison to the previous one is that the average diameter of nanofibres 

can be controlled by controlling the set-up parameters [78].  

 

 
Figure 5.23, (Right to left) single conical uplift bubbles, and several uplift bubbles 

under different gas pressure [76], multiple jets were ejected from the bubbles to form 

nanofibres on the collector [78]. 

 

 

Jirsak et. al. (Technical University of Liberec) have invented an effective mechanism 

for electrospinning nanofibres from the surface of a rotating roller achieving high 

production rates [80, 81]. Despite that the spinning of nanofibres from the surface of a 

roller in a tank with circulating polymer solution has been patented by Formhals et. al. 

[82], Elmarco Co. effectively modified it to introduce the world’s first industrial 
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nanofibre production machine ‘NanospiderTM’ [83]. In this set-up, a roller is submerged 

half way in the polymer solution tank and by rotating the roller a thin layer of the 

polymer solution is carried to the roller's peak. When a high voltage electric field is 

applied between the roller and a flat surface over it, this layer generates up lift Taylor 

cones to be electrospun into nanofibres deposited upwards and on the flat surface as 

shown in table 5.4(6). Practically in this mechanism, the nanofibres production rate 

depends on the applicable roller working width, the linear speed of the roller and the 

number of rollers ‘spinning heads’ placed in series. For instance, Elmarco claimed that 

the NanospiderTM machine can produce nanofibrous nonwoven mats of 50 - 500 nm 

nanofibre diameter and at production rate of 1.5 g/min per one meter roller length 

covering area and weight of 0.1 - 10 g/m2. In fact, with this mechanism, optimizing 

nanofibre production rates versus nanofibre diameter and nanofibre diameter 

distribution uniformity requires investigating the roller linear speed with the polymer 

solution properties (viscosity, surface tension, etc.) and electrospinning parameters 

(applied electric field, etc.) for each polymer used.  

However, this high productivity electrospinning mechanism provides many advantages, 

such as high production rate and lowest cost per square meter among all nanofibre 

production mechanisms [83], easy operation and maintenance and its ability to coat 

nonwoven fabrics effectively. Furthermore, a variety of organic, inorganic and 

biopolymers can be electrospun by the same mechanism. 

In summary, while the electrospinning mechanisms working with sets of spinnerets, 

porous tube and hollow tube with drilled holes show some difficulties in continuous 

nanofibre production and operation difficulties, the electrospinning from the surface of 

the polymer solution acted by a rotating roller provides high production rate and 

uniform nanofibres at an acceptable nanofibre diameters distribution. 

 

5.6 References 

[5.1] D. Li, Y. Wang, Y.N. Xia, Electrospinning of polymeric and ceramic nanofibres 

as uniaxially aligned  arrays, Nano Letters, 3, 1167-1171 (2003) 

[5.2] M.B. Bazbouz, G.K. Stylios, Alignment and optimization of nylon 6 nanofibres by 

electrospinning, Journal of Applied Polymer Science, 107, 3023-3032 (2008) 

[5.3] W.E. Teo, S. Ramakrishna, A review on design and nanofibre assemblies, 

Nanotechnology, 17, R89-R106 (2006) 

[5.4] M.B. Bazbouz, G.K. Stylios, Novel mechanism for spinning continuous twisted 

composite nanofibre yarns, European Polymer Journal, 44, 1-12 (2008) 



 
145 

[5.5] F.L. Zhou, R.H. Gong, Manufacturing technologies of polymeric nanofibres and 

nanofibre yarns, Polymer Internationa

[5.6] E. Smit, U. Bűttner, R.D. 

l, 57, 837-845 (2007) 

Sanderson, Continuous yarns from electrospun fibres, 

Polymer, 46, 2419-2423 (2005)        

[5.7] M.S. Khil, S.R. Bhattarai, H.Y. Kim, S.Z. Kim, K.H. Lee, Novel fabricated matrix 

via electrospinning for tissue engineering, Journal of Biomedical Materials Research 

part B, 72, 117- 124 (2005) 

[5.8] K.H. Yong, P.J. Cheol, A process of preparing a continuous filament or yarn 

composed of nanofibres, World Intellectual Property Organization Patent, WO052039 

(2006) 

[5.9] W. Kataphinan, S. Dabney, D. Smith, D.H. Reneker, Fabrication of electrospun 

and encapsulation into polymer nanofibres, Book of Abstracts, The Fibre Society, 23-

25 (2001) 

[5.10] H. Berghmans, R.D. Cooman, J.D. Rudder, R. Koningsveld, Structure formation 

in polymer solutions, Polymer, 39, 4621-4629 (1998) 

[5.11] K.H. Yong, A process of preparing continuous filament composed of nanofibre, 

World Intellectual Property Organization Patent, WO073442 (2005) 

[5.12] W.E Teo, K. Fujihara, S. Ramakrishna, Method and apparatus for producing 

fibre yarn, World Intellectual Property Organization Patent, WO013858 (2007) 

[5.13] W.E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, S. Ramakrishna, A dynamic 

liquid support system for continuous electrospun yarn fabrication, Polymer, 48, 3400-

3405 (2007) 

[5.14] F.L. Scardino, R.J. Balonis, Fibrous structures containing nanofibrils and other 

textile fibres, US Patent, 6308509 (2001) 

[5.15] S.F. Fennessey, R.J. Farris, Fabrication of aligned and molecularly oriented 

electrospun polyacrylonitrile nanofibres and the mechanical behavior of their twisted 

yarns, Polymer, 45, 4217-4225 (2004) 

[5.16] S.Y. Jee, J.R. Lee, H.J. Kim, Y.T. Hong, S. Kim, S.J. Park, Filament bundle type 

nanofibre and manufacturing method thereof, World Intellectual Property Organization 

Patent, WO123995 (2005) 

[5.17] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, 

Electrospinning of continuous carbon nanotube-filled nanofibre yarns, Advanced 

Materials, 15, 1161-1165 (2003) 

[5.18] H.L. Lam, Electrospinning of single wall carbon nanotube reinforced aligned 

fibrils and yarns, PhD Thesis, Drexel University (2004) 



 
146 

[5.19] A. Formhals, Artificial thread and method of producing same filed, US Patent, 

2187306 (1940) 

[5.20] A. Formhals, Producing of artificial fibres from fibre forming liquids, US Patent, 

2323025 (1943) 

[5.21] A. Formhals, Method and apparatus for spinning, US Patent, 2349950 (1944) 

[5.22] P.D. Dalton, D. Klee, M. Möller, Electrospinning with dual collection rings, 

Polymer, 46, 611-614 (2005) 

[5.23] L.Q. Liu, M. Eder, I. Burgert , D. Tasis , H.M. Prato, D. Wagner, One-step 

electrospun nanofibre-based composite ropes, Applied Physics Letters, 90, 083108-

083110 (2007) 

[5.24] H. Pan, L. Li, L. Hu, X. Cui, Continuous aligned polymer fibres produced by a 

modified electrospinning method, Polymer, 47, 4901-4904 (2006) 

[5.25] B.K. Gu, M.K. Shin, K.W. Sohn, S.I. Kim, S.J. Kim , S.K. Kim, H. Lee, J.S. 

Park, Direct fabrication of twisted nanofibres by electrospinning, Applied Physics 

Letters, 90, 3902-3904 (2007) 

[5.26] S.Y. Jee, J.R. Lee, H.J. Kim, Y.T. Hong, S. Kim, S.J. Park, Filament bundle type 

nano fibre and manufacturing method thereof,  World Intellectual Property 

Organization Patent, WO123995 (2005) 

[5.27] F. Dabirian, Y. Hosseini, S.A.H. Ravandi, Manipulation of the electric field of 

electrospinning system to produce polyacrylonitrile nanofibre yarn, Journal of the 

Textile Institute, 98, 237-241 (2007)  

[5.28] X. Wang, K. Zhang, M. Zhu, H. Yu, Z. Zhou, Y. Chen, B.S. Hsiao, Continuous 

polymer nanofibre yarns prepared by self-bundling electrospinning method, Polymer, 

49, 2755–2761 (2008) 

[5.29] A.R. Horrocks, S. Anand, Handbook of technical textiles, Woodhead Publishing 

Ltd, Cambridge (2000) 

[5.30] P.R. Lord, Handbook of yarn production: technology, science and economics, 

Woodhead Publishing LTD, Cambridge (2003) 

[5.31] C. A. Lawrence, Fundamentals of spun yarn technology, CRC Press, London 

(2003) 

[5.32] F.K. Ko, Nanofibre technology: bridging the gap between nano and macro 

world, In NATO ASI on Nanoengineeered Nanofibrous Materials Book

[5.33] M.B. Bazbouz, G.K. Stylios, A spinning concept for ultrafine composite 

nanofibre yarns, Presented at Green chemistry & engineering, The first international 

, Edited by S. 

Guceri, Y. Gogotsi, Kluwer Academic Publishers (2004) 



 
147 

conference on process intensification & nanotechnology, Albany, New York state, 

USA, ISBN: 978 1 85598 101 0,145-160 (15th -18th September 2008)  

[5.34] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of 

electrically charged liquid jets of polymer solutions in electrospinning, Journal of 

Applied Physics, 87, 4531-4547 (2000) 

[5.35] J.H. He, Y. Wu, W.W. Zuo, Critical length of straight jet in electrospinning, 

Polymer, 46, 637-640 (2005) 

[5.36] D.H. Reneker, A.L. Yarin, S. Koombhongse, Bending instability in 

electrospinning of nanofibres, Journal of Applied Physics, 89, 3018-3026 (2001) 

[5.37] S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Controlling the fibre 

diameter during electrospinning, Physical Review Letters, 90, 144502-1 – 144502-4 

(2003) 

[5.38] E. Zussman, D. Rittel, A.L. Yarin, Failure modes of electrospun nanofibres, 

Applied Physics Letters, 82, 3958-3960 (2003) 

[5.39] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer produced by 

electrospinning, Nanotechnology, 7, 216–223 (1996) 

[5.40] M.E. Helgeson, K.N. Grammatikos, J.M. Deitzel, N.J. Wagner, Theory and 

kinematics measurements of the mechanics of stable electrospun polymer jets, Polymer, 

49, 2924-2936 (2008) 

[5.41] DuPont Bulletin, Producing core-spun yarns containing Lycra, Bulletin, L519, 

6-7 (1997) 

[5.42] W.E. Morton, J.W.S. Hearle, Physics properties of textile fibres, 2nd Edition, 

Textile Institute and Butterworth& Co, 322-340 (1975)  

[5.43] P. Radhakrishnaiah, T. Sukasem, A.P.S. Sawhney, Handle and comfort 

properties of fabrics made from random blend cotton covered polyester yarns, Textile 

Research Journal, 63, 573-579 (1993) 

[5.44] M. Miao, Y.L. How, S.Y. Ho, Influence of spinning parameters on core yarn 

sheath slippage and other properties, Textile Research Journal, 66, 676-684 (1996) 

[5.45] W.E. Teo, M. Kotaki, X.M. Mo, S. Ramakrishna, Porous tubular structures with 

controlled fibre orientation using a modified electrospinning method, Nanotechnology, 

16, 918-924, (2005) 

[5.46] A. Parker, P.J. Dickinson, Composite yarn. US Patent, 4411129 (1983) 

[5.47] O. Babaarslan, Method of producing a polyester viscose core-spun yarn 

containing spandex using a modified ring spinning frame, Textile Research Journal, 71, 

367-371 (2001) 



 
148 

[5.48] A.P.S. Sawhney, L.B. Kimmel, G.F. Ruppenicker, D.P. Thibodeaux, A unique 

polyester staple core/ cotton-warp yarn made on a tandem spinning system, Textile 

Research Journal, 63, 764-769 (1993) 

[5.49] A.P.S. Sawhney, R.J. Harper, G.F. Ruppenicker, K.Q. Robert, Comparison of 

greige fabrics made with cotton covered polyester staple-core yarn and 100% cotton 

yarn, Textile Research Journal, 61, 71-74 (1991)   

[5.50] A.P.S. Sawhney, R.J. Harper, G.F. Ruppenicker, K.Q. Robert, Cotton covered 

nylon core yarns and greige fabrics, Textile Research Journal, 59, 185-190 (1989) 

[5.51] M. Gorantla, S.E. Boone, M. El-Ashry, D. Young, Continuous polymer 

nanofibres by extrusion into a viscous medium: a modified wet-spinning technique, 

Applied Physics Letters, 88, 073115-1 – 073115-3 (2006) 

[5.52] M.B. Bazbouz, G.K. Stylios, A new mechanism for the electrospinning of nano 

yarns, Journal of Applied Polymer Science, Submitted for publication, WILEY 

InterScience (2009) 

[5.53] C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications, 

Annual Review Materials Research, 36, 333-368 (2006) 

[5.54] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre 

assemblies, Nanotechnology, 17, R89-R106 (2006)  

[5.55] F.L. Zhou, R.H. Gong, I. Porat, Mass production of nanofibre assemblies by 

electrostatic spinning, Polymer International, Early View (2009)  

[5.56] O.O. Dosunmu, G.G. Chase, W. Kataphinan, D.H. Reneker, Electrospinning of 

polymer nanofibres from multiple jets on a porous tubular surface, Nanotechnology, 17, 

1123-1127 (2006) 

[5.57] H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of 

electrically charged liquid jets of polymer solutions in electrospinning, Journal of 

Applied Physics, 87, 4531-4547 (2000) 

[5.58] S. Madhugiri, A. Dalton, J. Gutierrez, J.P. Ferraris, K.J. Balkus, Jr., Electrospun 

MEH-PPV/SBA-15 composite nanofibres using a dual syringe method, Journal of 

American Ceramic Society, 125, 14531-14538 (2003) 

[5.59] B. Chu, B.S. Hsiao, D. Fang, Apparatus and methods for electrospinning 

polymeric fibres and membranes, US Patent, 6713011 (2004) 

[5.60] B. Ding, E. Kimura, T. Sato, S. Fujita, S. Shiratori, Fabrication of blend 

biodegradable nanofibrous nonwoven mats via multi-jet electrospinning, Polymer, 45, 

1895-1902 (2004) 



 
149 

[5.61] W. Tomaszewski, M. Szadkowski, Investigation of electrospinning with the use 

of a multi-jet electrospinning head, Fibres & Textiles in Eastern Europe, 13, 22-26 

(2005) 

[5.62] H.Y. Kim, N.Y. Kim, J.C. Park, Electronic spinning apparatus, US Patent, 

6991702 (2006) 

[5.63] M. Li, Y. He, C. Xin, X. Wei, Q. Li, C. Lu, Dual electrode mode electrospinning 

of biodegradable polymers, Applied Physics Letters, 92, 213114 -1 – 213114-3 (2008) 

[5.64] W.S. Lee, S.M. Jo, S.G. Go, S.W. Chun, Apparatus of polymer web by 

electrospinning process, US Patent, 6616435 (2003) 

[5.65] G.H. Kim, Y. Cho, W. Kim, Stability analysis for multi-jets electrospinning 

process modified with a cylindrical electrode, European Polymer Journal, 42, 2031-

2038 (2006) 

[5.66] Y. Yang, Z. Jia, Q. Li, L. Hou, H. Gao, L. Wang, Z. Guan, Multiple jets in 

electrospinning, 8th International Conference on Properties and Applications of 

Dielectric Materials, 940-943 (2006) 

[5.67] D.J. Smith , D.H. Reneker, A.T. McManus, A.L.S. Gibson, C. Mello, M.S. 

Sennett, Electrospun fibres and an apparatus therefore, US Patent, 6753454 (2004) 

[5.68] H.Y. Chung, J.R.B. Hall, M.A. Gogins, D.G. Crofoot, T.M. Weik, Polymer, 

polymer microfibre, polymer nanofibre and applications including filter structures, US 

Patent, 6743273 (2004) 

[5.69] S.A. Theron, A.L. Yarin, E. Zussman, E. Kroll, Multiple jets in electrospinning: 

experiment and modeling, Polymer, 46, 2889-2899 (2005) 

[5.70] T. Matsuo, Fibre materials for advanced technical textiles, Textile progress, 40 

(2), PP. 110 (2008) 

[5.71] Y. Yang, Z. Jia, Q. Li, L. Hou, Z. Guan, Electrospun uniform fibres with a 

special regular hexagon distributed multi-needles system, Electrostatics Conference, 

142, 012027-1 – 012027-6 (2008) 

[5.72] M.B. Bazbouz, G.K. Stylios, Alignment and optimization of nylon 6 nanofibres 

by electrospinning, Journal of Applied Polymer Science, 107, 3023-3032 (2008) 

[5.73] R. Spretz, R.V. Ortiz, G. Larsen, Use of coaxial gas jackets to stabilize Taylor 

cones of volatile solutions and to induce particle-to-fibre transitions, Advanced 

Materials, 16, 166-169 (2004) 

[5.74] J.S. Varabhas, G.G. Chase, D.H. Reneker, Electrospun nanofibres from a porous 

hollow tube, Polymer, 49, 4226-4229 (2008) 



 
150 

[5.75] A.L. Yarin, E. Zussman, Upward needleless electrospinning of multiple 

nanofibres, Polymer, 45, 2977-2980 (2004) 

[5.76] Y. Liu, J. He, Bubble electrospinning for mass production of nanofibres, 

International Journal of Nonlinear Sciences and Numerical Simulation, 8, 393-396 

(2007) 

[5.77] J.H. He , Y. Liu, L. Xu, J.Y. Yu, G. Sun, Biomimic fabrication of electrospun 

nanofibres with high-throughput, Chaos, Solitons and Fractals, 37, 643-651 (2008) 

[5.78] Y. Liu, J.H. He, J.Y. Yu, Bubble-electrospinning: a novel method for making 

nanofibres, International Symposium on Nonlinear Dynamics Conference, 96, 012001-1 

– 012001-4 (2008) 

[5.79] Y. Liu, J.H. He, J.Y. Yu, L. Xu, L.F. Liu, A novel electrospinning apparatus for 

mass production of nanofibres using aerated solutions, Chinese Patent, 10036447.4 

(2007) 

[5.80] O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, J. Chaloupek,  A 

method of nanofibres production from a polymer solution using electrostatic spinning 

and a device for carrying out the method, World Intellectual Property Organization 

Patent, WO

[5.83] Elmarco company, 

024101 (2005) 

[5.81] O. Jirsak, K. Kalinova, D. Stranska, Nanofibre technologies and nanospider 

applications, VDI-Berichte, 1940, 41-44 (2006) 

[5.82] A. Formhals, Process and apparatus for preparing artificial threads, US Patent, 

1975504 (1934) 

www.elmarco.com, accessed 18/02/2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.elmarco.com/�


 
151 

CHAPTER 6: MODELLING THE ELECTROSPINNING OF 

NANOFIBRES  
 

6.1 Introduction  

Electrospinning involves the application of electrical force instead of the mechanical 

force to charge polymer solutions into a string of charged nanofibres. Electrospinning 

typically consists of four operational stages. In the first stage, a charged cone jet is 

initiated by applying electric field on the droplet of the polymer solution at the tip of the 

spinneret. In the second stage, a staple jet is accelerated and stretched smoothly in a 

straight line away from the spinneret. In the third stage, the jet becomes unstable; it 

splits, whips and bends violently with chaotic instabilities. In the fourth stage, charged 

nanofibres are formed to be collected as aligned fibres or mats [1, 2].      

Controlling the electrospinning requires an electrohydrodynamic mathematical model 

by which the electrified fluid jet can be quantified. Moreover, in order to control the 

dynamic properties, geometry, and mass production of the nanofibres produced, it is 

necessary to model quantitatively each of these stages of electrospinning. 

Hereinafter, we provide a mathematical model for quantifying the process, for 

developing a better understanding of electrospinning and for achieving better process 

control and process optimization. The mathematical equations can define the kinematics 

properties of the electrospinning of nanofibres which is important in the process control.  

 
6.2 Review of mathematical models of the electrospinning process 

6.2.1 Mathematical models for the initiation of the jet 

In electrospinning, the jet initiation from a droplet of polymer solution is a self 

accelerating process [3]. Once an electric field is applied on the droplet of the polymer 

solution at the tip of the spinneret, the surface of the liquid becomes electrically 

charged. If the electric potential of the surface charge exceeds a critical value, the 

electrical forces overcome the polymer solution surface tension and thus expanding and 

contracting the charged droplet in conic shape [4]. The balance between the surface 

tension and the applied electric forces is critical to determine the initial cone shape of 

the polymer solution at the tip of the spinneret [5]. This conical shape is scientifically 

known as “Taylor cone” [5-7]. A straight and electrically charged jet of polymer 

solution will erupt from the surface of the cone and travel toward the collector. Much of 

the literature on electrically driven jets has concentrated on the initiation processes that 

transform a polymer solution liquid surface into a jet. 
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Taylor et. al. have shown that a viscous fluid existed in equilibrium in an electric field 

has the form of a cone with a semi-vertical angle, Ө = 49.3°
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 [7]. Another issue related to 

the initiation of the jet is the required strength of the electric field. They have indicated 

that the critical voltage V (expressed in kilovolts) at which the jet fluid is initiated is 

given by the following equation: 

 

                                                               (6.1) 

 

Where H is the electrospinning distance, L is the length of the capillary tube, R is the 

radius of the tube and γ is the surface tension of the fluid (units: H, L, and R are in 

cm, γ is in dyn/cm).  

 

Hendricks et. al. [8] have also calculated the minimum spraying applied electric field 

’voltage potential’ of a suspended hemispherical conducting droplet in the air as the 

following equation:  

 

γπr20300V j=                                                                                                    (6.2) 

 

Where rj is the jet radius and γ is the surface tension of the fluid. 

 

Cloupeau et. al. have investigated several functioning modes of operation for 

electrohydrodynamic droplets leading ultimately to the formation of charged droplets, 

jets or aerosol [9]. However, although they described the electrospinning cone-jet as a 

particular case of electrospraying, multiple jetting from the spinneret at high voltage is 

not discussed further [38].   

Ganan Calvo et. al. have achieved an asymptotic solution for the cone jet configuration 

in electrospinning which expresses the charge distribution within the jet, the cone jet 

shape and the electric current across the jet [10].  

Yarin et. al. and co workers [3] established the droplet configuration nature of the 

polymer solution corresponding to the Taylor cone. They have considered an 

axisymmetrical liquid body kept at constant electric field with its tip at a distance ‘a’ 

from an equipotential plane, as shown in figure 6.1. They have obtained the 

 

equation for 

‘a’ as the following: 
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Figure 6.1, Axisymmetrical fluid body kept at constant electric field at a distance ‘a’ 

from an equipotential plane [3]. 
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Whereas ζ is a constant representing hyperboloids, h is the height of the droplet, Φ is the 

critical electric field, H is the electrospinning distance and γ is the surface tension 

coefficient.  

 

An interesting theory of stable shapes of droplets affected by an electric field is 

proposed and compared with data acquired in their experimental work on 

electrospinning of nanofibres from polymer solutions and melts. Once the jet initiation 

model has been shown to be applicable in predicting the initial jets formed in 

electrospinning, the model results can then be invested as a basis for the analysis of the 

subsequent emergence of the jet and propagation of its instability. 
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6.2.2 Mathematical models for the straight jet 

Upon initiation, a charged jet of polymer solution is rapidly stretched and accelerated 

away from the conical droplet at the spinneret toward the grounded collector by 

electrical forces. It has been assumed in this case that the electrospinning jet is a string 

of charged elements connected by a viscoelastic medium, one end is fixed at the point of 

origin and the other end is free [1]. Numerous models have been made using 

conventional electrohydrodynamic equations for mathematical description of the 

stretched liquid jet [11]. These useful descriptions were either based on slender body 

theory or allometric scaling laws.  

 

6.2.2.1 Mathematical models for the straight jet based on slender body theory 

In electrospinning, elongation of the jet is governed by electric field pulling forces, 

surface charge density, gravity, surface tension and viscosity. It has been assumed in 

this theory that the jet liquid is weakly conducting ‘leaky dielectric’, so that sustaining 

the electric field will be tangential to the jet surface [12]. Additionally, the jet carries 

electric charges only on its surface, the jet radius decreases slowly along the axial 

direction z and the axial velocity is uniform in the cross section of the jet [10-12]. 

Models with one dimensional problem are modified based on governing jet liquid 

equations which are: conservation of mass (for an incompressible fluid), conservation of 

charge, linear momentum conservation and Coulomb’s equation for the electric field 

[13-25].  

Mass conservation is written as:     

Qρuπr2
j =                                                                                                                  (6.5)  

Where rj

Iur2kEr j
2

j =+ σππ

 is the radius of the jet at z cross section, Q is the mass flow rate, ρ is the 

specific mass of the liquid and u is the velocity at z direction. 

 

Charge conservation is written as:  

                                                                                            (6.6) 

 

Where E is the z component of the electric field, K is the conductivity of the liquid, σ is 

the surface charge density and I is the total current in the jet. 

 

We can note from this equation that the current carried by the jet consists of two 

components: charges convicted within the jet and charges convicted on the surface of 
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the jet. The differential momentum balance equation is written by considering the forces 

on a short segment of the jet, as shown in figure 6.2, [17, 18]. 

 

 
Figure 6.2, Momentum balance on a unit section of the jet [18]. 
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Where τZZ 
e
ttis the axial viscous stress, P is the pressure, γ is the surface tension, , e

nt  are 

the tangential and normal electric traction forces on the surface of the jet and rj′ is the 

slope of the jet surface. 

 

Equation (6.7) can be simplified by dividing the equation of (πrj
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                                      (6.8) 

 

Where p is the internal pressure of the fluid and τ is the viscous force. 
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The tangential and normal electric traction forces on the surface of the jet are 

determined by the surface charge density and the electric field as: 
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−≈−=                                                                       (6.9) 

σEσEt t
e
t ≈=                                                                                                         (6.10)  

 

Where Є and Є′ are the dielectric constants of the jet and the ambient air, respectively, En 

and Et are the normal and tangential components of the electric field at the surface of the 

jet [17]. 

 

These equations are then simplified to a relatively simple 1D model for the slender 

thinning jet. Hohman et. al. used the slender body equations for Newtonian jets to write 

relationships in the aspect ratio of the jet for the relevant jet characteristics such as; 

diameter, velocity, surface charge density and local electric field strength in terms of 

radial and axial coordinates [13-16].  

Feng et. al. subsequently reformulated the slender body equations of Newtonian jets 

into non Newtonian jets by nondimensionalization of the governing equations for 

approximation of the electric field equations [17-18]. They have found that the electric 

potential inside the jet is governed by the free and induced charges on the surface of the 

jet. However, it has been indicated by their equations that the profile of the cone 

thinning jet is strongly related to the surface charge density and the applied electric 

field, as shown in figure 6.3. 

More recently, Carroll et. al. [19] have extended the slender jet model further, to include 

viscoelastic effects and Wan et. al. have taken the thermal effect into account [20].  

Spivak et. al. have modified nonlinear rheological equations based on slender body 

theory for the variation of the jet radius with axial coordinate [21, 22]. They have 

considered the power law asymptotic approximation of the jet radius r ~ Z-α where the 

exponent α is a positive constant. Their analysis showed that the power law asymptote 

for Newtonian fluids with the exponent of 1/4 holds satisfactorily for more general 

types of fluid. 

In addition to the classic equations, Ko et. al. have employed numerical simulation to 

match the slender thinning jet [23]. 
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Figure 6.3, (a-c) Experimental pictures producing different cone thinning jet profiles 

[13]. 

 

6.2.2.2 Mathematical models for the straight jet based on allometric scaling laws 
The allometric scaling for electrospinning has been proposed by theoretical 

considerations of the previous governing jet electrohydrodynamic equations which took 

into account that the viscous jet is a weakly electrical conductive in an external electric 

field [12]. In this asymptotic regime, the scaling relations between jet radius, other 

operating parameters and the axial distance z from the spinneret have been investigated 

[26-38]. These allometric scaling relations were either derived in case of full surface 

charges or part surface charges of the jet. 

Allometric scaling relations in case of full surface charges were processed based on the 

assumed theory: as the jet is a steady stream at the beginning of electrospinning, the 

electrical force is dominant over other forces acting on the jet [26-29]. In such a case, 

equation (6.8) can be approximately expressed as: 
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It has been allometrically derived from equations (6.5) and (6.6) the following: 
 
u ~ rj

-2                                                                                                                         (6.12) 
 
σ ~ r                                                                                                                            (6.13) 
 
E ~ rj

-2                                                                                                                         
(6.14) 
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By substituting equations (6.12), (6.13) and (6.14) into (6.11), we have: 

( ) 24

Z
rr

d
d −− =                                                                                                      (6.15) 

 
This led to the following scaling equation: 
 
r ~ z -1/2                                                                                                                       (6.16) 
 
 
This scaling equation is valid only in the case when the electrical force acting on the jet 

dominates over the viscous force and the internal pressure of the fluid [28]. Contrary to 

this, other researchers combined electric field and viscous forces and obtained the 

following scaling equation with an exponent of -1/4 for the jet radius [21, 22, 30-32]: 

 
r ~ z -1/4                                                                                                                                                                                   (6.17) 
 
 
Particularly, it has been expressed that when z distance comes to ∞, acceleration of the 

jet in the z direction will vanish completely to lead to the following scaling [28]: 

 
r ~ z 0                                                                                                                           (6.18) 
 
Generally, the relationship between r and z can be expressed as an allometric equation 

in the form of: 

 

r ~ z b 

When b = 1 the relationship is isometric and when b ≠ 1 the relationship is allometric. 
 
 

In case of part surface charge in the jet, equation (6.6) has been modified to be as the 

following [26, 33]: 

                                                                                                                         (6.19) 
 
Where b is the power exponent. 
 
 

Iur2kEr j
2

j =+ ασππ                                                                                           (6.20) 

 

Where α is a surface charge parameter, when α = 0 there is no charge in the jet surface, 

and when α = 1, equation (6.20) becomes the traditional equation for full surface 

charge, the value of α depends upon the surface charge in the jet.  

 



 
159 

Similarly, Qin et. al. have obtained the scaling equation for jet radius to be written as 

[33]: 

r ~ z –α/ (1+α)                                                                                                                                                                          (6.21) 

 
According to the previous study, for equations (6.19) and (6.21), b = -1/2 corresponds to 

a full surface charge and b > -1/2 corresponds to a part surface charge. However, it has 

been found that adding salt to the polymer solution, the power exponent ‘b’ can be 

changed [34, 35]. Under a similar scaling laws derivation, allometric scaling 

relationships between current and solution flow rate, current and electric field and 

surface charge density and electric field have been reported [36-38].  

Briefly, although allometric equations nearly approximate, nonetheless they lead to 

describe and simplify the complex phenomena in electrospinning from traditional 

modeling equations. 

 
 
6.2.3 Mathematical models for the instability and splitting of the jet 

Hence an electrified liquid jet travels toward the grounded collector in a straight line, it 

accelerates and stretches in the presence of the electric field. As it does so, the jet will 

experience a number of instabilities which are the result of interactions between the 

charges in the jet and the external electric field. These instabilities which are convicted 

downstream and grow at different rates depend on numerous complicated interactions of 

variables, such as; the physical properties of the liquid jet, the geometrical shape and 

strength of the electric field, the air friction and the gravity [1]. The whipping instability 

‘nonaxisymmetric of the growing perturbations of the jet’ is one of several possible 

instabilities that may occur in an electrified liquid jet [14-16]. Additional types of 

instabilities may lead, for example, to breakup of the jet into droplets [39-41].  

Once the whipping instability starts, it generates a splitting of the jet into a bunch of 

secondary liquid jets due to the radial charge repulsion forces [42, 43], and each 

secondary jet generates a sequence of spiral and helical loops [44]. The cycles of 

whipping instability repeats itself in a similar way until the solvent evaporates, and 

hence any fibres formed will be resisted from any further elongation [1].

It is currently fully understood that the rapid growth of the whipping instability during 

electrospinning is the reason for massive stretching of the fluid jet and the continuous 

decrease of fibre diameter [45]. This reduction in diameter implies increasing of the 

contact area with the surrounding air and provides greater opportunity for the solvent 

evaporation and jet solidification during whipping instability. Controlling the 
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electrospinning therefore requires a mathematical model by which liquid jet instabilities 

can be quantified. 

Recently, many researchers have modeled the dynamics of instability based on the 

Newton’s second law of motion that describes the balance of surface tension forces, 

viscoelastic forces and applied electrical forces [1, 2, 14-16, 30, 31, 46-55].  

Hohman et. al. and co researchers have identified the instabilities for the droplet break 

up and the whipping of viscous charged liquid jet in a finite electric field [14, 16, 30]. 

Three different instabilities were identified as: the classical axisymmetric ‘Rayleigh’, 

electric field induced axisymmetric and whipping instabilities. They have reported that 

as the electric field strength increased, the electrical instabilities were enhanced whereas 

the Rayleigh instability was suppressed. In addition, they have demonstrated that an 

essential part of the electrospinning mechanism is the rapid whipping liquid jet. In 

addition, increasing of the electric field strength and dominating of the instabilities 

depends strongly on the surface charge density and the radius of the jet.  In their later 

work [15], they have used the stability theory to develop a quantitative way for 

predicting the time when electrospinning occurs, scaling laws for the jet behavior and 

how electrospinning changes as a function of the liquid jet conductivity and viscosity. 

Moreover, analyzing of the instabilities has enabled them in producing operating 

diagrams of electrospinning instabilities that illustrate the combinations of controllable 

parameters under which a particular liquid is electrospun in whipping way rather than 

spraying way ‘droplet break up’. 

Fridrikh et. al. [31, 49] have subsequently analyzed the dynamic equations of Hohman 

et. al. for the viscoelastic fluid jet in a nonlinear way. The term of these equations are 

due to acceleration of the charged jet under the influence of the applied electric field, 

normal stresses due to surface tension and bending of electric field lines and charge to 

charge repulsion. 

Reneker et. al. were the first in establishing a viscoelastic model of a rectilinear 

electrified liquid jet [1, 54]. The trajectory of the fibre is calculated in accordance with 

Newton’s second law of motion, assuming that the fibre jet consists of a strand of 

charged beads which are springs and dashpots connected by viscoelastic dumbbells. In 

their mathematical model description, they have used the Gaussian electrostatic system 

of units. The model showed that both the viscoelastic force along the fibre jet and the 

surface tension tend to stabilize the charged fibre jet. In addition, a nearly linear 

increase of the straight segment with the applied voltage and the whipping frequency is 

so fast that the jet appears to be splitting into multiple secondary fibre jets. 
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Aerodynamic forces and gravity effect were neglected as well as solvent evaporation. 

This was taken into account in a later study [2], in which it has been found that the 

initial angle of the looping envelope strongly depends on evaporation and solidification 

rates for the polymer solutions. Nevertheless, the expected tendency is a decrease of the 

loop radius and the envelope angle with increasing electric field.  

Dayal et. al. have extended the bead model developed by Reneker et. al. to multiple 

virtual strands of beads because of its capability in capturing the fibre wiggling or 

whipping dynamics [55].  It has been taken into account that the solvent evaporation 

plays a pivotal role in determining the internal fibre morphology and describing the real 

time evolution of microstructure for providing guidance to the actual electrospinning 

process. 
 
6.2.4 Mathematical models for nanofibres collection 

As it has been described above, electrospun nanofibres fly downwards until they impact 

with the collector, resulting in a nonwoven membrane of unoriented fibres. However, 

the bending, winding, spiraling and looping path of the jet strongly influences the extent 

of crossing nanofibres, which affects the structural (pore size distribution, pore porosity) 

and the permeability properties of the electrospun nanofibre mat during collection.  

Moreover, if the collected electrospun nanofibres still contain a small amount of 

solvent, welding at contact points between overlapping fibres may occur. Therefore the 

structure of the collected nanofibres web is usually very irregular and a theoretical 

model is necessary to describe the structure of the types of fibrous network produced by 

electrospinning.  

Eichhorn et. al. have recently modeled the electrospun nanofibrous web by investigating 

the network mass per unit area and porosity [56]. It has been shown by their model that 

the electrospun nanofibre diameter is a dominant factor in controlling the pore diameter 

of the nanofibres network. However, little information on the mathematical models for 

predicting the distribution of mass, inter fibre contacts, fibre contact distributions for 

integrity of the networks and the porosity and pore size distributions has been reported 

in the literature.  

 

6.3 Electrospinning jet/ nanofibres velocity  

The above review has showed that the movement of the electrospinning jet is a 

complicated electrohydrodynamic problem. The objective here is twofold. Firstly, we 

wish to clarify the modes theory related to the thinning and splitting of the jet and 

secondly to review the methods used for finding practically the jet velocity. 
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6.3.1 Electrospinning modes theory  

Recently, researchers have published two different modes theory for the electrospinning 

process. The first mode has been clarified as; after Taylor cone is elongated to a straight 

line jet, there would be a sudden whipping instability which will curve the elongated jet 

along its axis to form a series of spiral loops and the diameter of the curved jet becomes 

thinner as the loop circumference increases as shown in figure 6.4, [1, 2]. Splitting of 

the jet into secondary jets does not occur according to this mode. In other words, the 

deposited fibre is single and it is obtained in nano scale because of evaporation of the 

solvent, elongation and whipping instability of the jet. 

 

 

Figure 6.4, Mode of single jet thinning [1, 2]. 

 

In another mode theory [57-61], the single jet elongates and thins for a small spinning 

distance and then it splits into multiple jets by the radial electric repelling forces as 

shown in figure 6.5. 
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Figure 6.5, Literature photos for the second mode of splitting single jet into multiple jet 

nanofibres [60, 61]. 

Technically, both modes can occur by controlling the liquid jet viscosity, surface 

tension and conductivity and the applied electric field [19]. However, the single 

thinning jet mode may only occur with high viscous liquid jet and low applied electric 

field [19]. 

The analysis can prove the values of jet and its collected nanofibres velocity, strain, 

draw ratio and nanofibres area reduction of a complicated jet movement. For the first 

mode, the velocity of the electrospun single nanofibre can be calculated by relating the 

mass flow rate of polymer solution from the spinneret and the rate at which the polymer 

mass is being collected [43]. The theoretical calculation results by Yarin et. al. have 

indicated a draw ratio of the collected single nanofibre due to elongation is equal to 

34815 for PEO and water at 6 wt. % concentration [2, 62]. In this case, if the jet was 

drawn in a straight line at a velocity of around 1.0 m/sec, and then elongated to a draw 

ratio of 34815,  the velocity achieved at the nanofibre end of the jet would be about 

35000 m/sec, thus it is 100 times faster than the speed of sound in the air. The high 

value of the nanofibre velocity and the associated high area reduction ratio and 

longitudinal strain rate imply that the macromolecules in the nanofibre should be 

stretched and axially oriented. It has been reported later, by the same author, that the 

mode was failed by collecting the electrospun polymer nanofibre on a rotating wheel 

with linear speed on the edge of the wheel of 5.3 m/sec [63]. SEM examinations of 

nanofibres collected on the rotating wheel revealed multiple necking patterns at certain 

places along the nanofibre length, as shown in figure 6.6. They have also indicated 

clearly that the source of necking is the strong stretching of solidified nanofibres by the 

tapered wheel, concluding that the velocity of the collected nanofibres ‘not only one 

nanofibre’ is in excess of 5 m/sec. This conclusion is supported by the fact that necking 

was not observed in nonwoven nanofibre mats collected on a grounded plate. 

Therefore, to achieve the correct velocity, many successive splits into many fibres ‘final 

number of branches’ would be accounted for the observed velocity and reduction in 

diameter. Typically, the velocity of the electrospun nanofibres can be calculated by 

relating the mass flow rate of polymer solution from the spinneret and the rate at which 

the polymer mass is being collected with its associated number of branches as will be 

considered later in equation (6.28). 

On the grounds of the analysis above, the mode of continuous single collected nanofibre 

cannot exist, unless the jet is highly viscous [19].  So that, alternatively, the possibility 
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of the jet splitting mode has to be assumed and further discussed. In addition, starting 

from this mode, we will derive simple mathematical equations for calculating the 

velocity of the jet and the collected nanofibres and their branch numbers and then 

measure practically the velocity of the collected nanofibres for actual comparison. 

 

 
Figure 6.6, (a-d) SEM images of multiple neck formation in PEO electrospun 

nanofibres collected on rotating wheel at linear speed of 5.3 m/sec [63]. 

 

6.3.2 Practical methods for determining the jet velocity 

Recently, researchers have used different tools and methods for determining the jet 

velocity [1, 2, 64-66]. Reneker et. al. analyzed the movement of the jet by observing 

particular sequential images of the growing whipping instability and the length of the 

straight segment change per unit time for schematically calculating the velocity of the 

flying nanofibres [1, 2].  Warner et. al. measured the velocities along the straight 

segment of the jet with a laser Doppler velocimeter and reported a velocity of 1 to 15 

m/sec [64]. In fact, Doppler velocimetry is more applicable for monitoring the 

longitudinal strain rate, particularly where the jet diameter is large. However, the 
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Doppler velocimetry data become more difficult when whipping instability is 

encountered [1].  

Xu et. al. [65] incorporated tracer particles ‘glass beads’ into the polymer solution for 

electrospinning and the particles speed was measured by observing the particle 

movement using a high speed video camera, as shown in figure 6.7.  

Bellan et. al. used fluorescence microscopy to track individual fluorescent particles in 

the Taylor cone and in the fluid jet [66].  

However, the optical system used to observe the moving particles within the jet 

consisted of several complicated parts. Hence, the field of view must be of dimensions 

similar to those in the jet and high velocity particles will only appear to the imaging 

system for a short period of time necessitating a high speed video camera. 

 

 
Figure 6.7, Jet speed measurement by particle tracing [65]. 

 

6.4 Novel mathematical model for determining the kinematics of the 

electrospinning nanofibres [67] 

The real movement of the electrically charged jet which is ejected out of the spinneret 

towards the collector, consists of three stages. The first stage is the formation of Taylor 

cone, the second is acceleration and thinning elongation of the jet and the third is 

splitting and whipping instability of the jet. Here, let us examine the second stage and 
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its contribution to the onset of the splitting and whipping instability. Subsequently, we 

will derive, based on the second mode, simple mathematical equations for calculating 

Table 6.1, Definitions and units of measurement for

Symbol 

 deriving of the jet/ nanofibres 

velocity equations. 

Meaning SI Unit of Measure 

r Radius of the jet at any point of its length j Meter 

rjMin Minimum radius of the jet at which splits    Meter 

r Initial radius of the jet  o Meter 

u Velocity of the jet at any point of its line j Meter per second 

u
Maximum velocity of the jet corresponded 

to (r
jMax 

jMin) at which the jet splits
Meter per second 

            

u Velocity of the collected nanofibres f Meter per second 

ρ Specific mass of the jet liquid  Kilogram per cubic meter 

Q Mass flow rate of the jet  Kilogram per second 

σ Surface charge density of the liquid jet Coulombs per square meter  

k Electrical conductivity of the liquid jet Siemens per meter  

E Unit electric field Volt per meter 

I 
Total electric current along the fibres jet 

between the spinneret and collector  

Ampere or volt per ohm or 

coulombs per second 

τ Viscous stress in the liquid jet Newton per square meter 

p Internal pressure in the liquid jet Newton per square meter 

Z Spinneret- collector distance Meter 

g Gravity  Meter per square meter 

a Cross section of the jet at which splits j Square meter 

a Cross section of one nanofibre f Square meter 

c
Concentration of the polymer in the 

solution 
p  

L Length of the total jet before splitting  j Meter 

L Length of collected one nanofibre f Meter 

L Sum of lengths of the collected nanofibres ∑f Meter 

N Final number of branches at collection  b  

E Evaporation percentage of the solution   v % 

Mf Mass of collected wet fibres per unit time w Kilogram per second 

Mf Mass of collected dry fibres per unit time d Kilogram per second 
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the velocity of the jet and thus the collected nanofibres and their branch numbers. These 

equations will form an analytical basis of jet formation and nanofibres kinematics in 

electrospinning. These predictions will be verified with experimental measurements. 

Before we start deriving the theoretical equations, table 6.1, provides the meaning of 

each symbol and the SI ‘International System’ or ‘metric system’ units of measurement. 

We assume that the jet splits uniformly in area into secondary jets and so on as shown 

schematically in figure 6.8. At the beginning, we consider the conservation of mass 

equation without evaporation of the solvent i.e. the mass is constant across the spinning 

line, we mention loss of mass later. 

 

 
Figure 6.8, Schematic drawing of the jet stretching and splitting into uniform branches. 
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The relation between the mass flow rate and polymer solution density, velocity and 

cross section area in equation (6.5), neglecting the evaporation of the solvent to 

produce: 

 

.........a...aaaaa n321jo =++++==                                                                         (6.22) 

 

When evaporation of the solvent ‘solidification effect’ is accounted for, the mass flow 

rate equation can be written as:  
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Here, the symbol Ev represents the total evaporation of the solvent during the 

electrospinning process or in other words the ‘concentration of the polymer in the 

solution’; Evj, Ev1, Ev2, and Evn 

vn2v1vvjv E......E.E.EE =

represent the partial evaporation of solvent or 

solidification. Thus, we can express the following expression as:    

 

                                                                                     (6.24) 

 

Typically, equation (6.23) represents the real dynamic path and mass change during 

electrospinning. For instance, let us take a part of the equation as ρouoao = Evjρjujaj. As 

in electrospinning the electrical forces stretch the jet causing an area reduction and thus 

velocity increase and solvent evaporation causing a change of the density, the 

components of the equations will balance each other to be correct. In other words, as Evj 

<<1, ρo ≤ ρ j and aj < ao the uj must be bigger than uo in number of times at which the 

equation ρouoao = Evjρ jujaj  balances out.  

Electrospinning is a dynamic process in which the electrical and viscoelastic forces 

control the nanofibres velocity and the solvent evaporation from the jet during its flight 

from the spinneret to the collector. Here by manipulating equation (6.23) and the 

schematic drawing of the jet stretching and splitting in figure 6.8, we can write the 

fundamental equations for theoretically calculating the velocity of jet and collected 

nanofibres and their length and branch numbers as following: 
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Velocity of the collected nanofibres: 
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And the final number of the branches at collection: 
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And the sum of the lengths of the collected nanofibres: 
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And  
 

fbf L.NL =∑                                                                                    (6.28) 

 

Additionally, the evaporation percentage of the solution during electrospinning process 

can be calculated as: 
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=                                                                                    (6.29) 

 

The above equations represent the fundamentals for calculating the kinematics of the 

nanofibres. The key component, based on these equations, is the ujMax which is going to 

be mathematically derived hereinafter for finding the actual values of these equations. 

 
Based on slender body theory, mass conservation and charge conservation (Maxwell) 

equations (above) can be written as: 
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Qur j
2
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In SI meaning:           meter2 . kg/meter3  . meter/sec = kg/sec                                   (6.30)  
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As has already been discussed, at the initial stage of the electrospinning, the electrical 

forces are dominant over other forces such as surface tension and internal viscosity [26-

29, 43, 54]. Otherwise, no fine charged jet will eject. Additionally, the drag force and 

the gravity force acting on the jet are very small in magnitudes and can be easily 

neglected [1]. Thus equation (6.8) can be simplified to equation (6.11).  
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By using the Cauchy’s inequality and similarly applying it on the equations (6.6) and 

(6.11) similar to He et. al. [68], to derive the velocity of the straight jet in the point at 

which the splitting of the jet into secondary jets occurs. 

 

 

Cauchy’s inequality can be written as: 
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Now by multiplying the numerator and denominator in the fraction of equation (6.11) 

by (π2. k. rj 3. uj

 

), we can obtain the following equation:  
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Using the Cauchy’s inequality in view of equation (6.33), we can obtain the following 

inequality: 

 

( )
j

4
j

2

22
jjj

2
j

ukr4

Erkur2
2

u
dz
d

ρπ

π+σπ
≤














                                                                               (6.34) 

 

And 
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In view of mass conservation and Maxwell’s equation of charges in equations (6.5) and 

(6.6), we can immediately obtain: 
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We have also from equation (6.5):  
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Putting equation (6.37) into equation (6.36) will give us the following inequality:  
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So the inequality of jet radius can be written as: 
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Now by integrating equation (6.39) for z we can immediately obtain:  
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Hence we have rj = ro, 
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Let us define δ as: 
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Now in view of equations (6.40) and (6.41) we can write: 
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As we have already seen, based on slender body theory, the jet radius decreases along 

its straight line up to the point of splitting. On this point of view, (rj = rjMin) if z reached 

to Lj

2
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rδL
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=

, equation (6.42) can be written as: 
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Subsequently, the minimum value of jr  in the initial stage of the jet can be written as: 
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And 

 

1Lδr
rr

j
2
o

2
o2

jMin
+

=                                                                                                    (6.45) 

 

From the mass conservation equation we can obtain the following relationship: 
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Now from equations (6.45) and (6.46), we can calculate the maximum velocity of the 

straight jet of the electrospinning at the point where instability and splitting occur as: 
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Where δ is defined as: 
3
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Iπρδ =   and all other symbols are defined in the above table 

and measured in SI units. 

 

By exchanging the symbols by their SI units as the following: 
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The operational parameters of the electrospinning process, in accordance with this 

model are; flow rate (Q), electric current (I), and the jet geometrical dimensions Lj and 

ro

Polyethylene oxide (PEO) with molecular weight of 400.000 gram/mole and zero shear 

viscosity of 5 Pascal.sec in 6 % wt. water was purchased from Sigma-Aldrich 

(Gillingham, UK). The density of 6 % wt. PEO dissolved in water is 1.075×10

 and its physical properties of density ρ and conductivity k. 

It is necessary to mention that the best calculation of the jet velocity can be from 

measurements of the mass of the collected nanofibres over a known time interval the 

cross section area of the jet and the density of the polymer solution [43]. 

 

6.5 Experimental work [67] 

6.5.1 Polymer solution preparation, electrospinning and characterization  

+3 kg/m3, 

and the electrical conductivity is 0.0125 Siemens/m measured by using four probes 

method. The polymer solution was placed in a 5 mL capacity syringe (Fisher Co., 

Leicestershire, UK) and fed through a vertically orientated (17 gauge) blunt ended metal 

needle ‘spinneret’ with 1 mm inner diameter. The needle was connected to one 

electrode of a high voltage direct current power supply (MK35P2.0-22, Glassman, New 

Jersey, USA) which will supply a voltage of 9 KV. An earthed aluminium collector 

plate measuring 15 cm × 15 cm was set 18.5 cm ‘spinning distance’ below the 
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spinneret. We note that, operation parameters such as needle gauge, applied voltage, 

electrospinning distance, polymer type and its molecular weight and PEO/water 

concentration were based on Xu et. al. research work and fully imitated [65]. In their 

experimental research, a novel method was developed to characterize the micron scale 

jet diameter and length. In this work, we will use their results in measuring the 

minimum jet diameter and its length before going into splitting and whipping instability 

stage. The collector plate was insulated from the ground, and the electrical jet current 

was obtained by measuring the voltage drop across a resistor. The current measurement 

was taken through a digital reading and converted using Ohm’s law. The experiment 

was run for 12 minutes and the polymer solution flow rate was measured during this 

time. The collector mass was weighted before and after the collection of nanofibres 

using a micro balance (Mettler TG 50 thermobalance, KPS Calibrations, Zurich, 

Switzerland) at 1 microgram weight resolution. The mass difference was considered as 

the amount of the depositing wet nanofibres within 12 minutes. Then, in order to fully 

drying and weighting the collected nanofibres, the collector was placed inside the oven 

under the temperature of 40o

For characterizing the deposited nanofibres, two separate tapes of aluminum sheets were 

laid on the surface of the circumference of the rotating disk, for enabling the collection 

of two samples of nanofibres. These samples were sputter coated with gold-palladium 

for 45 sec at 18 mA using a sputter coater. Nanofibres were examined using a JEOL 

JSM 5600 scanning electron microscope at an accelerating voltage of 5 kV. The 

experiments were conducted under ambient condition at room temperature and 25 % 

RH humidity. For measuring the average diameters of the fibres viewed on a 

photograph, a transect line was drawn from the bottom right to the top left of the SEM 

image and fibre diameters were measured at the point the line transected, perpendicular 

 C for 24 hours. 

 

For practical determination of the nanofibres velocity, the electrospun nanofibres were 

collected on the edge of a collector disk rotating around a horizontal axis. The edge of 

the disk was placed at a distance of 18.5 cm below the spinneret. An electric field of 9 

kV was created between the surface of the liquid drop ‘spinneret’ and the rotating disk 

collector. During the spinning process, the disk was rotated at different controlled linear 

speeds of 0 m/sec ‘constant collector speed’; 1 m/sec; 2 m/sec; 3 m/sec; 4 m/sec; 4.8 

m/sec; 5 m/sec; 6 m/sec; 7 m/sec; 8 m/sec and 9 m/sec. As the nanofibres reach the disk, 

they are wound onto the edge of the rotating disk, as shown in figure 6.9. 
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to the fibre length. These results were used to compile fibre diameters distribution 

profiles.  

  

 
Figure 6.9, Photograph for the electrospinning process with operation parameters 

similar to Xu’s et. al. electrospinning operation parameters [65]. The disk was rotated at 

different controlled linear speeds of stationary collector; then 1 m/sec; 2 m/sec; 3 m/sec; 

4 m/sec; 4.8 m/sec; 5 m/sec; 6 m/sec; 7 m/sec; 8 m/sec and 9 m/sec. The electrospun 

nanofibres were collected on the edge of a collector rotating disk around its horizontal 

axis. Two separate tapes of aluminum sheet were laid on the surface of the 

circumference of the rotating disk, for enabling the collection of two nanofibre samples. 
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6.5.2 Theoretical and practical calculation of the jet velocity 

To get the theoretical values of the jet/ nanofibres velocity, number of branches and 

dynamics of evaporation, we will present the measured values of the electrospinning 

process parameters. The polymer solution was spun at flow rate of 0.12 mL during 12 

minutes of electrospinning, and thus it is equivalent to 0.6 mL/hour. By taking into 

account the density of the polymer solution (1.075 × 103 kg/m3), the flow rate of the 

polymer solution is Q = 1.792 ×10-7 kg/sec. Collected nanofibres during the 

electrospinning period of 12 minutes, were weighted (0.0109 grams) i.e. the mass of 

collected wet nanofibres Mfw  = 1.516 × 10-8 kg/sec. Then, these nanofibres were fully 

dried for 24 hours and weighted again (0.0077 grams) i.e. the mass of collected dry 

nanofibres Mfd = 1.07 × 10-8 

pd c.QMf =

kg/sec. When compared, the measured mass of the 

collected dry nanofibres agrees fully with the theoretical equation of mass of the 

collected dry nanofibres such as: 

 

Mass of the collected dry nanofibres = Mass flow rate of the jet × Concentration of the 

polymer in the solution 

 

In the unit’s expression: 

                                                                                                

                                                                                                            (6.50) 

 

The electrical jet current was 10 nanoamperes. In fact, the value of the current is so 

small which was expected due to low applied voltage, low flow rate, low polymer 

concentration and high electrospinning distance. This value is also in agreement with 

other research literature [69]. 

As we mentioned above, Xu et. al. used two different optical methods which are light 

diffraction and interference colour for measuring of the minimum straight jet diameter 

and its length based on the same parameters that we used. Figure 6.10, shows the jet 

profile i.e. diameter of the jet path with travelling distance produced by Xu et. al. 

research work [62, 65]. A minimum jet diameter of 2 microns and length of 36 mm was 

analyzed and concluded in their work. At present, we will put these values in the 

following equations for calculating the theoretical value of the maximum jet velocity. 

Theoretical value of the maximum jet velocity can be calculated from equation (6.47) 

as: 
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Figure 6.10, This photograph shows a diameter change of the straight segment of the jet 

as a function of position along the jet, measured by the diffraction of a laser beam. This 

jet profile was produced by Xu et. al. under the following electrospinning parameters; 

Polyethylene oxide (PEO) with molecular weight of 400.000 gram/mole in 6 % wt. 

water and fed through a vertically orientated (17 gauge) blunt ended metal needle 

‘spinneret’ with 1 mm inner diameter. The needle was connected to a voltage of 9 KV 

and delivered by a collector set at 18.5 cm ‘spinning distance’ below the spinneret [62, 

65]. 
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It is also possible as mentioned that the practical velocity of the jet can be calculated by 

knowing the mass of the collected ‘wet’ nanofibres in a known time, the cross section 

area of the jet and the density of the polymer solution, assuming it stays constant across 

the jet length. Subsequently, the velocity of the jet at any point of its z axis can be 

written as: 
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The work for measuring the velocity of the collected nanofibres was based on Yarin et. 

al. method by collecting the nanofibres on a rotating grounded disk [63]. Changing the 

linear speed of the rotating disk and observing the speed value at which the diameter of 

the collected nanofibres start to reduce will define the velocity of the nanofibres. Ten 

different linear speeds of the disk collector (1 m/sec and 9 m/sec) are taken to match the 

velocity of the nanofibres. Figure 6.11, shows SEM images of the electrospun 

polyethylene oxide nanofibres prepared by using different disk collector linear speeds. 

When the disk was constant during the spinning process, the electrospun nanofibres 

  =  4.49 [m/sec] 

 

 

6.5.3 Practical determination of the collected nanofibres velocity 
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were randomly distributed in the mat and were cylindrical with diameters of 288 ± 70 

nm, as shown in figures 6.11, and 6.12.  It has been believed that, based on theoretical 

equations, the velocity of the collected nanofibres is higher than 4.8 m/sec, hence the 

theoretical value of the jet velocity is 4.82 m/sec and the practical value is 4.49 m/sec.  

Figure 6.11, shows that as the linear speed of the disk increases to 5 m/sec and 6 m/sec, 

the alignment of the electrospun nanofibres increases but still has some randomly 

distributed nanofibres. This is because when the velocity of the electrospun nanofibres 

is higher than the linear speed of the disk collector, the nanofibres could not be taken up 

at a matching velocity by the disk due to higher nanofibre velocity. When the linear 

speed of the disk was 7 m/sec and 8 m/sec, most of the electrospun nanofibres were 

aligned along one direction without being stretched, as shown in figure 6.11.  

 

 



 
181 

 
Figure 6.11, SEM images of PEO mats collected using a grounded disk collector at 

different linear speed: 0 m/sec ‘constant collector speed’; 1 m/sec; 2 m/sec; 3 m/sec; 4 

m/sec; 4.8 m/sec; 5 m/sec; 6 m/sec; 7 m/sec; 8 m/sec and 9 m/sec. The SEM images are 

shown at different scale bar: 10 µm; 5 µm and 1 µm. 

 

In fact, this proves that the velocity of the electrospun nanofibres was very close to the 

linear speed of the disk. As the linear speed of the disk was increased to 9 m/sec, the 

electrospun nanofibres were collected onto the disk with full alignment but were 
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stretched and thinned as shown in figures 6.11 and 6.13. This is because the linear speed 

of the disk collector was higher than the velocity of the electrospun nanofibres. It can be 

concluded from the SEM images that the linear speed of the disk at 8 m/sec was an 

appropriate take up speed for the electrospun PEO nanofibres without stretching and 

thinning of nanofibres. In other words, electrospun PEO nanofibres under the above 

electrospinning operation parameters accept 8 m/sec as a deposited ‘collected’ nanofibre 

velocity. 

 

 

 
 
Figure 6.12, SEM image of PEO mat collected using a constant disk collector and scale 

bar of 1 µm. The electrospun nanofibres were randomly distributed in the mat with 

nanofibre diameters distribution of 288 ± 70 nm. 

 

6.6 Discussion [67] 

The mathematical model for deriving the equation of the velocity of the jet at the 

splitting point offers the basic stepping stone for establishing the equations of collected 

nanofibres velocity, their length and number of branches. Equation (6.47) dictates that 

the maximum velocity of the jet is controlled by the flow rate, electric current, electrical 

conductivity and density of the polymer solution and the jet dimensions. The theoretical 
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value of the jet velocity at the splitting point of 4.82 m/sec is with convenient agreement 

of the practical value of 4.49 m/sec, based on the conservation mass law. Further 

support for velocity prediction of the model is needed for other polymers under different 

conditions. 

 

 
Figure 6.13, SEM image of PEO mat collected using an earthed disk collector rotated at 

linear speed of 9 m/sec and scale bar of 1 µm. The electrospun nanofibres were aligned, 

stretched and thinned in the mat with nanofibre diameters distribution of 150 ± 50 nm.  

 

Equation (6.25) requires knowing Nb and cp ‘number of branches and concentration of 

the polymer in the solution’ for finding theoretically the value of the nanofibre velocity 

at the collection position. Please note that the cp value changes along the path of the jet 

due to solvent evaporation. However, based on the experimental measurements, 

evaporation percentage of the solution Ev can be calculated by equation (6.29), to be 

97.3 %. It is interesting to note that the velocity of jet reaches a value of 4.49 m/sec 

within 36 mm travelling length according to the mass of the collected nanofibres used 

and the jet cross section area at the splitting point, figure 6.10. In comparison with the 

polymer solution velocity of 0.21 mm/sec in the needle, it is rather intriguing to note the 

high acceleration of jet velocity due to the driving force associated with the applied 
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electric voltage. Based upon the experimental results of collecting PEO nanofibres on a 

rotating disk, it is appropriate to find out the velocity of the nanofibre at collection 

point. The actual values of nanofibre velocity of 8 m/sec, the jet velocity of 4.49 m/sec 

and the jet to nanofibre area reduction ‘from 2 µm to 0.288 µm’ prove the second 

electrospinning mode theory ‘the single ejected jet elongates and thins for a short 

electrospinning distance and then it splits into multiple jets by the radial electric 

repelling forces’. In other words, by analyzing the values of jet and collected nanofibres 

velocity, strain, draw ratio and nanofibres area reduction, the nanofibres were not just 

single jet.  

We believe that the jet velocity, number of nanofibres generated from the jet and their 

velocities are essential parameters to precisely control the engineering architecture of 

nanofibres such as; nanofibres alignment, nonwoven mat geometry and yarn 

manufacturing. In other words, this study will enable us to control and optimize the 

geometric properties ‘linear density, twist per unit length and uniformity’ of the 

continuous yarn and core electrospun yarn produced in the previous chapter. Moreover, 

this will enable researchers to further improve their nano engineering research and 

increase nanofibre productivity for end uses. 
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CHAPTER 7: MECHANICAL CHARACTERIZATION OF NYLON 

6 NANOFIBRES 
 

7.1 Introduction 

Recent advances in nanoengineering of materials have enabled researchers and 

engineers to fabricate fibres at the nanoscale for a wide range of applications. In fact, 

during nanofibre processing, the loaded forces on the fibres can cause temporary or 

permanent deformation or even mechanical failure. Mechanical properties of individual 

nanofibres dominate their dynamic and static response, contact and friction and final 

deformation in the nanofibre network. Therefore, it is essential to know if individual 

nanofibres are strong enough to withstand the external and internal forces exerted for 

performing further processing during application. Furthermore, mechanical 

characterization provides benchmarking and comparison of optimization of performance 

requirements and specification.  

So far, several experimental techniques have been developed to characterize the 

mechanical properties of either individual electrospun nanofibres or entangled in the 

form of three dimensional nonwoven mats. Among those, a universal testing machine is 

the simplest experimental technique for measuring the tensile properties on a 

nanofibrous mat. While, single electrospun nanofibres has been mechanically 

characterized by the nano tensile test or by bending test or by indentation tests 

conducted at the nanoscale [1]. Due to the nanoscale diameters of the nanofibres, 

manipulating these fibres without breaking can be very time consuming. In practice, 

four main challenges have to be overcome. The first is to precisely isolate, align and 

grip the single nanofibre on the test frame without slipping or breaking. The second is to 

accurately measure the nanofibre diameter making sure that it is not damaged by SEM 

or TEM characterization instruments. It is common practice to measure the nanofibre 

diameter after conducting the mechanical test [2]. The third is to find a sensitive force 

transducer which can measure the applied force in the nano/micro Newton range and 

has a low nano/micro Newton resolution. The forth is to find a precise actuator which 

can load the nanofibre till failure in the micro Newton range.   

In this chapter, a review of the mechanical characterization testing methods that have 

been developed for nanofibres is investigated. The tensile - strain curves of the 

electrospun nylon 6 and nylon 6/MWCNTs nanofibre mats are plotted and investigated 

using a universal tensile test machine. A novel simple laboratory set-up for performing 

the tensile test on single nanofibre and nanofibre bundles has been designed and 
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implemented. Tensile strength, axial tensile modulus and ultimate strain of electrospun 

single nylon 6 nanofibres have been obtained by defining the stress - strain curve of the 

material. Consequently, optimizing the mechanical properties of nylon 6 nanofibre and 

specific challenges of tensile testing are further discussed. 

 

7.2 Review of the mechanical testing methods of single nanofibres 

Mechanical testing of nanofibres have been classified into three basic methods namely; 

tensile test methods by using commercial nano tensile testing or the atomic force 

microscope cantilever or other novel techniques, bending test methods and 

nanoindentation methods [1]. Hereinafter, a comprehensive review of these methods 

and their techniques is presented and discussed.  

 

7.2.1 Tensile test method 

Tensile test is a well known as the most effective method used for establishing the 

tensile properties of the fibres ‘tensile strength, yield stress, Young’s modulus, strain at 

break, etc.’ which involves measuring the applied load and elongation of the fibre under 

a known cross-sectional area [3]. Specifically, to perform a direct tension test on a 

single nanofibre, the tensile tester must be able to measure the micro Newton load 

required to deform the fibre. Recently, researchers have used either a tensile testing 

machine or atomic force microscope ‘’cantilever’’ or even other novel techniques for 

finding the mechanical characteristics of the electrospun nanofibre. 

The smallest load cell that can be obtained commercially for testing is of a load 

resolution of 0.1 mN [4], which is insufficient for the tensile testing of single nanofibre. 

Where, the force required to break the nanofibre can be in the nano/micro Newton range 

‘e.g. approximately 66 micro Newtons for polycaprolactone (PCL) single nanofibre 

with 1.03 μm diameter [5]’. Recently, the American system corporation MTS, the 

world’s leader in mechanical and material testing and simulation, has engineered a nano 

tensile tester called ‘NanoBionix tensile tester’. This highly accurate tester is said to be 

ideal for low-force static and dynamic mechanical testing of single nanofibre. It has a 

load test capability at a nano Newton range with 50 nano Newton load resolution, an 

extension resolution of 35 nanometers and a frequency of up to 50 Hz [6]. Nevertheless, 

the testing process requires preparation of the tensile test samples properly, it involves 

loading of the nanofibres vertically on the testing frame, then removing the non required 

nanofibres by ensuring that only one nanofibre is obtained, mounting the frame into the 

clamps of the tensile tester, cutting the ‘rib’ of the frame and applying the load. Figure 
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7.1, shows nano tensile tester (NanoBionix, MTS, USA) with a single nanofibre being 

mounted on a cardboard frame [2, 5]. Electrospun a polycaprolacton (PCL) [5, 7, 8], a 

poly (L-lactic acid) (PLLA) [9, 10] and a precursor polyamic acid (BPDA/PPA) [2] 

single nanofibre have been tested using this tensile tester.        

 

 
Figure 7.1, (a) A photograph shows the nano tensile tester (NanoBionix, MTS, USA) 

for nano tensile testing of a single polymer nanofibre [5], (b) An optical image shows 

the tensile stretching of the single nanofibre mounted vertically on the edges of a 

cardboard frame [2]. 
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The mechanical properties ‘stress - strain curve’ for these nanofibres were observed to 

vary with the fibre diameter and the physical structure of the fibre. This indicates that 

the mechanical properties are influenced by the structure of the electrospun nanofibre 

which is the result of the draw ratio applied during the electrospinning process [8]. 

However, one disadvantage of this technique is that it is a very costly machine and 

complex to construct and still may not be appropriate for fibres with diameters in the 

range of tens of nanometers [1]. Subsequently, as current nano tensile testers are very 

costly, researchers designed laboratory set-ups for tensile testing [11] or they used a 

universal tensile tester [12-14] for testing a bundle ‘rope’ of nanofibres. 

Atomic force microscope cantilever has been utilized to characterize the mechanical 

properties of individual electrospun fibres as an alternative technique. The superior 

displacement resolution of the AFM cantilever is in Angstrom level and its super low 

stiffness is ranging from 0.1 to 0.01 N/m [15, 16]. Thus, an AFM cantilever has been 

rendered as a very useful system for tensile requirements. In this technique, an 

individual electrospun nanofibre is removed from the fibre holder. One end is tethered 

to the tip of an AFM cantilever which serves as a force sensing element and the other 

end is fastened on the surface of a movable body by adhesive which serves as a pulling 

element. The initial positions of the cantilever tip and the pulling element must be noted 

for the calculation of the gauge length of the fibre, as shown in figure 7.2.  

 

 
Figure 7.2, A series of images for breaking an electrospun nanofibre during the tensile 

test. The fibre was attached to the tip of an AFM cantilever and pulled transversally by a 

wire. The deflection of the cantilever, δ, is proportional to the applied force and has to 

be measured at the time of breaking throughout the tensile test [17]. 

 

At the start of the tensile test, the deflection of the AFM cantilever is observed using a 

microscope equipped with a CCD camera. As the elastic constant of the cantilever can 
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be mathematically calculated or is already known, the tensile load acting on a single 

nanofibre can be easily determined [17]. Or for more accuracy, the induced force on the 

single nanofibre can be measured by integrating a resistive strain gauge into the 

cantilever flexible arm. Consequently, deflection of the cantilever tip results in a linear 

change in resistance which can be easily converted to load readings by connecting the 

cantilever tip to a multimeter [18]. The pulling element is linearly moved at step 

intervals of micrometer range to stretch the fibre with the cantilever deflection reading 

taken at each step. As a result, based on these measuring steps, the stress - strain curve 

of a single nanofibre can be plotted and the mechanical properties of the fibre can be 

determined. At a similar principle but different manner, Turner et. al. have obtained the 

Young’s modulus of a nanofibre by using two atomic force microscope cantilevers 

which are cantilevered at one end and coupled with a nanofibre at the other end, as 

shown in figure 7.3 (b), [19]. This measuring method is based on the dynamic relation 

between the fibre stiffness ‘spring constant’ and the resonant frequencies of the 

cantilevers vibration mode [20, 21].  

 

 
Figure 7.3, Mechanical properties of nanofibres are measured by AFM cantilever 

probes. (a) A schematic of the theory of conventional beam dynamics, shows two 

prismatic beams of length L cantilevered at one end and coupled with a spring of 

stiffness K. (b) A schematic and scanning electron microscopic image that shows how 

the nanofibres are attached to the cantilevers at distances: L = 450 μm, t = 2 μm, K = 0.1 

N/m, L1 = 94.5 μm, D1=606.67 µm and D2=691.02 µm represent the lengths of the 

nanofibres, L2 = 342.8 μm and L3 = 47.8 μm [19].   

 

Applying the cantilever technique for nanofibre tensile test requires selecting the 

appropriate spring constant of the cantilever and the micrometer displacement range of 

the pulling element or the frequency ‘kilohertz’ of the vibration mode for succeeding 

the test.  

Nevertheless, due to the high load and displacement resolution of the AFM cantilevers, 

using the cantilever system for tensile test of finer nanofibres is proven to be more 
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feasible than using commercial nano tensile testers. On the other hand, this technique 

consumes even more time and effort than commercial nano tensile testers, and it needs 

familiarity in choosing and manipulating the appropriate cantilevers when different 

samples are tested [18]. 

Other novel techniques have been also utilized for performing tensile tests of 

nanofibres, based on either a developed precise load cell [22] or an AFM cantilever 

mode system [4]. In the second technique, and based on vibration fundamentals, an 

AFM system which involves a stepper motor and a transducer spring have been used to 

provide the force required for stretching the fibre. The applied load and elongation of 

the fibre were measured by the transducer spring and by subtracting the elongation of 

the transducer spring from the total elongation of the stepper motor respectively. 

Consequently, the stress - strain curve of the fibre is obtained by dividing the measured 

tensile load over the cross sectional area of the fibre and by dividing the elongation over 

the gauge length respectively. Generally, this technique has many advantages, it can be 

custom made, it is able to provide a high load and displacement resolution and it is not 

costly to construct. 

 

7.2.2 Bending test method 

Based on the atomic force microscope AFM principle, the topology of the fibre surface 

is imaged by scanning a long, small and thin cantilever across the whole surface and 

thus measuring the cantilever deflection with respect to the scan position [23-25]. Based 

on this principle, the indentation of the AFM cantilever probe into a fibre surface has 

offered researchers a direct determination of the applied force as a function of 

displacement. Therefore, a wide range of electrospun polymer nanofibres has been 

tested using this method for calculating both the elastic bending modulus and the shear 

modulus. Here, we review the two techniques of using the AFM cantilever to conduct 

either two-point or three-point bending test of electrospun nanofibres. 

In the two-point bending test, the electrospun nanofibres must be aligned on two 

grounded edges [26], isolated into a single nanofibre, cut and attached to a cantilever as 

shown and described in figure 7.4 (a), [27-29]. Consequently, the nanofibre is bent by 

pushing the AFM cantilever in the z direction at a movement range of microns while the 

other edge is kept constant, or the vice versa. The displacement of fibre during the test is 

measured usually by an optical microscope. The applied force is calculated from the 

results of displacement and the spring constant of the cantilever.  
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Subsequently, the Young’s modulus of the fibre is calculated according to equation 

(7.1) [29, 30]: 
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Where L is the length of the fibre, r is the radius of the fibre, F is the force exerted and δ 

is the z direction displacement of the fibre. 

 

 
Figure 7.4, (a) A schematic drawing shows one end of single nanofibre attached to a 

contact mode AFM cantilever and the other end free to be loaded by a substrate edge to 

form the two-point bending test [29]. (b) A schematic drawing shows a single nanofibre 

deflected by the AFM cantilever tip to form the three-point bending test and a SEM 

image of PLLA single nanofibre which is deposited onto an etched groove of silicon 

wafer with a span length of 4 µm [35].   

 

In the three-point bending test, a well aligned single nanofibre must be suspended over 

an empty space between two parallel metal strips points. An AFM cantilever tip with 

spring constant of milli Newtons per meter is used to apply the nano Newton vertical 

force at the mid point of the suspended length of the nanofibre, as shown in figure 7.4 

(b) [10, 31-37, 57]. As this technique is for calculating only the elastic property of the 

fibre, the loading force must be precisely determined to prevent permanent deformation 

or even break to failure. For instance, an example case reported in the literature is: a 

maximum force of 2.7 nano Newton with loading rate of 0.2 µm/sec was applied at the 

mid point of poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) nanofibre 

with span length of 1.5 µm and nanofibre diameter of 116 nm [31]. In this testing 

technique, the nanofibre must be aligned perfectly perpendicular to the parallel strips 

without any additional initial tension, the fibre must be assumed to be linearly elastic 

and that its cross section must be circular. In addition, it has been recommended that to 

minimize the deformation of nanofibre by the shear stress generating during the three-
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point bending test, the span length to diameter ratio of the measured nanofibre must be 

< 10 [31, 38]. The elastic modulus of nanofibre is calculated from the beam bending 

theory given by equation (7.2) [38] as: 
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Where L is the length of the span ‘suspended’ fibre, d is the diameter of the fibre, F is 

the force exerted, δ is the z direction displacement of the fibre and I is the second 

moment area of the fibre. 

 

The calculation of the elastic modulus using the bending test method requires an 

accurate measurement of the dimensions of the nanofibre because the elastic modulus is 

related to diameter to the fourth power (d)4 and length to the third power (L)3. 

Furthermore, measurement errors can occur easily and for not affecting the calculated 

value of the elastic property, many measurements must be conducted and averaged.  

 

7.2.3 The nanoindentation method 

Nanoindentation has been recently utilized for calculating the elastic modulus of 

nanofibres by determining the applied force, the depth and the contact area between the 

nanofibre and the indenter [39-42]. In this method, the sample is prepared for testing by 

depositing the nanofibres on a hard and flat substrate, with sufficient sticking between 

the substrate and the nanofibres. Then, the nanofibres are inspected by the AFM tapping 

mode ‘as a most effective indenter’ in the radial direction of the fibres. Using the AFM 

tip to perform nanoindentation on the nanofibre requires a tip radius at a low nanometer 

range ‘say 5 nm [39]’ for ignoring the curvature of the nanofibre [1]. However, as the 

method deals with resonance frequency measurements, many factors must be 

considered carefully such as; effect of the underlying substrate, the tip shape and the 

cantilever spring constant, the fibre surface roughness, the curvature of fibre surface, the 

non-perpendicular loading and the adhesion force [42]. Therefore, for calculating the 

value of the elastic modulus a model estimation may be used.  
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Briefly, the method deals with a sophisticated instrument for only one measured 

mechanical property leading to a limited use of this method in practice. 

 

Finally, table 7.1 shows a summary of all the up-to-date mechanical characterization 

methods for single nanofibres of various types of polymers. 

 

Table 7.1, Mechanical characterization of single nanofibres. 

Test methods Technique and instruments Materials Ref. 

Tensile test 1- Nano tensile tester Polycaprolacton (PCL) [5, 7,  8] 

  Poly (L-lactic acid) (PLLA)  [9, 10] 

  Polyamic acid 

(BPDA/PPA) 

[2] 

  CNTs rope [11] 

 2- Commercial tensile tester Polyacrylonitrile (PAN) [12-14] 

 3- Test based on AFM 

cantilever 

Nylon 6,6  [17] 

  Polyethylene oxide (PEO) [18] 

  Polylactide/ polyglycolide [4] 

 4- AFM cantilevers system Polyacrylonitrile (PAN) [19] 

Bending test 1- Two-point bending test PEO, PAN [27] 

  Collagen type I [28] 

  Polyacrylonitrile (PAN) [29] 

 2- Three-point bending test  Poly (L-lactic acid) (PLLA) [10] 

  PAMPS hydrgel [31] 

  PEO, glass [32] 

  PVP/TiO2,  TiO2  

nanofibres 

[33] 

  Nylon6/SiO2 [34]  composites 

  Poly (L-lactic acid) (PLLA) [35] 

  Polycarbonate, polypyrrole [36] 

  Nylon 6 [37] 

  Fibrinogen [57] 

Nanoindentation Indention using AFM 

cantilever  

Silk [39] 

  Polyacrylonitrile (PAN) [40, 41] 

  Poly (L-lactic acid) (PLLA) [42] 
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7.3 Tensile test of nonwoven nylon 6 nanofibre mats [58] 

The formation of an electrospun fibrous structure depends on the construction and 

geometrical shape of the electrospinning machine set-up. Number of crossings per 

nanofibre, number of intersections per unit area, total nanofibre crossings in the mat and 

three dimensional joints morphology play an important role in the mechanical properties 

of the nonwoven nanofibres mat [43]. However, the nanofibre molecular structure and 

orientation play even more important critical role in these properties [8]. In order to gain 

a better understanding of how the electrospun fibres behave, a preliminary tensile test 

has been performed on nylon 6 and composite nylon 6/ MWCNTs nanofibre mats 

described in this section and on a single nylon 6 nanofibre described in section 7.4. 

  

7.3.1 Experimental; electrospinning of nylon 6 nanofibres, samples preparation 

and nano tensile testing 

Polymer solutions of nylon 6 and formic acid at concentration of 20 wt. % and 

composite nylon 6/ MWCNTs of 1 % wt. were spun with electrospinning parameters; a 

volume feed rate of 0.2 ml/h, an applied voltage of 15 KV and an electrospinning 

distance of 8 cm for producing nanofibre mats. These mats were carefully cut into strip-

shaped specimens with rectangular dimensions of 12 mm width and 30 mm length. The 

thickness of the nanofibre mat samples is 0.011 mm, calculated through the samples 

weight (Mettler TG 50 thermobalance) and dimensions, and the densities of nylon 6 and 

MWCNTs using an assumed porosity of 20 %, based on published mercury intrusion 

porosimetry measurements [44]. The density of nylon 6 is 1.084 g/cm3 [45], and that of 

MWCNTs is 1.8 g/cm3

The tensile testing of nanofibre mats provides an assessment of the average mechanical 

properties of the nanofibres rather than measuring an individual nanofibre. Figure 7.5, 

 [46]. A tabletop ‘purpose built’ tensile tester (Ernest. F. Fulham, 

100 lb) was used to stretch the mats. Stretching was carried out at room temperature 

with a crosshead speed of 12.7 mm/min and a gauge length of 20 mm for both mat 

samples, as shown in the attached photos in figure 7.5. The results of the experiments 

were computed in a load (pounds force) vs. time (seconds). Stress - strain curves were 

regenerated by dividing the load by the cross sectional area and the displacement by the 

gauge length with their conversion factors respectively. The mechanical properties of 

the mats ‘tensile strength, Young's modulus, strain at break as well as yield stress and 

strain’ were determined from the plotted tensile stress - strain curves. 

 

7.3.2 Results and discussion 
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shows the plotted stress - strain curves of the mats. It can be seen from the attached 

photos that the mat was stretched up to around 125-150 % strain without visible rupture. 

The initial part of these curves shows a linear elasticity within a small range of strain 

followed by nonlinear elasticity and a high resistance to deformation. In fact, the 

possible reasons for such high resistance are the high entanglement of fibre-to-fibre and 

the cohesive forces in the fibres assembly which lead to resisting slippage and 

deformation under loading. 

  

 
Figure 7.5, Typical stress - strain curves of nylon 6/MWCNTs composite nanofibre 

mats. The curves were correlated to samples containing MWCNTs of 0 and 1 wt. % in 

the composite nanofibres respectively. The attached photos show clearly how the mat 

was stretched and a schematic drawing of the tensile tester principle. 
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A yield stress point can also be observed after the initial part of the stress - strain curves 

followed by a gradual reduction in the Young’s modulus caused by the initiation of the 

fibre slippage. As a result, fibre slippage has led to a slight fibre alignment along the 

tensile axis which made a slow increase in stresses being generated [47]. Further 

increase in stretching has led to a decrease in the cross sectional area of the mats up to 

45 %, resulting in a subsequent failure of the fibres assembly. 

Electrospun nylon 6 nanofibre mats are found to exhibit a tensile strength of 10.45 MPa, 

strain at break of 250 %, a 2 % offset yield stress of 6.7 MPa and yield strain of 48 %. 

The young’s modulus of the electrospun nylon 6 mat was 19.4 MPa calculated from the 

linear portion of the stress - strain curve. However, the Young’s modulus of the nylon 6 

nanofirbre mat is about 56 times lower than that of an undrawn single nylon 6 filament 

[48], 770 times lower than that of a conventional nylon 6 fibre and 1540 times lower 

than that of a single nylon 6 nanofibre at diameter of 85 nm [37]. The possible reasons 

for these low mechanical properties are because the molecular chains inside the 

electrospun fibre are not in good orientation along the fibre axis and due to the weak 

entanglements inside the nanofibrous mat. 

Compared to the nylon 6 mat, the tensile strength of the nylon 6/MWCNTs mat 

containing only 1.0 wt. % of multiwall carbon nanotubes was increased by 25 % from 

10.45 to 13.05 MPa, the strain at break was decreased by 18 % from 250 % to 205 %, 

the yield stress was increased by 34 % from 6.7 MPa to 9 MPa and the Young’s 

modulus was increased by 46 %, from 19.4 MPa to 28.34 MPa. Thus the composite 

nanofibre mat has a higher stiffness and strength but lower ductility. In general, the 

improvement of the strength property by incorporating carbon nanotubes into the 

nanofibres was expected and fully agreed with the reported literature [46, 49-51]. 

Further alignment of nylon 6 nanofibres and proper drawing of the aligned fibre 

assembly are necessary in order to attain the required mechanical properties of the 

nanofibre mat. It has been found by Dean et. al. [52] that an improvement of molecular 

orientation of the nanofibre and thus Young’s modulus of the mat can be achieved by 

collecting the nanofibres on a rotating collector. They have reported increases in 

Herman’s orientation factor [53] from 0.149 to 0.204 and young’s modulus from 58 

MPa to 202 MPa with increasing the collector take up speed from 3000 rpm to 6000 

rpm.    

However, the tensile test of nonwoven mat is not suitable for characterizing the 

mechanical properties of nanofibres, because the fibre orientation is changed during the 

tensile test and also the nanofibre mat includes friction between the fibres which 
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influence the fibre property results. A more accurate analysis can be achieved by 

conducting the tensile test on a single nanofibre or on aligned nanofibre bundles. 

 

7.4 Novel approach for tensile testing of single nanofibre [58]  

A direct tension test of single nanofibre is a better way to characterize the mechanical 

properties of electrospun nanofibres. We designed a laboratory test rig set-up to conduct 

tensile tests on single nanofibres. The proposed set-up of load and elongation 

measurements is based on two linear springs in series principle and in accordance with 

the vibrations fundamentals [1, 4, 55], as shown in figure 7.6. In this principle, a spring 

with stiffness constant (KS) and a single nanofibre ‘representing a spring’ with stiffness 

constant (Kf) are configured in series. Provided we apply a force F on this series, the 

force itself will transfer to the spring and the fibre at the same time i.e. F = FS = Ff.   

 

 
Figure 7.6, Schematic drawing of the spring ‘transducer’- fibre series configuration [1, 

4]. 

 

Elongation of the nanofibre can be calculated by subtracting displacement ‘elongation’ 

of the spring from elongation of the moving head ‘the movable clamp’ i.e. δ f  = δ- δS. It 

must be noted that the applied force ‘load’ F and the elongation of the moving head are 
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known by the spring stiffness constant (KS) and its elongation (δS) and the moving head 

velocity. We also note, in this set-up, that the elongation resolution is dependent from 

both the movable head velocity and the spring stiffness constant (KS), while the force 

resolution is dependent only on the spring stiffness constant (KS

A polymer solution of nylon 6 and formic acid at concentration of 20 wt. % was spun 

with electrospinning parameters; a volume feed rate of 0.2 ml/h, an applied voltage of 

15 KV and a spinning distance of 8 cm. Aligned nanofibres were deposited over two 

circular electrically grounded disks separated by 4 cm space distance and collected over 

2 minutes time. These operational parameters were used for producing aligned and 

uniform distribution diameter nylon 6 nanofibres, as described in chapters two and three 

[26]. To determine the tensile load acting on a single nanofibre, a typical micro spring 

with stiffness constant of 3.75 mg(wt)/mm ‘0.03823 N/m’ and wire diameter of 100 µm 

supplied by (Skegness Springs Ltd, Lincs, UK) was used to measure the micro Newton 

force applied on the fibre. Tensile tests on a number of 12 samples were carried out as 

the following; double-sided adhesive tapes were placed on the cardboard frame to attach 

the nanofibres on the frame. By using the alignment mechanism of nylon 6 nanofibres 

(see figure 3.2), the cardboard frame was located beneath the collection disks and 

moved upwards to the targeted nanofibres until a bundle of aligned nanofibres was 

collected onto the two pieces of the adhesive tapes on the cardboard frame. Then the 

frame was held by the fixed head and gripped on the spring and then the ‘rib’ of the 

cardboard frame was cut carefully, leaving the two ends gripped between the spring and 

). 

The tensile test set-up contains different parts. The first part is a movable head as in the 

case of an actuator, moved by attaching it to a digital pump. The head movement 

velocity can be controlled by the pump software being from several nanometers per 

second to several millimeters per second [54]. The second part is a spring acting as a 

transducer for measuring the tensile load. The load resolution is determined by the 

spring stiffness constant, this constant must be small in order to increase the load 

resolution. A cardboard frame with adhesive for holding vertically the nanofibre, a fixed 

head ‘clamp’ for holding the nanofibre frame, two grips for holding the frame - spring - 

movable head altogether in series, a ruler for reading the spring displacement and a 

vario illuminated stand magnifier are the other parts of this set-up. Figure 7.7, shows a 

schematic drawing of the designed tensile test set-up and a photograph of the set-up 

during experiment. 

 

7.4.1 Experimental; electrospinning, samples preparation and nano tensile testing 
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the fixed head. With the aid of an intense bright light source and a dark background, 

individual nanofibres on the cardboard frame were visible due to light scattering 

through the nanofibres [2].  

  

 
Figure 7.7, (Left) a schematic drawing shows the tensile testing set-up. It contains a 

single nanofibre held by a cardboard frame, the frame is held by a fixed head ‘clamp’ 

and gripped to a spring and the spring is gripped to a movable head by a rigid wire 

which does not significantly influence the actual tensile test of the nanofibre. A ruler is 

also held by the fixed head for reading the spring displacement. (Right) a photograph of 

the tensile testing set-up during on experiment. 

 

Consequently, an electrospun single nanofibre or known number of individual 

nanofibres is obtained by removing the non-required nanofibres as shown in figure 7.8. 

An electrospun single nanofibre on the cardboard frame of a 20 mm gauge length was 

used as the tensile test sample. The velocity of the moving head was adjusted at 7.2 

mm/min to allow the stretching of the nanofibre at constant loading rate.  
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Figure 7.8, Individually aligned nanofibres are visible by light scattering. They are 

gripped between the spring and the fixed head through the cut cardboard frame.  

 

Figure 7.9, shows different stages of the tensile testing for each sample. Proper sample 

gripping is necessary to prevent fibre slipping from the grips or breaking at the grips. 

Care was taken so that the single nanofibre appeared always vertical before the tensile 

test. Twelve samples were prepared under the same processing conditions for each 

tensile test and stretched to failure. After every tensile test, the broken fibre segments 

were coated and characterized by the SEM for measuring the nanofibre diameter. 

The cross sectional area of the fibre is calculated from the diameter of the fibre, 

assuming circular cross section, measured by the SEM image as shown in figure 7.10. 

The initial and final X-position of the spring was noted for the calculation of the 

nanofibre elongation after the tensile test is conducted. The force was divided by the 

cross-sectional area and the linear density ‘tex’ of the single nanofibre to obtain the 

stress applied in different units ‘g (wt)/tex and MPa’. The single nanofibre strain was 

obtained by dividing the elongation by the gauge length. 

 

7.4.2 Results and discussion 

Good care, skillful manipulation, familiarity and time are required to conduct the tensile 

test for each sample. Nevertheless, the set-up is capable of providing data of the 

mechanical response of the spring and the nanofibre subjected to a tensile load. The data 

obtained is displacement of the spring over time, and hence the applied load and the 

nanofibre elongation. The average plots of the moving head velocity, the spring 
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displacement and the fibre elongation over time are shown in figure 7.11. Due to the 

resolution of the applied load, the nanofibre elongation is determined by the number of  

 

 
Figure 7.9, Recorded photographs show the tensile test set-up is conducted step by step. 

(a) Shows the spring ‘transducer’ loaded by its weight only. (b) A cardboard frame 

containing aligned nanofibres was gripped to the spring, it is clear to see the spring 

displacement under the frame and nanofibres weight. (c) The cardboard frame was laid 

on and suspended between the fixed head jaws. (d) The cardboard frame was gripped by 

the fixed head jaws and its rib was clipped.  (e) The cut rib of the cardboard frame (f) 

Non- required aligned nanofibres were carefully removed and thus a single nanofibre 

gripped between the fixed head and the spring with a 20 mm gauge length is ready for 

tensile test. (g) The tensile test process is utilized under a constant loading rate. (h) 

Tension is still applied on the nanofibre without nanofibre breaking. (i) Breaking 

‘failure’ of the tensioned nanofibre has occurred, and the bounce of the upper end of the 

frame is clear as a result of nanofibre breaking. 
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Figure 7.10, A schematic of the steps for determining the diameter of the broken single 

nanofibre, SEM image used to determine the diameter of the broken single nylon 6 

nanofibre after the tensile test has been conducted. 

 

readings in unit time, hence the higher the number of readings the higher the accuracy. 

 

 
Figure 7.11, Method of calculating the fibre elongation over time. (a) Plot of the 

loading head movement versus time. (b) Average plot of the transducer spring 

displacement versus time. (c) Average plot of the nanofibre elongation versus time 

which indicates an approximately strain rate of 8 %/min. 

 

The applied load on the nanofibre and the elongation over time were calculated from the 

equations mentioned in figure 7.6, above. Subsequently, the average stress - strain curve 

of a single nylon 6 nanofibre with diameter of 800 nm is plotted in figure 7.12. Based 

on this curve, when the nanofibre is loaded it goes through a linear elastic deformation 

followed by linearly strain - plastic deformation till the final breakage point is reached 

at the ultimate strain. It can be seen that the mechanical properties of single nylon 6 

nanofibre are: Young’s modulus of 901.65 MPa, tensile strength of 304 MPa, yield 

stress of 136.9 MPa and yield strain of 15 % and strain at break of 40 %. 

 



 
208 

 
Figure 7.12, Average stress - strain curve of single electrospun nylon 6 nanofibre. 

 

It has been shown that the ultimate tensile strength and the Young’s modulus of single 

nylon 6 nanofibre were improved up to 30 times and 47 times respectively, than that of 

nonwoven nylon 6 nanofibre mat. This improvement is partly due to the orientation of 

the internal molecular structure of nylon 6 nanofibre induced by the alignment 

mechanism. On the other hand, the highest Young’s modulus obtained for the 

electrospun nylon 6 single nanofibre with 85 nm diameter was about 30 GPa by using 

bending test method [37]. Moreover, conventional nylon 6 microfibre has a stiffer 

microstructure than the nylon 6 nanofibre and thus higher mechanical properties, such 

as; ultimate tensile strength up to 490 Mpa and strain at break of 25 % [56]. Little or no 

information has been reported on tensile testing of single nylon 6 nanofibre, and hence 

no comparison of results can be made. 

It is expected that the orientation of nylon 6 molecules along the nanofibre axis is 

completely formed due to the extra ‘drawing’ effect during electrospinning and the 

alignment mechanism which in additionally orientates the molecules along the fibre 

axis. In this study, we evaluated the mechanical properties of single nylon 6 nanofibre 

due to the drawing ratio induced by the electrospinning process and the molecular 

chains orientation induced by the alignment mechanism. When examining these 

mechanical properties we can conclude that a higher molecular orientation and a degree 
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of crystallinity are required to improve the structural characteristics of nylon 6 

nanofibre. This is consistent with the trends in the alignment mechanism. Hence, as 

discussed in chapter 3, we have been able to obtain aligned nanofibres up to 10 cm long 

by spacing the collection disks up to 10 cm. Under these conditions, as the polymer 

nanofibre reaches the first collection disk; it travels a long distance before reaching the 

second collection disk. The use of collection disks with large space distance of 10 cm 

aligns the molecular chains in the direction of fibre axis, resulting in a higher degree of 

molecular orientation. 

The discussed novel approach for tensile testing of single nanofibre based on an 

actuator and a micro spring as a transducer has been shown to be able to establish the 

mechanical behaviour of single nanofibres and nanofibre bundles. The tensile testing 

set-up demonstrated in this study can be used for the mechanical characterization of 

other polymer nanofibres. This set-up can be developed for nanomechanical testing of 

nanoscale fibres and other materials. 

 

7.4.3 Future work 

As pointed out in the above discussion, the mechanical properties of electrospun nylon 

6 nanofibres are affected by fibre diameter, molecular geometry, molecular orientation 

and degree of crystallinity [7]. Within the fibre diameter category, it has been 

demonstrated that the finer the nanofibre, the higher orientation of the macromolecular 

chains will be achieved and thus high resistance to the axial tensile load [2, 8]. For 

improving the mechanical properties of electrospun nylon 6 nanofibres, the following 

processes have to be further considered. Firstly, based on the alignment mechanism, the 

mechanical properties of aligned nanofibres with lengths of 5 cm, 6 cm, 7 cm, 8 cm, 9 

cm and 10 cm have to be established. Secondly, the relationship between the collection 

disks space distance ‘nanofibre length’ with respect to the diameter of the nanofibre has 

to be verified. Thirdly, to make matters more useful, wide angle x-ray diffraction 

(WAXD) and SEM/TEM- based fractography have to be used on bundles of aligned 

nanofibres with different lengths to establish their structural properties. Where, 

(WAXD) pattern performs the molecular chain orientation ‘orientation factor’ and 

degree of crystallinity and TEM fractographical image performs the tensile failure 

mechanism ‘‘brittle fracture or necking appearance’’. 

Another key issue related to future work is to equip the tensile testing set-up apparatus 

with more effective and robust measurements parts. Resistive ‘semiconductors’ strain 

gauges integrated into the spring and a CCD camera mounted on a microscope for 
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observing the nanofibre alignment and the mode of failure are examples of set-up 

apparatus improvements. In addition, to achieve very high force sensing resolution, one 

can either find a spring with very low stiffness or, even better, employ very high 

resolution displacement sensors. 

Finally, the specification standard for single nanofibres tensile testing can be established 

by optimizing the gauge length of the sample, the load and displacement resolution and 

the strain rate applied on the nanofibre. This is a fundamental stepping stone for 

nanomechanical testing of nanofibres. 
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CHAPTER 8: GENERAL DISCUSSION AND CONCLUSION 

 
8.1 Overall project summary 

In this thesis, we have aimed to investigate yarn spinning from electrospun nanofibres. 

We have based these studies on the staple yarn spinning concept by controlling the 

nanofibres morphology, aligning the nanofibres, inserting twist and taking up of a yarn. 

We have also aimed to optimize the geometrical and mechanical properties of the spun 

yarn by defining the yarn linear density, nanofibres twist per unit length and mechanical 

properties of every single nanofibre. This aim has been fulfilled by investigating the 

kinetic features of nanofibres entering into the spinning zone, theoretically and 

practically. It has also required studying the tensile testing behaviour of a single 

nanofibre. Typically, we have aimed throughout this investigation to provide a spinning 

strategy for yarn formation from electrospun nanofibres. This strategy can be applied to 

any polymers and it is outlined by the following findings: 

 

- Controlling the electrospun nanofibre morphology (uniform nanofibre diameter 

and electrospinning nanofibres with approximately equal diameters). 

- Aligning and paralleling the electrospun nanofibres by a mechanism designed to 

be compatible with the need of twist insertion. 

- An effective mechanism for inserting twist into aligned nanofibres and taking up 

the yarn. 

- Nanofibre orientation. The alignment mechanism must provide the required 

degree of chain orientation and crystallinity for nanofibre. 

- Defining the velocity of the nanofibres and their linear density in order to 

control the yarn linear density and twist per unit length. 

 

8.2 Summary of project results and suggestions for future work  

Based on the above requirements, we have established the research findings in spinning 

nylon 6 nanofibre yarn. We have used nylon 6 polymer consistently for electrospinning 

of nylon 6 nanofibres and spinning them into yarn. We have designed and implemented 

the electrospinning set-up after good understanding of its operational principle and 

effects on process parameters. 

 

We have investigated the physical properties of nylon 6/formic acid solution at different 

concentrations and the electrospinning process parameters in order to establish their 
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effect on the nylon 6 nanofibres morphology, average diameter and diameter 

uniformity. We have characterized the electrospun nylon 6 nanofibres at different 

concentrations, applied voltages and electrospinning distances by SEM. It has been 

found that the polymer solution concentration plays an important role in determining the 

nanofibre morphology. Particularly, polymer solution concentration of 20 wt. %, 

applied voltage of 15 KV , volume feed rate of  0.2 mL/h and electrospinning distance 

of 8 cm have been found optimum to make uniform nylon 6 nanofibres with uniform 

diameter.  

 

After reviewing nano aligning mechanisms, we have redesigned a novel nano aligning 

and paralleling mechanism by introducing a gap ‘space’ between two grounded copper 

collector disks. This mechanism has generated a bundle of aligned three dimensional 

nylon 6 nanofibres and it has also been found suitable for nanofibres twist insertion. We 

have systematically scrutinized the degree of nanofibres alignment, nanofibres length 

and linear density of the collected nylon 6 nanofibres by varying the space between the 

disks and the collection time. The experiments have demonstrated that the number of 

the distributed nanofibres in the bundle can be controlled by altering the applied 

voltage, collection time and space between the disks. SEM images have indicated a 

greater degree of alignment as the space between the disks and collection time 

increases. The analysis has shown that the electrostatic repulsion forces between the 

deposited fibres also have a significant effect on the degree of alignment. The maximum 

length of the fibre bundle collected was 10 cm, depending on the collection geometry 

and processing parameters. We have found that the optimum distance between collector 

disks for spinning aligned nanofibres with acceptable density is 4-5 cm. This has 

provided the basis for twisting the nanofibre bundle into a yarn form. We have revealed 

that the strength of the stretching forces exerted on the nanofibres is related to the 

applied voltage, collection time and space between the disks. In other words, alignment 

and stretching of the nanofibres are derived by the electrostatic interactions between the 

positive electrode on the spinneret and the grounded disks. 

The fibres have been characterized mechanically to ascertain their mechanical 

behaviour which is an indication of their chain orientation. 

 

Before spinning the nanofibres into a yarn, we have aimed to functionalize and 

strengthen the nylon 6 nanofibres. We have opted in using multiwall carbon nanotubes 

(MWCNTs) as filler nanoparticles, due to their high hardness, strength, thermal and 
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electrical conductivity. We have used the shearing method (sonicating) to improve the 

dispersion of MWCNTs into the polymer solution. We have manipulated the electric 

forces of electrospinning and the stretching forces of the alignment mechanism to 

perform better alignment of the MWCNTs along the nanofibre axis. We have conducted 

SEM and TEM studies to characterize the morphology of nanofibres, the dispersion of 

MWCNTs and their alignment inside the fibre body. We have found that high speed 

shearing is a simple and convenient method to improve the dispersion of MWCNTs into 

a polymer matrix under a given loading. We have also noticed that the geometrical and 

electrical stretching of the collected nanofibres aligned the MWCNTs along the axis of 

the nanofibre, proving the alignment mechanism effective. We have also demonstrated 

that MWCNTs could not be completely embedded into the nanofibre when the loading 

concentration was increased above 3 wt. %. This indicates that the shearing method of 

dispersion could not perform higher loading concentration of MWCNTs in the polymer 

solution. In other words, further investigation for useful dispersion agents must be 

carried out in future work for improving CNTs/nanofibre composite. 

 

After preparing aligned nanofibres and reviewing all nanofibre yarn spinning 

mechanisms and understanding their principles, a suitable yarn spinning mechanism 

was designed and used successfully. It was found that by controlling the geometrical 

shape and strength of the electric field between the spinneret and the collector, it is 

possible to control and achieve various nanofibrous architectures. Moreover, inserting 

twist and taking up the yarn requires grounded dynamic collection parts. Based on these 

requirements, we have implemented a novel mechanism for spinning continuous twisted 

yarn from aligned MWCNTs/ nylon 6 nanofibres. We have modified the alignment 

mechanism further (two faced disks separated by a distance of 4-5 cm) into a spinning 

mechanism by dynamically making the first disk as a twist inserting disk and the second 

disk as a taking up disk. SEM images have showed twisted nanofibres yarns with 

diameters ranging between 5 to 10 microns. We have found that twist speeds of 500 to 

750 revolutions per minute and taking up speed of 8 m/min are optimum, provided that 

the electrospinning parameters remain constant. One important challenge we faced was 

the sticking of the yarn on the take up spool. This is attributed to the lack of evaporation 

of the solvent. Although we tried to overcome this problem taking into account the 

efforts of previous researchers, we still experience difficulties in winding of the yarn. 

Some suggestions for further research are outlined below. 
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- To control the evaporation rate of the solvent from the nanofibres until fully 

dried.  

- To either change the take up spool material structure or coat the metallic spool 

with suitable lubricant.  

- To coagulate the solvent during evaporation by putting the spinning zone 

devices in a liquid bath suitable to the polymer solution used, provided that the 

imparted twist in the liquid medium can be controlled during the nanofibre yarn 

formation.  

- To change ‘electrospinning’ as ‘electro dry spinning’ to ‘electro melt spinning’ 

as it is more effective for spinning continuous yarn wound onto a take up spool 

without sticking. 

 

Furthermore, for extending the nano yarn end use and based on the core spun yarn 

concept, we have also investigated and successfully fulfilled another new electro 

mechanical mechanism for spinning ‘core electrospun nano yarn’. SEM images have 

shown that the deposited nanofibres are wrapped helically around the core filament 

resulting in a core electrospun nano yarn. We have analytically investigated the 

parameters of this mechanism such as feed-in angles, twist speeds and take up speeds 

for optimum spinning performance. Twist speeds at 500 to 750 revolutions per minute 

on core filament feed-in angle of 0o

- By increasing the number of the spinnerets around the core filament. 

 degree and take up speed of 1.5 cm/sec were found 

to be the optimum parameters for producing nano yarn under this new nano yarn 

spinning mechanism. 

Some further suggestions to increase the take up speed and thus the core yarn 

production rate are as follows; 

 

- By improving the nanofibres-filament core adhesion such as: pre-treatment of 

the synthetic core with plasma. 

 

We have found that core filaments that can be used include polymer, carbon, glass and 

elastomeric filament, monofilament, textured filament, high tenacity filament, metallic 

wire and staple yarn. Spinning continuous nanofibre yarn has great significance for 

many applications; medical and industrial such as filters, diapers, sanitary pads, 

protective and wiping clothing and light composites for automotive and aerospace use. 
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As mentioned previously, controlling the taken up yarn linear density and its twist per 

unit length has required defining of the entering nanofibres velocity into the spinning 

zone and their linear density. This point has been further explored aiming to define 

theoretically and practically the collected nanofibres velocity. We have reviewed the 

mathematical equations that govern electrospinning from the jet initiation to the 

nanofibres collection. We have examined the electrospinning modes theory and their 

kinetic features, and we have derived a novel mathematical model as necessity for 

calculating theoretically the jet velocity at its splitting point, the number of nanofibres 

generated from the jet and their velocities. The equations of the electrospinning jet and 

nanofibre velocity were obtained through deriving the mass, charge and linear 

momentum conservation laws using Cauchy’s inequality, as the following. 
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Where, the first equation is for defining the maximum velocity of the jet at its splitting 

point based on the dimensional and operational features of the jet. The other equations 

are for defining the velocity and number of the nanofibres at the collection point based 

on the velocity and dimensions of the jet, dimensions of the collected nanofibre and 

evaporation rate of the solvent. We have found that these derived equations are 

convenient for theoretically predicting the density and kinematics of the electrospun 

nanofibres. To find out the accuracy of the model equations, we have determined 

practically the jet and the collected nanofibres velocities for PEO electrospun 

nanofibres. It has been shown that collecting the electrospun nanofibres by a rotating 

disk was an effective method for finding the actual velocity of the collected nanofibres. 

The experimental results of electrospinning PEO nanofibres have proved the jet splitting 

theory. It has been seen that the theoretical prediction was generally in reasonable 

agreement with the experimental evidence. 

 

Upon aligning the nanofibres, we have aimed to mechanically characterize the 

nanofibres by tensile testing single nanofibres and nanofibre mats. The tensile test 
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method provides information about the mechanical properties of the nanofibre such as 

tensile strength, elastic modulus and strain at break. We have successfully performed 

the tensile test on nylon 6 and composite nylon 6/ MWCNTs nanofibre mats by a 

commercial tensile tester with a view to recognize the MWCNTs filling effect. The 

testing results have shown that electrospun nylon 6 nanofibre mat had a tensile strength 

of 10.45 MPa, Young’s modulus of 19.4 MPa and strain at break of 250 %. After 

incorporating MWCNTs into the nanofibre, the nanofibre mat exhibited enhanced 

mechanical properties with a tensile strength of 13.05 MPa, Young’s modulus of 28.34 

MPa and strain at break of 205 %. The experimental stress - strain curves have shown 

that the nylon 6 nanofibre mat behaves like ductile material with obvious softening at 

the final failure, while the nylon 6/MWCNTs nanofibre mat behaves simply as a brittle 

material. However, it has been found that the tensile test for nonwoven nanofibre mat 

was not suitable for reflecting the exact mechanical properties of nanofibre. The 

architectural features of the fibre within the mat are random, fibre orientation is changed 

during the tensile test and also the nanofibre mat includes friction points between the 

fibres. A more accurate characterization can be achieved by conducting the tensile test 

on a single nanofibre or even aligned nanofibre bundles.   

We have provided a critical review of the developed mechanical characterization testing 

methods for single nanofibres including tensile and bending test method and 

nanoindentation. Taking into account the efforts of previous researchers, we have 

designed and implemented a novel home made set-up for performing tensile testing of a 

single nanofibre. The load and displacement resolution of the set-up are found sufficient 

to determine the stress - strain response of the single nylon 6 nanofibre during 

deformation. As a result, we have plotted the experimental stress - strain curve for the 

single nylon 6 nanofibre in order to define the tensile strength, axial tensile modulus and 

ultimate strain. The testing results have shown that the aligned single electrospun nylon 

6 nanofibre with 4 cm length had a Young’s modulus of 901.65 MPa, a tensile strength 

of 304 MPa, a yield stress of 136.9 MPa and a yield strain of 15 % and a strain at break 

of 40 %. In other words, the simple tensile test set-up has proven to be successful for 

obtaining the nanofibre mechanical properties. However, the compared values of the 

tensile strength, axial modulus and ultimate strain for nylon 6 nanofibre with those of 

conventional nylon 6 microfibre have indicated that some of the nylon 6 nanofibre 

molecule chains have not been oriented well along the nanofibre axis during 

electrospinning and through the alignment mechanism. For further improving the 
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mechanical properties of electrospun nylon 6 nanofibre and spun yarn, the following 

suggestions may be useful for future work: 

- Based on the alignment mechanism, the mechanical properties of the collected 

aligned nanofibres with length of 5 cm, 6 cm, 7 cm, 8 cm, 9 cm and 10 cm must 

be determined. 

- The relationship between the collection disks space distance ‘nanofibre length’   

with respect to the diameter of the nanofibre must be verified.  

- Wide angle x-ray diffraction (WAXD) and SEM/TEM- based fractography must 

be conducted on a bundle of aligned nanofibres with different lengths to clarify 

their structural properties. 

- A spring with very low stiffness constant, strain gauges integrated into the 

spring, very high resolution displacement sensors and a CCD camera mounted 

on a microscope must improve to the tensile set-up. 

- Finally, optimizing the tensile test standards such as; gauge length of the sample, 

load and displacement resolution and strain rate applied on the nanofibre must 

be defined as they are important specifications for nanomechanical testing of 

nanofibres. 

 

Lastly, to put this research in future context and clarify the industrial directions on 

nanofibre engineering, we have presented a critical account on the various modifications 

of the electrospinning designs to obtain different nanofibre architectures. We have 

illuminated by mechanism diagrams and nanofibre images the recent advances 

regarding nonwoven nanofibre fabrics, nanofibre fabric blends, nonwoven fabrics 

coated by nanofibre layers, three dimensional nanofibre fabrics and woven nanofibre 

fabrics. Moreover, we have investigated the industrial productivity of electrospinning. 

We have presented the experimental work in order to increase the electrospinning 

productivity and to verify the challenges associated with it. We have also provided a 

useful discussion on nanofibre engineering aspects and end uses such as core-shell, 

bicomponent, hollow, porous and fancy helical nanofibres. 

 

In conclusion, although electrospinning is an important and promising technology for 

producing different nanofibre architectures, there is still further work to be done in 

process parameters, geometries, on nanofibre properties, manufacturing of continuous 

nanofibre yarn and nonwoven mats, as well as venturing towards woven fabrics and 

functional coatings. 
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