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Abstract 

  The major objective of this thesis is to study the differential Zernike filter and its 

applications in phasing segmented mirror and image processing. In terms of phasing, we 

provide both theoretical analysis and simulation for a differential Zernike filter based 

phasing technique, and find that the differential Zernike filter perform consistently 

better than its counterpart, traditional Zernike filter. We also combine the differential 

Zernike filter with a feedback loop, to represent a gradient-flow optimization dynamic 

system. This system is shown to be capable of separating (static) misalignment errors of 

segmented mirrors from (dynamical) atmospheric turbulence, and therefore compress 

the effects of atmospheric turbulence. Except for segmented mirror phasing, we also 

apply the Zernike feedback system in image processing. For the same system dynamics 

as well as in segment phasing, the Zernike filter feedback system is capable of compress 

the static noisy background, and makes the single particle tracking algorithm even 

working in case of very low signal-to-noise ratio. Finally, we apply an efficient 

multiple-particle tracking algorithm on a living cell image sequence. This algorithm is 

shown to be able to deal with higher particle density, while the single particle tracking 

methods are not working under this condition. 
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Chapter 1 

Introduction 

 

 

 

 

 

 

 

1.1 Background 

1.1.1 Wavefront Sensing and Zernike Filter 

Measuring the wavefront (optical phase) of a light beam is critical for assessing the 

quality of an optical system and optimizing its performance. When light passes through 

an imperfect optical component, aberrations – or wavefront errors – are generated. By 

measuring these errors with a wavefront sensor, they can be either corrected or 

minimized. Typical detection systems are ineffective in the analysis of such objects 

since the eye, CCD cameras, photomultipliers and other light detection devices are 

sensitive only to variations in intensity and not wavefront. 

There are several types of wavefront sensors that are now commercially available. 

The most popular wavefront sensors are the Shack-Hartmann, curvature sensors, and 

multilateral shearing interferometers. Others, such as Pyramid sensor, March-Zehnder 

interferometer are also being investigated at present. Wavefront sensors can be found in 

a variety of applications, including performance assessment of aspheric lenses, 

characterization of DVD pick-up heads and the development of femtosecond lasers, 

compensation of atmospheric turbulence, and telescope adjustment. 

The Zernike filter, suggested by Zernike (for which he was awarded the Nobel Prize 

in 1953), is one among the wavefront sensing techniques [31]. It is known as Phase 
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Contrast Technique, which converts phase modulation caused by the object into 

amplitude modulation. In the case of weak phase objects, this conversion is performed 

such that phase variations map linearly to amplitude variation in the image field, thus 

rendering an image depicting the variation of optical thickness of a phase object. 

Zernike filter has been applied for static atmospheric turbulence compensation [34, 

35], and phasing of segmented astronomy telescopes [15]. Segmented primary mirror 

alignment, known as phasing, is one of the critical tasks of telescope adjustment. For 

accurate alignment of the segmented primary mirror, it is necessary to measure the 

extent of wavefront aberration of the light due to imperfectly aligned primary mirror 

surface. One of the objectives in this thesis is to utilise Zernike filter in wavefront 

sensing technique for phasing of segmented telescopes. 

 

1.1.2 Image Processing and Zernike Filter 

Automated particle tracking and analysis in image sequences is one of the major 

fields in digital image analysis research. There are many applications in video 

surveillance, multimedia services, automated vehicle guidance and driver assistance, 

remote sensing and meteorology, and medical imaging. It is also a very important theme 

in molecular biology. By their very nature, biomolecular systems are dynamic, and it is 

one of the major challenges of biomedical research and pharmaceutical industries to 

unveil the spatial and temporal relationships of these complex systems. Results in this 

area can be expected to have significant social and economic impact in the near future, 

as they can improve human health and well-being. Studies into biomolecular dynamics 

generate ever-increasing amounts of image data. To be able to handle these data and to 

fully exploit them for describing biological processes on a quantitative level and 

building accurate mathematical models of dynamic structures, computerized motion 

analysis is becoming a necessity. Over the past decade, a number of image analysis 

techniques have been developed in support of such studies. 

Achieving robustness and high accuracy in particle tracking and motion analysis in 

images obtained by light microscopy is hampered by three factors: the limited spatial 

resolution of the microscope; low signal-to-noise ratio as a result of the quantum nature 
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of light; and large variability of biological image data. All these factors put high 

demands on the design of automated image analysis techniques. 

Zernike filter can be applied to image processing to solve one of the essential 

problems - low signal-to-noise ratio - within particle tracking by adapting it into a 

feedback filtering system. We use the Zernike filter in this application because in 

Zernike filter feedback system, static component (noisy background) can be suppressed, 

and hence increasing the signal-to-noise ratio. 

 

1.2 Layout and Original Contributions 

This thesis can be divided into two separate parts. In the first part, which includes 

Chapter 2, 3, and 4, we study Zernike filter based segmented mirror phasing techniques. 

In Chapter 2, we present a review on existing segmented mirror phasing techniques. My 

original work in the first part of the thesis is presented in Chapter 3 and 4. Our 

investigations are by means of combined computational simulations and theoretical 

analysis mainly through Fourier transform. In Chapter 3, the differential Zernike filter is 

introduced and its application in segmented mirror phasing is studied both analytically 

and numerically. In Chapter 4, the differential Zernike filter is further integrated into an 

adaptive optical system, which is realized by combining the differential Zernike filter 

with a two-dimensional feedback. 

In the second part, which includes chapter 5, and 6, we study the image 

pre-processing, particle detection and tracking method especially in the cell biology 

application. Chapter 5 provides a review on the particle tracking in living cells. My 

original work for the second part of the thesis is presented in Chapter 6. In Chapter 6, 

we introduce the concept of Zernike filtering, which originate from that of Zernike 

feedback system, is used along with an existing single particle tracking algorithm to 

achieve better signal-to-noise ratio. Finally, we conduct automatic tracking on a real 

living cell image sequence, as an example of high particle density case, by an existing 

efficient multiple-particle tracking algorithm with a few modifications. 
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Chapter 2 

Phasing of Segmented Telescopes 

 

 

 

 

 

 

2.1 Segmented Telescopes 

The size of the primary mirror is critical to the observation capability of a telescope. 

Many telescopes are limited by the amount of light collected from the astronomical 

object. Angular resolution is also often a critical factor to understanding the nature of 

the astronomical targets. The angular resolution of a telescope mirror at light 

wavelength λ is determined by the relation λ/D (Rayleigh’s Criterion). Thus, a telescope 

with a larger primary mirror will have a higher resolution, allowing it to accurately 

image smaller details. The needs of the astronomical community have led to the 

development of telescopes with mirrors of ever-greater diameter. 

Two decades ago, nearly all telescopes contained monolithic telescope mirrors, which 

are mirrors comprised of a single piece of glass. Building a giant telescope from a 

monolithic mirror has many difficulties. Some difficulties typically grow rapidly with 

the increasing size, and quickly make monolithic mirrors impractical. These difficulties 

are: 

A) Reduced availability of mirror blank material 

B) Large optical deflections as a result of passive support of mirror 

C) High risk of mirror breakage from mishandling 

D) Larger deformations from thermal changes due to larger mirrors 

E) Large tool costs for all parts (fabrication and handling) 

F) Shipping being difficult 
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As the diameter of a monolithic mirror is increased, the thickness of the mirror must 

also be increased. Eventually, the sheer size and weight of the glass required makes this 

impractical for use in ground-based telescopes above a certain diameter. Similarly, the 

issues also make them impractical for use in larger space-based platforms due to 

spacecraft weight considerations. 

This limitation has been overcome with the development of segmented telescope 

mirrors, a concept originally proposed by Nelson et al. for use in the Keck Telescopes 

[1]. In a segmented telescope mirror, many smaller hexagonal mirror segments are 

placed side by-side forming a single, continuous main mirror. Because of their smaller 

individual size, the individual segments do not need to be as thick as a single monolithic 

mirror with the same total diameter. With the weight limitation removed, the 

construction of extremely large telescopes becomes possible. 

 

2.2 History of Segmented Mirror Telescopes 

People have divided regions into segments for ages, ranging from bathroom tiles to 

modern segmented mirror telescopes. Even the application of segmentation to optics is 

old. The first recorded use of segmented mirrors was by Archimedes, who in 212BC 

had an array of mirrors focused on attacking Roman navy in order to defend Syracuse. 

More recently, Horn d’Arturo in Italy made a 1.5 m segmented mirror in 1932. It was 

only used vertically, and was not actively controlled. In the 1970’s, Pierre Connes in 

France made a 4.2 m segmented mirror telescope for infrared astronomy. It was fully 

steerable, and active. Unfortunately, the optical quality was too low to be very useful for 

astronomic observation. 

Another type of segmented mirror telescope (actually multiple telescopes on a 

common mount) was developed in the 1970’s and completed early in the 1980’s. This 

was called Multiple Mirror Telescope (MMT), and was built in southern Arizona. The 

telescope was made of six 1.8 m primary mirrors, each axis-symmetric. Although this 

telescope worked, it suffered from a number of problems, and was not viewed as very 

successful. In the late 1970’s a very ambitious project to build a 10-m diameter 

segmented mirror telescope began, called the Keck Observatory. The geometry of the 

segmented primary mirror of the Keck telescope is shown in Fig. 2.1. The segmented 
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mirror telescope was very successful and due to its success, funds were acquired to 

make a second Keck telescope, and it was positioned to allow the two Keck telescopes 

to be used for interferometry as well as individual telescope observing. 

      

Figure 2.1 Geometry of the primary mirror of the Keck telescopes. Each segment is 0.9 

m on a side, showing the 78 circular subapertures that sample the intersegment edges in 

the phasing procedure. The subapertures are 12 cm in diameter. 

 

Since the existence of Keck, many other segmented telescopes have been proposed 

and built. The Southern African Large Telescope (SALT) is a ~10 metre diameter 

optical telescope, located in the semi-desert region of the Karoo, South Africa. Similar 

to the Keck Telescopes, the primary mirror is composed of an array of mirrors designed 

to act as a single larger mirror; however, the SALT mirrors produce a spherical primary, 

rather than the parabolic shape associated with a classical Cassegrain telescope. Each 

SALT mirror is a 1-meter hexagon, and the array of 91 identical mirrors produces a 

hexagonal-shaped primary with a size of 11 x 9.8 meters. The Gran Telescopio Canarias 

(GTC) ("Great Telescope Canary Islands"), sometimes called GranTeCan, is a 10.4m 

reflecting telescope and is undertaking commissioning observations at the Observatorio 

del Roque de los Muchachos on the island of La Palma, Spain. The telescope is sited on 

a volcanic peak 2,400 metres above sea level. The GTC started preliminary observing 

on 13 July 2007 following an opening ceremony using 12 segments of its primary 

mirror later to be increased to a total of 36 hexagonal segments fully controlled by an 

active optics control system. 
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There are also some other segmented telescopes under plan or construction. The 

Thirty meter telescope (TMT) (formerly called the California Extremely Large 

Telescope (CELT)) is a future large segmented-mirror optical and infrared extremely 

large telescope. Completion is scheduled for November 2014. Its primary mirror is 

designed to consist of 492 hexagonal segments each about ~1.4 m in diameter. The 

Overwhelmingly Large Telescope (OWL) is a conceptual design by the European 

Southern Observatory (ESO) organization for an extremely large telescope, which was 

intended to have a single aperture of 100 meters in diameter, but was later scaled down 

to a 60 meter diameter telescope. Because of the complexity and cost of building a 

telescope of this unprecedented size, ESO has decided to focus on the less ambitious 42 

meter diameter European Extremely Large Telescope instead. 

 

2.3 Phasing of Segmented Mirrors 

Although segmented mirrors are a promising option by comparison with monolithic 

primary mirror, they also bring about their own problems. The most well-known of 

these problems is achieving a smooth continuous mirror surface, a process known as 

phasing. A properly phased telescope will have a resolution comparable to the total 

diameter of the entire segmented primary mirror. On the other hand, a pre-phasing 

telescope will have very poor resolution, which is limited by the diameter of an 

individual segment. The importance of the phasing of the segment mirrors in a telescope 

has been demonstrated in several publications [2-4]. 

The analysis in this thesis is restricted to the correction of the piston, tip and tilt errors 

of the segments. Piston errors represent segment vertical misalignment in segmented 

mirror. Tip-tilt errors represent the segment turned up or down at the inter-segment 

edge. One important process in phasing a segmented mirror telescope involves the 

vertical displacements (piston error) between adjacent segments. If the piston errors 

between the segments are greater than approximately 20/λ  (where λ is the 

wavelength of light), then the effective diameter of the telescope (D) is equal to the 

diameter of a single mirror segment. Only when the piston errors are reduced below 

λ/20 is D given by the total diameter of the entire segmented mirror. In other words, the 
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full angular resolution of the entire segmented primary mirror is obtained only when the 

piston errors between the segments are smaller than λ/20. 

Clearly, it is important that the piston errors are reduced to less than λ/20 if the 

optimal resolution offered by the segmented mirror is to be achieved. While each mirror 

segment may be raised and lowered independently of the others by a set of actuators 

underneath, the issue of accurately determining the piston errors between the segments 

to a high enough precision is critical. This makes it very important to develop what are 

known as phasing algorithms: operations used to detect and correct the discontinuities 

between mirror segments through the analysis of various diffraction phenomena along 

the inter-segment edges. 

Three hardware systems are required for the active segment control: segment edge 

sensors which provide real time information about the relative segment displacements, 

segment actuators which compensate these displacements, and a phasing camera which 

measure the phasing errors optically [5, 52, 53]. 

The optical phasing camera is used at the beginning of each night before observation 

to measure the phasing errors. These measurements can be then used to control the 

segment actuators. The two steps can be repeated for several times to achieve a desired 

accuracy. During the operation of the telescope the phasing corrections are based on 

signals from edge sensors at intersegment borders. The reading of the edge sensors at 

the beginning of the night achieved by optical phasing is used as a reference. 

There are several existing optical phasing techniques reported by other researchers in 

the past years, including a modified Shack-Hartmann wavefront sensor [6-8], curvature 

wavefront sensor [9, 10], Mach-Zehnder interferometer [11, 12, 51], Pyramid wavefront 

sensor [13, 14], and ZEUS (Zernike Unit for Segment phasing) [15]. 

 

2.3.1 Shack-Hartmann Wavefront Sensor 

The Shack-Hartmann wavefront sensor is a simple and elegant means for measuring 

the shape of a wavefront. This technique has found application to a wide variety of 

applications [16, 47]. Among them, a modified Shack-Hartmann wavefront sensor [6] is 

used for detection of phasing errors in Keck Telescopes. 
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The principle of traditional Shack-Hartmann wavefront sensor is shown in Fig. 2.2. 

An image of the exit pupil is projected onto a lenslet array – a collection of small 

identical lenses. Each lens takes a small part of the aperture, called sub-pupil, and forms 

an image of the source. All images are formed on the same detector, typically a CCD. 

When an incoming wave-front is plane, all images are located in a regular grid defined 

by the lenslet array geometry. As soon as the wavefront is distorted, the images become 

displaced from their nominal positions. Displacements of image centroids in two 

orthogonal directions are proportional to the average wavefront slopes in either 

direction over the subapertures. Thus, a Shack-Hartmann wavefront sensor measures the 

wavefront slopes. 

                  

Figure 2.2 Schematic of the traditional Shack-Hartmann Wavefront sensor. 

In Keck telescopes, the key element of Shack-Hartmann phasing camera is an array 

of mmmm 32 ×  prisms, which replace the usual lenslet array in a traditional 

Shack-Hartmann wavefront sensor. This prism array is preceded by a mask at the 

position of the exit pupil. The mask, at a scale of 1/200 of the primary mirror, defines 

small circular subapertures at the centre of each intersegment edge. The size of the 

subapertures is chosen to be significantly smaller than the atmospheric coherence 

diameter, to ensure that the results will be insensitive to atmospheric turbulence. The 

atmospheric coherence diameter corresponds to the length-scale over which the 

turbulence becomes significant (10-20 cm at visible wavelengths at good observatories). 

  There are two algorithms, the narrowband and broadband algorithms, which 

corresponds to the incoming light sources being monochromatic and of a finite 

bandwidth respectively [8, 48-50] along with Shack-Hartmann phasing camera. For 
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narrowband algorithm, phase differences between segments manifest themselves in the 

resulting diffraction patterns on the detector, and these phase relationships can be 

extracted by cross-correlation. Because the diffraction patterns are a periodic function of 

the phase difference between the two segments, the capture range of the narrowband 

algorithm (i.e. the maximum piston error which can be reliably detected) should be 

about 4/λ . The broadband algorithm is similar to the narrowband and uses identical 

hardware, but it exploits the finite bandwidth of the filters which define the wavelength 

of the starlight. The signal is the degree of coherence of the sub-image, and the relevant 

scale is not the wavelength but the coherence length of the filter. This is not only in 

general much larger than the wavelength, but it can be tuned to the conditions at hand if 

one has an a priori estimate of the phase errors involved. As a result this technique has 

an enormously large capture range and also dynamic range (This is roughly the coherent 

length, for a specific example. Consider a filter with a bandwidth of 10 nm and a central 

wavelength of 891 nm, corresponding to a coherence length of 40 mµ ). 

The mask-pupil registration is critical to this modified Shack-Hartmann scheme as 

the subapertures must be aligned accurately with respect to the intersegment edges, 

which in turn requires precise hardware positioning of lenslets with respect to a 

reimaged telescope pupil. As the number of segments grows, this requirement becomes 

increasingly critical, imposing extremely tight specifications on the pupil reimaging 

optics, particularly in terms of distortion [12]. As a result, the phasing camera designed 

for Keck may not be so easy to implement for a telescope consisting of more than 600 

segments. 

 

2.3.2 Curvature Sensor 

        
Figure 2.3  A schematic of a curvature wavefront sensor. 
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The curvature wavefront sensing was developed by F. Roddier since 1988 [17-19]. It 

takes an entirely different approach than Shack-Hartmann wavefront sensors. The 

curvature sensor measures an “image” at a location between the pupil plane and the 

image plane. If this image is before focus, it is called the intrafocal image; the image 

after focus is the extrafocal image, as shown in Fig. 2.3. The intrafocal image will be 

brighter in regions with positive curvature and darker in regions with negative 

curvature. The intensity pattern of the extrafocal image will be reversed with respect to 

that of the intrafocal image. In principle, only one out of focus image is needed to 

measure wavefront curvature. However, using both the intrafocal and extrafocal images 

makes a curvature system work better for several reasons: automatic compensation of 

systematic errors - variation in quantum efficiency, electronic gain, etc., and 

compensation of atmospheric scintillation. 

Using the vector r
r

 for the location yx,  in a z-plane, 1I  and 2I  for the intrafocal 

and extrafocal images, the signal S  can be constructed from the sum and difference of 

the intrafocal and extrafocal images: 

.
)()(

)()(
)(

12

12

rIrI

rIrI
rS rr

rr
r

−+
−−=                                             (2.1) 

To ensure that )(rS
r

 carries useful information on the segment phases, two 

conditions on the wavelength λ  must be satisfied [9]: 

(a) The scale of diffraction effects (associated with primary mirror segments) in the 

image plane should be small compared to the diameter d  of a segment mapped onto 

the image plane, 
f

dl

d

f <<λ
. Here, f  is the focal length of the telescope and l  is the 

defocus distance. 

(b) Diffraction effects associated with the segments should predominate over those 

associated with the atmosphere, dr >>)(0 λ . 

To get some insight into this method, consider an out-of-focus image of a Keck 

mirror, as shown in Fig. 2.4, perfectly aligned except for segment 13, which has a piston 

error of 8/λ  [20]. The dominant feature in this image is well-localized at a position 
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on the detector which has an obvious approximate correspondence to the location of the 

segment in question in the pupil. For piston errors of this size or smaller, the strength of 

the feature in the difference image will vary monotonically with the piston error. It 

follows that multiple piston errors can therefore be extracted from the difference image 

by straightforward cross-correlation techniques. Because the diffraction pattern in Fig. 

2.4 spills over the boundaries corresponding to segment 13 and because the linearization 

effected by the restriction to small piston errors is only approximate, the curvature 

phasing algorithm does not converge in one step, but rather is an iterative procedure, 

requiring multiple (typically 5-6) exposures. 

   

Figure 2.4 Numerically generated out-of-focus image of the Keck telescope with 

segment 13 pistoned by 8/λ . Note that the resulting diffraction effects are 

well-localized at a position that has an obvious correspondence with the position of the 

segment in the pupil. 

 

Curvature wavefront sensing has the immediate advantage that no special purpose 

hardware is required, only a detector is needed. The precise mask-pupil registration is 

avoided, and it utilizes a larger fraction of the segment surface by comparison with 

Shack-Hartmann techniques. 

 

2.3.3 Mach-Zehnder Interferometer 

The Mach-Zehnder interferometer, developed a century ago to measure the refractive 

index variation in a suppressible gas flow, is an example of a classical optical system 



 18 

which finds uses in various applications. A schematic illustration of the Mach-Zehnder 

sensor is shown in Fig. 2.5. The beam is split into two arms of the interferometer, and a 

pinhole, placed in the focal plane of one arm, acts as a spatial filter providing a 

reference wave coherent with the beam in another arm. The two beams are recombined 

and form two complementary interference patterns recorded by two imaging detectors. 

The proposed sensor departs from this classical scheme by the size of the pinhole. 

While the classical versions employ a pinhole smaller than the Airy disk, producing a 

perfectly spherical reference beam, the version that we propose for segment phasing 

uses a much larger spatial filter whose diameter is approximately equal to that of the 

seeing disk. The seeing disk, in astronomy, is a reference to the best possible angular 

resolution which can be achieved by an optical telescope, which is viewing the celestial 

sphere from within an atmosphere. The reference wave is now a low-pass filtered 

version of the original wave front, which, when interfering with the latter, produces an 

intensity distribution conveying information about only the high-frequency wave-front 

aberrations. While the atmospheric turbulence has a power spectral density that is 

dominated by low-frequency errors and that falls off rapidly toward higher frequencies 

according to the Kolmogorov law [42], the power spectral density representing 

intersegment phase steps has strong high-frequency components. Eliminating 

low-frequency wave-front errors will therefore make piston-induced errors dominant. 

Furthermore, since the remaining aberrations related to atmospheric turbulence are 

smaller than 1 rad, they will average out in a long exposure image. 

               

Figure 2.5 Schematic representation of the Mach–Zehnder phasing sensor. 
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We denote by 1I  and 2I  the intensity in the two arms of the interferometer 

measured in a pupil plane. If the OPD is equal to 4/λ , the one dimensional signal of 

Mach-Zehnder interferometer can be written as 

|)],|(1)[()sin()()()( 21 xbxsignxIxIxS Φ−∆=−= φ                     (2.2) 

where x  is the one-dimensional spatial vector, 12 φφφ −=∆  is a phase “jump”, and 

b  is related with the pinhole size a  by the relation λπ /6.0 ab = . The function 

)(bxΦ  is the error function: 

'.)'exp(
2

)(
0

22 dxxb
b

bx
x

∫ −=Φ
π

                                      (2.3) 

The expression for the signal is factorized: While the amplitude of the signal is a sine 

function of the relative piston, its width is inversely proportional to the width of the 

pinhole.  

An algorithm for phase reconstruction from the signal )(xS  can use the maximum 

of the signal amplitude, or the difference between peak and valley, or the difference 

between the integrals of the “positive” and “negative” parts of the signal. Using the 

latter option, the calibration function can be defined as 
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φφ               (2.4) 

where the integration area 0x  is a free parameter that has to be optimized. 

The integral criterion of Eq. 2.4 has been used in a close-loop phasing algorithm [12]. 

As Eq. 2.4 is a sine function of φ∆ , the range of the measurable phase difference is 

limited to ]2/,2/[ ππ− . However, this capture range can be enlarged up to 2/λ±  by 

shifting the pinhole in the direction orthogonal to the considered intersegment border. 

This shift can be realised by adding a known tilt to the incoming wavefront [12]. 

 

2.3.4 Pyramid Wavefront Sensor 

The concept of the pyramid wavefront sensor is based on a modification of the 

Foucault knife-edge test used in optics to evaluate qualitatively the aberrations of an 

optical system. Pyramid wavefront sensing was first proposed by Ragazzoni in 1996 
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[21]. Like a Shack-Hartmann sensor, it measures the first derivative of the wavefront, 

the wavefront slope or gradient. 

A pyramid lens with four equal faces is placed with its vertex on the nominal focus 

point of the optical system. The four faces deflect the beam in four different directions, 

depending on which face of the prism gets hit by the incoming ray. A field lens is then 

used to re-image the pupil of the telescope. In the pupil plane a detector is used to 

measure the individual signals of the four faces. The principle is illustrated in Fig. 2.6. 

                 

Figure 2.6 Principle of the pyramid wavefront sensing. The pyramid lens is oscillating. 

When the incoming light reaches one of the four faces, it will be deflected in slightly 

different directions, and forming four pupil images on the detector surface. If the 

incoming light suffers aberrations, the four pupil images are no longer equal and from 

the relative point-to-point intensity differences the local gradient can be computed. 

 

In this configuration a ray of the incoming beam with wavefront error )(r
rψ , 

originating from a generic point ),( yxr =r
 on the pupil plane, is aberrated and reaches 

the pyramid displaced by a vector p
r

 from the vertex. The amount of displacement is: 

,
)(

r

r
fp r

r
r

∂
∂= ψ

                                                     (2.5) 

where f  is the effective telescope focal length. 

Hence one face will refract the ray and only in the corresponding pupil the region 

conjugated to the point r
r

 in the pupil plane will be bright. The other three pupils will 
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show a dark region in the same point. Although it is not possible to obtain the value of 

the aberration, its sign can be retrieved. 

Ragazzoni proposed to oscillate the pyramid (parallel to its base plane in "" dx  and 

""dy  direction) to allow all the aberrated rays to sweep over the four faces. If the 

introduced modulation xδθ  in the x  and yδθ  in y  direction satisfies the 

requirement |
)(

|
r

r
r

r

∂
∂> ψδθ , each pupil will receive a particular intensity of illumination 

that will be proportional to the displacement of the rays with respect to the pyramid 

vertex. 

After an integer number of oscillation cycles, the four pupil signals 1I , 2I , 3I and 

4I  are combined and normalized by the sum. Hence it is possible to retrieve the first 

derivatives or slopes 
x

yx

∂
∂ ),(ψ

 and 
y

yx
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of the wavefront along two orthogonal 

axes: 
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and 

.
)()(),(

4321

4321

IIII

IIII

y

yx
y +++

+−+
=

∂
∂ δθψ

                                  (2.7) 

The pyramid wavefront sensor shows some advantages with respect to a 

Shack-Hartmann sensor. The gain is variable by adjusting the amount of the movement 

or oscillation of the pyramid in x  and y . The amplitude can be increased when the 

image tilt is too large (for example during closing the loop), or to maintain an as high as 

possible signal to noise ratio during the measurements. 

The pyramid wavefront sensor was shown to be able to detect signals that are due to 

phasing error among segments of a segmented mirror for the first time in 2001 [22]. 

Numerical simulations performed demonstrated that the sensor can be used in an 

iterative control loop to phase a segmented mirror by using monochromatic light. It was 

pointed out in connection with those simulations that the sensor can simultaneously 

sense and control segment differential piston plus the tip and tilt of each individual 



 22 

segment without changing anything in the wavefront sensor configuration. A first 

experimental investigation of the pyramid wavefront sensor as phasing sensor was 

reported in 2003 [13]. The measured signal was found to be in agreement with the 

numerical simulations. In a more recent experiment [14] the alignment of a segmented 

mirror having three degrees of freedom per segment, i.e., differential piston, tip, and tilt, 

was studied. The closed-loop procedure reached a typical average wavefront residual 

error after loop convergence of 10 and 15 nm for piston and for tip and tilt, respectively. 

The results show the ability of the pyramid wavefront sensor to phase and align a 

segmented mirror in terms of piston and tip and tilt. 

 

2.3.5 ZEUS 

  The ZEUS (Zernike Unit for Segment Phasing) concept is developed in the context of 

the ESO (European Organisation for Astronomical Research in the Southern 

Hemisphere)-led Active Phasing Experiment (APE). It has its origin in the 

Mach-Zehnder (MZ) phasing sensor concept. In ZEUS, the Mach-Zehnder 

interferometer is replaced by a simple phase mask. ZEUS is almost analogous to the 

Mach-Zehnder concept physically, and it shares most of the performance characteristics 

of the Mach-Zehnder while avoiding the delicacy of the interferometric setup. 

 

 

 

 

 

 

 

 

Figure 2.7 Optical layout of the ZEUS system. 

 

Figure 2.7 shows schematically the optical layout of ZEUS. A Zernike phase plate, 

which is made of a transmissive mask with a diameter of the size of the full width at 

half maximum of the seeing disk (around 0.6 arcsec) etched onto a glass plate, is placed 
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at the common focal plane of a 4f system. The thickness of the mask corresponds to an 

optical path difference of 2/4/ ππ − . This mask replaces all the Mach-Zehnder 

interferometer optics. It must be mounted on a selection mechanism in order to provide 

a straight through reference image and a choice between two or more masks of different 

thickness and/or diameters to account for different operational conditions (seeing, 

coarse or fine phasing, etc). A lens projects the pupil onto the camera, producing images 

with the phasing errors contained in. A filter wheel provides band selection; 

narrow-band and multi-band operation will be used for coarse phasing, and broad-band 

operation will be used for ultimate performance fine phasing. 

The signal image (SI ) is normalized using three measured images, an image (I ) with 

the mask in place, the reference image (RI ) obtained by removing the mask, and a dark 

frame ( DI ) obtained by blocking the light path: )/()( DRRS IIIII −−= . The signal 

typically shows a sharp positive-negative double peak, as seen in Fig. 2.8. 

     

Figure 2.8 ZEUS signal profiles in the absence of atmosphere and for piston phase 

values of π/2. The mask thickness corresponds to a phase difference of θ = π/4. 

 

Its half peak-to-peak (PtP) amplitude, which can be determined by searching for 

positive and negative peaks near the segment edge, can be used to determine the 

inter-segment phase step (φ∆ ) according to approximation: 

),sin(2/ φ∆== APtPS                                             (2.8) 

where A is the calibration constant. The value of piston error in the wavefront can be 

retrieved by measuring the PtP value, and their relation can be given by: 



 24 

).2/()/(sin)2/( 1 πλπφλ ASp −=∆=                                    (2.9) 

In the absence of atmospheric turbulence, A depends only on the mask thickness. The 

calibration curve has a period of 2π, corresponding to a phase step of λ on the wavefront 

(λ/2 on the mirror surface) and an un-ambiguity range of ±π/2. Note that when operating 

in closed loop, the single-wavelength capture range, within which the closed-loop 

feedback system will converge towards p=0, is ±π. 

Results of simulations and lab experiment have shown that the phase retrieval 

algorithm (Eq. 2.9) can be used for system optimization purposes. Precision estimates 

indicate that piston errors of 3nm can be measured in fine-phasing mode by observing a 

10th magnitude guide star through a broad-band filter with 100s exposures [15]. 

 

2.4 Summary 

In this chapter, we have presented various techniques that have been developed and 

proposed for optical phasing of the segmented primary mirror. Without optical phasing, 

the misalignments of the segments can be of the order of several micrometers [20]. The 

basic principle for most of these techniques is a modification of the wave front reflected 

by the mirror surface in such a way that the amplitude or its distribution pattern of the 

detected wave conveys the information about the phase discontinuities or the derivatives 

of the wavefront. In Shack-Hartmann sensor, different phase steps give different 

diffraction patterns. In curvature sensor, the phase discontinuities are retrieved by 

measuring the difference in intensity between images obtained equal distances before 

and after the telescope focus. In pyramid wavefront sensor, a refractive element (the 

pyramid) is used to produce four images of the entrance pupil, and the phasing errors 

are derived by an algorithm based on these four images. In the Mach-Zehnder sensor the 

phase discontinuities are revealed by the difference of the two interferograms of the 

Mach-Zehnder interferometer. ZEUS in many ways shares the performance 

characteristics of the Mach-Zehnder but avoids the delicacy of the interferometric setup 

by using Zernike phase mask. In most of these methods, the piston and tip/tilt can be 

retrieved from the intensity pattern in the output signal. However, the output signals 

attributed to different methods contain different amounts of information related to 
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segment errors, therefore the measurement precision varies for different methods. Most 

of these sensors are compared with each other within the Active Phasing Experiment 

(APE) project [27, 28]. We also note that when the phasing errors exceeds 2/π± , 

most of the narrow-band phasing techniques suffer from a 2π ambiguity. This can be 

solved with multi-wavelength techniques [8, 23-26]. 

In the next chapter of this thesis, we discuss a new segmented mirror phasing 

technique (DZEUS) which has developed from the concept of ZEUS. In chapter 4, we 

study differential Zernike filter in a feedback system, in which the phase is 

automatically retrieved without any algorithmic computation. 
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Chapter 3 

Differential Zernike Phase Sensor for Phasing of Segmented Mirrors 

 

 

 

 

 

 

 

3.1 Introduction 

As we discussed in the last chapter, the requirement for precise hardware positioning of 

the reimaged pupil may be avoided in phasing sensors that are based on pupil plane 

detection. Four phasing sensors are currently studied for this purpose, they are, 

curvature sensor, pyramid sensor, Mach-Zehnder interferometer, and Zernike unit for 

segment phasing (ZEUS). The basic idea for all these four techniques is that the 

intensity of the outgoing wave conveys the information about the phase discontinuities 

of the segmented mirror. In curvature sensor, the phase discontinuities is retrieved by 

measuring the difference in intensity between images obtained equal distances before 

and after the telescope focus. In pyramid wavefront sensor, a refractive element (the 

pyramid) is used to produce four images of the entrance pupil, and the phasing errors 

are derived by an algorithm based on these four images. In the Mach-Zehnder sensor the 

phase discontinuities are revealed by the difference of the two interferograms of the 

Mach-Zehnder interferometer. ZEUS in many ways shares the performance 

characteristics of the Mach-Zehnder but avoids the delicacy of the interferometric setup 

by using Zernike phase mask. In ZEUS, the peak-to-peak (PtP) value of a localised 

intensity variation in the output has approximately a linear relation to sine function of a 

phase jump (piston) of φ  in the input light [15], i.e., ,sinφAPtP =  where A is the 
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calibration constant. The PtP value is therefore used to determine the corresponding 

piston error. The measurement accuracy in ZEUS is mainly determined by how good 

the approximation of the linear relation is. 

  As we know, the output intensity of ZEUS can be seen as two parts: symmetrical part 

and anti-symmetrical part [15]. The anti-symmetrical part is the main carrier of the 

phasing information (PtP). The symmetrical is usually seen as a source of pollution of 

the signal. 

In this chapter we present a differential Zernike filter based sensor for phasing of a 

segmented mirror. Differential Zernike filter is developed based on the traditional 

Zernike filter, and it was originally adopted in wavefront sensing for improved image 

contrast over conventional Zernike filter [29, 30]. This system is realized by replacing 

Zernike filter with differential Zernike filter in the ZEUS scheme, referred to as 

DZEUS. In section 3.3, we present in one-dimensional case the analytic expression for 

the PtP values of output intensity modulations against the input phase jumps in DZEUS. 

We show that the DZEUS gives rise to a better linear relation, compared to ZEUS, 

because the differential algorithm used in DZEUS remove the symmetrical (pollution) 

term that exist in the PtP expression of ZEUS. This makes DZEUS a better phase 

retrieval algorithm. In order to further improve the phasing accuracy, we put forward a 

multiple step correction approach which can further reduce the phase errors by 

iterations. In Section 3.7, we extend the one-dimensional analysis to two-dimension and 

study the performance of DZEUS using numerically generated segmented mirrors. We 

show that using the multiple step correction approach, the phasing error is reduced 

exponentially on the increase of iteration number. We further compare the 

characteristics between DZEUS and ZEUS and conclude that the former performs 

consistently better. Finally, we show that DZEUS is robust with respect to the 

atmospheric turbulence. 

 

3.2 Mathematical Model of ZEUS 
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Figure 3.1 Schematic of the ZEUS phasing camera integrated with Segmented 

Telescope. 

 

The main component of ZEUS is a traditional Zernike filter [31-33]. A traditional 

Zernike filter consists of two lenses with a phase-changing plate (Zernike phase plate) 

placed in the lenses’ common focal plane. The phase plate has a small circular region (a 

dot) in the middle that introduces a phase shift of usually 2/π  rad into the focused 

wave; the size of the circular region typically has the diffraction-limited radius of a 

focused, undistorted input wave. In practice, a narrow band filter can be applied before 

the Zernike filter, and we assume the incoming light is monochromatic. The 

phase-shifted wave-front then constitutes an in-line reference with which the radiation 

scattered from the phase object interferes and the resulting phase contrast can be 

observed. The output intensity distribution of Zernike filter can be measured by a photo 

detector. A schematic of Zernike filter in the ZEUS configuration is shown in Fig. 3.1. 

If we denote by )(1 rU
r

 and )(2 rU
r

 the complex amplitudes at the input and output 

pupil plane respectively, where r
r

 is the two-dimensional position vector, the complex 

amplitude in the common focal plane of the Zernike filter can be written as a Fourier 

transform of the input wave: 

,)exp()()( 11 rdrkirUku
vvvvv

⋅= ∫                                          (3.1) 

where k
v

 is a two-dimensional wave number in the focal plane, while ξ
λ
π vv

f
k

2= , and 

ξ
v

 is the two-dimensional position vector in the focal plane, and λ  is the central 

operating wavelength of the telescope, and f  is the focal length of the lens. The 
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complex amplitude of the wave in the output pupil of the Zernike filter after the phase 

filter is: 

,)exp(),()(
2

1
),( 12 kdrkiktkurU

vvvvvv ⋅−= ∫ θ
π

θ                             (3.2) 

where )(kt
v

 is the filter function of Zernike phase plate: 
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here b  is related with diameter of circular phase shift area a  by ab
λ
π2= , and θ  

the phase difference induced by the phase plate. The output intensity distribution 

2
2 ||UI d =  is recorded by the photon detector. 

      
                                  (a) 

       

                                  (b) 

Figure 3.2 (a) Input phase function for a single phase jump. (b) The transform function 

of the Zernike phase plate. Here a  is the size of the phase shift area, θ  is the phase 

shift induced by the Zernike phase plate within the phase shift area. 

 

While a measurement of a piston φ  in ZEUS is made on the assumption of a linear 

relation [15] between the sine function of this phase and its corresponding peak-to-peak 

(PtP) value of a localised intensity variation in the output and, as discussed in 

introduction, such a relation is an approximation, the degree of which depends on 

several factors such as the position and number of phase jumps, the aperture of the filter 
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and the size of the phase shift area of the filter. Here we examine this relation for ZEUS 

in the application in the segment mirror phasing and from this establish the 

measurement accuracy of the system. We begin with a single phase jump in the infinite 

one-dimensional space. 

For a single phase jump in infinite one-dimensional space, the wave takes the form 

of: 

)],(exp[)( 01 xiAxU φ=                                              (3.4) 

where )(xφ  is the input phase function. The arbitrary single phase jump at 1x can be 

mathematically written as )()()( 1121 xxHx −−+= φφφφ , the profile of which is shown 

in Fig.3.2(a). Here )(xH  denotes the Heaviside function, with 0)( =xH  for 0<x  

and 1)( =xH  for 0≥x . The transform function of the phase plate (Eq.3.3) introduced 

by the Zernike phase plate can be written as: 
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bkHbkHkt                        (3.5) 

As the diameter of the phase shift area b  corresponds typically to ''21−=α  on the 

sky [15], the relation between α  and b  can be given as λαπ /2 Lb ≈ , where L  is 

the focal length. If we take the focal length of the first lens in Zernike filter system as 

0.3m and the operating wavelength of 800nm, the value of b  is around 600-1200. The 

intensity output of the ZEUS can be obtained as 
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   (3.6) 

where )(xsign  is the sign function with 1)( =xsign  for 0≥x  and 1)( −=xsign  for 

0<x , the function Si  is the Sinc integral: 

.
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0
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u

dt
t

t
uSi                                                  (3.7) 

Eq.3.6 comprises two parts. The anti-symmetrical part is used in ZEUS as information 

carrier for phasing [15], and the symmetric part is seen as a source of pollution to the 

signal. 
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3.3 Differential Zernike Filter and DZEUS 

    

Figure 3.3 Schematic of the DZEUS phasing camera integrated in the Segmented 

Telescope. 

 

DZEUS is realized by replacing the traditional Zernike filter with a differential 

Zernike filter in ZEUS. A schematic of differential Zernike filter in the DZEUS 

configuration is shown in Fig.3.3. The only difference in DZEUS system is that there is 

phase shift controller applied to the phase shift plate, which shift between θ± . The 

differential Zernike filter was originally introduced by Vorontsov for wavefront sensing 

and correction [29]. The differential Zernike filter can be built by using a controllable 

phase shifting plate containing a single LC (liquid crystal) or MEMS 

(Microelectromechanical systems) actuator interfaced with the output photo array and 

image-subtraction system. The output intensity of differential Zernike filter is obtained 

by subtracting the two images recorded according to different phase shift in the phase 

plat, i.e., 

.2/)],(),([)( θθ −−= rIrIrI dddiff

vvv
                                     (3.8) 

where ),( θ±xId  is the intensity output of the traditional Zernike filter for a phase shift 

of θ± . Then the expression of the output intensity of differential Zernike filter can be 

derived by combining Eq.3.6 and 3.8: 

},/]2/)([)(){sin(sin)( 1112
2
0 πφφθ xxbSixxsignAxI diff −−−−=              (3.9) 

  We can see that the expression for diffI  is much simpler than that of dI . This is 

because there are two parts in Eq. 3.6, the first part is anti-symmetrical and used in 

ZEUS as information carrier for phasing [15], and the second part is symmetrical which 
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is seen as a source of pollution to the signal. The subtraction used in DZEUS removes 

the symmetrical term, leading to a simplified result as shown in Eq. 3.9. An example of 

the output signal intensity profile of differential Zernike filter ( diffI ) and traditional 

Zernike filter ( dI ) are plotted in Fig. 3.4. The symmetrical term in dI  (dotted line), 

which is exactly the difference between dI  and diffI  is also shown in Fig. 3.4 (b) 

along with dI . 

     

                 (a)                                  (b) 

Figure 3.4 The output intensity of differential Zernike filter (a) and traditional Zernike 

filter (b) as a function of x with 10 =A , 2/12 πφφ =− , 200=b , 2/πθ = , and 

01 =x , obtained by analysis results with unlimited boundary. 

The PtP amplitude in diffI , which can be determined by searching for positive and 

negative peaks near the segment edge, is defied as: 
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                    (3.10) 

We note that although the output profile of differential Zernike filter is different from 

that of Zernike filter, the PtP values for both are the same. However, this is true only for 

the current case of infinite aperture size. The value of piston error in the wavefront is 

given by: 

π
λ

π
λφ

2
)/(sin

2
1 APtPp −==                                          (3.11) 

This function can be used for the phasing errors (piston) retrieval. 
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3.4 Finite Aperture Size 

In reality, the effects of finite sizes of both aperture and lenses should be taken into 

account. As higher frequency scattering (which is out of the lenses collection) is 

insignificant and can be ignored, we only need to consider the boundary effects caused 

by the limited size of the telescope aperture. In this case the input field amplitude is 

therefore no longer a constant but a function of position, which can be written as 
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xHAxA −−+= , where d  ( 0>d ) is the diameter of the segmented 

primary mirror. We consider only a single phase jump at 1x , which corresponds to the 

position of the inter-segment edge, so 
22 1
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d <<− . The output intensity of 

differential Zernike filter with a single phase jump in the input is: 
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                (3.12) 

Eq. 3.12 is more complex than Eq. 3.9 as a result of the aperture. The output comprises 

two parts. The first part, with the function )( 1xxH − , is the carrier of the intersegment 

phase jump information. The second part, containing )2/( dxH −  and )2/( dxH + , 

is the carrier of the boundary information. Eq. 3.12 can be reduced to Eq. 3.9 when the 

boundary size d  goes to infinite. Moreover, the output intensity diffI  is no longer 

anti-symmetric in the presence of aperture. We plot diffI  against x  in Fig. 4. For 

comparison, we also plot the result of traditional Zernike filter ( dI ) with same aperture 

to show the different characteristics of the two. A major difference is that the aperture 

profile appears in the intensity distribution of traditional Zernike filter, but not in that of 

differential Zernike filter. This is because the profiles are the same in outputs with 

2/π±  phase shift and are cancelled by the differential algorithm in differential 

Zernike filter. 
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Figure 3.5 The output intensity of differential Zernike filter (top figure) and traditional 

Zernike filter (low figure ) as a function of x  with 10 =A , 4/12 πφφ =− , 20=b , 

2/π=c , 10=d , and 01 =x . 

 

  The peak-to-peak (PtP) value ofdiffI  in the differential Zernike filter can be obtained 

as 

}./]2/)2/([/]2/)2/([){sin(sin2
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Here the PtP depends not only on the value of the input phase jump but also the size of 

the aperture d , the size of the phase shift area b , and the position of the phase jump 

1x . This means that though the relation )sin( 12 φφ −∝PtP still holds for the current 

case, the proportionality coefficient varies with the phase jump position for fixed value 

of b and d. The change of the coefficient is discussed in Fig. 3.6 for different value of 

phase shift area b . The PtP oscillates around )sin(sin2 12
2
0 φφθ −A  (the value of 

which is 2 for the given parameter) on change of 1x .  The oscillation amplitude 

decreases with the increase of b because of the dependence of the term 

ππ /]2/)2/([/]2/)2/([ 11 dxbSidxbSi −−+  in Eq. 3.13 on b . Since b  has a typical 

value of 600-1200 as discussed earlier, if 1x  is away from 2/d± , we have 
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1/]2/)2/([/2/)2/([ 11 ≈−−+ ππ dxbSidxbSi . Under this approximation, Eq. 3.13 

can be written as: 

).sin(sin2)( 12
2
01 φφθ −≈ AxPtP                                       (3.14) 

This is the same as the PtP expression obtained in the case of infinite aperture. The 

phase retrieval algorithm based on Eq. 3.11 can be used as a good approximation as 

long as 1>>b . 

                  

Figure 3.6 PtP value in the output signal of differential Zernike filter with single phase 

jump as a function of the position of the phase jump for different size of the phase mask 

b  with 10 =A , 2/πθ = , 2/12 πφφ =− , 400,200,100=b , 20=d . 

 

For comparison, we also give the analytic results for ZEUS in the presence of the 

same aperture. Since the derivative in this case is quite involved, we only write down 

the PtP value, which is  
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while the first term in Eq. 3.15 is same as PtP value for differential Zernike filter, the 

second is additional and a function of )cos( 12 φφ − . As a result, the simple sine function 

relationship between PtP and phase jumps no longer hold for ZEUS in the case of finite 

aperture. We compare the performance of the two filters using an example in Fig. 3.7, 

where trace (a) gives the PtP values in DZEUS (dash) and ZEUS (solid) against phase 

jump positions. The fluctuation of the former is smaller than that of the latter due to the 
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presence of the second terms in Eq. 3.15, which is shown as the dash-dot curve in the 

same figure.  In Fig. 3.7 (b), we plot the PtP values in DZEUS (dash) and ZEUS 

(solid) and their difference (dash dot) with respect to the value of )sin( 12 φφ − . While a 

liner relation holds very well for DZEUS, a deviation can be clearly seen for ZEUS, 

which can lead to increased measurement errors discussed later. From this analysis we 

conclude that in the case of a single phase jump DZEUS provide not only a simpler 

expression for the output intensity but also a simpler relation between PtP value and the 

input phase jump, which can be well approximated  as  PtP ∝ )sin( 12 φφ −  when 

1>>b . 

    

                (a)                                 (b) 

Figure 3.7 Value of the first term (PtP1, dash) and second term (PtP2, dash-dot) in Eq. 

3.15 are plotted against 1x  (a) and the value of )sin( 12 φφ −  (b). The parameters used 

here are 10 =A , 2/πθ = , 2/12 πφφ =− ,  400=b , 1.0=d . 17.01 =x . 

 

3.5 Multiple Phase Jumps 

 

Figure 3.8 The input phase function with n  segments and 1−n  phase jumps. Each 

segment has a random piston value. 
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The following analysis within this chapter is all conducted with finite primary 

aperture size if not mentioned otherwise. Based on the above argument, we extend out 

analysis to multiple phase jumps in a segmented mirror. In order to find the 

inter-segment effects between the nearby phase jumps, we consider the one dimensional 

model with a primary mirror consisting of n  segments and thus having 1−n  

inter-segment phase jumps as shown in Fig. 3.8. The PtP value in the output intensity 

for k-th ( 11 −<< nk ) jump can be written as: 
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where iφ  is the piston in the i-th segment, ix φφ =)(  for ),( 1 ii xxx −∈ , 

22 121

d
xxx

d
n <<<<− −L , 11 −≤≤ nk .  Since the interval between the 

neighbouring segment edges are all equal, 
n

dn
kxk )

2
( −= . We can see from Eq. 3.16 

that the PtP value for the k-th phase jump is influenced not only by the k-th jump but 

also all other jumps in the segmented mirror. This makes the PtP value of multiple input 

phase jumps very complicated. The expression can however be significantly simplified 

in applications for a typical value 1>>b . When 1>>b , there is little difference 

between ]
2

)1(
[

n

bdik
Si

+−
 and ]

2

)(
[

n

bdik
Si

−
 in Eq. 3.16 when ki ≠  or 1+k , so all 

the terms in Eq. 3.16 except the k-th and k+1-th term can be approximated to zero. This 

simplifies Eq. 3.16 to 
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For 1>>b , )
2

(
n

bd
Si  can be approximated to 2/π , thus 

)sin(sin2)( 1
2
0 kkAkPtP φφθ −= +                                        (3.18) 

This is identical as Eq. 3.14, which we derived for the single phase jump condition. 

Therefore under the condition 1>>b , Eq. 3.11 can also be used to retrieve the phase 

jump for multiple input phase jumps. 
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                 (a)                                (b) 

Figure 3.9   The PtP values in the output intensity distribution of differential Zernike 

filter versus the corresponding sine value of input phase jumps, with 20=n , 10 =A , 

2/π=c , 20=d , iφ  are random numbers within ]
4

,
4

[
ππ− , with 500 randomly 

different realization. (a) 2=b , (c) 400=b . 

 

Let us now investigate the performance of DZEUS in a case study. We consider a 

segmented primary mirror of 20 segments, each of which has a diameter of 1m. The 

piston is randomly distributed within ]
4

,
4

[
ππ−  so the intersegment phase jumps are 

within ]
2

,
2

[
ππ− . The phase shift induced by the phase mask is 2/πθ = .  The results 

are plotted in Fig. 3.9 (a) and (b) for 500 different (random) realizations for two phase 

mask sizes 2=b  and 400, respectively. As seen, the linear relation holds well for 

b=400 but not for b=2. In order to quantify the linearity of the relationship between the 

PtP value and sine function of the input phase jumps, we plot the standard error of 

estimate (SEE) against b in Fig. 3.10. SEE measures the standard deviation between the 

simulated PtP values and the values obtained by Eq. 3.14, and a smaller value of SEE 

implies a better linear relation .We note that the oscillations in the SEE curve is the 

result of fluctuations of Sinc integral function. 
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Figure 3.10 The standard error of estimate (SEE) of linear regression of the PtP values 

in the output intensity distribution of differential Zernike filter and the corresponding 

sine value of input phase jumps versus the parameter b. Other parameters used here are 

the same as in Fig. 3.9. 

 

3.6 Double Phase Jumps 

The expression for the output of traditional Zernike filter is too complicated to do any 

further analysis with arbitrary number of phase jumps. In order to make the multiple 

phase jumps output PtP value for differential Zernike filter comparable with that of 

traditional Zernike filter, we consider a segmented primary mirror with 3 segments. The 

input phase function is shown in Fig. 3.11. Here we keep 2/031 φφφ −== , and 

2/02 φφ =  ( 00 >φ ) for simplification, so we derive from Eq. 3.16: 
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Figure 3.11 The input phase function with 3 segments and 2 phase jumps. 
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The expression of PtP value for differential Zernike filter output with two phase 

jumps is identical to that with single phase jump. However, the PtP values in the output 

intensity of traditional Zernike filter are different from that with single phase jump: 
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Again, the PtP value in the traditional Zernike filter output intensity is consists of two 

parts as well as single phase jump case. Besides, there is a cross term, which is a 

function of the distance of the two phase jumps’ positions respectively in Eq. 3.21 and 

3.22. That means the PtP value according to one phase jump rely on the distance 

between the neighbouring phase jumps. In other words, the existence of more than one 

phase jump can result a crosstalk between each PtP value in traditional Zernike filter 

output intensity, but not in that of differential Zernike filter. This crosstalk will further 

deteriorate the assumed simple relation used in the phase retrieval in ZEUS. 

 

3.7 Multiple Step Corrections 

From the above analysis, Eq. 3.11 can be used as an approximation to retrieve 

multiple segment phase jumps based on the measurement of the PtP value. The 

correction is nevertheless not precise and errors remain. Here we propose a multiple 

step correction approach by which the measurement and adjustment process is repeated 

several times until required accuracy is met. A necessary condition for such a process is 

the convergence of the system, which corresponds to the inequality 
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which is derived  from the phase retrieval algorithm (Eq. 3.11). Since the exact 

expression for )( kxPtP  (Eq. 3.16) is complicated, it is hard to verify the inequality in 

general case. It can be easily done under the small piston variation approximation, i.e., 

kjkj φφφφ −≈− )sin( . Under this approximation, we prove that this system is 

convergence for small signal. In this case Eq. 3.16 is simplified as 
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By combine Eq. 3.23 and 3.24, we have 
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As π<< )(0 xSi , for any 0>x , the above inequality is valid unconditionally. The 

performance of such a multiple step correction procedure is shown in Fig. 3.12. The 

phasing error is indeed convergent to zero on increasing the iteration number. By 

comparison, we also provide the corresponding results for ZEUS, for which the error 

reaches a plateau after a few steps of correction. The latter is due to the effect of pupil 

profile under a finite resolution. 

                 

Figure 3.12 The standard deviation of the phasing error (radius) of the segmented mirror 

versus iteration numbers. The initial phase jumps are uniformly distributed within 

]2/,2/[ ππ− . The dash line with cross is for DZEUS and the solid line with circle for 

ZEUS. The resolution in the simulation is 1024 for 16 segments. Other parameters 

are 10 =A , 2/πθ = , 600=b , 16=d . 

 

3.8 Two-Dimensional Simulations 
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We now extend the one-dimensional analysis to two-dimensional case. Since the 

analysis is complicated, we deal with it through numerical simulations. We want to 

answer two questions here: whether the pseudo-linear relation obtained in DZEUS in 

one dimension case still holds for phasing of a segmented telescope (two-dimension), 

and whether the multiple step correction approach can be adopted to improve the 

correction accuracy until a desired accuracy? 

                    

Figure 3.13 A snapshot of the segmented primary mirror used in simulation. The piston 

of each segment is normal randomly distributed. The grey scale represents the piston 

value of each segment, which is ranged from 4/π−  (darkest) to 4/π  (brightest). 

 

The segmented mirror in our simulation is a 169-hexagon formation, each of which 

has a random piston. A snapshot of the segmented primary mirror is shown in Fig. 3.13. 

We consider each mirror segment of 1 m in diameter so the primary mirror in this 

simulation is 15 m in diameter. The input pistons of the primary mirror are randomly 

distributed within ]4/,4/[ ππ− , so the intersegment phase jumps are distributed within 

]2/,2/[ ππ− , which results in a standard deviation of the input phase jump of 0.462 

rad. For piston errors beyond this range, the ambiguity due to phase wrapping can be 

solved by the two wavelengths interferometry algorithm [26]. In our simulation we use 

10241024×  pixels for the169-hexagon formation. The resolution is the same as that for 

a CCD camera of the resolution 40964096×  for the European Extremely Large 

Telescope with a primary mirror of 42m. We set the size of the image pupil 0.1m, so 

one pixel in the image pupil corresponds to 0.2mm. We plot in Fig. 3.14 (a) the PtP 

values in the output intensity in DZEUS against the sine function of the corresponding 
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input phase jumps. The curve shows a good linear relation between the two. For 

comparison, we also plot the standard error of estimate (SEE) between the input phase 

jumps and the retrieved values for both DZEUS and ZEUS. As shown in Fig. 3.14 (b), 

the SEE values for DZEUS is consistently smaller than that of ZEUS on varying b, 

implying a better linear relation for the former for the usual operating region of b  up 

to 1200. Beyond this region, the two curves converge because the relation between the 

input and output become identical for very larger value of b . For a typical size of the 

phase shift area 817=b , which corresponds to 13 pixel in our simulation, we have 

0163.0=SEE  for DZEUS, compared to 0.0338 ZEUS. The remaining errors after one 

step correction are 8.4% and 12.5% of the initial value for DZEUS and ZEUS 

respectively. 

   

                 (a)                                (b) 

Figure 3.14 Two-dimensional simulation results with a primary mirror of 169 segments. 

The piston randomly distributed within ]4/,4/[ ππ− . (a) The output PtP value versus 

the sine value of the input phase jumps. (b) The standard error of the estimate (SEE) 

versus the phase shift area size (b ). 

 

Using multiple step correction procedure, the phasing error retrieved based on the 

above phase retrieval algorithm is used to correct intersegment errors through the 

actuator control system, and the process is repeated for several times to achieve high 

accuracy. The retrieved intersegment errors are transformed into pistons values by 

singular value decomposition1. In our simulation, we assume there is no noise and error 

in the hardware system. That means the retrieved phasing error is perfectly removed 

                                                 
1 See Appendix A 
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from the segmented mirrors, and the remaining phasing errors are results of the phase 

retrieval algorithm. The two-dimensional simulations are conducted with respect to 

DZEUS and ZEUS for comparison. In Fig. 3.15, we plot the standard deviations of 

phasing errors against the iteration number for both DZEUS and ZEUS. As shown in 

Fig. 3.15, the phasing error reduces exponentially to zero on increasing iteration number 

for DZEUS but reaches to a plateau after 3 iterations for ZEUS. The behaviours of the 

two systems are therefore the same as them in one dimension as discussed earlier. 

 

       
Figure 3.15 The standard deviation of the phasing error versus iteration numbers. The 

dash (solid) line with circle is for DZEUS in the absence (presence) of atmospheric 

turbulence whereas the dash (solid) line with cross is for ZEUS in the absence 

(presence) of atmospheric turbulence. Atmospheric turbulence is numerically generated 

at each exposure according to Komogorov model, the amplitude of which used in the 

plot is π2 . 

 

  Finally we consider the effect of atmospheric turbulence on the measurement 

precision. When the turbulence is considered, a finite error remains for both algorithms, 

the value of which is lower for DZEUS compared to ZEUS as shown in Fig. 3.15. We 

note that the difference of the errors between DZEUS and ZEUS is kept almost a 

constant on the variation of the amplitudes of atmospheric turbulence. For a practical 

system with the central operating wavelength of 800nm, the best phasing accuracy is 

1.4nm for DZEUS and 1.6nm for ZEUS. Simulation results show that the both 

algorithms are robust with respect to atmospheric turbulence. We note that reported 
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phasing error for ZEUS is higher than the one indicated in our simulation. [15] The 

discrepancy mainly results from errors in system hardware which has not been 

considered here. 

 

3.9 Conclusions 

In conclusion, we have demonstrated a new segmented mirror phasing sensor system, 

DZEUS, by theoretical and numerical study. We show that the DZEUS gives rise to a 

simpler relation between the input wave front and the output intensity compared to 

ZEUS and therefore provides better accuracy for the phase retrieval. The phasing 

accuracy can be further enhanced by adopting a multiple step correction approach, by 

which the phasing error in the ideal situation can be removed completely. In practice, 

phase switching in DZEUS can be realized by replacing the fixed mask array in ZEUS 

with an electronically controllable spatial light modulator (SLM). DZEUS inherits the 

advantages of ZEUS phasing technique by resemblance to the Mach-Zehnder 

interferometer, which avoids the delicacy of high-precision control of the OPD of 

interferometer. As for ZEUS, DZEUS provides a capture range of 4/λ±  in single 

correction and 2/λ±  in multiple step corrections and is robust to atmosphere 

turbulence. 
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Chapter 4 

Differential Zernike Feedback Phase Retrieval 

 

 

 

 

 

 

 

4.1 Introduction 

In the last chapter, differential Zernike filter is used as a wavefront sensor to retrieve 

the segmented mirror phasing errors. The phasing errors are retrieved at each exposure, 

and the measured phasing errors are used to control the actuator. In this chapter, we 

present my original study on an adaptive dynamical feedback system, which is realized 

by combining the capabilities of a differential Zernike sensor with a feedback for 

phasing of segmented mirror in the presence of strong atmospheric turbulence. The 

dynamics of the feedback signal in the sensor system has the same form as that of a 

Gradient-Flow control [30], which results an optimized wavefront conjugation. A 

Gradient-Flow control (optimization) represents a method based on optimizing the 

system (signal) state by gradient metrics. The gradient-flow optimization method is 

widely used for digital image processing applications [39-41]. The gradient metrics is 

calculated analytically based on knowledge of the system’s mathematical model and 

performance metric. The mechanism underlying the differential Zernike filter feedback 

technique for phasing of segmented mirror in the presence of strong atmospheric 

turbulence lies in the dynamical nature of the system. It responds to static misalignment 

phase errors differently from dynamic atmospheric turbulence. During the iterating 

process of the system, only the signals related to the static phase errors are accumulated 

in the feedback loop whereas those with the turbulent phases are essentially averaged 
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out, because the latter is uncorrelated from frame to frame. When the iteration has 

converged, the signal in the feedback loop is the conjugate of the misalignment phase 

errors, and so can be used to control the actuators of the segmented mirrors. 

 

4.2 Theoretical Model 

4.2.1 Zernike filter with Unknown Input Wavefront 

 

   

Figure 4.1 Schematic of Zernike filter 4f optical system. Two identical lenses 1L  and 

2L  are placed by twice of their focal length f. 

 

In this chapter we use a different mathematical approach for Zernike filter by 

considering an unknown input wavefront. A schematic of a conventional wave-front 

sensor based on the Zernike phase-contrast technique (Zernike filter) is shown in Fig. 

4.1. It consists of two lenses with a phase changing plate (Zernike phase plate) placed in 

the lenses’ common focal plane. The phase plate has a small circular region (a dot) in 

the middle that introduces a phase shift θ  near 2/π  rad into the focused wave. The 

radius of the dot, Fa , is typically chosen to equal the diffraction limited radius dif
Fa  of 

a focused, undistorted input wave. The treatment of the Zernike filter that we follow is 

presented in Ref. 29 and 32. To introduce the notation and normalizations, we offer the 

basic derivations that lead to the classical expression for the Zernike filter output 

intensity distribution. Zernike filter can be described by using a complex transfer 

function )(kt
r

 for the focal plane filter: 
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)exp()( θγ ikt =
r

  ,|| 0kk ≤
r

 

1)( =kt
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         ,|| 0kk >
r

                                         (4.1) 

The wave vector k
r

 is associated with focal plane radial vector Fr
r

 through 

)/( Lrk F λrr
= , where L  is the lens focal length, λ  is the central wavelength of the 

input light, and )/( Lab F λ=  is the cut-off frequency that corresponds to dot size Fa . 

For the sake of convenience, consider the following variable normalization: The radial 

vectors r
r

 in the sensor input/output plane and Fr
r

 in the focal plane are normalized 

by the lens aperture radius a , the wave vector k
r

 by 1−a , and the lens focal length by 

the diffraction parameter 2ka  (where λπ /2=k  is the wave number). 

Correspondingly, in the normalized variables, )2/( Lrk F πrr
= and  )2/( Lab F π=  

(where the dot size Fa  is also normalized by a ). 

From Eq. 4.1, when 1=γ  and 2/πθ = , we have a Zernike filter model. Consider a 

simplified model corresponding to a focal plane filter affecting only the zero-order 

spectral component. In this case we have )exp()0( θγ iT = , and 1)( =kT
r

 for 0≠k
r

. 

Assume an input wave )](exp[)()( 0 kirAkAin

rrr
ϕ=  enters a wave-front sensor, where 

)()( 2
00 rArI
rr =  and )(r

rϕ  are the input wave intensity and phase spatial distributions. 

The sensor’s front lens performs a Fourier transform of the input wave. Within the 

accuracy of a phase factor, )]([)2()( 1 rAFLkA in

rr
−= π , where []F  is the Fourier 

transform operator and )(kA
r

 is the spatial spectral amplitude of the input field (i.e., 

the field complex amplitude in the focal plane). In normalized variables, the field 

intensity in the focal plane can be expressed as a function of spatial frequency: 

22 |)(|)2()( kALkI F

rr
−= π . The influence of the focal plane filter can be accounted for by 

multiplying )(kA
r

 by the transfer function )(kT
r

: 

)()()exp()](1)[()( kkAikkAkAout

rrrrr
δθγδ +−=                           (4.2) 
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where )(kAout

r
 is the focal plane wave complex amplitude after the wave passes 

through the spatial filter and )(k
r

δ  is a delta function. The wavefront sensor output 

field can be obtained by taking the inverse Fourier transform of Eq. 4.2: 

,)]exp(1[)()( AirArA inout θγ−−= rr
                                    (4.3) 

,)( 2rdrAA in

rr

∫=                                                   (4.4) 

where A  is the spatially averaged input field complex amplitude. For the sake of 

simplicity the 180° rotation of the field performed by the wave-front sensor lens system 

is ignored. 

  Represent )(r
rϕ as a sum of mean phase ϕ  and spatially modulated deviation 

)(~ r
rϕ : ).(~)( rr

rr ϕϕϕ +=  In this case 0)exp( AiA ϕ= , where 

rdrirAA
rrr 2

00 )](~exp[)( ϕ∫= . The value of 2
0 || A  is proportional to the field intensity 

at the centre of the lens focal plane, 2
0

2 ||)2()0( ALqI F
−== πr

 (intensity of the 

zero-order spectral component). The normalized value of )0(FI  is known as the Strehl 

ratio, 0/)0( FF IISt = , where 0
FI  is the intensity of the zero-order spectral component 

in the absence of phase aberrations.  When there is no phase aberration, 0)0( FF II = , 

so 1=St . When there is any phase aberration, 0)0( FF II <  ( 1<St ). With the notation 

introduced here, Eq. 4.3 can be written as 

).exp()]exp(1[)()( 0 ϕθγ iAirArA inout −−= rr
                            (4.5) 

As we can see from Eq. 4.5, the output field is a superposition of the input and spatially 

uniform reference wave components. Represent the complex value 0A  in the following 

form: )exp()0()2()exp(|| 2/1
00 ∆=∆≡ iILiAA Fπ , where 0

FI  and ∆  are the intensity 

and the phase, respectively, of the zero-order spectral component. The intensity 

distribution in the Zernike filter output plane for an unknown input wavefront is given 

by 
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4.2.2 Differential Zernike Filter 

A phase spatial light modulator (SLM) can be used to implement the differential 

Zernike filter [29]. The differential Zernike filter that is realized by using a phase shift 

switching between 2/π± , the output of which is given as 
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00
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−= −+
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rr
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                              (4.7) 

where ),()( trI d

r+  and ),()( trI d

r−  are the images recorded corresponding to the 2/π±  

phase shift in the phase plate, rdtrvitrAitAtA
rrr 2

000 )]},([exp{),()exp(|)(|)( ∫=∆= , here 

),(0 trA
r

 and ),( trv
r

 are the amplitude and phase of the input field, ∆ is a phase shift, 

r
r

 is the spatial radial vector in the plane transverse to the system optical axis and the 

integration is over the aperture area. 

 

4.3 Wavefront Control Based on Gradient-Flow Optimization 

The differential Zernike filter can be combined with an adaptive feedback system, 

leading to applications such as wavefront compensation without the requirement of 

wavefront reconstruction. The differential Zernike filter offers a means for 

implementing a direct-control adaptive optical system by use of the gradient-flow 

optimization, which results in dramatic improvement in adaptation process convergent 

speed [30]. 

 

4.3.1 Feedback-Controller Synthesis 

First we consider a direct-control adaptive optics system [30] shown in Fig. 4.2. This 

system consists of the following adaptive optics components: wave-front corrector, 

wave-front sensor, and feedback controller. All of the adaptive system components are 

assumed to have high spatial resolution, and thus a continuously distributed 
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approximation of the adaptive system model can be used. The wave-front corrector (can 

be a spatial light modulator) introduces a phase modulation ),( tru
r

 into the distorted 

input wave )],(exp[)(),( 0 trirAtrAin

rrr ϕ= . The corrected wave 

)]},(),([exp{)(),( 0 trutrirAtrAcor

rrrr += ϕ  is used as the wave-front sensor input. The 

wave-front sensor is interfaced with the feedback controller, which operates directly by 

using the sensor’s output intensity ),( trIout

r
. 

    

Figure 4.2 Schematic of a direct-control adaptive optics system. 

 

The dependence of the correction function u on the wave-front sensor output outI  

defines the control algorithm of feedback controller. For a continuous-time controller 

this algorithm can be represented as a time-dependent controlling phase-evolution 

process: 

),,(
),(

outIuG
t

tru =
∂

∂ r

                                               (4.8) 

in which G  is an operator describing the feedback controller. 

Synthesis of the wave-front controller G  can be based on different principles. In the 

diffractive-feedback adaptive system, both the wave-front sensor and the controller G  

are selected on the basis of an analysis of the nonlinear spatiotemporal dynamics of 

equation 4.8 [34, 35]. The major requirement for these dynamics, or equivalently for the 

feedback controller design, is the existence of stationary state solutions that correspond 

to phase distortion suppression. 

Another approach to wave-front controller synthesis is based on the gradient 
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optimization technique [36–38]. In this case the control rule equation 4.8 describes a 

continuous-time gradient-descent optimization of a system performance metric J : 

),,('
),(

trJ
t

tru r
r

η=
∂

∂
                                               (4.9) 

where ),(' trJ
r

 is a first variation (gradient) of the cost function and η  is a constant 

positive for cost functional maximization and negative otherwise. 

For practical implementation of the gradient-flow technique in adaptive optics, the 

gradient ),(' trJ
r

 should be dependent only on available information: Here, the 

wave-front sensor output intensity ),( trIout

r
 and the controlling phase ),( tru

r
. This 

requires gradient representation in the following form: ],['),(' outIuJtrJ =r
. As is 

shown in the following sections, the gradient-flow direct-control technique can indeed 

be used for adaptive wave-front distortion correction. 

 

4.3.2 System Performance Metric and Gradient-Flow Dynamics 

For a number of adaptive optics applications (e.g., imaging of point-source objects, 

laser communication), a natural measure of system performance in correcting the 

distorted wave front is the Strehl ratio. Maximization of the Strehl ratio by the 

gradient-descent technique may result in two undesirable phenomena: drift of the 

aperture-averaged phase )(tu  toward the edge of the wave-front corrector’s 

operational range, and phase discontinuities, both of which may occur during the 

adaptation process. To prevent aperture-averaged phase drift and to smooth the 

controlling phase (i.e., to suppress discontinuities and noise) the system performance 

metric J may include (besides the Strehl ratio) additional penalty terms: 

.|),(|])([][ 2
2

2
01 rdtruutuStuJ ∫ ∇−−−= rαα                          (4.10) 

where ∫
−= rdtruStu 21 ),()(

r
 is the phase averaged over the aperture area S , 0u  is a 

desirable value for )(tu , and 1α  and 2α  are weight coefficients determining penalty 

term contributions. For now, ignore in Eq. 4.10 the time dependence of both phase 

aberrations and the controlling phase by assuming that phase aberrations are stationary. 

The complex amplitude of the input field (after it passes through the wave-front 
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corrector) can then be represented in the form )]}(~)([exp{)()( 0 rruirArAcor

rrrr ϕ+= . 

Then equation 4.10 can be changed as 
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where ϕϕϕ −= )()(~ rr
rr

 is the spatially modulated component of the wave-front 

aberration and 1β  and 2β  are new weight coefficients. The first term in Eq. 4.11 is 

proportional to the intensity of the input field’s zero-order spectral component 

)0( =kIF

r
. Note that expressions for the weighting coefficients in Eq. 4.11 are 

irrelevant for the analysis below and for this reason are not defined. Consider the 

variation Jδ  of the cost functional resulting from the small perturbation uδ  of the 

controlling phase: 

),()()('][][ 2 uordrurJuJuuJJ δδδδ +=−+= ∫
rr

                        (4.12) 

where the term )( uo δ  describes second- and higher-order terms with respect to the 

phase variation uδ . Using Eq. 4.12 for the cost functional gradient we obtain 

).(2)(2])(~)(sin[)(||2' 2
20100 ruuurrurAAJ

rrrr ∇+−−∆−+−= ββϕ           (4.13) 

Here 

.)]}(~)([exp{)()exp(|| 2
000 rdrruirAiAA

rrr ϕ+=∆≡ ∫                       (4.14) 

Note that the value 2
0 || A  in Eq. 4.13 is proportional to the Strehl ratio. 

Embed the control function )(ru
r

 in a family of time-dependent functions ),( tru
r

, 

and consider the time-dependent evolution of J  in the direction of the cost functional 

gradient. Thus the gradient-flow dynamics describes by Eq. 4.9 leads to the following 

nonlinear diffusion equation describing the controlling phase update: 
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              (4.15) 

where d , γ , and µ  are coefficients dependent on the parameters 1α , 2α , and η  

introduced in Eq. 4.9 and 4.10. We note that this differential equation has infinite 
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numbers of resolutions. This ambiguity can be solved by running this system with two 

different wavelengths. The details will be provided in this chapter. 

 

4.3.3 Gradient-Flow Dynamics and Differential Zernike filter Synthesis 

Compare the sinusoidal term in the formula for the gradient (Eq. 4.15) with the 

expression for the output intensity for the differential Zernike wave-front sensor (Eq. 

4.7). The key observation from this comparison is that the gradient (Eq. 4.13) can be 

represented in a form dependent only on the differential Zernike filter output intensity 

),( trIdiff

r
 and controlling phase ),( tru

r
. Then, Eq. 4.15 for the feedback controller 

based on the differential Zernike filter can be written as 
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∂ µrr

r

                         (4.16) 

where the coefficient K  is proportional to γ  in Eq. 4.15. The most important 

conclusion from this analysis is the following: The feedback controller Eq. 4.16 is an 

implementation of continuous-time gradient-flow dynamics, leading to a maximization 

of the cost functional (Eq. 4.11). It can be shown that during the adaptation process, the 

time derivative of J  is always positive ( 0/ >dtdJ ); that is, the feedback controller 

(Eq. 4.16) provides for a monotonic increase in Strehl ratio, or in another word, 

decrease in the wavefront aberration. 

 

4.4 Differential Zernike Feedback Phasing Sensor 

 

4.4.1 System Model of Differential Zernike Feedback Sensor 

Fig. 4.3 shows the schematic of the entire telescope system including the differential 

Zernike filter feedback wavefront sensor. Our goal is to use this phase sensing 

technique to measure the phase distortion due to the misalignment of segmented mirror 

so that a correction can be made by adjusting the primary mirror segments. This must be 

achieved notwithstanding the presence of atmospheric turbulence. The following 

description assumes a monochromatic system (i.e. no chromatic effects are exploited in 

attempting to resolve the wave-front discontinuities). 



 55 

   

Figure 4.3 Schematic of the telescope active control system. 

 

    
Figure 4.4 Schematic of Zernike phase sensor system; the input phase v  comprises a 

misalignment error mv , and atmospheric distortion error av . 

 

As seen in Fig. 4.4, the differential Zernike feedback sensor comprises a spatial light 

modulation (SLM) as a wavefront corrector and the differential Zernike filter as a 

wavefront sensor; the two are coupled by a feedback loop. Here the SLM introduces a 

phase modulation ),( tru
r

 to the distorted input wave )],(exp[),(),( 0 trivtrAtrAin

rrr = , 

where ),( trv
r

 is the phase distortion of the incoming wavefront, comprising both static 

misalignment of the segmented mirrors, )(rvm

r
, and time-dependent atmospheric 

turbulence, ),( trva

r
, i.e., ),()(),( trvrvtrv am

rrr += . The wave after the SLM is therefore 

)]},(),([exp{)(),( 0 trvtruirAtrAout

rrrr += , which is used as the input to the Zernike filter. 

The output signal ),( trI diff

r
 from the filter is then used to control the phase modulation 
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),( tru
r

 on the SLM. The dynamics of the phase modulation in the SLM has exactly the 

same form as that for Gradient-Flow control (Eq. 4.16). The discrete-time version of Eq. 

4.16 corresponds to the following iterative wave-front correction algorithm: 

][)()()()( 0
)()()(2)()1( uurKIrudruru nn

diff
nnn −−−∇+=+ µrrrr

                   (4.17) 

where L,3,2,1=n  is the iteration number, )()( ru n r
 is the phase modulation at the nth 

iteration and )()( rI n
diff

r
 is the output signal of the differential Zernike filter photo array. 

0)()1( =ru
r

, rdruSu nn rr

∫
−= 2)(1)( )(  is the phase averaged over the aperture area S. The 

parameterd  is a ‘diffusion coefficient’ that describes spatial coupling in the SLM and 

K  is the gain parameter that can be controlled electronically in the feedback loop. We 

assume K  to be a constant. In practice, this model is valid when the bandwidth of the 

incoming signal is much smaller than the central operation wavelength of the telescope. 

For example, for a narrowband of nm20 in bandwidth and central operation wavelength 

at nm900 , which is used in Keck telescope, the ratio of the bandwidth to the operation 

wavelength is less than %2  and our model works well. The last term in Eq. 4.17 is 

used to compensate the bias of u  so that its average value goes to 0u  and the 

coefficient µ  controls the speed of the compensation. We note that the main light loss 

in the Zernike phase sensor is due to SLM. We note in our system schematic figures, we 

show transmitting SLM only for simplicity. However, in practice, a reflective SLM is 

more suitable because reflective SLM has higher photon efficiency (up to %80 ). SLM 

usually has a minimal cross-talk between neighbouring pixels justifying the assumption 

0=d . We assume that both the discrete wave-front corrector and the Zernike filter 

photo array are matched in the sense that they have the same number of pixels and pixel 

geometry. In accordance with Eq. 4.17 the output signals from a differential Zernike 

filter photo array (after scaling by the factor K and dc component subtraction) are 

directly (point-to-point) mapped to the wave-front corrector array signals. This 

controller can be integrated with the differential Zernike filter imaging sensor, providing 

feedback control computation directly on the imager chip. 
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4.4.2 Small Phase Distortion Approximation 

The mechanism of the system responsible for phasing in the presence of atmospheric 

turbulence can be clearly understood from the small signal analysis. In the weak phase 

limit ( 1||,1|| <<<< vu ), Eq. 4.17 with 0=d , 0=µ , and 0)1( =u , becomes: 
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                           (4.18) 

which shows that the time-averaged phase is an accumulation of successive iterations of 

the outputs of the Zernike filter. In the weak signal limit, we have vv ≈)sin( , so Eq. 4.7 

can be expressed as a linear sum of the contributions from the static and dynamical 

phase modulations 
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where )()()( )()()( rururu n
a

n
m

n rrr += , )()()( )()()( rvrvrv n
a

n
m

n rrr += , ||2 00 AA=α . In 

deriving Eq. 4.19 we have set 0=∆ in Eq. 4.7, which is valid under the assumptions 

that the amplitude of the input field is uniform and the phase fluctuations spatially 

averaged over the entire pupil is zero. This condition is also used in other work [30]. 

We note that in general the averaged phase ∆  can be an arbitrary constant and, from 

Eq. 4.7, setting 0=∆  merely removes the overall piston term, which does not affect 

the performance of the system. Combining Eq. 4.18 with 4.19 leads to the following 

two equations that describe separately the feedback signals due to misalignment and 

atmospheric turbulence, 

)(]1)1[()()1( rvKru m
nn
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rr −−=+ α                                      (4.20) 
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where L3,2,1=n , 0)()( )1()1( == ruru am

rr
. The different forms of these two equations are 

due to different dynamics of the two phase distortion components, and this is why they 

can be separated. Here we have already taken into account the fact that n
mv  is fixed but 



 58 

n
av  is uncorrelated for different iteration steps n . Eq. 4.20 gives the known result in 

the absence of atmospheric turbulence; for 1<αK , )(n
mu  accumulates with the 

increase of n and eventually converges to mv− , which is the signal to be retrieved. 

However, since )(n
av  is uncorrelated between different iteration frames, )(n

au does not 

accumulate in the same way as )(n
mu . Because of the progressive weighting, the 

contribution to )(n
au  in Eq. 4.21 comes mainly from the last few terms in the 

polynomial, the number of terms that should be included depend on the value of 

)1(<αK . We have calculated Eq. 4.21 for different values of αK  for sufficiently 

large n, in which )(n
av  is generated by the Kolmogorov model [42-44] with a Fried 

parameter of 0.2m. The atmospheric phase errors generated vary randomly at every 

iteration, i.e., no frame to frame correlation in the turbulence-induced errors. The 

normalised standard deviation of )(n
au , 0

* /σσσ = , where 0σ  is the standard 

deviation of the atmospheric distortion )(n
av  averaged over time, is shown to decrease 

monotonically with the decrease of αK , as given in Fig. 4.5. The total phase signal in 

the feedback loop is )()( n
am

n uvu +−=  for sufficiently large n . Therefore, )(n
au  can be 

regarded as noise background on the retrieved misalignment phase. The noise represents 

imperfectly-averaged atmospheric perturbations, the amplitude of its residual error 

decreases with αK . In a practical system, α is usually fixed and K  can be varied as 

the electronic gain parameter. However, K  also controls the convergence rate of the 

system as we will discuss later; larger K  results in faster convergence. So a balance 

between residual atmospheric errors and convergent rate should be considered in 

practical applications. 
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Figure 4.5  Normalized standard deviation of )(n
au  as a function of αK . 

 

     

Figure 4.6  A snap shot of mv and av  is shown in (a) and (b), where the grey area 

represents the size of the SLM. 

 

4.4.3 Simulation Results 

The analysis given thus far has assumed a weak phase approximation. In practice, the 

atmospheric turbulence will not be confined to this limit and we have explored through 

simulation what happens when the weak-phase approximation is violated. Our 

numerical findings support the above weak signal analysis. 

 

The mirror misalignment signal is computed using a 169-hexagon formation, each of 

which has a random piston and tip-tilt, a snap shot of which is shown in Fig. 4.6 (a). If 

each mirror segment is 0.5m in diameter, the primary mirror in this simulation is 7.5m 

diameter. Fig. 4.6 (a) also shows the shape and size of the SLM in relation to the mirror 

segments. We have used 256256× pixels in square shape in the simulation of the SLM, 
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the total number of pixels overlapping with the telescope is 27288, which is much larger 

than the number of the telescope mirror segments. The segmented mirror should map 

onto the SLM for optimum use, but no particular alignment is required between the 

mirror segment edges and the SLM pixels. The discontinuous pixel edges in the SLM 

can cause scattering loss of light because of limited size of lenses in the Zernike filter. 

However, such lost can be kept minimal and has not been taken into account. In 

modelling the system we have considered the cut-off frequency due to limited spatial 

resolution of the SLM. We note that the alignment of the Zernike phase plate with the 

incoming image is a practical issue, as a displacement will result in a deviation of the 

phase shift spot from the centre of the Zernike focus plane and therefore reduce the 

processing speed of the system. Here we assume a perfect alignment in the system and 

the issue about the displacement will be discussed later. Atmospheric wavefront is 

generated by filtering the random phase with Kolmogorov spectrum [42-44] and varies 

randomly at every iteration, a typical spatial distribution of which is shown in Fig. 4.6 

(b). A more detailed description for the atmospheric turbulence simulation is provided 

in the end of the thesis2. Due to low frequency inadequate sampling, low frequency 

aberrations, such as tilt, are underestimated and methods have been developed to 

compensate the low frequency component [45]. However, our system is insensitive to 

the exact statistics of the phase error, although it is sensitive to long-time correlation in 

atmospheric phase errors. The compensation is therefore not necessary in our 

simulation. We have not included wavefront tilt in atmospheric turbulence, as tip-tilt 

can be pre-compensated by tip-tilt mirror [46]. We note that to validly use the model 

described by Eq. 4.8, the iteration time interval between the frames should exceed the 

atmospheric turbulence correlation time, which is typically 30ms. Furthermore, since 

we assume that the atmospheric turbulence is frozen during an integration, ),( trI diff  is 

proportional to the number of photons registered in the photon detector over a period 

shorter than the atmospheric correlation time; a short-exposure image implies increased 

photon and read-out noise. We have investigated the effects of the instrument noise on 

the performance of the system. We find that the system is robust up to a certain noise 

                                                 
2 See Appendix B. 
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level, which depends on the relative strengths of the misalignment distortion and 

atmospheric turbulence in the input signal and decreases with the increase of the 

atmospheric turbulence component. For example, for an input signal with 4π 

misalignment distortion and π atmospheric turbulence (both peak to valley amplitudes), 

the retrieved signal has no significant deterioration in the presence of the (Gaussian) 

instrument noise with the strength of 40% (rms) of the input signal, and when the 

amplitudes of the misalignment and atmospheric signals are both 4π, the tolerable noise 

level is reduced to 15%. We note that in practice one would use data frames recorded at 

a rate leading to significant frame to frame correlation in the atmospheric error and, in 

this case, the correlated frames will lead to a frame by frame improvement in photon 

and detector noise whilst the convergence of atmospheric fluctuations would be dictated 

by the number of independent atmospheric realizations within the data set. Therefore, 

the number of iterations used in the simulations with respect to the convergence of the 

algorithm indicates the minimum period over which the data is recorded. Since this 

paper focuses primarily on a new phasing method, some practical issues such as the 

time correlation of atmospheric turbulence and instrument noise will be investigated in 

more detail in the future work. 

 

Figure 4.7 (a) The standard deviation (RSσ ) of the retrieved signal, )(nu , against the 

actual misalignment, mv , as a function of the iteration number. The solid curve 

corresponds to π4.0± amplitude variation for both the misalignment,mv , and 

atmospheric turbulence av , whereas the dash curve is the standard deviation of the 

retrieved signals averaged over time. The dot curve corresponds to RSσ  in the absence 
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of atmospheric turbulence. The feedback gain is 75.0=K . (b) RSσ  for different 

feedback gains; 75.0=K  (solid), 1.0=K  (dash), and varyingK (dot) : 0.75 for n<20 

and 0.1 for n>20. 

 

Fig. 4.7 shows the result for which a peak-to-valley amplitude of 0.8π is used for both 

),( trvm  and ),( trva . The difference between the retrieved and original phases is 

measured by the standard deviation, ∑ +−+= 2)]()[( mmRS vuvuσ , where u  is 

retrieved signal, and mvu,  are spatially averaged value of u  and mv  . When the 

signal is perfectly recovered, mvu −= , up to a constant phase shift. The term ( mvu + ) 

is used to remove this shift so RSσ  gives the measure of how close the retrieved signal 

resembles the misalignment. As shown in Fig. 4.7 (a), 01.0<RSσ  rad is achieved for 

20~  iterations in the absence of atmospheric turbulence. When the turbulence is 

included, RSσ  fluctuates around 1.0=RSσ  rad. This shows a good recovery 

compared with 45.0=σ rad for the input signal, which corresponds to RSσ  at 0=n  

in Fig. 4.7. The asymptotic value of RSσ  is due to the residual random fluctuations of 

the atmospheric turbulence over a number of frames determined by the choice of αK . 

To reduce the level of the random fluctuations we average )(nu  over 1000 iterations 

after the convergence has been achieved, i.e., ∑
=−

>=<
n

mi

iu
mn

u )(1 . We obtain 

03.0=RSσ  after m=1000. We note that the presence of turbulence at this level does not 

appear to change the convergent rate of the system. 

Fig. 4.7 (b) shows the effects of the choice of feedback parameter K  on RSσ . In 

general, with increase of K , the convergence rate increases, so does the noise level 

caused by imperfect averaging of the atmospheric turbulence. To achieve faster 

convergence rate and higher quality recovery at the same time, we can vary K  during 

the iteration processing; an example is given in Fig. 4.7 (b) in which K  is reduced 

from 0.75 to 0.1 once the convergence is achieved. 
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Figure 4.8 (a) standard deviation >< 'RSσ  versus different atmospheric turbulence 

amplitudes (peak-to-valley), 3.0=K  (circle) and 0.75 (asterisk). (b) The number of 

iteration needed for convergence versus atmospheric turbulence amplitudes for 

3.0=K (circle) and 0.75 (asterisk); by convergence it means that the retrieval 

misalignment signal changes very little in subsequent iterations. The curves with 

crosses in (a) and (b) correspond to the results of a Zernike filter with 2/π±  phase 

shift on 55×  pixels around the centre and for 75.0=K . 

 

Assuming that mirror diameter is less than the outer scale, peak to valley atmospheric 

phase distortion increases with the diameter of telescope aperture. We have modelled 

here an atmospheric phase distortion of about 8π peak-to-valley value in the absence of 

wavefront tilt, which corresponds to 4m primary mirror aperture diameter and Fried 

parameter of 20cm ( ''5.0  seeing at visible wavelengths under the best seeing 

conditions). This level of error is sufficient to ensure that there is no fixed “core” 

speckle in the central region of the image plane and that a fully-developed speckle 

pattern is modelled for the snapshot point spread function. We have examined the 

performance of the system for π4  (peak-to-valley) mirror-segment phase 

misalignment (which corresponds to the standard deviation 24.2=σ ) in the presence of 

increasing atmospheric amplitudes from 0 to π8 . The results are evaluated by the 

standard deviation ∑ +−+= 2)]'()'[(' mmRS vuvuσ , where 'u  is the unwrapped phase in 

which πn2  ambiguity is removed (see below). As 'RSσ  fluctuates for each 

realisation, which is shown by the error bars in Fig. 4.8 (a), we average 'RSσ  over 1000 



 64 

iterations after the convergence of the system to obtain >< 'RSσ . Fig. 4.8 (a) shows a 

monotonic (nearly linear) increase of >< 'RSσ  with the atmospheric turbulence 

amplitudes for both feedback coefficients 75.0=K and 0.3. Consistent with the weak 

signal analysis, we find that >< 'RSσ  is smaller for smaller values of K . The standard 

deviation >< 'RSσ  in the presence of atmospheric turbulence of ,π π4 and π8  

amplitudes corresponds to a measurement accuracy of 11nm, 21nm and 57nm at the 

operation wavelength of 900nm. Fig. 4.8 (b) shows an exponential increase of the 

numbers of iterations required for the system convergence with the increase of the 

atmospheric turbulence amplitudes. It further shows that a greater number of iterations 

is needed for smaller values of the feedback coefficient K  (comparing circles with 

asterisks), which agrees with the weak signal analysis. Fig. 4.9 (a) is an example of a 

π4  mirror segment misalignment phase error in the absence of turbulence-induced 

errors whereas Fig. 4.9 (b) is the retrieved mirror-segment misalignment in the presence 

of π8 atmospheric turbulence. A clear correspondence between the two images 

confirms the capability of the system. 

           
Figure 4.9 (a) Input phase distribution of a segmented mirror with peak-to-valley 

amplitude of 4π misalignment. This misalignment is mixed with 8π atmospheric 

turbulence as the input signal to the Zernike sensor.  (b) Retrieved misalignment phase 

image (unwrapped), which shows very good recovery. 

 

In our system, when the input phase fluctuations exceed π2 , the retrieved phase 

images, u , are subject to πn2±  (n integer) jumps, i.e., phase wrapping. The phase 
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wrapping occurs because of the use of sine function in the Zernike filter, which is a 

common problem in phase sensing. The phase ambiguity can be determined by first 

measuring the phase errors in two different wavelengths and then applying the two 

wavelengths interferometry algorithm proposed by Lofdahl and Eriksson [26]. In our 

system the phase errors at two different wavelengths can be obtained as two separate 

measurements at different time when different filters are used in front of the SLM. 

For realistic levels of turbulence the snapshot image from a large-aperture telescope 

has a negative exponential probability for the brightness of the axial speckle in the 

image plane. It follows that a Zernike filter that phase-shifts just the central 

diffraction-limited speckle has negligible effect on the recorded data, as we have 

already noted earlier that images in this situation contains no core speckles. This leads 

to a slower convergence for the algorithm if implemented with a pure Zernike filter. To 

overcome this problem, we have studied the Zernike filter with an enlarged phase shift 

region in the focal plane. The enlargement of the phase-shifting filter spot increases the 

effect that the filter has on the recorded data but degrades the quality of the 

interferometric phase-reference generated by the filter.  This results in a trade-off 

between convergence rate and accuracy of wave-front reconstruction.  Fig.4 gives the 

numerical results (crosses) for a differential Zernike filter in which  2/π±  phase shift 

is realised in 55×  pixels centred around the zero spectral component (compared with 

1 pixel in the earlier study). As shown in Fig. 4.6 (b), the convergence time is 

significantly decreased, especially for larger atmospheric amplitudes where the decrease 

is of two orders of magnitude. However, the standard deviation >< 'RSσ  using such a 

Zernike filter reveals a new feature, as shown in Fig. 4.6 (a). While >< 'RSσ  is similar 

to that obtained by the conventional Zernike filter for relatively large atmospheric 

amplitudes, it behaves very differently when the amplitudes are below the value of 

around π. This is because when the atmospheric amplitudes are low the incoming 

images comprise mainly the static mirror-segment misalignment. This leads to the 

build-up of a considerable amount of low spatial frequency components in the retrieved 

phase images by the Zernike filter with 55×  pixels, which results in the increase of 

>< 'RSσ  in the small atmospheric amplitude region. When the input phase image 
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comprises significant amplitude of atmospheric turbulence, the low spatial frequencies 

becomes less prominent and the results for the two cases with different pixel numbers 

are essentially the same. This study shows that for different strengths of atmospheric 

distortion we can use a Zernike filter that provides 2/π±  phase shift to different 

number of pixels in the focal plane to achieve both better quality phase image recovery 

and faster convergence rate. This enlarged phase shift area approach can also be used to 

deal with imperfect alignment between the incoming image and the Zernike phase plate 

and residual wavefront tilt, which was mentioned earlier. We have confirmed through 

numerical simulation that a better quality image recovery with faster convergence rate 

can be achieved when the enlarged phase shift area is applied to the case of a slight 

alignment displacement. Another approach to the problem is to use a time-dependent 

Zernike phase shift spot that dynamically follows the point of the maximum spatial 

frequency strength in the Zernike focal plane. A shortcoming of this method is the 

presence of a residual phase tilt. 

 

4.5 Conclusions and Discussion 

In conclusion, we have studied an adaptive Zernike dynamical feedback system and 

shown by analysis and simulation that it provides an effective means to measure 

segment misalignment error in the presence of atmospheric turbulence. This system can 

be implemented in an optoelectronic device, which would provide a practical method 

for phasing of segmented mirror and other applications. 

We note that the phasing technique introduced in this chapter is different from 

DZEUS and ZEUS method. In ZEUS and DZEUS, only a single exposure from the 

Zernike filter output is used to retrieve the segmentation error based on its known 

wavefront-to-intensity converting relation for segmented mirror correction at each time. 

The atmospheric turbulence is partially averaged out by relatively long time exposure in 

ZEUS and DZEUS. Measurements of a fixed-piston segment simulation plate using the 

ZEUS laboratory setup give a phasing error of nm14 rms [15]. While in the differential 

Zernike feedback system, the atmospheric turbulence is averaged out by multiple 

exposures. 
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Chapter 5 

Automatic Particle Detection and Tracking in Living Cell 

 

 

 

 

 

 

 

Automated tracking and analysis of moving objects in image sequences has been one 

of the major fields in digital image analysis research. Automatic particle tracking has 

many applications in video surveillance, multimedia services, automated vehicle 

guidance and driver assistance, remote sensing and meteorology, and medical imaging. 

Moreover, automatic tracking is also a very important field in molecular biology [54, 

55]. Biomolecular systems are dynamic and complicated, and it is one of the major 

challenges of biomedical research and pharmaceutical industries to unveil the spatial 

and temporal relationships of these complex systems. Results in this area can be 

expected to have significant social and economic impact in the near future, as they can 

improve human health and well-being. Studies into biomolecular dynamics generate 

huge amounts of image data. To be able to handle these data and to fully exploit them 

for describing biological processes on a quantitative level and building accurate 

mathematical models of biomolecular dynamic structures, computerized motion 

registration and analysis is becoming a necessity [56]. 

 

5.1 Method for Study of Biological Molecular Dynamics 

Currently, light microscopy [57] is the most important imaging tool for recording of 

dynamic processes in living cells. Recently, Light microscopy has become mature 

enough to allow imaging of molecular complexes and even single molecules in living 
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cell. Apart from a great improvement in optics hardware and the development of 

increasingly sensitive electronic imaging sensors, a key factor was the discovery, 

cloning, and expression of the jellyfish green fluorescent protein (GFP). This enabled 

visible fluorescence to be encoded into a specific gene of interest, which, in turn, 

enables us to tag and optically detect virtually any protein of interest in living cells. 

Combined with time-lapse imaging, these developments have provided powerful tools 

to study the dynamic characteristics and functions of proteins in living cell [58]. 

 

5.2 Fundamental Problems of Automatic Tracking in Living Cell 

Achieving robustness and high accuracy in tracking and motion analysis in images 

obtained by light microscopy is hampered by three factors. The first is the limited 

spatial resolution of the microscope. Even an optimally designed microscope, which to 

a good approximation can be modelled as a linear shift-invariant system with a finite 

point-spread function, suffers from diffraction. The Fraunhofer-diffraction limited PSF 

of a confocal microscope with circular aperture and operating under design conditions is 

given by [59] 

,|)2exp()(2|),( 21

0

2
0∫ −= ρρργρα dzirJzrPSF                              (5.1) 

in which 
λ

πα NA2=  and ,
2

2

λ
πγ NA=  and where 22 yxr +=  represents the radial 

distance to the optical axis, z  is the axial distance to the focal plane, i  the imaginary 

unit number, 0J  the zeroth-order Bessel function of the first kind, NA  the numerical 

aperture of the objective lens, and λ  the wavelength of the light emitted by the 

specimen. This function is band-limited in both the lateral (in-plane) and the axial 

(across-plane) direction, with radial cut-off frequencies of αω 2=r  and γω 2=z , 

respectively. 

The second factor is noise. Even if all sources of noise due to system imperfections 

are reduced to a minimum, the signal-to-noise ratio (SNR) is still limited because of the 

randomness introduced by the quantum nature of light. This randomness follows a 

Poisson distribution and is therefore not independent of the signal. Furthermore, in most 

experiments the signal has to be kept to a minimum, since high illumination rapidly 
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quenches fluorescence and may disrupt the cellular and molecular processes being 

studied. And for the very same reason, the number of images taken for a given time is 

usually minimized as well. As a result, both the SNR and the temporal resolution are 

usually quite low. 

The third limiting factor is the large variability of biological image data. Fist of all, 

this high variability has to be attributed to the intrinsic heterogeneity of biomolecular 

systems. In addition, a lack of standardization in the acquisition protocols among 

studies may result in imagery of the same molecular process with quite different 

appearance and quality. The quality of images may not even be constant within one 

experiment, for example because of a degradation of the fluorescent probes over time 

(photo bleaching). 

All these factors put high demands on the design of automated image processing 

techniques. 

 

5.3 Overview of Particle Tracking Methods 

Computational image processing tools for automated tracking of molecules within 

living cells have been developed and reported for many years. The basic concepts 

underlying the vast majority of published methods are virtually the same. The 

commonly used approach to motion tracking consists of at least the following steps (see 

Fig. 1): pre-processing the image data, detecting individual particles for each image 

frame, linking particles detected at successive time points, and analyzing the results 

[54]. Pre-processing of the raw data, including noise reduction and spatial alignment of 

the successive images is usually required to considerably improve tracking results. 

Detection of relevant particles in the images is sometimes done by fitting a predefined 

model to the data. Once detected, a host of features can be computed for each particle, 

which may serve to divide particles into classes, if applicable. Feature values are also 

required for computing correspondence probabilities in the subsequent linking step. The 

resulting particle trajectories may be verified and, if necessary, corrected manually or 

using efficient spatiotemporal representations. Finally, a variety of dynamics parameters 

(velocity, direction, acceleration, etc.) may be computed from the tracks. We will 

discuss each of these steps in more details. 
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Figure 5.1 Schematic of the steps commonly involved in particle tracking studies.  

 

5.3.1 Image Pre-processing 

One of the most important factors influencing tracking algorithm performance is the 

signal-to-noise ratio (SNR). It has been demonstrated by experiments on artificial data 

[60] that the accuracy of commonly used tracking algorithms degrades rapidly as the 

SNR drops below 20 dB and becomes unacceptable below 12 dB. Such levels, however, 

are not uncommon in fluorescence imaging. 

Moreover, it has been shown that on short time scales, localization inaccuracies 

caused by noise in the images may make particle diffusion processes appear anomalous 

even if they are normal [61]. It is therefore of crucial importance to enhance the SNR 

for subsequent particle tracking by applying noise reduction techniques. Since the most 

dominant noise source possesses Poisson rather than Gaussian characteristics, nonlinear 

filtering techniques are frequently used for this purpose. Examples range from simple 

median filtering [62] to more sophisticated anisotropic nonlinear diffusion filtering 

techniques [63, 64]. 

 

5.3.2 Particle Detection 

A number of different approaches exist for estimating the positions of particles from 

individual images of a sequence. Most particle tracking algorithms published to date are 

based on either one or a combination of these methods [60]. The computationally 

simplest approach is to calculate the centroids, or centres of (intensity) mass, of relevant 

spots. This requires segmentation of the image to suppress irrelevant background 

structures, usually done by thresholding based on intensity or other image features. 
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Another, computationally more demanding approach is local image registration, where 

for each spot in one image the local intensity distribution serves as a template to be 

matched with neighbouring distributions in the next image. This requires choosing and 

optimizing a similarity measure, for which normalized cross correlation or the sum of 

(squared) intensity differences are often used. A conceptually somewhat similar, but 

still distinct, approach is to fit a predefined mathematical model of the spot intensity 

distribution. Usually this comes down to least squares fitting of a Gaussian 

approximation of the point-spread function. 

 

5.3.3 Particles Linking 

Once particles have been detected in all relevant frames of an image sequence, a 

correspondence between them needs to be established. In most practical situations this 

is very difficult, as the number of detected particles will generally not be constant over 

time. Limitations in the image acquisition process may cause not all particles to be 

captured at all times; particles may enter or exit the field of view, they may approach 

one another at distances that are no longer resolvable so that they merge into a single 

spot, or, conversely, a spot that seemed to represent a single particle in one frame may 

turn out be a cluster of particles splitting off in the next. In addition, limited detector 

performance at low SNR almost certainly leads to varying degrees of under- or 

over-segmentation (depending on the parameter settings). In combination, these factors 

seriously complicate the development of linking strategies. 

Methods for linking corresponding particles in successive frames can roughly be 

classified into “local’’ and “global.” The former types of methods [60] operate in a 

per-particle fashion: each particle in one frame is linked to a particle in the next frame 

that minimizes a predefined distance measure. Often this involves specifying a 

maximum allowable distance, indicating track initiation or termination. This is the most 

frequently used approach to linking and may yield satisfactory results in scenes with 

relatively low particle densities and well-separated spots. In more complex situations 

with much higher densities and overlapping spots, the linking problem cannot be solved 

unambiguously without involving neighbouring or even all detected particles and 

finding the optimal correspondences for them simultaneously. Global correspondence 
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search strategies are well-known in image processing [65]. However, many of these 

perform poorly when applied to biological data because of too-simplistic assumptions of 

particle motion modes, which cannot cope with the intrinsic heterogeneity of motion 

within one particle trajectory as well as among particles. In addition, these strategies are 

computationally more demanding. 

 

5.3.4 Tracking Results Analysis 

Before applying a thorough quantitative analysis of the results of fully automated 

tracking algorithms, it is good practice to first examine and verify these qualitatively. 

Especially at low SNR, detection and linking errors may easily occur, even with current 

state-of-the-art algorithms, and require manual correction afterwards. Simply browsing 

through the data in a frame-by-frame fashion, as done in early studies, is cumbersome 

and does not provide sufficient insight into the interrelations between detected features. 

In the past few years, more effective ways to represent and visualize spatiotemporal data 

have appeared in the literature, based on (combined) volume and surface rendering 

techniques [56]. Apart from assisting in the verification of tracking results, such 

visualizations also give first impressions of possible trends in the data, which may 

motivate specific quantitative analyses. 

Once tracking results are verified and corrected if this is possible, several 

characteristic motion parameters can be derived from them. Displacements, velocities, 

and accelerations are easily computed per particle and even per time point or interval. 

Generally, these values are studied collectively over larger numbers of particles, and 

provide the intrinsic heterogeneity of particle behaviour into histograms that reveal the 

most dominant modes of motion. 

 

5.4 Summary 

In the last chapter of this thesis, we will show the potential application of Zernike 

filter in image processing, and the quantitative dynamics of a biomolecular system by a 

multiple particle tracking algorithm. In chapter 6, we will apply our Zernike filter 

feedback system, which is similar with which has been used for telescope phasing, in 

image pre-processing for single particle tracking. By numerical simulation, we show 
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this Zernike filtering can be used to remove the static background, which affects the 

single particle tracking process. A comparison will be given to shown that the Zernike 

filtering will significantly improve the effectiveness of the single particle tracking 

algorithm. A local linking method is used in this tracking algorithm, and as a result, it 

can only be used in a relatively low particle density situation. Finally, we further study a 

global-linking multiple particle tracking algorithm and apply this algorithm to study the 

statistical dynamics of a bimolecular system. 
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Chapter 6 

Zernike Filtering for the Application of Particle Detection and 

Tracking 

 

 

 

 

 

 

 

The low signal-to-noise ratio has been a fundamental problem in dealing with particle 

detection and tracking in living cells. Even if all sources of noise due to system 

imperfections are reduced to a minimum, the signal-to-noise ratio (SNR) is still limited 

because of the randomness introduced by the quantum nature of light. This randomness 

follows a Poisson distribution and is therefore not independent of the signal. 

Furthermore, in most experiments the signal has to be kept to a minimum, since high 

illumination rapidly quenches fluorescence and may disrupt the cellular and molecular 

processes being studied. And for the very same reason, the number of images taken for 

a given time is usually minimized as well. As a result, both the SNR and the temporal 

resolution are usually quite low. 

In this chapter, we will present our original work on further applying the Zernike 

filter feedback system to increase the signal-to-noise ratio of the image sequence. As we 

will show, this process will make the existing particle tracking algorithm more effective 

and accurate. The Zernike filter feedback system is capable of removing the noisy static 

(or slower moving by comparison with the targets) background, and therefore 

increasing the signal-to-noise ratio. To demonstrate the effects of the Zernike filter 

feedback system, we compare the tracking results with and without the presence of 

Zernike filtering by using numerically generated particles moving in a noisy 
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background. The single particle tracking algorithm we choose is a cross-correlation 

based algorithm, followed by centroid interpolation to give sub-pixel position. Then, we 

conduct case studies for the Zernike filter system in the application of living cell images 

pre-processing. Finally, we further present a multiple-particle tracking method on one of 

the real living cell image sequence, when the single particle tracking is not appropriate. 

 

6.1 Zernike Filter Pre-Processing 

We have used the differential Zernike filter in chapter 3 and 4 for phasing errors 

retrieval and correction. The differential Zernike filter had also been used in an adaptive 

optics system for wave-front control [29, 30]. It has been shown that the adaptive 

system with the differential Zernike wave-front sensor can be efficient for compensating 

static phase distortions. We further show in chapter 4 that this system can differentiate 

the dynamic component from static component in the input signal, and therefore, 

remove the static component. 

Noisy background can hamper the effectiveness of the particle tracking in the 

analysis of biomolecular video images. Sometimes, there could be some static bright 

spots in the images which significantly affect the particle tracking. To remove the static 

noisy background, we can apply the Zernike filter feedback system (Zernike filtering) as 

a pre-processing to the image sequence to prepare the images for particle tracking. 

 

                

Figure 6.1 Schematic of pre-processing Zernike feedback system. The input image 

signal is added with the feedback signal, and then applied to the SLM. 

 

A schematic laboratory system of the Zernike pre-processing is given in Fig. 6.1. 

This system, to the most extent, resembles the Zernike phasing sensor system as 
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described in chapter 4. The pre-processing system comprises of a spatial light modulator 

(SLM) as a wavefront corrector and the differential Zernike filter as a wavefront sensor; 

the two are coupled by a feedback loop. The only difference in this system is that the 

input (phase) signal is applied to the SLM rather than modulated in the input light (there 

is no wavefront aberration in the input wave). Here the SLM introduces a phase 

modulation ),(),( trvtru
rr +  to the undistorted input wave 0A , where ),( trv

r
 is the 

input images, ),( tru
r

 is the feedback signal, in which, r
r

 is the spatial radial vector in 

the plane transverse to the system optical axis and t  is time. The wave after the SLM 

is therefore )]},(),([exp{0 trvtruiA
rr + , which is used as the input to the differential 

Zernike filter. The output signal ),( trIdiff  from the filter is then used to control the 

feedback signal ),( tru . The dynamics of the pre-processing system can be written as a 

discrete-time iteration equation: 
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where ,...3,2,1=n  is the iteration number, 0)()1( =ru
r

, and rdruSu nn rr

∫
−= 2)(1)( )(  is 

the phase averaged over the aperture area S. K  is the gain parameter that can be 

controlled electronically in the feedback loop. By comparison with Eq. 4.17, the 

diffusion term is omitted in Eq. 6.1. The output (processed) images are read directly 

from the photo array (known as diffI ). In our experiment, this system is realized 

numerically. However, the hardware system can be built with the imaging camera for 

real-time processing to save computation for high-resolution images. 

  The principle of the Zernike filtering pre-processing best demonstrated through an 

ideal experiment is shown in Fig. 6.2. The original image sequence is constructed by 

adding three bright particles in a static Gaussian noisy background ( 512512× ). The 

three objects have the same brightness comparable with the background, and the same 

FWHM of 5 pixels. Two of the objects are moving, and have constant velocity of 

=1V 1 pixel/frame and =2V 0.2 pixel/frame respectively, and the third object is static 

( 03 =V ). A snap shot of the original images is shown in Fig. 6.2 (a), and examples of 
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the processed images are shown in Fig. 6.2 (b), (c), and (d) respectively for frame 10, 50, 

and 100. We can see in the processed images, the noisy background and static object 

have disappeared, but the two moving objects are still there. We also note that the 

particle with higher speed 1V  appears to be brighter than the one with relatively slower 

speed 2V  in the processed images. This is a result of the dynamics of the Zernike 

filtering. The static noisy background in the initial images can be suppressed because 

they are built up in the feedback control signal but with opposite distribution during the 

iterating process. On the other hand, if an object moves so quick that this object appears 

in a different position at each detector reading, it can not be built up in the feedback 

signal, and as a result can not be suppressed. Basically, the moving objects will be 

completely retained while their displacement in each frame is significantly greater than 

their physical size. However, the object can be partly suppressed if it moves so slow that 

it appears to be overlapping within several iterates in the detector’s reading. 

    

    

Figure 6.2 Processing results with Zernike filtering for three bright particles in a noisy 

background. The simulation signal comprises of three bright particles, which are 

corresponding to different velocity: V1=1 pixel/frame, V2= 0.2 pixel/frame, and V3=0. 
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(a) A snap shot at frame 1 before processing, (b), (c), and (d) are snap shots at frame 10, 

50, and 100 after processing. 

 

6.2 Image Pre-processing and Single Particle Tracking Procedure 

As we have shown above, the Zernike filtering system is capable of suppressing the 

static background in images. This enhancement in image quality results in a higher 

signal-to-noise ratio, and therefore makes it a good candidate in pre-processing for 

particle tracking. In order to show the effectiveness of the Zernike filtering in this 

application, we use a single particle tracking method on both artificially generated and 

real living cell image series, and compare the tracking results with and without the 

presence of the Zernike filtering. 

There are many methods used for single particle tracking [66], including finding the 

centre of mass (centroid) of the object, fitting a Gaussian curve to the object, 

cross-correlation (COR) and sum-absolute difference (SAD). Methods such as COR and 

SAD do not give sub-pixel position on their own. Instead, they create a ‘correlation 

image’ showing regions of high similarity between a template image and the current 

image. A method of interpolating the nearest sub-pixel position of this ‘correlation 

object’ is then necessary. The types of interpolation that have been used include 

parabolic, cosinusoidal, and Gaussian fitting and centroid calculation. For the method of 

single particle tracking, tracking begins with the selection of a region of interest. Then, 

in each image, the chosen method of locating the particle’s centre is applied and this 

centre position is used to reposition the area of interest for the next image processing. 

Depending on the exact implementation of particle tracking used, investigators typically 

propose that an accuracy of 10 nm or better can be achieved [66]. When magnification 

and the physical size of the pixels in the CCD chip of the camera are considered, the 

image pixel size is typically between 30 nm/pixel and 150 nm/pixel. Thus, to achieve an 

accuracy of 10 nm corresponds to locating the centre of the object to somewhere 

between 1/3 and 1/15th of a pixel. Currently, many choices for tracking method are to 

apply a COR-based algorithm, followed by centroid interpolation to give sub-pixel 

position [66]. This tracking method is the one we use for single particle tracking along 

with the Zernike filtering pre-processing. The details for this algorithm are given in 
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Appendix C. 

As shown in Fig. 6.3, the pre-processing and tracking procedure is implemented in 

the sequence of the following steps: (1) the image series are prepared or generated 

artificially by combining the object and noisy background, (2) the images are sent frame 

by frame for Zernike filtering, (3) the kernel and the coordination of the centre of 

searching area in the next frame are initialized, (4) the kernel and the specified 

searching area are used to calculate the cross-correlation coefficient, (5) a threshold 

operation is performed to the correlation matrix, and then centre of the mass (centroid) 

of the correlation matrix is calculated, (5) the object position coordinate is calculated. 

The process from step (3) to step (5) will be repeated until the last frame is processed. 

        

Figure 6.3 The diagram of the single particle tracking algorithm. The Zernike filtering is 

applied along with the particle tracking algorithm. 

 

6.3 Tests on Simulated Living Cell Images 

The currently existing single particle tracking methods, including the correlation 

combined centroid method, are capable of quantifying the position and motion of the 

moving objects accurately under relatively large signal-to-noise (SNR) conditions [66]. 

However, when the SNR deceases (typically under 10), most of these methods fell. In 

this section, we will show by numerical simulation that the Zernike filtering algorithm 

is capable of increasing the SNR by suppressing the static noisy background, and as a 

result, increasing the effectiveness of particle tracking methods. 

We consider physical particles that are mobile in a two-dimensional plane. Their 

motion is observed using imaging equipment and a digital (CCD) camera which 
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generates a sequence of digital images at discrete time points. We call this sequence a 

movie and an individual image from it a frame. In each frame, the images of the 

particles are visible as objects. 

 

6.3.1 Particle Model 

To create an accurate model for a fluorescent object imaged with a charge-coupled 

device (CCD), the distribution of intensities of the image can be derived by convolving 

the object function with an appropriate point-spread function (PSF) [66]. To study the 

effectiveness of the Zernike filtering, we simplified this step and only use a 

two-dimensional Gaussian surface to represent the particle. The input image is obtained 

by combining the object and noisy background, which can be written as: 
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i
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i III +=                                                      (6.2) 

where )(i
objI  is the object component, and )(i

bgI  is the background component, and 

Ni ,...,3,2,1=  is the frame number. The object component )(i
objI  is given by the 

expression: 
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in which a  determines the brightness of the moving object, and b  determine the size 

of the object. In our simulation a  can be varied, while keeping the noisy background 

constant, to provide different signal-to-noise ratio, and b  is set to 0.15, which makes 

the object of 9 pixels in diameter. ),( ii yx  is the pre-defined position of the particle at 

frame i , and the predefined parabolic trajectory of the object is given by: 

11 +=+ ii xx                                                       (6.4) 

450)256(011.0 2 +−−= ii xy                                         (6.5) 

where 372,...,3,2,1=i , and 701 =x , 691 =y . The parabolic trajectory is shown in Fig. 

6.4, which emerges from the left end, and exits at the right end of the curve. 
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Figure 6.4 The pre-defined trajectory of the moving object. 

 

6.3.2 Noise Model 

The CCD cameras used for image recording generate shot noise in the image [67]. 

Shot noise is a Poisson process where the noise increases with N , N being the 

number of detected photons or photoelectrons in a pixel. In our simulation, the noisy 

background )(i
bgI  is realized by Poisson distributed shot noise, which does not change at 

each frame. If the expected number of detected photons in this interval is λ, then the 

probability that there are exactly k  detected photons (k  being a non-negative integer, 

k = 0, 1, 2, ...) is equal to 

!
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k

e
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−

=                                                    (6.6) 

where !k  is the factorial of k . 

 

6.3.3 Results 

The artificial images, generated by combining the particle and noise, are sent for 

Zernike filtering before applying the tracking algorithm. We numerically choose a 

perfect phase shift size of one pixel [29], which physically represents shifting only the 

zero spatial spectral components, and the feedback gain coefficient K  is chosen to be 

0.2 in the pre-processing. A snap shot of the Zernike filter processed images and a snap 

shot of the original images are shown in Fig. 6.5. The noise background is suppressed 

heavily as a result of the Zernike filtering. 

The numerically generated images have the size of 512512×  pixels. In the 

initialization step, the centre of mass of the whole image at the first frame is used as the 
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centre to get the kernel and the centre of the searching area for the next frame. The 

template image (kernel) size is 99×  pixels and the search area size is 1717×  pixels, 

which results in a square correlation matrix with 2)19(17 ×−+  pixels in each side. 

The coordinates of the particle can be updated at frame i  by 

,'''1 xwxwxx ii +−+−= −  

,'''1 ywywyy ii +−+−= −                                            (6.7) 

where )','( yx  and )'',''( yx  are the centroid interpolation of the kernel (last frame) 

and the correlation matrix respectively, and 9=w  is the width of the kernel. 

    

Figure 6.5 A snap shot of the original simulated images (a), and a snap shot of the 

Zernike filter processed images. 

 

In order to compare the accuracy of the single particle tracking algorithm with and 

without Zernike filtering for different levels of relative signal intensity, the signal-to 

noise ratio must be calculated. The signal-to-noise ratio (SNR) is calculated as [68] 

,
//)( 22 pnnGxnC
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−
≈                          (6.8) 

where onC  is the total pixel value of a box centered on the object, n  is the number of 

points in this box, backx  is the mean background from a box not centered on the object 

(anywhere away from the object), p  is the size of this second box and G  is the gain 

of the system.  
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Usually for images from a camera the gain is not known. It can be estimated, 

however, from the standard deviation of the background of an image. To estimate the 

gain, first calculate the mean and standard deviation of the pixel values in a region of 

the background. The noise (standard deviation, σ ) of a Poisson process should be 

N , where N  is the number of photoelectrons giving rise to the signal. If the gain is 

1, then NB == 2σ  where B  is the mean background pixel value. If the gain is not 

one, then 2σ≠B and the ratio gives the gain, thus 2/σBG = . 

As a result of the effect of the noise (or residue noise), there is always an error for the 

obtained particle coordinate at each frame in the tracked trajectories. To quantify the 

overall accuracy of the algorithm, the standard tracking error (SE), which measure the 

standard deviation of the measured object positions from the real ones of all image 

sequence, is introduced here 
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where ),( ii yx  is the measured position of the particle at frame i  and ),( 00
ii yx  

represents the real position of the particle, n  is the maximum frame number. 

      

Figure 6.6 The standard tracking error as a function of signal-to-noise ratio (SNR) with 

(circle) and without (asterisk) the presence of the Zernike filtering. The particle tracking 

algorithm accuracy is quantified by the standard error (SE). 

The single particle tracking algorithm works very well with the presence of 

pre-processing by Zernike filtering, and results in a good accuracy (SE<1 pixel). By 

changing the value of a  in Eq. 6.6, we can change the particle’s brightness and 

therefore the value of SNR of the image sequence, and then check the effectiveness of 
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the Zernike filtering. We find that the single particle tracking algorithm with Zernike 

filtering still provides less than 1 pixel accuracy even when SNR is as small as 3. As we 

know, this is better than the single particle tracking method without the Zernike 

filtering, which works with smallest SNR around 10. 

To compare the two, we calculate the standard error of the particle tracking results 

with and without the presence of Zernike filtering, in the case of different SNR values. 

As shown in Fig. 6.6 the standard tracking error without Zernike filtering decreases 

when the SNR increases, while the standard tracking error with the presence of Zernike 

filtering does not change monotonically as what happens when Zernike filtering is not 

applied. This is because that most of the noisy background has been removed by the 

Zernike filtering and then the increase of the object brightness does not increase the 

accuracy of the tracking algorithm any more. 

 

6.4 Tests on Real Living Cell Images 

  Three sequences of real living cell images are studied here. These case studies help us 

to identify the effectiveness and suitability of the Zernike filtering system in living cell 

imaging applications with different conditions. Fig. 6.7 (a) and 6.8 (a) are snap shots of 

two original fluorescence time-lapse sequences of GFP-tagged end-binding protein 1 

(EB1-GFP) tracking the plus ends of extending microtubules at the posterior of 

Drosophila melanogaster mid-stage oocyte. Fig. 6.9 (a) is a snap shot of a time-lapse 

sequence following the localisation of fluorescently labelled mRNA in a syncitial 

blastoderm stage of a Drosophila melanogaster embryo. The corresponding snap shot 

after Zernike filtering are given in Fig. 6.7 (b), 6.8 (b) and 6.9 (b) respectively. The 

static bright area in original images is removed by Zernike filter in the processed 

images. We note that the significance of Poisson noise in these three living cell image 

sequences is descending with the increase of the image sequence number (6.7, 6.8, and 

6.9), and in Fig. 6.9 there is little Poisson noise. It is not hard to find out that, the 

particles are mixed with residue noise in Fig. 6.7 (b) and 6.8 (b), and in Fig. 6.9 (b) the 

particles are basically free from noise pollution. This difference can be ascribed to the 

characteristics of the Zernike filter that it can not suppress the dynamic Poisson noise, 

but more suitable for removing static background. 
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Figure 6.7 A snap shot of the original Drosophila melanogaster mid-stage oocyte image 

sequence (a) and corresponding Zernike filter processed image (b). 

   
Figure 6.8 A snap shot of another original Drosophila melanogaster mid-stage oocyte 

image sequence (a) and corresponding Zernike filter processed image (b). 

   

Figure 6.9 (a) A snap shot of the original Drosophila melanogaster embryo time-lapse 

sequence with fluorescently labelled mRNA, the red lines are tracks obtained without 

Zernike filter; (b) A snap shot of the image sequence after Zernike filter processing, the 

green lines are tracks obtained with Zernike filter. 
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As the last image sequence (Fig. 6.9) has lower particle density, we are able to 

conduct the single particle tracking algorithm on it. In Fig. 6.9 (a), the trajectories in red 

obtained by the single particle tracking algorithm without the process of Zernike filter. 

The particle 1 is relatively bright, and can be tracked successfully. However, the much 

weaker particle 2 is not successfully tracked (the arrow indicates the right moving 

direction). By comparison, when Zernike filter is applied (as shown in Fig. 6.9 (b)), 

both particle 1 and 2 are successfully tracked (the green lines). We further strengthened 

our conclusion that Zernike filter can make the single particle tracking algorithm 

working in worse conditions (low SNR). 

 

6.5 Multiple-Particle Tracking 

  It is easy to find that in both Fig. 6.7 and 6.8 the particle density is high, and then the 

linking problem cannot be solved by the cross-correlation method locally without 

involving neighbouring. Therefore, a global linking method is needed to find the right 

correspondences for all particles recognised in each frame. Global correspondence 

search strategies are well-known in image processing [65]. However, many of these 

perform poorly when applied to biological data because of over-simplistic (mostly 

global) assumptions of particle motion modes, which cannot cope with the intrinsic 

heterogeneity of motion within one particle trajectory as well as among particles. Most 

of these methods fail to deal with the common situation in biology when the objects 

entre or exit in the vision. 

In this section, we employ an existing computationally efficient, two-dimensional, 

multiple-particle tracking algorithm [69], on the Drosophila oocyte image sequence (Fig. 

6.7). The particles’ motion in this image sequence is complex, and particles’ spatial 

feature varies a lot from time to time. They cross each other, enter and exit in the vision. 

All these characteristics make it not easy to deal with by most existing tracking 

methods. To solve these problems, a global linking algorithm employing a graph theory 

technique [72-74] to determine optimal associations between two time points is used 

here. 

 

6.5.1 The Tracking Algorithm 
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The multiple-particle tracking algorithm has to perform three distinct steps. Firstly it 

has to conduct a pre-processing to remove the harmful noise. Secondly it will detect the 

particles in every frame. Finally it has to link these target detections into trajectories. 

Most of the details about the particles detection and linking method are omitted [69]. 

Here we only provide the detail about the difference between the Zernike filter and the 

Gaussian-like filter (for pre-processing) used in Ref. 69, and the different cost function 

chosen in linking procedure used in our study. 

As the Poisson noise in Drosophila oocyte images is significant, the Zernike filter 

pre-processing is no longer suitable. A Gaussian-like filter has been used as a starting 

point of the work by Crocker and Grier for the detection of gold colloids in micrographs 

[76]. This filter is effective for suppressing Poisson noise. A snap shot of the 

Gaussian-like filter processed image sequence is given in Fig. 6.10 (b). To compare it 

with the Zernike filter, which was used in the section 6.3 and 6.4, the typical SNR value 

of the particle after processing for two images series (indicated in Fig. 6.7 and 6.8) with 

a different pre-processing algorithm can be calculated. The SNR for the image indicated 

in Fig. 6.7 (the same as Fig. 6.10) is 5.6 for Zernike filter while 8.5 for the 

Gaussian-like filter after processing. For the image shown in Fig. 6.8, the SNR is 6.3 for 

Zernike filter and 4.3 for Gaussian-like filter after processing. Better performance is 

attributed to the significance of either static background or dynamic noise. When the 

static bright background dominate, Zernike filter is better. As the dynamic noise is more 

significant in the image series we are working on, we choose the Gaussian-like filter for 

this sequence. 
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Figure 6.10 A snap shot of the original oocyte image within the interested area (a) and a 

snap shot of the restored image (b). 

 

The particle association cost function is calculated to obtain the optimum global 

particle linking. In Sbalzarini’s work [69], he used the quadratic distance between ip , 

0>i , and jq , 0>j , as well as the quadratic differences in the intensity moments of 

order 0 and 2. As we can see in Fig. 6.11, the frame-by-frame change in second order 

intensity moment for a sample manually tracked particle is not stable. This is a result of 

significant changes in the particles’ shape. Therefore, in this case, we only use the 

quadratic distance and quadratic difference in 0m , but not 2m . 

     

Figure 6.11 The intensity moment of order 0 (0m ) and order 2 ( 2m ) for a sample 

manually tracked particle evolving with time. There is a good continuity in 0m , but not 

in 2m . 

 

6.5.2 Tracking Results and Comparison with Manual Tracking 

Before presenting the automatic tracking results, we perform a manual tracking on 

part of the image sequence. Manual tracking is labour intensive, costly, inaccurate, and 

poorly reproducible, and usually only a small fraction of the data can be analyzed in this 

manner. However, as the statistical characteristics of the particles in the image sequence 

is not clear, we need to provide manual tracking to choose parameters for the automatic 

multiple-particle tracking. The Drosophila oocyte image sequence comprises 198 

frames of 512512×  pixel images. We manually tracked as many of the particles as we 
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could, in a 3232×  square area, whose top left-hand corner is (352,192), and found 21 

trajectories in this area. 

The manually tracked coordinate data for a typical particle is shown in Fig. 6.12. This 

particle enters in frame 99, and disappears in frame 138. The coordinate and instant 

velocity of this target in axis x and y are given separately in Fig. 6.12 (a) and (b). We 

find this particle has an overall orientation tendency. However, the instant velocity is 

still somehow random. This motion can be seen as a biased Brownian motion. Another 

fact we find here is that the maximum instant velocity in either direction (x  or y ) 

does not exceed 3pixels/frame. Therefore, the overall frame-by-frame displacement will 

not exceed 24.423 =×  pixels between two successive frames. 

 

Figure 6.12 Manually tracked particle coordinate in x  (a) and y  (b) axis. The instant 

velocity in x  and y  axis is also shown in (a) and (b) respectively. 

 

Another parameter needed to be properly chosen is the threshold intensity percentile 

value (r ) used in target location estimation. If the value of r  is too small, the tracking 

algorithm could miss quite a few particles in certain frames. On the other hand, if r  is 

too large, some relatively brighter noise or background spots could be treated as 

particles. To find the optimum value for the threshold intensity percentile r , we 

execute the tracking algorithm with different value of r , and find 3 percent to be the 

optimum value of r , which results in the best match between the manually and 

automatically tracked results. We run the multiple-particle tracking algorithm on the 

image sequence, and find 3550 particle trajectories. We note that there are many 

trajectories that only last for few frames. These “short” trajectories do not provide much 
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information for us and can be ignored. The trajectories of particles with more than 8 

pixels displacement are plotted in Fig. 6.13 (a), and the trajectories of particles with 

more than 5 pixels and less than 8 pixels displacement are plotted in Fig. 6.13 (b). In 

Fig. 6.13, different colours indicate different trajectories. Other parameters used for 

tracking in the Drosophila oocyte images are: particle radius 3=w  pixel; noise 

correlation length 1=nλ  pixel. 

 

Figure 6.13 Particle trajectories resulting from the multiple-particle tracking algorithm. 

The different colours indicate different trajectories. (a) 187 trajectories of particle with 

more than 8 pixel displacement, (b) 287 trajectories of particle with more than 5 pixel 

and less than 8 pixel displacement. 

 

To find out how good this tracking algorithm is, we compare the automatic tracking 

results with the manually tracked results. In the 3232×  square area, the automatic 

tracking algorithm has generated 105 particle-linking in first 20 frames, while 11 of 

them are missing by comparison with manually tracking results, and no false linking 

exists. The linking success rate is 89.5% by comparison with manually tracked 

trajectories. The missed link is a result of the unstable intensity of the particles. Some 

particles can be very weak in certain frames, such that the tracking algorithm does not 

treat them as particles as their maximum intensity is lower than the threshold value. 

To further verify the maximum displacement between two frames for the particles 

does not exceed 4 pixels, we have also run the multiple-particle tracking algorithm with 

different value of maximum linking length ,5,4,3=L  and 6 pixels. The automatically 

tracked results with different values of L  can be compared with the manually tracked 
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results, and we find the optimum maximum linking length is 4=L  pixels, which gives 

us the best balance between less false link and less unwanted trajectory break up. 

The above comparison between the automatic tracking algorithm and manually 

tracked results shows a fair consistency between the two. However, the problem in the 

automatic tracking method is that it missed a few targets in several frames because they 

are too “weak”. These “weak” particles found in manual tracking benefit from the 

advantages of the human vision system. Although, at this stage, the automatic tracking 

algorithm can not find all the trajectories accurately, the tracking results are still 

valuable statistically when manual tracking is extremely difficult for such a particle 

density. 

 

6.6 Conclusions and Discussion 

In conclusion, we have shown by both simulation and case study that the Zernike 

filtering is capable of suppressing the static noisy background for images, which makes 

it a good candidate for preparing images for particle tracking (pre-processing). We show 

that a single particle tracking algorithm works even with relatively weak signal (SNR as 

small as 3) with the presence of Zernike filtering. As long as the particle density is low 

enough so that separate tracking of each particle is possible, the single particle tracking 

algorithm (a local linking method is employed) along with the Zernike filtering works 

effectively. However, in more complex situations with much higher particle densities 

and overlapping spots, the linking problem cannot be solved locally. Therefore, a global 

linking method is needed to find the right correspondences for all particles recognised in 

each frame. As an example, we applied an existing computational efficient and robust 

algorithm, in which a global linking method is employed, for two-dimensional 

multiple-particle tracking on a Drosophila oocyte image sequence. This algorithm 

works fairly well (with 89.5% linking successful rate, and no false link). We show, by 

comparison with manual tracking, this algorithm is limited as the tracking fails when 

particle intensity is too low. 

We note that the Poisson noise in our single particle tracking simulation does not 

change with time. This is not the case in the real application. In this chapter, we use the 

Poisson noise only as an example of the noisy background (not for short noise). In the 
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real living cell images, sometimes, there are some static bright objects or illumination 

areas which are not of interest. In such cases, Zernike filtering can remove these 

irrelevant bright spots or areas and makes the particle tracking algorithm work more 

effectively and accurately (example shown in Fig. 6.7). However, when the background 

is moving, or the Poisson noise (dynamic) is significant, we have to be very careful in 

using Zernike filtering (example shown in Fig. 6.6), as it may also bring in extra noise. 

As we show in section 6.5, when Zernike filtering is not appropriate, other 

pre-processing method will be applied. 

One problem for the Zernike filtering is that the static noisy background in the first 

few frames isn’t suppressed as much as in the rest of the frames. This is a result of the 

Zernike feedback system dynamics. The static components in the images can be 

suppressed because they are built up in the feedback control signal during the process. 

However, in processing the first few frames, the feedback signal has not yet been built 

completely, so the static components in these frames do not disappear completely. This 

defect sometimes can make the tracking accuracy different in the first few frames from 

the rest. To solve this problem, we can artificially add the first few frames of the image 

series before the original image series in the opposite sequence, which generate a new 

image series. The Zernike filtering can then be applied to the new image series, and 

after the processing, the artificially added frames can be ignored in the tracking process. 

The added frames are used to build up the static components in the feedback signal 

before processing the ‘real’ frames. 

We note the automatic multiple-particle tracking algorithm is limited in terms of 

accuracy by comparison with manual tracking, as it is not capable of recognizing 

“weak” particles. However, this is not the only limitation for this multiple-particle 

tracking algorithm. There are more situations in which the linking between frames is 

incorrect. Two examples of possible false linking are shown in Fig. 7.8. In Fig. 7.8 (a), 

the three moving particles are correctly linked. In Fig. 7.8 (b), there is a missing 

measurement. This defect does not affect the statistic characteristics of the particles 

significantly. In Fig. 7.8 (c), as there is an extra or false recognized particle, the link 

could lead to a false trajectory. 
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Figure 7.8 Three moving particles are measured in three time instances. The lines 

represent the particle correspondences in time. In (a), all points are measured at every 

time instance (frame). In (b), there is a missing measurement at 1+kt , and, in (c), there is 

an extra or false measurement at 1+kt . 

 

One way to find and correct the false linking is to check the trajectory results. In 

example shown in Fig. 6.13, we know in advance that the particles move in smooth 

trajectories (in the long time scale), if we find there is a significant change of direction 

in the particle trajectory, this indicates that a false link may exist, which may than be 

manually corrected. Alternatively, linking to the frame after the next can be conducted 

in addition to the one frame linking. The results of the two can be compared, and if 

there is a contradiction, we can go back to the video, check the original images and 

correct the false link if there is one. 

Advances in biological imaging technology continue to provide new opportunities in 

unveiling the complex processes underlying the basic building blocks of life. Molecular 

biology research has only just begun to study how proteins are spatially and temporally 

organized in larger functional units and how they behave under the influence of 

selective perturbations of the system by genetic and molecular interventions. Answering 

these questions will be critical to understanding diseases and our ability to design more 

effective drugs and therapeutic strategies. Since more and more research is being done 

in living cells, with time-lapse image data sets that are not only very large in size but 
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also highly variable and complex, research in this area is rapidly becoming dependent 

on automated techniques for image processing and analysis. Commercial software 

packages with modules for particle tracking and motion analysis are already available, 

but it is highly unlikely that a general-purpose algorithm, developed to provide a 

solution to many different tracking problems, is going to be the best fit for any 

particular tracking problem. 
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Conclusions 

  In conclusion, we presented the combined theoretical and numerical investigation of 

the differential Zernike filter and its application in segmented telescope phasing and 

image processing. The results of our investigation are as follows: 

  Firstly, we studied a new differential Zernike filter based sensor (DZEUS) for 

phasing of a segmented mirror. We first presented in one dimension the analytical 

expression for the PtP values of output intensity modulations against the input phase 

jumps in DZEUS. We showed that the DZEUS gives rise to a better linear relation, 

compared to ZEUS, because the differential algorithm used in DZEUS removes the 

symmetrical (pollution) term that exists in the PtP expression of ZEUS. This makes 

DZEUS a better phase retrieval algorithm. In order to further improve the phasing 

accuracy, we put forward a multiple step correction approach which can further reduce 

the phase errors by iterations. Then, we extended the one dimension analysis to two 

dimensions and study the performance of DZEUS using numerically generated 

segmented mirrors. We showed that using the multiple step correction approach, the 

phasing error is reduced exponentially with respect to the number of iterations. We 

further compared the characteristics between DZEUS and ZEUS and concluded that the 

former performs better consistently. Finally, we showed that DZEUS is robust with 

respect to the atmospheric turbulence. 

  We further studied a phasing sensor system, which is realized by combining the 

differential Zernike filter and a feedback loop, and showed by analysis and simulation 

that this system provides an effective method to measure segment misalignment error in 

the presence of atmospheric turbulence. This phasing technique is different from 

DZEUS and ZEUS method. In ZEUS and DZEUS, only a single exposure from the 

Zernike filter output is used to retrieve the segmentation error based on its known 

wavefront-to-intensity converting relation for segmented mirror correction at each time. 

The atmospheric turbulence is partially averaged out by relatively long time exposure in 

ZEUS and DZEUS. While in the differential Zernike feedback system, the atmospheric 

turbulence is averaged out by multiple exposures. 

  The other part of this thesis focused on particle tracking in processing of living cell 
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images. We have shown by simulation that Zernike filtering can increase the tracking 

accuracy of a single particle tracking algorithm, in which, a local linking method is 

used, by suppressing the static object as well as the static noisy background, and makes 

the particle tracking algorithm work even with relatively weak signal (SNR as small as 

3). Then, we conducted numerical experiments on three living cell image series, and 

show the effectiveness in a real application. In so far as the particles’ density is low 

enough so that separately tracking of each particle is possible, this single particle 

tracking algorithm along with the Zernike filtering works effectively. However, in more 

complex situations with much higher densities and overlapping spots, the linking 

problem cannot be solved unambiguously locally. We employed an existing 

computational efficient and robust algorithm with couple of modification for 

two-dimensional multiple-particle tracking the particles in Drosophila oocyte image 

sequence, in which, the particle density is pretty high. In this tracking algorithm, a 

global linking technique based on graphic theory is employed. This algorithm works 

fairly well (with 89.5% linking successful rate, and no false link). We show, by 

comparison with manual tracking, this algorithm is limited as the tracking fails when 

particle intensity is too low. 
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Appendix A 

Singular Value Decomposition 

 

The measured intersegment phasing errors need to be transformed into piston values, 

so as to send to actuators to close the phasing loop. Now, the problem is how to 

transform the retrieved segment edge jumps into the corresponding piston value of the 

segment mirrors [77]. 

In our example, the primary mirror is consisted of 169 hexagonal segments, and there 

are 462 inter-segment edges. The piston value of each segment can be written as an 

one-dimensional matrix, { },,,,, 16916821 PPPPu L=  while the inter-segment edge jump 

can be written as another one-dimensional matrix, { }.,,,, 46246121 JJJJv L=  There 

exist a 169462×  two-dimensional matrix A that can make u and v linearly related: 

vAu = .                                                          (A.1) 

B is the pseudoinverse matrix of matrix A, so we have: 

Bvu = .                                                          (A.2) 

The matrix B can be obtained by the following expression: 

*UVB +Σ= ,                                                      (A.3) 

where V  is a 169169×  unitary matrix, +Σ  is the transpose of Σ  with every 

nonzero entry replaced by its reciprocal, the matrix Σ  is 169462×  with nonnegative 

numbers on the diagonal and zero off the diagonal, and *U  denote the transpose of 

U , an 462462×  unitary matrix. U , Σ , and V  are generated by singular value 

decomposition (SVD): 

*VUA Σ= ,                                                       (A.4) 

where *V  is the transpose of V. 
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Appendix B 

Atmospheric Turbulence Simulation 

 

The simulation of atmospherically distorted wavefront is important in the context of 

studies of light propagation and imaging through the atmosphere, as well as in the 

context of the correction of atmospherically distorted images where the distortion is 

treated as a disturbance, such as in an adaptive optics system. Research on the 

simulation of the atmosphere started with the general procedure described by 

McGlamery [42]: random phases are produced over the pupil, and the atmospheric 

correlation is introduced with proper filtering by the Kolmogorov spectrum [78]. 

A phase-screen realization over a grid of points is generated in the Fourier, or fast 

Fourier transform (FFT) method, by taking the FFT of filtered white noise. If ts,φ  is 

the phase at the s-th row and t-th column of the grid of phase points, and if F is an 

xy NN ×  array representing the phase power spectral density, then, according to the 

Fourier method [79], 
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The operator (Real Imag) T in Eq. B.1 is needed because the two-dimensional discrete 

Fourier transform generates a “complex phase”. If we define )(
,
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independent of that containing the elements )(
,
i
tsφ . The Fourier method is a very efficient 

algorithm for creating phase-screen realizations since the FFT can be employed. In 

addition, two independent phase screens are created per operation [ )(rφ  and )(iφ , where 

)()( ir iφφφ += ]. 

It is straightforward to show that both )(rφ  and )(iφ , as generated from Eq. B.1, 

satisfy the required property 
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For uncorrected phase errors, it follows from Kolmogorov theory that the power 

spectral density is [79] 
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For numerical analysis the discrete version of Eq. B.5 must be used. For a yx LL ×  

rectangular phase screen consisting of yx NN ×  grid points (separation of 

yyxx NLNL // =  between adjacent phase grid points), it is straightforward to show that 
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In Eq. B.8 and B.9 we have assumed that yN  and xN  are even integers (typically 

they are powers of 2, since the FFT is used). The odd ordering of the discrete spatial 
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frequencies was, of course, needed so that they would coincide with the spatial 

frequencies of the term ]/)1)(1(2exp[]/)1)(1(2exp[ xy NtniNsmi −−−− ππ  in Eq. B.1. 

(For example, for N=8, the spectrum would be ordered as (0, 1, 2, 3, -4, -3, -2, -1). 

Finally, we note that for m=n=1 (dc term), 0,0Φ  is infinite, as calculated from Eq. B.6, 

B.8, and B.9. This pole is removed by choosing a normalization of 0 for the dc 

component of the discrete power spectral density, 

.00,0 =Φ                                                          (B.10) 

A shortcoming of the Fourier method is that low spatial frequencies, which are the 

major contributor to uncorrected phase aberrations, are underrepresented in the phase 

screens. The reason for this is that for a phase screen of width L, the lowest spatial 

frequency in the discrete spectrum is 1/L. 

There are several methods for compensating for this underrepresentation due to the 

1/L cutoff. The most obvious scheme is to increase L so that 1/ >>DL , where D is the 

aperture diameter. This is not feasible for commonly used aperture diameters. For 

example, for 100/ >>DL , mD 1= , and grid point sampling of 1 cm, the total phase 

screen would consist of an array of 000,10000,10 ×  points. Processing arrays of this 

size presents computational difficulties. An alternative approach is to imbed the phase 

screen within a much larger screen whose grid point separation is equal to the full width 

of the screen being modelled. The larger screen can then be used to augment the 

low-frequency spectrum of the smaller screen. If the size of the larger coarse screen is 

'' NN ×  grid points, then the spatial frequencies ]/1,'/)1'(,,'/2,'/1[ LLNNLNLN −L  

can be included in the modelling. 
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Appendix C 

Single Particle Tracking Method 

 

For methods based solely on centroid calculation, a search region is placed as tightly 

around the object of interest as possible (given how far the particle can move between 

frames). Before the centroid is calculated, a threshold operation is performed to remove 

as much background noise as possible without losing the edge of the object. Then the 

centre of mass is calculated and used to re-centre the search region for the next frame. 

The energy centre of the grayscale image of width w  and height h  is calculated as 

follows: 
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where x  is the current x position, y  is the current y position, and ),( yxI  is the 

intensity of the image at point ),( yx . Various methods may be used to select an 

appropriate threshold. An appropriate threshold is one that minimizes the appearance of 

noise while retaining as much of the object (and its shape) as possible. There is no 

calibration with respect to particle shapes or other physical characteristics for this 

simple tracking method (calibrations by 0m  and 2m  are used in the multiple particle 

tracking). 

Tracking a particle in an image sequence using a correlation method requires 

choosing a template image (kernel) to be searched for in subsequent images. The 

algorithm overlays and calculates a cross correlation with kernel for each point within 

the selected search region, creating a correlation image where higher brightness 

indicates higher correlation. A threshold is applied to the correlation image to remove 

the background and the centre of the correlation image is then found using a centroid 

interpolation method. For the cross-correlation, the kernel image is overlayed and 

compared to the image of interest and moved over the image of interest one pixel at a 
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time, with each location being scored for its similarity to the kernel image. This set of 

similarity scores makes a correlation matrix. The correlation matrix has the advantage 

of low noise, since more points are compared to many other points at the same time to 

create it. The normalized correlation coefficient is calculated as follows: 
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where R  is the correlation image, w  is the width of the template, h  is the height of 

the template, T  is the kernel image, I  is the search area image, T  is the mean pixel 

value of the kernel, I  is the mean pixel value of the image within the current area 

)','( yx to )','( hywx ++ , ),( yx  and )','( yyxx ++  are the pixel positions in the 

respective images (template and search area). 

The correlation coefficient gives a result for each point between −1 and 1. Negative 

values indicate negative correlation and are excluded. Correlation methods on their own 

give a correlation matrix ),( yxR . By selecting the brightest point you can get an 

estimated accuracy to one pixel of the centre of the object, and sub-pixel accuracy can 

be realized by apply centroid interpolation to the correlation matrix. 

 

 

 

 

 

 

 

 

 

 



 103 

Publications 

1. Tao Huang, Yingji He, Yang Xiao, Wenrui Xue, and Guosheng Zhou, “Effects of 

residual second-order dispersion to fourth-order dispersion in ultra high-speed 

optical time-division multiplexed transmission”, Chinese Opt. Lett. 12, 72 (2004). 

2. Rongcao Yang, Wenrui Xue, Tao Huang, and Guosheng Zhou, “Research on the 

effects of air hole shape on the properties of microstructured optical fibers”, Opt. 

Eng. 43, 2701 (2004). 

3. T. Huang, W. Lu, S. Zhang, A. H. Greenaway, “Zernike phase sensor for phasing 

of segment telescopes,” Appl. Phys. B 86, 139-145 (2007). 

4. T. Huang, W. Lu, A. H. Greenaway, “Differential Zernike phase sensor for 

phasing of the segmented mirror: theory and comparison with ZEUS”, manuscript 

prepared. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

References 

1. J. E. Nelson, T. S. Mast, and S. M. Faber, “The design of the Keck Observatory 

and telescope,” Keck Observatory Report 90, 5-1 to 5-44 (1985). 

2. N. Yaitskova and K. Dohlen, “Tip-tilt error for extremely large segmented 

telescopes: detailed theoretical point-spread function analysis and numerical 

simulation results,” JOSA A. 19, 1274-1285 (2002). 

3. N. Yaitskova and K. Dohlen, “Simulation of imaging performance for extremely 

large segmented telescopes,” in Optical Design, Materials, Fabrication, and 

Maintenance, Proc. SPIE 4003, 279-290 (2000).  

4. G. Zeider and E. Montgomery, “Diffraction effect with segmented aperture,” in 

Space Telescopes and Instruments V, Proc. SPIE 3356, 799-809 (1998). 

5. T. S. Mast, J. E. Nelson, “Segmented mirror control system hardware for CELT,” 

in Optical Design, Materials, Fabrication, and Maintenance, Proc. SPIE 4003, 

226-240 (2000). 

6. G. A. Chanan, “Design of the Keck Observatory alignment camera,” in Precision 

Instrument Design, SPIE 1036, pp. 59-70 (1988). 

7. G. A. Chanan, J. Nelson, T. Mast, P. Wizinowich, and B. Schaefer, “The W. M. 

Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, 

SPIE 2198, 1139-1150 (1994). 

8. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, 

"Phasing the Mirror Segments of the Keck Telescopes: The Broadband Phasing 

Algorithm," Appl. Opt. 37, 140-155 (1998). 

9. G. A. Chanan, M. Troy, and E. Sirko, “Phase discontinuity sensing: A method for 

phasing segmented mirrors in the infrared,” Applied Optics 38, 704-713 (1999). 

10. S. Cuevas, V. G. Orlov, F. Garfias, V. Voitsekhovich, and L. Sanchez, “Curvature 

equation for a segmented telescope,” in Optical Design, Materials, Fabrication, 

and Maintenance, Proc. SPIE 4003, 291–302 (2000).  

11. L. Montoya, N. Yaitskova, P. Dierickx, and K. Dohlen, “Mach–Zehnder wave 

front sensor for phasing of segmented telescopes,” in Future Giant Telescopes, 

Proc. SPIE 4840, 564–573 (2002). 



 105 

12. N. Yaitskova, K. Dohlen, P. Dierichx, L. Montoya, “Mach-Zehnder interferometer 

for piston and tip-tilt sensing in segmented telescopes: theory and analytical 

treatment,” J. Opt. Soc. Am. A 22, 1093 (2005). 

13. S. Esposito, E. Pinna, A. Tozzi, P. Stefenini, and N. Devaney, “Co-phasing of 

segmented mirrors using pyramid sensor,” in Astronomical Adaptive Optics 

Systems and Applications, Proc. SPIE 5169, 214–225 (2003). 

14. S. Esposito, E. Pinna, A. Puglisi, A. Tozzi, and P. Stefanini, “Pyramid sensor for 

segmented mirror alignment,” Opt. Lett. 30, 2572-2574 (2005). 

15. K, Dohlen, M. Langlois, P. Lanzoni, S. Mazzanti, A. Vigan, L. Montoya, E. 

Hernandez, M. Reyes, I. Surdej, N. Yaitskova, “ZEUS: A Cophasing Sensor 

Based on the Zernike Phase Contrast Method,” Proc. SPIE 6267, 102 (2006). 

16. J. Schwiegerling, and D. R. Neal, “Historical Development of the 

Shack-Hartmann Wavefront Sensor,” 

http://www.wavefrontsciences.com/Historical%20Development.pdf. 

17. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive 

optics,” Appl. Opt. 27, 1223-1225 (1988). 

18. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 

29, 1402-1403 (1990). 

19. N. Roddier, “Algorithms for wavefront reconstruction out of curvature sensing 

data,” in Active and Adaptive Optical Systems, Proc. SPIE 1542, 120-129 (1991). 

20. G. Chanan, M. Troy, and C. Ohara, “Phasing the Primary Mirror Segments of the 

Keck Telescopes: A Comparison of Different Techniques,” Proc. SPIE 2000. 

21. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” Journal 

of Modern Optics 43, 289-293 (1996). 

22. S. Esposito, N. Devaney, “Segmented telescopes co-phasing using Pyramid 

Sensor,” Proc. Beyond Conventional Adaptive Optics, ESO Conference and 

Workshop Proceedings 58, 161 (2002). 

23. R. G. Lyon, “DCATT wavefront sensing and optical control study,” Tech. Rep. 

WFSC-0001, NASA/GSFC (1999). 

24. M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitchell, A. L. Duncan, J. H. 

Seldin, R. G. Paxman, and D. S. Acton, “A phase diversity experiment to measure 



 106 

piston misalignment on the segmented primary mirror of the Keck II telescope,” in 

Space Telescopes and Instrument V, Proc. SPIE 3356, 1190-1201 (1998). 

25. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Wiley, New 

York, 1998. 

26. M. G. Lofdahl, and H. Eriksson, “Resolving piston ambiguities when phasing a 

segmented mirror,” in Optical, and IR Space Telescopes and Instruments VI, Proc. 

SPIE 4013, 55 (2000). 

27. N. Yaitskova, F. Gonte, F. Derie, L. Noethe, I. Surdej, R. Karban, K. Dohlen, M. 

Langlois, S. Esposito, E. Pinna, M. Reyes, L. Montoya, and D. Terrett, “The 

active phasing experiment part I: concept and objectives,” in Ground Based and 

Airborne Telescopes, Proc. SPIE 6267, 84 (2006). 

28. F. Gonte et al “The active phasing experiment. Part II: design and development,” 

in Ground Based and Airborne Telescopes, Proc SPIE 6267, 85 (2006). 

29. M. A. Vorontsov, E. W. Justh, and L. A. Beresnev, “Adaptive optics with 

advanced phase-contrast techniques. I. High-resolution wave-front sensing,” J. 

Opt. Soc. Am. A 18, 1289 (2001). 

30. E. W. Justh, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, and P. S. 

Krishmarprasad, “Adaptive optics with advanced phase-contrast techniques. II. 

High-resolution wave-front control,” J. Opt. Soc. Am. A 18, 1300 (2001). 

31. F. Zernike, “How I discovered phase contrast,” Science 121, 345 (1955). 

32. J. W. Goodman, Introduction to Fourier Optics, McGrawHill, New York 1996. 

33. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics, Clarendon, Oxford, UK, 

1997. 

34. V. P. Sivokon and M. A. Vorontsov, ‘‘High-resolution adaptive phase distortion 

suppression based solely on intensity information,’’ J. Opt. Soc. Am. A 15, 

234–247 (1998). 

35. M. A. Vorontsov, ‘‘High-resolution adaptive phase distortion compensation using 

a diffractive-feedback system: experimental results,’’ J. Opt. Soc. Am. A 16, 

2567–2573 (1999). 



 107 

36. R. A. Muller and A. Buffington, ‘‘Real-time correction of atmospherically 

degraded telescope images through image sharpening,’’ J. Opt. Soc. Am. 64, 

1200–1210 (1974). 

37. T. R. O’Meara, ‘‘The multi-dither principle in adaptive optics,’’ J. Opt. Soc. Am. 

67, 306–315 (1977). 

38. M. A. Vorontsov and V. I. Shmalhauzen, Principles of Adaptive Optics (Nauka, 

Moscow, 1985). 

39. B. M. ter Haar Romey, ed., Geometry-Driven Diffusion in Computer Vision 

(Kluwer-Academic, Dordrecht, The Netherlands, 1994). 

40. IEEE Trans. Image Process. Special issue on partial differential equations and 

geometry-driven diffusion in image processing and analysis, IEEE Trans. Image 

Process. 7, (1998). 

41. M. A. Vorontsov, ‘‘Parallel image processing based on an evolution equation with 

anisotropic gain: integrated optoelectronic architectures,’’ J. Opt. Soc. Am. A 16, 

1623–1637 (1999). 

42. B. L. McGlamery, “Computer simulation studies of compensation of turbulence 

degraded images,” Proc. SPIE 74, 225 (1976). 

43. D. L. Fried, ‘‘Optical resolution through a randomly inhomogeneous medium for 

very long and very short exposures,’’ J. Opt. Soc. Am. 56, 1372–1379 (1966). 

44. N. Roddier, ‘‘Atmospheric wavefront simulation using Zernike polynomials,’’ 

Opt. Eng. 29, 1174–1180 (1990). 

45. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. 

Eng. 29, 1174 (1990). 

46. Chester S. Cardner, Byron M. Welsh, and Laird A. Thompson, “Design and 

performance analysis of adaptive optical telescopes using lasing guide stars,” 

Proc. IEEE 78, 1721 (1990). 

47. Wilson R.W., “SLODAR: Measuring optical turbulence altitude with a 

Shack--Hartmann wave-front sensor”, MNRAS 337, 103 (2002). 

48. G. Chanan, C. Ohara, and M. Troy, “Phasing the mirror segments of the Keck 

telescopes II: the narrow phasing algorithm,” Appl. Opt. 39, 4706-4714 (2000). 



 108 

49. A. Schumacher, N. Devaney, and L. Montoya, “Phasing segmented mirrors: a 

modification of the Keck narrow-band technique and its application to extremely 

large telescopes,” Appl. Opt. 41 1297-1307 (2002). 

50. Fang Shi, Gary Chanan, Catherine Ohara, Mitchell Troy, David C. Redding, 

“Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing 

Technique using the Keck Telescope” Appl. Opt. 43, 4474 (2004). 

51. N. Yaitskova, “Performance analysis of Mach-Zehnder interferometer for 

detection of wave-front discontinuities,” Proc. SPIE 5169, 62 (2003). 

52. J. N. Aubrun, K. R. Lorell, T. W. Havas, and W. C. Henninger, “Performance 

analysis of the segmented alignment control system for the ten-meter telescope,” 

Automatica 24, 437-454 (1988).  

53. R. Cohen, T. Mast, and J. Nelson, “Performance of the W. M. Keck Telescope 

active mirror control system,” SPIE 2199, 105-116 (1994). 

54. E. Meijering, I. Smal, and G. Danuser, “Tracking in Molecular Bioimaging”, 

IEEE SIGNAL PROCESSING MAGAZINE 46, 46-53 (2006). 

55. R. Eils and C. Athale, “Computational imaging in cell biology,” The Journal of 

Cell Biology, 161, 477–481 (2003). 

56. D. Gerlich, J. Mattes, and R. Eils, “Quantitative motion analysis and visualization 

of cellular structures,” Methods, 29, 3–13 (2003). 

57. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell 

imaging,” Science 300, 82–86 (2003). 

58. J. Lippincott-Schwartz and G. H. Patterson, “Development and use of fluorescent 

protein markers in living cells,” Science 300, no. 5616, 87–91 (2003). 

59. M. Gu, Advanced Optical Imaging Theory. Berlin: Springer-Verlag, 2000. 

60. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of 

algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 

(2001). 

61. D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to 

single particle tracking,” Biophys. J. 83, 2109–2117 (2002). 



 109 

62. H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, and C. Cremer, “Quantitative 

motion analysis of subchromosomal foci in living cells using four-dimensional 

microscopy,” Biophys. J. 77, 2871–2886 (1999). 

63. W. Tvaruskó, M. Bentele, T. Misteli, R. Rudolf, C. Kaether, D. L. Spector, H. H. 

Gerdes, and R. Eils, “Time-resolved analysis and visualization of dynamic 

processes in living cells,” Proc. Nat. Acad. Sciences Amer. 96, 7950–7955 (1999). 

64. D. Uttenweiler, C. Weber, B. Jähne, R. H. A. Fink, and H. Scharr, 

“Spatiotemporal anisotropic diffusion filtering to improve signal-to-noise ratios 

and object restoration in fluorescence microscopic image sequences,” J. Biomed. 

Optics 8, 40–47 (2003). 

65. C.J. Veenman, M.J.T. Reinders, and E. Backer, “Resolving motion 

correspondence for densely moving points,” IEEE Trans. Pattern Anal. Machine 

Intell. 23, 54–72 (2001). 

66. B. C. Carter, G. T. Shubeita, and S. P. Gross, “Tracking single particles: a 

user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005). 

67. Ryan, T. A., P. J. Millard, and W. W. Webb, “Imaging ][ 2+Ca  dynamics during 

signal transduction,” Cell Calcium. 11, 145–155 (1990). 

68. J. H. Simonetti, “Measuring the signal to noise ratio S/N of the CCD image of a 

star or nebula,” http://www.phys.vt.edu/~jhs/phys3154/snr20040108.pdf (2004). 

69. I. F. Sbalzarini, P. Koumoutsakos, “Feature point tracking and trajectory analysis 

for video imaging in cell biology,” Journal of Structural Biology 151 182–195 

(2005). 

70. A. Reilein, S. Yamada, and W. J. Nelson, “Self-organization of an acentrosomal 

microtubule network at the basal cortex of polarized epithelial cells”, JCB. 171, 

845 (2005). 

71. M. Piehl and L. Cassimeris, “Organization and Dynamics of Growing Microtubule 

Plus Ends during Early Mitosis”, Mol. Biol. Cell, 14, 916 (2003). 

72. S. B. Dalziel, “Rayleigh–Taylor instability: experiments wit image analysis,” 

Dynam. Atmos. Oceans 20, 127–153 (1993). 



 110 

73. S. B. Dalziel, “Decay of rotating turbulence: some particle tracking experiments,” 

In: Nieuwstadt, F.T.M. (Ed.), Flow Visualization And Image Analysis. Kluwer, 

Dordrecht, 27–54 (1993). 

74. F. L. Hichcock, “The distribution of a product from several sources to numerous 

localities,” J. Math. Phys. 20, 224 (1941). 

75. D. Chetverikov, J. Verestoy , “Feature point tracking for incomplete trajectories,” 

Computing 62, 321–338 (1999). 

76. J. C. Crocker, D.G. Grier, “Methods of digital video microscopy for colloidal 

studies,” J. Coll. Interface Sci. 179, 298–310 (1996). 

77. N. Yaitskova, L. Montoya-Martinez, K. Dohlen, and P. Dierickx, “A 

Mach-Zehnder phasing sensor for extremely large segmented telescopes: 

laboratory results and close loop algorithm,” in Ground-Based Telescopes, Proc. 

SPIE 5489, 1139–1151 (2004). 

78. Jeffrey B. Shellan, “Statistical properties of the Strehl ratio as a function of pupil 

diameter and level of adaptive optics correction following atmospheric 

propagation,” J. Opt. Soc. Am. A 21, 1445-1451 (2004). 

79. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase 

screen,” Waves Random Media 2, 209–224 (1992). 

80. A. K. Jain, “Fundamentals of Image Processing,” Prentice Hall, Englewood Cliffs, 

NJ, 1986. 

81. R. C. Gonzalez, and P. Wintz, “Digital Image Processing, 2nd Edition,” 

Addison–Wesley, Reading, MA, 1987. 

82. W. K. Pratt, “Digital Image Processing,” Wiley, New York, 1991. 

 

 

 

 

 

 

 

 


