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Abstract

The major objective of this thesis is to studg thifferential Zernike filter and its
applications in phasing segmented mirror and inpageessing. In terms of phasing, we
provide both theoretical analysis and simulation dadifferential Zernike filter based
phasing technique, and find that the differenti@irridke filter perform consistently
better than its counterpart, traditional Zernikéefi We also combine the differential
Zernike filter with a feedback loop, to represergradient-flow optimization dynamic
system. This system is shown to be capable of agpgr(static) misalignment errors of
segmented mirrors from (dynamical) atmospheric uleice, and therefore compress
the effects of atmospheric turbulence. Except ggnsented mirror phasing, we also
apply the Zernike feedback system in image prongss$ior the same system dynamics
as well as in segment phasing, the Zernike fikexdback system is capable of compress
the static noisy background, and makes the singlticfe tracking algorithm even
working in case of very low signal-to-noise ratiéinally, we apply an efficient
multiple-particle tracking algorithm on a livinglcenmage sequence. This algorithm is
shown to be able to deal with higher particle dgmsvhile the single particle tracking

methods are not working under this condition.
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Chapter 1

I ntroduction

1.1 Background

1.1.1 Wavefront Sensing and Zernike Filter

Measuring the wavefront (optical phase) of a lighém is critical for assessing the
quality of an optical system and optimizing itsfpemance. When light passes through
an imperfect optical component, aberrations — ovefrant errors — are generated. By
measuring these errors with a wavefront sensory tten be either corrected or
minimized. Typical detection systems are ineffeetim the analysis of such objects
since the eye, CCD cameras, photomultipliers armrolight detection devices are
sensitive only to variations in intensity and nawefront.

There are several types of wavefront sensors tleahew commercially available.
The most popular wavefront sensors are the Shackridan, curvature sensors, and
multilateral shearing interferometers. Others, sashPyramid sensor, March-Zehnder
interferometer are also being investigated at mted&avefront sensors can be found in
a variety of applications, including performancesessment of aspheric lenses,
characterization of DVD pick-up heads and the dgwelent of femtosecond lasers,
compensation of atmospheric turbulence, and tepesadjustment.

The Zernike filter, suggested by Zernike (for whiwd was awarded the Nobel Prize
in 1953), is one among the wavefront sensing tegles [31]. It is known as Phase
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Contrast Technique, which converts phase modulatansed by the object into
amplitude modulation. In the case of weak phaseabdj this conversion is performed
such that phase variations map linearly to ampditudriation in the image field, thus
rendering an image depicting the variation of ggtibickness of a phase object.
Zernike filter has been applied for static atmosjghtirbulence compensation [34,
35], and phasing of segmented astronomy telescdféds Segmented primary mirror
alignment, known as phasing, is one of the crittesks of telescope adjustment. For
accurate alignment of the segmented primary miitois necessary to measure the
extent of wavefront aberration of the light dueirnmperfectly aligned primary mirror
surface. One of the objectives in this thesis iatitise Zernike filter in wavefront

sensing technique for phasing of segmented telescop

1.1.2 Image Processing and Zernike Filter

Automated particle tracking and analysis in imaggugnces is one of the major
fields in digital image analysis research. There amany applications in video
surveillance, multimedia services, automated vehgiiidance and driver assistance,
remote sensing and meteorology, and medical imadjilgyalso a very important theme
in molecular biology. By their very nature, biomoléar systems are dynamic, and it is
one of the major challenges of biomedical reseamth pharmaceutical industries to
unveil the spatial and temporal relationships @sthcomplex systems. Results in this
area can be expected to have significant socialtandomic impact in the near future,
as they can improve human health and well-beingdi&s$ into biomolecular dynamics
generate ever-increasing amounts of image datdeTable to handle these data and to
fully exploit them for describing biological proces on a quantitative level and
building accurate mathematical models of dynamracstires, computerized motion
analysis is becoming a necessity. Over the pastd#geca number of image analysis
technigues have been developed in support of dudres.

Achieving robustness and high accuracy in parti@deking and motion analysis in
images obtained by light microscopy is hamperedhoge factors: the limited spatial

resolution of the microscope; low signal-to-noiaga as a result of the quantum nature



of light; and large variability of biological imagdata. All these factors put high
demands on the design of automated image anaédisigues.

Zernike filter can be applied to image processiagstlve one of the essential
problems - low signal-to-noise ratio - within pal# tracking by adapting it into a
feedback filtering system. We use the Zernike ffilte this application because in
Zernike filter feedback system, static componenigy background) can be suppressed,

and hence increasing the signal-to-noise ratio.

1.2 Layout and Original Contributions

This thesis can be divided into two separate p#mtshe first part, which includes
Chapter 2, 3, and 4, we study Zernike filter bassginented mirror phasing techniques.
In Chapter 2, we present a review on existing seg@ademirror phasing techniques. My
original work in the first part of the thesis isepented in Chapter 3 and 4. Our
investigations are by means of combined computatisimulations and theoretical
analysis mainly through Fourier transform. In Clead, the differential Zernike filter is
introduced and its application in segmented mipioasing is studied both analytically
and numerically. In Chapter 4, the differential Zike filter is further integrated into an
adaptive optical system, which is realized by canmlyg the differential Zernike filter
with a two-dimensional feedback.

In the second part, which includes chapter 5, andwé study the image
pre-processing, particle detection and trackinghaatespecially in the cell biology
application. Chapter 5 provides a review on theigartracking in living cells. My
original work for the second part of the thesipissented in Chapter 6. In Chapter 6,
we introduce the concept of Zernike filtering, whioriginate from that of Zernike
feedback system, is used along with an existinglsiparticle tracking algorithm to
achieve better signal-to-noise ratio. Finally, wenaduct automatic tracking on a real
living cell image sequence, as an example of highigle density case, by an existing

efficient multiple-particle tracking algorithm witl few modifications.



Chapter 2

Phasing of Segmented T elescopes

2.1 Segmented Telescopes

The size of the primary mirror is critical to thbservation capability of a telescope.
Many telescopes are limited by the amount of ligblected from the astronomical
object. Angular resolution is also often a critifattor to understanding the nature of
the astronomical targets. The angular resolutionaoftelescope mirror at light
wavelengthi is determined by the relatidriD (Rayleigh’s Criterion). Thus, a telescope
with a larger primary mirror will have a higher odgtion, allowing it to accurately
image smaller details. The needs of the astrondnuoenmunity have led to the
development of telescopes with mirrors of ever-tgrediameter.

Two decades ago, nearly all telescopes containeoblititic telescope mirrors, which
are mirrors comprised of a single piece of glddsilding a giant telescope from a
monolithic mirror has many difficulties. Some dtffilties typically grow rapidly with
the increasing size, and quickly make monolithicrans impractical. These difficulties
are:

A) Reduced availability of mirror blank material

B) Large optical deflections as a result of passiweport of mirror
C) High risk of mirror breakage from mishandling

D) Larger deformations from thermal changes duarger mirrors
E) Large tool costs for all parts (fabrication drahdling)

F) Shipping being difficult



As the diameter of a monolithic mirror is increastied thickness of the mirror must
also be increased. Eventually, the sheer size aighivof the glass required makes this
impractical for use in ground-based telescopes alaogertain diameter. Similarly, the
issues also make them impractical for use in lagmace-based platforms due to
spacecraft weight considerations.

This limitation has been overcome with the develeptmof segmented telescope
mirrors, a concept originally proposed by Nelsbrl. for use in the Keck Telescopes
[1]. In a segmented telescope mirror, many smdikxagonal mirror segments are
placed side by-side forming a single, continuousnmarror. Because of their smaller
individual size, the individual segments do notcheebe as thick as a single monolithic
mirror with the same total diameter. With the weidimitation removed, the

construction of extremely large telescopes becgmossible.

2.2 History of Segmented Mirror Telescopes

People have divided regions into segments for ageging from bathroom tiles to
modern segmented mirror telescopes. Even the apiplicof segmentation to optics is
old. The first recorded use of segmented mirrors wa Archimedes, who in 212BC
had an array of mirrors focused on attacking Romery in order to defend Syracuse.
More recently, Horn d’Arturo in Italy made a 1.5gagmented mirror in 1932. It was
only used vertically, and was not actively congdll In the 1970’s, Pierre Connes in
France made a 4.2 m segmented mirror telescopmffared astronomy. It was fully
steerable, and active. Unfortunately, the opticallidy was too low to be very useful for
astronomic observation.

Another type of segmented mirror telescope (actualultiple telescopes on a
common mount) was developed in the 1970’s and ceteglearly in the 1980’s. This
was called Multiple Mirror Telescope (MMT), and wiasilt in southern Arizona. The
telescope was made of six 1.8 m primary mirrorsheaxis-symmetric. Although this
telescope worked, it suffered from a number of [@oils, and was not viewed as very
successful. In the late 1970’'s a very ambitiousjgatoto build a 10-m diameter
segmented mirror telescope began, called the Kdide®atory. The geometry of the

segmented primary mirror of the Keck telescopehimas in Fig. 2.1. The segmented
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mirror telescope was very successful and due teutxess, funds were acquired to
make a second Keck telescope, and it was positilmatiow the two Keck telescopes

to be used for interferometry as well as individigdéscope observing.

Figure 2.1 Geometry of the primary mirror of thecKeelescopes. Each segment is 0.9
m on a side, showing the 78 circular subaperturasdample the intersegment edges in

the phasing procedure. The subapertures are 18 dameter.

Since the existence of Keck, many other segmemtiesdopes have been proposed
and built. The Southern African Large Telescope L(BAis a ~10 metre diameter
optical telescope, located in the semi-desert regiothe Karoo, South Africa. Similar
to the Keck Telescopes, the primary mirror is cosgabof an array of mirrors designed
to act as a single larger mirror; however, the SAhifrors produce a spherical primary,
rather than the parabolic shape associated witlassical Cassegrain telescope. Each
SALT mirror is a 1-meter hexagon, and the array@bfidentical mirrors produces a
hexagonal-shaped primary with a size of 11 x 9e8ens. The Gran Telescopio Canarias
(GTC) ("Great Telescope Canary Islands"), someticaed GranTeCan, is a 10.4m
reflecting telescope and is undertaking commissigmibservations at the Observatorio
del Roque de los Muchachos on the island of La BaBpain. The telescope is sited on
a volcanic peak 2,400 metres above sea level. The Sarted preliminary observing
on 13 July 2007 following an opening ceremony usl?ysegments of its primary
mirror later to be increased to a total of 36 hexed) segments fully controlled by an

active optics control system.
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There are also some other segmented telescopes plase or construction. The
Thirty meter telescope (TMT) (formerly called theali®rnia Extremely Large
Telescope (CELT)) is a future large segmented-miotical and infrared extremely
large telescope. Completion is scheduled for Noven#914. Its primary mirror is
designed to consist of 492 hexagonal segments &acht ~1.4 m in diameteihe
Overwhelmingly Large Telescope (OWL) is a conceptesign by the European
Southern Observatory (ESO) organization for aneemély large telescope, which was
intended to have a single aperture of 100 metedsaimeter, but was later scaled down
to a 60 meter diameter telescope. Because of thwleaity and cost of building a
telescope of this unprecedented size, ESO haseatbtadfocus on the less ambitious 42

meter diameter European Extremely Large Telesaugiead.

2.3 Phasing of Segmented Mirrors

Although segmented mirrors are a promising optigrcemparison with monolithic
primary mirror, they also bring about their own lplems. The most well-known of
these problems is achieving a smooth continuousomsurface, a process known as
phasing. A properly phased telescope will have smlation comparable to the total
diameter of the entire segmented primary mirror. tB& other hand, a pre-phasing
telescope will have very poor resolution, whichlimited by the diameter of an
individual segment. The importance of the phasinip@ segment mirrors in a telescope
has been demonstrated in several publications.[2-4]

The analysis in this thesis is restricted to theemion of the piston, tip and tilt errors
of the segments. Piston errors represent segmettalemisalignment in segmented
mirror. Tip-tilt errors represent the segment tarng or down at the inter-segment
edge. One important process in phasing a segmeniedr telescope involves the
vertical displacements (piston error) between ajasegments. If the piston errors
between the segments are greater than approximatel®0 (where A is the
wavelength of light), then the effective diametértlee telescope (D) is equal to the
diameter of a single mirror segment. Only when piston errors are reduced below

M20 is D given by the total diameter of the entiegmented mirror. In other words, the
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full angular resolution of the entire segmentednary mirror is obtained only when the
piston errors between the segments are smalleitBan

Clearly, it is important that the piston errors aeeluced to less thak'20 if the
optimal resolution offered by the segmented mirsdo be achieved. While each mirror
segment may be raised and lowered independentllgeobthers by a set of actuators
underneath, the issue of accurately determiningoisten errors between the segments
to a high enough precision critical. This makes it very important to develop what are
known as phasing algorithms: operations used tectieind correct the discontinuities
between mirror segments through the analysis abwardiffraction phenomena along
the inter-segment edges.

Three hardware systems are required for the astgenent control: segment edge
sensors which provide real time information abdwt telative segment displacements,
segment actuators which compensate these displatgna@d a phasing camera which
measure the phasing errors optically [5, 52, 53].

The optical phasing camera is used at the beginvfimgch night before observation
to measure the phasing errors. These measuremamtbecthen used to control the
segment actuators. The two steps can be repeatsdveral times to achieve a desired
accuracy. During the operation of the telescopeptig@sing corrections are based on
signals from edge sensors at intersegment bordibesreading of the edge sensors at
the beginning of the night achieved by optical jphgiss used as a reference.

There are several existing optical phasing teclesqeported by other researchers in
the past years, including a modified Shack-Hartmaawefront sensor [6-8], curvature
wavefront sensor [9, 10], Mach-Zehnder interfere@ngtl, 12, 51], Pyramid wavefront

sensor [13, 14], and ZEUS (Zernike Unit for Segnprdsing) [15].

2.3.1 Shack-Hartmann Wavefront Sensor

The Shack-Hartmann wavefront sensor is a simpleetegant means for measuring
the shape of a wavefront. This technique has foymualication to a wide variety of
applications [16, 47]. Among them, a modified Shatgdetmann wavefront sensor [6] is

used for detection of phasing errors in Keck Telpss.
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The principle of traditional Shack-Hartmann wavefrgensor is shown in Fig. 2.2.
An image of the exit pupil is projected onto a lehsarray — a collection of small
identical lenses. Each lens takes a small patteaperture, called sub-pupil, and forms
an image of the source. All images are formed enstéime detector, typically a CCD.
When an incoming wave-front is plane, all imageslacated in a regular grid defined
by the lenslet array geometry. As soon as the wanefs distorted, the images become
displaced from their nominal positions. Displacetsenf image centroids in two
orthogonal directions are proportional to the ageravavefront slopes in either
direction over the subapertures. Thus, a Shacknt#am wavefront sensor measures the

wavefront slopes.

e e 00
e e 00
e e 00
® e 00
Wave-front Lenslets Detector Image
'y
s @ 0
( O e %o
[ ] . » o
e o 0 4

Figure 2.2 Schematic of the traditional Shack-HartmWavefront sensor.

In Keck telescopes, the key element of Shack-Hartmzhasing camera is an array
of 2mmx3mm prisms, which replace the usual lenslet array intraditional
Shack-Hartmann wavefront sensor. This prism arseaypreceded by a mask at the
position of the exit pupil. The mask, at a scalel&#00 of the primary mirror, defines
small circular subapertures at the centre of eatérsegment edge. The size of the
subapertures is chosen to be significantly smalan the atmospheric coherence
diameter, to ensure that the results will be ingmesto atmospheric turbulence. The
atmospheric coherence diameter corresponds to éhgth-scale over which the
turbulence becomes significant (10-20 cm at visitdeelengths at good observatories).

There are two algorithms, the narrowband and divaad algorithms, which
corresponds to the incoming light sources being esobromatic and of a finite

bandwidth respectively [8, 48-50] along with Sh&t&rtmann phasing camera. For
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narrowband algorithm, phase differences betweemsents manifest themselves in the
resulting diffraction patterns on the detector, @hdse phase relationships can be
extracted by cross-correlation. Because the diifsagatterns are a periodic function of
the phase difference between the two segments;apeire range of the narrowband
algorithm (i.e. the maximum piston error which daa reliably detected) should be
about A/4. The broadband algorithm is similar to the narramd and uses identical
hardware, but it exploits the finite bandwidth béftfilters which define the wavelength
of the starlight. The signal is the degree of cehee of the sub-image, and the relevant
scale is not the wavelength but the coherence teafythe filter. This is not only in
general much larger than the wavelength, but itmtuned to the conditions at hand if
one has an a priori estimate of the phase erromved. As a result this technique has
an enormously large capture range and also dynamnge (This is roughly the coherent

length, for a specific example. Consider a filtettva bandwidth of 10 nm and a central
wavelength of 891 nm, corresponding to a coherérugth of 4Qum).

The mask-pupil registration is critical to tmsodified Shack-Hartmanscheme as
the subapertures must be aligned accurately wipea to the intersegment edges,
which in turn requires precise hardware positionwfglenslets with respect to a
reimaged telescope pupil. As the number of segngrotss, this requirement becomes
increasingly critical, imposing extremely tight sgiEations on the pupil reimaging
optics, particularly in terms of distortigh2]. As a result, the phasing camera designed
for Keck may not be so easy to implement for astee consisting of more than 600

segments.
2.3.2 Curvature Sensor
@ O

==

!

Figure 2.3 A schematic of a curvature wavefromisse.
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The curvature wavefront sensing was developed WRoédier since 1988 [17-19]. It
takes an entirely different approach than Shacksiamn wavefront sensors. The
curvature sensor measures an “image” at a locdt@iween the pupil plane and the
image plane. If this image is before focus, itafled the intrafocal image; the image
after focus is the extrafocal image, as shown m Bi3. The intrafocal image will be
brighter in regions with positive curvature and kagir in regions with negative
curvature.The intensity pattern of the extrafocal image Ww#l reversed with respect to
that of the intrafocal imagdn principle, only one out of focus image is negde
measure wavefront curvature. However, using bathintrafocal and extrafocal images
makes a curvature system work better for seveesams: automatic compensation of
systematic errors - variation in quantum efficignoglectronic gain, etc., and

compensation of atmospheric scintillation.

Using the vectorr for the location x,y in a z-plane,l, and I, for the intrafocal

and extrafocal images, the sign8l can be constructed from the sum and difference of

the intrafocal and extrafocal images:

_L(F) = 1,(-7)

NENGEINE)

(2.1)

To ensure thatS(r) carries useful information on the segment phases t

conditions on the wavelengtd must be satisfied [9]:
(a) The scale of diffraction effects (associatethwirimary mirror segments) in the

image plane should be small compared to the diameteof a segment mapped onto

the image pIane,L—/‘ <<%. Here, f is the focal length of the telescope ahdis the

defocus distance.

(b) Diffraction effects associated with the segrseshould predominate over those

associated with the atmospheng(A1) >>d.

To get some insight into this method, consider attof-focus image of a Keck
mirror, as shown in Fig. 2.4, perfectly aligned epicfor segment 13, which has a piston

error of A /8 [20]. The dominant feature in this image is weltdlized at a position
16



on the detector which has an obvious approximateespondence to the location of the
segment in question in the pupil. For piston eradrthis size or smaller, the strength of
the feature in the difference image will vary mamoctally with the piston error. It
follows that multiple piston errors can therefoe dxtracted from the difference image
by straightforward cross-correlation techniquescdse the diffraction pattern in Fig.
2.4 spills over the boundaries corresponding torger 13 and because the linearization
effected by the restriction to small piston err@sonly approximate, the curvature
phasing algorithm does not converge in one stepyrdiber is an iterative procedure,

requiring multiple (typically 5-6) exposures.

Figure 2.4 Numerically generated out-of-focus imagfethe Keck telescope with
segment 13 pistoned byl [8Note that the resulting diffraction effects are
well-localized at a position that has an obviousespondence with the position of the

segment in the pupil.

Curvature wavefront sensing has the immediate ddganthat no special purpose
hardware is required, only a detector is neede@. griecise mask-pupil registration is
avoided, and it utilizes a larger fraction of thegment surface by comparison with

Shack-Hartmann techniques.

2.3.3 Mach-Zehnder | nterferometer
The Mach-Zehnder interferometer, developed a cgrago to measure the refractive
index variation in a suppressible gas flow, is aanmeple of a classical optical system
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which finds uses in various applications. A schemidlistration of the Mach-Zehnder
sensor is shown in Fig. 2.5. The beam is split imto arms of the interferometer, and a
pinhole, placed in the focal plane of one arm, agsa spatial filter providing a
reference wave coherent with the beam in another @he two beams are recombined
and form two complementary interference pattercsnded by two imaging detectors.
The proposed sensor departs from this classicansehby the size of the pinhole.
While the classical versions employ a pinhole sematan the Airy disk, producing a
perfectly spherical reference beam, the version Wea propose for segment phasing
uses a much larger spatial filter whose diametepigroximately equal to that of the
seeing disk. The seeing disk, in astronomy, isfareéace to the best possible angular
resolution which can be achieved by an opticakt@®pe, which is viewing the celestial
sphere from within an atmosphere. The referenceewavnow a low-pass filtered
version of the original wave front, which, whenarfering with the latter, produces an
intensity distribution conveying information abaartly the high-frequency wave-front
aberrations. While the atmospheric turbulence hgsower spectral density that is
dominated by low-frequency errors and that falsrapidly toward higher frequencies
according to the Kolmogorov law [42], the power cp&l density representing
intersegment phase steps has strong high-frequesmyponents. Eliminating
low-frequency wave-front errors will therefore magiston-induced errors dominant.
Furthermore, since the remaining aberrations relate atmospheric turbulence are
smaller than 1 rad, they will average out in a lemgosure image.

Telescope OPD=N/4
focus s ——f—-—"R

Figure 2.5 Schematic representation of the Machrdehphasing sensor.
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We denote byl, and |, the intensity in the two arms of the interferomete
measured in a pupil plane. If the OPD is equallittd, the one dimensional signal of
Mach-Zehnder interferometer can be written as

S(x) = 1,(x) = 1,(x) =sin(Ag)sign(X)[1 - P(b | x )], (2.2)
where x is the one-dimensional spatial vectdkp=¢@ —¢ is a phase “jump”, and

b is related with the pinhole siza by the relationb=06/=a/A. The function

@(bx) is the error function:

d(bx) = ZTEJT j: expEh?x'? )dx'. (2.3)

The expression for the signal is factorized: While amplitude of the signal is a sine
function of the relative piston, its width is ingefy proportional to the width of the

pinhole.
An algorithm for phase reconstruction from the aigis(x) can use the maximum
of the signal amplitude, or the difference betwgeak and valley, or the difference

between the integrals of the “positive” and “neggitiparts of the signal. Using the

latter option, the calibration function can be defl as

X 0 . %o
K(ag) = [ S(x)dx~ j_XO S()dx = sin(A@{ 2[ " [L- (X))}, (2.4)
where the integration are&, is a free parameter that has to be optimized.

The integral criterion of Eq. 2.4 has been used @ose-loop phasing algorithm [12].

As EqQ. 2.4 is a sine function dA¢, the range of the measurable phase difference is

limited to [-72/2,71 /2]. However, this capture range can be enlarged up Ad/2 by

shifting the pinhole in the direction orthogonalth® considered intersegment border.

This shift can be realised by adding a known diltite incoming wavefront [12].

2.3.4 Pyramid Wavefront Sensor
The concept of the pyramid wavefront sensor is dam® a modification of the
Foucault knife-edge test used in optics to evalept@itatively the aberrations of an

optical system. Pyramid wavefront sensing was farstposed by Ragazzoni in 1996
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[21]. Like a Shack-Hartmann sensor, it measureditiederivative of the wavefront,
the wavefront slope or gradient.

A pyramid lens with four equal faces is placed withvertex on the nominal focus
point of the optical system. The four faces defteet beam in four different directions,
depending on which face of the prism gets hit l®yititoming ray. A field lens is then
used to re-image the pupil of the telescope. Inghpil plane a detector is used to

measure the individual signals of the four facdee Principle is illustrated in Fig. 2.6.

pyramid

image of the
focal plane

Figure 2.6 Principle of the pyramid wavefront segsiThe pyramid lens is oscillating.
When the incoming light reaches one of the foue$adt will be deflected in slightly
different directions, and forming four pupil images the detector surface. If the
incoming light suffers aberrations, the four pupilages are no longer equal and from

the relative point-to-point intensity differencégtiocal gradient can be computed.

In this configuration a ray of the incoming beamthwiwavefront errory/(r),
originating from a generic point = (x,y) on the pupil plane, is aberrated and reaches

the pyramid displaced by a vectgs from the vertex. The amount of displacement is:

p= 3¢ (2.5)
or

where f is the effective telescope focal length.

Hence one face will refract the ray and only in toeresponding pupil the region

conjugated to the point in the pupil plane will be bright. The other threapils will
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show a dark region in the same point. Althougls ihot possible to obtain the value of
the aberration, its sign can be retrieved.

Ragazzoni proposed to oscillate the pyramid (palrédl its base plane ifidx" and

"dy" direction) to allow all the aberrated rays to sgveser the four faces. If the

introduced modulationdd, in the x and 96, in y direction satisfies the

oy

() |, each pupil will receive a particular intensityilldmination

—

requirement 06 >|

that will be proportional to the displacement oé ttays with respect to the pyramid

vertex.

After an integer number of oscillation cycles, foar pupil signalsl,, I,, I,;and
I, are combined and normalized by the sum. Hence possible to retrieve the first

W(y) | OY(xY)

derivatives or slopesa— 3 of the wavefront along two orthogonal
X y

axes:

0Y(xY) _ g Uit1e)=(1,* 1) (2.6)
ox L+, +1,+1,

and

aw(st):53y(|1+|2)_(|3+|4). (2.7)
oy [+, +1,+1,

The pyramid wavefront sensor shows some advantagéls respect to a

Shack-Hartmann sensor. The gain is variable bysédm the amount of the movement

or oscillation of the pyramid inx and y. The amplitude can be increased when the

image tilt is too large (for example during closihg loop), or to maintain an as high as
possible signal to noise ratio during the measurgsne

The pyramid wavefront sensor was shown to be abbetect signals that are due to
phasing error among segments of a segmented nfardhe first time in 2001 [22].
Numerical simulations performed demonstrated ti&t $ensor can be used in an
iterative control loop to phase a segmented misyousing monochromatic light. It was
pointed out in connection with those simulationattthe sensor can simultaneously

sense and control segment differential piston phestip and tilt of each individual
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segment without changing anything in the wavefreahsor configuration. A first
experimental investigation of the pyramid wavefr@gnsor as phasing sensor was
reported in 2003 [13]. The measured signal was dotmbe in agreement with the
numerical simulations. In a more recent experinj&aj the alignment of a segmented
mirror having three degrees of freedom per segmentdifferential piston, tip, and tilt,
was studied. The closed-loop procedure reachegiaatyaverage wavefront residual
error after loop convergence of 10 and 15 nm fetgn and for tip and tilt, respectively.
The results show the ability of the pyramid wavefreensor to phase and align a

segmented mirror in terms of piston and tip ard til

2.35ZEUS

The ZEUS (Zernike Unit for Segment Phasing) cphcedeveloped in the context of
the ESO (European Organisation for Astronomical e@esh in the Southern
Hemisphere)-led Active Phasing Experiment (APE). hias its origin in the
Mach-Zehnder (MZ) phasing sensor concept. In ZEUWBe Mach-Zehnder
interferometer is replaced by a simple phase maBkIS is almost analogous to the
Mach-Zehnder concept physically, and it shares mab#te performance characteristics

of the Mach-Zehnder while avoiding the delicacyra interferometric setup.

Pupil
imaging Filter Camera
i lens

w N i,
7||_"———-5_________ ________*__4|,
[T -

— Y >
W (v

Mask

1
-

Mask array

on x-y stage U |:|

Figure 2.70ptical layout of the ZEUS system.

Filter wheel

Figure 2.7 shows schematically the optical layduZBUS. A Zernike phase plate,
which is made of a transmissive mask with a diametdhe size of the full width at

half maximum of the seeing disk (around 0.6 arceéd)ed onto a glass plate, is placed
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at the common focal plane of a 4f system. The tiesk of the mask corresponds to an
optical path difference ofn/4-n/2. This mask replaces all the Mach-Zehnder
interferometer optics. It must be mounted on actele mechanism in order to provide
a straight through reference image and a choicedsat two or more masks of different
thickness and/or diameters to account for differeperational conditions (seeing,
coarse or fine phasing, etc). A lens projects thalpnto the camera, producing images
with the phasing errors contained in. A filter whewovides band selection;
narrow-band and multi-band operation will be usedcbarse phasing, and broad-band

operation will be used for ultimate performancesfphasing.

The signal imagel() is normalized using three measured images, agerfla) with
the mask in place, the reference imagg) (obtained by removing the mask, and a dark
frame (I,) obtained by blocking the light path:g =(I —=1;)/(Ig—1y). The signal

typically shows a sharp positive-negative doublakpas seen in Fig. 2.8.

1.0 T T T T T

0.8

045

{11 IO (RO T 0 B O 5[0 1Y 0 [ 3
—0.4 -02 0.0 0.2 0.4
m

Figure 2.8 ZEUS signal profiles in the absence tafosphere and for piston phase

values oft/2. The mask thickness corresponds to a phaseadtiife ofo = n/4.

Its half peak-to-peak (PtP) amplitude, which candetermined by searching for

positive and negative peaks near the segment edgebe used to determine the

inter-segment phase stefd¢) according to approximation:
S=PtP /2= Asin(A¢), (2.8)

where A is the calibration constant. The value istqm error in the wavefront can be

retrieved by measuring the PtP value, and theaticel can be given by:
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p =A@ /(2m) =sin™(S/ A)AI(2n). (2.9)
In the absence of atmospheric turbulence, A depentison the mask thickness. The
calibration curve has a period af,Zorresponding to a phase step.@in the wavefront
(M2 on the mirror surface) and an un-ambiguity ramiger/2. Note that when operating
in closed loop, the single-wavelength capture rangihin which the closed-loop
feedback system will converge towards p=0,1s +

Results of simulations and lab experiment have shtlwat the phase retrieval
algorithm (Eq. 2.9) can be used for system optitromapurposes. Precision estimates
indicate that piston errors of 3nm can be measiwréide-phasing mode by observing a

10th magnitude guide star through a broad-baret filith 100s exposures [15].

2.4 Summary

In this chapter, we have presented various teclesidoat have been developed and
proposed for optical phasing of the segmented pyimarror. Without optical phasing,
the misalignments of the segments can be of ther mfdseveral micrometers [20]. The
basic principle for most of these techniques isaglifrcation of the wave front reflected
by the mirror surface in such a way that the amgétor its distribution pattern of the
detected wave conveys the information about theglgcontinuities or the derivatives
of the wavefront. In Shack-Hartmann sensor, difierphase steps give different
diffraction patterns. In curvature sensor, the phdscontinuities are retrieved by
measuring the difference in intensity between irsagetained equal distances before
and after the telescope focus. In pyramid wavefgmrtsor, a refractive element (the
pyramid) is used to produce four images of theasmte pupil, and the phasing errors
are derived by an algorithm based on these foug@sialn the Mach-Zehnder sensor the
phase discontinuities are revealed by the diffezesicthe two interferograms of the
Mach-Zehnder interferometer. ZEUS in many ways ehathe performance
characteristics of the Mach-Zehnder but avoidsdiglecacy of the interferometric setup
by using Zernike phase mask. In most of these ndsthile piston and tip/tilt can be
retrieved from the intensity pattern in the outgignal. However, the output signals

attributed to different methods contain differemhcaunts of information related to
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segment errors, therefore the measurement prearsioes for different methods. Most
of these sensors are compared with each othernwilti@ Active Phasing Experiment
(APE) project [27, 28]. We also note that when geasing errors exceedsn /2
most of the narrow-band phasing techniques suffenfa 2zt ambiguity. This can be
solved with multi-wavelength techniques [8, 23-26].

In the next chapter of this thesis, we discuss & segmented mirror phasing
technique (DZEUS) which has developed from the ephof ZEUS. In chapter 4, we
study differential Zernike filter in a feedback w®m®, in which the phase is

automatically retrieved without any algorithmic qouation.
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Chapter 3

Differential Zernike Phase Sensor for Phasing of Segmented Mirrors

3.1 Introduction

As we discussed in the last chapter, the requiréefoemprecise hardware positioning of
the reimaged pupil may be avoided in phasing send@t are based on pupil plane
detection. Four phasing sensors are currently etudor this purpose, they are,
curvature sensor, pyramid sensor, Mach-Zehnderfentemeter, and Zernike unit for
segment phasing (ZEUS). The basic idea for all eghfegir techniques is that the
intensity of the outgoing wave conveys the infororatabout the phase discontinuities
of the segmented mirror. In curvature sensor, these discontinuities is retrieved by
measuring the difference in intensity between irsagetained equal distances before
and after the telescope focus. In pyramid wavefssntsor, a refractive element (the
pyramid) is used to produce four images of theagre pupil, and the phasing errors
are derived by an algorithm based on these fougésaln the Mach-Zehnder sensor the
phase discontinuities are revealed by the diffexenicthe two interferograms of the
Mach-Zehnder interferometer. ZEUS in many ways ehathe performance
characteristics of the Mach-Zehnder but avoidsdéglecacy of the interferometric setup
by using Zernike phase mask. In ZEUS, the peaketkp(PtP) value of a localised

intensity variation in the output has approximatlynear relation to sine function of a

phase jump (piston) of in the input light [15], i.e.,PtP = Asing ,whereA is the
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calibration constant. The PtP value is thereforedu® determine the corresponding
piston error. The measurement accuracy in ZEUSamlyn determined by how good
the approximation of the linear relation is.

As we know, the output intensity of ZEUS can bersas two parts: symmetrical part
and anti-symmetrical part [15]. The anti-symmefripart is the main carrier of the
phasing information (PtP). The symmetrical is uguséen as a source of pollution of
the signal.

In this chapter we present a differential Zernilkeef based sensor for phasing of a
segmented mirror. Differential Zernike filter is vidoped based on the traditional
Zernike filter, and it was originally adopted in wedront sensing for improved image
contrast over conventional Zernike filter [29, 3This system is realized by replacing
Zernike filter with differential Zernike filter inthe ZEUS scheme, referred to as
DZEUS. In section 3.3, we present in one-dimengioaae the analytic expression for
the PtP values of output intensity modulations agjathe input phase jumps in DZEUS.
We show that the DZEUS gives rise to a better linetation, compared to ZEUS,
because the differential algorithm used in DZEU®aee the symmetrical (pollution)
term that exist in the PtP expression of ZEUS. Thmkes DZEUS a better phase
retrieval algorithm. In order to further improveetphasing accuracy, we put forward a
multiple step correction approach which can furtmeduce the phase errors by
iterations. In Section 3.7, we extend the one-dsi@ral analysis to two-dimension and
study the performance of DZEUS using numericallgegated segmented mirrors. We
show that using the multiple step correction apginodahe phasing error is reduced
exponentially on the increase of iteration numb&ve further compare the
characteristics between DZEUS and ZEUS and conctbde the former performs
consistently better. Finally, we show that DZEUS rabust with respect to the

atmospheric turbulence.

3.2 Mathematical Model of ZEUS
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Figure 3.1 Schematic of the ZEUS phasing cameragiated with Segmented

Telescope.

The main component of ZEUS is a traditional Zerriiiker [31-33]. A traditional
Zernike filter consists of two lenses with a phabkanging plate (Zernike phase plate)
placed in the lenses’ common focal plane. The pbkde has a small circular region (a
dot) in the middle that introduces a phase shifusfially 7 /2 rad into the focused
wave; the size of the circular region typically htags diffraction-limited radius of a
focused, undistorted input wave. In practice, aavaiband filter can be applied before
the Zernike filter, and we assume the incoming tligeh monochromatic. The
phase-shifted wave-front then constitutes an ia-lieference with which the radiation
scattered from the phase object interferes andrélalting phase contrast can be
observed. The output intensity distribution of Zkenfilter can be measured by a photo

detector. A schematic of Zernike filter in the ZEO& figuration is shown in Fig. 3.1.

If we denote byU,(r") and U, (") the complex amplitudes at the input and output

pupil plane respectively, wheré is the two-dimensional position vector, the comple
amplitude in the common focal plane of the Zerrfiker can be written as a Fourier

transform of the input wave:

u, (k) = j U, () exp(k F)dr, (3.1)
where k is a two-dimensional wave number in the focal plamhile k :%5, and

& is the two-dimensional position vector in the fopéane, andA is the central

operating wavelength of the telescope, ahdis the focal length of the lens. The
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complex amplitude of the wave in the output pupitie Zernike filter after the phase

filter is:

u,(r,0) = iJ'ul(IZ)t(IZ,&) exp(ik 0)dk, (3.2)
2r
where t(k ) is the filter function of Zernike phase plate:

exp(d) |k lkb/2

t(k,8) = -
(k.6) ={ 1 |k [>b/2

(3.3)

here b is related with diameter of circular phase shitaaa by b:%a, and 4
the phase difference induced by the phase plate. dutput intensity distribution

I, =|U, |* is recorded by the photon detector.

Eisz
-0 X, + 00
(@)
expin)
1 1
o8 a2 0 ap +
(b)

Figure 3.2 (a) Input phase function for a singlagghjump. (b) The transform function
of the Zernike phase plate. Heee is the size of the phase shift are4, is the phase

shift induced by the Zernike phase plate withinghase shift area.

While a measurement of a pistan in ZEUS is made on the assumption of a linear

relation [15] between the sine function of this ghand its corresponding peak-to-peak
(PtP) value of a localised intensity variation inetoutput and, as discussed in
introduction, such a relation is an approximatitime degree of which depends on

several factors such as the position and numbphage jumps, the aperture of the filter
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and the size of the phase shift area of the fillere we examine this relation for ZEUS
in the application in the segment mirror phasingd d@nom this establish the
measurement accuracy of the system. We begin wsthghe phase jump in the infinite
one-dimensional space.

For a single phase jump in infinite one-dimensios@dce, the wave takes the form

of:

U,(x) = A, expligA(x)], (3.4)
where ¢(x) is the input phase function. The arbitrary singif@se jump atx, can be
mathematically written asa(x) = @ + (@ —g)H (x—x,), the profile of which is shown
in Fig.3.2(a). HereH (x )denotes the Heaviside function, witH(x) = for x<O0

and H(x) = 1 for x= 0. The transform function of the phase plate (Eq.B\8oduced

by the Zernike phase plate can be written as:
1

€ -1

As the diameter of the phase shift adeacorresponds typically tax =1- 2'bn the

t(k) =[H(k+b/2)-H(k-b/2) + 1 - ). (3.5)

sky [15], the relation betweew and b can be given ab=27ia/A, where L is
the focal length. If we take the focal length oé tiirst lens in Zernike filter system as
0.3m and the operating wavelength of 800nm, theevaf b is around 600-1200. The
intensity output of the ZEUS can be obtained as

1,(x,0) = 2A? sin@sin(@ - g){sign(x - x,) — S[b(x = x,) 2]/ 71} - {4A
(1- cos8)(L-cosg){ 3| S[b(x — x,) /2] |/ - 2S?[b(x - x,) [ 2]/ i* -1} = AZ}.

(3.6)
where sign(x ) is the sign function withsign(x) = Ifor x>0 and sign(x) = -1 for
x <0, the function S is the Sinc integral:

S(u) = j@dt. T3

0
Eq.3.6 comprises two parts. The anti-symmetrical igaused in ZEUS as information
carrier for phasing [15], and the symmetric parseen as a source of pollution to the

signal.
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3.3 Differential Zernike Filter and DZEUS

Zerike Tilter Photo-array
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Figure 3.3 Schematic of the DZEUS phasing cametegiated in the Segmented

Telescope.

DZEUS is realized by replacing the traditional Akenfilter with a differential
Zernike filter in ZEUS. A schematic of differentiaernike filter in the DZEUS
configuration is shown in Fig.3.3. The only diffece in DZEUS system is that there is
phase shift controller applied to the phase sHdtep which shift betweent 8. The
differential Zernike filter was originally introded by Vorontsov for wavefront sensing
and correction [29]. The differential Zernike filtean be built by using a controllable
phase shifting plate containing a single LC (liquidrystal) or MEMS
(Microelectromechanical systems) actuator intedaag&h the output photo array and
image-subtraction system. The output intensityitfécential Zernike filter is obtained
by subtracting the two images recorded accordindifferent phase shift in the phase
plat, i.e.,

| (1) =[14(T,6) = 1,(r,~)] /2 (3.8)

where | ,(X,26) is the intensity output of the traditional Zernifidéer for a phase shift

of £68. Then the expression of the output intensity éfiedential Zernike filter can be

derived by combining Eq.3.6 and 3.8:
Lan (X) = A; sindsin(e - @){sign(x - x,) = S[b(x - x,)/2]/ 72}, (3.9)
We can see that the expression 1Qf, is much simpler than that of,. This is

because there are two parts in Eqg. 3.6, the fist i anti-symmetrical and used in

ZEUS as information carrier for phasing [15], ahd second part is symmetrical which
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is seen as a source of pollution to the signal. Jii#raction used in DZEUS removes

the symmetrical term, leading to a simplified réstd shown in Eqg. 3.9. An example of

the output signal intensity profile of differentiZlernike filter (1,,) and traditional
Zernike filter (I,) are plotted in Fig. 3.4. The symmetrical term lip (dotted line),

which is exactly the difference betwed and I, is also shown in Fig. 3.4 (b)

along with 1.
8 8
—_— Id
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Figure 3.4 The output intensity of differential Aie filter (a) and traditional Zernike

filter (b) as a function of x withh, = 1@ -@g=m/2, b=200, 6=n/2, and
x, =0, obtained by analysis results with unlimited boanyd

The PtP amplitude inl 4 , which can be determined by searching for positnd
negative peaks near the segment edge, is defied as:

PtP = XI__|>rxn I e (X) — XI__|>rxn | 4 (X) = 247 sindsin(@ - @). (3.10)

We note that although the output profile of differal Zernike filter is different from
that of Zernike filter, the PtP values for both #re same. However, this is true only for
the current case of infinite aperture size. Thai@alf piston error in the wavefront is
given by:

p:qo%rzsin‘l(PtP/A)%T (3.11)

This function can be used for the phasing errastdp) retrieval.
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3.4 Finite Aperture Size

In reality, the effects of finite sizes of both dpee and lenses should be taken into
account. As higher frequency scattering (which ig of the lenses collection) is

insignificant and can be ignored, we only needdosider the boundary effects caused
by the limited size of the telescope aperture.his tase the input field amplitude is

therefore no longer a constant but a function ofimmn, which can be written as

A(X) = Ab[H(x+%) - H(x—%)], where d (d > 0) is the diameter of the segmented
primary mirror. We consider only a single phaseguat x,, which corresponds to the

position of the inter-segment edge, so%<xl<%. The output intensity of

differential Zernike filter with a single phase jprm the input is:

La (X) = 2A7 singsin@ - @)

{{S[b(x+d/2)/2]/ m-S[b(x-d/2)/2]/ BH(x-X,)
+{S[b(x-x,)/2]/m-S[b(x+d /2)/2]/ i4H(x-d /2)
+{S[b(x-d/2)/2]/ m—S[b(x—-x,)/2]/ mi4H (x +d /2)}.

(3.12)

Eq. 3.12 is more complex than Eq. 3.9 as a re$uwheoaperture. The output comprises
two parts. The first part, with the functiel(x — x,), is the carrier of the intersegment
phase jump information. The second part, containkhgx—d /2) and H(x+d /2),

is the carrier of the boundary information. Eq.23chn be reduced to Eqg. 3.9 when the
boundary sized goes to infinite. Moreover, the output intensity, is no longer

anti-symmetric in the presence of aperture. We plgt against x in Fig. 4. For

comparison, we also plot the result of traditiodafnike filter (I ,) with same aperture

to show the different characteristics of the twomajor difference is that the aperture
profile appears in the intensity distribution additional Zernike filter, but not in that of
differential Zernike filter. This is because theofiles are the same in outputs with
+n1/2 phase shift and are cancelled by the differengigiorithm in differential

Zernike filter.
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Figure 3.5 The output intensity of differential Aixe filter (top figure) and traditional

Zernike filter (low figure ) as a function ok with A, =1, @ —-@ =m/4, b= 20,

c=nl/2, d=10,and x, =0.

The peak-to-peak (PtP) valuelgf in the differential Zernike filter can be obtained

as

PtP(x,) = Liml 44 (X) = Lim1 4 (X)
N o (3.13)
=2A>singsin(@ — @){S[b(x, +d /2)/2]/ m—S[b(x, —d /2)/2]/ 73}.

Here the PtP depends not only on the value ofrthaetiphase jump but also the size of

the apertured, the size of the phase shift arég and the position of the phase jump
X. This means that though the relatidttP U sin(@, — @) still holds for the current

case, the proportionality coefficient varies witte tphase jump position for fixed value

of b andd. The change of the coefficient is discussed in Bi§ for different value of

phase shift areab. The PtP oscillates aroundA’sindsin(@ —¢ (the value of

which is 2 for the given parameter) on changexpf The oscillation amplitude
decreases with the increase &f because of the dependence of the term

S[b(x, +d/2)/2]/ m—S[b(x, —d /2)/2]/m in Eg. 3.13 onb. Since b has a typical

value of 600-1200 as discussed earlier, xif is away from +d /2 we have
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S[b(x, +d /2)/2/m—S[b(x, -d /2)/2]/ m=1. Under this approximation, Eq. 3.13
can be written as:

PtP(x,) = 2A¢ sindsin(@ - @). (3.14)
This is the same as the PtP expression obtaingdeirtase of infinite aperture. The

phase retrieval algorithm based on Eq. 3.11 candeel as a good approximation as

longasb>> 1
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Figure 3.6 PtP value in the output signal of défaral Zernike filter with single phase

jump as a function of the position of the phaseguor different size of the phase mask

b with A =1, 6=n/2, ¢ -¢=mr/2, b=100200400, d = 20.

For comparison, we also give the analytic resuitsZEUS in the presence of the
same aperture. Since the derivative in this caspiite involved, we only write down
the PtP value, which is

PtP(x,) =14 (X - X ) = 14(X > X;)
=2A?sindsin(@ — @){S[b(x, +d /2)/2]/ m—-S[b(x, —d /2)/2]/ i} (3.15)
+4A; (1-cosd)[1-cos@ —@){ S[b(x, +d /2)/2]/ m+ S[b(x, —d /2)/2]/ 3.

while the first term in Eq. 3.15 is same as PtRi@dbr differential Zernike filter, the
second is additional and a function obs@ — @) . As a result, the simple sine function

relationship between PtP and phase jumps no Idmgdrfor ZEUS in the case of finite
aperture. We compare the performance of the twerdilusing an example in Fig. 3.7,
where trace (a) gives the PtP values in DZEUS (dast ZEUS (solid) against phase

jump positions. The fluctuation of the former isalar than that of the latter due to the
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presence of the second terms in Eq. 3.15, whidhasvn as the dash-dot curve in the

same figure. In Fig. 3.7 (b), we plot the PtP ealun DZEUS (dash) and ZEUS

(solid) and their difference (dash dot) with respgeche value ofsin(@ — @) . While a

liner relation holds very well for DZEUS, a deviati can be clearly seen for ZEUS,
which can lead to increased measurement errorsigtied later. From this analysis we
conclude that in the case of a single phase jumgUWX provide not only a simpler

expression for the output intensity but also a $&mgelation between PtP value and the

input phase jump, which can be well approximated RtP []sin(@ —¢) when

b>>1.
Q1.5 —PtP zEUS
o 1 ----PtP1 DzZEus
----- PtP2
05}
‘\. - — - i
0 \\ // \'\ et At \'\ 1
- - \'\‘
%0s 002 0 002 004 4 o5 . 0 05 1
X1 sin(2-0y)
(a) (b)

Figure 3.7 Value of the first term (PtP1, dash) aadond term (PtP2, dash-dot) in Eq.

3.15 are plotted againsx, (a) and the value o6in(@ —¢) (b). The parameters used

hereareAy= 16=nl/2, g-@g=m/2, b=400 d=01. x =017.

3.5 Multiple Phase Jumps
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The following analysis within this chapter is albrolucted with finite primary
aperture size if not mentioned otherwise. Basetherabove argument, we extend out
analysis to multiple phase jumps in a segmentedromirin order to find the
inter-segment effects between the nearby phasesjuwg consider the one dimensional
model with a primary mirror consisting oh segments and thus having— 1
inter-segment phase jumps as shown in Fig. 3.8.FiRevalue in the output intensity

for k-th (1< k <n-1) jump can be written as:

(k=Dhbd
2

PIP(x,) == A} Sindlfsin(g - @) +5in(@.q - K S - S0y

[(k —21)bd] —Si[(k_z)bd
n 2n

+[sin(@g - @) +sin@., —@){ S I}+- (3.16)

carlks n2+ 1))bd
n

n)bd
n

+[sin(@, - @) +Sin@ - 3] ]—S[““2 .

where ¢ is the piston in the i-th segmentgx)=¢ for xO(X_,%) ,
d d : .
5 <X <Xy <Xy < 5 l<ksn-1. Since the interval between the

neighbouring segment edges are all equgl= (k—g)%. We can see from Eq. 3.16

that the PtP value for the k-th phase jump is arilted not only by the k-th jump but
also all other jumps in the segmented mirror. Thakes the PtP value of multiple input
phase jumps very complicated. The expression carever be significantly simplified
in applications for a typical valud>> .1When b>> 1 there is little difference

(k—i +1)bd i)bd
=
n n

between S ] and S’[(k_z—] in Eq. 3.16 wheni #k or k+1, so all

the terms in Eqg. 3.16 except the k-th and k+1+tmtean be approximated to zero. This

simplifies Eq. 3.16 to

PtP(k) :iﬁésiné?sin(w(+1 —@)Si(@) (3.17)
T 2n
For b>>1, Si(g—(:‘) can be approximated tea  /thus

PtP(k) = 2A] sindsin(@., - 4.) (3.18)

This is identical as Eqg. 3.14, which we derived tloe single phase jump condition.
Therefore under the conditiobh >> |, Eq. 3.11 can also be used to retrieve the phase

jump for multiple input phase jumps.
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Figure 3.9  The PtP values in the output intengiyribution of differential Zernike

filter versus the corresponding sine value of inplidse jumps, withn= 20 A, =1,

c=nl/2, d=20, ¢ are random numbers Withilﬁ—%,g], with 500 randomly

different realization. (a)p= 2(c) b= 400

Let us now investigate the performance of DZEUS& inase study. We consider a

segmented primary mirror of 20 segments, each aflwhas a diameter of 1m. The

piston is randomly distributed Withilﬁ—%,g] so the intersegment phase jumps are

within [—g,g]. The phase shift induced by the phase magksim . /The results

are plotted in Fig. 3.9 (a) and (b) for 500 differ¢random) realizations for two phase
mask sizesb= 2and 400, respectively. As seen, the linear retatiolds well for
b=400 but not folb=2. In order to quantify the linearity of the retetship between the
PtP value and sine function of the input phase gpimye plot the standard error of
estimate (SEE) againbtin Fig. 3.10. SEE measures the standard deviabneen the
simulated PtP values and the values obtained bysHd, and a smaller value of SEE
implies a better linear relation .We note that tseillations in the SEE curve is the

result of fluctuations of Sinc integral function.
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b

Figure 3.10 The standard error of estimate (SEHBhehr regression of the PtP values
in the output intensity distribution of differentiZernike filter and the corresponding

sine value of input phase jumps versus the pararbet®ther parameters used here are

the same as in Fig. 3.9.

3.6 Double Phase Jumps

The expression for the output of traditional Zeenfllter is too complicated to do any
further analysis with arbitrary number of phase psmin order to make the multiple
phase jumps output PtP value for differential Zegnfilter comparable with that of

traditional Zernike filter, we consider a segmenpeidhary mirror with 3 segments. The

input phase function is shown in Fig. 3.11. Here ke=p g =@ =-¢, /2 and

@ =@ 12 (g >0)for simplification, so we derive from Eq. 3.16:

PtP(x,) = 7_27'%2 sin@sing{S[b(x, +d/2)/2] - S[b(x, —d /2)/2]}, (3.19)
PtP(x,) = ]—ZTA)Z sindsing{S[b(x, —d /2)/2] - S[b(x, +d /2)/2]}. (3.20)
fi2
a2 . _az
iz iz

Input Phase

Figure 3.11 The input phase function with 3 segmand 2 phase jumps.
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The expression of PtP value for differential Zeeniklter output with two phase
jumps is identical to that with single phase jurHpwever, the PtP values in the output

intensity of traditional Zernike filter are diffevefrom that with single phase jump:
PtP(x,) = ]—ZTA)Z sindsing{S[b(x, +d/2)/2] - S[b(x, —d/2)/2]}

+%A§(1—cos€)(1—cos¢{)){5i[b(x1 +d/2)/2] - S[b(x, =d /2)/2] (3.21)
+2S[b(x, - x,)/2]},

PtP(x,) =7%A02 sin@sing{ S[b(x, —d /2)/2] - S[b(x, +d/2)/2]}

+%A§ (L-cosf)(1-cosg Y{S[b(x, —d /2)/2] - S[b(x, +d /2)/2] (3.22)
+2S[b(x, — x,)/2]}.

Again, the PtP value in the traditional Zernikesdil output intensity is consists of two
parts as well as single phase jump case. Besitles s a cross term, which is a
function of the distance of the two phase jumpssifians respectively in Eq. 3.21 and
3.22. That means the PtP value according to onsephamp rely on the distance
between the neighbouring phase jumps. In other sydhe existence of more than one
phase jump can result a crosstalk between eaclvdttié in traditional Zernike filter
output intensity, but not in that of differentiaéihike filter. This crosstalk will further

deteriorate the assumed simple relation used iphhse retrieval in ZEUS.

3.7 Multiple Step Corrections

From the above analysis, Eq. 3.11 can be used aspproximation to retrieve
multiple segment phase jumps based on the measoreofiethe PtP value. The
correction is nevertheless not precise and erremsain. Here we propose a multiple
step correction approach by which the measurenmmehadjustment process is repeated
several times until required accuracy is met. Aessary condition for such a process is

the convergence of the system, which corresponteetmequality

. PP(X) B
|W<+1 % sin [2A§S|n0]|<|m<+l %l (323)
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which is derived from the phase retrieval algonti{Eq. 3.11). Since the exact

expression forPtP(x, )(Eq. 3.16) is complicated, it is hard to verifyetimequality in

general case. It can be easily done under the gsatin variation approximation, i.e.,

Sin@ -@4)=¢ —@ . Under this approximation, we prove that thegstem is

convergence for small signal. In this case Eq. &Xomplified as

2 ., . kbd . (k=n)bd
PtP =— A sing - S -S 3.24
(%) Al (B —@NSI( 2n) [ on I} (3.24)
By combine Eqg. 3.23 and 3.24, we have
0< sy, gpln=kibdy 5, (3.25)
2n 2n

As 0<S(x)<n, for any x> Q the above inequality is valid unconditionally.€lTh

performance of such a multiple step correction edoce is shown in Fig. 3.12. The
phasing error is indeed convergent to zero on asing the iteration number. By
comparison, we also provide the corresponding tedat ZEUS, for which the error
reaches a plateau after a few steps of correctibe.latter is due to the effect of pupil

profile under a finite resolution.

Standard Devation

Iteration Number

Figure 3.12 The standard deviation of the phasimgy ¢radius) of the segmented mirror

versus iteration numbers. The initial phase jumps @niformly distributed within
[-71/2,n/2]. The dash line with cross is for DZEUS and thedstshe with circle for
ZEUS. The resolution in the simulation is 1024 & segments. Other parameters

areAy)=1 6=n/2, b=600, d=16.

3.8 Two-Dimensional Simulations
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We now extend the one-dimensional analysis to timeedsional case. Since the
analysis is complicated, we deal with it throughmeuical simulations. We want to
answer two questions here: whether the pseudorlirdation obtained in DZEUS in
one dimension case still holds for phasing of areeged telescope (two-dimension),
and whether the multiple step correction approaah be adopted to improve the

correction accuracy until a desired accuracy?

Figure 3.13 A snapshot of the segmented primaryomused in simulation. The piston
of each segment is normal randomly distributed. Gtey scale represents the piston

value of each segment, which is ranged frem (Garkest) tonn/ 4(brightest).

The segmented mirror in our simulation is a 169dgex formation, each of which
has a random piston. A snapshot of the segmenteduyr mirror is shown in Fig. 3.13.
We consider each mirror segment of 1 m in diametetthe primary mirror in this

simulation is 15 m in diameter. The input pistofigh@ primary mirror are randomly

distributed within [-72/4, 11 /4] so the intersegment phase jumps are distributtginw

[-72/2,1/12], which results in a standard deviation of the tnpliase jump of 0.462

rad. For piston errors beyond this range, the auityiglue to phase wrapping can be
solved by the two wavelengths interferometry aldponi [26]. In our simulation we use
1024x1024 pixels for the1l69-hexagon formation. The resolui®the same as that for
a CCD camera of the resolution096x 4096r the European Extremely Large
Telescope with a primary mirror of 42m. We set $iwee of the image pupil 0.1m, so
one pixel in the image pupil corresponds to 0.2rivie. plot inFig. 3.14 (a) the PtP

values in the output intensity in DZEUS against ¢ivee function of the corresponding
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input phase jumps. The curve shows a good linelatior between the two. For
comparison, we also plot the standard error ofrege (SEE) between the input phase
jumps and the retrieved values for both DZEUS aBt)Z. As shown in Fig. 3.14 (b),
the SEE values for DZEUS is consistently smallemtithat of ZEUS on varying,
implying a better linear relation for the formfer the usual operating region df up
to 1200.Beyond this region, the two curves converge bectheseelation between the
input and output become identical for very largalue of b. For a typical size of the
phase shift aredb= 817#&vhich corresponds to 13 pixel in our simulatiore have
SEE =0.0163 for DZEUS, compared to 0.0338 ZEUS. The remaimgrs after one
step correction are 8.4% and 12.5% of the initialug for DZEUS and ZEUS
respectively.

0.6 0.07

* DZEUS
0.06k -+ + ZEUS

0.0sf +

0.4}

0.2}
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Figure 3.14 Two-dimensional simulation results vatprimary mirror of 169 segments.

The piston randomly distributed withif-72/4,7  /4{a) The output PtP value versus

the sine value of the input phase jumps. (b) Thedsrd error of the estimate (SEE)

versus the phase shift area sibg.(

Using multiple step correction procedure, the pigsrror retrieved based on the
above phase retrieval algorithm is used to cormetdrsegment errors through the
actuator control system, and the process is repdateseveral times to achieve high
accuracy. The retrieved intersegment errors anesfoamed into pistons values by
singular value decompositirin our simulation, we assume there is no noiseearor

in the hardware system. That means the retrievedipy error is perfectly removed

! See Appendix A
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from the segmented mirrors, and the remaining plgasrtrors are results of the phase
retrieval algorithm. The two-dimensional simulasoare conducted with respect to
DZEUS and ZEUS for comparison. In Fig. 3.15, wet glee standard deviations of
phasing errors against the iteration number fohll@ZEUS and ZEUS. As shown in
Fig. 3.15, the phasing error reduces exponentialgero on increasing iteration number
for DZEUS but reaches to a plateau after 3 itenatior ZEUS. The behaviours of the

two systems are therefore the same as them iniorendion as discussed earlier.

Standard Deviation

0 1 2 3 4 5
Iteration Number

Figure 3.15 The standard deviation of the phasmgr ezersus iteration numbers. The

dash (solid) line with circle is for DZEUS in thésence (presence) of atmospheric

turbulence whereas the dash (solid) line with crssdor ZEUS in the absence

(presence) of atmospheric turbulence. Atmosphartaulence is numerically generated

at each exposure according to Komogorov modelathplitude of which used in the

plot is27 .

Finally we consider the effect of atmosphericbtuence on the measurement
precision. When the turbulence is considered, igeferror remains for both algorithms,
the value of which is lower for DZEUS compared tlFS as shown in Fig. 3.15. We
note that the difference of the errors between DEEahd ZEUS is kept almost a
constant on the variation of the amplitudes of ajph@ric turbulence. For a practical
system with the central operating wavelength ofr800the best phasing accuracy is
1.4nm for DZEUS and 1.6nm for ZEUS. Simulation teswshow that the both

algorithms are robust with respect to atmospheambulence. We note that reported
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phasing error for ZEUS is higher than the one iatdid in our simulation. [15] The
discrepancy mainly results from errors in systenmdWware which has not been

considered here.

3.9 Conclusions

In conclusion, we have demonstrated a hew segmenitedr phasing sensor system,
DZEUS, by theoretical and numerical study. We shloat the DZEUS gives rise to a
simpler relation between the input wave front ahd butput intensity compared to
ZEUS and therefore provides better accuracy for ghase retrieval. The phasing
accuracy can be further enhanced by adopting aipteukitep correction approach, by
which the phasing error in the ideal situation t@nremoved completely. In practice,
phase switching in DZEUS can be realized by reptathe fixed mask array in ZEUS
with an electronically controllable spatial lightodulator (SLM). DZEUS inherits the
advantages of ZEUS phasing technique by resembldaocghe Mach-Zehnder
interferometer, which avoids the delicacy of higegision control of the OPD of
interferometer. As for ZEUS, DZEUS provides a captuange of+ A /4in single
correction and+ A /2in multiple step corrections and is robust to apiere

turbulence.
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Chapter 4

Differential Zernike Feedback Phase Retrieval

4.1 Introduction

In the last chapter, differential Zernike filterused as a wavefront sensor to retrieve
the segmented mirror phasing errors. The phasiugseare retrieved at each exposure,
and the measured phasing errors are used to cdh&dctuator. In this chapter, we
present my original study on an adaptive dynanfeatlback system, which is realized
by combining the capabilities of a differential die sensor with a feedback for
phasing of segmented mirror in the presence oihgtratmospheric turbulence. The
dynamics of the feedback signal in the sensor systas the same form as that of a
Gradient-Flow control [30], which results an optm@d wavefront conjugation. A
Gradient-Flow control (optimization) represents a&timod based on optimizing the
system (signal) state by gradient metrics. The igradlow optimization method is
widely used for digital image processing applicasig39-41]. The gradient metrics is
calculated analytically based on knowledge of thstesn’s mathematical model and
performance metric. The mechanism underlying tfifergintial Zernike filter feedback
technique for phasing of segmented mirror in thesence of strong atmospheric
turbulence lies in the dynamical nature of the aystlt responds to static misalignment
phase errors differently from dynamic atmosphetbilence. During the iterating
process of the system, only the signals relatetidcstatic phase errors are accumulated

in the feedback loop whereas those with the turliyases are essentially averaged
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out, because the latter is uncorrelated from framéame. When the iteration has
converged, the signal in the feedback loop is thgugate of the misalignment phase

errors, and so can be used to control the actuatdhe segmented mirrors.

4.2 Theoretical Moded

4.2.1 Zernike filter with Unknown I nput Wavefront

Object Image
Plane Fourier plane plane

} }

Figure 4.1 Schematic of Zernike filter 4f opticgstem. Two identical lenseg, and

L, are placed by twice of their focal length f.

In this chapter we use a different mathematicalr@ggh for Zernike filter by
considering an unknown input wavefront. A schemafia conventional wave-front
sensor based on the Zernike phase-contrast techprnike filter) is shown in Fig.
4.1. It consists of two lenses with a phase chanppglate (Zernike phase plate) placed in
the lenses’ common focal plane. The phase plateahsamall circular region (a dot) in
the middle that introduces a phase sléftnear n /2 rad into the focused wave. The

radius of the dot,a, , is typically chosen to equal the diffraction Ited radius a2’ of

a focused, undistorted input wave. The treatmerth@fZernike filter that we follow is
presented in Ref. 29 and 32. To introduce the motand normalizations, we offer the
basic derivations that lead to the classical exgwesfor the Zernike filter output
intensity distribution. Zernike filter can be deabed by using a complex transfer

function t(IZ) for the focal plane filter:
47



t(k) = yexp(6) |k <k,
t(k) =1 K > Ko, (4.1)
The wave vectork is associated with focal plane radial vectoy through

k =t /(AL), where L is the lens focal lengthd is the central wavelength of the
input light, and b =a. /(AL) is the cut-off frequency that corresponds to dn¢ sa. .
For the sake of convenience, consider the followiagable normalization: The radial
vectors I’ in the sensor input/output plane amgd in the focal plane are normalized
by the lens aperture radius, the wave vectork by a™, and the lens focal length by
the diffraction parameter ka®> (where k=2n/A is the wave number).
Correspondingly, in the normalized variablek,= r- /(2 and b=a;/(27/L)
(where the dot sizea. is also normalized bya).

From Eqg. 4.1, wheny = land 6 = 11 /2 we have a Zernike filter model. Consider a
simplified model corresponding to a focal planeefilaffecting only the zero-order
spectral component. In this case we hav@) = yexp(d , and T(k) = 1 for k #O0.
Assume an input WaveAn(IZ) =AM explig(k)] enters a wave-front sensor, where
I,(F) = A?(F) and ¢(F ) are the input wave intensity and phase spatiatiloligions.
The sensor’s front lens performs a Fourier tramsfaf the input wave. Within the

accuracy of a phase factop,A(IZ):(Zﬁ_)‘lF[An(F)], where F [] is the Fourier

transform operator andA(k s the spatial spectral amplitude of the inpuldfig.e.,

the field complex amplitude in the focal plane). normalized variables, the field

intensity in the focal plane can be expressed dsnation of spatial frequency:

|- (k) = (27£) 2 | A(k) P . The influence of the focal plane filter can be@mted for by
multiplying A(k) by the transfer functionT (k :)

A (K) = AKK)[1- (k)] + yexp(8) A(K) S (k) (4.2)
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where AM(IZ) is the focal plane wave complex amplitude aftez thave passes

through the spatial filter and(k )s a delta function. The wavefront sensor output

field can be obtained by taking the inverse Four@msform of Eq. 4.2:
A (F) = A, (F) —[1- yexp( )] A, (4.3)
A=[A, )T, 4.4)

where A is the spatially averaged input field complex atoge. For the sake of
simplicity the 180° rotation of the field performég the wave-front sensor lens system

is ignored.

Representg(i” as a sum of mean phasg and spatially modulated deviation
gr) : g[)=@+@(). In this case A=exp(@)A, , Wwhere
A, :Iﬂb(F) expli@(F)]d°r . The value of| KO |* is proportional to the field intensity
at the centre of the lens focal plank, (G=0)=@27t)?|A, |* (intensity of the
zero-order spectral component). The normalizedevaful - (0) is known as the Strehl
ratio, S =1.(0)/12, where I is the intensity of the zero-order spectral congmin
in the absence of phase aberrations. When thete jshase aberrationl,. (0) =17,

so S =1 When there is any phase aberratidn,(0) <12 (S <1). With the notation
introduced here, Eq. 4.3 can be written as

A (F) = A (F) — [1- yexp( )] A, exp(d). (4.5)

As we can see from Eq. 4.5, the output field isi@esposition of the input and spatially

uniform reference wave components. Represent thmplex value A, in the following

form: A, =| A, |exp(d) = (27£.)1 ¥? (0)exp(d), where |2 and A are the intensity

and the phase, respectively, of the zero-order tsjecomponent. The intensity

distribution in the Zernike filter output plane fan unknown input wavefront is given

by
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14(7) = 1(F) + 272)°1 - (0)(1+ y* - 2y cosd)
—47t15"%(F)1 2 (0){cos[@ (F) - Al} (4.6)
- ycoslp(r)-A-46).

4.2.2 Differential Zernike Filter
A phase spatial light modulator (SLM) can be usedniplement the differential
Zernike filter [29]. The differential Zernike filtethat is realized by using a phase shift

switching betweenz 77 /2the output of which is given as

Lo () = 50150 =19 (7, 0)

= 2A,(F,t)| Ao(t)|sin[v(F,t) - A],

(4.7)

where 1§ (F,t ) and 1{7(F,t ) are the images recorded corresponding to ttre /12
phase shift in the phase platgy(t) =| Ao(t) |exp(A) = j A, (T,t)expf[v(T,t)[}d?r , here

A, (F,t) and v(r,t) are the amplitude and phase of the input figlds a phase shift,

r is the spatial radial vector in the plane transgdp the system optical axis and the

integration is over the aperture area.

4.3 Wavefront Control Based on Gradient-Flow Optimization

The differential Zernike filter can be combined wian adaptive feedback system,
leading to applications such as wavefront compe@nsawvithout the requirement of
wavefront reconstruction. The differential Zernikidter offers a means for
implementing a direct-control adaptive optical systby use of the gradient-flow
optimization, which results in dramatic improvementadaptation process convergent

speed [30].

4.3.1 Feedback-Controller Synthesis

First we consider a direct-control adaptive opsigstem [30] shown in Fig. 4.2. This
system consists of the following adaptive opticsnponents: wave-front corrector,
wave-front sensor, and feedback controller. Altleg adaptive system components are

assumed to have high spatial resolution, and thugoatinuously distributed
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approximation of the adaptive system model candael uThe wave-front corrector (can

be a spatial light modulator) introduces a phaseéutation u(r,t) into the distorted
input wave A (T, 1) =AM explig(r,t ) . The corrected wave

A, (T, 1) = AN exp{i[o(r,t) +u(r,t)]} is used as the wave-front sensor input. The
wave-front sensor is interfaced with the feedbamktioller, which operates directly by

using the sensor’s output intensity,, (7',t . )

Wave-front
corrector Lens
M O\ Pinhole
:% §ﬁ> > || 2> >4
LI« IF(E:O’[)
4707 Vo 4@
Wave-front
SEensor
V| 1
Feedback |
controller

Figure 4.2 Schematic of a direct-control adaptiggos system.

The dependence of the correction functioon the wave-front sensor output,

defines the control algorithm of feedback contmollEor a continuous-time controller
this algorithm can be represented as a time-depéncientrolling phase-evolution

process:

ou(r,t) _
—5 =G 1,,), (#.8

in which G is an operator describing the feedback controller.

Synthesis of the wave-front controll€s can be based on different principles. In the
diffractive-feedback adaptive system, both the wiaopt sensor and the controlle®
are selected on the basis of an analysis of théinean spatiotemporal dynamics of
equation 4.8 [34, 35]. The major requirement fastihdynamics, or equivalently for the
feedback controller design, is the existence dfastary state solutions that correspond
to phase distortion suppression.

Another approach to wave-front controller synthesisbased on the gradient
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optimization technique [36—38]. In this case thatoa rule equation 4.8 describes a

continuous-time gradient-descent optimization seystem performance metrid :

QuF,t) _ oo
e nd'(r,1), *#.9

where J'(r,t ) is a first variation (gradient) of the cost fulctiand /7 is a constant
positive for cost functional maximization and neégabtherwise.
For practical implementation of the gradient-flogctinique in adaptive optics, the

gradient J'(r,t ) should be dependent only on available informatiéfere, the
wave-front sensor output intensitl, ,(F,t gnd the controlling phase(r,t . JThis

requires gradient representation in the followiraynf: J'(r,t) =J'[u,l,]. As is

shown in the following sections, the gradient-flowect-control technique can indeed

be used for adaptive wave-front distortion cor@tti

4.3.2 System Performance Metric and Gradient-Flow Dynamics

For a number of adaptive optics applications (emgaging of point-source objects,
laser communication), a natural measure of systemiognance in correcting the
distorted wave front is the Strehl ratio. Maximirat of the Strehl ratio by the

gradient-descent technique may result in two umdel phenomena: drift of the
aperture-averaged phasa(t) toward the edge of the wave-front corrector’s
operational range, and phase discontinuities, lmftlwhich may occur during the
adaptation process. To prevent aperture-averagedephrift and to smooth the

controlling phase (i.e., to suppress discontinsié&d noise) the system performance

metricJ may include (besides the Strehl ratio) additioreadgity terms:

J[u] = St - ay[u(t) - u]* — a, [ | Du(F,t) . (4.10)
where U(t) = S‘lju(F,t)dzr is the phase averaged over the aperture &eay, is a

desirable value fort(t), and a, and a, are weight coefficients determining penalty

term contributions. For now, ignore in Eq. 4.10 timme dependence of both phase
aberrations and the controlling phase by assunfiagpghase aberrations are stationary.

The complex amplitude of the input field (after passes through the wave-front
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corrector) can then be represented in the fotyp (F) = A(F)expfi[u(F) +&(r . )]}
Then equation 4.10 can be changed as
J[u] =IIA)(F) expfifu(r) + g(Mrd*r [

2 (4.112)
- Blu, = S*[uP)d*] - B,10u(r) [ d*r

where @(r)=¢(F)-@ is the spatially modulated component of the waeeif

aberration andg, and £, are new weight coefficients. The first term in Hqll is
proportional to the intensity of the input field’sero-order spectral component
IF(IZ:O). Note that expressions for the weighting coeffitsein Eq. 4.11 are

irrelevant for the analysis below and for this mrasare not defined. Consider the
variation aJ of the cost functional resulting from the smalktpgbation du of the

controlling phase:

A =J[u+au] - J[u] =IJ'(F)dJ(F)d2r +o(du), (4.12)
where the termo(du )describes second- and higher-order terms withets the

phase variationdu. Using Eq. 4.12 for the cost functional gradieetabtain

J'==2|A, | A(F)sinfu(F) + F(7) = A] - 28,(T - u,) + 2B,0°U(T). (4.13)
Here
A = A |exp(d) =IA)(F) exp{i[u(F) + #(F)I}d*r. (4.14)

Note that the valud A, [ in Eq. 4.13 is proportional to the Strehl ratio.

Embed the control functionu(r )n a family of time-dependent functiong(r',t , )

and consider the time-dependent evolutionJofin the direction of the cost functional
gradient. Thus the gradient-flow dynamics descritned€q. 4.9 leads to the following

nonlinear diffusion equation describing the coniingl phase update:

our,t) _ o . =~ F)si ” r,t) -
o0 = AT =y AWM | ARSI, + F(F,0) - 4] (4.15)
- du(t) —y,],

where d, y, and u are coefficients dependent on the parameters a,, and 7

introduced in Eg. 4.9 and 4.10. We note that thffer@ntial equation has infinite
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numbers of resolutions. This ambiguity can be sblvg running this system with two

different wavelengths. The details will be providedhis chapter.

4.3.3 Gradient-Flow Dynamics and Differential Zernikefilter Synthesis

Compare the sinusoidal term in the formula for gradient (Eq. 4.15) with the
expression for the output intensity for the differal Zernike wave-front sensor (Eg.
4.7). The key observation from this comparisonhiat the gradient (Eq. 4.13) can be

represented in a form dependent only on the difteakZernike filter output intensity

|4 (F,t) and controlling phaseu(r,t .)Then, Eq. 4.15 for the feedback controller

based on the differential Zernike filter can betien as
ou(r,t)
ot

where the coefficientK is proportional toy in Eq. 4.15. The most important

= d0Pu(F,t) - Kl 4 (F,1) = g[T(t) —u,], (4.16)

conclusion from this analysis is the following: Tfeedback controller Eq. 4.16 is an
implementation of continuous-time gradient-flow dymcs, leading to a maximization
of the cost functional (Eq. 4.11). It can be shdhait during the adaptation process, the
time derivative of J is always positive J/dt > [ that is, the feedback controller
(Eq. 4.16) provides for a monotonic increase ineldtrratio, or in another word,

decrease in the wavefront aberration.

4.4 Differential Zernike Feedback Phasing Sensor

4.4.1 System Model of Differential Zernike Feedback Sensor

Fig. 4.3 shows the schematic of the entire teles@ystem including the differential
Zernike filter feedback wavefront sensor. Our g@alto use this phase sensing
technique to measure the phase distortion dueetonibalignment of segmented mirror
so that a correction can be made by adjusting tineapy mirror segments. This must be
achieved notwithstanding the presence of atmosphenbulence. The following
description assumes a monochromatic system (i.ehramatic effects are exploited in

attempting to resolve the wave-front discontingitie
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Figure 4.4 Schematic of Zernike phase sensor sydt@mnput phasev comprises a

misalignment errorv,,, and atmospheric distortion errat, .

As seen in Fig. 4.4, the differential Zernike feadk sensor comprises a spatial light
modulation (SLM) as a wavefront corrector and thieential Zernike filter as a

wavefront sensor; the two are coupled by a feedbami Here the SLM introduces a

phase modulationu(,t )to the distorted input wavg, (r,t) = A, (F,t)expliv(r,t)],
where v(r,t ) is the phase distortion of the incoming wavefraomnprising both static
misalignment of the segmented mirrorg, (I , and time-dependent atmospheric
turbulence, v,(r,t ) i.e., v(F,t)=v_(F)+v,(F,t). The wave after the SLM is therefore
A, (F,t) = A (F) exp{[u(r,t) + v(F,t)]} , which is used as the input to the Zernike filter.

The output signdly, (F,t )from the filter is then used to control the phasedulation
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u(r,t) on the SLM. The dynamics of the phase modulatiothé SLM has exactly the

same form as that for Gradient-Flow control (E4.64. The discrete-time version of Eq.

4.16 corresponds to the following iterative waventrcorrection algorithm:

u™ (@) =u™(F) +do0?u™ (F) - KIS () — (u™ - u,] (4.17)
where n=123-- is the iteration numberu™ (f )s the phase modulation at thi
iteration and | () (7) is the output signal of the differential Zernikkei photo array.
u®@) =0, u" = S‘lj u™(r)d?r is the phase averaged over the aperture areheS. T

parameted is a ‘diffusion coefficient’ that describes spataupling in the SLM and

K is the gain parameter that can be controlled mlewally in the feedback loop. We
assumeK to be a constant. In practice, this model is valieen the bandwidth of the
incoming signal is much smaller than the centrarapjon wavelength of the telescope.
For example, for a narrowband &0nm in bandwidth and central operation wavelength
at 900nm, which is used in Keck telescope, the ratithefbandwidth to the operation

wavelength is less tha2 % nd our model works well. The last term in Ed.74is

used to compensate the bias of so that its average value goes g and the

coefficient i controls the speed of the compensation. We natethie main light loss

in the Zernike phase sensor is due to SLM. We moteir system schematic figures, we
show transmitting SLM only for simplicity. Howevean practice, a reflective SLM is
more suitable because reflective SLM has highetgrhefficiency (up to80 %. SLM
usually has a minimal cross-talk between neighlmgupixels justifying the assumption
d =0. We assume that both the discrete wave-front ctwreand the Zernike filter
photo array are matched in the sense that theythav@ame number of pixels and pixel
geometry. In accordance with Eq. 4.17 the outpgmads from a differential Zernike
filter photo array (after scaling by the factdrand dc component subtraction) are
directly (point-to-point) mapped to the wave-fronbrrector array signals. This
controller can be integrated with the differenHaknike filter imaging sensor, providing

feedback control computation directly on the imagj@p.
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4.4.2 Small Phase Distortion Approximation
The mechanism of the system responsible for phasitige presence of atmospheric

turbulence can be clearly understood from the seigiial analysis. In the weak phase
limit (|ul<<1|v|<1), Eq.4.17 withd = Q x =0, and u® = Q becomes:

u™d () = u™ (1) = KI G2 (F) = KL (7)

=) — KI G (7)) ~ KI G (1) = KL (7) (4.18)

==Kl gy (1) +1gg (F) +--+ 153 (7],
which shows that the time-averaged phase is amadation of successive iterations of
the outputs of the Zernike filter. In the weak siblimit, we have sin(v) =v, so Eq. 4.7
can be expressed as a linear sum of the contrilsufimm the static and dynamical
phase modulations
18 (F) = afu™ (F) + v (7
art (M) = afu™ (1) @) (4.19)
= afug (F) + v (N] +alug (F) + vy (7],
where u™ (@) =uPE)+uF), vOF)=VOE) +vV(F), a=2A|A]. In
deriving Eq. 4.19 we have s&& = irOEqQ. 4.7, which is valid under the assumptions
that the amplitude of the input field is uniformdathe phase fluctuations spatially
averaged over the entire pupil is zero. This coodiis also used in other work [30].
We note that in general the averaged phAsean be an arbitrary constant and, from
Eq. 4.7, settingA = Omerely removes the overall piston term, which doesaffect
the performance of the system. Combining Eq. 4.118 wWil9 leads to the following
two equations that describe separately the feedbmgials due to misalignment and

atmospheric turbulence,

ul™ (F) =[(1- Ka)" =1)v,,(F) (4.20)
ul™ () = -Ka[(1- Ka)""v® + 1-Ka)"v® +...+ 1-Ka)w" ™ +viV]  (4.21)
where n=123---, u®(F)=u (") = 0. The different forms of these two equations are

due to different dynamics of the two phase distartomponents, and this is why they

can be separated. Here we have already takendntwat the fact thatv;, is fixed but
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is uncorrelated for different iteration steps Eq. 4.20 gives the known result in
the absence of atmospheric turbulence; #o < , U accumulates with the
increase of n and eventually converges-tg,, which is the signal to be retrieved.
However, since!” is uncorrelated between different iteration frama$’ does not
accumulate in the same way ag’. Because of the progressive weighting, the

contribution to u{” in Eg. 4.21 comes mainly from the last few terms tlie

polynomial, the number of terms that should beudetl depend on the value of

Ka(<1). We have calculated Eq. 4.21 for different valeésKa for sufficiently

large n, in whichv!” is generated by the Kolmogorov model [42-44] wittFried
parameter of 0.2m. The atmospheric phase errorsragfedevary randomly at every

iteration, i.e., no frame to frame correlation ime tturbulence-induced errors. The

normalised standard deviation of”, o :0'/;0, where g, is the standard

deviation of the atmospheric distortiorf” averaged over time, is shown to decrease

monotonically with the decrease d€a , as given in Fig. 4.5. The total phase signal in

the feedback loop imi™ =—-v_+u” for sufficiently large n. Therefore,u{” can be

regarded as noise background on the retrieved ignsaént phase. The noise represents
imperfectly-averaged atmospheric perturbations, dhgplitude of its residual error
decreases withKa . In a practical systemg is usually fixed andK can be varied as
the electronic gain parameter. Howevdt, also controls the convergence rate of the
system as we will discuss later; larg&r results in faster convergence. So a balance
between residual atmospheric errors and convergamet should be considered in

practical applications.

58



1

0.8

0.6
G*

04

0.2

0 02 04 06 08 1
Ko

Figure 4.5 Normalized standard deviationaf’ as a function ofKa .

Figure 4.6 A snap shot of and v, is shown in (a) and (b), where the grey area

represents the size of the SLM.

4.4.3 Simulation Results

The analysis given thus far has assumed a weak plpaseximation. In practice, the
atmospheric turbulence will not be confined to thist and we have explored through
simulation what happens when the weak-phase appatixin is violated. Our

numerical findings support the above weak signalyasis.

The mirror misalignment signal is computed using@-fiexagon formation, each of
which has a random piston and tip-tilt, a snap sfiathich is shown in Fig. 4.6 (a). If
each mirror segment is 0.5m in diameter, the pynmairror in this simulation is 7.5m
diameter. Fig. 4.6 (a) also shows the shape ardasithe SLM in relation to the mirror

segments. We have use2b6x  iels in square shape in the simulation of the SLM
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the total number of pixels overlapping with thesgglope is 27288, which is much larger
than the number of the telescope mirror segments.sEgmented mirror should map
onto the SLM for optimum use, but no particulagainent is required between the
mirror segment edges and the SLM pixels. The distootis pixel edges in the SLM
can cause scattering loss of light because ofdungize of lenses in the Zernike filter.
However, such lost can be kept minimal and has be@n taken into account. In
modelling the system we have considered the cufreffuency due to limited spatial
resolution of the SLM. We note that the alignmehthe Zernike phase plate with the
incoming image is a practical issue, as a displacerwill result in a deviation of the
phase shift spot from the centre of the Zernike $oplane and therefore reduce the
processing speed of the system. Here we assumdeatpgignment in the system and
the issue about the displacement will be discudatat. Atmospheric wavefront is
generated by filtering the random phase with Kolorog spectrum [42-44] and varies
randomly at every iteration, a typical spatial digition of which is shown in Fig. 4.6
(b). A more detailed description for the atmosphéurbulence simulation is provided
in the end of the thegisDue to low frequency inadequate sampling, lovgdiency
aberrations, such as tilt, are underestimated ampthods have been developed to
compensate the low frequency component [45]. Howewar system is insensitive to
the exact statistics of the phase error, althotughsensitive to long-time correlation in
atmospheric phase errors. The compensation is trerefiot necessary in our
simulation. We have not included wavefront tiltatmospheric turbulence, as tip-tilt
can be pre-compensated by tip-tilt mirror [46]. Wate that to validly use the model
described by Eq. 4.8, the iteration time intervaWaen the frames should exceed the

atmospheric turbulence correlation time, whichygidally 30ms. Furthermore, since
we assume that the atmospheric turbulence is frdmeing an integration (F,t) is

proportional to the number of photons registeretha photon detector over a period
shorter than the atmospheric correlation time;@tséxposure image implies increased
photon and read-out noise. We have investigateeffieets of the instrument noise on

the performance of the system. We find that théesyds robust up to a certain noise

2 See Appendix B.
60



level, which depends on the relative strengths h&f misalignment distortion and
atmospheric turbulence in the input signal and elses with the increase of the
atmospheric turbulence component. For example, dor input signal with #
misalignment distortion and atmospheric turbulence (both peak to valley amgés),
the retrieved signal has no significant deterioratin the presence of the (Gaussian)
instrument noise with the strength of 40% (rms)tleé input signal, and when the
amplitudes of the misalignment and atmosphericadgyare both 4 the tolerable noise
level is reduced to 15%. We note that in practice would use data frames recorded at
a rate leading to significant frame to frame catieh in the atmospheric error and, in
this case, the correlated frames will lead to an&ey frame improvement in photon
and detector noise whilst the convergence of atimargpfluctuations would be dictated
by the number of independent atmospheric realigatigithin the data set. Therefore,
the number of iterations used in the simulationth wespect to the convergence of the
algorithm indicates the minimum period over whitte tdata is recorded. Since this
paper focuses primarily on a new phasing methomhespractical issues such as the
time correlation of atmospheric turbulence andrureent noise will be investigated in

more detail in the future work.
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Figure 4.7 (a) The standard deviatiomr.{) of the retrieved signalu™, against the

actual misalignmentyv_, as a function of the iteration number. The solidve

m?
corresponds to+ 04n amplitude variation for both the misalignment,, and
atmospheric turbulence,, whereas the dash curve is the standard deviatiche

retrieved signals averaged over time. The dot caoveesponds toos in the absence
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of atmospheric turbulence. The feedback gainKis 0y o for different

feedback gains;K = 075solid), K = 0.1 (dash), and varyini§ (dot) : 0.75 for n<20
and 0.1 for n>20.

Fig. 4.7 shows the result for which a peak-to-walenplitude of 0.8 is used for both

vm(F,t) andva(F,t). The difference between the retrieved and origiplahses is

measured by the standard deviatiog,, =\/Z[(U+Vm) ~(U+vm)]®>, Where u is
retrieved signal, andi,vm are spatially averaged value of and v, . When the
signal is perfectly recoveredj = -v,,, up to a constant phase shift. The tennt (/m)

is used to remove this shift sa.; gives the measure of how close the retrieved kigna

resembles the misalignment. As shown in Fig. 4)7 & < 001 rad is achieved for
~ 20 iterations in the absence of atmospheric turlndenWhen the turbulence is
included, o, fluctuates aroundo.,s = Odrad. This shows a good recovery

compared witho = 048ad for the input signal, which correspondsdgg at n=0

in Fig. 4.7. The asymptotic value af,s is due to the residual random fluctuations of
the atmospheric turbulence over a number of fratieésrmined by the choice oKa .

To reduce the level of the random fluctuations werage u™ over 1000 iterations

after the convergence has been achieved, k&i>= 1 i“m' We obtain
n-miz,

O = 003 after m=1000. We note that the presence of turtmelat this level does not

appear to change the convergent rate of the system.

Fig. 4.7 (b) shows the effects of the choice oflfeek parametelK on o.. In

general, with increase oK, the convergence rate increases, so does the levise
caused by imperfect averaging of the atmospheributence. To achieve faster
convergence rate and higher quality recovery as#ime time, we can varX during
the iteration processing; an example is given o Bi7 (b) in whichK is reduced
from 0.75 to 0.1 once the convergence is achieved.
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Figure 4.8 (a) standard deviationo.'> versus different atmospheric turbulence

amplitudes (peak-to-valley)K = 0.3circle) and 0.75 (asterisk). (b) The number of
iteration needed for convergence versus atmosphienioulence amplitudes for
K =03 (circle) and 0.75 (asterisk); by convergence it msedhat the retrieval
misalignment signal changes very little in subseguéerations. The curves with
crosses in (a) and (b) correspond to the results Bérnike filter with £ 7/2 phase

shift on 5x 5 pixels around the centre and f&¢ = Q.75

Assuming that mirror diameter is less than the iositale, peak to valley atmospheric
phase distortion increases with the diameter @stalpe aperture. We have modelled
here an atmospheric phase distortion of abouypeak-to-valley value in the absence of
wavefront tilt, which corresponds to 4m primary moir aperture diameter and Fried
parameter of 20cm ( 05" seeing at visible wavdleshgunder the best seeing
conditions). This level of error is sufficient to seme that there is no fixed “core”
speckle in the central region of the image plané #@rat a fully-developed speckle
pattern is modelled for the snapshot point spreatttion. We have examined the
performance of the system fordn (peak-to-valley) mirror-segment phase
misalignment (which corresponds to the standardatiemo = 224) in the presence of

increasing atmospheric amplitudes from 08n. The results are evaluated by the

standard deviatiorvRS'z\/Z[(u'wm) — (u+vn)]? , where U is the unwrapped phase in
which 2n7  ambiguity is removed (see below). Ag., fluctuates for each

realisation, which is shown by the error bars ig. Bi.8 (a), we average,; dver 1000
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iterations after the convergence of the systembt@aio <o, '>. Fig. 4.8 (a) shows a

monotonic (nearly linear) increase ofo..'> with the atmospheric turbulence

amplitudes for both feedback coefficienks = @nbl 0.3. Consistent with the weak

signal analysis, we find that os'> is smaller for smaller values dk . The standard

deviation< o.s'> in the presence of atmospheric turbulence f4n and 87

amplitudes corresponds to a measurement accuradgroh, 21nm and 57nm at the
operation wavelength of 900nm. Fig. 4.8 (b) showseaponential increase of the
numbers of iterations required for the system cogemce with the increase of the
atmospheric turbulence amplitudes. It further shtves a greater number of iterations
is needed for smaller values of the feedback adefft K (comparing circles with
asterisks), which agrees with the weak signal amaly=ig. 4.9 (a) is an example of a
4n mirror segment misalignment phase error in theeabe of turbulence-induced
errors whereas Fig. 4.9 (b) is the retrieved misegment misalignment in the presence
of 8n atmospheric turbulence. A clear correspondenceveset the two images

confirms the capability of the system.

Figure 4.9 (a) Input phase distribution of a segmenmirror with peak-to-valley
amplitude of 4 misalignment. This misalignment is mixed withx &tmospheric
turbulence as the input signal to the Zernike sensfb) Retrieved misalignment phase

image (unwrapped), which shows very good recovery.

In our system, when the input phase fluctuationseed 271, the retrieved phase
images, u, are subject tot 2n7z (n integer) jumps, i.e., phase wrapping. The phase
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wrapping occurs because of the use of sine fundhioime Zernike filter, which is a
common problem in phase sensing. The phase ampigait be determined by first
measuring the phase errors in two different wagle and then applying the two
wavelengths interferometry algorithm proposed bydabl and Eriksson [26]. In our
system the phase errors at two different wavelengén be obtained as two separate
measurements at different time when differentrltgre used in front of the SLM.

For realistic levels of turbulence the snapshotgentom a large-aperture telescope
has a negative exponential probability for the hngss of the axial speckle in the
image plane. It follows that a Zernike filter thahase-shifts just the central
diffraction-limited speckle has negligible effech dhe recorded data, as we have
already noted earlier that images in this situationtains no core speckles. This leads
to a slower convergence for the algorithm if impégrted with a pure Zernike filter. To
overcome this problem, we have studied the Zerfiltex with an enlarged phase shift
region in the focal plane. The enlargement of thasg-shifting filter spot increases the
effect that the filter has on the recorded data Oagrades the quality of the
interferometric phase-reference generated by ther.fi This results in a trade-off
between convergence rate and accuracy of wave-femonstruction. Fig.4 gives the
numerical results (crosses) for a differential dezrfilter in which =7 /2 phase shift
is realised in5x 5pixels centred around the zero spectral compofeampared with
1 pixel in the earlier study). As shown in Fig. 4(6), the convergence time is

significantly decreased, especially for larger agpteeric amplitudes where the decrease

is of two orders of magnitude. However, the staddbeviation <o'> using such a

Zernike filter reveals a new feature, as shownign #.6 (a). While < o."> is similar

to that obtained by the conventional Zernike filfer relatively large atmospheric
amplitudes, it behaves very differently when thephtudes are below the value of
aroundrn. This is because when the atmospheric amplitudeslaav the incoming

images comprise mainly the static mirror-segmensatignment. This leads to the
build-up of a considerable amount of low spatiabjfrency components in the retrieved
phase images by the Zernike filter withix Bxels, which results in the increase of

<0Og"> In the small atmospheric amplitude region. Whea thput phase image
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comprises significant amplitude of atmospheric @lehce, the low spatial frequencies
becomes less prominent and the results for thecages with different pixel numbers
are essentially the same. This study shows thatiféerent strengths of atmospheric
distortion we can use a Zernike filter that progides/2 phase shift to different
number of pixels in the focal plane to achieve dwttter quality phase image recovery
and faster convergence rate. This enlarged phédfesda approach can also be used to
deal with imperfect alignment between the incomimgge and the Zernike phase plate
and residual wavefront tilt, which was mentionediea We have confirmed through
numerical simulation that a better quality imageokeery with faster convergence rate
can be achieved when the enlarged phase shiftisrapplied to the case of a slight
alignment displacement. Another approach to thélpro is to use a time-dependent
Zernike phase shift spot that dynamically follovi tpoint of the maximum spatial
frequency strength in the Zernike focal plane. Argtoming of this method is the

presence of a residual phase tilt.

4.5 Conclusions and Discussion

In conclusion, we have studied an adaptive Zerdjgamical feedback system and
shown by analysis and simulation that it provides edfective means to measure
segment misalignment error in the presence of gihrergc turbulence. This system can
be implemented in an optoelectronic device, whiadubld provide a practical method
for phasing of segmented mirror and other appbeesti

We note that the phasing technique introduced ia thapter is different from
DZEUS and ZEUS method. In ZEUS and DZEUS, onlyraylei exposure from the
Zernike filter output is used to retrieve the segtagon error based on its known
wavefront-to-intensity converting relation for segmied mirror correction at each time.
The atmospheric turbulence is partially averagedogurelatively long time exposure in
ZEUS and DZEUS. Measurements of a fixed-piston ssgreimulation plate using the
ZEUS laboratory setup give a phasing errorldhm rms [15]. While in the differential
Zernike feedback system, the atmospheric turbuldacaveraged out by multiple

exposures.

66



Chapter 5

Automatic Particle Detection and Trackingin Living Cell

Automated tracking and analysis of moving objentsmage sequences has been one
of the major fields in digital image analysis resba Automatic particle tracking has
many applications in video surveillance, multimediarvices, automated vehicle
guidance and driver assistance, remote sensingnatebrology, and medical imaging.
Moreover, automatic tracking is also a very impoatrtBeld in molecular biology [54,
55]. Biomolecular systems are dynamic and commatatnd it is one of the major
challenges of biomedical research and pharmacéutidastries to unveil the spatial
and temporal relationships of these complex systdResults in this area can be
expected to have significant social and economgaichin the near future, as they can
improve human health and well-being. Studies intammlecular dynamics generate
huge amounts of image data. To be able to handketdata and to fully exploit them
for describing biological processes on a quantatievel and building accurate
mathematical models of biomolecular dynamic stmegy computerized motion

registration and analysis is becoming a necessgéj [

5.1 Method for Study of Biological Molecular Dynamics
Currently, light microscopy [57] is the most impat imaging tool for recording of
dynamic processes in living cells. Recently, Lighicroscopy has become mature

enough to allow imaging of molecular complexes amdn single molecules in living
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cell. Apart from a great improvement in optics heade and the development of
increasingly sensitive electronic imaging sensarskey factor was the discovery,
cloning, and expression of the jellyfish green fesrent protein (GFP). This enabled
visible fluorescence to be encoded into a spegj&oe of interest, which, in turn,
enables us to tag and optically detect virtually anotein of interest in living cells.

Combined with time-lapse imaging, these developméatve provided powerful tools

to study the dynamic characteristics and functmingroteins in living cell [58].

5.2 Fundamental Problems of Automatic Trackingin Living Cell

Achieving robustness and high accuracy in tracking motion analysis in images
obtained by light microscopy is hampered by thraetdrs. The first is the limited
spatial resolution of the microscope. Even an ogllyrdesigned microscope, which to
a good approximation can be modelled as a lineift-iskiariant system with a finite
point-spread function, suffers from diffraction. el kRraunhofer-diffraction limited PSF
of a confocal microscope with circular aperture apdrating under design conditions is

given by [59]
PSF(r,2) =| [ 23,(arp)exp(-2iyz0*) pdp (5.1)

7NA _TNA?

in which a:2 and y=

, and wherer =./x*+y® represents the radial

distance to the optical axis is the axial distance to the focal plane,the imaginary

unit number, J, the zeroth-order Bessel function of the first kindA the numerical

aperture of the objective lens, anmtl the wavelength of the light emitted by the

specimen. This function is band-limited in both tlageral (in-plane) and the axial
(across-plane) direction, with radial cut-off fremeies of w =2a and w, =2y,

respectively.

The second factor is noise. Even if all sourceam$e due to system imperfections
are reduced to a minimum, the signal-to-noise r@&MNR) is still limited because of the
randomness introduced by the quantum nature of.lighis randomness follows a
Poisson distribution and is therefore not indepahdéthe signal. Furthermore, in most

experiments the signal has to be kept to a minimsinge high illumination rapidly
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guenches fluorescence and may disrupt the cellutak molecular processes being
studied. And for the very same reason, the numbenages taken for a given time is
usually minimized as well. As a result, both theRShBind the temporal resolution are
usually quite low.

The third limiting factor is the large variabiligf biological image data. Fist of all,
this high variability has to be attributed to tmgrinsic heterogeneity of biomolecular
systems. In addition, a lack of standardizationthe acquisition protocols among
studies may result in imagery of the same molecplarcess with quite different
appearance and quality. The quality of images matyewen be constant within one
experiment, for example because of a degradatidheofluorescent probes over time
(photo bleaching).

All these factors put high demands on the desigmuibmated image processing

techniques.

5.3 Overview of Particle Tracking Methods
Computational image processing tools for automatacking of molecules within

living cells have been developed and reported fanynyears. The basic concepts
underlying the vast majority of published method® airtually the same. The
commonly used approach to motion tracking consittt least the following steps (see
Fig. 1): pre-processing the image data, detectmtividual particles for each image
frame, linking particles detected at successivee tpoints, and analyzing the results
[54]. Pre-processing of the raw data, includingseaieduction and spatial alignment of
the successive images is usually required to ceraldly improve tracking results.
Detection of relevant particles in the images isistimes done by fitting a predefined
model to the data. Once detected, a host of feattar be computed for each particle,
which may serve to divide particles into classéspplicable. Feature values are also
required for computing correspondence probabilitiethe subsequent linking step. The
resulting particle trajectories may be verified arichecessary, corrected manually or
using efficient spatiotemporal representationsalfyna variety of dynamics parameters
(velocity, direction, acceleration, etc.) may benputed from the tracks. We will

discuss each of these steps in more details.
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Figure 5.1 Schematic of the steps commonly invoingghrticle tracking studies.

5.3.1 Image Pre-processing

One of the most important factors influencing tiagkalgorithm performance is the
signal-to-noise ratio (SNR). It has been demorstirdty experiments on artificial data
[60] that the accuracy of commonly used trackingpathms degrades rapidly as the
SNR drops below 20 dB and becomes unacceptablevld€lalB. Such levels, however,
are not uncommon in fluorescence imaging.

Moreover, it has been shown that on short timeesgdbcalization inaccuracies
caused by noise in the images may make particlesitin processes appear anomalous
even if they are normal [61]. It is therefore ofi@al importance to enhance the SNR
for subsequent particle tracking by applying noesguction techniques. Since the most
dominant noise source possesses Poisson ratheGthasian characteristics, nonlinear
filtering techniques are frequently used for thisgmse. Examples range from simple
median filtering [62] to more sophisticated anispic nonlinear diffusion filtering

techniques [63, 64].

5.3.2 Particle Detection

A number of different approaches exist for estimgtihe positions of particles from
individual images of a sequence. Most particlekirag algorithms published to date are
based on either one or a combination of these rdstti60]. The computationally
simplest approach is to calculate the centroidsgeatres of (intensity) mass, of relevant
spots. This requires segmentation of the imageuggpress irrelevant background
structures, usually done by thresholding basednbensity or other image features.
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Another, computationally more demanding approadodal image registration, where
for each spot in one image the local intensityriistion serves as a template to be
matched with neighbouring distributions in the nemage. This requires choosing and
optimizing a similarity measure, for which normalizcross correlation or the sum of
(squared) intensity differences are often used.oAceptually somewhat similar, but
still distinct, approach is to fit a predefined mamnatical model of the spot intensity
distribution. Usually this comes down to least sgsafitting of a Gaussian

approximation of the point-spread function.

5.3.3 Particles Linking

Once particles have been detected in all relevaamds of an image sequence, a
correspondence between them needs to be establishetbst practical situations this
is very difficult, as the number of detected paescwill generally not be constant over
time. Limitations in the image acquisition procesay cause not all particles to be
captured at all times; particles may enter or thet field of view, they may approach
one another at distances that are no longer redsdelso that they merge into a single
spot, or, conversely, a spot that seemed to repr@ssingle particle in one frame may
turn out be a cluster of particles splitting offtime next. In addition, limited detector
performance at low SNR almost certainly leads toyimg degrees of under- or
over-segmentation (depending on the parametengsltiln combination, these factors
seriously complicate the development of linkingtgies.

Methods for linking corresponding particles in segsive frames can roughly be
classified into “local” and “global.” The formerypes of methods [60] operate in a
per-particle fashion: each particle in one framéniked to a particle in the next frame
that minimizes a predefined distance measure. Oftes involves specifying a
maximum allowable distance, indicating track iniba or termination. This is the most
frequently used approach to linking and may yiedtiséactory results in scenes with
relatively low particle densities and well-sepadaspots. In more complex situations
with much higher densities and overlapping spdis linking problem cannot be solved
unambiguously without involving neighbouring or aveall detected particles and

finding the optimal correspondences for them siemédbusly. Global correspondence
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search strategies are well-known in image procgsgb]. However, many of these
perform poorly when applied to biological data hesmaof too-simplistic assumptions of
particle motion modes, which cannot cope with thiginsic heterogeneity of motion
within one patrticle trajectory as well as amongipbas. In addition, these strategies are

computationally more demanding.

5.3.4 Tracking Results Analysis

Before applying a thorough quantitative analysistred results of fully automated
tracking algorithms, it is good practice to firstaenine and verify these qualitatively.
Especially at low SNR, detection and linking erroray easily occur, even with current
state-of-the-art algorithms, and require manuateztion afterwards. Simply browsing
through the data in a frame-by-frame fashion, aseda early studies, is cumbersome
and does not provide sufficient insight into theerrelations between detected features.
In the past few years, more effective ways to regméand visualize spatiotemporal data
have appeared in the literature, based on (compimeldme and surface rendering
techniques [56]. Apart from assisting in the veafion of tracking results, such
visualizations also give first impressions of pbgsitrends in the data, which may
motivate specific quantitative analyses.

Once tracking results are verified and correctedthis is possible, several
characteristic motion parameters can be deriveah fifltem. Displacements, velocities,
and accelerations are easily computed per paditteeven per time point or interval.
Generally, these values are studied collectivelgrdarger numbers of particles, and
provide the intrinsic heterogeneity of particle aelour into histograms that reveal the

most dominant modes of maotion.

5.4 Summary

In the last chapter of this thesis, we will show totential application of Zernike
filter in image processing, and the quantitativeatyics of a biomolecular system by a
multiple particle tracking algorithm. In chapter we will apply our Zernike filter
feedback system, which is similar with which hasrbesed for telescope phasing, in

image pre-processing for single particle trackiBg. numerical simulation, we show
72



this Zernike filtering can be used to remove tregistbackground, which affects the
single particle tracking process. A comparison Wwél given to shown that the Zernike
filtering will significantly improve the effectiveess of the single particle tracking
algorithm. A local linking method is used in thradking algorithm, and as a result, it
can only be used in a relatively low particle dgnsituation. Finally, we further study a
global-linking multiple particle tracking algorithand apply this algorithm to study the

statistical dynamics of a bimolecular system.
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Chapter 6
Zernike Filtering for the Application of Particle Detection and

Tracking

The low signal-to-noise ratio has been a fundanh@ntdlem in dealing with particle
detection and tracking in living cells. Even if aburces of noise due to system
imperfections are reduced to a minimum, the sigoadeise ratio (SNR) is still limited
because of the randomness introduced by the quamiitume of light. This randomness
follows a Poisson distribution and is therefore rinotlependent of the signal.
Furthermore, in most experiments the signal haset&ept to a minimum, since high
illumination rapidly quenches fluorescence and meyupt the cellular and molecular
processes being studied. And for the very samengdlse number of images taken for
a given time is usually minimized as well. As autesboth the SNR and the temporal
resolution are usually quite low.

In this chapter, we will present our original wook further applying the Zernike
filter feedback system to increase the signal-tisacatio of the image sequence. As we
will show, this process will make the existing jpee tracking algorithm more effective
and accurate. The Zernike filter feedback systeoapable of removing the noisy static
(or slower moving by comparison with the targetsichground, and therefore
increasing the signal-to-noise ratio. To demonstthe effects of the Zernike filter
feedback system, we compare the tracking results and without the presence of

Zernike filtering by using numerically generatedrtgdes moving in a noisy
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background. The single particle tracking algoritiwe choose is a cross-correlation
based algorithm, followed by centroid interpolattorgive sub-pixel position. Then, we
conduct case studies for the Zernike filter sysitetie application of living cell images
pre-processing. Finally, we further present a rpldtparticle tracking method on one of

the real living cell image sequence, when the sipgirticle tracking is not appropriate.

6.1 Zernike Filter Pre-Processing

We have used the differential Zernike filter in ptex 3 and 4 for phasing errors
retrieval and correction. The differential Zernideer had also been used in an adaptive
optics system for wave-front control [29, 30]. lhshbeen shown that the adaptive
system with the differential Zernike wave-front sencan be efficient for compensating
static phase distortions. We further show in chaptéhat this system can differentiate
the dynamic component from static component in itigt signal, and therefore,
remove the static component.

Noisy background can hamper the effectiveness eof ghrticle tracking in the
analysis of biomolecular video images. Sometimiste could be some static bright
spots in the images which significantly affect geaticle tracking. To remove the static
noisy background, we can apply the Zernike filedback system (Zernike filtering) as

a pre-processing to the image sequence to preparmages for particle tracking.

SLM Zernike Filter Photo-array
Iditf
Phase Phase shaft v

modulation controller
IHPUt controller

image
—» é <

Figure 6.1 Schematic of pre-processing Zernike daek system. The input image

signal is added with the feedback signal, and #ppiied to the SLM.

A schematic laboratory system of the Zernike pr@epssing is given in Fig. 6.1.

This system, to the most extent, resembles theik&erphasing sensor system as
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described in chapter 4. The pre-processing systenpases of a spatial light modulator
(SLM) as a wavefront corrector and the differenfiafnike filter as a wavefront sensor;
the two are coupled by a feedback loop. The onffieidince in this system is that the
input (phase) signal is applied to the SLM rattentmodulated in the input light (there

is no wavefront aberration in the input wave). Héine SLM introduces a phase

modulation u(r,t) +v(r,t ) to the undistorted input wavéy, where v(f',t ) is the

input images,u(r,t )is the feedback signal, in whiclt, is the spatial radial vector in

the plane transverse to the system optical axis tans time. The wave after the SLM

is therefore Ayexpfi[t(r,t) +V(r,t )]} which is used as the input to the differential
Zernike filter. The output signal 4 (r,t Jrom the filter is then used to control the

feedback signal(r,t ) The dynamics of the pre-processing system canrliten as a
discrete-time iteration equation:

u™(r) =u™ (1) = Ki g (1) = 40 =] (6.1)
where n=123,... is the iteration numberu®(r)= ,0and 0™ = S‘lj u™(r)d?r is

the phase averaged over the aperture are& Ss the gain parameter that can be
controlled electronically in the feedback loop. Bgmparison with Eq. 4.17, the

diffusion term is omitted in Eq. 6.1. The outputdgessed) images are read directly

from the photo array (known ak,,). In our experiment, this system is realized

numerically. However, the hardware system can bk Wwith the imaging camera for
real-time processing to save computation for higgolution images.

The principle of the Zernike filtering pre-proseg) best demonstrated through an
ideal experiment is shown in Fig. 6.2. The origimahge sequence is constructed by
adding three bright particles in a static Gaussiaisy background §12x 512 The
three objects have the same brightness comparathieive background, and the same

FWHM of 5 pixels. Two of the objects are moving,dahave constant velocity of

V, =1 pixel/frame andV, =0.2 pixel/frame respectively, and the third objecstatic

(V; =0). A snap shot of the original images is shown i B.2 (a), and examples of
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the processed images are shown in Fig. 6.2 (h)agd) (d) respectively for frame 10, 50,
and 100. We can see in the processed images, tbe mackground and static object

have disappeared, but the two moving objects alletlstre. We also note that the

particle with higher speed, appears to be brighter than the one with relatisiwer

speedV, in the processed images. This is a result of tmawchics of the Zernike

filtering. The static noisy background in the iaitimages can be suppressed because
they are built up in the feedback control signal Wwith opposite distribution during the
iterating process. On the other hand, if an objgates so quick that this object appears
in a different position at each detector reading;an not be built up in the feedback
signal, and as a result can not be suppressedcaligsithe moving objects will be
completely retained while their displacement inretame is significantly greater than
their physical size. However, the object can bélypauppressed if it moves so slow that

it appears to be overlapping within several itesatethe detector’s reading.

Figure 6.2 Processing results with Zernike filtgriior three bright particles in a noisy
background. The simulation signal comprises of @hleight particles, which are

corresponding to different velocity: V1=1 pixelfine, V2= 0.2 pixel/frame, and V3=0.

7



(a) A snap shot at frame 1 before processing(¢h)and (d) are snap shots at frame 10,

50, and 100 after processing.

6.2 Image Pre-processing and Single Particle Tracking Procedure

As we have shown above, the Zernike filtering gysie capable of suppressing the
static background in images. This enhancement imgenquality results in a higher
signal-to-noise ratio, and therefore makes it adgoandidate in pre-processing for
particle tracking. In order to show the effectivemneof the Zernike filtering in this
application, we use a single particle tracking rodtbn both artificially generated and
real living cell image series, and compare thekirag results with and without the
presence of the Zernike filtering.

There are many methods used for single partictekitng [66], including finding the
centre of mass (centroid) of the object, fittingGaussian curve to the object,
cross-correlation (COR) and sum-absolute differ#D). Methods such as COR and
SAD do not give sub-pixel position on their ownstead, they create a ‘correlation
image’ showing regions of high similarity betweeriemplate image and the current
image. A method of interpolating the nearest su@lpposition of this ‘correlation
object’ is then necessary. The types of interpomatthat have been used include
parabolic, cosinusoidal, and Gaussian fitting amotroid calculation. For the method of
single particle tracking, tracking begins with gmlection of a region of interest. Then,
in each image, the chosen method of locating thigcfes centre is applied and this
centre position is used to reposition the areant#rést for the next image processing.
Depending on the exact implementation of partideking used, investigators typically
propose that an accuracy of 10 nm or better caamch&ved [66]. When magnification
and the physical size of the pixels in the CCD dbfighe camera are considered, the
image pixel size is typically between 30 nm/pixetld 50 nm/pixel. Thus, to achieve an
accuracy of 10 nm corresponds to locating the eenfrthe object to somewhere
between 1/3 and 1/15th of a pixel. Currently, mahgices for tracking method are to
apply a COR-based algorithm, followed by centraiteipolation to give sub-pixel
position [66]. This tracking method is the one vge dior single particle tracking along

with the Zernike filtering pre-processing. The dstdor this algorithm are given in
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Appendix C.

As shown in Fig. 6.3, the pre-processing and tragkrocedure is implemented in
the sequence of the following steps: (1) the imagees are prepared or generated
artificially by combining the object and noisy bgckund, (2) the images are sent frame
by frame for Zernike filtering, (3) the kernel amlde coordination of the centre of
searching area in the next frame are initializet), the kernel and the specified
searching area are used to calculate the crosslaton coefficient, (5) a threshold
operation is performed to the correlation matrixd ahen centre of the mass (centroid)
of the correlation matrix is calculated, (5) thgemb position coordinate is calculated.

The process from step (3) to step (5) will be régebantil the last frame is processed.

Real Living
Cell Images
or Zernike . Kernel
- . L .. . -
Object - Filtering Initialization
"] Simulated
Living Cell
Noisy > Images
Background Get Kernel v
for Next
Frame v
Output Obj_e_ﬂ Centroid Correlation
Results Posmo_n | raterpotation « Matrix
Calculation P Calculation

Figure 6.3 The diagram of the single particle tmaglalgorithm. The Zernike filtering is

applied along with the particle tracking algorithm.

6.3 Testson Simulated Living Cell Images

The currently existing single particle tracking hmds, including the correlation
combined centroid method, are capable of quantifglre position and motion of the
moving objects accurately under relatively larggnal-to-noise (SNR) conditions [66].
However, when the SNR deceases (typically under st of these methods fell. In
this section, we will show by numerical simulatittrat the Zernike filtering algorithm
is capable of increasing the SNR by suppressingtigc noisy background, and as a
result, increasing the effectiveness of partiGekimg methods.

We consider physical particles that are mobile itwa-dimensional plane. Their

motion is observed using imaging equipment and gitadi (CCD) camera which
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generates a sequence of digital images at distnre¢éepoints. We call this sequence a
movie and an individual image from it a frame. laclke frame, the images of the

particles are visible as objects.

6.3.1 Particle Model

To create an accurate model for a fluorescent olajeaged with a charge-coupled
device (CCD), the distribution of intensities oétimage can be derived by convolving
the object function with an appropriate point-spréanction (PSF) [66]. To study the
effectiveness of the Zernike filtering, we simmdi this step and only use a
two-dimensional Gaussian surface to representdhtgcie. The input image is obtained

by combining the object and noisy background, witigh be written as:

10 =10 +10 (6.2)

obj

where 1§ is the object component, antf; is the background component, and

i=123...,N is the frame number. The object componétﬁg is given by the
expression:

g (X, y) = aexp{-bl(x - x)* +(y - y,)’I} (6.3)
in which a determines the brightness of the moving objeal, &n determine the size

of the object. In our simulatiora can be varied, while keeping the noisy background

constant, to provide different signal-to-noiseagatind b is set to 0.15, which makes

the object of 9 pixels in diamete(x;,y, i¥ the pre-defined position of the particle at
frame i, and the predefined parabolic trajectory of thgctis given by:

Xy =% +1 (6.4)

y, = —-0.011(x, — 256) + 450 (6.5)

where i =123,...,372 and x, =70, y, =69. The parabolic trajectory is shown in Fig.

6.4, which emerges from the left end, and exithatight end of the curve.
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Figure 6.4 The pre-defined trajectory of the mowatgect.

6.3.2 Noise Model

The CCD cameras used for image recording genehnatensise in the image [67].
Shot noise is a Poisson process where the noiseases with+/N , N being the
number of detected photons or photoelectrons iixel.pin our simulation, the noisy
background 1) is realized by Poisson distributed shot noisectvitioes not change at
each frame. If the expected number of detectedopisoin this interval is., then the

probability that there are exactlly detected photonk( being a non-negative integer,

k=0,1,2,..)isequal to

Ake_/‘
k!

P(k, 1) = (6.6)

where k! is the factorial ofk .

6.3.3 Results

The artificial images, generated by combining tletiple and noise, are sent for
Zernike filtering before applying the tracking atgom. We numerically choose a
perfect phase shift size of one pixel [29], whidtygically represents shifting only the
zero spatial spectral components, and the feedgaickcoefficient K is chosen to be
0.2 in the pre-processing. A snap shot of the Zerfilter processed images and a shap
shot of the original images are shown in Fig. @/e noise background is suppressed
heavily as a result of the Zernike filtering.

The numerically generated images have the size5t?x 12 Ppixels. In the
initialization step, the centre of mass of the vehiohage at the first frame is used as the
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centre to get the kernel and the centre of theckeay area for the next frame. The

template image (kernel) size @x  Pixels and the search area sizeligx  fiXels,

which results in a square correlation matrix witii+ (9—-1)x pikels in each side.
The coordinates of the particle can be updatechaid i by

X =X, —W+Xx'-w+Xx',

Yi = Yig TWHY'mwY, (6.7)
where (x',y ') and (x",y ") are the centroid interpolation of the kernel (laame)

and the correlation matrix respectively, amgd=  i9the width of the kernel.

Figure 6.5 A snap shot of the original simulatechges (a), and a snap shot of the

Zernike filter processed images.

In order to compare the accuracy of the singleigartracking algorithm with and
without Zernike filtering for different levels ofelative signal intensity, the signal-to
noise ratio must be calculated. The signal-to-nmsie (SNR) is calculated as [68]

S\lR ~ Con - n< Xback> ' (68)
\/(Con - n< Xback >) /G + na—sack + na—t?ack / p

where C_, is the total pixel value of a box centered ondbgect, n is the number of
points in this box, X, IS the mean background from a box not centerethembject

(anywhere away from the object) is the size of this second box ar@l is the gain

of the system.
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Usually for images from a camera the gain is nobwm It can be estimated,
however, from the standard deviation of the bacdkgdoof an image. To estimate the
gain, first calculate the mean and standard dewadf the pixel values in a region of

the background. The noise (standard deviatiar), of a Poisson process should be

JN, where N is the number of photoelectrons giving rise toshgmal. If the gain is
1, then B=og”=N where B is the mean background pixel value. If the gainas

one, then B # g”and the ratio gives the gain, th=B/o”.

As a result of the effect of the noise (or residogse), there is always an error for the
obtained particle coordinate at each frame in theked trajectories. To quantify the
overall accuracy of the algorithm, the standardkireg error (SE), which measure the
standard deviation of the measured object positfom® the real ones of all image

sequence, is introduced here

SE =3I + (v -y, (6.9)

where (x,y, ) is the measured position of the particle at frameand (X, y; )

represents the real position of the particte,is the maximum frame number.
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Figure 6.6 The standard tracking error as a funabiosignal-to-noise ratio (SNR) with
(circle) and without (asterisk) the presence ofZkenike filtering. The particle tracking
algorithm accuracy is quantified by the standardrg(SE).

The single particle tracking algorithm works veryellvwith the presence of
pre-processing by Zernike filtering, and resultsailgood accuracy (SE<1 pixel). By
changing the value ot in Eq. 6.6, we can change the particle’s briglgnasd

therefore the value of SNR of the image sequenue tleen check the effectiveness of
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the Zernike filtering. We find that the single pele tracking algorithm with Zernike
filtering still provides less than 1 pixel accuramyen when SNR is as small as 3. As we
know, this is better than the single particle tragkmethod without the Zernike
filtering, which works with smallest SNR around 10.

To compare the two, we calculate the standard @frdne particle tracking results
with and without the presence of Zernike filterimgthe case of different SNR values.
As shown in Fig. 6.6 the standard tracking errothaut Zernike filtering decreases
when the SNR increases, while the standard trackirgy with the presence of Zernike
filtering does not change monotonically as whatpeas when Zernike filtering is not
applied. This is because that most of the noiskdrauind has been removed by the
Zernike filtering and then the increase of the objerightness does not increase the

accuracy of the tracking algorithm any more.

6.4 Testson Real Living Cell Images

Three sequences of real living cell images areistudere. These case studies help us
to identify the effectiveness and suitability oétHernike filtering system in living cell
imaging applications with different conditions. F&7 (a) and 6.8 (a) are snap shots of
two original fluorescence time-lapse sequences EP-tagged end-binding protein 1
(EB1-GFP) tracking the plus ends of extending niidsales at the posterior of
Drosophila melanogaster mid-stage oocyte. Fig.(8)9s a snap shot of a time-lapse
sequence following the localisation of fluorescenthbelled mRNA in a syncitial
blastoderm stage of a Drosophila melanogaster eanfriye corresponding snap shot
after Zernike filtering are given in Fig. 6.7 (19,8 (b) and 6.9 (b) respectively. The
static bright area in original images is removed 4grnike filter in the processed
images. We note that the significance of Poissdsenm these three living cell image
sequences is descending with the increase of thgeamequence number (6.7, 6.8, and
6.9), and in Fig. 6.9 there is little Poisson noikeis not hard to find out that, the
particles are mixed with residue noise in Fig. @)and 6.8 (b), and in Fig. 6.9 (b) the
particles are basically free from noise pollutidinis difference can be ascribed to the
characteristics of the Zernike filter that it caot suppress the dynamic Poisson noise,

but more suitable for removing static background.
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Figure 6.7 A snap shot of the original Drosophilelamogaster mid-stage oocyte image

sequence (a) and corresponding Zernike filter meee image (b).

Figure 6.8 A snap shot of another original Drostgpelanogaster mid-stage oocyte

image sequence (a) and corresponding Zernike fieressed image (b).

Figure 6.9 (a) A snap shot of the original Drostgplmelanogaster embryo time-lapse
sequence with fluorescently labelled mMRNA, the lieds are tracks obtained without
Zernike filter; (b) A snap shot of the image sequeeafter Zernike filter processing, the
green lines are tracks obtained with Zernike filter
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As the last image sequence (Fig. 6.9) has loweticfardensity, we are able to
conduct the single particle tracking algorithm brin Fig. 6.9 (a), the trajectories in red
obtained by the single particle tracking algoritlhwthout the process of Zernike filter.
The particle 1 is relatively bright, and can becked successfully. However, the much
weaker particle 2 is not successfully tracked (#neow indicates the right moving
direction). By comparison, when Zernike filter ippdied (as shown in Fig. 6.9 (b)),
both particle 1 and 2 are successfully tracked ¢tleen lines). We further strengthened
our conclusion that Zernike filter can make thegknparticle tracking algorithm

working in worse conditions (low SNR).

6.5 Multiple-Particle Tracking

It is easy to find that in both Fig. 6.7 and 6.8 particle density is high, and then the
linking problem cannot be solved by the cross-datien method locally without
involving neighbouring. Therefore, a global linkingethod is needed to find the right
correspondences for all particles recognised irh ésame. Global correspondence
search strategies are well-known in image procgsgb]. However, many of these
perform poorly when applied to biological data hesm of over-simplistic (mostly
global) assumptions of particle motion modes, whielmnot cope with the intrinsic
heterogeneity of motion within one particle tragggtas well as among particles. Most
of these methods fail to deal with the common sibmain biology when the objects
entre or exit in the vision.

In this section, we employ an existing computatilynafficient, two-dimensional,
multiple-particle tracking algorithm [69], on thed3ophila oocyte image sequence (Fig.
6.7). The particles’ motion in this image sequerceomplex, and particles’ spatial
feature varies a lot from time to time. They creash other, enter and exit in the vision.
All these characteristics make it not easy to dedh by most existing tracking
methods. To solve these problems, a global linkilggrithm employing a graph theory
technique [72-74] to determine optimal associatibasveen two time points is used

here.

6.5.1 The Tracking Algorithm
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The multiple-particle tracking algorithm has to fpem three distinct steps. Firstly it
has to conduct a pre-processing to remove the limofse. Secondly it will detect the
particles in every frame. Finally it has to linkeie target detections into trajectories.
Most of the details about the particles detectiod Bnking method are omitted [69].
Here we only provide the detail about the diffeeebetween the Zernike filter and the
Gaussian-like filter (for pre-processing) used if.F69, and the different cost function
chosen in linking procedure used in our study.

As the Poisson noise in Drosophila oocyte imagesigeificant, the Zernike filter
pre-processing is no longer suitable. A Gaussieaiiter has been used as a starting
point of the work by Crocker and Grier for the aien of gold colloids in micrographs
[76]. This filter is effective for suppressing Pzo®: noise. A snap shot of the
Gaussian-like filter processed image sequenceviengin Fig. 6.10 (b). To compare it
with the Zernike filter, which was used in the s&tt6.3 and 6.4, the typical SNR value
of the particle after processing for two imagesesefindicated in Fig. 6.7 and 6.8) with
a different pre-processing algorithm can be catedlaThe SNR for the image indicated
in Fig. 6.7 (the same as Fig. 6.10) is 5.6 for Hernfilter while 8.5 for the
Gaussian-like filter after processing. For the imapgown in Fig. 6.8, the SNR is 6.3 for
Zernike filter and 4.3 for Gaussian-like filter eftprocessing. Better performance is
attributed to the significance of either static kround or dynamic noise. When the
static bright background dominate, Zernike filebetter. As the dynamic noise is more

significant in the image series we are workingwa,choose the Gaussian-like filter for

this sequence.
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Figure 6.10 A snap shot of the original oocyte imagthin the interested area (a) and a

snhap shot of the restored image (b).

The particle association cost function is calculate obtain the optimum global

particle linking. In Sbalzarini’'s work [69], he us¢he quadratic distance betweemn,

i>0, and q;, j>0, as well as the quadratic differences in the isitgrmoments of

order 0 and 2. As we can see in Fig. 6.11, the éragrframe change in second order
intensity moment for a sample manually trackediglaris not stable. This is a result of

significant changes in the particles’ shape. Tleeefin this case, we only use the

quadratic distance and quadratic differenceniy, but not m,.

25 " " w w 55
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Figure 6.11 The intensity moment of order @] and order 2 ifh,) for a sample
manually tracked particle evolving with time. Thésea good continuity inm,, but not

in m,.

6.5.2 Tracking Results and Comparison with Manual Tracking

Before presenting the automatic tracking results, pgrform a manual tracking on
part of the image sequence. Manual tracking isdalotensive, costly, inaccurate, and
poorly reproducible, and usually only a small fraetof the data can be analyzed in this
manner. However, as the statistical characterisfitse particles in the image sequence
is not clear, we need to provide manual trackinghoose parameters for the automatic
multiple-particle tracking.The Drosophila oocyte image sequence comprises 198
frames of 512x 512 pixel images. We manually tracked as many of gmtigles as we
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could, in a 32x 32 square area, whose top left-hand corner is (322,Hnd found 21
trajectories in this area.

The manually tracked coordinate data for a typpeaticle is shown in Fig. 6.12. This
particle enters in frame 99, and disappears in érdi88. The coordinate and instant
velocity of this target in axis x and y are givesparately in Fig. 6.12 (a) and (b). We
find this particle has an overall orientation temche However, the instant velocity is

still somehow random. This motion can be seen bisased Brownian motion. Another

fact we find here is that the maximum instant vi¢jom either direction & or y)
does not exceed 3pixels/frame. Therefore, the dveaane-by-frame displacement will

not exceed3x~/2 = 424 pixels between two successive frames.
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Figure 6.12 Manually tracked particle coordinatexn(a) and y (b) axis. The instant

velocity in x and y axis is also shown in (a) and (b) respectively.

Another parameter needed to be properly chosdmeishreshold intensity percentile
value () used in target location estimation. If the vatdier is too small, the tracking
algorithm could miss quite a few particles in cert@aames. On the other hand, if is
too large, some relatively brighter noise or baokgd spots could be treated as
particles. To find the optimum value for the thm@shintensity percentiler, we
execute the tracking algorithm with different valoke r , and find 3 percent to be the
optimum value ofr, which results in the best match between the nihnaad
automatically tracked results. We run the multipéeticle tracking algorithm on the
image sequence, and find 3550 particle trajecto®s note that there are many

trajectories that only last for few frames. Thesldtt” trajectories do not provide much
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information for us and can be ignored. The trajeesoof particles with more than 8
pixels displacement are plotted in Fig. 6.13 (ad #he trajectories of particles with
more than 5 pixels and less than 8 pixels displacerare plotted in Fig. 6.13 (b). In
Fig. 6.13, different colours indicate differentjéetories. Other parameters used for

tracking in the Drosophila oocyte images are: pktiradius w= 3 pixel; noise

correlation lengthA, = 1pixel.

Figure 6.13 Particle trajectories resulting frore thultiple-particle tracking algorithm.
The different colours indicate different trajecesi (a) 187 trajectories of particle with
more than 8 pixel displacement, (b) 287 trajectoné particle with more than 5 pixel

and less than 8 pixel displacement.

To find out how good this tracking algorithm is, wempare the automatic tracking
results with the manually tracked results. In tB2x 2 $quare area, the automatic
tracking algorithm has generated 105 particle-hgkin first 20 frames, while 11 of
them are missing by comparison with manually tnagkiesults, and no false linking
exists. The linking success rate is 89.5% by compar with manually tracked
trajectories. The missed link is a result of thatahle intensity of the particles. Some
particles can be very weak in certain frames, shahthe tracking algorithm does not
treat them as particles as their maximum intensitgwer than the threshold value.

To further verify the maximum displacement betwéen frames for the particles

does not exceed 4 pixels, we have also run thaptaijparticle tracking algorithm with

different value of maximum linking length. = 345and 6 pixels. The automatically

tracked results with different values @f can be compared with the manually tracked
90



results, and we find the optimum maximum linkingdéh is L =4 pixels, which gives
us the best balance between less false link asdulesanted trajectory break up.

The above comparison between the automatic trackiggrithm and manually
tracked results shows a fair consistency betweerivio. However, the problem in the
automatic tracking method is that it missed a fakgets in several frames because they
are too “weak”. These “weak” particles found in mahtracking benefit from the
advantages of the human vision system. Althouglthiatstage, the automatic tracking
algorithm can not find all the trajectories accehat the tracking results are still
valuable statistically when manual tracking is ewtely difficult for such a particle

density.

6.6 Conclusions and Discussion

In conclusion, we have shown by both simulation aade study that the Zernike
filtering is capable of suppressing the static pdiackground for images, which makes
it a good candidate for preparing images for pkrti@acking (pre-processing). We show
that a single particle tracking algorithm works ewéth relatively weak signal (SNR as
small as 3) with the presence of Zernike filteriAg.long as the particle density is low
enough so that separate tracking of each pargsgmssible, the single particle tracking
algorithm (a local linking method is employed) ajonith the Zernike filtering works
effectively. However, in more complex situationgtwmuch higher particle densities
and overlapping spots, the linking problem canmosblved locally. Therefore, a global
linking method is needed to find the right corrasgiences for all particles recognised in
each frame. As an example, we applied an existimgpeitational efficient and robust
algorithm, in which a global linking method is emypéd, for two-dimensional
multiple-particle tracking on a Drosophila oocyt®age sequence. This algorithm
works fairly well (with 89.5% linking successfultea and no false link). We show, by
comparison with manual tracking, this algorithmlimited as the tracking fails when
particle intensity is too low.

We note that the Poisson noise in our single partiacking simulation does not
change with time. This is not the case in the aggllication. In this chapter, we use the

Poisson noise only as an example of the noisy vadkg (not for short noise). In the
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real living cell images, sometimes, there are sstaéc bright objects or illumination

areas which are not of interest. In such casesnil&erfiltering can remove these
irrelevant bright spots or areas and makes thecfetracking algorithm work more

effectively and accurately (example shown in Fig)6However, when the background
is moving, or the Poisson noise (dynamic) is sigaiit, we have to be very careful in
using Zernike filtering (example shown in Fig. 6.8% it may also bring in extra noise.
As we show in section 6.5, when Zernike filtering not appropriate, other
pre-processing method will be applied.

One problem for the Zernike filtering is that thate noisy background in the first
few frames isn’t suppressed as much as in theofdsie frames. This is a result of the
Zernike feedback system dynamics. The static commsnin the images can be
suppressed because they are built up in the fekdimaxtrol signal during the process.
However, in processing the first few frames, thedfeack signal has not yet been built
completely, so the static components in these fsatieenot disappear completely. This
defect sometimes can make the tracking accuradgrelift in the first few frames from
the rest. To solve this problem, we can artifigi@td the first few frames of the image
series before the original image series in the sp@®equence, which generate a new
image series. The Zernike filtering can then beliagpo the new image series, and
after the processing, the artificially added fraroas be ignored in the tracking process.
The added frames are used to build up the statigpoaents in the feedback signal
before processing the ‘real’ frames.

We note the automatic multiple-particle trackingaalthm is limited in terms of
accuracy by comparison with manual tracking, assinot capable of recognizing
“weak” particles. However, this is not the only itation for this multiple-particle
tracking algorithm. There are more situations inckhthe linking between frames is
incorrect. Two examples of possible false linkimg shown in Fig. 7.8. In Fig. 7.8 (a),
the three moving particles are correctly linked. Aig. 7.8 (b), there is a missing
measurement. This defect does not affect the titatibaracteristics of the particles
significantly. In Fig. 7.8 (c), as there is an extr false recognized particle, the link

could lead to a false trajectory.
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Figure 7.8 Three moving particles are measuredhiret time instances. The lines

represent the particle correspondences in timéa)nall points are measured at every

time instance (frame). In (b), there is a missirepsurement at,,,, and, in (c), there is

an extra or false measurementtay, .

One way to find and correct the false linking iscteeck the trajectory results. In
example shown in Fig. 6.13, we know in advance thatparticles move in smooth
trajectories (in the long time scale), if we firitete is a significant change of direction
in the particle trajectory, this indicates thatagsé link may exist, which may than be
manually corrected. Alternatively, linking to theae after the next can be conducted
in addition to the one frame linking. The resulfstlee two can be compared, and if
there is a contradiction, we can go back to thewjdheck the original images and
correct the false link if there is one.

Advances in biological imaging technology continagyrovide new opportunities in
unveiling the complex processes underlying thedlsilding blocks of life. Molecular
biology research has only just begun to study hoemns are spatially and temporally
organized in larger functional units and how theshdve under the influence of
selective perturbations of the system by geneticranlecular interventions. Answering
these questions will be critical to understandirgpdses and our ability to design more
effective drugs and therapeutic strategies. Sinoeerand more research is being done

in living cells, with time-lapse image data setatthre not only very large in size but
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also highly variable and complex, research in #nea is rapidly becoming dependent
on automated techniques for image processing aladlysas. Commercial software
packages with modules for particle tracking andiomoainalysis are already available,
but it is highly unlikely that a general-purposeyalithm, developed to provide a
solution to many different tracking problems, isimgpto be the best fit for any

particular tracking problem.
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Conclusions

In conclusion, we presented the combined thezaetind numerical investigation of
the differential Zernike filter and its application segmented telescope phasing and
image processing. The results of our investigatie@nas follows:

Firstly, we studied a new differential Zernikdtei based sensor (DZEUS) for
phasing of a segmented mirror. We first presentedne dimension the analytical
expression for the PtP values of output intensitydulations against the input phase
jumps in DZEUS. We showed that the DZEUS gives tsa better linear relation,
compared to ZEUS, because the differential algoritsed in DZEUS removes the
symmetrical (pollution) term that exists in the Rifpression of ZEUS. This makes
DZEUS a better phase retrieval algorithm. In ortterfurther improve the phasing
accuracy, we put forward a multiple step correctpproach which can further reduce
the phase errors by iterations. Then, we extendedohe dimension analysis to two
dimensions and study the performance of DZEUS usmugnerically generated
segmented mirrors. We showed that using the meltgpep correction approach, the
phasing error is reduced exponentially with resgecthe number of iterations. We
further compared the characteristics between DZBWSZEUS and concluded that the
former performs better consistently. Finally, weowkd that DZEUS is robust with
respect to the atmospheric turbulence.

We further studied a phasing sensor system, wisictealized by combining the
differential Zernike filter and a feedback loopdashowed by analysis and simulation
that this system provides an effective method tasuee segment misalignment error in
the presence of atmospheric turbulence. This pbatechnique is different from
DZEUS and ZEUS method. In ZEUS and DZEUS, onlyraylsi exposure from the
Zernike filter output is used to retrieve the segtagon error based on its known
wavefront-to-intensity converting relation for segmed mirror correction at each time.
The atmospheric turbulence is partially averagedogurelatively long time exposure in
ZEUS and DZEUS. While in the differential Zernikeetlback system, the atmospheric
turbulence is averaged out by multiple exposures.

The other part of this thesis focused on particdeking in processing of living cell
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images. We have shown by simulation that Zernikering can increase the tracking
accuracy of a single particle tracking algorithm,which, a local linking method is
used, by suppressing the static object as welastatic noisy background, and makes
the particle tracking algorithm work even with telaly weak signal (SNR as small as
3). Then, we conducted numerical experiments oeethiving cell image series, and
show the effectiveness in a real application. Infagoas the particles’ density is low
enough so that separately tracking of each partlpossible, this single particle
tracking algorithm along with the Zernike filteringprks effectively. However, in more
complex situations with much higher densities aneériapping spots, the linking
problem cannot be solved unambiguously locally. \WWmployed an existing
computational efficient and robust algorithm wittouple of modification for
two-dimensional multiple-particle tracking the pelds in Drosophila oocyte image
sequence, in which, the particle density is préityh. In this tracking algorithm, a
global linking technique based on graphic theorgnsployed. This algorithm works
fairly well (with 89.5% linking successful rate, damo false link). We show, by
comparison with manual tracking, this algorithmlimited as the tracking fails when

particle intensity is too low.
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Appendix A

Singular Value Decomposition

The measured intersegment phasing errors needtrarsformed into piston values,
so as to send to actuators to close the phasing Now, the problem is how to
transform the retrieved segment edge jumps intactineesponding piston value of the
segment mirrors [77].

In our example, the primary mirror is consisted. 69 hexagonal segments, and there

are 462 inter-segment edges. The piston value df sagment can be written as an

one-dimensional matrixu :{F>1,P2,-~-,P168, Plﬁg}, while the inter-segment edge jump

can be written as another one-dimensional matix{J,,J,, -, J . J.e). There

exist a 462x 169 two-dimensional matrix A that can make u and edirly related:
Au=v. (A.1)
B is the pseudoinverse matrix of matrix A, so weeha

u=Bv. (A.2)

The matrix B can be obtained by the following exsgien:

B=Vz‘U", (A.3)
where V is a 169x 169 unitary matrix, X* is the transpose of with every
nonzero entry replaced by its reciprocal, the mafti is 462x 169 with nonnegative

numbers on the diagonal and zero off the diagaarad, U~ denote the transpose of

U, an 462x 462 unitary matrix.U, ~, and V are generated by singular value

decomposition (SVD):
A=UzV’, (A.4)

where V' is the transpose of V.
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Appendix B

Atmospheric Turbulence Simulation

The simulation of atmospherically distorted wavafres important in the context of
studies of light propagation and imaging througk #tmosphere, as well as in the
context of the correction of atmospherically distdrimages where the distortion is
treated as a disturbance, such as in an adaptitiesopystem. Research on the
simulation of the atmosphere started with the gaEngmrocedure described by
McGlamery [42]: random phases are produced overpth@l, and the atmospheric
correlation is introduced with proper filtering the Kolmogorov spectrum [78].

A phase-screen realization over a grid of pointgeserated in the Fourier, or fast

Fourier transform (FFT) method, by taking the FRTiilbkered white noise. Ifg, is

the phase at the s-th row and t-th column of thé gf phase points, and if F is an

N, xN, array representing the phase power spectral gernbin, according to the

Fourier method [79],

Relp =[Re iid}“z[q")+iq‘”]xexpﬁ2ﬂ(m—1)(s—1)/N]

|m st Im o e | m,n m,n m,n y (Bl)
xexpli2rm(n—-1)(t—-1)/ N, ]}
In Eq. B.1, q{), and ), are independent, Gaussian, random numbers witm iBea

and variance 1. That is, they obey the statispoaperties

(a5h) =(aih) =0,

where
1 m=m
O = {O otherwise’ (B.3

The operator (Real Imag) T in Eq. B.1 is neededbse the two-dimensional discrete

Y where

st !

Fourier transform generates a “complex phase”. éf define ¢, = ¢} +1i
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@) and ¢ are real, then it can be shown that the phasersovith elementsgf; is

independent of that containing the elemeaﬁ. The Fourier method is a very efficient
algorithm for creating phase-screen realizatiomeesithe FFT can be employed. In
addition, two independent phase screens are crpatenperation " and ¢, where
p=¢" +igh).

It is straightforward to show that botl¥”’ and ¢/, as generated from Eq. B.1,

satisfy the required property

(@400) =5 2 Y @y (€XPE2AM-1(5, =)/ N, + (=D(t, ~6) /N, ] -

+exp{-i2a(m-1)(s, =) /N, +(n=D)(t, ~t,)/ N,I}).
For uncorrected phase errors, it follows frdfelmogorov theory that the power

spectral density is [79]

2, _ -5/3 d’k
®(k)d°x =0.02288,""" —~= (B.5)

11/3 7
K

r, =Fried coherence diameter
For numerical analysis the discrete version of B&g must be used. For & xL,
rectangular phase screen consisting o&f xN  grid points (separation of

L, /N, =L,/N, between adjacent phase grid points), it is sttéaglvard to show that

®__=0.02288M, (L, /1,)°*[MZk2 +Kk*]e, (B.6)
m,n L X 0 L™m n
where
M, =L /L, =N/N,, (B.7)
m-1 m=@N./2
Kms{ AN ®8)
=N, -1+mm=(N,/2+1N,)
n-1 =
K = n=@NJ/2) (B.9)
-N,—-1+nn=(N_/2+LN))

In Eq. B.8 and B.9 we have assumed tiNt and N, are even integers (typically

they are powers of 2, since the FFT is used). Tdee ardering of the discrete spatial
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frequencies was, of course, needed so that theyldwooincide with the spatial
frequencies of the ternexpfi27z(m-1)(s-1)/N,Jexpfi2rz(n-1)(t -1)/N,] in Eq. B.1.
(For example, for N=8, the spectrum would be ordeas (O, 1, 2, 3, -4, -3, -2, -1).

Finally, we note that for m=n=1 (dc term¥, is infinite, as calculated from Eq. B.6,

B.8, and B.9. This pole is removed by choosing anmadization of 0 for the dc

component of the discrete power spectral density,
®y,=0. (B.10)

A shortcoming of the Fourier method is that lowtsgddrequencies, which are the
major contributor to uncorrected phase aberratians,underrepresented in the phase
screens. The reason for this is that for a phassescof width L, the lowest spatial
frequency in the discrete spectrum is 1/L.

There are several methods for compensating foruhderrepresentation due to the
1/L cutoff. The most obvious scheme is to incrdase that L/D >> 1 where D is the
aperture diameter. This is not feasible for commamed aperture diameters. For

example, forL/D >> 100 D =1m, and grid point sampling of 1 cm, the total phase
screen would consist of an array 80,000x10, O0@®ints. Processing arrays of this
size presents computational difficulties. An altgive approach is to imbed the phase
screen within a much larger screen whose grid m#paration is equal to the full width

of the screen being modelled. The larger screentlban be used to augment the

low-frequency spectrum of the smaller screen. ¢f size of the larger coarse screen is
N'xN' grid points, then the spatial frequenciggN'L,2/N'L,---,(N'-1)/N'L1/L ]

can be included in the modelling.
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Appendix C

Single Particle Tracking M ethod

For methods based solely on centroid calculatisseaach region is placed as tightly
around the object of interest as possible (given far the particle can move between
frames). Before the centroid is calculated, a thoks operation is performed to remove
as much background noise as possible without lo$iagedge of the object. Then the
centre of mass is calculated and used to re-cémérgearch region for the next frame.

The energy centre of the grayscale image of widthand heighth is calculated as

follows:
X = ZFOZV;"Xl ) , (C.1)
z\::o zyzol (X’ y)
w h | ,
g = e 2ol (%Y) c2)

z\::o z';:o ! (X’ Y) |

where x is the current x positiony is the current y position, andl(x,y i the

intensity of the image at pointx,y . )Various methods may be used to select an

appropriate threshold. An appropriate thresholohis that minimizes the appearance of
noise while retaining as much of the object (arsdsihape) as possible. There is no

calibration with respect to particle shapes or otpRysical characteristics for this

simple tracking method (calibrations by, and m, are used in the multiple particle

tracking).

Tracking a particle in an image sequence using @ieledion method requires
choosing a template image (kernel) to be searcbednf subsequent images. The
algorithm overlays and calculates a cross cormatvith kernel for each point within
the selected search region, creating a correlatmage where higher brightness
indicates higher correlation. A threshold is applie the correlation image to remove
the background and the centre of the correlatioagenis then found using a centroid
interpolation method. For the cross-correlatiore #ernel image is overlayed and

compared to the image of interest and moved oweirttage of interest one pixel at a
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time, with each location being scored for its santly to the kernel image. This set of
similarity scores makes a correlation matrix. Ther@ation matrix has the advantage
of low noise, since more points are compared toynwdher points at the same time to

create it. The normalized correlation coefficientalculated as follows:
Dy (TOY) =T (x+ X,y +y) =T)
(ST, y) =T S (x+ X,y +y) = T)

where R is the correlation imagew is the width of the templateh is the height of

R(x,y) = (C.3)

the template,T is the kernel image] is the search area imagé&, is the mean pixel

value of the kernel,l is the mean pixel value of the image within therent area
(x',y)to (X+w,y'+h), (x,y) and (x+x',y+y') are the pixel positions in the
respective images (template and search area).

The correlation coefficient gives a result for egdint between -1 and 1. Negative

values indicate negative correlation and are exauorrelation methods on their own

give a correlation matrixR(x,y .) By selecting the brightest point you can get an

estimated accuracy to one pixel of the centre efdbject, and sub-pixel accuracy can

be realized by apply centroid interpolation to tlerelation matrix.
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