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Abstract

In this thesis we investigate the application of array methods for the smoothing of

multi-dimensional arrays with particular reference to mortality data. A broad outline

follows. We begin with an introduction to smoothing in one dimension, followed by

a discussion of multi-dimensional smoothing methods. We then move on to review

and develop the array methods of Currie et al. (2006), and show how these methods

can be applied in additive models even when the data do not have a standard array

structure. Finally we discuss the Lee-Carter model and show how we fulfilled the

requirements of the CASE studentship.

Our main contributions are: firstly we extend the array methods of Currie et al.

(2006) to cope with more general covariance structures; secondly we describe an ad-

ditive model of mortality which decomposes the mortality surface into a smooth two-

dimensional surface and a series of smooth age dependent shocks within years; thirdly

we describe an additive model of mortality for data with a Lexis triangle structure.



To Susie - I love you.



Acknowledgements

The help and support of lots of people has enabled me to complete this thesis. I’d like

to thank Rajeev Shah, Simon Spencer and Tony Leandro at the CMI for supporting

the project and providing the data. Discussions and collaborations with the following

people have helped me improve my understanding and helped me formulate new ideas:

Giancarlo Camarda, Maria Durban, Paul Eilers, Jutta Gampe, Phillippe Lambert,

Stephen Richards, and Richard Willets; special thanks to Richard for being such an

understanding boss. I’d like to thank the following house-mates and office-mates for

making my time in Edinburgh so much fun: Gudmund, Ellen, Bjorn, Breeda, Cian,

Two-Dogs, and Katie. Thanks to Mum, Dad, Rich, Dan, and Mona for being so

supportive and keeping me on track.

Most of all I’d like to thank my supervisor, Iain. Thank you for inspiring me with

your beautiful ideas about arrays; and special thanks for all your kindness, patience,

and support while I have been writing up.



Contents

1 Introduction 2

1.1 Motivation for studying mortality . . . . . . . . . . . . . . . . . . . . 2

1.2 History of mortality models in the UK . . . . . . . . . . . . . . . . . 3

1.3 Description of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 UK Insurance Data . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Population Data . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Assumptions and Comments . . . . . . . . . . . . . . . . . . . 7

1.4 Plan of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Smoothing One-dimensional Data 11

2.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Full Rank Smoothing Methods . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Local Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Kernel Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Smoothing Splines . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Penalized Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Truncated power functions . . . . . . . . . . . . . . . . . . . . 21

2.3.2 P -splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Smoothing parameter selection . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Effective Dimension of a Model . . . . . . . . . . . . . . . . . 32

2.4.2 Model Selection Criteria . . . . . . . . . . . . . . . . . . . . . 33

2.5 Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Introduction to Mixed Models . . . . . . . . . . . . . . . . . . 36

i



2.5.2 Equivalent Bases . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Smoothers as Mixed Models . . . . . . . . . . . . . . . . . . . 39

2.6 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Modelling Mortality Data with a GLM . . . . . . . . . . . . . 44

2.6.2 Generalized Linear Mixed Models . . . . . . . . . . . . . . . . 47

2.7 Bayesian Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8.1 Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Multi-dimensional smoothing 56

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Full Rank Smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Thin Plate Splines . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.3 Radial Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Smoothing the assured lives data with the fields package . . 62

3.3 Multi-Dimensional P -splines . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Some Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 The Two-Dimensional Case . . . . . . . . . . . . . . . . . . . 65

3.3.3 Mixed Model Representation . . . . . . . . . . . . . . . . . . . 71

3.3.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.5 The general multidimensional P -spline model . . . . . . . . . 73

3.3.6 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Array Methods 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Yates’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 General Array Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Array Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Other Array Operations . . . . . . . . . . . . . . . . . . . . . 88

ii



4.4.3 Interpretation and Implementation . . . . . . . . . . . . . . . 96

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Putting Data on an Array . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Generalized Additive Array Models 107

5.1 Modelling Lexis Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Description of the data . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 A two-dimensional smooth surface . . . . . . . . . . . . . . . . 113

5.1.3 Adding cohort effects . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Smooth Period Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.2 Over-dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Further Topics 132

6.1 The Lee-Carter Model . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 CASE Studentship . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Conclusions 144

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Notation 153

A.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B Linear Algebra 155

B.1 Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.2 Row Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C Array Methods 157

C.1 Graphical Representation . . . . . . . . . . . . . . . . . . . . . . . . . 157

iii



List of Figures

1.1 A graphical representation of the data set . . . . . . . . . . . . . . . 5

1.2 The raw mortality surface. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Scatterplot of the motorcycle data from Silverman (1985). . . . . . . 12

2.2 A plot of the motorcycle data with the best fitting 1 st, 2 nd, 3 rd, 5 th

and 10 th degree polynomials. . . . . . . . . . . . . . . . . . . . . . . 14

2.3 A smooth fitted to the motorcycle crash data using the locpoly func-

tion in KernSmooth library of R, with a normal kernel and a band-

width = 1.45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 A smoothing spline fitted to the motorcycle data by GCV using the R

function smooth.spline. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Smooth fitted to motorcycle data using truncated power functions of

degree 1 (red), 2 (green) and 3 (blue). . . . . . . . . . . . . . . . . . . 23

2.6 Smooths fitted to the motorcycle data with polynomials and truncated

power functions. In each plot the red line shows the smooth fitted to the

full data set, the blue line with the first five data points removed, and

the green line with the last data point removed. The panel underneath

each plot shows the basis for the smooth. . . . . . . . . . . . . . . . 24

2.7 Smooths fitted to motorcycle data using penalized truncated power

functions with different numbers of knots. . . . . . . . . . . . . . . . 25

2.8 Smooth fitted to motorcycle data using penalized truncated power func-

tions, with twenty-three evenly spaced knots. . . . . . . . . . . . . . . 27

2.9 Graphs of B-splines with regularly spaced knots. . . . . . . . . . . . 29

iv



2.10 Smooth fitted to motorcycle data using P -splines. The red line shows

the P -spline fit with the smoothing parameter selected by GCV and

the green line shows an unpenalized model fitted with the same basis. 30

2.11 Some P -splines fitted to the assured lives data. . . . . . . . . . . . . 46

2.12 A twenty year forecast for age sixty-five for the assured lives data. . . 51

2.13 A comparison of the smoothing methods discussed in this chapter ap-

plied to the motorcycle data. . . . . . . . . . . . . . . . . . . . . . . 55

3.1 A thin plate spline fitted to the assured lives mortality data for ages

25-80, and the years 1951-2002. . . . . . . . . . . . . . . . . . . . . . 64

3.2 A Kriging model fitted to the assured lives mortality data for ages

25-80, and the years 1951-2002. . . . . . . . . . . . . . . . . . . . . . 64

3.3 A graphical representation of the CMI mortality data. The green dots

are the data points, the circles are the knot positions: the blue ones

are the central knots which have a parameter attached, while the red

knots are only used to define the splines on the edge of the data. . . . 67

3.4 Coverage of a single age spline, Ba,i(·), on a two-dimensional data set

(top), and for a single year spline, By,j(·) (bottom). . . . . . . . . . . 69

3.5 Top panel shows the coverage of a single two-dimensional spline, By,j(·)⊗

Ba,i(·) (the result of multiplying the two splines in Fig. 3.4). Bottom

panel shows a subset of a two-dimensional basis, By ⊗ Ba. . . . . . . 70

3.6 The mortality surface shown in Fig. 1.2(a) smoothed by a two-dimensional

P -spline model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Perspective plot of the forecasted mortality surface. . . . . . . . . . . 77

3.8 Age cross-section of the forecasted mortality surface. . . . . . . . . . 77

3.9 Plots of the age cross-sections with 95% confidence intervals. . . . . . 78

3.10 Perspective plot of the two-dimensional mortality surface for England

and Wales population data using the standard penalty in (3.28). . . . 80

3.11 Cross-section plot of the two-dimensional mortality surface for England

and Wales population data using the standard penalty in (3.28). . . . 80

3.12 Perspective plot of the two-dimensional mortality surface for England

and Wales population data using the cross penalty in (3.36). . . . . . 81

v



3.13 Perspective plot of the two-dimensional mortality surface for England

and Wales population data using the cross penalty in (3.36). . . . . . 81

4.1 A graphical representation of the Age-Period model, green dots - data

points, red rings - central knot position, light blue background - support

for a selected single B-spline . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 A graphical representation of the Age-Cohort model in regular format,

green dots - data points, red rings - central knot position, light blue

background - support for a selected single B-spline . . . . . . . . . . 105

4.3 A graphical representation of the Age-Cohort model in an array format,

green dots - data points, purple dots - dummy data points, red rings

- central knot position, light blue background - support for a selected

single B-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Lexis diagram: E lives between age x and x + 1 at year t, DA deaths

and EA years lived in triangle A, DB deaths and EB years lived in

triangle B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Life lines: The left panel shows a life dying in a Type-A triangle, and

that this life only contributes exposure to the Type-A triangle. The

right panel shows a life dying in a Type-B triangle, and how much

exposure this life contributes to both the Type-A and Type-B triangles. 112

5.3 The marginal basis for year for the German mortality data showing the

two inter-leaved bases in red and blue. . . . . . . . . . . . . . . . . . 113

5.4 Cohort effects: observed mortality surface (top) for triangles of type A,

and smooth surface for model in Section 5.1.2 plotted at data points

of type A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Smooth Surface: The smoothed surface obtained from the model with

the linear predictor given in (5.17) plotted at data points of type A. 116

5.6 Cohort Shocks: Shocks estimated with (5.17) γA (top), γB (bottom). 118

5.7 The observed log mortality rates for the Swedish data . . . . . . . . . 119

5.8 The smooth rates from the basic two-dimensional model described in

Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vi



5.9 Ratios of year on year observed mortality rates for 1914/15 (top left),

1918/19 (top right), 1945/46 (bottom left), 1947/48 (bottom right). . 121

5.10 Cross-sections of the spline shocks in each year for selected ages. . . . 124

5.11 The smooth component of the model in (5.20) applied to the Swedish

male data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12 The shock spline components of the model in (5.20) applied to the

Swedish male data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.13 The fitted mortality surface for the Swedish Males. . . . . . . . . . . 128

5.14 A strip of the observed mortality surface for the highest ages in the

assured lives data showing similar period shocks to those modelled in

the Swedish male data. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Output of Lee-Carter model. Components of the model: α (top-left), β

(top-right), and κ (middle-left). Log mortality rates for three different

ages: 50 (middle-right), 65 (bottom-left), and 80 (bottom-right). . . 135

6.2 The parameter entry interface for the CMI software. . . . . . . . . . 141

6.3 The data selection interface for the CMI software. . . . . . . . . . . 142

6.4 An example of the graphical output available from the CMI mortality

smoothing software (the log mortality surface). . . . . . . . . . . . . 143

vii



List of Tables

2.1 Knot sequences and GCV values for the linear, quadratic and cubic

truncated power functions shown in Figure 2.5. . . . . . . . . . . . . 22

2.2 Weights used for two model selection criteria of the form (2.35) . . . 36

3.1 Numerical output from the two-dimensional P -spline model, showing

the values of the smoothing parameters, the effective dimensions, and

the deviance for varying dx and with different model selection criteria 75

4.1 Number of scalar multiplications for various matrix operations using

array methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Number of scalar multiplications for various matrix operations using

matrix methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Comparison of the number of multiplications for regular matrix meth-

ods and array methods: an example, B1, 90 × 25, and B2, 60 × 20. . 101

4.4 Comparison of the timings (seconds) for regular matrix methods and

array methods: an example, B1, 90 × 25, and B2, 60 × 20. . . . . . . 102

5.1 Some numerical output for the models fitted to the Lexis mortality

data described in this section, with the linear predictors given in (5.10),

(5.15), and (5.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Time taken to find the inverse of the inner product matrix (5.21) using

R (R Development Core Team, 2005) on an Intel Core Duo 1.73 GHz

Linux machine. These figures are given for the Swedish data with

na = 81, ny = 104, ca = 19, cy = 24, and c = 9. . . . . . . . . . . . . . 123

viii



5.3 Various statistics for the three models (5.28), (5.29) and (5.30) for the

Swedish male data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

1



Chapter 1

Introduction

In this introduction we will first set out the motivation for modelling mortality. We

will then give a brief over-view of the traditional actuarial methods used for the

graduation of mortality tables. In the final section we will give a description of the

data, focusing on the structure of the data, which is important in later chapters

(particularly Chapter 4 on array methods).

1.1 Motivation for studying mortality

It may not be immediately obvious why we should be interested in aggregate mortality

rates for a population; after all there is very little we can do to prevent deaths without

looking at the circumstances of an individual. However, with a little thought we see

that a country’s government requires population forecasts so it can plan for increases

(or decreases) in the demand for public services, and clearly mortality rates play a

pivotal role in a country’s population dynamics. In countries, like the UK, where there

is provision of a state pension the government will also have an interest in mortality

rates to establish the size of this liability. Many UK companies also have liabilities

which carry some form of “longevity risk” as part of their final salary pension schemes.

This longevity risk is fundamentally different from the mortality or longevity risk

faced by an individual, which can be mitigated by the pooling of risks with others

in an insurance company or mutual society, or indeed a company pension scheme.

Pension schemes must bear the risk that their members live systematically longer
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than anticipated, a risk that cannot be mitigated by pooling risk, as all schemes have

nearly perfectly correlated risks. This type of longevity risk has been given a much

higher profile after a number of UK companies have had to reduce the pensions benefits

of their schemes because the assets backing the scheme do not meet the liabilities; this

led to the creation of the Pension Protection Fund. One reason, often cited, for the

under-funding of these schemes has been the improvement in the rates of mortality

seen across the UK population. In reality, problems with the mortality assumptions

were only part of the problem and expectations around investment returns which have

not been realized since the beginning of the century have also contributed heavily to

the unfavourable funding position of many UK pension schemes. Even for schemes

currently in a better funding position, lower investment yields mean that more serious

consideration has to be given to mortality assumptions because future cash-flows

are not subject to such a heavy discount. More recently there has been a market

developing for trading mortality and longevity risk in the form of financial derivatives.

These markets may finally enable companies to trade away their longevity risk, but

an understanding of mortality trends will be critical in evaluating the pricing in these

markets and understanding what coverage is given by any hedging strategy developed

using these instruments. Richards and Jones (2004) give a thorough description of

the importance of longevity risk in assessing long term pensions and life assurance

liabilities.

1.2 History of mortality models in the UK

In 1825, Gompertz noticed that the rate of mortality among adult members of a

population was approximately linear with age on the log scale in many species. This

gave rise to the famous formula

µx = ABx. (1.1)

where µx is the force of mortality at age x. We will see in Chapter 2 how this formula is

an example of a Generalized Linear Model. Ever since Gompertz made his discovery

the idea of a mortality law, under which the age pattern of mortality is assumed

to follow some parametric formula, has formed the basis of most actuarial models
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used in the UK; see, for example, Forfar et al. (1988) for a discussion of traditional

actuarial methods, and Richards (2008) for a good reference on mortality laws used

by actuaries.

Since the early nineties the “market-leader” in mortality projection has been the

model due to Lee and Carter (1992). It is a bi-linear model which extracts a single time

component from the mortality surface (as shown in Fig. 1.2(a), for example) which is

then extrapolated using a time series model. Lee and Carter applied their model to

US population data, and since then it has been applied to data from countries around

the world; see, for example, Tuljapurkar et al. (2000) who show the model applied to

data from the G7 countries. The Lee-Carter model will be discussed in greater detail

in Section 6.1.

1.3 Description of data

In this section, the general structure and format of the data are described. We go on

to discuss the sources of the data and briefly outline our assumptions about the data

and how they might be modelled.

1.3.1 General Description

In general we will be interested in modelling mortality tables. In the simplest case

our data will take the form of two grids, one containing a set of death counts, the

other the number exposed to risk (of dying).

A graphical representation of the data is shown in Figure 1.1. The number of

deaths and the exposed to risk will be represented by the matrices Y and E respec-

tively (using Y to maintain continuity with the statistical literature). The data are

grouped into 1× 1 blocks indexed by age last birthday and calendar year. For conve-

nience later, we will define xa to represent the values of the indices for age, and xy as

the corresponding index for year. Clearly Y and E must have the same dimension,

and in general we will suppose them to have dimension na × ny, consequently xa will

have length na and xy length ny.

As with all data, the quantity and quality of the data depends greatly on the

4
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Figure 1.1: A graphical representation of the data set

source. We will be dealing with two types of data from two sources, UK insurance

data from the Continuous Mortality Investigation (CMI), and population data from

developed countries obtained from the Human Mortality Database (HMD). The main

motivation for this research has been to find methods for the modelling and forecasting

of the UK insurance data, but the methods can be applied to population data as it

normally comes in the same format.

1.3.2 UK Insurance Data

In the UK, insurance data are collected through the CMI. This is a body supported

by the UK life assurance industry to investigate patterns in mortality and morbidity

among holders of life assurance contracts. The CMI performs two main functions;

collating and cleaning the data submitted by member offices, and supervising and

conducting research into methods for analysing the data.

Offices supporting the CMI submit data to the secretariat annually, where it is col-

lated (and some cleaning is performed to remove obviously anomalous data). Histor-

ically, an in-depth analysis of the data has been carried out every ten years, normally

culminating in the publication of a set of standard tables and a set of reduction factors

which can be used to adjust the tables for different years; details of how reduction

factors are applied are given in Section 6.2. As mentioned previously the favoured
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methods of graduation have been based on the Gompertz model with adjustments

to account for the non-linearity at the highest and lowest ages. Recently the CMI

has backed away from the publication of tables of mortality reduction factors. In-

stead, they have favoured the publication of a suggested methodology for assessing

mortality improvements for life offices to apply themselves. This change reflects just

how difficult the problem of mortality forecasting is, and the amount of variability

involved with any projection method. It is felt that the publication of standard tables

would send out the wrong message to life offices, when responsible offices ought to be

considering very carefully their exposure to mortality risk.

Until recently the offices only submitted aggregate data for the number of policies

in force at the start of each year, and the number of claims (deaths) received over

the year. Using the average of the number of policies in force at the start and end

of the year gives a simple approximation to the central exposed to risk, and we then

have the data in the format described in the previous section. The CMI has this data

collated for member offices going back until 1947. When our work was started the

CMI had published data only up until the end of 2002, since then more data has been

released but to ensure the work remains consistent we will refer to data only up until

the end of 2002. The ages in the data set run from 11 to 109 (with data for 110+

grouped), but the low exposures at the regions for the highest and lowest ages make

the data unreliable, so we will restrict the data set to ages 16-92. The data are also

known to be unreliable for the first few years, so we will use years 1951-2002. These

data are summarised in Figure 1.1.

In 2006 the CMI started collecting data on an individual policy basis from self-

administered pension schemes. In the future this will allow the study of effects such

as changes in diet and smoking habits, as well as geographical and social-economic

co-variates. Currently however, the data are not available in sufficient quantity for

meaningful analysis.

1.3.3 Population Data

National population data are available from the HMD. Data are available from coun-

tries around the world, with particularly good data for Western Europe, North Amer-
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ica, and Japan. The source of the data varies from country to country, particularly

in the way that exposures are collected. For countries that keep a population register

(e.g. Sweden and the Netherlands) the data are thought to be almost 100% accurate.

For most countries however, the populations have to be estimated for inter-census

years. Even when the exposures have to be estimated, we are compensated by the

size of the exposed to risk compared to those observed in insurance data. For coun-

tries with population registers we can also obtain data on Lexis triangles, which gives

us more detailed data but also requires we take a little more care when modelling;

this will be discussed in Chapter 5.

1.3.4 Assumptions and Comments

With this type of data (from whichever source) we will assume that the number of

deaths follow a Poisson Distribution,

dx,t = P(τx,t ex,t), (1.2)

where τx,t represents the force of mortality at age x in year t.

We shall now consider how these assumptions hold in practise. The Poisson dis-

tribution is the obvious choice when faced with modelling counts data. However, the

strict mean-variance relationship of the Poisson distribution is often violated in prac-

tical situations, causing over-dispersion (or under-dispersion). In the UK insurance

data an obvious cause of over-dispersion is people holding multiple policies and, when

these people die, we observe more than one claim in the data, and this leads to higher

variance in the data. Mortality data also seem to suffer from over-dispersion in the

form of random shocks to the underlying surface, most commonly by year. These

tend to be physical events, normally cold winters (although there are instances of

disease causing similar effects), which cause a shift across a large proportion of ages

away from the underlying smooth surface. Methods for dealing with over-dispersion

are discussed in depth in Section 5.3.2.

We will assume that τ is some smooth function of age and year, τ(x, t). Figure 1.2

shows a plot of the raw rates of mortality (i.e. the number of deaths divided by the

exposure) on the log scale for the UK insurance data. By eye it looks as if a smooth
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function could be fitted to the data, but the complexity of the function in the age

direction suggest that parametric methods will not give a satisfactory explanation

of the surface. More sophisticated smoothing methods have to be used in order to

explain the dynamics of the mortality surface. In Chapter 2 we will give a more formal

definition of what we mean by smooth functions and an introduction to smoothing

methods.

We have also made the implicit assumption that our data arise from a homogeneous

population. In fact, this is most unlikely to be true for the insurance data, as the

data are made up from assured lives from various different policy types. This fact

means that different selection effects are occurring at different parts of the age range,

as certain products are more popular at some ages than at others. In the population

data this is not such a problem, as long as we are careful not to combine data with

big differences in the way it is collected. Obviously we must also avoid grouping data

where big changes have been made to national borders, the obvious example being

Germany before and after the fall of the Berlin Wall.

1.4 Plan of thesis

The remainder of the thesis will be divided into six chapters and broadly into three

sections. Chapters 2 and 3 contain a review of the literature, Chapters 4 and 5

introduce new work, and Chapters 6 and 7 summarize some additional work, some

conclusions, and suggestions for further work.

In Chapter 2 we give a broad description of smoothing models. The purpose of

this chapter is to show the connection between the various smoothing techniques, and

to show that, in terms of results, there is little to choose between the various methods

in one dimension. Another theme of this chapter is the discussion of regression bases

and penalized likelihood, particularly with reference to the P -splines of Eilers and

Marx (1996). Topics such as model selection, and smoothing within the mixed model

framework are also discussed here.

In Chapter 3 we focus on multi-dimensional smoothing. Three other smoothing

techniques are discussed before we move on to multi-dimensional P -splines. The
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material in this chapter is illustrated with reference to the mortality data described

in Section 1.3, and we draw an important distinction between the structure of the

model when our data lie on a grid and when they do not.

In Chapter 4 we follow Currie et al. (2006), and show that when our data have

a grid structure the use of multi-dimensional arrays can lead to large computational

savings. We give a different perspective on how to interpret the array methods of

Currie et al. (2006), and show how this can be used to extend their methods to allow

the use of more general matrix structures in array models.

In Chapter 5 we show how the methods described in Chapter 4 can be used within

additive models. Two examples are given in which a dis-continuous component is

added to an under-lying two-dimensional surface to better explain the data; the first

example uses an additive model to describe Lexis data, and the second uses an additive

model to describe random shocks to the mortality surface (like those described in

Section 1.3.4).

In Chapter 6 we describe the Lee-Carter model (which in its original form was not

a smooth model). We show how the model can be expressed using the array methods

from Chapter 4, and highlight the problems encountered when we try and introduce

smoothness into an over-parameterized model such as the Lee-Carter. In this chapter

we also document the work that was carried out in order to satisfy the requirements

of our CASE studentship.

In the final chapter, Chapter 7, we draw our conclusions and suggest areas of

further work.
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(a) A plot of the raw data for the CMI Assured Lives data set. The colour of the
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(b) A cross section of the mortality surface for various ages.

Figure 1.2: The raw mortality surface.
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Chapter 2

Smoothing One-dimensional Data

In this chapter smoothing in one dimension is introduced. In Section 2.1 we describe

what is meant by smoothing, and describe general properties desirable for a good

smoother. This is followed, in Section 2.2, by a discussion of three general methods of

smoothing: local averaging, kernel smoothing, and smoothing splines. All these meth-

ods are examples of full rank smoothers. In Section 2.3 we focus on regression splines

and penalized likelihood, with particular attention given to the use of B-splines as

basis functions. In sections 2.4 and 2.5 model selection is considered, and we show the

connection between smoothing and Mixed Models, and find a representation of Penal-

ized B-splines as Mixed Models. In Section 2.6 we introduce the Generalized Linear

Model (GLM), and show how smoothing can be used within the GLM framework to

model data described in Section 1.3; we also show how to allow for random effects in a

Generalized Linear Mixed Model (GLMM). In Section 2.7 we briefly discuss Bayesian

smoothing, and note some advantages this has over classical models. We introduce

one-dimensional forecasting for penalized B-splines in Section 2.8, and conclude with

a general discussion in Section 2.9.

2.1 Smoothing

In this section we introduce the basic concepts of smoothing models. We use some data

from a motorcycle crash simulation from Silverman (1985) as a motivating example.

The data can be found in the MASS package of R (R Development Core Team, 2005).
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We have 133 observations of the head acceleration (in g ≈ 9.81 m/s2) at various times

(measured in milliseconds) after a simulated motorcycle crash. We aim to model the

head acceleration, y, as a function of the time after the crash, x. A scatter plot of

these data is shown in Fig. 2.1.
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Figure 2.1: Scatterplot of the motorcycle data from Silverman (1985).

In the most general terms, scatterplot smoothing is a method by which we aim

to estimate a smooth function from some data that is subject to random noise.

Specifically, we assume that we have a set of observations on a response variable

y′ = (y1, . . . , yn) and a corresponding set of observations on an explanatory variable

x′ = (x1, . . . , xn), and that the observations are ordered such that a ≤ x1 ≤ · · · ≤

xn ≤ b. We wish to find a function S(·) defined on [a, b], such that

E(yi) = µi = S(xi), i = 1, . . . , n (2.1)

where S(·) is a smooth function. For the rest of this section we will be dealing with

the special case

yi = S(xi) + ǫi (2.2)

where ǫ ∼ N (0, σ2I).
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The strictest and simplest smoothness requirement is to assume S(·) is constant

for all values of xi

yi = S(xi) = c (2.3)

generally taking c = ȳ. This clearly gives a smooth function, but in most practi-

cal cases it would lead to an over-simplified model. Next, we could consider using

polynomials to smooth our data

S(xi) = pk(xi), (2.4)

where pk(·) is a polynomial of degree k, specifically

S(xi) = β0 + β1xi + . . . + βkx
k
i = x′

iβ, (2.5)

where x′
i = (1, xi, . . . , x

k
i ) and β′ = (β0, β1, . . . , βk) is a set of unknown parameters.

This can be expressed in matrix notation as

S(x) = Xβ (2.6)

where X ′ = [ x1
... · · ·

... xn ]. We estimate the parameters using maximum likelihood,

which in this case amounts to minimizing the residual sum of squares,

RSS(β) =
(

y − S(x)
)′(

y − S(x)
)

, (2.7)

leading to the well known estimate for β

β̂ = (X ′X)−1X ′y. (2.8)

Setting k = 1 we get a linear function, which although smooth, may not have enough

flexibility for some situations. By increasing k we increase the flexibility (until the data

are interpolated when k = n−1) but at some point our function loses the smoothness

property we desire. Figure 2.2 shows polynomials of varying degrees fitted to data

from the motorcycle crash simulation. We see that for k = 1, 2, and 3, polynomials

do not do a very good job of fitting to the data. We can improve the fit by using 5th

or even 10th degree functions, but now the fitted functions exhibit features that do

not seem to be driven by the data. We shall see in Section 2.3 that this is caused by

the use of global basis functions in polynomial regression, and a key feature of better

performing smoothers is the use of basis functions with compact support.
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Figure 2.2: A plot of the motorcycle data with the best fitting 1 st, 2 nd, 3 rd, 5 th

and 10 th degree polynomials.

Having established that polynomials are not the solution to the smoothing prob-

lem, we must decide what properties we want our smooth function to exhibit. The

inability of polynomials to target flexibility at those parts of the data where it is

required is an unattractive feature. If we choose a low order function it may fit well

to certain parts of the data, where the data appears quite smooth, but in areas where

extra flexibility is required there is not enough freedom in the function. For higher

order polynomials the converse is true. So a desirable property for our smooth would

be to allow local flexibility while still enforcing smoothness elsewhere. We shall now

describe several smoothing methods that have this property, and then look at the

penalized spline method in Section 2.3.

2.2 Full Rank Smoothing Methods

In this section we will introduce three smoothing methods that can be categorized

as full rank methods. Full rank methods are defined as methods which contain at
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least as many parameters as data points. We shall see that for the example used in

this chapter the full rank methods do a good job at smoothing the data. However,

we should bear in mind that the computational requirements of these methods can

become impractical when applied to the large multi-dimensional datasets described

in Chapter 3.

2.2.1 Local Averaging

We start by looking at local averaging methods. These methods do not produce what

we would normally consider smooth functions, but they are easily explained heuristi-

cally, and lead naturally into the kernel smoothing methods discussed in Section 2.2.2.

The simplest local averaging method is bin-smoothing. Here we simply split [a, b]

into bins and define S(x) as the step function which is the average of the y in each

bin. As mentioned above a dis-continuous function seems contrary to our notion of

local smoothness, and gives a very crude solution to the smoothing problem.

The next step could be to introduce a running mean. Here we define the smooth

as follows

S(xi) =
yi−k + · · · + yi + · · · + yi+k

2k + 1
, (2.9)

so our smooth at each data point xi is simply the average of y taken over its k

nearest neighbours on each side. On the edges of the data where there are no data on

one side we simply average over the values available. The larger the value of k, the

more values we will be averaging over, and so the smoother the values of S(xi) will

be. This method offers an improvement over the bin-smoother in that there are no

jumps between the data points. However the method is limited as we do not obtain a

smooth function, only a set of smoothed values evaluated at the observed data points.

Therefore there is no natural way to predict a value of the response at an unobserved

data point, and some form of interpolation has to be used.

A natural extension of the running mean is the running line

S(xi) = β0,i + β1,ixi (2.10)

where β0,i and β1,i are local least squares estimates. The values of β0,i and β1,i are
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obtained by solving the least squares equations (2.8) for a local subset of the data,

β̂i = (X ′
iX i)

−1X ′
iyi (2.11)

where y′
i = (yi−k, . . . , yi, . . . , yi+k) and X i = [1

... xi ] with x′
i = (xi−k, . . . , xi, . . . , xi+k).

Clearly the principles of the running line can be extended to running polynomials of

higher degree, simply by adding columns of higher powers to the regression matrices

X i; the running polynomial results. However, whichever order of polynomial is used,

we do not solve the problem of finding a smooth function at unobserved data points.

2.2.2 Kernel Smoothing

Kernel smoothing follows on naturally from basic local averaging methods, but it also

enables the evaluation of a smooth at unobserved data points. Instead of using the

nearest neighbours at data points to determine the estimate at a particular point, all

data points are considered but a weight is applied to each point which determines its

influence on the estimate; this weight can be found even for unobserved values of x.

A good reference for kernel smoothing is Bowman and Azzalini (1997); they propose

a local linear estimator with (normal) kernel weights, as follows. In the general case,

the estimate of the smooth at some point x is the intercept term of a local polynomial

of order p fitted at x,

Ŝ(x) = β̂x,0, (2.12)

where β̂
′

x = (β̂x,0, β̂x,1, . . . , β̂x,p) is estimated by minimising

n
∑

i=1

(yi − βx,0 − βx,1(x − xi) − · · · − βx,p(x − xi)
p)2wx,i, (2.13)

where the weights, wx,i are known for any point x. From Generalized Least Squares

theory the solution is

β̂x = (X ′
xW xXx)

−1X ′
xW xy (2.14)

where

Xx =











1 x − x1 . . . (x − x1)
p

...
...

...

1 x − xn . . . (x − xn)p










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and

W x = diag{wx,1, . . . , wx,n}. (2.15)

The weight of the ith observation at the point x is obtained using a predetermined

function, K(·), known as the kernel. Weights are obtained using

wx,i = Kλ(x − xi) = λ−1K
(

(x − xi)/λ
)

(2.16)

where K(·) is some kernel function and λ > 0 is known as the bandwidth. The kernel

function is generally chosen to be a smooth unimodal function so that the weight

attributed to each data point varies smoothly over [a, b]. Often a probability density

function is selected, for example setting the kernel function equal to the density of a

standard normal distribution, K(x) = φ(x), which means that Kλ(·) is the density

for N(0, λ2). The bandwidth determines the influence of the data points close to the

point of interest relative to those further away, with large values of λ increasing the

influence of data points further away. An attractive property of local linear regression

(setting p = 1) is that as λ becomes large the Ŝ(x) approach a linear function.

In practice the choice of kernel function is of secondary importance to the choice of

bandwidth. Wand and Jones (1995) calculated asymptotic efficiency for several kernel

functions and found relatively small differences between various symmetric unimodal

kernels. In contrast the choice of bandwidth has a big influence on the smooth, bal-

ancing the requirement for a smooth function with the need to keep genuine features

in the data. As we will see in the remainder of this chapter most smoothing methods

include a parameter which performs a similar role to the bandwidth, and selection of

this parameter and thus the amount of smoothing is an important problem. We will

consider smoothing parameter selection in Section 2.4.

2.2.3 Smoothing Splines

In this section we introduce splines and briefly look at smoothing splines. We summa-

rize the main results and give an example of smoothing splines using the motorcycle

data. An excellent reference for smoothing splines is the book by Green and Silverman

(1994).
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Figure 2.3: A smooth fitted to the motorcycle crash data using the locpoly function

in KernSmooth library of R, with a normal kernel and a bandwidth = 1.45.

We begin by defining a way to measure the smoothness of a function. Looking at

the polynomials in Fig. 2.2 the linear and quadratic functions seem smoother than

the tenth degree polynomial, so it seems that our perception of smoothness of a

function could be related to the number of turning points in the function. However,

it is possible for a function to have inflexions which make it look wiggly without

producing a turning point, so our preference would be for the function to be linear

where possible. A key feature of linear functions is having a second derivative of zero,

and this naturally leads to a measure of smoothness given by the integrated second

derivative
∫ b

a

{S ′′(x)}2 dx. (2.17)

Strictly, the larger this measure, the rougher the function, so the measure is often

referred to as a roughness penalty. Weighting our preference for smooth functions

with the goodness of fit in expression (2.7) using a smoothing parameter, λ, we obtain
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the penalized residual sum of squares

PRSS(S(·)) =
n
∑

i=1

(

yi − S(xi)
)2

+ λ

∫ b

a

{S ′′(x)}2 dx. (2.18)

The smoothing parameter balances one’s preference for goodness of fit with the

smoothness requirement. For large values of λ the smoothness requirement becomes

more important and to minimize the PRSS we would need to select a function ap-

proaching a linear function. As λ approaches zero, smoothness becomes less important

and the PRSS will be minimized by a function that interpolates the data. We seek the

function S̃(·) that minimizes (2.18) for a given value of λ. The choice of λ corresponds

to the choice of the bandwidth in kernel smoothing.

At this point we take the opportunity to introduce splines, and in particular natu-

ral cubic splines before going on to fit a natural cubic spline to the motor cycle data.

We begin with the definition of a spline (adapted from Green and Silverman (1994))

Definition 2.1 Given a set of non-decreasing real numbers t1, . . . , tk ∈ [a, b], a func-

tion g defined on [a, b] is a spline of degree j if g is a polynomial of degree j on

each interval (a, t1), (t1, t2), . . . , (tk−1, tk), (tk, b) and the (j − 1)th derivative of g is

continuous at each of the points t1, . . . , tk.

The sequence t′ = (t1, . . . , tk) is known as a the knot sequence. The definition above

is very general and includes several examples that we will use later on including B-

splines and truncated power functions. An important special case in the context of

smoothing splines are natural cubic splines

Definition 2.2 A natural cubic spline is a spline of degree 3, with the added condition

that g′′(a) = g′′′(a) = g′′(b) = g′′′(b) = 0.

It can be shown that the unique minimizer of (2.18) is a natural cubic spline with a

knot at each of the values x1, . . . , xn. We will concentrate on low rank smoothing so we

omit the proof of this important result which can be found in Green and Silverman

(1994). A plot of a natural cubic spline fitted to the motorcycle data is shown in

Fig. 2.4. The spline was fitted using the smooth.spline function in R, with the

smoothing parameter, λ = 0.6599, selected using Generalized Cross Validation (see

Section 2.4.2 for a discussion of smoothing parameter selection).
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Figure 2.4: A smoothing spline fitted to the motorcycle data by GCV using the R

function smooth.spline.

2.3 Penalized Splines

The main smoothing method we will use is P -splines. This name was first used

by Eilers and Marx (1996) in reference to smoothing using a B-spline basis with a

difference penalty on regression coefficients. Since then the meaning of the term P -

splines has become rather ambiguous, and is often used for any regression spline setup

where a penalty is used; see for example Ruppert et al. (2003) where the name P -

splines is used in reference to truncated power functions (TPFs) with a ridge penalty

on the regression coefficients. To avoid confusion we will use the name P -splines only

in reference to the method described by Eilers and Marx (1996).

All of the methods described in this section are examples of low rank smoothing

methods. Low rank methods are defined by the property that the model contains

significantly fewer parameters than data points.

Truncated power functions (TPFs) offer an easy entrance point for semiparametric

regression, as they follow on naturally from polynomial regression. In section 2.3.1 we

introduce use TPFs as a tool to understanding different basis functions and penalized
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likelihood. In section 2.3.2 we will concentrate on the more general P -spline regression,

looking at the properties of P -spline smoothing, and the details of how a P -spline

smoothing model is fitted in one dimension.

2.3.1 Truncated power functions

Truncated power functions as scatterplot smoothers were advocated by Ruppert et al.

(2003). There have been doubts cast over the numerical practicalities of using TPFs;

Wand (2002b), for example, states that truncated polynomials exhibit “sub-optimal

numerical properties”, and often transformation to a different basis is required. This

was viewed as an implementational issue, which should not be considered in model

formulation. Truncated polynomials do offer a nice introduction to smoothing for

someone unfamiliar to the subject, due to their obvious similarity with polynomial

regression. We shall view them purely as an introductory method, before moving on

to P -splines.

In the introduction of Section 2.1 it was shown that polynomials were not suitable

for smoothing in many cases, due to their instability when high-degree functions are

used. Truncated power functions offer an alternative to increasing the degree of the

polynomial by focusing flexibility where it is needed.

We take the motorcycle data as a motivating example. With reference to Fig. 2.1,

we see that there are changes in the direction of the data at approximate times 13,

21, 33, and possibly 40. The basic premise of truncated polynomial curve fitting is

to put hinge points or knots at these points. This is achieved by including truncated

power functions in our smooth function which would have the form

S(xi) = a0 + a1xi + . . . + akx
k
i +

J
∑

j=1

uj(xi − tj)
k
+, (2.19)

where x+ = max(0, x). Writing (2.19) in matrix notation we obtain

S(x) = Xa + Zu, (2.20)
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Table 2.1: Knot sequences and GCV values for the linear, quadratic and cubic trun-

cated power functions shown in Figure 2.5.

Degree Knot sequence GCV

Linear 14 20 33 43 623.4

Quadratic 13 14.5 17 24 36 43 563.1

Cubic 13.5 14.5 18 23 32 36 566.3

where u′ = (u1, . . . , uJ) and

Z =











(x1 − t1)
k
+ · · · (x1 − tJ)k

+

...
...

(xN − t1)
k
+ · · · (xN − tJ)k

+











. (2.21)

The t′ = (t1, . . . , tJ) are known as the knot positions, and they allow the targeting of

flexibility at the parts of the data where it is required. With this method a smooth

with as many continuous derivatives as desired can be constructed.

Figure 2.5 shows some smooths constructed from first, second and third degree

truncated power functions fitted to the motorcycle data. Fitting by eye we found the

knot sequences given in Table 2.1 gave reasonable results. Using Generalized Cross

Validation (GCV) (Craven and Wahba, 1979) we see that there is little to choose

between quadratic and cubic fits.

The ability to target flexibility is the first advantage of TPFs; another advantage

is that they are much less volatile. Figure 2.6 shows smooths fitted to the motorcycle

data. The red line in panel (a) is a seventh degree polynomial fitted to the full data

set. This has the same problems as the higher degree smooths in Fig. 2.2, where

artifacts of the function are being imposed on the data (for example the bumps at

time 9 and time 52). Another worrying feature of polynomials is their sensitivity to

specific data points. If we remove the first five data points and re-fit the polynomial

(shown by the blue line), we see the smooth changes dramatically, not only at the

points where the data has been removed, but over the whole domain of the function.

This effect is shown more dramatically if we remove only the last point from the
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Figure 2.5: Smooth fitted to motorcycle data using truncated power functions of

degree 1 (red), 2 (green) and 3 (blue).

data; we obtain the smooth shown by the green line. This sensitivity to the data is

a symptom of using global basis functions. Underneath the data plot is a graph of

the basis functions for the model; we see that in a polynomial regression the basis

functions have support on the whole range of time. This means that a change in any

of the parameters affects the fit over the whole range of the time values. The same

exercise can be performed using TPFs; panel (b) shows the results from fitting second

degree TPFs. We see that the green and blue lines diverge from the original fit where

the data has been removed, but elsewhere the fits are almost identical; in fact the

fits are so close that the red line cannot be seen behind the other two. The plot of

the basis functions below shows that most of the basis functions do not offer support

over the whole range of the time variable. This means if some of the coefficients are

heavily influenced by a particular part of the data, other coefficients can be adjusted

to maintain smoothness elsewhere in the data.

Although TPFs seem stable under changes to data, and do not impose features

on the data (as with polynomials), they introduce a new problem: where to place the
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(a) Smooth fitted with 7th degree polynomial.
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(b) Smooth fitted with 2nd degree truncated power functions.

Figure 2.6: Smooths fitted to the motorcycle data with polynomials and truncated

power functions. In each plot the red line shows the smooth fitted to the full data set,

the blue line with the first five data points removed, and the green line with the last

data point removed. The panel underneath each plot shows the basis for the smooth.
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Figure 2.7: Smooths fitted to motorcycle data using penalized truncated power func-

tions with different numbers of knots.

knots? Varying the number and position of the knots can have a dramatic effect on

the fitted smooth; Fig. 2.7 shows more fits of the motorcycle data for several knot

arrangements. We see that as we increase the number of knots we get gradually closer

to interpolating the data, but again at some point we lose the smoothness property

we desire. There are methods for automatically selecting knot positions but we will

not be using such methods with our data; for a review see (Wand, 2000). Instead, we

turn to penalization to enforce smoothness. The penalty is subtracted from the log

likelihood to give the penalized log likelihood

ℓp(a,u; y) = ℓ(a,u; y) − λ‖u‖2. (2.22)

This is similar to the method used for smoothing splines, but instead of penalizing the

smoothness of the function directly, a ridge penalty is applied to the coefficients of the

TPFs. For the normal distribution maximizing the penalized likelihood is equivalent

to minimizing the penalized residual sum of squares

PRSS(a) = (y − X̃ã)′(y − X̃ã) + λ‖u‖2, (2.23)

25



where X̃ = [ X
... Z ], ã′ = [ a′ ... u′ ] and λ is the smoothing parameter. For a given

value of λ minimization of (2.23) leads to the penalized least squares solution

(X̃ ′X̃ + P )ã = X̃ ′y, (2.24)

where P is the penalty matrix

P = λ





0K 0

0 IJ



 , (2.25)

where 0K is a K×K matrix of zeros and IJ is a J×J identity matrix. With a penalty

the placement of the knots becomes less important provided that sufficient knots are

used, as any excess flexibility in the fitted smooth is removed by the penalty. We

will follow the simple knot placement strategy suggested by (Eilers and Marx, 1996)

and space the knots evenly across the xi. Figure 2.8 shows a smooth of penalized

truncated power functions fitted to the motorcycle data. We see that the penalization

successfully reintroduces smoothness into the model even with a large number of knots.

As before the smoothing parameter was chosen by minimizing the GCV criterion.

2.3.2 P -splines

In the previous section we discussed smoothing using penalized likelihood with TPFs

as the regression basis and a ridge penalty on the regression coefficients. In this sec-

tion we describe the method of Eilers and Marx (1996) who used a B-spline basis

and a difference penalty on adjacent coefficients. With P -splines, as this combina-

tion was named, the basis functions and penalty give the regression coefficients a

natural and simple interpretation and it can be easily understood how the penalty

enforces smoothness. This together with a relatively simple fitting procedure, and

other attractive properties make P -splines an effective and transparent scatterplot

smoother.

We begin by describing the B-spline basis in detail. A B-spline is a piecewise

function constructed from polynomials, and is completely specified by a sequence

of knots t, the degree, k, of the polynomials used, and its position in the basis j.

The definition is given by de Boor (2001). B-splines are best explained graphically,
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Figure 2.8: Smooth fitted to motorcycle data using penalized truncated power func-

tions, with twenty-three evenly spaced knots.

and Fig. 2.9(a) shows examples of zero, first, second and third degree B-splines on

an evenly spaced knot sequence. The zero degree spline is a discontinuous function

which takes the value 1 between two knots (in this case t1 and t2) and 0 elsewhere.

The first degree spline is a continuous function which takes positive values over a

range of three consecutive knots (in this case between t3 and t5) and 0 elsewhere;

it is constructed from two linear pieces between the knots, which gives rise to a

discontinuity in its first derivative at each knot. The second degree spline is a piecewise

quadratic function which is positive over a range spanned by four consecutive knots

(in this case between t6 and t9) and zero elsewhere. It has a continuous first derivative,

but has discontinuities in its second derivative at the knot positions. The third degree

spline is also shown in Fig. 2.9(a), but from the descriptions so far we shall assume

the properties of a kth degree B-spline can be obtain by induction, and are as follows

(from Eilers and Marx, 1996)

• it consists of k + 1 polynomial pieces, each of degree k;
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• the polynomial pieces join at k inner knots;

• at the joining points, derivatives up to order k − 1 are continuous;

• the B-spline is positive on the domain spanned by k + 2 knots; everywhere else

it is zero;

• except at the boundaries, it overlaps with 2k polynomial pieces of its neighbours;

• at a given x, k + 1 B-splines are nonzero.

The last two properties refer to a set or basis of B-splines and can be verified by looking

at the plots in Fig. 2.9(b). B-splines can be evaluated using a recursive algorithm,

which relates a B-spline of degree k to the difference of two B-splines of degree k− 1,

see de Boor (2001). Eilers and Marx (1996) recommend the use of evenly spaced

knots, and provide a simplified algorithm for the evaluation of B-splines on an evenly

spaced knot sequence. Once the B-splines have been evaluated, they can be used as

a basis for regression in exactly the same way as polynomials or TPFs. Without a

penalty we would be back to the familiar problem of how to choose the number and

position of the knots. This problem is solved by using a rich basis of B-splines, that

would lead to under smoothing of the data. Smoothness is then imposed by placing

a difference penalty on the coefficients of adjacent B-splines which enters though the

log-likelihood in the same way as (2.22), giving the penalized log-likelihood

ℓp(θ; y) = ℓ(θ; y) − λ

c
∑

i=d+1

(∆dθi)
2, (2.26)

for the difference operator ∆ where ∆θi = θi−θi−1, and ∆d+1θi = ∆(∆dθi). As before,

in the Normal case maximizing the penalized log likelihood yields the penalized least

squares solutions

(B′B + P )θ = B′y, (2.27)

where

B =











b1(x1) . . . bk(x1)
...

...

b1(xn) . . . bk(xn)











(2.28)
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
(a) B-splines of degree 0, 1, 2, and 3 (from left to right)

(b) B-spline basis of degree 1 (top left), 2 (top right), and 3 (bottom)

Figure 2.9: Graphs of B-splines with regularly spaced knots.
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where bj(xi) is the j th B-spline in the basis evaluated at xi. In this case the penalty

matrix, P = λD′
dDd, where Dd is a difference matrix of order d, for example

D2 =























1 −2 1 0 0 · · · 0

0 1 −2 1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 1 −2 1 0

0 · · · 0 0 1 −2 1























. (2.29)

In some ways the P -spline method has complicated the choices of settings for the

model. As well as the position of the knots, and the degree of the splines, we also

have to consider the order of the penalty (the order of the differences used in the

penalty). As already mentioned, Eilers and Marx (1996) recommend using an evenly

spaced sequence of knots obtained by dividing [a, b] into m equal intervals, giving

m+1 knots. In order to specify the full basis m+2k +1 knots are required, resulting

in c = m + k B-splines. Instead, we prefer to choose directly the position of one knot
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Figure 2.10: Smooth fitted to motorcycle data using P -splines. The red line shows

the P -spline fit with the smoothing parameter selected by GCV and the green line

shows an unpenalized model fitted with the same basis.
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and the distance between knots; this makes it easier to compare different models if,

for example, we obtain more data points for the data set under discussion. We will

tend to position a knot at xmax or xmin depending on where the data set might be

expanded; for example, with mortality data we would expect to obtain more data

as time goes by, so it makes sense to position a knot at the most recent data point.

The distance between the knots should not matter provided it is sufficiently small,

as any excess flexibility will be removed by the penalty. The order of the penalty

becomes important for large values of the smoothing parameter, when it determines

the polynomial limit of the smooth

lim
λ→∞

S(x) = pd−1(x), d ≥ k − 1, (2.30)

as shown by Eilers and Marx (1996). A P -spline model fitted to the motorcycle data

is shown in Fig 2.10, using twenty-three evenly spaced B-splines with the smoothing

parameter selected by GCV; the plot also shows the unpenalized B-spline model using

the same basis.

In the one dimensional case there seems very little to choose between smoothing

methods. Low rank smoothers such as P -splines and TPFs offer some computational

advantages, but this is of little practical importance when using modern computers.

There is little to choose between the methods in terms of complexity; it is argued that

TPFs follow on naturally from polynomial regression but the inclusion of the penalty

requires an extra level understanding. However once an understanding of penalties

and bases is obtained, P -splines offer a more intuitive method. Given a scatterplot

and a set of knot positions, one could guess with relative accuracy what the values of

the P -spline coefficients would be; it is an attractive property that the coefficients have

a “physical” interpretation. One very important advantage that P -splines offer are

their natural application in higher dimensional situations; in Chapter 3 we will see how

the principles described in one dimension are almost identical in higher dimensions.

This combined with good numerical properties and some attractive computational

advantages that come from the construction of the basis in multiple dimensions mean

that P -splines should be given careful consideration as a scatterplot smoother.
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2.4 Smoothing parameter selection

All of the smoothing methods in sections 2.2 and 2.3 have involved the use of a

smoothing parameter. The smoothing parameter is normally considered as a hyper-

parameter, with the other parameters chosen by a penalized likelihood conditional

on this parameter, so changing the smoothing parameter gives a different penalized

likelihood. This is a similar problem to that of whether or not to included a particular

parameter in a regular parametric model, say, or whether or not to included a cubic

term in a polynomial regression. The only difference is that in a parametric model

we are selecting from a discrete set of models, whereas the selection of a smoothing

parameter amounts to selecting from a continuous set of models. In Section 2.4.1 we

discuss the effective dimension of a model, and follow this by a discussion of model

selection criteria in section 2.4.2.

2.4.1 Effective Dimension of a Model

We will begin the discussion of model selection with a discussion of model dimension.

Determining the dimension of a model plays an important role in model selection: a

number of model selection criteria depend directly on its calculation, and it can be

used to compare the models selected under different criteria. A full discussion of the

effective dimension of a model is given by Hastie and Tibshirani (1990, chap. 3).

Finding the dimension, or degrees of freedom, of the model is trivial in simple

regression models; provided the basis for the regression has full column rank, then

the dimension of the model is simply the number of columns in the regression basis

matrix. So a polynomial regression of degree p would have dimension p + 1, which

coincides with the the trace of the matrix H = X(X ′X)−1X ′, since

tr(H) = tr(X(X ′X)−1X ′)

= tr((X ′X)−1X ′X)

= tr(Ip+1)

= p + 1.

(2.31)
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Let ŷ denote the fitted values of y. Then the matrix H is often referred to as the

“Hat” matrix since

ŷ = Hy. (2.32)

Conveniently, using this method to determine the dimension of the model allows us

to generalize to any model for which the fitted values can be written in the form of

(2.32). For smoothing models we will use the term effective dimensions, de, for the

effective number of free parameters in the model. For example, in the P -spline model

the coefficients of the B-splines are restricted by the penalty, so simply using the

number of columns of the regression matrix as the dimension of the model would be

misleading. However, from (2.27) we see that the Hat matrix for the P -spline model

is given by

H = B(B′B + P )−1B′, (2.33)

and so the effective dimension of a P -spline model can be calculated efficiently by

de = tr
{

(B′B + P )−1B′B
}

= c − tr
{

(B′B + P )−1P
}

.

(2.34)

where c is the number of columns in B. This second form of the effective dimension

shows how the penalty reduces the degrees of freedom available from the regression

matrix B.

2.4.2 Model Selection Criteria

In parametric models one is often faced with the problem of choosing which parameters

should be included in the final model. Commonly, this will require the choice of a

particular combination of explanatory variables and their interactions from a finite set

of potential explanatory variables. The model is often chosen by starting from the null

model, with just a mean term, and sequentially adding parameters, or starting from

the saturated model, with all the parameters, and sequentially removing parameters.

At each stage the significance of the added (or removed) parameters can be tested

using an F -test or a likelihood ratio test, and parameters are added (or removed) until

none of the remaining parameters under consideration is found to be significant. In
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this sequential procedure, at each stage the models under consideration are nested, in

that the parameters in one of the models are a subset of the parameters in the other

model.

However, it may turn out that we are interested in comparing models which are

not nested. The F -test and likelihood ratio tests are no longer available because we

are no longer simply testing for the significance of an extra parameter. One possible

solution is to use a goodness of fit test; for the Normal models discussed so far this

would lead to the selection of the model that minimized the residual sum of squares.

However, goodness of fit can always be improved by adding extra parameters, so

using goodness of fit as a model selection criteria naturally favours larger models. To

compensate for this, model selection criteria often take the form

−2ℓ(y; θ) + w p, (2.35)

where p is the number of parameters in the model, the preferred model being the

one that minimizes (2.35). The first component measures the goodness of fit (this

turns out to be the RSS in the normal case), the second component penalizes model

complexity, and w weights our preference for parsimony over goodness of fit. Given a

model selection criterion of the form (2.35), model selection then turns on the choice

of the weight w. Table 2.2 gives two of the best known values of w: for the Akaike

information criterion (AIC) (Akaike, 1971) w = 2, and for the Bayesian information

criterion (BIC) (Schwarz, 1978) w = log n. The AIC can be derived by minimizing

the Kullback-Leibler distance, which measures the expected difference between the

true model and some other model. The AIC has been found to be biased in certain

situations, and various corrections have been made to deal with its short-comings,

including the modified AIC of Hurvich and Tsai (1989) which is designed to correct

for bias in complex models with small samples. Using a Bayesian argument BIC

amounts to choosing the model that is a posteriori most probable under some general

assumptions. An important point is that the BIC will have a stronger preference for

simple models compared to those chosen by AIC for any sample size greater than

seven.

In the context of smoothing we are not interested in selecting particular explana-

tory variables, but in the overall level of smoothing. In the previous section we showed
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in (2.34) how to calculate the effective dimension for a linear smooth, so for smoothing

models we evaluate the selection criterion by replacing p in (2.35) with de. The level

of smoothing is then determined by minimizing the model selection criterion with

respect to the smoothing parameter, and so model selection amounts to a constrained

optimization problem (constrained by the requirement that the smoothing parameter

is positive), which can be solved using a quasi-newton method with finite approxi-

mation to the derivatives. As we will see in chapter 3, in higher dimensions we may

need to optimize over several smoothing parameters, which can become quite time

consuming for large models; a potential solution to this problem (Wood, 2007) is to

differentiate the scoring algorithm to get a better informed optimization procedure.

Two other model selection criteria that are used in smoothing are cross validation

(CV) and generalized cross validation (GCV); see Hastie and Tibshirani (1990, pp 42–

52). These criteria aim to minimize prediction error for unobserved data points, and

employ a “leave one out” strategy to achieve this. More precisely we minimize the

average predictive squared error

PSE =
1

n

n
∑

i=1

E
{

y∗
i − Ŝλ(xi)

}2

(2.36)

over λ, where y∗
i is a fresh observation at xi and Ŝλ(xi) is the predicted smooth value

at xi.

In general there is no selection criterion that will universally out-perform the rest.

In most cases the practitioner needs to make a judgement based on the results and how

the results will be used. If time allows, simulation studies could be used determine

the best performing criterion for a given situation. Our experience is that for the

mortality data in the one-dimensional case the AIC will perform better, but in the

two-dimensional case AIC tends to under-smooth the surface, and use of BIC is a

better choice. In two dimensions we will fit models with several hundred parameters

so the tendency for AIC to under-smooth is a real danger; further, with a sample size

of several thousand, log n ≫ 2, so BIC will produce stiffer fits than AIC.
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Table 2.2: Weights used for two model selection criteria of the form (2.35)

Model selection criteria Weight, w

AIC 2

BIC log n

2.5 Mixed Models

2.5.1 Introduction to Mixed Models

The mixed model is an extension of the basic linear model, in which random effects

are added to the linear predictor. The most obvious use for these type of models is

in longitudinal studies in which we observe repeated measures on the same subject.

A good example is the pig-weight data given on page 92 of Ruppert et al. (2003),

in which forty-nine pigs have their weights measured weekly for nine weeks, and we

are interested in how the weight of the pigs changes over time. We need to take into

account the effect of each individual, so one might consider the following model

yij = β0 + xjβ1 + ui + ǫij, (2.37)

where yij is the weight of the i th pig in week j, β0 is the population mean, β1 is the

coefficient of the time variable, and xj is the week index, ui is fixed effect which alters

the intercept for each pig, and ǫij is random noise on each measurement. Clearly this

contains as a special case the simple linear regression model, if we set all the ui = 0.

The full model has two shortcomings. Firstly, it is not identifiable, so a location

constraint would be required on u. Secondly, even with the location constraint on the

ui, a parameter for each pig would place too much importance on the specific sample

under analysis. Alternatively, we could assume that the pigs in the sample come from

a population in which the individual pig effects, ui, come from a normal distribution;

in the notation of Ruppert et al. (2003) we have

u ∼ N (0, σ2
uI). (2.38)
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The main parameters of interest are β and σ2
u, but we may also be interested in the

values u. Under this model the ui are no longer free, as they are constrained by the

distributional assumption. So with a normal distribution large values of ui would not

be expected as:

P (|ui| > 1.96σu) = 0.05. (2.39)

As stated by Ruppert et al. (2003), “(the random effect) takes into account the ran-

domness due to other samples of pigs”. As we will see later the constraints on the

parameters are similar to those imposed under penalized likelihood, and using this

connection we will see that smoothing models can be fitted in the mixed model frame-

work.

Equations (2.37) and (2.38) form a simple example of a mixed model. In general

we have a model of the form

y = Xβ +
r
∑

i=1

Ziui + ǫ, (2.40)

where, using the terminology of Searle et al. (1992), β is a fixed effects vector, and ui

is a random vector representing all the levels of the ith of r factors. The random effects

are generally assumed to be multivariate normal, which leads to the joint distribution

for y and u




y

u



 ∼ N









Xβ

0



 ,





G ZR

RZ ′ R







 , (2.41)

where Z =
[

Z1 Z2 . . . Zr

]

. The covariance matrices G = Gγ and R = Rδ are

functions of the unknown variance parameters γ and δ. For the pig weight example

r = 1 and u1 is a vector of length 49 (one level for each pig), with G = σ2
ǫ I and

R = σ2
uI, so γ and δ are the scalars σ2

ǫ and σ2
u respectively.

We estimate β and predict u using their best linear unbiased predictors (BLUPs)

(see Robinson (1991)). The BLUPs are defined to be the estimates which are linear

in the data, y, and minimize the mean squared error:

E(‖(Xβ̃ + Zũ) − (Xβ + Zu)‖2), (2.42)

subject to the unbiasedness condition

E(u) = E(ũ). (2.43)
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As remarked by Robinson (1991), it should be noted that (2.43) is different from the

usual definition of unbiasedness

E(ũ|u) = u. (2.44)

It can be shown that the BLUP estimates satisfy the following set of equations, known

as the mixed model equations (see Searle et al. (1992))




X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + G−1









β̃

ũ



 =





X ′R−1y

Z ′R−1y



 , (2.45)

which yield the solutions (see Robinson (1991))

β̃ = (X ′V −1X)−1X ′V −1y

ũ = GZ ′V −1(y − Xβ̃)

(2.46)

where V = R+ZGZ ′. The variance parameters are estimated by maximizing either

the log likelihood (ML) or the residual log likelihood (REML)

ℓML(γ, δ) = −
1

2
log|V | −

1

2
y′(V −1 − V −1X(X ′V −1X)−1X ′V −1)y (2.47)

ℓREML(γ, δ) = ℓML(γ, δ) −
1

2
log|X ′V −1X|. (2.48)

Searle et al. (1992) give examples of some models where closed form solutions for

the ML and REML estimates can be found. Wand (2002a) shows how to find the

information matrix for the general variance components model where

V θ =
m
∑

i=1

θiKi (2.49)

for known Ki, which allows the use of the Newton-Raphson algorithm to find solutions

numerically. For more complicated variance specifications more general optimization

techniques are required. Experience has shown that the “L-BGFS-B” or “Nelder-

Mead” algorithms implemented in the optim function in R are normally suitable.

2.5.2 Equivalent Bases

In order to establish the connection between mixed models and smoothing it is helpful

to be familiar with changes in parametrisation. In a linear model a change of param-
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eterization can be obtained by finding another matrix which spans the column space

of the regression matrix. This is easily achieved using the following theorem,

Theorem 2.1 For any m×n matrix, A, of full column rank, and any n×n matrix,

L, of full rank, the matrix AL has full column rank, and AL and A span the same

column space, C(A) = C(AL).

The proof of this can be deduced from more general results given in Harville (1997).

This theorem can be used to re-parameterize some of the models discussed so far.

Suppose we have a linear regression model with a basis given by the regression matrix

X with a corresponding set of coefficients α, then a re-parameterization can be found

forming the products X̆ = XL and ᾰ = L−1α with some appropriately dimensioned

non singular matrix L. Clearly the two parameterizations are equivalent as X̆ᾰ =

XLL−1α = Xα. Within the framework of penalised regression we would also need

to make an appropriate adjustment to the penalty, so taking P̆ = L′PL we see the

penalised residual sum of squares remains unchanged

PRSS(ᾰ) = (y − X̆ᾰ)′(y − X̆ᾰ) + ᾰ′P̆ ᾰ

= (y − XLL−1α)′(y − XLL−1α) + α′(L′)−1L′PLL−1α

= (y − Xα)′(y − Xα) + α′Pα.

(2.50)

If two regression bases X and X̆ are equivalent, then there exists L, and in this case

L = (X ′X)−1X ′X̆.

2.5.3 Smoothers as Mixed Models

The connection between mixed models and smoothing models has long been estab-

lished. Green (1985) is an early reference to the idea of splitting a trend into fixed

and random effects. The book by Ruppert et al. (2003) gives a thorough exploration

of the mixed model approach and an extensive bibliography. Re-expressing (2.24) in

terms of its partitions we obtain




X ′X X ′Z

Z ′X Z ′Z + λI









β

u



 =





X ′y

Z ′y



 . (2.51)
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Setting λ = σ2
ǫ /σ

2
u and rearranging we obtain





X ′(σ2
uI)−1X X ′(σ2

uI)−1Z

Z ′(σ2
uI)−1X Z ′(σ2

uI)−1Z + (σ2
ǫ I)−1









β

u



 =





X ′(σ2
uI)−1y

Z ′(σ2
uI)−1y



 , (2.52)

which is exactly the form of (2.45) with R = σ2
uI and G = σ2

ǫ I.

The connection between smoothing and mixed models has a simple explanation.

It is clear that in smoothing models we wish to reduce the freedom of the parameters

to ensure the smoothness of our fitted function. Random effects are also restricted

in mixed models by the distributional assumption, as can be seen readily in equation

(2.39). With this connection established, it is a small step to consider a smooth-

ing model within the mixed model framework. Taking the model in (2.19) for the

motorcycle data, and then assuming

u ∼ N (0, σ2
uI) (2.53)

we have a smooth model expressed as a mixed model. With this formulation we can

estimate the variance components by ML or REML, with the smoothing parameter

given by λ = σ2
ǫ /σ

2
u.

The formulation as a mixed model from a TPF smoothing model is simple, and it is

dealt with in detail by Ruppert et al. (2003). With a P -spline model the formulation

of a mixed model is not so obvious, as the distinction between fixed and random

effects is not clear. Currie and Durban (2002) showed how a change of basis could be

used to give a mixed model representation of P -splines; this was simplified by Currie

et al. (2006), and Wood (2004 (unpublished) gives a general method for converting

penalized likelihood models into mixed models.

Taking the P -spline model in Section 2.3.2 we could assume that all the parameters

were random effects, using a pure random effects model

θ ∼ N (µθ, σ
2
θD

′D). (2.54)

Among other problems the variance matrix for this model would be singular. As

suggested by Wood (2004 (unpublished) we can work in the eigenspace of the penalty

matrix, and transform to a different basis. Details are given by Currie et al. (2006),
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but the basic procedure is to take the singular value decomposition of the penalty

matrix

P = U∆U ′ (2.55)

where ∆ is a diagonal matrix of eigenvalues (assumed to be in ascending order),

with U containing the corresponding eigenvectors. The matrix of eigenvectors is then

partitioned U = [ UN
... US ], so that UN correspond to the 0 eigenvalues, or the null

space of the penalty matrix, and consequently US spans the eigenspace of the penalty

matrix. These matrices are used to split the basis into fixed and random parts:

X = BUN and Z = BUS (2.56)

with the corresponding coefficients

β = U ′
Nθ and u = U ′

Sθ. (2.57)

With the change of basis the non-zero eigenvalues are used in the variance matrix, so

we can formulate the mixed model with X and Z given in (2.56) with the variance

matrix of random effects given by

R = σ2
u∆S (2.58)

where ∆S is a diagonal matrix of the non-zero eigenvalues in ascending order.

2.6 Generalized Linear Models

In Section 1.3 it was assumed that the mortality counts data follow a Poisson distri-

bution. We now show how a parametric GLM can be fitted to Poisson data like the

mortality data we are interested in. We introduce GLMs as a generalization of the

basic linear model described in Section 2.1.

One limitation of the basic linear model is the assumption made in (2.2), that

the response variable follows a normal distribution. Nelder and Wedderburn (1972)

showed how regression models could be extended to a broader family of distributions.

Generalized Linear Models (GLMs) encompass many special cases, including the basic

linear regression model, the logit and probit models, and the log-linear model (which
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we will see corresponds to the famous Gompertz Model for mortality). The general-

ization allows the response variable to follow any distribution from the exponential

family, that is any distribution whose density can be written in the form

f(y; θ, φ) = exp

(

yθ − b(θ)

a(φ)
+ c(y, φ)

)

. (2.59)

The parameter θ is known as the natural parameter, and φ as the scale or nuisance

parameter. It is easy to show that any distribution of the form (2.59) has mean

µ = b′(θ); see for example Dobson (2002).

The GLM also extends the linear model by relating the mean to the linear predictor

through a link function,

g(µ) = η = Xβ. (2.60)

The link function can be any monotonic differentiable function, but often a convenient

choice is the canonical link obtained by setting θ = η, which leads to

g−1(·) = b′(·). (2.61)

Clearly, taking the identity as the link function, g(µ) = µ, we obtain (2.6) for the

linear regression model.

To summarize, in the Generalized Linear Model data consist of n observations

on a response variable yi (assumed to be realizations from an exponential family

distribution), and a corresponding vector of observations on a set of explanatory

variables xi. The mean of yi is related to the linear predictor ηi = x′
iβ through a link

function g(·), which can be written in matrix form

µ = g−1(Xβ), (2.62)

which becomes

µ = b′(Xβ), (2.63)

when using a canonical link.

Estimates of β are obtain by maximum likelihood, with the log-likelihood function

(in the case of the canonical link) given by

L(β) =
y′Xβ − 1′b(Xβ)

a(φ)
+ 1′c(y, φ). (2.64)
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Closed form solutions for β̂ cannot be found, except in the case of the normal distri-

bution (where the estimates coincide with the least squares estimates), and therefore

numerical methods have to be used in order maximise (2.64). McCullagh and Nelder

(1990) show how a Newton-Raphson scheme can be use to find estimates, or by re-

placing the Hessian by its expectation we can use the Fisher Scoring algorithm. Both

methods amount to using an iterative weighted least squares (IWLS) algorithm

X ′W̃Xβ̃ = X ′W̃ z̃, (2.65)

where W̃ is the diagonal matrix of weights with

w̃−1
ii = g′(µ̃i)

2var(yi), (2.66)

and z̃ is the working vector whose ith element is

z̃i = (yi − µ̃i)g
′(µ̃i) + x′

iβ̃, (2.67)

see McCullagh and Nelder (1990, pp. 33). For the Normal distribution we have θ = µ,

b(θ) = 1
2
θ2, and the canonical link gives the identity link function. Substituting the

identity function in (2.66) and (2.67) leaves z = y and W = σ2I, and we obtain the

least squares solution given in (2.8). In the Poisson case with the canonical or log

link we have from (2.66) wii = µi = exp(ηi).

Within the GLM framework we can also obtain confidence intervals for our fitted

model. The Fisher Information for the estimates obtained from (2.65) is

I(β̂) = X ′ŴX (2.68)

which gives an estimated variance for our estimates as

Var(β̂) = I(β̂)−1 = (X ′ŴX)−1 (2.69)

and

Var(Xβ̂) = X(X ′ŴX)−1X ′. (2.70)

In the normal case with constant variance, (2.69) gives the familiar estimate Var(β̂) =

σ2(X ′X)−1. The square root of the diagonal elements of Var(Xβ̂) give the standard

errors of the fitted linear predictor and can be used to construct pointwise (1 − α)

confidence intervals for the fitted curve.
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2.6.1 Modelling Mortality Data with a GLM

We shall now consider the situation of modelling the mortality data described in

Section 1.3 for a single age or year. Writing the Poisson distribution function in

exponential family form

f(y; θ, φ) = exp
{

(y log µ − µ) − log(y!)
}

(2.71)

we see θ = log µ, b(θ) = eθ, and a(φ) = 1.

For a one dimensional mortality table we observe the number of deaths at the ith

age yi, and the corresponding exposed to risk ei. Assuming the number of deaths

follows the Poisson distribution we have

y ∼ P(τ ∗ e), (2.72)

where, here and below, ∗ indicates element-by-element multiplication. Using a canon-

ical link, and treating the e as a known offset (see McCullagh and Nelder (1990) page

138), gives the mean number of deaths as

µi = exp
(

x′
iβ + log ei

)

. (2.73)

Taking x′
i = (1, agei) and re-expressing (2.73) as

log τi = x′
iβ (2.74)

we obtain the formula given in (1.1), with A = eβ0 and B = eβ1 . Within the GLM

framework it is straightforward to extend the Gompertz model by using higher order

polynomials; we add columns to the regression matrix, e.g. x′
i = (1, agei, age2

i ) gives

a quadratic function.

However the discussion in Section 2.1 concluded that polynomials were not suitable

for many situations in the normal case. Therefore we will use the mortality data

as a motivating example to develop the penalized spline method within the GLM

framework.

Then, as with the linear model, a B-spline basis can be used in a GLM simply

by setting X = B. As with the normal case we place a penalty on the coefficients
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of adjacent B-splines, and estimate the coefficients by maximizing the penalized log-

likelihood. Maximizing (2.26) using the log-likelihood in (2.64) leads to the penalized

scoring algorithm

(B′W̃B + P )θ̂ = B′W̃ z̃ (2.75)

with W̃ and z̃ defined as the weight matrix and working vector used in (2.65). By

analogy with (2.69) we estimate the variance of our estimates by

Var(Bθ̂) = B(B′ŴB + P )−1B′. (2.76)

In the case λ = 0 (2.76) reduces to (2.70), and in practice as λ → ∞ (2.76) converges

to the estimate obtained for the polynomial limit of the penalty in (2.30).

We shall now look at two examples of P -splines fitted to cross-sections of the

assured lives mortality data. Figure 2.11(a) shows a smooth fitted across ages for the

year 2002; in this case we take x′ = xa
′ = (16, . . . , 92) so we have n = na = 77. Using

cubic B-splines and placing a knot at age sixty-five with five years between knots, we

need the knot vector t′ = (0, 5, . . . , 105, 110) to cover x. This results in a B-spline

basis matrix, B, with dimension 77×19. Figure 2.11(b) shows the corresponding plot

taking a cross-section for age sixty-five, with x′ = xy
′ = (1951, . . . , 2002). This time

we place a knot at the final year, 2002; with five years between knots, we need the

knot vector t′ = (1932, 1937, . . . , 2012, 2017) to cover x which leads to a B-spline basis

matrix, B with dimension 52×14. To distinguish the two B-spline basis matrices, we

will refer to the basis matrix for age as Ba and the basis matrix for year as By. These

matrices will play an important role when we consider two-dimensional modelling; it

is convenient to define

• Marginal basis for age: Ba, and

• Marginal basis for year: By.

With AIC we find smoothing parameters λa = 4.3 and λy = 123.1. We see that more

smoothing is required in the year model than in the age model; this point will be

discussed in more detail in Chapter 3.
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(a) A smooth fitted across ages for the year 2002.
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(b) A smooth fitted across years for the age 65.

Figure 2.11: Some P -splines fitted to the assured lives data.
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2.6.2 Generalized Linear Mixed Models

We have discussed both mixed models and GLMs and our next step is to combine the

two, to give a generalized linear mixed model or GLMM. This is an ongoing area of

research, and at present only approximate estimates are available for GLMMs.

A GLMM is defined as follows. We observe a vector of responses y; for each

element of y we observe a set of explanatory variables x′
i with X corresponding to

the vector y. We also observe a matrix Z similar to that used in (2.41) which indicates

the levels of each random effect. We now assume that the following relationship holds

E(y|u) = g−1(Xβ + Zu), (2.77)

where β is a fixed unknown we wish to estimate, and the u are realizations of the

random effects. The conditional distribution of y is assumed to come from the expo-

nential family, so with a canonical link we have

fy|u(y|u) = exp

{

y′(Xβ + Zu) − 1′b(Xβ + Zu)

a(φ)
+ 1′c(y, φ)

}

. (2.78)

The random effects are generally assumed to follow a multivariate normal distribution

u ∼ N (0,Rδ). (2.79)

There are examples where we may wish to relax this assumption; see for instance

page 464 of Pawitan (2001). However, as Pawitan remarks, this generalization tends

to complicate an already difficult problem of estimation.

In order to obtain a likelihood we need to obtain the unconditional density of y,

but this requires the evaluation of the multidimensional integral

ℓ(β,θ) = fy(y)

=

∫

fy,u(y,u) du

=

∫

fy|u(y|u)fu(u) du

(2.80)

which is generally intractable. Evaluation or approximation of the integral (2.80) has

been the stumbling block, and has been the area of most focused research in the area of
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GLMMs. Currently there are two widely used approaches to the problem. One could

specify the GLMM as a hierarchical Bayesian model, which enables us to use MCMC

to sample from the posterior distribution of θ without evaluating (2.80); this will be

discussed in more detail in Section 2.7. The other approach is to follow the method of

Breslow and Clayton (1993) and use the Laplace approximation to the integral, which

leads to estimating (predicting) β and u by maximizing the penalized quasi-likelihood

(PQL). Ruppert et al. (2003) derive the PQL for the exponential family with normal

random effects

ℓPQL(β,u; y) = log (f(y|u)) − u′G−1u. (2.81)

The PQL is so named because the likelihood has the same form as a penalized likeli-

hood; see for example (2.22) and (2.26). For given values of the variance parameters,

estimation of β and u proceeds by maximizing (2.81); the variance parameters are

estimated either by ML or REML. The (restricted) likelihood for the variance pa-

rameters is the same as that given in (2.47) (or (2.48)) but with R replaced by a

weight matrix which is determined by the conditional distribution of y. As shown

by Ruppert et al. (2003, pp. 205), for the Poisson GLMM the weight matrix is the

diagonal matrix of conditional expectations given in (2.77), this leads to the iterative

equation for β and u





X ′W̃X X ′W̃Z

Z ′W̃X Z ′W̃Z + G−1









β̂

û



 =





X ′W̃ z̃

Z ′W̃ z̃



 , (2.82)

where z̃ and W̃ are the working vector and weight matrix used in a GLM, based on

the current values of β and u. For the purpose of calculating ML or REML we use

V = W−1 + ZGZ ′ in ℓML(γ|β̂, û) or ℓREML(γ|β̂, û) in (2.47) or (2.48) respectively.

Smoothing within the GLMM follows directly from the explanation given for the

linear mixed model. We must first split the basis into the fixed and random part (for

a P -spline model we can use the decomposition described in Section 2.5.3). The same

arguments that were mentioned in Section 2.5.3 can be used in the case of smooth

generalized linear models to formulate them as GLMMs, as shown in Wood (2004

(unpublished) and Currie et al. (2006).
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2.7 Bayesian Smoothing

As outlined in Section 2.4 smoothing parameter selection is one of the key problems

in fitting smooth models. The main difficulty is that the smoothing parameter is a

hyper-parameter that sits outside the likelihood, because the penalized log-likelihood

is conditional on the smoothing parameter. Such hyper-parameters are common in

hierarchical Bayesian models, where there are several layers of parameters, with each

layer conditional on the one above. In a sense the mixed model representation of

penalized splines in section 2.5.3 is a compromise between the Bayesian and classical

approaches, as we are attaching a normal probability distribution to our uncertainty

about the shape of the smooth above the linear trend (for a second order penalty),

which gives us a likelihood for the smoothing parameter. However, one could argue

that the use of other selection criteria is equivalent to maximizing the likelihood for

some other, unknown “prior” for the “random effects”.

To fit a full Bayesian smoothing model we could extend the mixed model rep-

resentation by also specifying a prior for the fixed components β, and the variance

parameters θ. Ruppert et al. (2003) suggest the use of an improper uniform prior for

β and a sequence of inverse gamma distributions for the components of θ. The hyper-

parameters are selected to give non-informative priors for the variance components.

These priors are conjugate to the normal likelihood and using the hierarchical struc-

ture of the model we can implement the Gibbs sampler to draw from the posterior

distribution. However this scheme requires the inversion of a c× c matrix, where c is

the number of parameters in the model, at every iteration so can be very heavy com-

putationally. In the case of the GLMM we cannot easily sample from the conditional

distribution of the fixed or the random effects so the Gibbs sampler is not available.

Ruppert et al. (2003) give details of how to use the Metropolis-Hastings algorithm

to sample from the posterior distribution, but again this requires the inversion of a

c × c matrix at each iteration. A different approach is used by Lambert and Eilers

(2006), who put a prior directly on the differences of the B-spline coefficients. They

show how a Langevin-Hastings algorithm can be used to explore the posterior with-

out having to compute or invert large matrices, and show how to draw directly from
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the marginal posterior of the B-spline coefficients without having to sample from the

penalty parameters.

2.8 Forecasting

In this section we will describe the method of forecasting in one dimension, taking a

single age from the assured live mortality data as an example.

As suggested by Currie et al. (2004) the forecasting is treated as a missing data

problem, and the penalty is used to “fill in” these missing data. They suggested that

the forecast could be obtained by augmenting the data with dummy values for the

forecast region, and then weighting the dummy data out of the fitting procedure with

an indicator matrix. The adjusted penalized scoring algorithm is

(B′V W̃B + P )θ̂ = B′V W̃ z̃ (2.83)

where V = diag([1′ 0′]). This can be streamlined since all that is required to produce

a forecast are the extra coefficients for the forecast region. This can be achieved by

appending the required number of columns of zeros to the basis matrix. This is most

easily explained using an example. Taking the data from the assured lives data used

in Fig. 2.11(b) we have n = 52 and x = xy. To forecast for twenty years we append

the extra years to the explanatory variable x

x∗ = [ x′ ... x′
p ]′ (2.84)

where x′
p = (2003, . . . , 2022). The basis is then evaluated over the new index which

gives a larger B-spline basis matrix, B∗. Using the same knot positions as previously

we obtain a B-spline matrix of dimension 72× 18. However, in order to fit the model

we remove the extra rows added for the forecast, this gives us a new regression matrix

B∗
m = [ B

... 0 ], (2.85)

where B is the same 52 × 14 matrix used for Fig. 2.11(b), and in this case 0 has

dimension 52× 4. Clearly in an unpenalized regression this would result in a singular

system, but as mentioned at the beginning of the section the penalty enables the
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Figure 2.12: A twenty year forecast for age sixty-five for the assured lives data.

estimation of the coefficients in the forecast region. Using (2.75) we obtain a set of

forecast coefficients, θ∗, which can be used with the full forecast basis to evaluate the

smooth in the forecast region.

The forecasted log rates at age sixty-five are shown in Fig. 2.12, with confidence

intervals added using the diagonal elements of (2.76). We note the difference in the

width of the confidence intervals (and in particular the extremely narrow confidence

intervals for the model selected by BIC); this will be discussed further in Section 2.8.1.

We see that in the forecast region the trend appears linear. Equation (2.30) gave a

polynomial limit for P -splines, but the rate of convergence to the limit depends on

the amount of data available. In the forecast region there is no data, so we obtain

the limiting polynomial for the model. As we have been using cubic B-splines with a

second order difference, by (2.30) we get a linear limit and thus a linear forecast. With

a second order penalty the forecast is a linear extrapolation of the last two coefficients,

and it would be possible to fit the model using the data and then extrapolate to obtain

the forecast. In section 3.3.6 we look at forecasting a two-dimensional surface where

obtaining the forecast is more complicated and we have to use the method explained

here.
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2.8.1 Model Uncertainty

The two lines shown in Fig. 2.12 highlight a problem that occurs in many regression

models but is particularly visible in the context of smoothing: model uncertainty. In

this section we will discuss model uncertainty with reference to forecasting in semi-

parametric models, before suggesting some ways of taking it into account.

Figure 2.12 shows two P -spline models fitted to the age sixty-five cross-section

of the assured lives mortality data, with the smoothing parameter for the green line

selected using BIC and the smoothing parameter for the red line fitted using AIC. The

dotted lines surrounding each line represent the 95 percent confidence interval for the

estimated log rate of mortality. We note that the confidence interval in forecast region

gets wider as we move away from the data. We also notice that within the region

of the data neither of the confidence intervals generally contains the mean trend of

the other model, even though both models seem reasonably plausible given the data.

The reason why these two seemingly reasonable models are not within each others’

confidence intervals is because the confidence intervals are conditional on the model

itself. This can be clearly seen in expression (2.76), where the smoothing parameter,

through the penalty matrix P , is used in the calculation of the variance of the fitted

values. The conditioning on the model can be seen very clearly in the forecast region,

where the confidence intervals are much narrower for the model selected using BIC

because the model is less flexible and places a heavier penalty on movements away

from a linear trend.

This example highlights a problem that is ignored in many areas of statistics, and

was summed up very nicely by Hjort and Claeskens (2003), “The traditional use of

model selection methods in practise is to proceed as if the final selected model had

been chosen in advance, without acknowledging the additional uncertainty introduced

by model selection”. Interesting opinions on the matter can also be found in Chatfield

(1995).

Seemingly the only way to remove this problem in the example would be to un-

wind the conditioning on the selected model when calculating the confidence interval.

Hjort and Claeskens (2003) suggest a model averaging approach within the frequentist

framework although this is only applied to situations where a relatively small number
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of models are under consideration. To use this in the context of smoothing, we would

have to average over a predetermined set of possible smoothing parameters, which

does not sit well with the use of a model selection criterion to optimize the smoothing

parameter.

Another possible solution is to use a Bayesian approach described in Section 2.7.

With the Markov chain Monte Carlo (MCMC) algorithm we obtain simulations from

the posterior distribution of the fitted line which take into account the uncertainty

surrounding the smoothing parameter; these simulations could then be used to find an

empirical estimate of the confidence interval for the smooth which takes into account

an element of the uncertainty surrounding the smoothing parameter. However, this

puts a greater importance on the parameterization of the prior for the smoothing

parameter, about which often we have little or no information.

2.9 Discussion

We now sum up the main conclusions from the work of this chapter and highlight the

main ideas that will be used in the remainder of this thesis.

Comparing all the smoothing models described in this chapter we see there is

relatively little to choose between them in terms of results. With reference to the

plots in Fig. 2.13 we can see that applying each method to the motorcycle crash data

it is difficult to tell the results apart. Generally, the choice of model selection criterion,

and thus the amount of smoothing, is of much greater importance than the smoothing

method itself.

However, as we move into multi-dimensional smoothing, computational efficiency

becomes a greater consideration. The multi-dimensional analogues of the full rank

smoothers described in this chapter: kernel smoothing and natural cubic splines, run

into computational difficulties when they are applied to large multi-dimensional data

sets.

Although, based on the results in one dimension the methods are difficult to

separate, conceptually and computationally, we feel that regression splines, and P -

splines in particular, offer several advantages:
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• A straightforward extension to multiple dimensions: Regression splines fall

within the penalized likelihood framework; this simplifies the extension to multi-

dimensional modelling. To extend the model, we need only specify a multi-

dimensional basis and penalty; the fitting procedure can then be carried out in

the same way, as will be shown in the next chapter. This is in marked contrast

to thin plate splines, for example, which are significantly more complicated to

fit than natural cubic splines.

• Further computational advantages: For multi-dimensional data with a grid or

array structure, using P -splines we can make further improvements in compu-

tational efficiency, by taking advantage of the structure of the basis. This is

shown in Chapter 4.

• Simple additive models: If we keep all the components within the penalized like-

lihood framework, fitting additive models can be simplified: we do not require

the back-fitting algorithm. This is shown in Chapter 5.

• Interpretation of the parameters: The B-spline coefficients in a P -spline model

are essentially local averages of the data over the non-zero domain of the B-

spline (see Eilers and Marx, 2004). This makes it easier to adapt the penalty in

specific instances when a different structure is required in the model.

• Good numerical properties: The model can be fitted directly as described in

this chapter without the need to change basis for fear of numerical difficulties.

There is a general impression that P -splines and penalized TPFs are equivalent,

subject to a change of basis like that described in Section 2.5.2. The change

of basis is used when fitting a penalized TPF model: in practise one converts

to a B-spline, or some other numerically suitable basis, for the computation.

However, as noted by Welham (2005), P -splines are more general that penalized

TPFs because there are some combinations of a B-spline basis and difference

penalty which cannot be represented as a penalized TPF; for example, one

cannot find a simple TPF equivalent of a cubic B-spline basis with a second

order difference penalty.
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Figure 2.13: A comparison of the smoothing methods discussed in this chapter applied

to the motorcycle data.
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Chapter 3

Multi-dimensional smoothing

In this chapter we look at multi-dimensional smoothing methods. As in the last chap-

ter we introduce several different approaches before describing the P -spline method

in more detail.

In Section 3.1 we describe the general multi-dimensional smoothing problem, start-

ing with two-dimensional smoothing; we show how the data described in Section 1.3

give rise to an example of the general two-dimensional smoothing problem, but with

a particular structure. In Section 3.2 we describe some full-rank multi-dimensional

smoothing methods, before describing the multi-dimensional P -spline model in Sec-

tion 3.3.

3.1 Data

In this section we will describe the general multi-dimensional smoothing problem, and

show how the mortality data described in Section 1.3 give rise to a special case of the

multi-dimensional smoothing problem. We will first specify the two-dimensional case,

and then describe the problem in d-dimensions.

In a two-dimensional smoothing problem our data consist of n observations of the

pairs (yi,xi) where yi ∈ R and xi ∈ R
2. We assume that each yi is a realization of a

random variable with

E(y) = µ = S(x) (3.1)

for some smooth function S : R
2 → R, which we wish to estimate by the function
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Ŝ. Often it is easier to think in terms of each dimension of the data, and imagine

our data stored as a response vector y and explanatory vectors x1 and x2, where

y,x1,x2 ∈ R
n. We can then specify the model in matrix notation

E(y) = S(x1,x2) = [S(x1,1, x2,1), . . . , S(x1,n, x2,n)]′. (3.2)

The mortality data in Section 1.3 has additional structure to that described above:

the data lie on a grid. In order to get the data into the format described above we

must re-arrange it. Firstly, we take the matrix of deaths, Y , na × ny, and vectorize

it; similarly, we vectorize the matrix of exposures, E, na × ny. Applying the vec

operator, we obtain

y = vec(Y ) and e = vec(E); (3.3)

i.e., the vec operator stacks the columns of Y and E on top of each other to give the

vectors y and e, both nany × 1. Thus for the assured lives data set we have

y′ = [y16,1951, . . . , y92,1951, . . . . . . , y16,2002, . . . , y92,2002]

e′ = [e16,1951, . . . , e92,1951, . . . . . . , e16,2002, . . . , e92,2002].

(3.4)

We aim to model the mortality as a smooth function of age and year, so we need to

define the vector x1 = xA for age and x2 = xY for year. Following the same process

as with Y and E we set

xA = vec(XA)

xY = vec(XY )

(3.5)

where XA and XY are matrices giving the age index and year index corresponding

to the deaths and exposures; so for the assured lives data

XA = [xa, . . . ,xa] =























16 16 · · · 16 16

17 17 · · · 17 17
...

...
...

...

91 91 · · · 91 91

92 92 · · · 92 92























, (3.6)
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and

XY = [xy, . . . ,xy]′ =























1951 1952 · · · 2001 2002

1951 1952 · · · 2001 2002
...

...
...

...

1951 1952 · · · 2001 2002

1951 1952 · · · 2001 2002























. (3.7)

We note that (3.6) and (3.7) define the unique age and year index vectors

xa
′ = (16, 17, . . . , 91, 92),

xy
′ = (1951, 1952, . . . , 2001, 2002).

(3.8)

The process of vectorizing seems rather artificial as the natural format for these data

is in a matrix. We will see in Chapter 4 that it is not necessary to vectorize the

data. The matrix methods described there are conceptually more attractive and

computationally more efficient; furthermore these methods extend to general array

methods in higher dimensions.

The extension from a two-dimensional to a d-dimensional smoothing problem is

straight-forward. In the d-dimensional case the response variable is indexed by d

explanatory variables, so our data set consists of a vector of responses y, and the

d vectors of corresponding explanatory variables x1, . . . ,xd; we then seek a smooth

function such that

E(y) = S(x1, . . . ,xd). (3.9)

Fitting a smooth model in more than two dimensions in practice is probably not the

best option for three reasons. Firstly, spreading the data about in four- or higher-

dimensional space is likely to leave quite big areas where no information about the

behaviour of the smooth is available, so the result will be heavily dependent on the

interpolation properties of the smoothing method. Secondly, the curse of dimension-

ality means that smoothing models beyond two dimensions quickly become large and

unmanageable simply because of the number of parameters needed to describe the

smooth. Thirdly, beyond two dimensions we lose the ability to visualise the function

so we are reliant on cross-sections and contours, which hampers both model diagnos-

tics and inference from the model. As recommended by Hastie and Tibshirani (1990),
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it is often better to use an additive model when dealing with data indexed by more

than two explanatory variables.

3.2 Full Rank Smoothers

In this section we will briefly describe some full rank smoothing methods for multi-

dimensional problems. These methods are only practical when the number of data

points is relatively small, as we are required to solve a system of n equations in order

to fit using these methods. The methods described in this section are implemented

in the R package fields.

3.2.1 Thin Plate Splines

Thin plate splines are the multi-dimensional analogue of natural cubic splines; see

Green and Silverman (1994, Chap. 7) and Wood (2006, pp. 154–160). Matters are

more complicated in the multi-dimensional case because there is no natural order

to the data points. However we can still describe the smoothness of a function; for

example, in the two-dimensional case we use the integrated sum of squared second

order partial derivatives

∫ ∫ {

d2S

dx2
1

}2

+ 2

{

d2S

dx1dx2

}2

+

{

d2S

dx2
2

}2

dx1dx2. (3.10)

With this measure of smoothness of a two-dimensional function we can proceed as in

the one-dimensional case and seek the minimizer of the functional

E(S) =
n
∑

i=1

[yi−S(xi)]
2 +λ

∫ ∫ {

d2S

dx2
1

}2

+2

{

d2S

dx1dx2

}2

+

{

d2S

dx2
2

}2

dx1dx2. (3.11)

As shown by Green and Silverman (1994, Chap. 7), for given λ, (3.11) has a unique

minimizer which is a thin plate spline. Selection of the smoothing parameter can then

proceed by optimization of one of the model selection criteria described in Section

2.4. We present the results of a thin plate spline smooth applied to the assured lives

mortality data in Section 3.2.4.
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3.2.2 Kriging

In this section we will give a brief description of isotropic Kriging. Kriging is not

widely used in one-dimensional problems, and in its multi-dimensional form is used

mainly in geostatistics, where it was originally developed. As observed by Hastie

and Tibshirani (1990) the Kriging approach is “interesting because it illustrates the

stochastic function approach to smoothing”; in this respect its starting point is fun-

damentally different from the imposition of smoothing by either penalization or the

use of weighted averages, for example. Kriging assumes that the observations are

realizations from a stochastic process such that

yi = µ + S(xi) + ǫi (3.12)

where S(x) is a zero mean stationary stochastic process. We seek an estimate of S(),

and in particular Ŝ(x0) for the unobserved location x0. The standard assumption is

that the covariance of the stochastic process at two locations only depends on how

far the two locations are apart. This is the standard isotropic assumption:

Cov(S(x), S(x + h)) depends only on | h | . (3.13)

We follow Ruppert et al. (2003, Sec. 13.3). The best linear predictor of S(x0) at an

unobserved location x0 is given by

Ŝ(x0) = c′
0(C + σ2

ǫ I)−1(y − µ1); (3.14)

here

c0 = [Cov(Ŝ(x0), Ŝ(x1)), . . . , Cov(Ŝ(x0), Ŝ(xn))]

and

C = Cov([Ŝ(x1), . . . , Ŝ(xn)]′)

= [C(||xi − xj||)], 1 ≤ i, j ≤ n,

(3.15)

by the isotropic assumption in (3.13). Now let

C(r) = σ2
sC0(r)
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where σ2
s = Var(S(x)), the variance of the stochastic process for S(x); one common

assumption is to set C0(r) = e−|r|, the exponential correlation function. A potential

weakness of Kriging is the lack of consensus on how to select the function C0 and its

parameters; the classical approach is to select the covariance function using variogram

analysis; for more details see Ruppert et al. (2003) who give an extensive list of

references for Kriging.

We remark that the isotropic assumption is unlikely to work well with mortality

data since there is no reason to believe that the amount of smoothing in the age

direction should be the same as that in the year direction. The results of performing

Kriging on the assured lives data set are given in the next section.

3.2.3 Radial Bases

In this section we will describe the multi-dimensional “equivalent” of truncated power

functions. As mentioned in section 2.3.1 truncated power functions suffer from poor

numerical properties, and these poor properties are exacerbated by moving into mul-

tiple dimensions. One solution to this problem, described by Ruppert et al. (2003),

is to switch to a radial basis.

In one dimension switching to a radial basis from a basis of truncated power

functions amounts to switching from the basis defined by the matrix Z in (2.21) to

ZR =











(|x1 − t1|)
k · · · (|x1 − tJ |)

k

...
...

(|xn − t1|)
k · · · (|xn − tJ |)

k











. (3.16)

Using the change of basis technique described in Section 2.5.2 we can find the penalty

matrix so the models are equivalent.

For multi-dimensional smoothing with radial bases, we define the columns of the

basis matrix ZR as follows

ZR =











(||x1 − t1||)
k · · · (||x1 − tJ ||)

k

...
...

(||xn − t1||)
k · · · (||xn − tJ ||)

k











, (3.17)

where t1, . . . , tJ ∈ R
d are the multi-dimensional knot positions. The specification

of the penalty is not straightforward using this approach as we have no intuitive
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understanding of how the penalty behaves in one dimension. Ruppert et al. (2003)

suggest using a radial basis in a mixed model then separately specifying an isotropic

covariance matrix; they show connections between this method and both Kriging and

thin plate splines.

3.2.4 Smoothing the assured lives data with the fields pack-

age

In this section we will show how the full rank methods described in this chapter can

be applied to data. We will use the methods implemented in the fields package

by Nychka (2007) to smooth the two-dimensional assured lives data. Currently the

package can only be used with normal responses, so in this section we will be smooth-

ing the log of the raw mortality rates as a normal response rather than modelling

the number of deaths as a Poisson response. Modelling the raw rates directly in this

way means that we cannot deal with data points where zero deaths are observed, so

in order to make the modelling simpler we reduce the data by only modelling ages

25, . . . , 80. The code below shows how a thin plate spline and a Kriging model can

be fitted to the raw rates. We begin by calculating the log rates and storing them

in a matrix R, this is then vectorized and stored as y, we then need to calculate the

matrices XA and XY from (3.6) and (3.7) which are stored as XA and XY respectively.

The three matrices are then vectorized and joined in a two-column matrix so they

can be entered as a parameter into the smoothing functions Krig and Tps as the

locations for the vector of responses y. For the Kriging function we must also specify

any additional parameters of the covariance function. In this example we use the

default covariance function, the exponential function, so C0(r) = e−|r| in this case;

the parameter r becomes the parameter theta in the implementation. There is no

implementation of variograms in the fields library and no discernible guidance on

how to select theta; in the example we have chosen r = theta = 100 by trial and

error to give a pleasing look to the smooth surface shown in 3.2. The R code used to

produce Fig. 3.1 and Fig. 3.2 is displayed below.
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# Load data and library

load("Assured.RData")

library("fields")

# Cut data down for ages 25-80, and years 1951-2002

Xa <- Xa[15:70]

Xy <- Xy[-(1:4)]

Y <- Y[15:70,-(1:4)]

E <- E[15:70,-(1:4)]

# Get dimensions of Xa and Xy

na <- length(Xa)

ny <- length(Xy)

# Calculate log rates

R <- log(D/E)

# Calculate location matrices corresponding to R

Xa <- matrix(Xa, na, ny)

Xy <- matrix(Xy, na, ny, TRUE)

# Vectorize rates, and vectorize and join XA and XY

y <- c(R)

x <- cbind(c(XA),c(XY))

# Fit the thin plate spline

Mort.Tps <- Tps(x, y)

# Fit the Kriging model

Mort.Krig <- Krig(x, y, theta = 100)

3.3 Multi-Dimensional P -splines

In this section we extend the model described in section 2.3.2 to the multi-dimensional

case using the method proposed by Currie et al. (2004). As we shall see the principles

are exactly the same as the one-dimensional case, and extending the model basically

amounts to some dimensional book-keeping.

Importantly we see that the bases for multi-dimensional P -splines are constructed

from the one-dimensional marginal bases, giving us a low-rank multi-dimensional

smoothing method suitable for use on large data sets such as the CMI mortality data.
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Figure 3.1: A thin plate spline fitted to the assured lives mortality data for ages 25-80,

and the years 1951-2002.
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Figure 3.2: A Kriging model fitted to the assured lives mortality data for ages 25-80,

and the years 1951-2002.
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3.3.1 Some Linear Algebra

The multi-dimensional P -spline model uses some non-standard matrix operations

which we will briefly describe in this section. The Kronecker product of two ma-

trices A and B denoted A ⊗ B is a matrix containing all scalar products of the

elements of A and B; specifically if A and B have dimensions m × n and p × q

respectively then

A ⊗ B =











a1,1B . . . a1,nB
...

...

am,1B . . . am,nB











, (3.18)

has dimension mp × nq.

The row tensor of two matrices A and B, denoted A2B, is a matrix containing

the element-by-element multiplication of each column of A with each column of B.

Clearly the products of the columns are only defined if the matrices have the same

number of rows, hence A2B is defined if and only if A and B have the same number

of rows, in which case

A2B = (A ⊗ 1′
q) ∗ (1′

p ⊗ B), (3.19)

is of dimension n×pq, for A and B of dimensions n×p and n×q respectively. Details

of some properties of Kronecker products and row tensors are given in Appendix B.

3.3.2 The Two-Dimensional Case

In this section we will show how to fit a two-dimensional P -spline model with reference

to the mortality data described in Section 1.3.

By vectorizing the data we obtain the data in the conventional format for a two-

dimensional smooth model. We have the set of triples (yi, xA,i, xY,i), where xA,i and

xY,i are the i th elements of xA and xY in (3.5); thus each count of deaths is indexed

by an age and a year.

In order to fit the model we must define knot sequences, ta and ty, for age and year

respectively. As in the one-dimensional models described in Section 2.6.1, we will use

a knot every five years for both age and year, and place a knot at age 65, and a knot

at the last year of data, 2002; we obtain the knot sequences ta = (0, 5, . . . , 105, 110)
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and ty = (1932, 1937, . . . , 2012, 2017). We then define two sets of cubic B-spline

basis functions over ta and ty for age and year respectively. We obtain the bases

{Ba,1(), . . . , Ba,ca
()} for age, and {By,1(), . . . , By,cy

()} for year, where in this example

ca = 19 and cy = 14. We then define the B-spline regression matrices

BA = Ba(xA) and BY = By(xY ) (3.20)

where (BA)i,j = Ba,j(xA,i) and (BY )i,j = By,j(xY,i). Generally BA has dimensions

nany × ca and BY has dimensions nany × cy, and in this example BA is 4004 × 19

and BY is 4004× 14. Taking the B-spline basis for each dimension, we form the two

dimensional basis by taking the row tensor of the two bases, which will be denoted as

B = BY 2BA. (3.21)

This operation forms a rectangular grid of basis functions over the space covered

by the observations. For the assured lives data this results in a 4004 × 266 matrix,

with the central knots of the basis functions spread evenly over a rectangle whose

bottom left point is at (1942, 10) and top right point is at (2007, 100). This is shown

graphically in Fig. 3.3. As in the one-dimensional case the parameters in the model

can be positioned at the central knot positions of their corresponding basis function,

so the parameters also form a grid over the data. In order to enforce smoothness

we place a penalty on coefficients in the same row and same column, one penalty

in the age direction and one in the year direction. With reference to Fig. 3.3 we

can imagine taking the first column of the coefficients and penalizing them as in the

one dimensional case. Repeating this we obtain a set of differencing operations to be

applied to the coefficients in each column. For computational purposes the coefficients

are put into a vector in which the columns are stacked on top of each other. With

the coefficients in this format the penalty in the age direction is given by

P A = Icy
⊗ (D′

aDa), (3.22)

where Da is the (ca − d) × ca difference matrix, of order d, for age. For a penalty in

the year direction we simply penalize coefficients in the same row as shown in Fig. 3.3,

which leads to

P Y = (D′
yDy) ⊗ Ica

, (3.23)
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Figure 3.3: A graphical representation of the CMI mortality data. The green dots

are the data points, the circles are the knot positions: the blue ones are the central

knots which have a parameter attached, while the red knots are only used to define

the splines on the edge of the data.

where Dy is the (cy − d) × cy difference matrix, of order d, for year. Weighting each

of these penalties with a smoothing parameter we obtain the overall penalty

P = λaP A + λyP Y . (3.24)

With the basis and penalty in place, for given values of λa and λy we can fit our model

using the penalized scoring algorithm in equation (2.75). The smoothing parameters

can be selected in exactly the same way by optimizing some model selection criterion.

Using separate smoothing parameters increases the time required to fit the model,

but this is necessary as in general there is no reason to suppose that the smooth-

ness of the function should be isotropic. If there is evidence a priori that a single

smoothing parameter is suitable then setting λ = λa = λy will significantly reduce

the computational time to fit the model.

An important special feature of the mortality data is the grid structure. When the

data do not lie on a grid we are forced to form the basis using (3.20). The basis BA is

used to smooth the full two-dimensional grid by age only, and similarly the basis BY
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is used to smooth the grid by year. A single basis function for each of age and year

is shown in Fig. 3.4. As we can see, the two-dimensional age spline is simply a spline

from a one-dimensional spline basis for age repeated across all years (and vice-versa

for the two-dimensional year spline). A basis function from the full two-dimensional

basis is then a product of a two-dimensional age spline with a two-dimensional year

spline, as shown in the top panel of Fig. 3.5. The row tensor of the two bases BA and

BY is a systematic way of performing all the cross-multiplications required to obtain

the full two-dimensional basis in the lower panel of Fig. 3.5.

The method of forming a two-dimensional basis as the row tensor of the bases BA

and BY works in general for any configuration of the data and, in particular, does not

require the data to lie on a grid. However, when the data lie on a grid the full two-

dimensional basis can be obtained directly from the marginal one-dimensional bases,

Ba and By as defined in Section 2.6.1 (page 45). First, we note that the indices of

the data can be written as Kronecker products

xA = 1ny
⊗ xa and xY = xy ⊗ 1na

, (3.25)

and from this it is straightforward to see that

BA = 1ny
⊗ Ba and BY = By ⊗ 1na

. (3.26)

Using the definition of the row tensor in (3.19) we have

BY 2BA = (By ⊗ 1na
)2(1ny

⊗ Ba)

= (By ⊗ 1na
⊗ 1′

ca
) ∗ (1′

ca
⊗ 1ny

⊗ Ba)

= (By ⊗ Jna,ca
) ∗ (Jny ,cy

⊗ Ba)

= By ⊗ Ba.

(3.27)

Thus, when the data lie on a grid, the general row tensor method of forming the

two-dimensional basis can be replaced by the more direct Kronecker product of the

marginal bases.

In summary, we have data y = vec(Y ), e = vec(E), regression matrix B =

By ⊗ Ba, and penalty

P = λa(Iny
⊗ D′

a
Da) + λy(D

′

y
Dy ⊗ Ina

). (3.28)
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Figure 3.4: Coverage of a single age spline, Ba,i(·), on a two-dimensional data set

(top), and for a single year spline, By,j(·) (bottom).
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Figure 3.5: Top panel shows the coverage of a single two-dimensional spline, By,j(·)⊗

Ba,i(·) (the result of multiplying the two splines in Fig. 3.4). Bottom panel shows a

subset of a two-dimensional basis, By ⊗ Ba.
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With the data in matrix-vector format, and the basis and penalty specified, we can

proceed to fit the model using the penalized scoring algorithm (2.75). The smooth

fitted to the assured lives mortality data is shown in Fig. 3.6. The smoothing param-

eters λa and λy are chosen by minimizing BIC. We find λa = 80.8 and λy = 623.5;

strong evidence that an isotropic smooth is not appropriate in this example.
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Figure 3.6: The mortality surface shown in Fig. 1.2(a) smoothed by a two-dimensional

P -spline model.

3.3.3 Mixed Model Representation

Multi-dimensional P -splines also have a mixed model representation. Currie et al.

(2006) showed that we can find an equivalent basis for a mixed model by working in

the eigenspace of the penalty matrices.

In Section 2.5 we showed that in one dimension we can find a transformation

from the original B-spline basis to an equivalent basis which leads to a mixed model

representation. In more than one dimension we can use the singular value decom-

position of the marginal penalty matrices D′
aDa and D′

yDy in (3.24) to form the

fixed and random parts of the new basis and new penalty matrix. In one dimension

it is straightforward to remove the zero eigenvalues to give the random part of the
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basis, as shown in Section 2.5.3. However, in more than one dimension the Kronecker

product structure of the penalty matrices complicates the transformation because the

zero eigenvalues are mixed up in the transformed penalty matrix, and special steps

need to be taken to remove them; see Currie et al. (2006) for details of this in two

dimensions.

Table 3.1 shows a comparison of numerical output of various models fitted to the

assured lives data. The models were fitted by varying the distance between knots

(dx), while keeping a knot at the point (65, 2002); for each value of dx three models

were fitted: selecting the smoothing parameters using AIC, BIC, and REML (using

the two-dimensional mixed model formulation). As expected, selecting the smoothing

parameter using BIC imposes much heavier smoothing than if we use AIC; we also

find that using REML also results in lighter smoothing than if we use BIC. Another

point worth noting is that in this example the penalty does not seem to enforce the

same amount of smoothing as we increase the number of basis functions (reduce dx).

We see that for smaller values of dx the effective dimensions of the model (tr(H)) are

higher than for larger dx, though there appears to be more consistency if we select

the model using BIC than with either AIC or REML.

3.3.4 Model selection

Once the basis and penalty have been chosen for the model we must choose a criterion

for selecting our model. The premise of P -splines is that the number of splines in

our basis should not dramatically effect the fit of the model. Table 3.1 shows the

output from a P -spline model fitted to the assured lives data with the smoothing

parameter selected by AIC, BIC and REML. The most striking feature of these data

is the dramatic difference in the degrees of freedom of the fitted model depending on

which criterion is used. As expected the AIC prefers more flexible models to the BIC

due to the lower weight given to model complexity in (2.35). We also note that the

REML criterion also tends to select more flexible models than BIC; this is perhaps

evidence to support Kauermann (2005) who used an asymptotic argument to show

that REML has a tendency to under smooth in large sample problems. It is also worth

noting that the degrees of freedom of the selected model is quite variable, tending to
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increase as we introduce more basis functions. Over all BIC appears to be the best

model selection criterion for this problem; in particular we note that the effective

dimensions of the model appears least effected by the size of the basis when we select

by BIC.

3.3.5 The general multidimensional P -spline model

The method used for the examples in the previous section can be extended to give

a method for data of any dimension. In the general case, our data will be points in

R
d+1, the first d dimensions establishing the position of the data point, the (d + 1) th

dimension contain the values we wish to smooth. Our aim is to fit a hyper-surface

through the points, which varies smoothly over the first d dimensions.

In the general d-dimensional case we will have a vector of observations on the

response variable y, and a set of vectors x1, . . . ,xd containing the position of each

data point. First we form the basis for the model as

B = Bd2Bd−12 · · ·2B1, (3.29)

where

Bi = Bi(xi) for i = 1, . . . , d. (3.30)

Then, as in the two-dimensional case, there is one penalty for each dimension, with

the overall penalty defined as:

P =
d
∑

i=1

λi

(

d
⊗

j=i+1

Icj

)

⊗ D′
iDi ⊗

(

i−1
⊗

j=1

Icj

)

. (3.31)

A special case in d-dimensions occurs when the data lie in an array. Precisely, the

data would lie in a d-dimensional array, with each dimension indexed by a response

variable, x1, . . . ,xd. The mortality data is a two-dimensional example of this struc-

ture, and the d-dimensional fitting procedure is a generalisation of this example. We

form what would be the one-dimensional marginal basis for each dimension

Bi = Bi(xi), i = 1, . . . , d, (3.32)

the full basis for the model is then the Kronecker product of these marginal bases:

B =
d
⊗

i=1

Bi. (3.33)
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The penalty for this model is the same as in the scattered case, given in expression

(3.31).

The models described in this chapter are not practical to implement beyond three

dimensions. If we imagine a four-dimensional example with only ten basis functions

used for the marginal bases of each dimension, then the full four-dimensional basis

still has ten thousand columns. Using the penalized scoring algorithm in this case

requires solving a system of ten thousand equations, beyond the capability of most

computers currently available. Even in the three-dimensional case we are at the limit

of most machines if we try and solve with one thousand parameters. Solving the

equations is not the only problem: simply storing the regression matrix can be quite

a restriction on the size of models that can be fitted. Taking the two-dimensional

mortality data as an example and using one knot every five years, we end up with

a regression matrix that will be 4004 × 266. Fortunately, as we will see in the next

chapter, there are methods that can avoid the calculation and storage of this matrix.

3.3.6 Forecasting

Following the discussion of multi-dimensional smoothing in the previous section and

the discussion of one-dimensional forecasting in Section 2.8 we now present two-

dimensional forecasting using P -splines with reference to the assured lives data. We

seek a forecast of the mortality schedule across ages for, say, twenty years into the

future. As in Section 2.8 we follow the method proposed by Currie et al. (2004) with

the modification described in Section 2.8 to improve computational efficiency.

As in the one-dimensional case forecasting is treated as a missing data problem.

We first extend the year index to cover the years included in the forecast. The B-

spline basis is then evaluated over the extended index to give the extended regression

matrix B∗
y; we then remove the extra rows from B∗

y to give

B+
y = [ By

... 0 ]; (3.34)

this is exactly the same as the one-dimensional case described in Section 2.8. The

two-dimensional basis is then obtained using the Kronecker product, B+ = B+
y ⊗Ba.

The penalty is again applied to coefficients in the same row and column using the
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Table 3.1: Numerical output from the two-dimensional P -spline model, showing the

values of the smoothing parameters, the effective dimensions, and the deviance for

varying dx and with different model selection criteria

dx λa λa tr(H) Deviance AIC BIC REML

10 0.000 0.000 104.094 6830.045 7038.233 7692.778 6283.114

5.732 22.347 46.382 7028.953 7121.717 7413.368 6723.236

0.770 5.239 56.052 6972.281 7084.386 7436.844 6765.587

9 0.206 0.315 78.917 6816.493 6974.327 7470.563 6767.044

9.680 25.400 51.373 6948.020 7050.766 7373.800 6745.888

1.056 4.479 65.278 6860.360 6990.916 7401.385 6798.962

8 0.000 4.804 85.718 6787.319 6958.756 7497.755 6672.973

13.162 68.034 53.695 6923.858 7031.247 7368.881 6748.397

1.570 11.196 71.495 6825.068 6968.058 7417.621 6812.571

7 0.033 12.932 92.204 6725.279 6909.687 7489.469 6794.877

28.572 107.510 57.709 6883.627 6999.045 7361.922 6737.290

2.470 18.132 81.798 6757.690 6921.285 7435.632 6831.559

6 1.438 24.289 101.638 6654.757 6858.032 7497.132 6849.916

36.252 239.439 62.224 6834.612 6959.060 7350.330 6754.482

3.504 33.870 94.521 6671.563 6860.604 7454.954 6855.130

5 5.211 49.778 115.217 6628.373 6858.807 7583.297 6853.599

74.892 627.143 63.153 6841.629 6967.935 7365.043 6721.439

6.851 76.969 106.798 6646.565 6860.160 7531.707 6855.904

4 10.471 0.653 212.352 6327.391 6752.096 8087.374 6778.813

144.089 1363.977 67.462 6805.713 6940.637 7364.841 6713.590

12.497 126.742 130.762 6530.646 6792.170 7614.409 6878.780

3 18.370 2.715 292.246 6040.743 6625.235 8462.889 6819.492

290.978 3640.963 71.371 6786.123 6928.866 7377.651 6698.222

23.817 249.840 162.661 6404.315 6729.638 7752.457 6897.654
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penalty in (3.24). For efficiency B+ is used in the scoring algorithm, and, once the

smoothing parameters and regression coefficients have been selected, the full model

matrix, B∗ = B∗
y ⊗ Ba, can be used to obtain the forecasted values.

We use the assured lives data to illustrate the forecasting method for a twenty

year forecast. In Section 2.8 we defined B∗
y and B+

y , which are 72 × 18 and 52 × 18

respectively and from the previous section we have Ba, 77×19, giving B+ dimension

4004 × 342. Figure 3.7 shows the smoothed and forecasted log mortality rates with

the smoothing parameter selected by BIC (as mentioned in Section 2.4 AIC tends

to under smooth with large data sets). Figure 3.8 shows the cross sections of the

age profile changing over time. Figure 3.9 shows individual age cross sections in

more detail, plotted with the raw data points and with a 95% confidence interval

calculated as the diagonal elements of (2.76). It is not easy to see from this plot, but

the forecast is no longer linear for each age. In the two-dimensional model there are

two penalties acting on the coefficients in the forecast region with each attempting

to enforce linearity in that direction. For this particular data set the forecasting

procedure appears relatively successful; this is because a larger smoothing parameter

was selected for year than for age, so the penalty is more inclined to force linearity in

the year direction.

Sometimes, however, the combination of second order penalties in each direction

can lead to strange results when forecasting. For example, if we take population mor-

tality data from England and Wales (ages 20−89, and years 1962−2002) and perform

a forecast using the standard penalty we obtain the forecast shown in Fig. 3.10 and

Fig. 3.11. We see that as the forecast moves further into the future the limiting func-

tion in the age direction takes over and linearity is enforced in the age direction. The

dominance of the age penalty in the forecast region is caused by a larger smoothing

parameter for age than year being selected to smooth the surface where we have data;

but when the data runs out the penalties take over and result in this strange fore-

cast. One could solve this problem by tampering with smoothing parameters until a

satisfactory forecast was obtained. Changing the smoothing parameters to alter the

forecast is rather subjective and we would prefer a methodology that automatically

produced a sensible forecast. A possible solution to this problem is to change the
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Figure 3.7: Perspective plot of the forecasted mortality surface.
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Figure 3.8: Age cross-section of the forecasted mortality surface.
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Figure 3.9: Plots of the age cross-sections with 95% confidence intervals.

structure of the penalties, and thus the limiting functions obtained in the forecast.

Using P -splines in this problem, we benefit from the understanding we have of how

the basis functions behave in conjunction with the penalty: we can design a penalty

to improve the forecast. We could start by increasing the order of the penalty in the

age direction; a third or fourth order penalty would result in a quadratic or cubic

function in the age direction in the forecast region, but we are then faced with the

same problems with polynomials that were described in Section 2.1. An alternative

solution is to replace the age penalty with a cross-penalty term of the form

P c = λcD
′
yDy ⊗ D′

aDa. (3.35)

This can be interpreted as a penalty that maintains differences in differences. Fig-

ure 3.12 and Fig. 3.13 show the results of forecasting using the England and Wales

population data using the penalty

P = λc(D
′
y,1Dy,1 ⊗ D′

a,1Da,1) + λy(D
′
y,2Dy,2 ⊗ Ica

), (3.36)

where Dy,1 and Da,1 are first order difference matrices for age and year respectively,

and Dy,2 is a second order difference matrix for year. Using this combination of cross-
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penalty with a second order year penalty the forecast seems to follow the trend in

the data while retaining the familiar age structure in the forecast region, as shown in

Fig. 3.13.
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Figure 3.10: Perspective plot of the two-dimensional mortality surface for England

and Wales population data using the standard penalty in (3.28).
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Figure 3.11: Cross-section plot of the two-dimensional mortality surface for England

and Wales population data using the standard penalty in (3.28).
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Figure 3.12: Perspective plot of the two-dimensional mortality surface for England

and Wales population data using the cross penalty in (3.36).
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Figure 3.13: Perspective plot of the two-dimensional mortality surface for England

and Wales population data using the cross penalty in (3.36).
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Chapter 4

Array Methods

In the previous chapter we looked at multidimensional smoothing, where it was noted

that as the number of dimensions increases we can run into computational problems.

In this chapter we look at some methods that can be used to reduce the computational

overhead for models with a grid structure on the observations. Although these meth-

ods cannot help in high dimensional problems where the sheer number of parameters

and data points becomes a problem, they will significantly reduce the storage as well

as the computational requirements in two- and three-dimensional problems. These

methods contain, as a special case, a version of Yates’s Algorithm (Yates, 1937). Some

of the identities described had been noted by de Boor (1979), however it was first Eil-

ers et al. (2006) and then Currie et al. (2006) who showed how these methods could

be extended and exploited to fit models with a Kronecker product structure without

multiplying up the full basis, and in the process make storage and computational

savings.

This chapter describes array methods in general terms; in the next chapter we will

apply these methods to various models of mortality.

4.1 Introduction

The content of this chapter follows from a well known identity that can be found in

most books on linear algebra (see for example Harville (1997))

(B ⊗ A)vec(X) = vec(AXB′) (4.1)
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for any conformable matrices A, B and X. What is not widely recognised is that

the form on the right is more efficient in terms of computation and storage. The

savings in storage are obvious, as on the left hand side we have to multiply up and

store the matrix B ⊗ A, whereas on the right hand side the multiplication is done

separately with A and B. We also get a surprise computational saving, as the number

of multiplications required on the right hand side is an order of magnitude less than

required on the left.

We begin by looking at Yates’s algorithm in Section 4.2, which has been used

in factorial design problems. We show that this can be viewed as an alternative

form of (4.1). However, we go on to show that the form in (4.1) lends itself more

easily to higher dimensional generalizations, and also allows us to generalize to matrix

operations other than the matrix-vector operation.

In Section 4.3 we will see how this type of matrix-vector multiplication can be

extended to higher dimensions, and go on to show in Section 4.4 that similar methods

are available for other frequently used matrix operations. In Section 4.5 we give a

comparison of computational results for the array methods and traditional methods.

Finally, in Section 4.6 we show how an array structure can sometimes be obtained

even if initially the data do not seem to fit such a structure.

4.2 Yates’s Algorithm

The original motivation for Yates’s Algorithm was in the analysis of factorial design

experiments. The algorithm is best explained with reference to an example, so we will

describe how it is used in a 23 factorial experiment. In a 23 factorial experiment we

wish to analyze the effects of three factors (each with two levels) and their interactions

on a response variable. To analyze the effect of each factor we use the contrast matrix

X i =





1 1

−1 1



 (4.2)
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for i = 1, 2, 3. In order to analyze the factors together with all interactions we use

the Kronecker product of the individual contrast matrices

X =









































1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1









































. (4.3)

Essentially Yates’s algorithm is based on the observation that X has a cube root,

X̆
3

= X, (Gower, 1982) with the very simple form

X̆ =









































1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

−1 1 0 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 −1 1









































. (4.4)

We can then evaluate Xy recursively using X̆(X̆(X̆y)) with the equivalent of sparse

matrix methods to avoid onerous multiplications by zero. With this description of

the Yates’s algorithm it is easy to see it is a special case of an algorithm due to Good

(1958), who showed that for the square matrices A (m × m) and B (n × n) that

B ⊗ A = B̃Ã (4.5)
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where

Ã =











a1· ⊗ In

...

am· ⊗ In











=















































a1· 0 . . . 0

0 a1· . . . 0

...
...

...

0 0 . . . a1·

a2· 0 . . . 0

0 a2· . . . 0

...
...

...
...

...
...

0 0 . . . am·















































and B̃ =











b1· ⊗ Im

...

bn· ⊗ Im











(4.6)

and ai· and bi· are the i th rows of A and B respectively.

We can use (4.5) to efficiently calculate the matrix-vector product

(B ⊗ A)x = B̃(Ãx), (4.7)

where sparse matrix methods are used to efficiently multiply by Ã and B̃. Compar-

ing (4.1) with (4.7) we can see that the methods basically amount to the same thing:

splitting the multiplication of the Kronecker product into its components and multi-

plying them separately. The only difference is that in (4.1) we ensure the components

conform by re-shaping the vector, and in (4.7) we reposition the components of the

Kronecker product. However, the method in (4.1) has two advantages. Firstly, it can

be applied when A and B are not square, and secondly, it has a natural extension to

multiple Kronecker products, as shown in the next section.

4.3 Higher Dimensions

In this section we will show how we can extend the identity in (4.1) to higher dimen-

sions. For example, how could we efficiently perform the multiplication

(C ⊗ B ⊗ A)x, (4.8)

using a method similar to (4.1)? To solve this problem we first note that the right

hand side of (4.1) can be written as

vec
(

(

B(AX)′
)′
)

. (4.9)
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We see that the operation is now performed by taking A and B in turn, and multi-

plying them onto the correct dimension of X (using the transpose). Taking (4.9) as

a base case, one might expect to be able to write something like

(C ⊗ B ⊗ A)vec(X) = vec

(

(

C
(

B(AX)′
)′
)′
)

. (4.10)

However, looking at this more closely we see that unless the number of rows in A

is equal to the number of columns in C then the right hand side does not conform,

because the matrix C is being multiplied on to the same dimension as A. In order

for (4.10) to behave in the same way as (4.1) we require that X has three dimensions.

However, the normal rules of linear algebra do not apply to three-dimensional arrays,

so in order to compute (4.10) we need to define how a matrix is multiplied onto an

array with more than two dimensions, and also define the transpose of an array with

three or more dimensions. A matrix-array multiplication is a natural extension of

matrix multiplication.

Definition 4.1 For the n1 × c1 matrix A and the c1 × c2 × · · · × cd array X, the

product AX is the n1 × c2 × · · · × cd array whose i1i2 . . . ithd element is

c1
∑

s=1

ai1,sxs,i2,...,id . (4.11)

Clearly for d = 2, X is a matrix and (7.1) defines the usual matrix product. This

definition can be interpreted as a regular matrix product by contracting the second to

dth dimensions of X into one, giving a c1×(c2 . . . cd) matrix and then multiplying AX

in the usual way. However, this interpretation does little to improve our understanding

of (4.10), and we prefer to interpret X as an array.

The transpose of a d-dimensional array is achieved simply by permuting its di-

mensions.

Definition 4.2 The transpose, X ′, of the c1 × c2 ×· · ·× cd array X, is the c2 ×· · ·×

cd × c1 array such that

x′
i2,...,id,i1

= xi1,i2,...,id . (4.12)

Once again for d = 2 we obtain the usual definition of a matrix transpose.
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With these definitions it is possible to efficiently multiply any Kronecker product

with a vector. For the product

(Ad ⊗ · · · ⊗ A1)x, (4.13)

where A1, . . . ,Ad are n1 × c1, . . . , nd × cd dimensional matrices respectively and x is

a vector of dimension c1 . . . cd, the algorithm is as follows

• Re-dimension x into a d-dimensional array X, c1×· · ·×cd, such that x = vec(X)

• Perform the following multiplications and transpositions

AX =
(

Ad . . .
(

A2(A1X)′
)′
)′

. (4.14)

• Re-dimension AX to give Ax = vec(AX).

A proof of (4.14) is given in Currie et al. (2006). A strong heuristic justification for the

algorithm can be seen by comparing (4.9) with (4.14). In the two-dimensional case the

two components B1, n1×c1, and B2, n2×c2, of the Kronecker product, B2⊗B1, are

taken in turn and multiplied onto the appropriate dimension of the matrix X, c1×c2.

This method is then inducted into d dimensions in (4.14), where the d components

of the Kronecker product are taken individually and multiplied onto the appropriate

dimension of the array, X, c1 × . . . × cd. In fact to obtain the final answer, it does

not matter in which order we multiply the components provided we multiply them

onto the correct dimension. This can be easily seen in the two-dimensional case upon

observing that

(

B(AX)′
)′

= AXB′ = (BX ′A′)′ =
(

A(BX ′)′
)′

. (4.15)

The algorithm (4.14) is just a convenient and systematic way of performing the mul-

tiplications.

To illustrate this interpretation Appendix C.1 shows a graphical representation of

the method being applied in a three-dimensional case. As we see each matrix comes in

turn to be multiplied onto the array, which is rotated after each multiplication so the

next matrix is matched with the corresponding dimension of the array. An alternative

method would be to multiply each matrix directly onto a specified dimension without

rotation of the array, the graphical representation of this would show the matrices

coming from different directions without the rotation of the array.
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4.4 General Array Methods

4.4.1 Array Notation

In subsequent sections we will frequently be referring to multidimensional arrays.

These arrays will often correspond to re-arrangements of matrices, so in order to

make the connections between objects clear, we will describe our array notation in

this section.

Providing a comprehensive array notation is quite challenging, and can be quite

long-winded. Here we will simply specify a notation for our purpose; for a more

complete solution see Harshman (2001). The main requirements of our notation will

be to distinguish between a matrix and another array arrangement of its elements;

but we will also need to be able to specify sub-arrays of an array. For a matrix X if

we wish to specify some array arrangement of its elements we will represent this as
a

X,

and for clarity we will also refer to X as
m

X. In order to select sub-arrays we will use a

similar notation to our matrix notation, using the • symbol to represent an unspecified

index. For a four-dimensional array
a

X, we would use
a

X2,•,4,• to represent the two-

dimensional sub-array (matrix) of all the elements of
a

X in the second position of the

first dimension and fourth position of the third dimension. The precise dimensions of

an array will be made clear in the situation. In particular, the vector x, n1 . . . nd × 1,

has the array form
a

X, n1 × . . . × nd, such that vec(
a

X) = x.

4.4.2 Other Array Operations

The method described in (4.14) to efficiently multiply a Kronecker product matrix by

a vector is interesting and is useful in other applications, but we can make the method

more widely applicable by describing efficient methods for other matrix operations.

It was Currie et al. (2006) who first applied other Kronecker product methods to

the penalised scoring algorithm

(B′W̃δB + P )θ = B′W̃δz̃, (4.16)

where B is a Kronecker product. We introduce their methods in this context before

describing a slightly different interpretation, and some generalizations. We will usually
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write the diagonal weight matrix as Wδ but occasionally we will write it as
m

Wδ to

emphasize its matrix form.

The penalized scoring algorithm can be broken down into smaller components.

The first requirement is to calculate the diagonal weight matrix, Wδ. For a penalized

Poisson GLM with canonical link this is a diagonal matrix containing the current

values of the mean

Wδ = diag(µ) = diag(g−1(η)) = diag(e ∗ exp(Bθ)), (4.17)

where e = vec(E) is the vector of exposures, and ∗ indicates element-by-element

multiplication. The non-zero elements of this matrix can be computed efficiently by

using the algorithm (4.14) in the previous section to calculate Bθ as

Bθ = vec

{

(

Bd . . .
(

B2(B1Θ)′
)′
)′
}

, (4.18)

where Θ is a d-dimensional array such that vec(Θ) = θ. In the two-dimensional case

this is simply

vec(B1ΘB′
2). (4.19)

Next we have to calculate the working vector, z. From (2.67) we have

z = Bθ + W−1
δ (y − µ). (4.20)

We see that this only requires the efficient calculation of the linear predictor shown in

(4.18). We can also use the same algorithm to evaluate the right hand side of (4.16).

In matrix notation the product
m

Wδz = diag(
m

Wδ) ∗ z is a vector of length n1n2 . . . nd;

this vector can be put into a n1 × n2 × . . .× nd dimensional array. Thus the product

B′
m

Wδz can be computed as

vec

{

(

B′
d . . .

(

B′
2(B

′
1(

a

Wδ ∗
a

Z))′
)′
)′
}

, (4.21)

where
a

Wδ is the n1 × . . . × nd dimensional array such that

vec(
a

Wδ) = diag(
m

Wδ) = diag(Wδ). (4.22)

To compute the left hand side of (4.16) we require a new operation to deal with

the inner product, B′
m

WδB. In matrix form
m

Wδ is a diagonal matrix of dimension
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n1n2 . . . nd × n1n2 . . . nd, but we can efficiently calculate its diagonal elements using

(4.18). Currie et al. (2006) show that if we keep the diagonal elements in array form,

then the inner product will contain the same elements as the array product

(

G′
d . . .

(

G′
2(G

′
1

a

Wδ)
′
)′
)′

(4.23)

where Gi = Bi2Bi, where the row tensor, 2, is defined in (3.19). In order to match

the elements of B′
m

WδB with (4.23) we can use the following algorithm:

• Take the output of (4.23), and factor out each dimension to give a c1 × c1 × c2 ×

c2 × · · · × cd × cd array.

• Permute the indices to give an c1 × · · · × cd × c1 × · · · × cd array

• Contract the first d dimensions and the last d dimensions to form a c1 . . . cd ×

c1 . . . cd dimensional matrix. This will equal B′
m

WδB.

We will not reproduce the proof of this algorithm, which can be found in Currie et al.

(2006), but instead give a more general explanation of why it works.

The algorithm works by taking advantage of two aspects of the structure of the

matrix B′
m

WδB. First the array structure of
a

Wδ allows us to sequentially multiply

onto each dimension, so we achieve similar savings in storage and computation to

those obtained in (4.18). Secondly the use of the row tensor, allows us to ignore the

zero elements in
m

Wδ. Even in ordinary linear algebra if we were to calculate an inner

product with a diagonal matrix we would not store it as a full matrix but rather as a

vector which is then multiplied directly onto one of the matrices in the inner product

before multiplying them together. The array
a

Wδ should naturally be a 2d-dimensional

array, but we prefer to work with the d-dimensional sub-array which consists of its

non-zero values. If
a

Wδ were in its 2d-dimensional form we would first multiply B on

to its “front” d dimensions, forming the B′
m

Wδ part, and then multiply B onto its

“back” d dimensions which gives the full product B′
m

WδB in array form. With
a

Wδ

stored in its d-dimensional form there are simply not enough dimensions to pre- and

post-multiply; however using the row tensor allows us to perform both multiplications

at the same time. As a consequence of performing the multiplication in this way we

obtain a strange d-dimensional array with its “front” and “back” dimensions mixed
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up, and we have to factor and sort the dimensions in order to recover the familiar

matrix arrangement of the elements.

The two algorithms above are required in order to fit the penalized scoring al-

gorithm, but there are other algorithms for Kronecker products. For instance, in a

penalized GLM the variances of the fitted values are given by

diag(var(η̂)) = diag
(

B(B′WδB + P )−1B′
)

. (4.24)

Remarkably, Currie et al. (2006) also show that the diagonal elements of (4.24) can

be found efficiently using a now familiar expression

(

Gd . . .
(

G2(G1

a

S)′
)′
)′

; (4.25)

here
a

S, c2
1 × . . .× c2

d is the array form of the matrix
m

S = (B′WδB + P )−1, c1 . . . cd ×

c1 . . . cd, although the identity holds for any matrix
m

S.

We now turn our attention to additive models. With two additive terms we con-

sider a model of the form

AθA + BθB (4.26)

where A = Ad ⊗ · · · ⊗ A1 and B = Bd ⊗ · · · ⊗ B1; here Ai and Bi are ni × cai
and

ni × cbi
dimensional matrices respectively. We require the evaluation of a partition

matrix of the form




A′WδA A′WδB

B′WδA B′WδB



 (4.27)

The two diagonal blocks can be evaluated using (4.23), but the off-diagonal blocks

are of the form:

(Ad ⊗ · · · ⊗ A1)
′Wδ(Bd ⊗ · · · ⊗ B1) (4.28)

It can be shown that these off-diagonal products can be evaluated using (4.23), by

setting Gi = Bi2Ai (see Example 7.1 of Currie et al., 2006). This form of column

partitioned matrix of Kronecker products also occurs in the multi-dimensional version

of the mixed model representation of P -splines described in Section 3.3.3.

We now describe a key contribution of this thesis, and show how we can can

generalize the methods described by Currie et al. (2006) to other matrix products.

A good starting point is the inner product with a non-diagonal matrix. To clarify,
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we seek an efficient method to evaluate the product B′WB for a general matrix W ,

where B = Bd⊗· · ·⊗B1. When W is a diagonal weight matrix it is efficient to store

the non-zero elements in a d-dimensional array, but if W does not have this special

structure we need to arrange the elements into a 2d-dimensional array. To be precise

we would re-arrange the elements into a n1 × n1 × . . . × nd × nd array such that

a

W i1,j1,...,id,jd
=

m

W δ(i1,...,id,n1,...,nd),δ(j1,...,jd,n1,...,nd), (4.29)

where we emphasize that in (4.29) the suffix δ indicates the function

δ(i1, . . . , id, n1, . . . , nd) = i1 +
d
∑

s=2

(

(is − 1)
s−1
∏

t=1

nt

)

. (4.30)

It is worth noting that this clumsy notation is easily implemented in R using the

aperm() function; for example, in three dimensions we start with a matrix, Wm, of

dimension n1n2n3 × n1n2n3 and applying

aperm(array(Wm,c(n1,n2,n3,n1,n2,n3)), c(1,4,2,5,3,6))

we obtain an array of dimension n1 × n1 × n2 × n2 × n3 × n3. This arrangement of

the array
a

W is such that d-dimensional sub-arrays obtained by holding the indices

of even dimensions fixed contain the same elements as the columns of the matrix

arrangement; for example

vec(
a

W •,1,...,•,1) =
m

W •,1, (4.31)

with the corresponding relationship for rows

vec(
a

W 1,•,...,1,•) = (
m

W 1,•)
′. (4.32)

With
a

W in this arrangement we can obtain the elements of the matrix product

B′
m

WB with the recursive array product

(

B′
d

(

B′
d . . .

(

B′
1(B

′
1

a

W )′
)′
)′
)′

, (4.33)

which leaves a c1 × c1 × . . . cd × cd dimensional array. We then retrieve the matrix

arrangement B′
m

WB by permuting the indices of (4.33) and grouping the first d and

last d dimensions.
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We note some similarities and some differences between (4.23) and (4.33). Firstly

both formulae are designed to evaluate the weighted inner product B′
m

WB. In the

former we take advantage of the diagonal form of
m

W by multiplying each Bi onto the

front and back of
a

W simultaneously through the use of the row tensor function. In

contrast, in (4.33) we sequentially multiply each matrix Bi onto the front and then

onto the back of
a

W .

The algorithms in (4.23) and (4.33) are the extremes, and in some cases we may

have a weight matrix somewhere in between the two. In a mixed model for example,

we may have a two-way model with a correlation structure on the first factor, which

would result in a block diagonal structure to the covariance matrix. Alternatively,

a correlation structure on the second factor would result in a diagonal band matrix.

These structures of the weight matrix can also be computed efficiently by “mixing

and matching” the methods for diagonal and full weight matrices. In a d-dimensional

problem we may have h dimensions of the inner product which are filled out with

interactions (i.e. h dimensions which require two dimensions in the weight matrix)

and d − h dimensions without interactions. We would re-arrange our weight matrix,
m

W , into an array,
a

W , with d + h dimensions. To form the inner product we use the

appropriate method depending on whether each dimension has an interaction or not.

For those dimensions which are represented by two dimensions in the weight matrix

we multiply the corresponding Bi matrix onto both dimensions, and for those with

only one dimension we multiply the row tensor of the corresponding matrix Gi onto

those dimensions. Once we have finished the multiplications, those dimensions that

were multiplied by a row tensor have to be factored out, then we must perform the

shuffle of the dimensions, and finally re-arrange the elements into the appropriately

dimensioned matrix. The method is most easily demonstrated with reference to an

example.

Suppose we have the marginal matrices

B1 =

















2 3

3 4

1 5

4 2

















and B2 =











3 2

1 4

2 1











(4.34)
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and a block-diagonal weight matrix

m

W =

































































2 2 0 5 0 0 0 0 0 0 0 0

0 3 3 2 0 0 0 0 0 0 0 0

1 4 3 4 0 0 0 0 0 0 0 0

0 4 3 0 0 0 0 0 0 0 0 0

0 0 0 0 2 1 2 1 0 0 0 0

0 0 0 0 1 3 1 1 0 0 0 0

0 0 0 0 1 0 1 3 0 0 0 0

0 0 0 0 4 3 0 1 0 0 0 0

0 0 0 0 0 0 0 0 2 3 1 5

0 0 0 0 0 0 0 0 3 2 1 2

0 0 0 0 0 0 0 0 4 0 2 3

0 0 0 0 0 0 0 0 4 1 1 3

































































. (4.35)

Then

B = B2 ⊗ B1 =

































































6 9 4 6

9 12 6 8

3 15 2 10

12 6 8 4

2 3 8 12

3 4 12 16

1 5 4 20

4 2 16 8

4 6 2 3

6 8 3 4

2 10 1 5

8 4 4 2

































































, (4.36)

and

B′
m

WB =

















3086 4111 2468 3314

4881 6076 3758 4706

2468 3314 3869 5156

3758 4706 5324 6685

















. (4.37)
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We will now show how to use array methods to produce the same result, and we will

illustrate the array methods with some R code. We can rearrange non-zero elements

of
m

W into a 4 × 4 × 3 array,
a

W , such that

a

W •,•,1 =

















2 2 0 5

0 3 3 2

1 4 3 4

0 4 3 0

















a

W •,•,2 =

















2 1 2 1

1 3 1 1

1 0 1 3

4 3 0 1

















a

W •,•,3 =

















2 3 1 5

3 2 1 2

4 0 2 3

4 1 1 3

















. (4.38)

We first “pre”-multiply B1 onto the first dimension and perform one rotation on the

result,

X1 <- rotate.array(mat.array(t(B1), W))

and we obtain the array, X1, 4 × 3 × 2, where

(X1)•,•,1 =

















5 24 33

33 23 16

24 8 11

20 12 31

















(X1)•,•,2 =

















11 23 46

46 21 19

33 15 19

43 24 44

















. (4.39)

Next, we “post”-multiply B1 onto the second dimension and rotate,

X2 <- rotate.array(mat.array(t(B1), X1))

which leaves the array, X2, 3 × 2 × 2, where

(X2)•,•,1 =











213 365

173 220

249 344











(X2)•,•,2 =











307 468

228 276

280 397











. (4.40)

Finally, since there is no covariance structure on the second variable, we multiply the

row tensor of B2 onto the third dimension of the array and rotate again,

X3 <- rotate.array(mat.array(t(G2), X2))
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and we obtain the array, X3, 2 × 2 × 4, where

(X3)•,•,1 =





3086 4111

4811 6076



 (X3)•,•,2 =





2468 3314

3758 4706





(X3)•,•,3 =





2468 3314

3758 4706



 (X3)•,•,4 =





3869 5156

5324 6685



 .

(4.41)

We can see that this contains the same elements as (4.37). We need to factor out

the third dimension to give a four-dimensional array, permute the indices, and then

convert back to a matrix arrangement; this can be achieved using the R code:

BWB2 <- matrix(aperm(array(X3, c(c.1, c.1, c.2, c.2)),

c(1,3,2,4)), c.1*c.2, c.1*c.2)

and we recover (4.37).

4.4.3 Interpretation and Implementation

In the preceding sections of this chapter we have viewed the array methods purely as a

computational tool for performing operations involving Kronecker products efficiently.

However, often the array interpretation gives a much clearer picture of the situation,

as illustrated by the following examples.

First, we note that when multiplying out a Kronecker product it is just as easy

to form a higher dimensional array as a matrix. For example, two marginal B-spline

bases B1 and B2 can be used to form the two-dimensional basis:

B = B2 ⊗ B1. (4.42)

We normally consider B to be a n1n2 × c1c2 matrix, but it is just as easy to represent

B as a n1×c1×n2×c2 array. The array representation is more closely in keeping with

the definition of tensors used in physics and engineering, and can make the object

B easier to deal with. The statistical package, R, has good in-built functionality

for dealing with arrays, and the code below can be used to plot the two-dimensional

B-spline basis as shown in Fig. 3.5. The code illustrates how treating B as an array

is both easier and importantly more robust than treating it as a matrix. The first
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section of code shows how to produce the plot if we treat B as an array and the

second section if we treat B as a matrix.

#

# Array Method

#

B <- outer(B2, B1)

B.sub <- matrix(0, nrow(B1), nrow(B2))

for(i in seq(4, ncol(B1), 3)){

for(j in seq(4, ncol(B2), 3)){

B.sub <- B.sub + B[,j,,i]

}

}

persp(A, Y, B.sub, theta = -30, phi = 30, zlim = c(0,0.7),

scale = F, expand = 20, ticktype = "detailed",

xlab = "Age", ylab = "Year", zlab = "b()")

#

# Matrix-vector method

#

B <- kronecker(B2, B1)

B.sub <- rep(0, nrow(B1) * nrow(B2))

for(i in seq(4, ncol(B1), 3)){

for(j in seq(4, ncol(B2), 3)){

B.sub <- B.sub + B[,i + ((j - 1) * ncol(B1))]

}

}

B.sub <- matrix(B.sub, nrow(B1), nrow(B2))

persp(A, Y, B.sub, theta = -30, phi = 30, zlim = c(0,0.7),

scale = F, expand = 20, ticktype = "detailed",

xlab = "Age", ylab = "Year", zlab = "b()")

With the array method both the data and the indices of the basis functions are in

two-dimensional arrays. The outer function forms a four-dimensional array from the

marginal bases, from which we can easily pick the age and year index for the basis

function we want to plot. Holding the two indices of the basis functions constant

leaves us with a two-dimensional array containing the basis function evaluated over

the age and year grid which can be used directly as the z argument in the three-

dimensional plotting function. In contrast, with the matrix-vector method picking

out the basis functions is complicated by the fact that the index has been vectorised,
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and once the basis function has been identified we have to put the vectorised data

into an array in order to plot the the basis function.

Another area where using arrays can be clearer is in the penalty. In the two-

dimensional model we use the penalty from (3.24)

P = λ1θ
′(Ic2 ⊗ D′

1D1)θ + λ2θ
′(D′

2D2 ⊗ Ic1)θ. (4.43)

From this definition it is not clear how the penalty is acting on the coefficients, but

if we re-write in array form we obtain the penalty

P = λ1

(

vec(D1Θ)
)′

vec(D1Θ) + λ2

(

vec(ΘD′
2)
)′

vec(ΘD′
2). (4.44)

This form makes it clear that the difference matrix D1 is working on the rows of the

coefficient array, and D2 is working on the columns.

Using arrays can also be useful when it comes to computing. We benefit from

the fact that each component of the regression matrix is explicitly attached to a

dimension of the parameter and data array; this insures an extra level of conformity.

For example, in matrix-vector form, a programming slip might evaluate the Kronecker

product basis in the wrong order, this would mean that the basis no longer matched

the data, but the data vector would still conform with this incorrect basis. This bug

might be difficult to track down. Using arrays, trying to multiply the component onto

the wrong dimension would throw an error that the multiplication does not conform,

and we find the problem immediately.

The methods described in Sections 4.3 and 4.4.2 have been implemented to fit the

scoring algorithm (4.16); Currie et al. (2006) and Eilers et al. (2006) give code in R

and Matlab respectively.

In practise implementing these methods in R is reasonably straight forward as

there is already good support for manipulating arrays, in particular all machinery for

re-dimensioning arrays is in place. The only need to revert to matrices is in order to

find the solutions to the linear system, but wrapper functions can be written which

bury the reorganisation of indices, and means the user only need deal with arrays.

Once these functions have been written, implementation of the penalized scoring algo-

rithm is just as easy with arrays as with matrices and vectors. Although we can make
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do by rotating and re-dimensioning the arrays, ideally we would prefer to implement

the methods in a lower level programming language. One would write a class which

stored a Kronecker product as a list of its components, with an overloaded function

for matrix-vector multiplication and calculation of the inner product, combined with

an overloaded method to solve a system of linear equations which accepted “square”

arrays. Implementing the methods in this way would free the practitioner from having

to convert between arrays and matrices. Efficiency could also be improved by multi-

plying the components of the Kronecker product directly onto the correct dimension

of the array without having to perform the rotations.

We now turn to the practical limitations of the array methods. Arguably the most

important aspect of the array methods is the ability to fit a model without having to

multiply and store the full basis, as storing the basis is often the limiting factor in

the size of model that one can work with. With this obstacle removed the limiting

factor becomes manipulation and storage of data and the covariance matrix. Using a

modern computer we can fairly comfortably cope with arrays with up to one million

elements, this puts quite large three-dimensional problems (up to 100 levels in each

dimension) and moderately sized four-dimensional problems (about 30 levels for each

dimension) within our grasp, and would also allow some large two-dimensional models

with a covariance structure on one of the dimensions.

4.5 Computational Results

So far we have only described the methods and algorithms for dealing with Kronecker

products, without giving details of the computational savings obtained by using them.

In this section we will take a two-dimensional example to give an idea of the saving

that can be made. We shall compare the array methods to regular matrix methods,

first by calculating the number of scalar multiplications in each product, and then

showing how this translates into computer time.

In the examples we shall perform comparisons for the following four operations:

• MV - a matrix-vector product

• IPD - an inner-product with a diagonal weight matrix
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• IPB - an inner-product with a block diagonal weight matrix

• IPF - an inner-product with a full weight matrix

For both methods there is some initial calculation required, multiplying out the Kro-

necker product for the matrix method, and forming the row tensors for the array

method; these will not be included in the comparison as they would only need to be

performed once in an iterative algorithm such as (4.16). Tables 4.1 and 4.2 give the

number of scalar multiplications needed to perform each of the operations using array

and regular matrix operations. In this form it is difficult to tell which is the quicker

method; although, for instance, one can see that for the MV operation the number of

multiplications required is the product of 2d numbers, whereas the array operation is

the sum of d products of d + 1 numbers, so provided d was small compared with any

of the ni or ci the array method will be quicker. Table 4.3 shows the number of multi-

plications required for a two-dimensional example with B1 of dimension 90 × 25 and

B2 of dimension 60× 20; here it is easy to see that the array methods perform signif-

icantly better than regular matrix methods, in particular the IPB operation requires

460 times fewer multiplications.

Simply comparing the number of multiplications is not an entirely fair test of the

methods because there is some additional computer overhead required for the rota-

tion of the arrays and repositioning of the elements. An alternative comparison can

be obtained by comparing the time taken to perform the operations on a computer.

Table 4.4 shows the time taken for a computer to complete the calculations for ex-

amples used in Table 4.3. Based on this comparison the two methods are closer, but

with array methods still significantly quicker. The times were calculated using the

statistical package R, but as mentioned in Section 4.4.3 this is not the ideal envi-

ronment for testing and comparing these methods. For larger problems the rotation

of arrays can become quite cumbersome and time consuming for the computer, but

if one was to write a library from scratch to implement the array methods, the se-

quential multiplications could be performed without rotating the array; this would

improve performance. No matter how we multiply matrices onto the array, we reduce

the storage requirements required to fit the model because we do not have to multiply
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Table 4.1: Number of scalar multiplications for various matrix operations using array

methods.

Operation Number of multiplications

MV
∑d

i=1(
∏i

j=1 nj)(
∏d

k=i ck)

IPD
∑d

i=1(
∏i

j=1 c2
j)(
∏d

k=i nk)

IPF {
∑d

i=1 ci(
∏i−1

j=1 c2
j)(
∏d

k=i n
2
k)} + {

∑d
i=1 ni(

∏i
j=1 c2

j)(
∏d

k=i+1 n2
k)}

Table 4.2: Number of scalar multiplications for various matrix operations using matrix

methods.

Operation Number of multiplications

MV
∏d

i=1 nici

IPD
∏d

i=1 nici +
∏d

i=1 nic
2
i

IPF
∏d

i=1 n2
i ci +

∏d
i=1 nic

2
i

Table 4.3: Comparison of the number of multiplications for regular matrix methods

and array methods: an example, B1, 90 × 25, and B2, 60 × 20.

Operation Matrix Methods Array Methods Ratio

MV 2.4e6 1.36e5 17:1

IPD 1.2e9 8.68e6 130:1

IPB 1.27e10 2.76e7 460:1

IPF 1.27e10 8.16e8 15:1
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Table 4.4: Comparison of the timings (seconds) for regular matrix methods and array

methods: an example, B1, 90 × 25, and B2, 60 × 20.

Operation Matrix Methods Array Methods Ratio

MV 0.044 < 0.001 44 : 1

IPD 2.060 0.040 51 : 1

IPB 22.794 0.064 356 : 1

IPF 23.101 3.292 6 : 1

and store the Kronecker product.

4.6 Putting Data on an Array

The array methods discussed so far in this chapter clearly apply to the multi-dimensional

P -spline model described in Section 3.3, but can they be applied in other models?

In this section we show when the array methods can be applied in multi-dimensional

smoothing models, and also show how they can be used in models for longitudinal

data.

For the mortality data in Section 1.3, the data lie on a grid indexed by age and year.

Using the two-dimensional P -spline model we then place a coarser grid of coefficients

over this grid; this is shown graphically in Fig. 4.1. Having the data and coefficients

lie on a grid allows the basis to be formed as a Kronecker product, and the converse

is true: if the basis for a model can be written as a Kronecker product it means that

the data and coefficients both have an interpretation as an array. Often however the

array interpretation is not obvious and we have to re-arrange the data to make use

of the array methods. For example if we wish to smooth the mortality data by age

and year of birth rather than by age and year of observation we no longer obtain a
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Kronecker product basis, because the cohort indicator,

xC = vec(XC) = vec
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
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













(4.45)

cannot be arranged as a repeat of a smaller vector as the equivalent indicators for age

and year can in (3.25). Without the Kronecker product we have to revert to the row

tensor to form the basis and we are unable to take advantage of the array methods.

Figure 4.2 shows the equivalent plot for the age-cohort model as the plot shown in

Fig. 4.1 for age and year. The basis functions have support on a parallelogram in

age and year co-ordinates; if however, we change co-ordinates to age and cohort, we

see that the basis functions return to having support on a square and the coefficients

form a grid. The change of co-ordinates means that the data no longer form a grid,

as shown by the blue points which are missing from the grid. However, using the

forecast method of Currie et al. (2004) we can create dummy data for the points

missing from the grid and use a weight matrix to remove the dummy data from

influencing the fitting procedure. Once the data and coefficients are arranged on a

grid we can proceed with a Kronecker product basis and take advantage of the fast

computational methods.

An area where arrays crop up naturally is longitudinal studies. If we observe

repeated measures on the same subjects, and if the measurements are taken at the

same time for each member of the study then the data form an array. The pig weight

example discussed in Section 2.5.1 is a typical example of a longitudinal study with an

array interpretation. The convention is to store the observations as a double indexed

vector, but if we store the observations as a matrix, with each row corresponding

to a pig, and each column corresponding to a week of the study, we have the array

structure and we can then bring to bear the fast array methods. In this particular

example the relatively small number of observations and parameters mean that the

savings are relatively modest, but in larger studies the computational burden could

be cut dramatically.
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Figure 4.1: A graphical representation of the Age-Period model, green dots - data

points, red rings - central knot position, light blue background - support for a selected

single B-spline

104



1900 1950 2000 2050

0
50

10
0

Year of Observation

A
ge

Figure 4.2: A graphical representation of the Age-Cohort model in regular format,

green dots - data points, red rings - central knot position, light blue background -

support for a selected single B-spline
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Figure 4.3: A graphical representation of the Age-Cohort model in an array format,

green dots - data points, purple dots - dummy data points, red rings - central knot

position, light blue background - support for a selected single B-spline
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Chapter 5

Generalized Additive Array Models

Often a single smooth line or surface is not sufficient to model a particular set of data.

In this case we may require an additive model to explain the processes that gave rise

to the data. In a generalized additive model (GAM) the response variable is modelled

by the sum of p smooth functions

η =

p
∑

i=1

Si(x). (5.1)

GAMs are described in detail by Hastie and Tibshirani (1990), who give many exam-

ples of using GAMs, and introduce the back-fitting algorithm as a tool to fit GAMs

in the general case.

In Sections 5.1 and 5.2 we analyse two sets of mortality data where the basic

smooth model described in Chapter 3 is not successful in modelling the data. In both

cases we propose additive models with two components which give a better expla-

nation of the data, and give a smoother model for the under-lying mortality trend.

For both models the components fall within the penalized likelihood framework, and

each has at least one component which has the array structure described in Chapter

4. Two advantages result: firstly, a penalty can be used to maintain identifiability in

the models and regulate the effect of each component, and secondly we can avoid the

use of the back-fitting algorithm, and fit by adjusting the penalized scoring algorithm

in (2.75). In each case we also describe implementation of the fast array methods

described in Chapter 4. In Section 5.3, we discuss other possible applications for the

models, possible improvements, and further work.
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5.1 Modelling Lexis Data

In this Section we describe a model for mortality data on the Lexis diagram with

reference to German mortality data (Statistiches Bundesamt, 2006). In Section 5.1.1

we describe the Lexis data, and our assumptions for the model. The extra complexity

of the data means we have to adjust the smooth model from Chapter 3 in order to fit

to data in Lexis format. In Section 5.1.2, we show how a basic smooth model can be

fitted using two offset data arrays with corresponding Kronecker product bases. For

the German data in the example we find that a smooth model does not adequately

describe the data, so in Section 5.1.3 we propose an additive model which copes better

with specific features of the data.

5.1.1 Description of the data

In this section we introduce a change from the data described in Section 1.3. The

deaths are indexed by age, year of observation, and year of birth, giving rise to a

format of the data shown in Fig. 5.1.

We assume that we observe census data on a na × ny grid. These data consist

of population counts on the 1st January, grouped by age last birthday for na ages,

over ny years. We represent these counts by the matrix E, and as in Section 1.3

we represent the age and year indices by the vectors xa and xy respectively. We

also observe counts of the number of deaths corresponding to each of the cells in E,

but the deaths are also split by age last birthday at the time of death. Referring to

Fig. 5.1, we see that the exact age at death for the lives in a particular cell in E

span two years, and their age last birthday (at death) will take one of two values. We

will refer to those deaths where the age last birthday at death is the same as the age

last birthday on the preceding 1st January as Type-A deaths, and those for which

age last birthday at death is one year higher as Type-B deaths. Clearly, for any of

the population counts in E it is possible to observe some Type-A and some Type-B

deaths and so we split our death counts into two grids; DA is a na ×ny matrix which

gives the number of Type-A deaths corresponding to each element of E, and DB gives

the corresponding number of Type-B deaths.
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We wish to model the mortality rate within each Lexis triangle, for which we need

an exposed to risk for each triangle. Assuming a uniform age distribution among

the initial population, we can split the exposure time of those who survive equally

between the Type-A and Type-B triangles. Calculating the exposed to risk for the

lives that die is more complicated. We start by assuming a uniform distribution of

deaths in each triangle. To simplify the calculations: for a given age, x, and year, t,

we define u as the time in years since t and v as the age of an individual minus x.

We can then calculate the expected exposure time for those that die as follows; with

reference to the left panel in Fig. 5.2, we can see that lives that die in Type-A triangles

contribute no exposure time in the corresponding Type-B triangle. Therefore, v at

time of death takes a value between 0 and 1, and full value of u at the time of death is

assigned to the exposure in the Type-A triangle. Assuming the uniform distribution

of death over the Type-A triangles means that the joint probability distribution of

age and time at death takes a uniform value of 2 over u and v. The expected exposure

time for a life dying in a Type-A triangle is therefore given by

EA|DA
=

∫ v=1

v=0

∫ u=v

u=0

(2u) du dv

=

∫ v=1

v=0

[u2]v0 dv

=

∫ v=1

v=0

(v2) dv

= [1
3
v3]10

= 1
3
.

(5.2)

The right panel of Fig. 5.2 shows that those that die in Type-B triangles are expected

to contribute some exposure in the Type-A triangles and some in the Type-B triangles,

with v at time of death taking a value between 1 and 0. Those that die in Type-B

triangles contribute u − v + 1 to the exposure in the Type-A triangles and v − 1 to

the Type-B triangles. Assuming a uniform distribution of death, we note the joint

probability distribution of age and time at death also takes a value of 2 over u and v

for Type-B triangles. The exposure time in the Type-A triangle for a life dying in a
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Type-B triangle is therefore given by

EA|DB
= 2

∫ 1

0

∫ u+1

1

(u − v + 1) dv du

= 2

∫ 1

0

[uv − 1
2
v2 + v]u+1

1 du

=

∫ 1

0

(

(u + 1)2 − 2(u + 1) + 1
)

du

=

∫ 1

0

u2 du

= 1
3
,

(5.3)

and the exposure time in the Type-B triangle for a life dying in a Type-B triangle is

given by

EB|DB
= 2

∫ 1

0

∫ u+1

1

(v − 1) dv du

= 2

∫ 1

0

[1
2
v2 − v]u+1

1 du

=

∫ 1

0

(u + 1)2 − 2(u + 1) + 1 du

= 1
3
.

(5.4)

Using (5.2), (5.3), and (5.4) we see that the total exposed to risk for a Type-A triangle

is

EA = 1
2
(E − DA − DB) + 1

3
DA + 1

3
DB

= 1
2
E − 1

6
DA − 1

6
DB;

(5.5)

similarly, we can show for type-B triangles

EB = 1
2
E − 1

2
DA − 1

6
DB. (5.6)

As an aside we note that summing (5.5) and (5.6) we find the total exposure is

E− 2
3
DA− 1

3
DB, which is a generalization of the actuarial estimate of initial exposed

to risk.
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Figure 5.1: Lexis diagram: E lives between age x and x + 1 at year t, DA deaths and

EA years lived in triangle A, DB deaths and EB years lived in triangle B.

We can also calculate the expected age and time of death in each triangle. For a

life that dies in A the expected time of death is t + 1
3

and the expected age at death

is x + 2
3
; similarly, for a life that dies in B the expected time of death is t + 2

3
and

the expected age at death is x + 4
3
. The situation is summarised in Fig. 5.1. We now

model the number of deaths as follows

dA,x,t ∼ P(eA,x,t µx+2/3,t+1/3) (5.7)

dB,x,t ∼ P(eB,x,t µx+4/3,t+2/3) (5.8)

where µx,t is the hazard rate at age x and time t. In this model the deaths and

exposures in triangles of Type-A are located on a rectangular grid. The same remark

applies to the data in triangles of Type-B so the whole data set consists of two

interleaved grids. We aim to fit a smooth surface through the data, but the added

complexity in the data structure means that without care we would have to abandon
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Figure 5.2: Life lines: The left panel shows a life dying in a Type-A triangle, and that

this life only contributes exposure to the Type-A triangle. The right panel shows a

life dying in a Type-B triangle, and how much exposure this life contributes to both

the Type-A and Type-B triangles.

the array methods described in Chapter 4.

In the next section we will show how the two-dimensional surface can be fitted

using the array methods. To illustrate the methods, we will be using the German

mortality data (Statistiches Bundesamt, 2006) for which we have population counts

for 13 years and 70 ages, with xa
′ = (20, . . . , 80) and xy

′ = (1990, . . . , 2002). For

this particular example using array methods provides a small computational saving

because the data set is so small, but the methods could be applied to a larger data

set with the same structure, and again the use of array methods also helps to clarify
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Figure 5.3: The marginal basis for year for the German mortality data showing the

two inter-leaved bases in red and blue.

the connection between the basis and the parameters in the model.

5.1.2 A two-dimensional smooth surface

As in Chapter 3 we start by defining our basis for the model. For the German data the

data points are on two grids: the type-A data points are centred at ages (202
3
, . . . , 802

3
)

and years (19901
3
, . . . , 20021

3
), and the type-B data points are at ages (211

3
, . . . , 811

3
)

and years (19902
3
, . . . , 20022

3
). In order to fit a single smooth surface to both grids

we must use a single basis for both grids. Referring to Fig. 5.3 we can see how the

marginal basis for year is obtained: a B-spline basis is placed over a knot sequence

which covers the range (19901
3
, 20022

3
), we then evaluate the splines separately for the

Type-A and Type-B data points giving rise to marginal regression matrices BAy
and

BBy
. Similarly we obtain the regression matrices BAa

and BBa
for age, by evaluating

an age basis covering the range (202
3
, 811

3
) for the Type-A and Type-B triangles.

The two-dimensional regression matrices for both types can then be formed using the

Kronecker products, BA = BAy
⊗ BAa

and BB = BBy
⊗ BBa

. The main point

here is that the same coefficients are applied to both regression matrices, because
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both regression matrices are derived from the same underlying basis but evaluated at

different positions. Consequently, our linear predictors for the two types of triangle

are

log(τA) = BAθ, log(τB) = BBθ (5.9)

or




log(τA)

log(τB)



 =





BA

BB



θ (5.10)

or writing (5.9) in array form we have

log(T A) = BAa
ΘB′

Ay
and log(T B) = BBa

ΘB′
By

. (5.11)

As usual a penalty is applied to adjacent coefficients in rows and columns of the

parameter array Θ, and we use the penalty from (3.24)

P = λa(Iy ⊗ D′

a
Da) + λy(D

′

y
Dy ⊗ Ia). (5.12)

In order to fit a GLM we also need the matrices B′WB and B′Wz, and so reverting

to regular linear algebra we can show that

B′WB =
[

B′
A B′

B

]





W A 0

0 W B









BA

BB





= B′
AW ABA + B′

BW BBB

(5.13)

and similarly

B′Wz = B′
AW AzA + B′

BW BzB. (5.14)

Clearly all the components in (5.13) and (5.14) have an array form and so we can use

the methods from Chapter 4 to compute them efficiently.

Continuing with the example of the German mortality data, Fig. 5.4 shows a com-

parison of the fitted smooth with the unsmoothed raw data for the Type-A triangles.

In the raw data we can see diagonal crests and troughs in the data; these are cohort

effects. The most noticeable of these coincide with the cohort that would have been

aged about 20 at the start of the second world war, so it seems likely that the war

is the contributing factor. We can see that the smooth surface in Fig. 5.4 is heavily
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Figure 5.4: Cohort effects: observed mortality surface (top) for triangles of type A,

and smooth surface for model in Section 5.1.2 plotted at data points of type A.

influenced by the cohort effects as the surface attempts to flex to allow for the peaks

and troughs. However there is not enough flexibility in the surface to make a good job

of adjusting for the shocks, but in attempting to do so weaker smoothing parameters

are selected, meaning that the data is under-smoothed in the areas that the cohort

effects do not occur. Therefore the model does not do a satisfactory job of modelling

either the shocks or the underlying trend, so in Section 5.1.3 we introduce an additive

model to fully explain these data.

Although the basic smooth model is not appropriate for the German data, the

example illustrates how array methods can be applied even if initially the data appears

not to lie on a grid. Provided the data can be grouped into subsets which have a grid

structure then the array methods can be applied.

5.1.3 Adding cohort effects

Clearly a completely smooth model is not appropriate for these data. The cohort

effects create discrete movements away from the underlying trend which cannot be

115



accounted for in a single smooth surface. We can extend the basic smooth model to

include cohort effects by adjusting the linear predictor as follows

η = Bθ + Cγ (5.15)

where C is the design matrix for the individual cohort effects. A ridge penalty with

smoothing parameter κ is applied to γ. The ridge penalty maintains identifiability

and the size of κ can be tuned to the observed cohort effects. The ridge penalty

ensures that the smooth features of the data are described by the B-spline surface

and only the additional variation caused by the cohort effects is absorbed by γ.

For given values of the smoothing parameters, estimates of a and γ are obtained

by solving the scoring algorithm





B′W̃B + P 1 B′W̃C

C ′W̃B C ′W̃C + P 2









θ

γ



 =





B′W̃ z̃

C ′W̃ z̃



 (5.16)

where z̃ is the usual working vector, P 1 is the difference matrix from (3.24) and

P 2 = κI is a ridge penalty matrix. The values of the smoothing parameters are

chosen by BIC.

Type-A and Type-B triangles in the same cohort in Fig. 5.1 are modelled by a

single parameter in model (5.15). However, lives in triangle A are born predominantly

in the second half of the year while those in triangle B are born predominantly in the

first half, and the data in triangles A and B may be subject to different cohort effects.

Thus we can split the cohort effect into two parts. We extend model (5.15) and use
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Figure 5.5: Smooth Surface: The smoothed surface obtained from the model with the

linear predictor given in (5.17) plotted at data points of type A.
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Table 5.1: Some numerical output for the models fitted to the Lexis mortality data

described in this section, with the linear predictors given in (5.10), (5.15), and (5.17)

Linear Predictor λa λa κ tr(H) Deviance BIC

(5.10) 0.0435 6.1233 ∞ 104 76086 76806

(5.15) 1.9765 0.0024 0.0038 182 15059 16370

(5.17) 0.0692 146.4196 639.0567 223 4475 6020

separate parameters, one for each of the two types of triangle within a year of birth;

the linear predictor becomes

η = Bθ + CAγA + CBγB. (5.17)

Table 5.1 shows how the three models compare for the German mortality data. We

see that the additive models compare favourably with the basic smooth model, and

by adding relatively few degrees of freedom we get a marked improvement in the

deviance. We can also see that the smoothing parameters for the smooth component

have been strengthened by the inclusion of the additive term. This is supported by

Fig. 5.5 - the smooth is now less flexible in general, but exhibits a more consistent

amount of flexibility across the surface. Figure 5.6 shows the cohort effects that have

been extracted from the data, for recent cohorts the effects are quite small and it

seems that a single parameter might have been sufficient for the Type-A and Type-B

triangles in these cohorts. However the older cohorts show bigger movements away

from the surface and there seems less consistency between the Type-A and Type-B

triangles.

The work in this section is described in Kirkby and Currie (2006).

5.2 Smooth Period Shocks

The basic smooth model described in Chapter 3 assumes that the data are a smooth

function of the explanatory variables subject to some stochastic variation. However,
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Figure 5.6: Cohort Shocks: Shocks estimated with (5.17) γA (top), γB (bottom).

observed mortality can be subject to events that cause systematic deviations from

the underlying smooth. Specific examples include cold winters or disease epidemics

which can have dramatic effects on the mortality experience in certain years. The

Spanish flu pandemic of 1918-19 is an extreme example of this kind of effect. Such

an effect can often have a different effect on different ages; for example, the Spanish

flu pandemic principally affected those aged between 20 and 50, and had little or no

effect on those over the age of 50. In this section we propose a model for dealing with

such “shocks” to the surface, and illustrate the model with reference to some Swedish

mortality data (Human Mortality Database).

The Swedish mortality data are in the format described in Section 1.3, with

xa = [10, . . . , 90]′ and xy = [1900, . . . , 2003]′. Figure 5.7 shows a plot of the log

mortality surface that we wish to model; a striking feature of these data is the Span-

ish flu epidemic which causes the ridge running along the lower ages in 1918. Fitting

the model described in Section 3.3.2 to these data results in the smooth log mortality

surface shown in Fig. 5.8. There is a clear bump around 1918 as the surface attempts

to adjust for the higher mortality due to the flu epidemic. However, these bumps in

the surface do not model the mortality successfully for either 1918 or the surrounding

years. The influence of 1918 also has a dramatic effect on the selection of the smooth-

ing parameters, for which lower values are selected to allow for the bumps around
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Figure 5.7: The observed log mortality rates for the Swedish data

1918, but this results in under-smoothing of the data in other parts of the surface.

The basic smooth model is not appropriate for modelling mortality data with fea-

tures like the 1918 flu; instead we require a model which allows for large differences

in mortality in neighbouring years. We propose an additive model with two com-

ponents: the first is a smooth two-dimensional surface and the second describes the

period shocks. The underlying smooth can be modelled using the two-dimensional

model described in Section 3.3.2. Initially we might try to model the shocks with a

single parameter for each year which describes a mean adjustment to the mortality

surface across all ages. However, looking at Fig. 5.7 we see that the effect of the 1918

flu was not the same across all ages. The upper right panel of Figure 5.9 shows in

greater detail that the mortality of those aged between twenty and forty was most

dramatically effected, but almost no effect is observed for those over sixty; further,

this effect appears to follow a smooth trend over age. We therefore model each period

shock with an individual spline across ages. We define a second regression matrix by
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Chapter 3.

Iny
⊗ B̆a where B̆a is a marginal regression matrix of B-splines of dimension na × c,

and model the log rate of mortality as

log τ = (By ⊗ Ba)θ + (Iny
⊗ B̆a)θ̆. (5.18)

In this form the model is not identifiable: we apply a ridge penalty to θ̆ to maintain

identifiability, and we have a penalty matrix of the form





P 0

0 P̆



 , (5.19)

where P̆ = λrIny
⊗ Ic and P is given in (3.24). A further effect of the ridge penalty

is to shrink the coefficients θ̆ towards zero in the same fashion as the random effects

in a mixed model are shrunk. This is in keeping with the idea that such shocks to the

surface could be considered as random effects. This model now includes cacy + cny

parameters, and even taking c to be small so that the modelling of the within year
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Figure 5.9: Ratios of year on year observed mortality rates for 1914/15 (top left),

1918/19 (top right), 1945/46 (bottom left), 1947/48 (bottom right).

effects is not precise, it is still a computationally demanding problem and we have to

take advantage of the fast array methods described in Chapter 4.

The model can be fitted using the penalized scoring algorithm. Clearly, the linear

predictor in (5.18) can be computed efficiently by twice applying (4.14), and written

in array form, we have

log T = BaΘBy
′ + B̆aΘ̆. (5.20)

We also require evaluation of the inner-product matrix





(By ⊗ Ba)′Wδ(By ⊗ Ba) (By ⊗ Ba)′Wδ(Iny
⊗ B̆a)

(Iny
⊗ B̆a)

′Wδ(By ⊗ Ba) (Iny
⊗ B̆a)

′Wδ(Iny
⊗ B̆a)



 . (5.21)

The inner product is in the partition form given in (4.27). However, for the scoring

algorithm we need the inverse of the inner product, which can be calculated more

efficiently from its components. Splitting the weight matrix into partitions for each
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year we see that the bottom right partition of (5.21) is the block diagonal matrix

(Iny
⊗ B̆a)

′Wδ(Iny
⊗ B̆a) =

















B̆
′

aWδ1B̆a 0 · · · 0

0 B̆
′

aWδ2B̆a

...
. . .

0 B̆
′

aWδny
B̆a

















, (5.22)

where Wδj is the j th na×na diagonal block in Wδ. The structure of (5.22) allows us to

benefit from two computational advantages. Firstly, we can use the one-dimensional

array method to efficiently compute the components. Normally the one-dimensional

array computation is less efficient than regular matrix computation; however in this

case, the repeated appearance of the matrix, B̆a, in the inner product allows for a

small computational gain in forming the inner products using

vec(B̆
′

aWδjB̆a) = (G(B̆a))
′diag(Wδj), j = 1, . . . , ny, (5.23)

where diag(Wδj) is the vector containing the diagonal entries from Wδ corresponding

to the jth year. Thus, all the elements of the matrix on the left hand side of (5.22)

can be efficiently calculated using the one-dimensional GLAM formula

(G(B̆a))
′W , (5.24)

where W =
a

Wδ, na×ny. The second computational advantage comes from the block

diagonal structure. We can find the inverse of (5.22) efficiently by separately inverting

the ny components each of which is a c× c matrix. With an efficient way of inverting

(5.22) we can use the following theorem to invert the full matrix in (5.21).

Theorem 5.1 A partition matrix of the form




W V

U T



 , (5.25)

is non-singular if and only if T is non-singular, and the matrix

Q = W − V T−1U (5.26)

is non-singular, in which case




W V

U T





−1

=





Q−1 : −Q−1V T−1

−T−1UQ−1 : T−1 + T−1UQ−1V T−1



 . (5.27)

The matrix Q is known as the Schur complement.
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Table 5.2: Time taken to find the inverse of the inner product matrix (5.21) using R

(R Development Core Team, 2005) on an Intel Core Duo 1.73 GHz Linux machine.

These figures are given for the Swedish data with na = 81, ny = 104, ca = 19, cy = 24,

and c = 9.

Method Time (in seconds)

Direct calculation 38.830

Array methods only, (5.24) 9.749

Array methods with Schur complement, (5.24) and (5.27) 3.211

A proof of this is given by Harville (1997). For the matrix in (5.21) the Schur comple-

ment has dimension cacy × cacy, and inverting a matrix of this size would be required

for the scoring algorithm anyway. Therefore, the additional computational overhead

required for inverting (5.21) is reduced to the inversion of (5.22) plus a little extra for

constructing the components of (5.27). Timings for the construction of the inverse of

(5.21) for the Swedish Male example are given in Table 5.2. We see that using array

methods together with the Schur complement reduces the time required to calculate

the inverse of (5.21) by a factor of over ten.

The two components of the additive model fitted to the Swedish male data are

shown in Fig. 5.11 and Fig. 5.12, and the full fitted mortality surface is shown in

Fig. 5.13. We can see that the fitted mortality surface is no longer smooth across

years, in particular a substantial fin shaped spline is added to the surface to model

the excess mortality caused by the Spanish flu in 1918. There also appears to be a

noticeable shock for the lower ages in 1944. At the oldest ages the size of the shocks

are not as large, but small adjustments to the surface appear fairly regularly, perhaps

explained by particularly cold or mild winters.

We summarize the results for the following three models:

• Basic: The basic two-dimensional smooth model with linear predictor in array

form

BaΘBy
′. (5.28)
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Figure 5.10: Cross-sections of the spline shocks in each year for selected ages.
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• Mean Shock: The two-dimensional smooth model with a separate mean shock

for each year with linear predictor in array form

BaΘBy
′ + 1na

ă′. (5.29)

• Smooth Shock: The two-dimensional smooth model with a separate smooth

spline shock for each year with linear predictor in array form

BaΘBy
′ + B̆aΘ̆. (5.30)

The mean shock model in equation (5.29) adds a single shock (also subject to a ridge

penalty) across all ages in each year. We include the mean shock model for comparison

with the smooth shock model to illustrate the age dependence of some of the shocks.

The addition of the within-year shocks has had a noticeable effect on the under-

lying smooth component of the model. Figure 5.11 appears smoother to the eye than

Fig. 5.8; this is consistent with the values of the smoothing parameters selected for

the models. Table 5.3 shows the smoothing parameters selected by BIC for the three

models discussed in this section. For the basic smooth model a relatively small value

is selected for both smoothing parameters, but the smoothing parameter for age is

bigger than that for year. For the model with a mean shock for each year we see an

increase in the year smoothing parameter but a decrease in that for age. This pattern

continues when we introduce a within-year spline by further strengthening the year

penalty. The strengthening of the year penalty makes sense for this model, as the

effects that are modelled by the within-year splines would have to be modelled by the

smooth surface in the basic model, giving rise to the bumps in the mortality surface

in Fig. 5.8. Figure 5.12 shows the within-year shocks that have been separated from

the underlying trend; 1918 dominates the plot, but we can see a series of consecutive

shocks at younger ages in the mid 1940s; this can be seen more clearly in Fig. 5.10,

where the shock only appears most prominent at younger ages in 1944. Combining

the two components shown in Fig. 5.11 and Fig. 5.12 we obtain the additive two-

dimensional function shown in Fig. 5.13. The discrete shocks to the surface by year

seem to do a better job of explaining the data shown in Fig. 5.7, this is supported

by a marked reduction in the BIC shown in Table 5.3. Separating the within-year
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Figure 5.11: The smooth component of the model in (5.20) applied to the Swedish

male data.

features from the smooth trend over time should also enable improved forecasting,

since, as shown in Section 3.3.6, stronger year penalties generally lead to more stable

forecasts of the mortality surface.

The work in this section is described in Kirkby and Currie (2007).

5.3 Discussion

In Sections 5.1 and 5.2 we have applied P -spline components within additive models

to specific mortality examples. In both cases we were able to fit a model with a

large number of parameters, and in the second case we were able to make large

computational savings based on methods in Chapter 4. In Section 5.3.1 we discuss

how the models might be successfully applied to other mortality data sets, and to

other slightly different situations. In Section 5.3.2 we discuss how these type of

additive models are connected to models for over-dispersion, and in Section 5.3.3
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Swedish male data.

we look at possible improvements to the model and how these improvements could

be implemented.

5.3.1 Other Applications

The Spanish flu epidemic visible in the data for the Swedish males examined in Section

5.2 is an extreme example of the kind of period shocks that can occur in mortality

data, and does not appear in many data sets. Nevertheless, the model should be an

improvement for most data sets because the smaller adjustments fitted at the highest

ages would be appropriate for most data sets. For example, Fig. 5.14 shows a strip

of the mortality surface for the highest ages of the CMI assured lives data, we can

clearly see that ridges are visible in 1964, 1977, and 1993. These sorts of features are

common in many mortality data sets as the severity of the winter in a particular year

tends to effect geriatric mortality in that year.

The model also highlights a period shock in 1944, although this is not as extreme
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Figure 5.13: The fitted mortality surface for the Swedish Males.

as 1918 it significantly effects the mortality surface in Fig. 5.8, so even without the

severity of 1918 it seems the additive model would be an improvement. Such smaller

scale shocks may be common to other data sets in the form of disease epidemics or

other events; for example, it is known that strange effects in adult mortality were

observed in East Germany after reunification, so this may be a fruitful application of

the additive model.

A slightly different application could be to model digit preferencing. For popula-

tion data in developing countries (and for older data from developed countries) the

exact age of some individuals is not known. When recording an event of interest (a

death, mother’s age at birth) a guess of the subject’s age is often recorded. Typi-

cally this guess will be a round figure, so in raw population statistics for developing

populations we often observe spikes in the number of events at the ages occurring at

ages which are a multiple of five. As recording gets better over time, the size of these

“rounding errors” tends to improve, so a time dependent shock (a within-age spline)

could be used effectively to take these anomalies in the data into account.
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Table 5.3: Various statistics for the three models (5.28), (5.29) and (5.30) for the

Swedish male data.

Model λa λy λr Trace Deviance BIC

Basic 10.00 7.00 - 293 21226 23871

Mean shock 0.05 30.00 2000.00 367 15538 18852

Smooth shock 0.01 1900.00 850.00 489 9670 14089

5.3.2 Over-dispersion

There are some connections between the models described in Sections 5.1 and 5.2 and

the over-dispersion models described in Perperoglou and Eilers (2006 (personal com-

munication). These authors account for over-dispersion by fitting an extra parameter

for each data point. Their approach differs from the usual method of over-dispersion

modelling which assumes the specification of the variance is not correct. In the stan-

dard approach estimation usually proceeds by using quasi-likelihood to re-specify the

mean-variance relationship. The two approaches correspond to different underlying

structures in the data: the Perperoglou and Eilers (2006 (personal communication)

approach would be appropriate in the case of an underlying smooth trend shocked by

individual random effects, while the second corresponds to a genuinely over-dispersed

distribution for each data point. In one dimensional problems, it is difficult to distin-

guish between the two structures, and the quasi-likelihood approach has the advantage

of being able to deal with under-dispersion. In higher dimensional problems, as here,

we can distinguish between the two structures provided that the shocks follow some

kind of systematic pattern. In both the cases described in this chapter, the basic

smooth model appeared defective to the eye, so the extension to an additive model

was natural. In other situations close inspection of the data may lead to identification

of additive effects that may otherwise be put down to over-dispersion.
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Figure 5.14: A strip of the observed mortality surface for the highest ages in the

assured lives data showing similar period shocks to those modelled in the Swedish

male data.

5.3.3 Further work

The first area where the additive model could be improved is to fit within the mixed

model framework. The shock effects could then be considered genuine random ef-

fects, and estimates of the variance parameters would have an interpretation as the

size of deviations a shock might produce from the under-lying smooth trend. Using

the mixed model representation Section 2.5.3 we could fit the under-lying smooth

surface, selecting the smoothing parameters by REML. Adding the within-year spline

parameters as random effects on top of this surface then gives them the random in-

terpretation. In this case we would be fitting using the PQL approximation, and we

may do better by fitting a full Bayesian model discussed in Section 2.7.

The cohort shock model described in Section 5.2 could be extended by replacing

the mean shock with an age dependent effect. This type of model cannot be fitted

without the use of array methods, so in order to fit such a model one could re-arrange

the data as shown in Section 4.6 and fit the under-lying smooth by age and year of

birth. This would then give a Kronecker product structure, and the fast array methods

could then be used within the penalized scoring algorithm. Alternatively the model
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could be fitted with a back-fitting algorithm keeping the under-lying smooth in an

age and period format, but on the iterations to update the within-cohort splines,

one would change to a re-arranged version of the data allowing the use of the array

methods in both iterations.
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Chapter 6

Further Topics

In this chapter we will cover two topics which are separate from the rest of the thesis.

Firstly, we will discuss the Lee-Carter model which was mentioned in Chapter 1.

Secondly, we will discuss the outcome of the CASE studentship that initiated this

thesis.

6.1 The Lee-Carter Model

As mentioned in Section 1.2 the most widely used model of mortality in recent times

was that proposed by Lee and Carter (1992); as we shall see below, the model is

particularly suitable for forecasting future mortality rates. Indeed, Lee and Carter

designed their model with the express purpose of predicting life expectancy from US

national mortality data. Since their initial paper the Lee-Carter method has been

applied to many national data sets with varying degrees of success; see Booth et al.

(2006).

The model has a bi-linear structure, to be precise we have a linear predictor

log µx,t = ηx,t = αx + βxκt, (6.1)

where αx can be interpreted as the average mortality rate at age x over the ny years;

this is modified by an age-adjusted time trend with age adjustment βx (at age x) and

the time trend κt in year t. The linear predictor can be written in matrix notation

log M = H = α1′ + βκ′. (6.2)
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In their original paper Lee and Carter estimate α as the row average of the log of the

raw rates

α̂ = ave log T x,·. (6.3)

where T = T x,t = Y x,t/Ex,t is the matrix of raw mortality rates; see section 1.3.1.

The estimate α̂ is then subtracted from each column of the log raw rates

H̃ = log T − α̂1′ (6.4)

to give the age adjusted raw rates. Lee and Carter then computed the singular value

decomposition of H̃ , and estimated β and κ by the eigenvectors corresponding to the

first singular value. This method allowed Lee and Carter to summarize the dynamics

of the mortality surface with a one-dimensional time-series. Once the time-series κ̂

has been estimated forecasting follows as a second stage, by modelling κ̂ with an

ARIMA time series (Lee and Carter recommended a first order auto-regressive model

with drift); during the time series modelling process the age parameters α̂ and β̂

remain fixed at their estimated values.

One obvious extension to this model is to replace the rank one approximation to

H̃ with a higher order approximation; however this would remove the key benefit of

the model: the resulting single time series. A significant improvement to the model

was made by Brouhns et al. (2002) who brought the model within the likelihood

framework. They started with the Poisson assumption discussed in Section 1.3.4,

and then, using maximum likelihood, they showed that estimation of the parameters

could be achieved using what they termed a one-step Newton method. An alternative

method with the Poisson distribution assumption is to iterate between two conditional

GLMs as follows. First, with κ at some current value κ̃ we have a GLM with linear

predictor

η = vec(H) = Xy





α

β



 , (6.5)

which can be used to update the estimates of α and β; here the model matrix is

Xy = [1ny

... κ̃] ⊗ Ina
. Second, with β at some current value β̃ we have a GLM with

linear predictor

η = Xaκ, (6.6)
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where Xa = Iny
⊗ β̃, and on this iteration we use α at some current value α̃ as an

offset in the model. Clearly with a Kronecker product as the basis for both models

we are able compute the model efficiently using the array methods described in the

previous chapter. Currie (2008) investigates this approach.

An important consideration when fitting the model using either the one-step New-

ton method or the iterative GLM method is identifiability of the model. With a bi-

linear model of this type we have to identify a scale and location for the parameters,

as for any set of parameters α, β, κ and a constant c then

α1′ + βκ′ = α̃1′ + β̃κ̃′ (6.7)

for α̃ = α−cβ and κ̃ = κ+c, or β̃ = cβ and κ̃ = κ/c. The problem of identifiability

was avoided in Lee and Carter’s original solution because the two-stage procedure

identifies a location for α, and the singular value approximation selects an arbitrary

scale for β and κ. Without constraints and with the Poisson approach the model will

still converge but to estimates of the parameters which depend on the initial values;

of course, the estimated fitted values are unique. The gnm package in R of Turner and

Firth (2008) can be used to fit the Lee-Carter model in this unconstrained fashion

with the parameterization generated by random starting values; see the gnm manual

for an example.

Although the model can be fitted without constraints, enforcing constraints after

each update speeds up convergence, so we will follow the recommendation of Brouhns

et al. (2002) and use the location constraint
∑

κt = 0 and the scale constraint
∑

βx =

1. Figure 6.1 shows plots of the fitted parameters together with the mortality for three

ages with the Poisson-based model for the CMI data. We make the obvious remark

that the age profiles as shown in Fig. 6.1 are scaled and shifted copies of the time

series κ̂.

Figure 6.1 suggests that the discrete estimates of α, β, and κ can be replaced

by smooth functions. Forecasting the mortality table can be achieved by using the

penalty to forecast the κ values, as shown in section 2.8. This is in the spirit of Lee

and Carter’s original suggestion that forecasting of the mortality table can be reduced

to the forecasting of a single time series function. We parameterize the components
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Figure 6.1: Output of Lee-Carter model. Components of the model: α (top-left),

β (top-right), and κ (middle-left). Log mortality rates for three different ages: 50

(middle-right), 65 (bottom-left), and 80 (bottom-right).

135



as B-spline functions

α = Baθα and β = Baθβ and κ = Byθκ. (6.8)

Note that the same basis functions are used to smooth both α and β; using the same

basis functions simplifies the mathematics and there seems no good reason to use

different bases. With this parameterization the same iterative GLM approach can be

used as in the discrete case by replacing the design matrices in (6.5) and (6.6) with

the matrices Xy = [1ny

... κ̃] ⊗ Ina
and Xa = By ⊗ β̃. We tune the smoothness for

each component by applying a roughness penalty to θα, θβ, and θκ. It follows that

instead of the scoring algorithm we now use the penalized scoring algorithm for each

update of the parameters, with the penalty matrices given by:

P A =





λαP a 0

0 λβP a



 , P a = D′
aDa (6.9)

and

P Y = λκP y, P y = D′
yDy. (6.10)

We consider the effect of the parameterization and penalty on the penalized likeli-

hood. First, we consider a change of scale. We rescale the parameters so that β̃ = cβ

and κ̃ = κ/c, and then rescale the smoothing parameters so that λ̃β = λβ/c2 and

λ̃κ = c2λκ: the penalized likelihood remains the same. However, a change of location

results in a change of the penalized likelihood. Consider the location transformation

α̃ = α − cβ and κ̃ = κ + c. We consider the penalty on κ first: the original penalty

is

pY = λκθ
′
κP yθκ

and the new penalty is

p̃Y = λκθ̃
′

κP yθ̃κ

= λκθ
′
κP yθκ + λκc

21′P y1

= λκθ
′
κP yθκ

= pY ,

(6.11)
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so the penalty on κ is unchanged. However for α and β the initial penalty is

pA = λαθ′
αP aθα + λβθ′

βP aθβ

but after the change in location the new penalty is

p̃A = λαθ̃
′

αP aθ̃α + λβθ̃
′

βP aθ̃β

= λα(θα − cθβ)′P a(θα − cθβ) + λβθ′
βP aθβ

= λαθ′
αP aθα − 2cλαθ′

αP aθβ + (λβ + λαc2)θ′
βP aθβ

= pA − 2cλαθ′
αP aθβ + λαc2θ′

βP aθβ

6= pA.

(6.12)

In conclusion, not only is the penalty different, but due to the cross product between

θα and θβ there is no way to adjust λα or λβ in order to recover the same overall

penalty.

This inability to re-locate the parameters alerts us to a problem with the original

penalty. By selecting a different set of constraints we are able to change the penalty

for the model, because of the unpenalized interaction between θα and θβ. To ensure

that the penalized likelihood is not effected by an arbitrary choice of constraint, we

could include a cross penalty on the θα and θβ. The penalty would then have the

form

P A





λαP a λαβP a

λαβP a λβP a



 . (6.13)

By adding the cross term to the penalty we can find values of smoothing parameters

which result in the same penalized likelihood regardless of the choice of parameteri-

zation (i.e. choice of c). However, with the parameterization constraint acting on α,

β and κ and the penalty acting on the B-spline parameters, there can be numerical

problems when we try to convert from one parameterization to another. A better so-

lution, proposed by Currie (2008), is direct penalization of neighbouring data points

of the mortality surface, using the array interpretation of the penalty from equation

(4.44) we obtain the penalty

P = λ1

(

vec(DAΘ)
)′

vec(DAM ) + λ2

(

vec(ΘD′
Y )
)′

vec(MD′
Y ). (6.14)
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where the matrices DA and DY are (na − k) × na and (ny − k) × ny, and k is the

order of the differences. Currie (2008) shows how these penalties can be incorporated

into the standard penalized scoring algorithm from (2.75).

In summary, the Lee-Carter model is an important model for the forecasting of

mortality rates. Delwarde et al. (2007) consider smoothing the β component of the

model and leaving the α and κ free; this avoids any problems with the invariance of

the penalty with respect to different parameterizations. Our first contribution is to

point out that smoothing all three parameters runs into difficulties since penalization

is not invariant with respect to the parameterization of the model. We suggest a

solution based on a modification of the penalty. Our second contribution is to show

that the Lee-Carter model can be fitted using array methods by iterating between

two GLMs each with an array structure.

6.2 CASE Studentship

The funding for this thesis was based on a CASE studentship which was partly funded

by the CMI (Continuous Mortality Investigation). As mentioned in Chapter 1, the

CMI is a body set-up on behalf of the life assurance industry to collate and analyze the

UK assured lives population. In particular, the studentship was awarded to help the

work of the CMI’s mortality projections working party. In their recent publications

the CMI, CMI (1990) and CMI (1999), had favoured publication of a set of base

mortality tables along with a set of reduction factors. Reduction factors are used to

adjust a mortality table to allow for improvements in mortality over time. The concept

is easily illustrate with an example. CMI (1999) gave a set of mortality tables which

were based in the year 1992 and, along with the base tables, they published another

table of reduction factors of the form RF (x, t) for the integer ages, x, and integer

annual time intervals, t. In order to calculate the projected q65,2000 (the probability

that somebody age 65 at the start of the year 2000 will die over the next year) we

simply take the q65 (q65,1992) from the base table and multiply by the appropriate

reduction factor, so we have

q65,2000 = q65 × RF (65, 2000 − 1992). (6.15)
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Producing reduction factors is a convenient way for actuaries to account for mortality

dynamics in their calculations. However, having standard reduction factors seems to

reduce the responsibility of the individual actuary to take account of the uncertainty

surrounding mortality projection, and may possibly lead to future understatement of

liabilities in the same manner as described in Section 1.1.

In order to place responsibility for setting assumptions back onto the individual,

the mortality projection working party decided that rather than publish a table of

standard reduction factors, they would release a software package to enable actuaries

to produce their own mortality projection bases. It was also decided that the ability

to quantify the uncertainty surrounding projections would be both informative and

useful. To this end, we produced a Microsoft Excel based software package which

used R as a calculation engine for the P -spline and Lee-Carter models. The P -

spline model was an R implementation of the two-dimensional model described in

Section 3.3.2, with the array methods described in Chapter 4; the Lee-Carter model

was implemented with the improvements suggested by Brouhns et al. (2002) using

the Poisson likelihood. Both methods were then made available through an Excel

interface by using the R-(D)COM interface by Baier and Neuwirth (2007). Various

control parameters were made available to the user (such as the degree of the splines

and the order of the penalty for the P -spline model). Figures 6.2 and 6.3 show

the input screens of the graphical user interface for the P -spline model in the CMI

mortality projection software. An example of the output of the software is shown in

Fig. 6.4.

The methods used to give an idea of the uncertainty were slightly different for

each method. For the P -spline method we are able to get an idea of the parameter

uncertainty by using the estimate of the covariance matrix given in (2.76). Based on

these variance estimates scenarios could be generated simply by simulating from a

standard normal variable, multiplying by the estimated standard error, Σ̂ (computed

with the array formula (4.25)), and adding this to corresponding value of smooth

surface, log T̂ . The ith scenario had the form

log T i = log T̂ + ziΣ̂ (6.16)

where zi is a simulated realization from a standard normal distribution. Of course, this
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method does not take into account any of the model uncertainty about the selection

of the smoothing parameter for the model that produced T̂ .

Due to the bi-linear structure of the Lee-Carter model getting an estimate of the

parameter uncertainty explicitly isn’t possible, a fact which is rarely acknowledged

in the literature, and the only concession to any uncertainty is in the estimation of

the ARIMA parameters. In order to get some idea of the parameter uncertainty,

a non-parametric bootstrap methodology was used to simulate “new” datasets from

the deviance residuals of the P -spline model. The Lee-Carter model was then fitted

to these datasets which could be considered as scenarios from the model. These

scenarios can be output into separate files which can then be used by the user for

various actuarial purposes.
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Figure 6.2: The parameter entry interface for the CMI software.
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Figure 6.3: The data selection interface for the CMI software.
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Figure 6.4: An example of the graphical output available from the CMI mortality

smoothing software (the log mortality surface).
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Chapter 7

Conclusions

In this chapter we will summarize the results of this thesis, and suggest areas of further

work.

7.1 Summary

The aim of this thesis was to investigate multi-dimensional smoothing methods that

could be applied to mortality data. The process of conducting the research led us to

focus on a particular methodology, the P -splines described in Section 2.3; we focused

on the application of the array methods described in Chapter 4. Despite the focus on

these particular areas, there are some broad comments that we would like to make

before we highlight the main technical conclusions of the thesis.

The first point is a general comment arising from Chapter 2: for one-dimensional

data the selected smoothing parameter or bandwidth has a greater impact on the re-

sult than the method used to perform the smoothing; consequently the choice of model

selection criterion is very important. Figure 2.13 showed a comparison of the main

methods considered in Chapter 2, and there is little to choose between the methods

graphically. In contrast, Fig. 2.11(a) showed that different model selection criteria,

even when using the same smoothing method (in this example P -splines), will select

noticeably different levels of smoothing. The importance of the smoothing parameter

and model selection are highlighted further in Section 2.8.1, when we attempt fore-

casting using P -splines, Fig. 2.12 clearly illustrates the sensitivity of both the central
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forecast and the confidence intervals to the choice of smoothing parameter.

In terms of results there seems to be little to choose between the various one-

dimensional methods. There are some conceptual advantages to some of the methods.

For the P -spline method, the link between the coefficients and the corresponding B-

spline basis functions provides an easy way to tailor the penalty for special situations;

the ability to select different orders of the penalty also makes P -spline method more

general than the penalized TPFs. The argument supporting smoothing splines is very

compelling; if one considers the measure of smoothness in (2.17) appropriate, then

the optimal properties of the natural cubic spline clearly make it the best smoother

in one dimension.

A trend in smoothing literature has been to show the connection between penal-

ized regression and mixed models, as shown in the case of P -splines in Section 2.5.3.

Expressing the models in this framework enables us to take advantage of the existing

software developed for mixed models. However, it is difficult to find justification for

making the distinction between the “random” and fixed parts, when in most cases

the fixed part is arbitrarily chosen as a low order polynomial. Without a justification

for the split, mixed model splines can only be considered a convenient computational

method (with an embedded model selection criteria) and do not deserve a special

position among smoothing techniques, especially given the importance of model se-

lection on the final result. Further, if we are modelling a generalized response, as

with the mortality data where we are assuming a Poisson response, then moving to

a mixed model no longer offers a computational advantage because the solutions of

generalized linear mixed model are approximate anyway.

In Chapter 3 we moved on to the main subject of this thesis: multi-dimensional

smoothing. We discussed various full rank methods for smoothing multi-dimensional

data, and thin plate spline and Kriging models were fitted to the assured lives mor-

tality data. However, we were not able to fit these methods using a Poisson response,

as this does not appear available in the R libraries we considered. In Section 2.3 we

showed how the penalized spline models could be fitted simply by adding a penalty

term to the likelihood, and using the appropriate functions in the basis. Penalized

splines in multiple dimensions can be constructed using the same formula. For ex-
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ample, the P -spline model in two dimensions can be fitted using the same penalized

scoring algorithm from (2.75); all we need do is specify the two-dimensional B-spline

basis shown in Fig. 3.5 and the appropriate penalty, for example (3.28) or (3.36).

P -splines also have the advantage of being a low rank method; the other models dis-

cussed in Chapter 3 contain large numbers of parameters, and hence suffer a large

computational burden. Wood (2006) uses approximations to thin plate splines which

make the computations more manageable. Using P -splines we have a low number of

parameters relative to data points which enables us to deal with the large data sets

such as the mortality data used to illustrate Chapter 3.

In Chapter 4 we reviewed and developed the array methods of Currie et al. (2006).

Our first contribution on this topic was to develop our understanding of how the

algorithm (4.23) works; importantly, we noted that using the row-tensors, Gi, enabled

us to pre and post-multiply by the matrices, Bi, simultaneously. We then showed

that we can efficiently multiply a Kronecker product matrix onto any other matrix by

re-arranging the elements of the target matrix into a multi-dimensional array using

equation (4.29). Finally, we showed how these new methods could be combined with

the methods of Currie et al. (2006) to deal with block diagonal matrices.

The multi-dimensional P -spline model produces a pleasing smooth surface when

applied to the mortality data described in Section 1.3. However, when it comes

to forecasting, the method seems to produce erratic results. The discussion of model

uncertainty in Section 2.8.1 highlights that the central forecast, and confidence interval

around that forecast, was heavily dependent on the smoothing parameters selected

with reference to the data. This may be considered a weakness of the method, but

we merely interpret this erratic behaviour as a reflection of the task at hand. The

extrapolation of a two-dimensional surface using semi- or non-parametric methods

will inevitably produce inconsistent results; if it did not, one would have to question

if the method was flexible enough to make it suitable for data-modelling purposes.

Models such as the Lee-Carter model, on the other hand, which have a rigid parametric

structure are bound to have more consistent extrapolation properties. Lee and Carter

(1992) developed their model with the express purpose of forecasting mortality; to this

end, it seems to produce sensible results. However, critically analyzing the model we
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must raise several concerns. Firstly, there appears to be some difficulty in quantifying

the parameter uncertainty of the α, β, and κ in the first stage of the fitting procedure.

Secondly, the parameter uncertainty surrounding α and β is ignored in the second

stage of the procedure. Finally, there is no consideration paid to model uncertainty

in the projection. These three factors lead to the strange, mean-reverting, confidence

intervals that are shown in the much of the Lee-Carter literature; see for example Lee

and Carter (1992) and Renshaw and Haberman (2006).

When the mortality projection software described in Section 6.2 was presented

to users at two meetings in 2006 there was scepticism from many of the actuaries

in the audience that the confidence intervals produced by the P -spline model, such

as those shown in Fig. 3.9, were plausible. The mortality projection bases using

reduction factors published in CMI (1990) have consistently under-stated the realized

improvements. Even the long, medium, and short cohort projections used by many

companies in their pension scheme valuation calculations have a long term rate of

mortality improvement approaching zero. These projections do seem to encapsulate

the views of many actuaries: that mortality rates simply cannot carry on improving

forever. One can find justification for this point of view; the ONS publishes the

numbers of deaths in the UK split by individual causes, and evidence points to a

trend of rapid reductions in the numbers of deaths caused by circulatory diseases,

but relatively modest reductions for other causes. This leads many people to believe

that once circulatory diseases are eradicated as a major cause of death in the UK, we

will find that improvements in the aggregate death rates are more modest. Another,

possibly associated, reason why we might expect less rapid improvements (or even

increase in the death rate) is due to increases in obesity rates, particularly among

younger people, which can lead heart disease and diabetes. On the other hand, we

can find justifications for continued improvements at the current rate. A possible

reason for the recent reductions in deaths due to circulatory disease could be the

focus, from the government down, on improving treatment of this disease; for example

research into the use of statins and the subsequent prescription of these drugs on a

large scale has been a key reason for the reduction in heart disease. However, if we

get to the stage where circulatory diseases are no longer a major cause of death in the
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UK, the focus and resources applied to circulatory diseases will be pointed elsewhere,

and we may see similar reductions in other diseases. Recently there have been claims

that biogerontologists have isolated the major causes of ageing and will be able to

extend human life-span indefinitely, these views are summarized by De Grey (2005).

Although these views seem a little far-fetched, the theory suggests that the process of

ageing in humans can be categorized into a handful of sub-processes and that progress

has already been made in preventing and even reversing a number of these.

The task of forecasting mortality rates, as with any extrapolation exercise is quite

subjective. Even in simple parametric models, where we are modelling a direct re-

lationship between two variables, extrapolation of the relationship beyond the area

of observation is reliant on the same relationship being maintained in the extrapola-

tion region. In semi- and non-parametric models the data are used to determine the

structure of the model; this means that we cannot infer much about the relationship

beyond the limits of the data that we observe, and any extrapolation has to revert

to some limiting property of the model. For the P -spline model, the structure of the

penalty will determine the form of the extrapolation, and the amount of smoothing

selected with reference to the data determines the width of the confidence intervals.

We should not blindly follow any methodology (statistical or otherwise) for forecast-

ing mortality; planning for the adverse financial effects of extended longevity in the

population should be done on a prudent basis. Eventually, as markets for mortality

derivatives develop we may see a market price for mortality, which should reflect cur-

rent expectations of future mortality rates as well as a risk margin to account for the

uncertainty. Provided the longevity risk associated with these financial instruments

can be diluted in the market so that no party bares a disproportionate level of risk,

it would allow pension schemes, life assurance companies, and even the government

to hedge out their longevity risk exposure. Mortality forecasting can then assume its

place as a tool to aid speculation on the value of mortality derivatives.
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7.2 Further Work

In Section 4.5 we compared the computational overhead of performing calculations

using array methods as opposed to matrix methods. This comparison was rather

unsatisfactory because neither test was a fair reflection of the difference between the

two methods: simply comparing the number of scalar multiplications does not fairly

reflect the additional overhead required for the organization of the multiplications in

the array methods; on the other hand, a comparison of the calculation times in R does

not reflect fairly on the array methods because the calculations could be made more

efficiently in a lower level language. In R the functionality of the libraries built into

the application is much more efficient than code written in the R language, and loops

coded in R are particularly inefficient. The algorithms in (4.14), (4.23), (4.25), and

(4.33) are all designed to optimize calculation using the matrix and array libraries

available in R by rotating the multidimensional array (using aperm) and then (in the

implementation) flattening the array into a matrix to perform the multiplications,

and so avoiding costly custom code with large loops. However, the rotation of the

arrays requires a re-ordering of the elements, which requires a large number of read-

write transactions, which are relatively costly. If we were to implement the methods

in a lower level language where loops were not as costly, we could avoid the rotation

by multiplying each element of the Kronecker product directly onto the appropriate

dimension of the array. Formally, we would define a function to perform multiplication

as follows.

Definition 7.1 For the nt × ct matrix A and the c1 × · · · × ct × · · · × cd (where

1 ≤ t ≤ d) array X, the product m(A,X, t) is the c1 ×· · ·×nt ×· · ·× cd array whose

i1i2 . . . ithd element is
ct
∑

s=1

ai1,sxi1,...,it−1,s,it+1,...,id . (7.1)

Using this definition we could re-write any of the array algorithms in Chapter 4; for

example we could re-write (4.14) as

AX = m
(

Ad, . . . m
(

A2,m(A1,X, 1), 2
)

. . . , d
)

. (7.2)
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This algorithm does not require rotation of the array, so provided the class structure

of any implementation allowed efficient access to the elements of arrays the additional

overhead for calculation of matrix-array products compared to matrix-matrix products

should be relatively small.

Smoothing parameter selection within the P -spline model is another area where

efficiency could be improved. Currently, we rely on “off-the-shelf” numerical optimiza-

tion methods to optimize the smoothing parameters with respect to the optimization

criterion. In one or two-dimensional applications this is not a big problem, and we

find that for grid data using the efficient array algorithms with the built in numer-

ical optimization routines in R still out performs other two-dimensional smoothing

methods (in many cases the other methods described in Section 3.2.4 simply cannot

complete the calculations). However, the method of differentiating the scoring algo-

rithm described by Wood (2007) offers the possibility of further reducing calculation

time. Using this method we can find derivatives of the optimization criterion with

respect to the smoothing parameters, and armed with this information we are able to

produce a targeted optimization algorithm that would reduce the number of combi-

nations of smoothing parameters that need to be fitted in order to find the optimum

smoothing. Used in combination with the array methods, this would offer a highly

efficient and powerful multi-dimensional smoothing method.

In Chapter 4 we were able to generalize the array methods of Currie et al. (2006);

however, we gave no examples of the practical application of these methods. Clearly

the methods offer no benefit in a standard penalized GLM, because the weight ma-

trix, W , in the scoring algorithm (2.75) is a diagonal matrix which means the inner

product is most efficiently calculated using the row-tensors in (4.23). Immediately,

we begin to consider what type of model would lead to an estimation algorithm like

(2.75) where the weight matrix is a non-diagonal matrix. Using a quasi-likelihood

approach, Zeger and Liang (1986) and Zeger et al. (1988) showed how the standard

GLM could be extended to allow for correlated data, and to find solutions for these

models they developed Generalized Estimating Equations (GEE). In the Poisson case,

the GEEs are exactly equivalent to the scoring algorithm with a non-diagonal weight

matrix. We could use the GEEs as an alternative to the model described in Sec-
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tion 5.2 by specifying a correlation structure acting only on data points within the

same year. This would lead to a block-diagonal covariance structure which would be

most efficiently tackled using the same algorithm used in the example starting on p.93.

Currie et al. (2006) focused on using the array methods within statistical models and

smoothing methods in particular, but the array methods have a scope beyond sta-

tistical modelling and would be useful in any application where a Kronecker product

matrix is used.

The additive models described in Chapter 5 could also be improved. Both of

the examples are good candidates for mixed models: although there is no particular

reason to decompose the underlying surface into fixed and random parts, there is a

clear case for treating the additive shock components as random. The models could

be fitted as a mixed model simply by decomposing the B-spline basis of the smooth

surface into a mixed model basis with a fixed and random part (as described in

Section 3.3.3), and then treating the parameters of the additive shock components

as random components, with the smoothing parameters selected by REML or ML.

However there is no reason why we need to use the same basis in the fitting procedure

as in the smoothing parameter selection calculations. Depending on our preference

for mixed models, we could fit the model using the standard B-spline basis and the

methods described in Sections 5.1 and 5.2 and then simply use the mixed model basis

in our calculations of the REML or the ML. Further progress has already been made

on the model described in Section 5.2 by Kirkby and Currie (2009 (to appear). They

show how using a separate smoothing or shrinkage parameter for each within-year

spline can improve the model by allowing the splines to fully explain shocks to the

surface without being restricted by the overall level of shrinkage.

There are demographic models that require estimates of rates of change and deriva-

tives of the mortality (fertility or migration) rates; see for example Keyfitz and Caswell

(2005). In the UK, since Willets (1999) highlighted the “cohort” effect in UK mor-

tality experience, actuaries have also been focusing on rates of change, particularly

mortality improvement rates. For example, the CMI have been illustrating all of its

recent publications with heat maps showing the rate of improvements, and mortality

improvements seem to be the prime focus for inference. However if our primary in-
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terests are the rates of improvement rather than the mortality rates themselves, then

we should use a model explicitly for the improvements, rather than estimating the

smooth rates of mortality and then calculating the improvements rates from these.

Ramsay and Silverman (2005) show how derivatives of an unknown function can be

estimated using semi-parametric methods; if these methods could be applied within

the efficient array framework it would make applying them to the large mortality

datasets viable. A more ambitious under-taking would be to use data on mortality,

fertility and migration to flesh out the population models described by Keyfitz and

Caswell (2005).
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Appendix A

Notation

A.1 Symbols

The following symbols are used in the thesis.

bi,j,t(x) the ith B-spline in a basis of degree j for a set of knots t. The j

and t subscripts maybe dropped when obvious or unnessary in the

context.

Bj,t(x) a vector valued function which evaluates each B-spline in a basis

at x, ie. Bj,t(x) = [b1,j,t(x), . . . , bk,j,t(x)].

B a matrix of B-splines.

c the number of columns in a matrix.

Dd a difference matrix of order d.

k the number of knots in a basis.

n the number of rows in a matrix.
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pr(x) a polynomial of degree r.

P d a penalty matrix of order d.

t a set of knots.

X a fixed effects design matrix.

Z a random effects design matrix.

α random effect parameters in a mixed model (also used as the spline

coefficients in Truncated Power Function regression model).

β fixed effect parameters.

λ smoothing parameter

θ parameters in a P -spline regression model.
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Appendix B

Linear Algebra

This appendix gives a brief introduction to the use of Kronecker products and other

unusal matrix operations used in this thesis.

B.1 Kronecker Product

In this section we will briefly define and state some properties of the Kronecker prod-

uct. For a more detailed reference see Harville (1997). We denote the Kronecker

product of two matrices by:

A ⊗ B =











a11B . . . a1nB
...

...

am1B . . . amnB











. (B.1)

The Kronecker product is associative and distributive over addition:

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C (B.2)

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C). (B.3)

We will denote collected operations as:

n
⊗

i=1

Ai = An ⊗ An−1 ⊗ · · · ⊗ A1. (B.4)

(NOTE - The order above is non-standard).
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The Kronecker product has some useful properties. Provided the matrix multipli-

cations conform:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (B.5)

The matrix A ⊗ B is non-singular if and only if A and B are non-singular, with:

(A ⊗ B)−1 = A−1 ⊗ B−1. (B.6)

If xA and xB are eigenvectors of A and B with corresponding eigenvalues λA and

λB, it follows from B.5 that:

(A ⊗ B)(xA ⊗ xB) = λAλB(xA ⊗ xB) (B.7)

and thus xA ⊗ xB is an eigenvector of A ⊗ B with corresponding eigenvalue λAλB.

Following on from this if we find the singular value decompositions

A = P ADAQ′
A and B = P BDBQ′

B (B.8)

then A ⊗ B may be decomposed as:

A ⊗ B = (P A ⊗ P B)(DA ⊗ DB)(Q′
A × Q′

B), (B.9)

where P A⊗P B is a matrix of eigenvectors with corresponding eigenvalues diag(DA⊗

DB).

B.2 Row Tensor

We will also define the Row Tensor operation which multiplies every column of one

matrix by every column of another as

E2F = (E ⊗ 1′) ∗ (1′ ⊗ F ). (B.10)
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Appendix C

Array Methods

C.1 Graphical Representation

Here we will show a step-by-step graphical interpretation of the multiplication of a

Kronecker product onto an array. In this case, the Kronecker product will be:

(A3 ⊗ A2 ⊗ A1) (C.1)

where A1, A2 and A3 are 3× 2, 4× 2 and 5× 2 matrices respectively. B is therefore

a 2 × 2 × 2 array. We start by multiplying A1 onto B:

The result is a 3 × 2 × 2. We then transpose the array so the next matrix can be

multiplied onto the corresponding dimension of B.
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We now have a 2×2×3 array, and can perform the next multiplication. We multiply

A2 onto the array:

We now have to transpose again to line up A3 with its dimension.

Perform the final multiplication:
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And finally transpose again to get the dimensions back in their original order.

Note if we had tried to represent the full matrix A graphically, it would not have

fitted on the page!
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