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Abstract

The objective of this thesis is to develop more realistic long term asset models based

on Lévy processes and discuss their applications to risk management of unitised

with-profits policies.

We investigate the behaviour of long-term returns of the UK total share re-

turn index by testing the common statistical properties for financial data, so-called

“stylised facts”. We show that for the monthly U.K. share total return indices, the

Gaussian return hypothesis is rejected in series of tests. The local distribution of

the returns has higher kurtosis and heavier tails than the Gaussian. In addition, the

returns series show significant nonlinear autocorrelation, extreme returns appear in

clusters.

The first long term asset model purposed in this thesis is the exponential Lévy

model with non-Gaussian increment. We describe the Generalised Hyperbolic dis-

tributions with their subclasses. They are considered as candidate distributions for

the increments of the driving Lévy processes.

We estimate model parameters to the UK share gross total return index using two

approaches, maximum likelihood (MLE) and Markov Chain Monte Carlo (MCMC)

algorithm. Statistical and graphical goodness-of-fit tests demonstrate that these

Lévy driven models give more accurate fits to the historical equity index returns

data.

For the liability model we consider long term participating life insurance products

specifically unitised with-profits contracts. The payouts of unitised with-profits

policies are simulated under a variety of asset models driven by Lévy processes. At

first a basic model policy is considered with limited insurer operations and no risk

controls. We look into various risk measures of the maturity loss for the insurer

xiii



and compare the statistical properties for different non-Gaussian increment Lévy

models. It is found that the classical Gaussian model substantially underestimates

the risk measures in unitised with-profits policies. The Lévy driven models which

have semi-heavy tailed increments are aggregate to normal distributions in the long

run.

Then we consider different retrospective bonus mechanisms by varying the par-

ticipating rate and the smoothing period. As a comparison we use a bonus earning

power method with deterministic projected maturity asset share and 25 percent ter-

minal bonus cushion. We study the joint distributions of the maturity asset shares

and guarantees under these two bonus mechanism. With similar risk measures,

there are larger expected maturity guarantees under bonus earning power method

than retrospective bonus. Declaring bonuses on a more frequent basis is then tested,

which has the desired effect of reducing the risk measures when declaring monthly

bonuses using bonus earning power mechanism.

We make observations on two different investment strategies, a diversified invest-

ment strategy and a hedging based investment strategy. The former method tries to

reduce the variance of the invest return distribution while the hedging investment

strategy, on the other hand, narrows the left tail of the maturity loss distribution

by paying an extra amount of expenses.

Finally, the Lévy models are extended by using GARCH(1,1)-m type volatility.

Both maximum likelihood estimators and Bayesian estimators using Markov Chain

Monte Carlo are presented. The statistical tests on the devolatilised data show

that the GARCH model reduces the non-linear autocorrelation in the conditional

return processes and furthermore improve the fitting of the asset models. Also,

multi-variable models are considered. Stochastic bridges driven by Lévy processes

are constructed while the yearly returns follow the Wilkie model.
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Introduction

The classical Black-Scholes framework in Black and Scholes (1973) and Merton

(1973) uses a Brownian motion with Gaussian distributed increments to model the

risky asset returns. It has been considered to be a poor fit to the real world data.

The empirical distribution of such returns is more peaked and has fatter tails than

the Gaussian distribution, which implies that large changes in returns occur with a

higher frequency than under normality. In addition it is often skewed with a heavier

left tail. The volatility appears time-varying and clustered, returns are serially

uncorrelated, but squared returns are serially correlated.

During the last ten years, there has been a growing interest in the use of Lévy

processes to model financial market behaviours. However, most of the asset models

driven by Lévy processes in the literature are mainly considering short term periods

from intra-day to weeks. For actuarial using purposes, we aim to build long term

asset models on a monthly basis. They should be able to capture the key statistical

features of the marginal distributions of the asset returns. Furthermore, the asset

models should adequately explain the long term dependence structure in financial

time series, both autocorrelation in asset returns and cross-corrrelations between

different classes of assets.

Actuaries are required to calculate the market consistent value of the with-profits

liability on the realistic balance sheet. The liability of the guarantee embedded in a

with-profits policy can be valued and hedged as a path-dependent financial option.

From this point of view, a continuous long term investment model may provide

both a good fit to empirical data and mathematical tractability. On the other hand,

for risk management, the insurers can adjust their investment and bonus strategies

taking into consideration the possibility of future jumps in asset returns.
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We construct the driving Lévy processes by describing the law of the increments

as family of generalised hyperbolic distributions (GH). The GH distributions were

first introduced in Barndorff-Nielsen (1978), they provide empirical good fit to share

returns. The long-term time series properties of the investment returns are mod-

eled by using stochastic volatility models and bridge technique based on the Wilkie

model. We provide reliable and relatively fast algorithms for calibrating Lévy driven

asset models.

The Unitised With-Profits (UWP) policies as long term investment and saving

products make up a significant part of the UK’s life insurance business. It allows

the policyholders to share the benefits of the life office fund while a guaranteed

minimum return is provided by the insurer to protect the investors (policyholders)

against the financial investment risk. The management of investment guarantees risk

embedded in unitised with-profits and other participating life insurance products is

now a challenge for both, actuarial profession and researchers.

In order to understand the potential risks of the unitised with-profits liability,

we simulate the payouts of unitised with-profits policies under asset models driven

by Lévy processes. Briefly, insurers have two strategies to control the risks of UWP

policies. They can either control the guarantee liability by adjusting bonus mecha-

nism or manage the asset of the UWP fund by improving the investment strategies.

The rest of the thesis is organized as follows.

In Chapter 1 we investigate the behaviour of long-term returns of the UK share

return index by studying some of its statistical properties. We focus on the monthly

total share return rate which is essential for the with-profits investment performance.

Chapter 2 provides an extensive review of the general structure, path properties

and the decompositions of Lévy processes and the applications in financial modelling.

We introduce the driving processes of our model which have generalised hyperbolic-

distributed unit increments. Specifically, the exponential Lévy models are proposed

as a long term continuous time series model for monthly UK Share gross total return

index.

In Chapter 3 we discuss the topic of parameters estimation for the Lévy driven

asset models. A maximum likelihood estimation algorithm is constructed for the
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generalized hyperbolic distributions. An alternative approach based on the Bayesian

estimation called Markov Chain Monte Carlo (MCMC), specifically, the Metropolis-

Hesting Algorithm (MHA) is introduced to expose the Bayesian estimators with

their joint distributions. We examine the goodness of fit and study the statistical

properties of fitted models by simulation.

Chapter 4 considers the key factors in modelling, reserving and valuation of uni-

tised with-profits policies. Special attention will be paid to measuring the financial

risk in the UWP policies. UWP policies are modelled by providing the operation

rules which include asset allocation, charging, reserving and bonus declaration. The

financial risks will be measured by random variables based on the loss distribution

of the insurer’s maturity payouts. A ten year single premium UWP policy is studied

by simulation experiments. We focus on a comparison of the risk measures under

Lévy driven models as more realistic models and the Gaussian driven models. The

effect of the estimation risk is discussed by using “hyper-models” with parameters

estimated by MCMC.

In Chapter 5 several dynamic bonus mechanisms are introduced as tools to control

the maturity guarantee liabilities of the UWP policies. We first investigate the risk

measures under the retrospective bonus mechanisms by varying the participating

rate and the smoothing period. Then a bonus earning power method with deter-

ministic projected maturity asset share and 25% terminal bonus cushion is used.

The joint distributions of the maturity asset shares and guarantees are simulated

using Lévy driven asset models. Finally we consider declaring bonuses on a more

frequent basis.

In Chapter 6 we consider the insurer’s investment strategies for UWP policies.

First, there are two investment strategies based on “diversification” of the with-

profits fund, an invest-and-forget strategy and a re-balanced equity backing ratio

strategy are tested. Then some issues of dynamic Delta hedging of the contingent

claim will be discussed. Finally, we construct a long term with-profits fund invest-

ment strategy based on the internal dynamic hedging.

In Chapter 7 we propose more realistic asset models based on Lévy processes. We

extend the exp-Lévy models by replacing the stochastic time by a GARCH(1,1)-m

3



volatility process to capture the volatility clustering properties in the SGTRI data.

Also, the multi-variable models are considered, we demonstrate continuous time

models using stochastic bridges driven by Lévy processes in the Wilkie model. Both

maximum likelihood estimators and Bayesian estimators using Markov Chain Monte

Carlo are presented.
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Chapter 1

Empirical properties of asset

returns

1.1 Introduction and objectives

In this chapter we investigate the behaviour of long-term UK total share return

index by studying some of its statistical properties.

Our data set are based on the same one used in Wilkie (1995). The sample

observations of UK financial data includes series of U.K. retail price indices, wage

indices, U.K. share price and yield indices, long-term and short-term interest rates,

property indices and exchange rates.

Although there exists a considerable volume of literature related to the empirical

properties of asset prices and market indices under so-called “fine scales” (∆t less

than one week), for example see Cont and Tankov (2004) and Pagan (1996), less

attention has been paid to the studies of the monthly and yearly data.

We discuss the key statistical features for the share total return rates. The

approach to do this is by testing some of the most common statistical properties that

have been proved in a lot of articles published in last ten years and applied on a wide

range of financial data so-called “stylised facts”. We focus on the monthly return

rate series which is essential for measuring the with-profits investment performance.

The chapter is organised as follows. In next section we introduce the data set

called SGTRI. In section 1.3, we look at the distributional properties of the monthly
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data set, specifically, the classical Gaussian return hypothesis is tested. The sample

linear autocorrelation properties is studied in 1.4. And the nonlinear autocorrelation

properties of the sample series will be discussed in Chapter 7.

1.2 The Data

We are able to access the same data set used to fit the Wilkie model (Wilkie (1986)

and Wilkie (1995)) which has been carefully weighted to be consistent over different

time intervals.

The main data set which we consider in this thesis contains a monthly total

return (rolled-up) index on U.K. shares calculated gross of tax and assumes the

re-investment of dividends. The monthly share price and yield indices from 1929

to 1962 are based on the Actuaries Investment Indices, published by the Institute

of Actuaries and the Faculty of Actuaries and privately circulated. After 1962,

the indices are based on the FTA All-Share Index. In recent years this has been

the Total Return Index for the All-Share Index in the FTSE-Actuaries U.K. Share

Indices. See details of the data sources in Wilkie (1995) Appendix F.

The full range of data runs from December 1923 to April 2005, giving 977 end-

of-month observations. The starting year of the sample observation is chosen same

as in Wilkie (1995). We will also observe the the model by looking at subset of this

sample spanning from January 1950 to April 2005.

Generally, given a time scale ∆t, the log return of the asset or indices St at time

scale ∆t is defined as:

Y (t,∆t) = log St+∆t − logSt, (1.1)

where ∆t can be any time from seconds to decades. In this thesis, time scale ∆t

is one month. We refer to these share log-returns as the SGTRI (share gross total

return index) series and the compounded log return of the monthly share gross total

return indices St is given by:

Yi = log Si+1 − logSi, i = 1, ..., 976.

The long term monthly returns have not been analysed often because lack of
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consistent data availability. Our contribution starts from next section by observing

the key features from the statistical evidence of the UK monthly SGTRI data.

1.3 The distribution of SGTRI

1.3.1 Unconditional distribution & non-Gaussian

Over the short term the unconditional distribution of financial market data such

as share return rates, indices, exchange rates and interest rates, is characterised

by some common properties called stylised empirical facts. We refer to Cont and

Tankov (2004) as a comprehensive review of stylised facts. Here one says “short

term” means the time lags of the return processes are less than one week, some

authors also call this “fine scales”.

Under fine scales, non-Gaussian characterisation has been observed for various

financial data, for example see Eberlein and Keller (1995). It is true even for the

conditional distribution, such as distribution of returns which is devolatilised (see

Chapter 7), has been found to be non-Gaussian, see for example Cont (2001). This

rules out the models whose short term marginal distributions are normal (Gaussian)

such as Geometric Brownian motion (GBM), although as a special case of a Lévy

process, Brownian motion is still widely used as a driving process because of its

attractive analytical features.

On the other hand, for the yearly returns, unconditional normality hypothesis

can not be rejected, see Cont and Tankov (2004). The Wilkie model (Wilkie (1986)

and Wilkie (1995)) gives the annual share price as ratio of the dividends Dt and

share yield Yt where both of their log rate are modelled by time series driven by

Brownian motion. Hence the logarithm of the share total return rate is

R(t,∆t) = log

[
Pt+∆t +

∑
s∈(t,t+∆t]D(s)

Pt

]
,

where Pt = Dt/Yt, is normally distributed.

We know the shape of distributions for return processes may vary with time

scales. To this end, we test the Gaussian distribution hypothesis on the monthly

share return process.
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A graphical way to show goodness of fit are quantile-quantile (QQ) plots. We

show the QQ plot in Figure 1.1, where each cross represents the percentage quantile

of the empirical process against the standard normal quantile.
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Figure 1.1: QQ plot (Normal)

If the sample observations were unconditional normally distributed, the sample

quantile points would be reasonably linear. Compare to the straight line (broken

line with dots) in Figure 1.1 which is the theoretical normal-normal quantiles curve,

the sample quantile points display a shape that have lower left tail quantiles and

higher right quantiles than the “normal-normal” line. It shows the fatter tails on

both sides of the unconditional distribution of the sample observations. This fact

suggests that the non-Gaussian characterisation such as fatter tail property is still

significant for the monthly UK SGTRI log return distribution. To support this and

to see other statistical features of the data, some tests are presented below.

Table 1.1 shows the statistics of the monthly returns on the U.K. SGTRI. The

full data set from 1923 to 2005 is called “SGTRI23” while the sub-sample from 1950
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to 2005 is called “SGTRI50” in the table and the latter test results. The skewness

for SGTRI23 is −0.0821 and kurtosis is 11.6782. For a Gaussian distribution, these

two statistics should be zero and three respectively. A random variable is said to be

“leptokurtic” if its kurtosis is greater than 3. In this test, “leptokurtic” has been

found in both sample sets. For both sample sets skewness is close to 0 and the full

data set SGTRI23 shows the return process is negative-skewed.

Table 1.1: Statistics for log-return of the SGRTI
Statistics Mathematical SGTRI SGTRI

Form 12/23-04/05 01/50-04/05

Mean E[Y ] 0.0086 0.0103
Variance m2 0.0024 0.0028

Skewness m3/m
3/2
2 -0.0821 0.0678

Kurtosis m4/m
2
2 11.6782 11.7106

Maximum Ymax 0.4300 0.4300
Minimum Ymin -0.3056 -0.3056

We can use the χ2 test to check whether the data is normally distributed. Let

χ2
1 denote the test statistic computed with cells of equal probability 1/k, while

χ2
2 is used for cells of equal width. χ2

k−1;0.99 denotes the 0.99-quantile of the

χ2-distribution with k − 1 degrees of freedom.

Table 1.2: Statistics for χ2 tests, k=20
Statistics χ2

k−3;0.99 χ2
1 χ2

2

SGTRI 50 33.41 61.80 69.65
SGTRI 23 33.41 94.33 112.40

Table 1.2 shows that both SGTRI50 and SGTRI23 have higher χ2 statistics than

the theoretical percentage points under the same degrees of freedom. So we can

safely reject the null hypothesis that the sample observations are from normally

distributed data at significance level 99%.

Eberlein and Keller (1995) studied the daily return process of BASF and Deutsche

Bank using χ2-tests and rejected the Gaussian assumption. In this section we have
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the same conclusion by testing the monthly data for UK share returns. However

the non-Gaussian characterisation is not so clear for the yearly returns. We test the

yearly end-of-June returns whose χ2
1 statistic with k = 10 is 11.5 and p-value 0.8818,

therefore cannot find strong evidence to reject the normal distribution hypothesis.

Next we consider the Jarque-Bera test, the statistic with n sample observations

is given by

JBn =
n

6

(
s2 +

(k − 3)2

4

)
(1.2)

where s is the sample skewness, k is the sample kurtosis and n is the sample size.

For large n, the statistic JBn has a χ2 distribution with two degrees of freedom.

For the UK SGTRI23, the Jarque-Bera statistic is equal to 3063.8 and for the

UK SGTRI50 the Jarque-Bera statistic is equal to 2096.6. For both of the sample

sets, the p-values are close to zero, hence it rejects the normality hypothesis.

The Lilliefors test is a 2-sided goodness-of-fit test when a fully-specified null

distribution is unknown and its parameters must be estimated. The default null

hypothesis is that the sample of SGTRI comes from a distribution in the normal

family, against the alternative that it does not come from a normal distribution.

The Lilliefors test statistic is given by:

LS = max
x∈R

|Femp(x)− Fest(x)|, (1.3)

where Femp(x) is the empirical cdf estimated from the sample and Fest(x) is the

normal cdf with mean and standard deviation equal to the mean and standard

deviation of the sample. For the UK SGTRI23, the Lilliefors statistic is equal to

0.0806 and for the UK SGTRI50 the Lilliefors statistic is equal to 0.0742. Again

for both SGTRI23 and SGTRI50, the p-values are close to zero, hence we reject

null hypothesis that the data comes from normal distribution family for both sub-

samples.
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1.3.2 Tails and extreme value

Given the sample observations of a series of returns xi, i = 1, 2, ..., n, the minimal

and maximal returns are defined as:

mn = min{xi, i = 1, 2, ..., n},
Mn = max{xi, i = 1, 2, ..., n}.

The Fisher-Tippett theorem of extreme value for i.i.d. sequence (cf. McNeil et al.

(2005)) says if there exist normalizing constants (λn, σn) and a non-degenerate limit

distribution H for the normalised maximum return:

P
(
Mn − λn

σn

≤ x

)
n→∞−→ H(x) (1.4)

then the limit distribution H has the form:

Ha(x) =





exp{−(1 + ax)−1/a}, a 6= 0,

exp{−e−x}, a = 0,
(1.5)

where the shape parameter a determines three distributions: a = 0 for Gumbel,

a < 0 for Weibull and a > 0 for Frechet distributions.

For guarantee liability of the with-profits contracts, either an extreme large nega-

tive return or a large positive return increases the embedded risk of the policy. The

former scenario leads to a lower asset share at the maturity, makes the with-profits

policies be “in-the-money”. The later scenario increases the so-called policyholder’s

reasonable expectations (PRE) , force the insurer increases the guarantee by declar-

ing higher reversionary bonuses. Thus the loss distribution of the with-profits poli-

cies is caused by two-sided investment returns rather than only poor investment

returns.

We say a distribution or its density function f(x) has a semi-heavy tail if the

density function behaves as

f(x) ∼




C−|x|ρ− exp{−a|x|}, as x→ ±−∞,

C+|x|ρ+ exp{−b|x|}, as x→ ±+∞,
(1.6)

for some ρ−, ρ+ ∈ R and C−, C+, a, b ≥ 0. And we say f(x) has a heavy tail if

C|x|−ρ, as x→ ±∞, (1.7)
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for some C > 0 and 0 < ρ < 2.

The figure 1.2 shows the large movements of the return process over four thresh-

olds. One can see that large movements of the SGTRI data are clustered and for
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Figure 1.2: Jumps in log-return process of SGTRI23-05

each threshold, there are more negative large movements than positive, e.g., 16

negative returns and 7 positive returns larger than 0.11 while there are 3 negative

returns and 1 positive returns larger than 0.20.

1.4 Autocorrelation

Cont and Tankov (2004) point out that for the daily and intra-day return process,

except for very small time scales (' 20 minutes), autocorrelations are often insignif-

icant. Here we look at monthly returns, Figure 1.3 shows the linear autocorrelation

function (ACF) of the monthly return process with the 95% confidence bounds that

the autocorrelation function is zero. Base on the investigation, there is no significant
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evidence for functional shape of the SGTRI autocorrelation function. It shows that

the SGTRI sample have small positive correlation for lag of 1 which exceed the 95%

confidence bound. However, the sample ACF for lag of 2 is negative which should be

positive if the autocorrelation for lag of 1 were positive. Cont (2001) points out that
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Figure 1.3: Autocorrelation of SGTRI23-05

the autocorrelation of the return processes decay rapidly to zero when time scales

increase from 0 to 20 minutes. For time scales ∆t ≥ 15 minutes it can be safely as-

sumed to be zero. When time scale ∆t of return process is increased, there is linear

autocorrelation for weekly and monthly returns. One of the reasons for this is for

short term, there are arbitragers who looks for any statistical autocorrelation of the

returns, then their investment strategies push the market to be absent of autocorre-

lation, except for the first 15 minutes due to the “reaction time for new information”.

We suggest that when the time scales is increased, the economic cycle, government

policies and long term investors such as insurance companies’ activities dominate

the market equilibrium prices. Our statistical conclusion is only based on tests of
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monthly UK SGTRI, the long term statistical features may be very dependent on

the different markets.

1.5 Concluding Remarks

To sum up, we have studied U.K. share total return indices in this Chapter. The

unconditional distribution of the monthly UK SGTRI display non-Gaussian with

positive excess kurtosis. The statistical tests and the graphs show the empirical

distribution belongs to distribution classes with heavy or semi-heavy tails. The

Gaussian marginal distributions are not able to model the extreme value in the

SGTRI return series. The linear autocorrelation of the return processes sample is

insignificant.
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Chapter 2

Lévy Processes and Asset Models

2.1 Introduction and Objectives

In this chapter, we discuss some topics of modelling the financial time series data

by using stochastic processes. Special attention will be paid on the models driven

by Lévy processes with non-Gaussian distributed increments.

First, we provide an extensive review of general structure, path properties and

the decompositions of Lévy processes.

We introduce the driving processes of our model which have generalised

hyperbolic-distributed unit increments. As the increment law for monthly to-

tal returns, the generalised hyperbolic (GH) distributions were first introduced in

Barndorff-Nielsen (1978). These distributions belong to the infinitely divisible dis-

tribution family that makes them natural candidates to be used to construct Lévy

processes. The subclasses and limiting cases of the generalised hyperbolic distribu-

tion have been studied both empirically and theoretically, for instance, normal in-

verse Gaussian (Barndorff-Nielsen (1998)), hyperbolic (Eberlein and Keller (1995)),

variance gamma (Madan and Seneta (1990)) and student-t (Platen and Rendek

(2007)). We will see that using these distributions can significantly improve the fit

of equity returns in the parameter estimating and goodness of fit tests in Chapter

3.

Then asset models analogous to geometric Brownian motion but driven by Lévy

processes are built of which can capture the large sudden movements in the invest-
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ment returns. Specifically, the exponential Lévy models are proposed as a long term

continuous time series model for monthly UK Share gross total return index. The

advantage of this model is its flexible statistical features such as heavier tail, high

kurtosis than Gaussian, distributions of the increments can be skewed, while its

simple mathematical form offers good analytical tractability. The new Lévy mod-

els are continuous on the real line and the return process is locally non-Gaussian

distributed. Actuaries might be interested in it since, on the one hand, the interna-

tional accounting standards have been moving to a fair value approach. Actuaries

are now required to calculate the market consistent value of the with-profits lia-

bility on the realistic balance sheet. The liability of the guarantee embedded in a

with-profits policy can be valued and hedged as a path-dependent option. From this

point of view, a continuous long term investment model may provide both a good

fit to empirical data and mathematical tractability. On the other hand, for risk

management, the insurers can adjust their investment and bonus strategies taking

into consideration of the possibility of future “shocks” in share values. The potential

extension of the exponential Lévy model will be discussed in Chapter 7, includes the

forms of multi-variable and GARCH volatility. The chapter is organised as follows.

In next section, we review the basic definition of the Lévy processes with the

pivotal result called Lévy-Khintchine formula. For the observant reader who is

interested in Lévy processes, references which cover the detail concepts of Lévy

processes are given.

In section 2.3, Lévy processes are constructed by two methods. The first one

is to define a infinitely divisible distribution as the increment law. Either by its

distribution function or by the Lévy triple in its characteristic function 1. The second

method we use is by applying the stochastic time changing technique, based on the

so-called Brownian subordination. These methods are consistent and moreover the

time changing skill is the essential of some more complex extension models driven

by Lévy processes such as the stochastic volatility (SV).

The GH law with its subclasses and limiting cases are introduced in section 2.4.

In section 2.5, exponential Lévy models are constructed. We end this chapter by

1See section 2.2 for the definition of Lévy triple.
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briefly demonstrating some common ways of extend the independent increment Lévy

models in order to capture the volatility clustering in the data.

2.2 Lévy Processes

The theoretical facts we present in this section are heavily rely on Protter (2004)

and Applebaum (2004), other monographs on Lévy processes include Bertoin (1996)

and Sato (1999). Schoutens (2003) and Cont and Tankov (2004) contain overview

of some aspects of research result for applying the Lévy processes in mathematical

finance, both for risk management and pricing purposes. The way we show these

results is in a “review style” instead of introduction of the Lévy processes. For

readers who is not familiar with theory of Lévy processes, we suggest Applebaum

(2004) for an introduction with mathematical rigour and Cont and Tankov (2004)

for a simplified but more intuitive version of introduction.

We start with the definition of infinite divisibility of the random variable. Let

X be a real valued random variable with probability law µX . We say that X is

infinitely divisible if, for all n ∈ N, there exist i.i.d. random variables Y
(n)
1 , ..., Y

(n)
n

such that

X
d
= Y

(n)
1 + · · ·+ Y (n)

n , (2.1)

where
d
= denotes equality in distribution. In other word, for each n ∈ N, the law µX

has a convolution n-th root that is itself the law of a random variable, i.e.

µX = µ∗nY1
. (2.2)

Let φX(u) = E(eiuX) denote the characteristic function of X, where u ∈ R. From

the definition, if X is infinitely divisible, for each n ∈ N, φX has an nth root that is

itself the characteristic function of a random variable, i.e.

φX(u) = [φY1(u)]
n. (2.3)

The general characterisation of infinitely divisible random variables is given

by the Lévy-Khintchine formula. Denote the characteristic exponent Ψ(u) =

− logE(eiuX).
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Follow the Lévy-Khintchine formula, a probability law µ of a real valued ran-

dom variable is infinitely divisible if and only if there exists a triple (γ, σ, ν),

where γ ∈ R, σ ≥ 0 and ν is a σ-finite measure supported on R\{0} satisfying
∫
Rmin(1, x2)ν(dx) <∞, such that

Ψ(u) = iau+
1

2
σ2u2 +

∫

R
(1− e−iux + iux1(|x|≤1))ν(dx) (2.4)

for every u ∈ R.

The measure ν is called the Lévy measure and the triple (γ, σ, ν) is called the

Lévy triple.

Next we define the R -valued Lévy process with càdlàg paths. 2

Let X = (X(t), t ≥ 0) be a stochastic process defined on a probability space

(Ω,F ,P). We say that X is a Lévy process if:

L1 X(0) = 0 a.s.;

L2 X has independent increments : for every increasing sequence of times t0...tn,

the random variables (X(tj+1)−X(tj), 1 ≤ j ≤ n) are independent;

L3 X has stationary increments : each X(tj+1)−X(tj)
d
= X(tj+1 − tj)−X(0)

L4 X is continuous in probability, i.e. for all a > 0 and for all s ≥ 0

lim
t→s
P(|X(t)−X(s)| > a) = 0

From the Lévy-Khintchine formula we can see that for any t > 0, Xt is a Lévy

process whose law µ belongs to the class of infinitely divisible distributions. Inversely

it can be shown that for each infinitely divisible distribution µ there exists a Lévy

process Xt such that µ is the distribution of Xt. Thus, for every t > 0, we have

the characteristic exponent Ψt(u) following the Lévy-Khintchine formula. Hence for

any t > 0,

Ψt(u) = tΨ1(u).

Let Q(dt, dx) be a Poisson measure on (0,∞)×R\{0} with intensity measure dt×
ν(dx), we have the so-called Lévy-Itô decomposition:

Xt = at+Bt + J b
t + lim

ε↓0
Js,ε

t (2.5)

2càdlàg paths denotes the paths that are continuous on the right and always have limits on the
left.
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where J b
t and Js,ε

t represent the big jumps and small jumps respectively:

J b
t =

∫

|x|≥1,s∈[0,t]

xQ(dt× dx) and (2.6)

Js,ε
t =

∫

ε≤|x|<1,s∈[0,t]

x{Q(dt× dx)− ν(dx)dt}. (2.7)

This result argues that a Lévy process is no more than a linear combination of a

Brownian motion with drift and a possibly infinite sum of independent compound

Poisson processes.

2.3 Constructing the background driving Lévy

process

The essentials of our models are the background driving Lévy processes (BDLP) .

There are two methods used in this thesis to construct them. They are equivalent

and all Lévy processes can be expressed in these two forms respectively.

In the previous section we show the relationship between the class of infinitely

divisible laws and the stationary independent increments processes. Hence a Lévy

process can be uniquely defined by demonstrating the probability law of its infinitely

divisible distributed increments or, equivalently, by giving the characteristic expo-

nent function Ψx(u) via the Lévy triple.

From the Lévy-Itô decomposition it is clear that a Lévy process can be con-

structed by defining respectively the Brownian motion part and the pure-jump pro-

cess which is independent to the Brownian motion,

Xt = −γt+ σBt + Jt, t ≥ 0

where Bt is a standard Brownian motion and Jt is a pure jump process. Absence

of Jt, the Xt will be a continuous process which is a Brownian motion with drift

−γ and standard deviation σ. In this case the Lévy triple is (γ, σ, 0). On the other

hand, the triple (γ, 0, ν) leads to a pure jump process.

One of the other commonly used approaches to build Lévy processes or more

general semi-martingales, see Protter (2004), is by the stochastic time changing
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technique called Brownian subordination. Monroe (1978) points out that any semi-

martingale Lt can be realised as a time changed Brownian motion as

Lt = µ+ βTt +W (Tt), µ, β ∈ R and t ≥ 0, (2.8)

where W (·) is a Brownian motion and Tt is a non-negative increasing process of

stopping times. In this case, the law of any increment Xt − Xs, t > s ≥ 0 can be

represents as a normal mean-variance mixture:

fX∆t
=

∫ ∞

0

N(x;µ+ βω, ω)g∆t(ω)dω, (2.9)

where N is the normal density function with respect to mean and variance. g∆t

denotes the density function of the increment law of the subordinator Tt.

We will discuss the detail in next section by construct the processes of which the

unit increment follow the generalised hyperbolic law.

2.4 The Increment law

The generalised hyperbolic (GH) distribution was first introduced by Barndorff-

Nielsen (1977) and have become popular in financial modelling in the last ten years.

An advantage of the GH distribution is that it embraces many special subclasses

and limiting distributions, including hyperbolic (HYP), normal inverse Gaussian

(NIG), (skewed) Student-t, variance gamma (VG) and Gaussian where some of

them are well studied and have been widely used in modelling financial data. The

GH law can captures some of the key statistical features of the financial data, for

instance, it can be asymmetric, and the tails can be heavier than those of the normal

distribution. Some of these features are inherited by its subclasses and limiting

distributions. It belongs to the class of infinitely divisible distributions which can

be used as the unit increment law of Lévy processes in financial models.

Further more, the GH distribution is a normal mean-variance mixture to the gen-

eralised inverse Gaussian distribution (GIG), see Barndorff-Nielsen (1977). Hence

the Lévy process Xt which has GH-distributed unit increment is a time-changing

Brownian motion µt+βTt +W (Tt) with stochastic time Tt (subordinator) where T1
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follow the generalied inverse Gaussian (GIG) law. Hence the marginal distribution

of the process Xt is uniquely decided by it’s stochastic time Tt.

The univariate GIG distributions can be parametrised in several ways. We follow

Prause (1999) and Barndorff-Nielsen and Shephard (2001), define the GIG law,

written GIG(λ, δ, γ), by the density

gig(x;λ, δ, γ) =
(γ/δ)λ

2Kλ(δγ)
xλ−1 exp

{
−1

2
(δ2x−1 + γ2x)

}
, (2.10)

where Kλ denotes a modified Bessel function of the third kind,

Kλ(z) =
1

2

∫ ∞

0

yλ−1 exp

(
−1

2
z(y + y−1)

)
dy, (2.11)

with the domain of variation of the parameters:

δ ≥ 0, γ > 0 , if λ > 0 ;

δ > 0, γ > 0 , if λ = 0 ;

δ > 0, γ ≥ 0 , if λ < 0 .

Denotes α =
√

(β2 + γ2), T1 ∼ GIG(λ, δ, γ) and is independent of ε ∼ N(0, 1).

The random variable X1 = µ+βT1+T
1/2
1 ε has a generalised hyperbolic distribution,

written X1 ∼ GH(λ, α, β, δ, µ). The Lebesgue density is given by:

gh(x;λ, α, β, δ, µ) = φ(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ−1/2)/2

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp(β(x− µ)), (2.12)

φ(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2 − β2)

, x ∈ R

where Kλ(z) is the modified Bessel function of the third kind.

For convenience, in this thesis, the Lévy process will be denoted by the name of

its unit increment law, for instance a “GH process” means a Lévy process whose

unit increment is GH distributed.

The tails of the GH distribution behaves as

gh(x;λ, α, β, δ) ∼ const|x|λ−1 exp(−α|x|+ βx), as x→ ±∞. (2.13)

The tails of GH and GH subclasses decline as a hyperbolic function as x → ±∞.

When β is not zero, the two tails of GH law decay at different rate and the distri-

bution is skewed.
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In very few cases, the GH process is directly applied in financial modelling. One

of the problems is the lack of analytically tractability of the GH process. Note

that the GH law is not closed under convolution, i.e, the sum of two GH random

variables is no longer GH-distributed. This is a restriction for flexibility of choosing

the time scale used in the GH-processes driving asset models. In this case, the

return processes are GH distributed only under defined unit time scales. As an

example, we make the assumption that the monthly log-return rate is a random

variable which has GH distribution. Because of the non-closing under convolution,

neither the yearly nor the weekly returns are GH-distributed since. We are not able

to approach for instance, the daily return in this particular model and simulation is

only available for integer month lags.

Moreover, it is of great difficulty to estimate the parameters of GH process be-

cause of the flatness of the GH likelihood function, see for instance Prause (1999).

Some of the subclasses and limiting distributions of the GH law possess same

attractive statistical properties such as heavy or semi-heavy tails and asymmetric

which GH has, for example HYP, NIG, VG and skew student t distributions. And

they have comparatively simpler mathematical form than the GH law. It leads to

captivating theoretical properties and analytical tractabilities, for instance, the VG

and NIG law are closed under convolution.

In chapter 3 we will estimate the parameters for both the GH law and some

of its subclasses and limiting distributions to the UK SGTRI. The likelihood and

goodness of fit tests will show that some of the subclasses and limiting distributions

performs equally well as the GH distribution.

Some of the limiting distributions and subclasses of GH law are introduced below.

2.4.1 Normal inverse Gaussian

The NIG distribution was introduced by Barndorff-Nielsen (1977). It is able to

model asymmetric distributions with possibly semi-heavy tails in both sides.

The density of normal inverse Gaussian law (NIG) is given by

nig(x;α, β, δt, µt) =
αδ

π
exp

(
δ(α2 − β2)

1
2 + β(x− µ)

) K1(α(δ2 + (x− µ)2)
1
2 )

(δ2 + (x− µ)2)
1
2 )

,

(2.14)
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where K1(z) is the modified Bessel function of the third kind, x, µ ∈ R, 0 ≤ δ and

0 ≤ |β| ≤ α.

It is a normal mean-variance mixture with the parameter λ = −1/2 for the GIG

distribution in equation 2.10. Note that for the modified Bessel function of the third

kind

K1(z) = K−1(z).

It is a special case for the GIG distribution which called inverse Gaussian (IG). As

the name may suggest, it is the distribution of the first passage time of a Brownian

motion start from 0 with drift γ into a finite boundary δ, see Barndorff-Nielsen

(1998). The density ig(x; γ, δ) is

ig(x; γ, δ) =
δ√
2π
x−

3
2 exp

(
−1

2

γ2

x

(
x− δ

γ

)2
)
. (2.15)

The class of inverse Gamma distributions is closed under convolution with same

shape parameter γ and δ, see Webber and Ribeiro (2003). Thus a IG process at any

time t is distributed according to the IG law. More specifically, if the T1 has density

ig(x; γ, δ), the inverse Gamma process Tt has the density

ig(x; γ, δt). (2.16)

Consequently, a normal inverse Gaussian process Xt is a time-changed Brownian

motion with inverse Gaussian stochastic time Tt ∼ ig(x; γ, δt). With same shape

parameter α and β, the normal inverse Gaussian law is closed under convolution.

From 2.16 the normal inverse Gaussian process Xt ∼ nig(x;αt, βt, δt, µt) with

αt = α; βt = β; δt = δt;µt = µt. (2.17)

Table 2.1 lists the mean, variance, skewness and kurtosis of normal inverse Gaus-

sian distributions.

The tails of the NIG distribution behaves as

nig(x;α, β, δ) ∼ const|x|−3/2 exp(−α|x|+ βx), as x→ ±∞. (2.18)

The tails on both sides are semi-heavy and the NIG law is skewed.
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Table 2.1: Distribution moments of the NIG(α, β, δ, µ).
Statistics Mathematical NIG(α, β, δ, µ)

Form

Mean E[Y ] µ+ δβ(α2 − β2)−
1
2

Variance m2 δα2(α2 − β2)−
3
2

Skewness m3/m
3/2
2 3β/α

√
δ(α2 − β2)

1
2

Kurtosis m4/m
2
2 3(α2 + 4β2)/δα2(α2 − β2)

1
2

2.4.2 Hyperbolic distribution

For λ = 1, we have hyperbolic distributions (HYP), whose density is

(α2 − β2)1/2

2δαK1(δ(α2 − β2)1/2)
exp

(−α(δ2 + (x− µ)2)1/2 + β(x− µ)
)
, (2.19)

where x, µ ∈ R, 0 ≤ δ and |β| < α.

The HYP distribution has been used to model the stock returns in Eberlein and

Keller (1995). Their log-density is a hyperbola function which offers the semi-heavy

tails on both sides. The HYP process is a time-changed Brownian motion with

so-called positive hyperbolic (Barndorff-Nielsen (1998)) stochastic time.

The tails of the HYP distribution behaves as

hyp(x;α, β, δ) ∼ const exp(−α|x|+ βx), as x→ ±∞. (2.20)

The two tails are both semi-heavy and the HYP law is skewed.

2.4.3 Student-t distribution

Student t(ν, µ) is GH limiting distribution with density:

fx(x) =
Γ(ν+1

2
)√

νπ Γ(ν
2
)

(
1 +

x2

ν

)− ν+1
2

, (2.21)

where λ = −ν/2, α = β = 0, δ =
√
ν and Γ(x) is gamma function.

We include the Student-t here because it is a typical example of so-called α-stable

processes (see Mandelbrot (1977)). The distribution with α ∼ (0, 2) has infinite

second order moments. The empirical study of most stocks and exchange rates (see

Cont (2001) or Carr et al. (2002)) shows the distribution will tend to be normal
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when the time lag increase. However the convolution of the α-stable processes stay

in the same class of distribution with same α. The student-t offer heavier tail than

the other GH subclasses introduced in this section since the tails decline as a power

function, i.e.,

fx(x) ∼ const|x|−ν−1, as x→∞, (2.22)

The two tails are both heavy and the student-t distribution is symmetric.

2.4.4 Variance gamma distribution

The variance gamma law (VG) was introduced by Madan and Seneta (1990) as a

model for stock returns.

The variance gamma distribution has three parameters, σ, ν, and θ. The

Lebesgue density vg(x;σ, ν, θ) is given by

vg(x; σ, ν, θ) =
2 exp( θx

σ2 )

σ
√

2πν
1
ν Γ( 1

ν
)

(
x2

2σ2

ν
+ θ2

) 1
2ν
− 1

4

K 1
ν
− 1

2

(
|x|

√
2σ2/ν + θ2

σ2

)
(2.23)

where Kν(z) is the modified Bessel function of the third kind (Equation 2.11). The

characteristic function of the VG(σ, ν, θ) law is given by

φV G(µ;σ, ν, θ) = (1− iµθν + σ2νµ2/2)−1/ν . (2.24)

Variance gamma is a limiting case of generalised hyperbolic distribution with pa-

rameters:

λ = σ2/ν, α =
√

(2/ν) + (θ2/σ4), β = θ/σ2, δ = 0 and µ = 0.

Table 2.2 lists the mean, variance, skewness and kurtosis of variance gamma

distributions.

A variance gamma process V Gt is pure jump process with characteristic function

φV Gt(µ;σ, ν, θ) = φV G(µ;σ, ν, θ)t = (1− iµθν + σ2νµ2/2)−t/ν . (2.25)

Let σ1 =
√
tσ, ν1 = ν/t and θ1 = tθ, from 2.25 we have

φV Gt(µ; σ1, ν1, θ1) = (1− iµθ1ν1 + σ2
1ν1µ

2/2)−1/ν1 . (2.26)
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Table 2.2: Distribution moments of the V G(σ, ν, θ) .
Statistics Mathematical V G(σ, ν, θ)

Form

Mean E[Y ] θ
Variance m2 σ2 + νθ2

Skewness m3/m
3/2
2 θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

Kurtosis m4/m
2
2 3(1 + 2ν + νσ4(σ2 + νθ2)−2

Then the V Gt has variance gamma distribution with parameters σ1, ν1, θ1. The VG

process is closed under convolution.

One of the distinct features of variance gamma process from other GH subclasses

and limiting cases is called finite variation (FV), see Carr et al. (2002). According to

FV property, VG process can be decomposed to two Gamma process with opposite

directions,

VG(t) = Gu(t) +Gd(t) (2.27)

where Gu(t) denotes a positive Gamma process and Gd(t) is a negative Gamma

process which is independent to Gu(t).

V Gt can be also represented as a time-changed Brownian motion, W (Tt), the

stochastic time Tt is a Gamma process Tt ∼ Γ( t
ν
) ∼ νΓ( t

ν
). The density of Tt is

given by

fΓ(x) =
x

t
ν
−1 exp

(−x
ν

)

ν
t
ν Γ( t

ν

. (2.28)

The tails of the variance gamma distribution behaves as

vg(x;σ, ν, θ) ∼ const|x|σ2/ν−1 exp(−
√

(2/ν) + (θ2/σ4)|x|+ θ/σ2x), as x→ ±∞.

(2.29)

The tails in both sides are semi-heavy and the variance gamma law is skewed.

2.5 Exponential Lévy Models

As asset models analogous to the geometric Brownian motion, we consider here two

models called geometric Lévy and exponential Lévy (exp-Lévy ), both driven by

non-Gaussian increment Lévy processes.
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Let (L)t≥0 be a Lévy process with Lévy triplet (c2, ν, γ). The geometric Lévy

process is given by the stochastic differential equation:

dSt = µtSt−dt+ σtSt−dLt

where Lt is a one dimensional Lévy process. This equation has explicit solution

given by the Doleáns-Dade exponential:

St = S0 exp

{∫ t∧T

0

σsdLs +

∫ t∧T

0

(
bs − c2σ2

s

2

)
ds

}

×
∏

0<s≤t∧T

(1 + σs∆Ls) exp(−σs∆Ls) (2.30)

where ∆Lt = Lt − Lt− is the jump size at time t, T is the stopping time given

by T = inf{t > 0|σt∆Lt < −1}. This condition ensures that the asset value St is

always a positive value and it will stop when the default happens, i.e. St < 0.

In practice one can only have the asset value data in discrete time but not the

information of the whole continuous process sample path. The problem arising here

is how can we define the ∆Lt in time interval (ti, ti+1) while we only know the value

of Lti and Lti+1
. In this case we can define a semimartingale Xt:

Xt =

∫ t∧T

0

σsdLs +
∑

0<s≤t∧T

{log(1 + σs∆Ls)− σs∆Ls}.

We make the assumption that σt is constant, and assume that St is always pos-

itive. This is true for the market indices as in practice limited liability excludes

negative share values. Mathematically it is equivalent to letting the Lévy measure

ν((−∞,−1/σt]) = 0. Under these assumptions, Xt is a Lévy process and we have

the so called exponential Lévy model:

St = S0 exp{σXt + µt}. (2.31)

Compare to the geometric Lévy in Equation 2.30, the exponential Lévy in Equation

2.31 is easier to descretise and calibrate. Among the many choices of BDLP we

propose the GH process specifically whose distribution of unit increments belongs

to the subclasses and limiting cases of GH law.

The GH process is a pure jump process since the lack of the diffusion part in

decomposition, hence the exp-GH models has discrete sample path. Geman et al.
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(1998) argues that the daily share return should be modelled by a pure jump process

by introduce the so-called business time scale in the Brownian motion. The busi-

ness time scale embedded is itself time-changed Brownian motion where a Gamma

stochastic time leads to VG process is used in Geman et al. (1998).

The exp-GH models have discontinuous sample paths, where the models driven

by Brownian motions such as GBM, RSLN (Hardy (2003)) and GARCH-GBM have

continuous sample paths. In fact, all these models can be seen as time-changing

Brownian motions as in Equation 2.8. The BDLP, which have discontinuous path

stochastic time Tt, leads to jump in calender time. The stochastic times for Brownian

motion driven models for example, RSLN and GARCH-GBM model, are continuous,

these models have continuous sample path.

We will discuss this in Chapter 7 when we try to extend the model by using more

complex time series structures. The non-Gaussian increment Lévy processes offer

nice statistical features for the local marginal distributions of returns.

The empirical study of the SGTRI data in Chapter 1 shows the ACF of the

monthly log-return process has an irregular shape around value of zero. However it is

not the case for the volatility of the return process. The square return rate of SGTRI

from 1923 to 2005 are positive correlated. It suggests there exist some periods of

time in which the fluctuation of investment returns are more active than the others.

The large movement (upward or downward) are more likely to be followed by another

large movement when during the “quiet” time period, returns are stable and change

relatively slow. This gives the evidence of the volatility clustering property for the

return processes which can not be captured by the independent increments type Lévy

processes. That is, if we consider monthly returns as i.i.d. sample observations, the

GH law will give the better fitting performance than the Gaussian law. But if the

time effect is taken into account, the sample set is thus a single observation involve

a sequence of data.
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2.6 Concluding Remarks

In this chapter, we review the relationship between the infinitely divisibility and

the Lévy process. Brief outline of the theoretical facts are given and, specifically,

the Lévy-Khintchine formula shows the general form of the characteristic exponent

of the infinitely divisible laws and the decomposition of the Lévy processes. For

the comprehensive introduction includes all the proofs of these theorems we refer to

Applebaum (2004).

Lévy processes are constructed either by defining an infinite divisible distribution

as its increment law or by the stochastic time changing technique.

The distributions belongs to GH class offer features include leptokurtic, semi-

heavy or heavy tails for financial data modelling. The general GH case is not closed

under convolution. Thus the asset models driven by GH processes are not analyti-

cally tractable under changing of time scales. Normally, explicit form of the density

functions only exist at unit time for GH processes. In this regard, we introduced

two of the GH subclasses, VG and NIG which are closed under convolution.

Finally, we make some comments on our approach of long-term stochastic in-

vestment modelling. For building stochastic investment models, we tried to find a

balance between being accurately fitted to the empirical data and being mathemat-

ically tractable. Also the choice of asset models is based on the possible practical

purposes. The application of the models in this thesis is for long-term with-profits

modelling, involving valuation, reserving, investment and risk management. Hence

we argue that monthly time lag is an appropriate time scale for most of the with-

profits applications.

Given a proper probability space (Ω,Ft,P), we construct an asset model as a

stochastic process X(ω, t) adapted to the filtration Ft by considering two aspect of

properties. The first one is the capability of capturing distributional features. That

is, given the value t, the local dynamics of the asset should be captured by Xt(ω).

In the multi-variate model, this involves the joint and marginal distribution of all

the random factors. The second fact is the model’s time series structure. It is the

functional characteristics of the Xω(t) given ω, for example, the dependence features

of the return increments over time t.
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In Chapter 1 we discuss the stylised facts of returns of the UK share indices.

Most of them lie in the two catalogues of the target model properties. We try

to capture them, on the one hand, by using more realistic time series structure.

There are many long-term stochastic investment models have been suggested by

various authors. For instance, RSLN of Hardy (2003), Wilkie model of Wilkie (1995),

GARCH volatility models, e.g.McNeil et al. (2005) and SV models, e.g. Barndorff-

Nielsen and Shephard (2001). Or, on the other hand, models can be improved

by choosing the proper driving processes. Lévy processes offer more flexible local

distributions than the widely used Brownian motion, both statistically and risk

neutrally. It captures the sudden big movements in asset values. Other examples

of BDLP involve the α-stable processes of Mandelbrot (1977) such as fractional

Brownian motions and more broadly, the semi-martingale models.
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Chapter 3

Estimation

3.1 Introduction and objectives

In the last chapter we set up parametric models and made assumptions regarding the

types of driving processes. In this chapter we discuss some context of the parameter

estimation for the Lévy driven asset models.

The moment calibration method requires the weakest assumptions about the

data, i.e. that the observations are identically distributed. Since calibrating the

moments to the data is equivalent to fitting the characteristic function at point

zero, so it may be used as the (numerical) starting point in some more complex

estimation procedures.

The other two criteria we use are likelihood function value and the distance

function value. The likelihood function is essential for the estimation procedures.

We derive the likelihood function for the log-return increment processes in section

3.2.

The maximum likelihood estimation (MLE) is based on the assumption that the

estimated parameters give the highest joint probability of the sample observations

set. In section 3.3 we apply MLE to find appropriate parameters for the Lévy asset

models. Also we test the goodness of fit and discuss the technical difficulties in

MLE.

An alternative approach based on the Bayesian estimation called Markov Chain

Monte Carlo (MCMC) is applied in section 3.4. Since it is less commonly applied in
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actuarial models, we give a short introduction to the MCMC with further references.

The Metropolis-Hesting Algorithm (MHA) is introduced to expose the Bayesian

estimators with their joint distributions.

3.2 Likelihood

Under the GH assumption, the log return process has independent increments. The

log-likelihood function for the GH distribution is

L(λ, α, β, δ, µ | x) = n log φ(λ, α, β, δ) +

(
λ

2
− 1

4

) n∑
i=1

log
(
δ2 + (xi − µ)2

)

+
n∑

i=1

[
logKλ−1/2

(
α
√
δ2 + (xi − µ)2

)
+ β(xi − µ)

]
, (3.1)

where n is the sample size and x = x1, x2, · · · , xn are the sample observations of the

monthly log-return rates.

The exponential Lévy model with GH increments has 5 parameters (λ, α, β, δ, µ).

By fixing λ in log-likelihood Equation 3.1, the log-likelihood of some subclasses of GH

law can be calculated. For example the log-likelihood function for NIG increment

case can be derived from Equation 3.1 by fixing λ = −0.5, or, for the HYP case, the

λ = 1.

The variance gamma and the Student t cases will be fitted using the different

parametrisation given in Equation 2.23 and Equation 2.21. The log-likelihood func-

tion for the exp-Lévy model with VG increments is given by

L(µ, θ, σ, ν | x) = 2n(θ − σ2) +
n∑

i=1

(xi − µ)− n log

(
σ
√

2πν
1
ν Γ

(
1

ν

))

+

(
1

ν
− 1

2

) [
n∑

i=1

log(|xi|)− 1

2
log

(
2σ2

ν
+ θ2

)]

+
n∑

i=1

log

(
K1/ν−1/2

(
|xi|

√
2σ2/ν + θ2

σ2

))
, (3.2)

where n is the sample size and x = x1, x2, · · · , xn are the sample observations of the

monthly log-return rates.

And the log-likelihood function for the exp-Lévy model with student-t increments

32



is given by

L(µ, σ, ν | x) = n log

(
Γ(ν+1

2
)√

νπ Γ(ν
2
)

)
−

(
ν

2
+

1

2

) n∑
i=1

log

(
1 +

(xi − µ)2

ν

)
, (3.3)

where n is the sample size and x = x1, x2, · · · , xn are the sample observations of the

monthly log-return rates.

According to the mathematical result of the Lévy-Khintchine formula, the Fourier

transform of the infinitely divisible distributions (characteristic function), in some

cases, is much easier to get than its probability density function. Some infinitely

divisible distributions have simple characteristic functions but rather complicated

form for density, for example, CGMY, see Carr et al. (2002). When it is impossible

or computationally expensive to derive the explicit likelihood functions, but given

the characteristic function is known, Carr et al. (2002) show a Fast Fourier transform

can be employed to compute the density function value approximately from a single

set of parameters.

In addition to the likelihood functions, the moments of the increment laws can be

calculated by differentiating of the characteristic function. Cont and Tankov (2004)

discuss the advantages of using so-called generalised method of moments. For the

reader who is interested in the generalised method of moments and the statistical

properties of the methodology, we refer to Hansen (1982).

3.3 MLE Estimations

The MLE procedure actually is an optimisation problem of the nonlinear log-

likelihood equations we derived in section 3.2. The partial derivatives of the log-

likelihood function with respect to each parameter are given in Prause (1999). To

solve these equations numerically, we can hire the non-linear solver such as Newton-

Raphson method or the Steffensen interation, see Press et al. (2002). However,

the differentiated log-likelihood function contains the differentiated values of the

modified Bessel function K whose value itself is calculated by numerical algorithm.

When using the Newton-Raphson solver, second order derivative of the modified

Bessel function is required. In order to prevent generating extra error from the

numerical approximation algorithms, a simplex searching method is used.
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More precisely, the Nelder-Mead simplex method is used to find the maximum

value of the log-likelihood funcit on. We find that the log-likelihood function of

the GH model is flat, the accuracy of the searching depends on the starting values

of the estimators. This fact is also observed for daily data in Eberlein and Keller

(1995). The parameters easily converge to a local maximum point when applying

the numerical optimisation algorithm. This requires some preliminary knowledge of

the possible intervals where parameters lie in. From the analogy of the exponential

Lévy model and the GBM model, we know approximately the size of drift and

the volatility of stochastic components. In Table (3.1) we give the results of the

maximum likelihood estimation of the GH and its subclasses by fixing the parameter

λ. An alternative algorithm to get the MLE for GH is the EM method, see McNeil

et al. (2005).

Table 3.1: Maximum likelihood estimates of generalised hyperbolic distributions
and the following subclasses: λ = −3/2, NIG (λ = −1/2), hyperboloid(λ = 0),
hyperbola (λ = 1/2), and hyperbolic (λ = 1). The first line gives the maximum
likelihood estimates of all 5 parameters where λ has not been fixed.

λ α β δ µ LogLH

Share Gross Total return Jan 1950 - May 2005

-1.6274 10.2791 -4.9408 0.0668 0.0226 1075.18
-1.5 11.5786 -4.9832 0.0645 0.0227 1075.16
NIG 19.8063 -5.3474 0.0472 0.0235 1074.74
0 23.7088 -5.4744 0.0384 0.0237 1074.31
0.5 27.7326 -5.7687 0.0293 0.0240 1073.71
HYP 31.8806 -5.9859 0.0196 0.0247 1072.91

Share Gross Total return Dec 1923 - May 2005

-1.1881 12.8222 -4.2157 0.0534 0.0184 1650.90
-1.5 10.1304 -4.1590 0.0588 0.0184 1650.84
NIG 19.2131 -4.3965 0.0416 0.0183 1650.66
0 23.4465 -4.3766 0.0328 0.0183 1650.21
0.5 27.6807 -4.3687 0.0235 0.0182 1649.49
HYP 32.1176 -4.2614 0.0126 0.0179 1648.43
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The maximum likelihood parameters for Gaussian, Student t and variance gamma

law of the UK SGTRI are given in Table 3.3.

Table 3.2: Maximum likelihood estimates of variance gamma, student t and Gaus-
sian.

µ σ ν θ LogLH

Share Gross Total return Jan 1950 - May 2005
VG 0.02410 0.04927 0.69678 -0.01380 1071.51
Student t 0.01335 0.03726 4.10582 1070.80
Gaussian 0.01030 0.05253 1013.10

Share Gross Total return Dec 1923 - May 2005
VG 0.01670 0.04691 0.83342 -0.00815 1647.52
Student t 0.01138 0.03380 3.73435 1645.54
Gaussian 0.00865 0.04908 1557.55

Not surprisingly the 5 parameter GH law has the highest log-likelihood. Com-

pared with the Gaussian law, which is 1013.10 and 1557.55 for SGTRI50 and

SGTRI23, all the non-Gaussian distributions we have considered so far offer a sig-

nificant improvement in likelihood. The difference between the subclasses by fixing

λ and the general case is small. Student t has lowest log likelihood in these distri-

butions, this is partly because student t is the limiting case of GH law where α and

β are zero,i.e., it is symmetric, and cannot capture the different tail decay rate in

SGTRI.

Hardy (2003) uses an alternative approach to estimate the parameters for the

RSLN models called Markov Chain Monte Carlo. This method has some attractive

advantages in application. In the next section, we introduce this estimating method

and apply in the model fitting of the UK SGTRI.

35



3.4 Bayesian Estimation: A Markov Chain Monte

Carlo approach

The Markov Chain Monte Carlo methodology provides a framework within which

parameters can be estimated using a computer simulation approach. In this sec-

tion, we describe the Metropolis-Hasting algorithm which is applied to find out the

Bayesian estimators of the parameters.

Recall the Bayesian inference methodology, let D = {X1, X2, ..., Xn} denote the

observed data which is the log-returns of the SGTRI in our estimation procedure. θ

is the model parameter vector. Contrast to maximum likelihood estimation where

the parameters are fixed numbers and the estimators are random variables of the

sample observations, whereas the Bayesian method assumes the parameter θ is a

vector of random variables.

Before the experiments, we have some information about θ, this gives a prior

distribution whose density function is given by ϕ(θ).

Based on the data D, the conditional likelihood function is calculated by:

f(D|θ) =
n∏

i=1

f(Xi|θ), (3.4)

where f(·|·) is the conditional probability density function of the data. The joint

distribution is given by the prior ϕ(θ) and the conditional likelihood f(D|θ):

f(D, θ) = f(D|θ) · ϕ(θ). (3.5)

In the next step we apply Bayes theorem to determine the distribution of θ condi-

tional on D:

f(θ|D) =
ϕ(θ)f(D|θ)∫
ϕ(θ)f(D|θ)dθ . (3.6)

This is called the posterior distribution of θ. The denominator
∫
ϕ(θ)f(D|θ)dθ is

constant since it is the likelihood of the data D. Thus we have f(θ|D) ∝ ϕ(θ)f(D|θ).
The Bayesian estimators are some statistics of the posterior distribution. For

example, the mean, percentage quantiles, etc. These can be expressed in terms of

the expected value of some function of θ:

E[u(θ)|D] =

∫
u(θ)ϕ(θ)f(D|θ)dθ∫
ϕ(θ)f(D|θ)dθ . (3.7)
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Analytically calculating
∫
u(θ)ϕ(θ)f(D|θ)dθ is impossible in most cases. Alternative

approach needs to be hired to find out the value of E[u(θ)|D].

The key idea of Markov Chain Monte Carlo is to compute the expectation,

E[u(θ)|D], by simulating a sequence of random variable {X0, X1, X2, ...} which has

similar statistical properties as the samples from the posterior distribution of the

parameter vector function u(θ). We note that in Equation 3.6 the numerator can

be calculated for certain values of θ, and the denominator is constant and stays

unchanged. Thus we can avoid integrating the joint distribution function in the

denominator by simply eliminating it, for example, dividing the f(θ1|D) by an-

other posterior f(θ2|D). To take this advantage, we can build a Markov chain

{X0, X1, X2, ...} in which the transition kernel P(·|·) is given by the form of divid-

ing posterior. Properly using the simulation methodology, this Markov chain will

eventually reach the stationary distribution. The first m values of simulation before

the chain reaches its stationary distribution will be ignored as a burn-in. The Xt

for t ≥ m, as t increases, will look increasingly like dependent samples from the

posterior of θ. By Birkhoff’s Ergodic Theorem, the expectation E[u(θ)|D] can be

estimated as the sample mean of u(θ).

Here we introduce the Metropolis-Hasting Algorithm(MHA) used to build the

Markov Chain. At each time t, in order to generate the next state Xt+1, we first

generate a candidate value Y from a proposal distribution q(·|Xt). It may depend

on current Xt. The next step is to decide to accept or reject the candidate Y . If the

candidate is accepted, the Y will be the next state Xt+1. In contrary, if is rejected,

the Xt+1 stay in the current state Xt. The acceptance probability is given by:

α(Xt, Y ) = min

(
1,
ϕ(Y )f(D|Y )q(X|Y )

ϕ(X)f(D|X)q(Y |X)

)
. (3.8)

The feature of Equation 3.8 is that we have the ratio between two posterior distri-

butions, the unknown constant in denominator in Equation 3.6 is no longer involved

in calculation. For a comprehensive introduce to MCMC and more details of appli-

cations, we refer to Gilks et al. (1996) and Hardy (2003).
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3.4.1 MCMC for Lévy models

Based on the previous work, the maximum likelihood estimators along with the

estimated information matrix give the description of the joint distribution of the

parameters. We can use this information as the prior distribution of the estimators.

On the other hand, we can assume there is no prior information of the parameter.

Since in high dimensional cases, the MCMC has the advantage of less prior knowl-

edge dependency than the MLE. To show this, we choose high variance/domain

rate priors such as uniform or normal distributions whose possible random outcomes

cover the theoretical domain of the parameters. The first state of the Markov Chain

is randomly generated from the prior distribution of each parameter. We check the

convergence of the Markov Chain by running parallelled ten MCMC experiments

each with different random starting values. In all cases, after the burn-in period,

the Markov Chain will reach its stable distribution successfully (we check this by

observing the first 4 central moments of the simulated Markov Chain samples).

We try to use Normal, Gamma and Beta as the prior or candidate distributions.

The reason is that simulation progress is restricted by the quality and speed of

random number generators. We give the details of the computer algorithms for

Normal, Gamma and Beta random number generators in Section 4.4.1. Specially

the using of normal candidate density cases simplify the acceptance probability, see

Hardy (2003), the ratio:

q(X|Y )

q(Y |X)
= 1 (3.9)

in Equation 3.8.

3.4.2 Metropolis-Hasting Algorithm for VG

In this section, details of Metropolis-Hasting algorithm(MHA) for the VG parameter

estimation for SGTRI50 data will be discussed. This includes the choice of the prior

distributions and proposal distributions for each parameter and some issues of the

approximation methods we used. The MHA for SGTRI23 is very similar to the one

for SGTRI50, the proposal distributions are chosen with slightly different parameters

from those for SGTRI50 in order to obtain the proper acceptance probability. The
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Gilks et al. (1996) points out the efficient interval of the acceptance probability is

(25%, 40%).

Denote θ(r) as the current value of parameter θ in estimation. For fitting the VG

model to SGTRI data set, recall the density function of VG in Equation 2.23, we

use normal prior distributions for the linear drift µ and the stochastic drift θ:

µ ∈ N(0.05, 0.022); θ ∈ N(0.0, 0.022).

The proposal distribution for µ is N(µ(r), 0.062). The standard deviation of the

normal distribution is carefully chosen in order to give an appropriate probability of

acceptance. Also the probability of acceptance depends on the distributions of other

parameters. As in estimation progress we have acceptance probabilities of around

34 percent.

The proposal distribution of θ is N(θ(r), 0.0072). Again the standard deviation

of the proposal distribution is appropriate which give acceptance probabilities of

around 35 percent.

The prior distribution for ν is the gamma distribution with prior mean 1.0 and

standard deviation 0.5. The prior distribution is dispersed so that the prior density

term will have very little effect on the acceptance probability. The proposal distri-

bution is gamma with mean ν(r) and standard deviation ν(r)/2.5. The acceptance

probabilities for ν candidate is approximately 38 percent.

The prior distribution for σ is the gamma distribution with prior mean 0.05

and standard deviation 0.015. The proposal distribution is gamma with mean σ(r)

and standard deviation σ(r)/8.5. The acceptance probabilities for σ candidate is

approximately 36 percent.

Alternatively, a modified normal distribution can be used as the prior and pro-

posal distributions for σ. First, we have an initial normal distribution with mean

0.05 and variance 0.0152. Since the support of the σ is (0,∞), we cut the left tail

of the distribution at point c and add those probability density less than cutting

point to it’s positive symmetric value of 0.0001, in general, with normal mean µ and

standard deviation ξ, the probability density of x is given by:

f(x, µ, ξ, c) = φ

(
x− µ

ξ

)
+ φ

(
2c− x− µ

ξ

)
, x ≥ c, (3.10)
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where φ(·) is the density of standard normal distribution. In estimation, we can

approximately ignore the second term in the density function 3.10 if it given very

low density. For example, when the cutting point c is lay out of the three times of

standard deviation interval of the normal distribution, the integration of the second

term in equation 3.10 on real line is less than 0.002 which can be ignored safely in

calculation.

The proposal distribution of σ is modified normal with initial normal mean σ(r)

and standard deviation 0.006. The cutting point c of left tail is 0.0001. In simula-

tion, we can just skip those very few generated candidate values less than 0.0001.

The acceptance probabilities is approximately 33 percent. We denote the modified

normal distribution as Ñ(µ, ξ2, c) where µ and ξ is the mean and standard deviation

parameter of the initial normal distribution and c is the cutting point.

We tried both gamma prior/proposal and the normal approximation method, the

results are very close when the times of simulation increase. Actually if a random

variable X is Gamma distributed with shape parameter α and the scale parameter

λ, when 2α is an integer, it has the relationship:

2λX ∼ χ2
2α.

The χ2
ν is approximately normality when the ν is big enough. The skewness

√
8/ν

and the excess kurtosis 12/ν of the χ2
ν distribution can be used as measures of

the convergence to Gaussian. Thus if the α is big enough, for example α ≥ 16, the

Gamma prior or proposal distribution is approximately a normal or modified normal

distribution.

We use normal prior distribution N(0.05, 0.022) for µ and N(0.0, 0.022) for θ to

fit the exp-VG model to the SGTRI23 data.

The standard deviation of the normal proposal distribution for µ is 0.054 and

with mean µ(r). The probability of acceptance is around 30 percent.

The proposal distribution of θ is N(θ(r), 0.0642). Again the standard deviation

of the proposal distribution is appropriate which give acceptance probabilities of

around 32.

The prior distribution for ν is the gamma distribution with prior mean 1.0 and

standard deviation 0.5. The proposal distribution is gamma with mean ν(r) and
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standard deviation ν(r)/2.5. The acceptance probabilities for ν candidate is approx-

imately 33 percent.

The prior distribution for σ is the gamma distribution with prior mean 0.05

and standard deviation 0.015. The proposal distribution is gamma with mean σ(r)

and standard deviation σ(r)/8.5. The acceptance probabilities for σ candidate is

approximately 32 percent.

The result

The MCMC estimators for VG model and their correlation is shown in Table 3.3.

The first column in the table gives the mean of the simulated parameter samples.

The second column shows the standard deviation and the rest four column gives the

parameters correlations. In fact the Metropolis-Hasting algorithm we used for the

VG model fitting is similar to a Monte Carlo random searching method to find out

the maximum likelihood estimators. Thus, if the likelihood function is smooth near

its maximum point, the maximum likelihood estimators should be lay in the area

near the medium value of Bayesian posterior distribution for each parameters. Using

the mediums of the MCMC samples as the parameter, the log-likelihood values are

1647.49 for SGTRI23 data set and 1071.46 for SGTRI50. These are close to the

maximum likelihood which is 1647.52 for SGTRI23 and 1071.51 for SGTRI50 in

table 3.3.

Figure 3.1 shows marginal density for the MCMC samples of the estimated pa-

rameters. The solid lines show the SGTRI50 results and the dotted lines represents

the SGTRI23 density of estimators. The figure 3.2 demonstrate the two way joint

simulated sample observations for the parameters estimated for SGTRI50 data. The

joint distributions for SGTRI23 parameters are given in the figure 3.3.

3.4.3 MHA for GH

The Metropolis-Hasting algorithm we used to estimate the GH parameters is similar

to the one we applied on VG estimation. The HYP and NIG distributions are

subclasses of the GH. They share the same parametrisation but with fixed λ, i.e.,

λ = −0.5 for the NIG and λ = 1 for the HYP. Normal prior distribution will be

41



Table 3.3: Markov Chain Monte Carlo of VG.

Mean SD Parameters correlations with:
µ θ σ ν

Share Gross Total Return Jan 1950 - May 2005
µ 0.0248 0.0038 1.0000 -0.8841 -0.3094 -0.3191
θ -0.0144 0.0042 1.0000 0.2413 0.2796
σ 0.0494 0.0020 1.0000 0.3532
ν 0.7009 0.1109 1.0000

Share Gross Total Return Dec 1923 - May 2005
µ 0.0172 0.0023 1.0000 -0.8325 -0.2340 -0.3605
θ -0.0086 0.0028 1.0000 0.1592 0.3048
σ 0.0471 0.0016 1.0000 0.3906
ν 0.8372 0.1082 1.0000
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Figure 3.1: Simulated marginal posterior parameter distributions.
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used for λ with large variance for GH. It is difficult to choose a distribution for α

directly because it’s domain depends on the value of β, i.e, |α| > |β|, instead we try

to look at the γ which is given by:

γ =
√
α2 − β2, (3.11)

and it is on the positive real line. In convenience, only the prior and proposal for γ

will be Gamma distributions. For the rest of the parameters, normal and modified

normal prior and proposal distributions works well in this example. Table 3.4 gives

the prior and proposal distributions and the acceptance probabilities for each model

fitted to respectively two data sets, SGTRI50 and SGTRI23.

Table 3.4: Prior&Proposal distributions for GH MCMC

Prior Proposal AP(SGTRI50) AP(SGTRI23)

GH

λ N(0, 0.72) N(0.1, 0.32) 40 38
α Γ(0.45, 0.05) Γ(0.25, 0.25/α(r)) 33 31
β N(0.0, 5.02) N(β(r), 2.42) 37 35
δ MN(0.05, 0.12) N(δ(r), 0.0152) 29 25
µ N(0.1, 0.32) N(µ(r), 0.00752) 27 22

NIG

α Γ(0.45, 0.05) Γ(0.25, 0.25/α(r)) 41 37
β N(0.0, 5.02) N(β(r), 2.42) 37 36
δ MN(0.05, 0.12) N(δ(r), 0.0152) 29 27
µ N(0.1, 0.32) N(µ(r), 0.00752) 27 22

HYP

α N(20.0, 10.02) Γ(81, 81/α(r)) 37 36
β N(0.0, 5.02) N(β(r), 2.2002) 37 36
δ MN(0.05, 0.12) MN(δ(r), 0.0182) 32 30
µ N(0.1, 0.32) N(µ(r), 0.0072) 24 22
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The results

We use same prior and proposal for SGTRI50 and SGTRI23. The acceptance prob-

abilities (AP) of the candidate parameters are not sensitive to these two sample

sets. The AP(SGTRI50) is often higher than AP(SGTRI23) under same prior and

proposal distributions for each parameter. This is simply because SGTRI50 is sub-

sample of SGTRI23 and the latter gives more information.

Table 3.5 shows the results for the GH distribution. We note that the λ estimator

of the GH Lévy model has a relatively high standard deviation. λ and δ are extremely

strong negatively correlated , i.e., around −0.96. And α is positively correlated to

λ, i.e., around 0.89. It suggests that the model can equally perform well in a large

range of λ as long as choosing proper α and δ. Similar to VG estimation, the pair,

stochastic drift β and linear drift µ are negatively correlated. The joint distributions

in the Figure 3.4 gives a graphical view of the joint distribution of parameter vector.

Table 3.5: Markov Chain Monte Carlo of GH

Mean SD Parameters correlations with:
λ α β δ µ

Share Gross Total Return Jan 1950 - May 2005

λ -1.2992 0.9486 1.0000 0.8701 -0.0782 -0.9600 0.1096
α 15.2368 7.7061 1.0000 -0.3501 -0.7455 0.3348
β -5.5449 1.9300 1.0000 0.0385 -0.8850
δ 0.0634 0.0177 1.0000 -0.0633
µ 0.0237 0.0038 1.0000

Share Gross Total Return Dec 1923 - May 2005

λ -1.1919 0.7270 1.0000 0.8829 -0.0187 -0.9645 -0.0182
α 14.1982 6.7134 1.0000 -0.2396 -0.7668 0.2000
β -4.5034 1.4909 1.0000 -0.0674 -0.8655
δ 0.0548 0.0133 1.0000 0.0703
µ 0.0185 0.0026 1.0000

Table 3.6 shows the estimation results for the NIG distribution. Same patterns

are found for two sample set. The SGTRI23 estimators have less standard devia-
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tions than the SGTRI50 ones. Compare the results for NIG with the general five

parameter GH estimation, the SD for α is reduced because of the fixed λ. We use

the sample mean of each posterior for the parameters as the “best estimator”, the

log-likelihood is 1649.43, it’s close to the log-likelihood of MLE results.

Table 3.6: Markov Chain Monte Carlo of NIG

Mean SD Parameters correlations with:
α β δ µ

Share Gross Total Return Jan 1950 - May 2005

α 21.2600 3.3122 1.0000 -0.5297 0.7963 0.4235
β -5.6869 1.8459 1.0000 -0.2018 -0.8733
δ 0.0497 0.0056 1.0000 0.1965
µ 0.0241 0.0035 1.0000

Share Gross Total Return Dec 1923 - May 2005

α 20.1240 2.5487 1.0000 -0.4873 0.8046 0.3927
β -4.5457 1.4086 1.0000 -0.2259 -0.8511
δ 0.0430 0.0037 1.0000 0.2215
µ 0.0186 0.0024 1.0000

Table 3.7 shows the estimation results for the HYP distribution. The sample

mean of each posterior for the parameters is used as the “best estimator”, the log-

likelihood is 1647.89.

Table 3.8 shows the MCMC statistics of the Student t distribution. We again

use the sample mean of each posterior for the parameters as the “best estimator”,

the likelihood is 1645.49 for SGTRI23 and 1070.74 for SGTRI50.

Finally, the MCMC statistics of the normal distribution are shown in Table 3.9.

The likelihood using sample mean estimators is 1556.93 for SGTRI23 and 1012.87

for SGTRI50.
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Table 3.7: Markov Chain Monte Carlo of HYP

Mean SD Parameters correlations with:
α β δ µ

Share Gross Total Return Jan 1950 - May 2005

α 33.0338 2.5774 1.0000 -0.5625 0.7906 0.4497
β -6.3694 1.9512 1.0000 -0.2703 -0.8832
δ 0.0231 0.0078 1.0000 0.2582
µ 0.0254 0.0037 1.0000

Share Gross Total Return Dec 1923 - May 2005

α 32.8330 1.9835 1.0000 -0.5462 0.8046 0.4723
β -4.5458 1.4713 1.0000 -0.3913 -0.8638
δ 0.0146 0.0061 1.0000 0.4048
µ 0.0184 0.0026 1.0000

Table 3.8: Markov Chain Monte Carlo of Student t.

Mean SD Parameters correlations with:
µ σ ν

Share Gross Total Return Jan 1950 - May 2005
µ 0.0135 0.0017 1.0000 -0.1726 -0.1900
σ 0.0378 0.0018 1.0000 0.6569
ν 4.4110 0.7728 1.0000

Share Gross Total Return Dec 1923 - May 2005
µ 0.0114 0.0013 1.0000 -0.1239 -0.1374
σ 0.0343 0.0014 1.0000 0.6768
ν 3.9294 0.5324 1.0000
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Table 3.9: Markov Chain Monte Carlo of GBM.

Mean SD Parameters correlations with:
µ σ

Share Gross Total Return Jan 1950 - May 2005
µ 0.0103 0.0020 1.0000 -0.0104
σ 0.0527 0.0015 1.0000

Share Gross Total Return Dec 1923 - May 2005
µ 0.0087 0.0016 1.0000 0.0020
σ 0.0491 0.0011 1.0000

3.5 Discussion of Results

We discuss the estimation results from four perspectives. First, we present goodness-

of-fit test for the fitted models based on distance of probability function. In order to

avoid repeating similar distance tests based on same principle, we present only one

of them called Anderson & Darling test. Next, we consider the efficiency of using

different return distributions discussed in this chapter by computing so-called infor-

mation criterion and likelihood ratio tests. We then study some pivotal statistically

properties such as skewness and kurtosis embedded in the Lévy models. Finally

we discuss some issues of the Bayesian asset models with MCMC estimation called

hyper-models.

3.5.1 Goodness of fit test

To test goodness of fit, we use some score functions other than likelihood. Note that

for the distance testing procedures such as Kolmogorov and Anderson & Darling test,

or the likelihood ratio comparison, all depend on the assumption that observations

are i.i.d.

The Anderson & Darling (AD) Statistic is given by

AD = maxx∈R
|Femp(x)− Fest(x)|√
Fest(x)(1− Fest(x))

, (3.12)

where Femp and Fest are the empirical and the estimated cumulative density func-
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tions (CDFs). Table 3.10 shows the distance test statistic using parameters of the

maximum likelihood estimation.

Table 3.10: Distance goodness of fit test for GH, NIG, HYP, VG, Student t and
Gaussian law.

GH NIG HYP VG t Gaussian

SGTRI23-05 0.0583 0.0604 0.0622 0.0643 0.09621 36704.1
SGTRI50-05 0.0609 0.0619 0.0622 0.0712 0.10812 6138.4

The poor fit of Gaussian law to the heavy tail in the empirical data leads to

extremely large AD distance values. In this example, the Gaussian has a AD distance

36704.1 for SGTRI23-05 and 6138.40 for SGTRI50. For comparison, the student t

has an AD distance 0.09621 for SGTRI23-50 and 0.10812 for SGTRI50-05. There

is no large difference between the results for GH, NIG, HYP and VG.

3.5.2 Information Criterion & Model Selection

The Akaike information criterion (AIC) uses the entropy analysis to examine the

goodness of fit with complexity of the model. The AIC is given by:

AIC = 2k − 2 log(L), (3.13)

where k is the number of parameters, and L is the likelihood function. The pre-

ferred model is that with the lowest AIC value. It means each extra parameter is

worthwhile only when the more complex model can improve log-likelihood by more

than one. It gives an easy approach to measure goodness of fit and discourages

over-fitting.

The Bayesian information criterion (BIC) is similar to AIC. It prefers the model

with the lowest value of

BIC = k log(n)− 2 log(L), (3.14)

where n is the sample size or the number of observations, k is the number of param-

eters and L is the likelihood function. The extention of the basic model to a more
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complex model with additional parameters is considered to be worthwhile only if

the log-likelihood increases given the number of observations. In case that sample

size is large, an additional parameter added to the model must lead to a greater

improvement of the log-likelihood than in small sample size case.

Table 3.11 shows the value of AIC and BIC of GH and its subclasses and limiting

distributions for UK SGTRI from January 1950 to May 2005 and from December

1923 to May 2005. In both cases the exponential Lévy models have lower AIC and

BIC than GBM. Among the exp-Lévy models, the NIG has the lowest AIC and

BIC for both time intervals. But the difference between exp-Lévy models is small.

HYP has less AIC and more BIC than GH, this is caused by BIC’s calculation with

sample size n. Comparing the four parameter subclasses NIG, HYP and VG with

the three parameter Student t, Student t has higher BIC than VG and HYP. It

suggests the Student t may be a quite efficient model for UK SGTRI.

The general 5 parameters GH law looks over-fitted to the SGTRI data. In our

estimating procedures, fixing parameter λ reduces one dimension in the optimisation

problem to find maximum likelihood. The searching procedures for NIG and HYP

converge quicker and are more reliable than the general 5 parameters case. The

variance gamma model with its own parametrisation (θ, σ, ν) has only 3 parameters

to estimate and the estimator of the 4th parameter, drift µ, can be easily calculated

by the difference between sample mean and θ.

One of the Bayesian approaches to compare different models is to use Bayes

factors. Given two models M1 and M2, based on sample data D, the Bayes factor

for model M1 against M2 is

B(M1,M2) =
f(D|M1)

f(D|M2)
(3.15)

where f(D|Mi) is the conditional likelihood function condition called marginal like-

lihood for model i. We assume the parameter vector for Mi is θi with posterior

density ϕ(θ), the joint likelihood function f(D, θi|Mi) is

f(D, θi|Mi) = f(D|θi,Mi)ϕ(θ). (3.16)

The marginal likelihood is
∫
f(D, θi|Mi)dθ, hence Equation 3.15 can be calculated
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Table 3.11: Selection information for GH, NIG, HYP, VG, ST and GBM.

Model Parameters k LogLH AIC BIC

Share Gross Total return Jan 1950 - May 2005
GH 5 1075.18 -2140.36 -2117.87
NIG 4 1074.74 -2141.48 -2123.49
HYP 4 1072.91 -2137.82 -2119.83
VG 4 1071.51 -2135.02 -2117.03
ST 3 1070.80 -2135.60 -2122.11
GBM 2 1013.10 -2022.20 -2013.21

Share Gross Total return Dec 1923 - May 2005
GH 5 1650.90 -3291.80 -3267.38
NIG 4 1650.66 -3293.32 -3273.79
HYP 4 1648.43 -3288.86 -3269.33
VG 4 1647.52 -3287.04 -3267.51
ST 3 1645.54 -3285.08 -3270.43
GBM 2 1557.55 -3111.10 -3101.33

by

B(M1,M2) =

∫
f(D|θ1,M1)ϕ(θ1)dθ1∫
f(D|θ2,M2)ϕ(θ2)dθ2

. (3.17)

One can see from Equation 3.17, a likelihood-ratio statistic

λ(D) =
f(D|θ1,M1)

f(D|θ2,M2)

is a special case of Bayes factor. Let the parameter vector θi to be the maximum

likelihood estimator θ̂i for Mi, we have the maximum likelihood-ratio statistic.

For the MCMC estimators, the generated Markov Chain (Xt)t∈Z is sample from

the posterior distribution of parameter θ. Thus we use the sample distribution of

the Markov Chain θ̂(k), k ∈ Z as the density ϕ(θ). The margin likelihood for Mi

can be estimated using sample mean of the conditional likelihood functions.

MLH(Mi) =

∫
f(D|θi,Mi)ϕ(θi)dθi (3.18)

= Eθi
[f(D|θi,Mi)] (3.19)

=

∑
m<k≤n

∏
Xj∈D f(Xj|θ̂ik,Mi)

n−m
, (3.20)

where m is the number of “burn-in”s. Table 3.13 lists the interpretation for Bayes
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factors suggested by Jeffreys (1961). The second column gives the corresponding

range of logarithm of Bayes factors.

Table 3.12: Jeffrey’s’ scale of evidence for Bayes factors.

Bayes factors Logarithm, LB(M1,M2) Interpretation

B(M1,M2) ≤ 1 LB(M1,M2) ≤ 0 Negative, support M2

1 < B(M1,M2) ≤ 3 0 < LB(M1,M2) ≤ 1.10 Weak evidence for M1

3 < B(M1,M2) ≤ 10 1.10 < LB(M1,M2) ≤ 2.30 Moderate evidence for M1

10 < B(M1,M2) ≤ 30 2.30 < LB(M1,M2) ≤ 3.40 Strong evidence for M1

30 < B(M1,M2) ≤ 100 3.40 < LB(M1,M2) ≤ 4.61 Very strong evidence for M1

B(M1,M2) > 100 LB(M1,M2) > 4.61 Decisive evidence for M1

One must be careful in calculating of the Bayes factors because when the sample

size n is large, the likelihood function (not log-likelihood) value may overflow the

computer programme used in calculation. We use Matlab in this example to calcu-

late the marginal likelihood functions. Matlab uses the IEEE 64-bit floating-point

number system to present all numbers. The maximum number is

fmax = (2− 2−52)21023,

which is around exp{709.78}. Any numbers have absolute value larger than it are

treated as infinities. The minimum in the IEEE 64-bit floating-point number system

is

fmin = 2−1074,

which is around exp{−744.44}. Any numbers have absolute value less than it are

treated as zeros. Thus we are not able to calculate marginal likelihood functions

directly.

We find the sample medium of the estimated parameters
ˆ
θ

(m)
i , let constant C be

the conditional log-likelihood,

C = log{f(D|θ̂(m)
i ,Mi)}.

Thus margin likelihood MLH(Mi) can be written as

MLH(Mi) = exp(C)Eθi

[
f(D|θi,Mi)

C

]
.
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Table 3.13 lists the logarithm of margin likelihood of the exp-Lévy models we have

discussed. And Bayesian factors for M1 against M2 is

B(M1,M2) = exp (log(MLH(M1))− log(MLH(M2))) .

Table 3.13: Logarithm of marginal likelihood for GH, NIG, HYP, VG, Student-t
and GBM.

Model Log(MLH) Log(MLH)
Jan 1950 - May 2005 Jan 1923 - May 2005

GBM 1012.47 1555.88
ST 1069.74 1646.01
VG 1070.31 1646.75
HYP 1071.47 1646.94
NIG 1073.27 1648.93
GH 1073.48 1649.25

All non-Gaussian models have decisive support evidence against the GBM model.

For both sample sets, GH has higher marginal likelihood than its subclasses NIG,

HYP and VG. The largest Bayes factor among the non-Gaussian distributions is

B(GH, V G) which is 12.18 for sample from Jan 1923 to May 2005 and 23.81 for

sample from Jan 1950 - May 2005. It is a strong support evidence for GH model.

Among the subclasses of GH, NIG perform better than HYP and VG. Bayes factor

for NIG against HYP is 7.32 for sample from Jan 1923 to May 2005 and 6.55 for

sample from Jan 1950 - May 2005, and Bayes factor for NIG against VG is 8.84 for

sample from Jan 1923 to May 2005. There is moderate support evidence for NIG.

Bayes factor for NIG against VG is 19.29 for sample from Jan 1950 - May 2005

which suggests strong evidence for NIG in this case. GH and NIG give very close

marginal likelihood, it suggests there is very weak evidence show one model over the

others.

Compare the hyper-models with the models using MLE, there is weak evidence

showing that the fix parameter models using MLE estimators perform better than

hyper-models using Bayesian estimators with respect to same driving process.
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3.5.3 Statistical properties of exp-Lévy models

Skewness and Kurtosis

Recall Table 1.1 lists the skewness and kurtosis of the two sample sets. Although

explicit analytical form of the GH moments can be derived by differentiate the

moment generating function which is given in Prause (1999), we study the higher

moments of the fitted increment distributions include GH, NIG, HYP and VG using

Monte Carlo techniques. A sample involve 10000 monthly log-returns is simulated

for each of the GH laws and its subclasses described in this chapter. The statistics

of the skewness and kurtosis are listed in Table 3.14.

Table 3.14: Statistics for simulated returns
Statistics Mathematical Gaussian t VG NIG GH

Form

Mean E[Y ] 0.0086 0.0114 0.0086 0.0087 0.0086
Variance m2 0.0024 0.0025 0.0023 0.0023 0.0023

Skewness m3/m
3/2
2 0 0 -0.4037 -0.7058 -0.7126

Kurtosis m4/m
2
2 3.0000 N/A 5.5029 7.3674 7.4109

Note that the maximum likelihood estimators of the VG, NIG and GH laws give

smaller variance than the sample variance. While on the other hand the student-t

distribution over-estimate the variance. This may because that student t has heavy

tails on both side as power functions (Equation 2.22) and the VG, NIG and GH have

semi-heavy tails which are exponentially decreasing functions (Equation 2.13). And

for the SGTRI23 data set which is a relatively small sample for distribution fitting,

there are several extreme sample observations. The largest log-return is 0.4300 and

the second largest is 0.2190, there is no data point in between, and in this case

distributions with power decreasing tails give more weight on likelihood of extreme

value than distributions with exponential decreasing tails. The Gaussian distribu-

tion gives exactly the sample variance because the maximum likelihood estimators

for Gaussian law is same as moment estimators.
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Density and Quantile

Figure 3.7 and Figure 3.8 show the density functions of the estimated log return

processes with regards to different models. It is obvious that the Lévy driven models

fit the data accurately. They all have higher peak in the middle and heavier tails

for both sides than Gaussian law. Thus it captures the feature of high kurtosis

in empirical data. QQ-plots are shown in Figure 3.5 and Figure 3.6, we find that

all these distributions except normal give good fit to left tail. For right tail, VG,

HYP, NIG, GH perform better than student t. This is mainly because student t

distribution is symmetric, and the sample set of the SGTRI is negatively skewed

but exist the positive large movement in January 1975, when the SGTRI went up

suddenly in one month by 43%. For those cases when the return data are not

strongly asymmetric, student t seems good enough.
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Figure 3.5: QQ plots of SGTRI23-05

3.5.4 MCMC estimator and Hyper-models

One comment about MCMC is that the predictive distribution of the model contains

Bayesian estimators which are random variables, given the posterior distribution
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π(θ). Denote x as the sample observations used to simulate the posterior sample

under the MHA. The marginal density of the possible future outcome z is

f(z|x) =

∫

θ

f(z|θ, x)π(θ|x)dθ (3.21)

where f(·|·) is the conditional density of z. The predictive distribution can be

written as

Eθ|x[f(z|θ, x)]. (3.22)

It is different from using the mean of the posterior distribution as a point estimate

for θ:

f(z|E[θ|x]). (3.23)

Using predictive distributions in the simulation leads to the so-called a “hyper-

model”, see for instance, in Wilkie et al. (2005). For each simulation, the values of

the parameters to be used are drawn from the posterior distribution. The explicit

form of the multivariate distributions of the parameters are not necessary in this

case because the sample generated by the MHA can be used as an approximation.

3.6 Concluding Remarks

This chapter estimated the parameter of the exponential Lévy models using

likelihood-based estimation approaches. The GH increment Lévy processes are fitted

to SGTRI data, both for maximum likelihood estimation and the Bayesian estima-

tion. The results of MLE estimation show a significant improvement in performance

of model based on the likelihood function. The five parameter GH case has the

highest likelihood but the difference between general case and its subclasses are

relatively small.

Markov Chain Monte Carlo has been proposed as an alternative approach to

estimate the parameters of Lévy driven models, specifically the Metropolis-Hasting

Algorithm. The MCMC estimation results for GH are closed to those estimated by

MLE. In addition hyper-models using Bayesian parameters accounts for estimation

risk.
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The Anderson & Darling statistic is calculated to give a goodness of fit in sense

of distance measure. Also we discussed the information criteria in order to see the

efficiency of using more complex models.
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Chapter 4

Measuring the risks for Unitised

With-Profits policies

4.1 Introduction and objectives

As long term investment and saving products, the Unitised With-Profits (UWP)

policies make up a significant part of the UK’s life insurance market. It allows the

policyholders to share the benefits of the life office fund while a guaranteed minimum

return is provided by the insurer to protect the investors (policyholders) against the

financial investment risk.

We consider the key factors in modelling, reserving and valuation of UWP poli-

cies. Special attention will be paid to measuring the financial risk in UWP policies.

In this thesis UWP policies are modelled by providing the operation rules which

include asset allocation, charging, reserving and bonus declaration. In practice every

insurer in UK issues their own with-profits guide to explain how they operate the

with-profits products. A Principals and Practices of Financial Management (PPFM)

clarifies, briefly, where and how the fund will be invested. The PPFM is designed

to be accessible for all policyholders. In addition, a series of periodic reports review

the investment performance and asset allocation strategy analysis of the with-profits

fund along with the bonus declaration. Before purchasing with-profits contracts the

investors should be informed of the guaranteed minimum return rate and how they

will be charged.
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The with-profits or other financial investment products contain a variety of guar-

antees to provide protection against risk. Thus the unitised With-Profits are in the

business line of offering policyholder risk management over the long term. Some of

the these risks include for example, the mortality risk can be pooled and diversified

by selling large amount of policies, whilst some other, such as investment risks, can-

not. We consider the major risk embedded in with-profits business is the guarantee

risk which caused by the mismatching of the asset and the guarantee.

The financial risks include for example the fluctuation of asset, inflation and

interest rates. The performance of fund investment depends on the financial market

behaviour. The actuarial risks include unexpected mortality, changes to legislation

such as taxation, and financial accounting principals.

The aim of this chapter is to build a mathematical model of the participating life

insurance contract, more specifically, the unitised with-profits policy. The financial

risks will be measured by some random variables based on the loss distributions of

the insurers. A ten year single premium UWP policy will be studied by Monte Carlo

simulation experiments. Some of the exp-Lévy models fitted to SGTRI23 will be

used as more realistic models to simulate the investment returns in order to observe

more accurate risk measures of the maturity loss of the insurer. The effect of the

estimation risk of the models is discussed by considering parameter uncertainty in

hyper-models.

The chapter is organised as follows. In Section 4.2 we describe liability model

which is the unitised with-profits policy. Then we introduce the risk measures we use

to quantify the risk embedded in the policy in section 4.3 and present the numerical

results of the simulation studies in section 4.4. Finally in Section 4.5 a summary is

given.

4.2 Modelling UWP policies

The UWP policies models are characterised by the business activities of the life

office by determining investment strategy, bonus rate, charging, guarantee rate and

reserves rules of the contracts.

64



At the outset of the UWP contract, the policyholder pays a premium P to pur-

chase units along with a initial guaranteed value. Charges are normally deducted

through bid-offer spread, policy fee, fund management charge or allocation rate.

The insurer invests the premium paid in by the policyholder in the financial market.

The actual accounting value of the accumulated assets the policyholder owns in the

fund is called asset share AS(t).

The payout of the UWP policy, which can be at the end of the policy term or

after a death of the policyholder prior to maturity, is the policyholder’s asset share

subject to the value of the units so-called the guarantee G(t), in other words, the

payout of the policy at time t is

max{G(t), AS(t)}, t ≤ T. (4.1)

In case at maturity the value of the asset share AS(T ) is greater than the value

of the guarantee G(T ), the excess amount will be paid back to the policyholder as

a terminal bonus TB which is given by,

TB =





AS(T )−G(T ) if AS(T ) > G(T )

0 otherwise,
(4.2)

A practical activity for the surrender payment is the insurer may apply a market

adjustment to bring down the payment to the asset share that the surrenders actually

own in the fund.

On death, in addition to the unit value, the UWP contract may contain a sum

assured to cover the early death benefits. The policyholder will receive the sum

assured if it is greater than both guarantee and asset share. The sum assured is not

payable at maturity.

During the term of the policy, the reversionary bonus bt with a guaranteed mini-

mum rate of bonus g is declared periodically to bring up the guarantee value or unit

value G(t). From time to time, the insurer changes the bonus rate depending on the

investment performance of the reference portfolios. Normally the insurer declares

bonus bk at start of every policy year k and adjusts the bonus rate yearly. The unit

value (guarantee) increases at the bonus rate on a daily basis. The G(k) at k integer

years after the issue date is:

G(k) = (G(k − 1) + CF (k − 1))(1 + bk) with bk ≥ g, (4.3)
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where CF(k) is cash-flow at time k. This can be the amount of premium paid-in Pk

less the deducted charges CHk at the beginning of policy year k,

CF (k) = Pk − CHk. (4.4)

More specifically, G(t) is given by

G(t) = G(0)

btc+1∏
i=1

(1 + bi) +

btc+1∑
j=1

CF (j)

btc+1∏

k=j

(1 + bk) with bk ≥ g, (4.5)

where bi is the bonus rate declared at the start of i-th policy year since the policy

was set up.

The insurer may declare the bonus more frequently, for example half yearly,

quarterly or monthly. In practice, premiums are often paid monthly and the charges

would probably be deducted at more frequent intervals. More generally, G(t) can

be considered as a function that increases at the rate combining the compound

guarantee g and the continuous reversionary bonuses:

G(t) = G(0) exp

{∫ t

0

bsds

}
+

∫ t

0

CF (s) · exp

{∫ t

s

budu

}
ds with bt ≥ g. (4.6)

The Equation 4.6 shows that the reversionary bonus is an important factor to

control the guarantee. The philosophy of bonus strategies is discussed carefully in

Willder (2004) and Chadburn (1997). In summary, bonus should:

• reflect the performance of the investment;

• change in a smooth way from year to year;

• be competitive with other contracts; and

• maintain adequate solvency.

One of the methods to compute bonus is directly linked to investment return with

smoothing. It has also been considered in Grosen and Jorgensen (2002), Haberman

et al. (2003) and Ballotta (2005). The bonus declared at start of the i-th policy year

is the greater of the guaranteed rate g and part of the previous year’s return on the

underlying asset. In other words

bi = max

{
g, β

(
ASi

ASi−n

− 1

)}
, i = 1, 2, ..., 10. (4.7)

We shall use this method in the example in this chapter. More advanced bonus

mechanisms will be discussed in Chapter 5.
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4.2.1 Investment bonus cycle

The liability model of the maturity guarantees in the unitised with-profits policies

have some option-like features. Brennan and Schwartz (1976) and Brennan and

Schwartz (1979) were the first to apply the modern option pricing theory to the

fair value of unit-linked type policies. Wilkie (1987), Willder (2004), Tong (2004),

Wilkie et al. (2005), Chadburn (1997), Chadburn and Wright (1999) and Kleinow

and Willder (2006) considered the with-profits guarantees as a portfolio of shares

and put options. The put options are based on the underlying shares and have the

same maturity as the with-profits policy. The unitised with-profits contract is thus

modeled as a European “maxi option” (see Wilkie et al. (2005)). The value of the

contract is the cost of guarantees for the maxi options.

Jorgensen (2001) considers participating life insurance policies with guarantees

but with default options which is different from the approach in Wilkie (1987) and in

Willder (2004). Actually, in Jorgensen (2001), the liability of the insurer (sharehold-

ers) selling the participating policy is a long position in a European call type option.

This call option costs the shareholders the share value in the fund for the right to

share the benefits of the policyholders. When a default (not shortfall) happens, the

shareholders are subject to a limited liability and the policyholders bear the loss.

The liability model with default options is also considered in Ballotta (2005), Grosen

and Jorgensen (2002) and Haberman et al. (2003).

In this thesis, we assume the insurer will not default at maturity of the policy.

Under shortfall, the office will pay the guarantee amount to policyholders at maturity

and bear the loss. The loss of the insurer may be covered by,

• the charges from policyholders;

• the reserves of the insurer;

• a third party, for example, a reinsurer or a financial institute such as the short

position in put options that the insurer buy

• and the profits created by other generations in with-profits fund.

Kleinow and Willder (2006) point out that the so-called traditional case has

considered where bonuses are set according to the performance of some exogenously
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given reference portfolio. The insurer is unable to change the reference portfolio

or the way it is invested. However, in the so-called practical case the bonuses are

linked to the performance of with-profits fund investments, which is the asset share

of the policyholder. The insurer’s decisions on investment strategy will directly

effect the bonuses and hence the guarantees. On the other hand, the regular bonus

declared may effect the investment strategy, see for example, under the “dynamic

EBR” and “dynamic hedging” investment strategies in Chapter 6. This is called the

investment-bonus cycle in the practical case.

In the practical case a UWP contract can be regarded as a sequence of embedded

put options written on the asset share ASt. As the value of the units (guarantee)

increases, these put options become deeper in-the-money, and so are more valuable.

Thus with each bonus declaration, the total value or so-called fair value of the UWP

contract increases.

4.3 Risk Measurement

The approach to measure risk for insurance products has changed radically over

the last twenty years. Risk measures we use in this thesis are statistics based on

the (un)conditional loss distribution include Value-at-Risk (VaR), probability of

shortfall (POSF)and conditional tail expectation (CTE).

These risk measures are based on the loss distribution, while some of the classical

actuarial approaches are “scenario-based” such as the one used in resilience tests

which observe the maximum loss of the life office under some possible future financial

scenarios.

The probability of shortfall is the probability that the insurer can not declare

terminal bonus at maturity. Under the shortfall, the insurer needs to pay the guar-

anteed units value to the policyholders and bear the loss. The POSF is given by:

POSF = 1− P(TB ≥ 0). (4.8)

The Value-at-Risk at probability level α, V aRα, is simply the quantile of the

maturity loss distribution. It is the smallest value l such that the probability that
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the loss L = max(G(T )− AS(T ), 0) exceeds l is no larger than (1− α):

VaRα = inf{l ∈ R,P(L > l) ≤ 1− α}. (4.9)

The major concern of using VaR is that it has poor aggregation properties. Artzner

et al. (1999) shows that VaR is incoherent. The axiom of coherence is given, for ex-

ample, in McNeil et al. (2005). Briefly, a coherent risk measure should be translation

invariant, sub-additive, positive homogeneitic and monotonic.

To this end, we define the conditional tail expectation, CTE, of the maturity loss

distribution. For a continuous loss distribution, the CTE is coherent (see Acerbi

and Tasche (2002) and Dowd and Blake (2006)) and is given by:

CTEα = E[X|X ≥ V aRα], (4.10)

where α is the chosen probability. CTE has also been used as risk measures in Hardy

(2003), Hardy (2001) and Wilkie et al. (2005). The CTE and VaR are known as the

quantile measures and are applied widely in actuarial risk management.

4.4 A model office study: Basic case

Consider a 10-year single premium unitised with-profits policy called M0 with zero

guaranteed minimum rate and annual reversionary bonus rate bt. The bonus bt

depends on the performance of the reference portfolio (asset share) and is declared

at the start of every policy year with one third of last years investment return in

asset share subject to a minimum of zero in case the fund has a negative investment

return in the past year. That is, the guarantee will be increased as around a 33.3

percent of participating rate β in equation 4.7,

bt = max

{
0.33

(
log

ASt

ASt−1

)
, 0

}
, t = 0, 1, · · · 9. (4.11)

We ignore mortality and deduct a one percent guarantee charge on the asset share

at start of every year except for the maturity. The whole asset share is invested in

shares. Under these assumptions, we use the Monte Carlo simulation to project the

maturity payout with three different asset models: GBM, exp-NIG and the exp-VG

models. These models are calibrated to the monthly index log-return rate, SGTRI

data from 1923 to 2005, SGTRI23.
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4.4.1 Algorithms

The simulation study requires that the computer codes generate independent uni-

form, normal, gamma and inverse Gaussian variates. For the long term, more than

10 years time horizons, the maturity asset share and guarantee are the product of

hundreds of stochastic monthly random return rate variates. The results are heavily

dependent on the quality of the random number series generated by some algorithm.

For example, the results of risk measures which will be observed in the next section

are sensitive to the distribution and autocorrelation structure of the random num-

bers. Failure to take this into account in the algorithm will lead to large systematic

errors.

To this end, after careful comparison of various random number generating syn-

tax, we use the generators in our Monte Carlo studies as follows. Uniform variates

are generated using ran2 from Press et al. (2002), as, thus good performance in ran-

dom number quality tests. For tests of random numbers we refer to Gentle (2003).

The inverse normal cumulative density function is calculated by Hastings’ approxi-

mation in Glasserman (2004). The incomplete gamma function value is computed

using algorithm gcf in Press et al. (2002). The advantage of generating the uni-

variate normal and gamma variable using inverse CDF methods is that they are

tractable and share the good quality of the ran2 uniform random number, such as

quick Lp convergence with p > 1 which is the key factor of some risk measures.

The inverse Gaussian variate is generated directly by Michael, Schucany and Haas

(MHS) algorithm, see Schoutens (2003), Chapter 8. The VG and NIG processes are

generated by Brownian time changing skills.

4.4.2 Using MLE estimators

Table 4.2 shows the statistics and risk measures of the UWP payoff under the GBM,

exp-VG and exp-NIG models by 100, 000 Monte Carlo studies. The parameters used

in the Monte Carlo simulation of model office M0 is summarized in Table 4.1.

First of all we look at the probability of shortfall, for the GBM case, there is

7.22% probability that the actual asset share will fall below the guaranteed level at

maturity, in this case the insurer will pay the guarantee and bear the loss which

70



Table 4.1: Parameters for simulation

Number of simulations 100,000
Term of the policy 10 years
Single premium at t=0 100
Guarantee rate g 0
Participating rate β 33.3%
Charge Guarantee charge 1% per annum
Parameters in GBM
Mean share return, µ− 1/2σ2 0.0087
Standard deviation of share return, σ 0.0491

Parameters in exp-NIG see table 3.1
Parameters in exp-VG see table 3.3

is the difference between the actual asset share and the guarantee amount. In this

example, the figure seems larger than an insurer would be comfortable with because

we suppose a constant 100 percent equity backing ratio (EBR) which is a highly

risky investment strategy in practice. The UWP under exponential variance gamma

real world model assumption has 1.8 percent higher probability of short fall than the

GBM. The POSF under exponential normal inverse Gaussian model is the highest in

these models. The same pattern applies for the mean of loss (MOL). The maximum

loss together with value at risk at two levels show the tail behaviour of the loss

distribution which has the heaviest tail under exp-NIG and has heavier tail under

exp-VG than the one under GBM. These results are not surprising and we conclude

that more accurate modelling by using Lévy processes leads to higher value of the

estimated potential risks of the UWP contract hence higher reserves are required.

Table 4.2: UWP simulation using exponential VG, exponential NIG and GBM mod-
els.

POSF MOL V aR95 V aR99 CTE95 CTE99

Loss (GBM) 0.0722 19.1296 9.1592 36.0618 25.6835 45.6409
Loss (exp-VG) 0.0902 21.2661 15.0627 42.0876 32.3346 52.9947
Loss (exp-NIG) 0.0946 21.4323 16.7054 44.1215 33.4324 53.7207

Table 4.3 shows that the asset share at maturity under GBM model, AT (GBM),

exp-VG model, AT (exp-VG) and exp-NIG model, AT (exp-NIG), have similar mean

and standard deviation (SD). As the VG and the NIG laws have finite second order
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Table 4.3: UWP simulation using exponential VG model and GBM model.

MEAN SD L-Kurtosis

AT (GBM) 291.8689 166.5314 3.0173
AT (exp-VG) 296.6749 165.3233 3.0226
AT (exp-NIG) 288.3072 161.2154 3.0181
GT (GBM) 145.6820 23.9722 3.1022
GT (exp-VG) 147.0211 23.8659 3.0799
GT (exp-NIG) 141.1001 22.5542 3.0698

moments, in the long run, the i.i.d. assumption for the log-return process leads the

sum of the generalized-hyperbolic-law increments to be normally distributed. It’s

easy to see this from the L-Kurtosis, which is the kurtosis of the logarithm process,

is close to 3. Hence the asset values at maturity under the three models are all,

approximately, normally distributed.

In this example, the marginal distribution of the guarantee GT is observable. The

log−GT is sum of i.i.d one-side Lévy process with the scaled density same as the

asset model’s BDLPs truncated at point zero. For example, if the return of the asset

share is modelled by a variance gamma process, with density function vg(x), then

the cumulative probability function for the log guarantee process is:

g(x) =
1

p

∫ x

−∞
vg(s/p)ds, x ≥ 0,

where p is the percentage bonus calculation weight which is 0.33 in our example.

Of course in this particular case log−GT is normally distributed. In general, the

probability distribution of GT is dependent on the methodology the insurer used to

decide the bonuses.

The advantage of this aggregation normality property of variance gamma process

and normal inverse Gaussian process is obvious. It will save the calculation power

when projecting the long run future distributions. For example, the insurer who set

the reserve or declare bonus as quantile of projected future payoff distribution, even

under non-Gaussian return assumption, can use approximately all the well-studied

statistical properties of the normal distribution.

For VG and NIG processes, the stochastic bridging skills have been studied and

the closed form conditional bridging distributions for intermediate points of the
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paths have been derived in, for example, Webber and Ribeiro (2004) and Webber

and Ribeiro (2003).

A 2-dimensional copula C(u1, u2) is a joint cumulative distribution function for

random variables U1, U2 in the unit hypercube with uniform marginals,

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2), (4.12)

where U1, U2 have uniform distribution on [0, 1].

The 2-dimensional random vactor (AST , GT ) have joint distribution F (x1, x2)

and marginal distributions F1(x) and F2(x). AST is the maturity asset share and

GT is the corresponding guarantee amount. Given (AST , GT ), (U1, U2) is defined as

U1 = F1(AST ); U2 = F2(GT ).

Hence, the U1 and U2 have uniform distributions on [0, 1].

The paired sample (AST (i), GT (i)) is the asset share and guarantee of the i-

th outcome scenario generating by Monte Carlo method. The marginal sample

probability functions are given by

FA(x) =
#{AST (i) ≤ x, i = 1, 2, . . . , n}

n
; and (4.13)

FG(y) =
#{GT (i) ≤ x, i = 1, 2, . . . , n}

n
, (4.14)

where #{·} is the counting measure and n is the sample size.

We present the results in the scatter plot in figure 4.1. The copula

C(FA(AST (i)), FG(GT (i)) ) for GBM and exp-NIG both have Gaussian marginals,

where F is the sample cumulative density. However from the figure 4.1, we can see

that the exp-NIG copula which are the right two graphs, have points spread wider

than the left two which are the GBM results. The top left corner of the two graphs

in the first row is of interest to us because it is the extreme situation when the asset

share is in it’s lowest level whilst the corresponding guarantee is in it’s highest level.

Hence, this scenario represents the policies on which the insurer makes the biggest

loss. Zooming in the top left area of the first row’s two graphs in the second row,

there are no points which appear in this “ruin corner” for GBM outcomes when

all of them lie in the bottom right square. More appear in NIG outcomes and all
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of them have either higher rank of guarantee or lower rank of asset share than the

GBM points.

We argue that although the marginal distributions of the maturity asset share

AST and guaranteeGT are both approximately log-normal with close statistics under

the GBM model and one of the Lévy driven asset model, exp-NIG, the 2-dimensional

copulas with transformed margins show the very different dependence structure

between the simulation outcomes of these two asset models. In this case GBM

understates the size of these extreme losses.
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Figure 4.1: Scatter-plot of maturity asset share versus guarantee under GBM and
exp-NIG

4.4.3 Using MCMC estimators

So far the parameters of the real world models are assumed to be the MLE estimators

and fixed. Under Bayesian estimation, parameters are correlated random variables.

Metroplis-Hasting Algorithm is used to generate the quasi-sample observations of
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the parameter vector from its multivariate joint distribution. We therefore upgrade

parameters of the asset models in every simulation scenario using the sample Markov

chain of parameters generated by the MCMC procedure. In every single simulated

sample path of UWP asset, the parameters are fixed. For the exp-Lévy models this

retains the i.i.d. property of the log return process.

Table 4.4: UWP simulation using exponential VG, exponential NIG and GBM mod-
els with MCMC estimators.

POSF MOL V aR95 V aR99 CTE95 CTE99

Loss (GBM) 0.0901 21.6498 16.1833 42.8258 32.8897 52.8821
Loss (exp-VG) 0.0966 22.4610 18.4376 45.6333 35.6074 56.0810
Loss (exp-NIG) 0.1175 24.5999 25.2323 53.2655 42.5320 64.1950

We re-consider the model office M0, but with “hyper-” real world models for the

asset returns. The Table 4.4 shows the risk measures of the UWP payoff under the

hyper GBM, hyper exp-VG and hyper exp-NIG models using the MCMC estima-

tors. All risk measures increase compared with the corresponding ones in Table 4.2

for which the asset model parameters are fixed. The reason for this is obvious. Be-

cause the hyper-models include the parameter uncertainty which increase the total

variance of the random samples.

As we expected, using hypermodels increases the risk measures in the UWP com-

pare to their corresponding basic version of models with fixed parameters. The use

of hyper-GBM model adds an extra 1.79% probability to the figures that simulated

using MLE parameters that the terminal bonus is unaffordable. It also substantially

increase the mean of loss and other quantile risk measures. The difference of corre-

sponding diagonals in Table 4.4 and in Table 4.2 becomes wider when applying the

hyper exp-VG and the hyper exp-NIG. The use of hyper-exp-NIG model adds the

largest margins to the corresponding risk measures listed in Table 4.2.

The life office using exp-NIG as real world asset model in measuring the risks for

M0 contract will find an additional three percent POSF using MCMC parameters

than using MLE parameters. What is more, the quantile measures, both VaRs and

CTEs considered in this example, are highly sensitive to the parameter uncertainty

assumption.
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It can be seen that the uncertainty of the model parameters brings in extra

risks. Table 4.5 shows the statistics of the maturity asset shares and guarantees

under hypermodels. The maturity asset share under the GBM model, in both MLE

parameter approach and the MCMC approach, has highest standard deviation (SD).

Table 4.5: UWP simulation using exponential VG model and GBM model.

MEAN SD L-Kurtosis

AT (GBM) 300.8993 186.2175 3.0173
AT (exp-VG) 299.2465 179.1106 3.0226
AT (exp-NIG) 287.6310 176.9025 3.0089
GT (GBM) 143.6861 24.1630 3.1022
GT (exp-VG) 143.6121 23.1654 3.0799
GT (exp-NIG) 141.9561 22.8366 3.0698

4.5 Concluding Remarks

In this chapter, stochastic asset models have been constructed to study the financial

risks of unitised with-profits policies. A single premium model office contract with

a 100% EBR and bonuses which are linked to the rate of return has been studied

by simulation. Risk measures include probability of shortfall (POSF), mean of loss

(MOL), value at risk (VaR) and conditional tail expectations (CTE) are calculated

using Monte Carlo simulation under three different asset models. The exp-Lévy

models driven by VG and NIG processes which have been proved to be more realistic

in last Chapter give higher risk measures.

The hyper models which use the generated sample of Metroplis-Hasting Algo-

rithm show an extra margin of risk measures for all three models while taking the

parameter uncertainty into consideration. And the difference between the results of

models using Bayesian estimators and MLEs quantifies the estimation risk embed-

ded in using the stochastic investment models. For example, if the stochastic model

we are using is highly sensitive to the parameters, it tend to generate large margins

of risk measures when using Bayesian estimators instead of MLE.
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Chapter 5

Dynamic Bonuses

5.1 Introduction and objectives

In this chapter some more advanced and more complex dynamic bonus mechanisms

will be discussed, rather than the simple bonus strategy considered in M0 which is

directly linked to the reference portfolio investment returns.

In reality, there is the conflict of interest between policyholders and shareholders.

The former group expect high guarantees with their with-profits policies while the

later group hope to control the guarantees at a relatively low level.

Briefly, we consider two types of dynamic bonus mechanisms here. One of them is

called retrospective bonus strategy. These bonus mechanisms link the reversionary

bonus rates to the performance of past investment returns such as the one we used

in case M0 in the last chapter. Haberman et al. (2003) gives three example bonus

schemes to calculate retrospective bonus rates. The first one is calculated as a fixed

percentage of the average return rate during the smoothing period, normally the

last n years, subjected to a annual guaranteed rate. The second one is based on

the geometric average of the last n years returns on the reference portfolio. The

third scheme apply a smoothing factor on the bonus which is linked to the reference

portfolio returns. Chadburn (1997) and Chadburn and Wright (1999) consider the

retrospective bonus strategies similar to the first scheme in Haberman et al. (2003)

but assume the bonus is linked to the return on consols.

The other type of dynamic bonus mechanisms is called prospective bonus strategy.
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The idea of these bonus mechanisms is that we project the future investment return

of the asset share or in some cases the reference portfolio if they are not the same,

use the projected value as a reference of the target maturity guarantee and the

future bonus to build the guarantee.

The bonus earning power (BEP) is the bonus rate that can be declared in the

remaining term of the policy in order to lead the guarantee to achieve the objective

value. The target guarantee could be any form related to the projected asset share,

for instance, it can be risk measures such as VaRs and CTEs or the guarantee will

allow a probability of at least a terminal bonus cushion.

In practice, bonuses are declared annually. With the development of modern

computer power, it is possible to re-valuate the policies on more frequent bases and

re-adjust the bonus rate or at least the suggested bonus rate at any time during

a fiscal year. The advantage of this is obvious, the insurer can cut, for example,

the monthly bonus earlier than an annual bonus when the investment returns are

poor. The re-adjusted bonus rates in a year are probably difficult to be applied on

the guarantee based on the practical problem of the with-profits business, i.e., it’s

too expensive for informing, accounting and reporting of the new bonus changing.

However, the suggested bonus rate can give risk managers/insurers a warning of

potential probability of insolvency. In this case a possibly more prudent strategies

can be taken on the investment, charging and the later bonus declarations.

This chapter is organised as following: In Section 5.2 we consider different retro-

spective bonus strategies based on the M0 model by varying the smoothing period

and the participating rate. The prospective bonuses which is bonus earning power

with a risk measure target method will be discussed in Section 5.3. Section 5.4 looks

at some issues such as the effect of declaring bonus on a more frequent bases and

smoothing the bonus rate. Finally, some summary remarks are given in Section 5.5.

5.2 Retrospective bonus mechanism (Case M1)

Consider a unitised with-profits policy called M1. We use the same assumptions as

in Case M0 (see Section 4.4) for the policy and market parameters. The bonus will
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be calculated as the weighted arithmetic average of the smoothing period, which is

the last n years returns on the asset share, so that

b(t) = max

{
g,
p

n
log

(
AS(t)

AS(t− n)

)}
, (5.1)

where p ∈ (0, 1) denotes the participating rate. Thus, the M0 is a special case of

M1 when p = 0.33 and n = 1.

At this stage, the exp-NIG model is chosen to represent the non-Gaussian Lévy

driven models as the real world model to compare with the geometric Brownian

motion model. It can be seen from Chapter 3, the NIG distribution offers the second

highest likelihood among all increment laws considered and is only slightly less than

the general 5-parameter GH distribution. It fits accurately to both SGTRI23 and

SGTRI50 data sets while it has some attractive mathematical properties. These

properties include the closed-under-convolution feature which allow us to extend

the model to any time scales and keep the increment distribution in the NIG class.

Also the inverse Gaussian random variates can be generated directly by using the

MHS algorithm. It reduces the systematic errors caused by the generator algorithm

and the numerical approximation in long term model study.

Here we focus on the comparison between the non-Gaussian Lévy processes and

the Brownian motion under same stucture of asset model. We also considered the

Lévy driven processes other than NIG such as VG, GH and HYP. The results suggest

the difference between these models within GH family is insignificant and thus it

is not necessary to show all the combinations. Comments on results of other Lévy

driven models are given at the end of this chapter.

First we look at risk measures of the loss for M1 for different participating rates

p.

Figure 5.1 shows the probability of shortfall (POSF) plotted against the partici-

pating rate p, using the range from 0% to 50% with three smoothing period values

which are one year, two year and three year. The solid lines are the POSF measure

refer to GBM models and the broken lines are the POSF under the exp-NIG models.

As we expected, the POSF under exp-NIG case is greater than the one under GBM

case with same participating rate p and smoothing period n. Under each level of n

and the asset models, the POSF is an increasing function of the participating rate,
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p. This is simply because the higher participating rate will cause a bigger bonus

rate in Equation 5.1. It eventually leads to higher maturity guarantee under any

investment return scenario.

Then we consider the effect on the probability of shortfall of the UWP policies

with different lengths of the smoothing period n. Under the same asset models,

POSF is a decreasing function of n. In fact, extending the averaging period n

reduces the volatility of the bonus rate in Equation 5.1 , thus the volatility of the

maturity guarantee.

Figure 5.2 shows the sensitivity of the quantile measures to the participating rate

with different smoothing period n under the two asset models. We observe that the

quantile risk measures, which include VAR95, VAR99, CTE95 and CTE99, have

the same pattern as the POSF. It is clear that the usual risk measure style which

has been found in previous examples between the two asset models apply for the

quantile measures. Similar to what is observed in POSF, the risk measures can be

reduced by either a rise of smoothing period n or a drop of the participating rate p.

It is worth noting that the VaR lines in the upper two graphs in Figure 5.2 are

not as smooth as the ones of CTE shown in lower two figures. This is because in

Monte Carlo simulation, the risk measures are estimated by statistics of the sample

observations generated from the loss distribution. Since the law of large number,

the variance of CTEα is smaller than the variance of VaRα.

5.3 Prospective bonus mechanism

In this section, we consider the prospective bonus mechanism specifically the bonus

earning power (BEP).

It has also been considered in several different forms in Tong (2004), Willder

(2004) and Forfar et al. (1989).

The bonus earning power used in this thesis is defined as the constant bonus rate

that can be declared in each future bonus declaration date in order to make the

current guarantee achieving the projected value of guarantee at the maturity time.

This projected maturity guarantee can be any form and linked to the asset share.
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In this thesis we will consider three of them:

• The projected maturity guarantee is a percentage quantity of the estimated

accumulated asset share AST . For instance, Hare et al. (2003) project the

maturity guarantee as 75% of the estimated asset share value.

• The projected maturity guarantee gives the quantile of the projected asset

share distribution at time T . For instance, the projected maturity guarantee

can be the 75% quantile of the maturity asset share.

• The projected guarantee value gives certain quantile risk measure for the poli-

cies at the maturity. For instance, the BEP can be calculated by making the

CTE at 99% level equals to the support capital of the life office.

5.3.1 Bonus earning power (Case M2)

We now give the numerical example of the first bonus earning power method listed

above in Case M2. The other two will be discussed later in this chapter. The whole

policyholder’s fund is assumed to be invested in equities. In order to estimate the

asset share at time T , the asset models are required to give the future investment

returns. As in model office Case M1, the total return of the equity investment is

modelled as a GBM model and one of the Lévy increment exponential model which

is exp-NIG. The later model gives a more accurate fitting to the real world data.

We adopt the notation used in previous chapters and include some new notation as

following,

• A′T (t): the projected value of the maturity asset share AS(T ) at time t, 0 ≤
t < T .

• G′T (t): the projected value of the maturity guarantee G(T ) at time t, 0 ≤ t <

T .

• b′(t): the bonus earning power at time t.

• CFt: the cash-flow at time t.

• TB: the target terminal bonus rate.
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First of all the bonus earning power mechanism we considered is using 75% of the

estimated asset share as the target guarantee. A regular bonus is declared at the

start of each policy year except at maturity. The projected maturity asset share is

calculated as the current asset share value AS(t) and any future cash flows increase

at investment return rate r, thus the A′T (t) is given by

A′T (t) = AS(t) exp{r(T − t)}+
∑

s∈(t,T ]

CFs exp{r(T − s)}. (5.2)

The projected guarantee G′T (t) is given by

G′T (t) = G(t) exp{b′(t)(T − t)}. (5.3)

Thus the bonus earning power can be calculated at any time t, 0 ≤ t < T , by

solving the equation:

(1 + TB)G′T (t) = A′T (t). (5.4)

We assume a 33.3% terminal bonus cushion which equivalently makes the G′T (t)

equal to 75% of the projected asset share A′T (t).

Investment returns were generated by the GBM and exp-NIG model using

SGTRI23 parameters. We ignore mortality and surrenders. Thus in this exam-

ple, the cash-flow CFS includes only the assumed 1% guarantee charge at start of

every year over the policy term.

Table 5.1 shows the risk measures using 100, 000 Monte Carlo studies of a 10-

year term policy. We assume the average future investment return r to be 6 percent.

The figures in this table seem to be similar to those for Case M0 in Table 4.2 except

that we only use the exp-NIG model to be the Lévy driven asset model. There is

8.38% POSF that a deficit will happen under the GBM world. The POSF under

exp-NIG model is 2.33% percent higher than the POSF under GBM. The same

pattern applies for the mean of loss (MOL). The value at risk at two levels shows

the tail behaviour of the loss distribution which has the heavier tail under exp-NIG

than under GBM. Hence we have achieved the same conclusion as in M1 that more

accurate modelling by using Lévy processes will lead to higher potential risks of the

UWP contract hence more reserves are needed.
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Table 5.1: UWP simulation using exponential NIG and GBM models.

POSF MOL V aR95 V aR99 CTE95 CTE99

Loss (GBM) 0.0838 16.4430 10.1956 33.3298 24.3496 43.7447
Loss (exp-NIG) 0.1071 19.2516 16.7622 41.4130 32.3705 54.1435

In this example, we find the risk measures are close to the retrospective bonus

mechanism case M1 with p = 0.33 and n = 1. It is now of interest to see the

distribution of the guarantee at maturity GT under these two bonus mechanisms.

Table 5.2: UWP simulation using exponential NIG model and GBM model.

MEAN SD

AT (GBM) 292.8253 167.5538
AT (exp-NIG) 288.6896 160.7953

GT (Retro-GBM) 145.6820 23.9722
GT (Retro-NIG) 141.1001 22.5542

GT (Pro-GBM) 212.6310 107.2892
GT (Pro-NIG) 205.2620 101.7103

Table 5.2 and Figure 5.3 give the statistical and graphical description of the the

simulated maturity guarantee distributions. The statistics of the maturity guaran-

tee value which accumulated by declaring the retrospective bonus as in Equation 5.1

is given in column “GT (Retro-GBM)” and “GT (Retro-NIG)” in Monte Carlo using

respectively GBM model and exp-NIG model. The columns “GT (Pro-GBM)” and

“GT (Pro-NIG)” contain the statistics under these two models for the maturity guar-

antee value which accumulated by declaring the bonus earning power we described

in equation 5.2-5.4.

In this stage, we assume 100% constant equity backing ratio (EBR), no invest-

ment decisions based on the investment return and bonus are made at intermediate

time over the policy term. Thus, in each simulation scenario, the guarantee cal-

culated by different bonus methods have no effect on the asset share sample path.

The maturity asset share depends only on the investment returns and there is no

“investment bonus cycle” in this example.
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The mean and standard deviation of the maturity guarantees of UWP contracts

where the life office declares retrospective bonuses are 145.6820, 23.9722 for the GBM

world and 141.1001, 22.5542 for the exp-NIG world. The figures seem close between

the two asset models because of the so-called “aggregation normality property” of the

exp-Lévy models. Recall, we have studied in Chapter 4 the joint distribution with

asset share AST using the coupled samples. Here we concentrate on the different

bonus mechanisms. We can see the prospective bonus mechanism leads to a higher

mean and standard deviation maturity distribution of the Monte Carlo sample under

both the two asset models we used. It’s more clear to see from Figure 5.3. The

upper left subplot gives probability density of the GT under two bonus mechanism

when asset return is modelled by SGTRI23 GBM model. The bottom left subplot

shows the same distribution when the asset return is modelled by SGTRI23 exp-

NIG model. We can see that the distributions of GT under bonus earning power

mechanism spread wider than the the distribution of GT under retrospective bonus

mechanism. Recall we gave the scatter plots of the AST ranks versus ranks of the

retrospective bonus accumulated GT in Figure 4.1. The right two sub-plots in Figure

5.3 show the same rank scatter (We used first 5, 000 scenarios of the simulation).

The only difference is the GT has been accumulated under the bonus earning power

mechanism in equation 5.2-5.4.

Comparing to the upper two subplots in Figure 4.1, the ranks points in these

cases are more likely to lie in the narrow areas near the cross corner line of the

unit square space. There are no points in the first 5, 000 simulation results appears

in the upper left 20% region of the graph which gives the lowest 20% asset share

and the highest 20% guarantee. Thus we argue that the BEP guarantees are more

closely correlated to the investment returns. The reason for this is because the BEP

is calculated by the current value of the Gt and ASt which gives all the information

of the past investment returns and bonuses declared. And the future investment

return is considered by giving a predicted distribution of the maturity asset share.

The retrospective bonuses only take into account the investment returns in the past

n years time interval. This can be expressed by a simple example, we consider the

situation when investment returns are poor in the early years of the policy term.
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Figure 5.3: Left: density of the maturity guarantee. Right: scatter-plot of maturity
asset share versus guarantee under GBM and exp-NIG
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Figure 5.4: Mean and standard deviation of bonus rate

In this case both the retrospective method and the prospective method will try to

control the bonus to a relatively low level. Then assets are assumed to have good

investment performance in the later years of the term. Under the retrospective bonus

rate method, it will start to declare higher bonus than the early years and when the

bad returns are past the smoothing period, the method seems to be “memoryless”

of the fall of asset share in early years. In contrast, when the investment return

is good but the current guarantee is still higher than the current asset share, the

projected asset share will be low and this leads to a low bonus earning power.

The left subplot of Figure 5.4 shows the mean of the bonus over the policy term

in Monte Carlo simulation. It can be seen that the mean of bonus calculated using

retrospective bonus mechanism maintained the same level at every declaration date

while the BEP rises sharply from the policy year 1 to policy year 10. The closer

to the maturity, the greater bonuses that the BEP method tend to declare. The

right subplot of Figure 5.4 shows the corresponding standard deviation of the bonus

referred to the mean of bonus. The SD of the “Retro” cases are stable over time,

while the SD of the BEP climbed from 0 at start of the policy to about 0.17 for the

final bonus at start of year ten. It suggests that the BEP method we used in this

example is highly volatile when the policy is close to maturity. A smooth graduation

may be desirable applied to decrease the fluctuation of the bonus.
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5.3.2 Alternative prospective bonus mechanisms (Case M3)

The difference between the bonus earning power method used in M2 and the other

two of the prospective bonus mechanisms we introduced in this thesis is the later

ones rely heavily on the internal asset models used by the life office. In the model

office M2, the projected asset share at time t within the policy term, A′T (t), is an

estimation of the maturity asset share value AT .

Tong (2004) introduced a bonus earning power method where the projected asset

share A′T (t) is a random variable and its possible predicted value is generated by

the Wilkie model. The projected guarantee is calculated by the 25% lower quantile

of A′T (t) with a 30% terminal bonus target TB. In other words, the bonus earning

power is the constant rate that can be declared as each future bonus that gives a

minimum 30% terminal bonus with probability 75%. The actual bonus bt is the

greater value between the guarantee rate g and the bonus earning power at time t,

b′t. In the mathematical form

b′t = log

(
Q0.25(A

′
T (t))

G(t−) · (1 + TB)

)
/ (T − t) , (5.5)

where Q0.25(x) is the 25% lower quantile of random variable x and G(t−) is the

guarantee value before the bonus declaration at time t.

We note that under some asset models when the predicted distribution of the

investment return is not available in the close form, such as the Wilkie model used

in Chadburn and Wright (1999) and Tong (2004), a Monte Carlo study of the

maturity asset share is required at each bonus declaration time for every simulation.

It makes this method computational expensive.

Alternatively, the simulation time can be reduced by using the exp-Lévy models.

The reason is under these asset models, the future return is i.i.d. and for those

whose increment law is closed under convolution, such as Normal; variance Gamma

and normal inverse Gaussian, the probability functions of the return process rT−t

is known and it gives the distribution of the maturity asset shares A′T (t). Even for

the generalized hyperbolic law whose close form of density under convolution is not

analytical, according to the “aggregation normality property”, a normal distribution

calibrated to long term GH law with same mean and variance can be used as an

approximation of the return process with longer than one year term.
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We look at the same 10-year single premium UWP contract in M2. The bonus

earning power is calculated by targeting the 25% lower quantile of A′T (t) with a 30%

terminal bonus target. The 25% lower quantile of a standard normal distribution

is −0.6745. Thus, if the yearly return is normally distributed with mean µ and

standard deviation σ, the 25% lower quantile for n-year return process is nµ −
0.6745

√
nσ. The Q0.25(A

′
T (t)) under the GBM asset model is given by

Q0.25(A
′
T (t)) = A(t) exp{µ(T − t)− 0.6745σ

√
T − t}. (5.6)

For the exp-NIG case, there are different ways to get the quantiles. One of them is

using the normal approximation or using Student-t distribution with the estimated

parameters for the same data set as a more accurate approximation. These values

can be calculated by re-scaling the standard distribution quantiles on statistical

tables. However in this example, we first generate 10, 000 return processes under

the exp-NIG for the term from one year to ten years. Then calculate the 25% lower

quantile of the return processes and use these values in the bonus earning power

calculation.

Table 5.3: 25% lower quantile of the return processes using exponential NIG and
GBM models.

t 0 1 2 3 4
M3(GBM) 1.7000 1.6022 1.4888 1.3853 1.2858
M3(NIG) 1.6686 1.5609 1.4575 1.3687 1.2803
M2 1.6478 1.5606 1.4912 1.4185 1.3494

5 6 7 8 9
M3(GBM) 1.2217 1.1303 1.0725 1.0187 0.9786
M3(NIG) 1.2042 1.1286 1.0682 1.0193 0.9793
M2 1.2837 1.2211 1.1616 1.1050 1.0512

Table 5.3 shows ratio Q0.25(A
′
T (t))/A(t) at each time t from 0 to 9. As the

comparison, we calculate these ratios for M2 bonus mechanism. It is clear that

Q0.25(A
′
T (t))/A(t) ratios of M3 and M2 are both decreasing functions against time

t. In fact the figures show these two methods are similar. In this particular case,

the M3 gives the higher ratio in early years of the policy term than M2 ratios and

lower from year 2 to year 9. We can expect a more flat mean bonus rate curve

in Figure 5.4 than the M2 case. We will not give the numerical example at this
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stage because it is close to the M2 case under exp-Lévy asset models. However this

method is asset model dependent which will be different from M2 bonus mechanism

under more complicated asset models.

In general, the life office can decide what is the projected guarantee given the

predicted distribution of maturity asset share. For example, the projected guarantee

with a terminal bonus cushion, G′T (t)(1+TB), discussed in the bonus earning power

method of model M3 is actually the value which achieves the fixed probability of

shortfall at maturity time given the distribution of the asset share.

The third bonus earning power method we mentioned earlier in this section is

constructed in the same way but the projected guarantee is decided by the life office

reserve strategy. If a life office set their reserve by using quantile reserve, such as the

value at risk (VaR) or conditional tail expectation (CTE). We explain this by giving

the example below. If the life office have support capital FAt (reserve) at time t.

Within the policy term, the actuaries simulate the future return of the investment

by using some asset models such as exp-Lévy . Thus they have the distribution of

the asset share A′T (t). The loss of the life office is given by the random variable

max{0, G′T (t)−A′T (t)}. The amount of CTE of the maturity loss at confident level

95% is assumed to be backed as the reserve and it is equals to the support capital.

Thus the bonus earning power at time t can be derived by solving:

CTE95(Projected maturity loss) = FAt.

Again, when the asset model used by the life office to predict the maturity asset

share distribution is complicated, this method leads to heavy computational expense.

It provides more flexible forms of the guarantee accumulation. This is above the

scope of this thesis, we point out this as an interesting future research topic.

5.4 Frequency of Bonuses

There are many bonus methods proposed in the previous sections. All of them are

assumed to be declared annually. In practice, bonuses are often declared annually

or half yearly. In this thesis, continuous asset models and the bridge skills (we will

discuss the stochastic bridging skills in Chapter 7) applying on the annual asset
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model such as the Wilkie model allow us to investigate the effect of more frequent

bonus declaration.

5.4.1 Monthly bonus (Case M4 & M5)

In this section we calculate the risk measures for the same UWP policy M5 as in

M3, but with the bonuses declared monthly according to the two bonus strategies

described in M2 and M3.

Similar to the yearly retrospective bonus mechanism M0, monthly retrospective

bonus rates are calculated as p of the average investment returns within the previous

m month. It is given by

bm(t) = max

{
g/12,

p

m
log

(
AS(t)

AS(t−m)

)}
,

where the unit of time t is re-scaled to one month. To make it consistent to the

M2 model, p is 33% is this example and the m is 12 which is one year. So in other

words, the retrospective monthly bonus is 33% of the average return of the past 12

month. Denote xi as the return of the i-th month, the i-th monthly bonus bi is given

by

bi = 1{Pi−1
k=i−12 xk>g}

p

12

(
i−1∑

k=i−12

xk

)
+ 1{Pi−1

k=i−12 xk≤g}
g

12
. (5.7)

The monthly prospective bonus mechanism will be exactly the same as the bonus

earning power we described in model M3, except for re-adjusting the bonus on a

more frequent basis. The bonus earning power will be calculated at start of every

month by making the projected guarantee with a 25% terminal bonus cushion equal

to the projected asset share at maturity.

Table 5.4 shows the risk measures for the UWP contracts with monthly bonus

by 100, 000 times of Monte Carlo studies.

First we look at the Retrospective cases, which are in the first (Loss (R-GBM))

and second (Loss (R-exp-NIG)) rows of Table 5.4. It is not surprising that the risk

measures are higher in the case when the real world model is an exp-NIG than in the

GBM case. What is of interest to see here is the question whether it will be a good

strategy for the insurer to declare monthly bonus. Recall the model setting is same

as in Case M0 except frequency of bonus declaration. The risk measures for M0 were
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Table 5.4: UWP simulation using exponential NIG and GBM models.

POSF MOL V aR95 V aR99 CTE95 CTE99

Loss (R-GBM) 0.0762 19.4613 10.6272 37.0227 26.9169 46.5239
Loss (R-exp-NIG) 0.0992 21.2479 17.9615 44.3168 33.8942 53.7920
Loss (P-GBM) 0.0631 16.0590 4.8509 29.4308 19.7153 39.3614
Loss (P-exp-NIG) 0.0862 17.9741 11.7680 36.5725 26.7724 46.5946

given in Table 4.2. Compare the results in first row in Table 5.4 which gives the

risk measures for loss under GBM models with those in Table 4.2, the probability

of shortfall increases by 0.4% which is not a significant difference. The mean of loss

(MOL) which was 19.1296 for yearly case and here it increases to 19.4613. The tail

behaviour of the loss function is observed by the two quantiles V aR95 and V aR99.

The V aR95 is around 1.6 more than the yearly case and V aR99 is around 1 more

than the yearly case. The CTE95 and CTE99 are larger than yearly case M0 but

with very small difference which is around 1 in value. The similar pattern for POSF

has been found for the exp-NIG model case whose risk measures are given in second

row in Table 5.4. But for the quantile risk measures, VaR and CTE, the yearly and

monthly bonus strategies seem to be indifferent under the exp-NIG model.

Table 5.5 gives the mean and standard deviation of the maturity guarantee value

under the monthly bonus case. Compare the SDs to the yearly case which are listed

in Table 5.2, the guarantee with the monthly retrospective bonus methods under

both two asset models are less than in the yearly cases with close mean values. This

is obvious because during one calender year the monthly bonus random variables

bi, i = 1, 2, ..., 12 are correlated stationary time series where the yearly bonus rate

is sum of 12 copied of the first monthly bonus rate 12 · b1. The variance of the later

sum is greater than the former sum.

Here we have achieved the conclusion that the monthly bonus declaration us-

ing retrospective bonus mechanism under the exp-NIG and GBM models will not

improve the risk management of the UWP maturity guarantee.

The distribution of the rate of bonus earning power method is more complicated

and we only study it by looking at the numerical results. We can see from Table

5.4 the probability of short fall is 0.0631 compare to 0.0838 for GBM model. It is
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Table 5.5: UWP simulation using exponential NIG model and GBM model.

MEAN SD

GT (Retro-GBM) 140.8732 18.9031
GT (Retro-NIG) 140.4077 18.0746

GT (Pro-GBM) 226.6042 119.8085
GT (Pro-NIG) 217.2320 112.5521

reduced by more than two percent by declaring bonus monthly. For exp-NIG the

POSF again reduce to 0.0862 from 0.1071. The VaR measures and CTE measures

are all less than they were in yearly case. The quantile reserves required for monthly

bonus UWP policy will be less than those with yearly bonuses. Thus, we argue that

a life office does improve their risk management of the UWP guarantee by declaring

BEP bonus on a monthly time lag. Also, we expect a further improvement when

life office declare bonus more often than monthly.

We can see from Table 5.5 and Table 5.2, the mean of maturity guarantee is

greater in monthly bonus case and with larger standard deviation than in yearly

case.

5.4.2 Any frequency (Case M6)

In this section we look at the bonus strategies which can be declared at any time.

The bonus earning power method is the same as described in model M5, except the

bonus rate is adjusted at different frequency which is k times per year. The result

of risk measures is shown below, probability of shortfall, mean of loss, value at risk

VAR95, VAR99 and conditional tail expectations CTE95, CTE99:

These five frequencies are chosen to represent the annually (k=1), half yearly

(k=2), monthly (k=12), weekly (k=50) and daily (k=250). Under both GBM and

exp-NIG models, the more frequent bonus than annually strategies always provide

smaller risk measures than annual cases. Amongst the five cases considered with

different bonus declaration frequencies, the monthly bonus case has the lowest POSF

under both GBM and exp-NIG real world models. The weekly and daily cases have

very close risk measures, for the POSF, MOL, VaRs and CTEs. For GBM model,
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Table 5.6: Bonus Frequency
POSF MOL V aR95 V aR99 CTE95 CTE99

GBM
k=1 0.0838 16.4430 10.1956 33.3298 24.3496 43.7447
k=2 0.0731 16.1782 6.9103 31.1236 21.7760 40.8724
k=12 0.0631 16.0590 4.8509 29.4308 19.7153 39.3614
k=50 0.0656 16.0147 5.3534 30.4274 20.3618 39.6910
k=250 0.0656 15.9772 5.3124 30.3851 20.3243 39.6537

exp-NIG
k=1 0.1071 19.2516 16.7622 41.4130 32.3705 54.1435
k=2 0.0976 18.7025 14.9218 41.1504 29.9964 50.9629
k=12 0.0862 17.9741 11.7680 36.5725 26.7724 46.5946
k=50 0.0874 18.2157 12.8348 38.0720 27.3720 47.3176
k=250 0.0872 18.2045 12.7645 38.0293 27.3192 47.2775

to the four decimal places shown, there is almost no difference in the risk measures

between the weekly and daily cases. It shows that the risk measures first reduce

from annually to monthly then figures rise in the weekly case and remain stable at

the daily case.

Figure 5.5 shows the POSF and CTE95 and CTE99 under the GBM and exp-NIG

models against any frequencies from yearly (k = 1) to daily (k = 250).

We can see from Figure 5.5, that the POSF at first fell rapidly with k increase

in the range from 1 to 14. Then the POSF goes up steadily with k increase in the

range from 15 to 50. Varying k from 51 to 250 does not lead to any significant

difference in POSF of the contract. In Monte Carlo simulation, only risk measures

for integer ks are observed, the POSF reaches a minimum at k = 14 for both GBM

and exp-NIG model.

The CTE95 and CTE99 in the right subplot in Figure 5.5 show similar pattern

against k as in POSF. The CTE95 and CTE99 under both asset models reaches

the minimum value k = 14. It is clear that by declaring more frequent bonus than

yearly the insurer get the advantages of all the risk measures we considered in this

example. There is a relatively large improvement when k increases from 1 to 14.

The k = 14 represents a re-adjustment of bonus rate in every 18 trading days.

Nevertheless, from k = 15 to k = 50, the risk measures increases and level off
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Figure 5.5: Risk measures

onwards. This suggests that, from the risk management point of view, declaring

bonus more frequently than monthly may not be worth the expense.

Two Effects

Since in Case M6, a 100 percent EBR investment strategy and a bonus earning

power strategy are chosen, two effects arise simultaneously. On the one hand, when

a drop appears in value of the reference portfolio, bonus strategy will cut the bonus

rate earlier with more frequent bonus than one with yearly bonuses. That reduces

the risk of shortfall at maturity. On the other hand, in a particularly good return

period, the earlier bonus causes higher guarantees. Moreover, once the bonus had

been added to the guarantee it can not be removed, so the two effects are opposite

but not symmetric. We are interested in those situations that the asset share is

below the guarantee. So the regular bonus mechanism that cut bonus quickly will

increase the probability of paying a terminal bonus, the former effect dominates.

An improved approach may be to control the “reflecting” period of the extreme

events. When a large fall happens, cut bonus quickly and for a good return period,

leave a “waiting” period of time then declare a bonus.
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Valuation of Contract

Figure 5.6 shows the behaviour of the mean value of maturity guarantee GT against

the frequency of declaring bonus k. The mean guarantee value at maturity increases

in most cases when k increases.
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Figure 5.6: Mean of the guarantee

Note that the asset share distribution in this 100% EBR case only depend on

the real world underlying asset returns. So the higher the guarantee is, the more

valuable is the with-profits policy.

Here we consider the conditional expectation of the guarantee.

E[GT |GT ≤ AST ] and E[GT |GT > AST ]

Figure 5.7 tells us that the yearly bonus have lowest guarantee value when the policy

is affordable. Also it has the highest guarantee when a shortfall happens.
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Figure 5.7: Mean of the guarantee

5.5 Concluding Remarks

As a reminder, we list the Case M1 to Case M6 considered in this Chapter:

M1 retrospective bonus calculated as the weighted arithmetic average of the last n

years returns on the asset share;

M2 bonus earning power method using deterministic projected maturity asset share

with a 25% terminal bonus cushion;

M3 alternative bonus earning power methods using stochastic projected maturity

asset share generated by asset models;

M4 retrospective bonus declared on a monthly basis;

M5 bonus earning power declared on a monthly basis;

M6 bonus earning power declared on any frequency.
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We can model the policyholder’s PRE as the mean of exponential utility functions

of the units values (guarantees). Normally the policyholder will expect a higher

guarantee at the maturity.

Case M1 considered more general retrospective bonus mechanisms than in Case

M0 by varying the participating rate and the smoothing period. The risk mea-

sures can be reduced by either increase the smoothing period n or by cutting the

participating rate p.

The results in Case M2 using a bonus earning power method with deterministic

projected maturity asset share and 25 percent terminal bonus cushion are similar

to the risk measures in M0. Next we looked into the distribution of the maturity

guarantee and asset share. We find a higher mean guarantee with higher standard

deviation. The coupled Monte Carlo sample (AST , GT ) are more close related. There

seems less possibility that a extreme loss happens in M2.

The BEP methods can be very flexible by making the targeted maturity guarantee

as any forms depends on the office internal models. The projected maturity asset

share and unit values can be stochastic and path dependent.

There seems to be little advantages in risk controlling by trying to declare retro-

spective bonus on a monthly basis in Case M4. Nonetheless, the risk measures drop

rapidly with the monthly reversionary bonus calculated by BEP.
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Chapter 6

Investment Strategy

6.1 Introduction and objectives

In chapter 5 we have discussed the liabilities of the UWP contracts and the bonus

strategies. This chapter considers the asset side of the UWP contracts and the

investment strategies.

One may ask what kind of services a life office can offer to their UWP policy-

holders. One of the answers may be the management of capital and the protection

of investment risks in the long term. We say, if the performance of a UWP fund has

a high correlation with some market assets and ends up with a low guarantee and

large terminal bonus, as a policyholder, why not directly invest in the underlying

assets instead of paying the charges for investing but without risk management.

One of the investment strategies that can reduce the risks of investment is di-

versification by managing the EBR of the fund. Modern Portfolio Theory suggests

the total return index can be seen as the market portfolio. Thus any diversified

portfolios involving total share return and risk free assets are “efficient” and are

lying on the so-called “capital market line”.

Modern financial theory brings the methodology of hedging for long term capi-

tal. By exploiting correlation of various risky investments, using dynamic hedging

strategies can lead to improvement of portfolio risk management. Wilkie (1987),

Hibbert and Turnbull (2003) and Willder (2004) suggest an option backup method

to meet the guarantee. In this case, the hedging portfolio contains European put
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options with same duration as the UWP contract. This method is independent of

the dynamics of underlying asset, thus we call it “model-independent hedging”. An

essential requirement of model-independent hedging for the UWP liabilities is the ex-

istence of the corresponding tradeable derivatives, in this case, long term put options

in the market. By model-independent hedging of the liability, the insurer transfers

the risks of the guarantee to a third party who writes these particular put options.

By applying the European put-call parity, a “call plus bond” model-independent

hedging investment strategy can be constructed.

In practice, there are few long term tradeable put options in the market. Instead,

internal dynamic hedging strategy can be used for reducing the guarantee mismatch-

ing risk. Normally, a hedging strategy is based on a set of assumptions. For example,

the Black-Scholes hedging is based on the assumptions of the log-normal underlying

asset, continuous re-balancing the hedging portfolio and no transaction costs. In re-

ality, there are trading restrictions applied, for example, dynamic hedging portfolio

is only within discrete time intervals and the insurer is always subject to transaction

costs. The other source of error in dynamic hedging includes the difference between

real world asset behaviour and the asset model used to calculate the hedging strat-

egy.

The transaction costs are often charged according to the size of deal. Thus the

amount of transaction costs is decided by the Gamma (the changing rate of the Delta

with respect to the underlying asset) of the UWP contract. Risks are not entirely

hedgeable only using the underlying asset and bond in internal hedging. Of course,

the matching of the pay-out can be improved by increasing the hedging frequency

and control the transaction costs with respect to more realistic option models. We

will discuss hedging errors using a numerical example in section 6.3. For more detail

see Wilkie et al. (2003) and Wilkie et al. (2005).

In fact, the insurers do not hedge the long term UWP contracts as vanilla options

but they change the EBR from time to time to adjust the possible guarantee risk.

This chapter is organised as follows: In Section 6.2 we consider two investment

management strategies based on the diversification of the with-profits fund. An

invest-and-forget strategy and a re-balanced EBR strategy are tested. Some issues
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of dynamic Delta hedging of the contingent claim will be discussed in Section 6.3.

A long term with-profits fund investment strategy based on the hedging strategy is

studied in Section 6.4. Finally, some concluding remarks are given in Section 6.5

6.2 Diversification

In this section, we consider two investment strategies based on diversification. We

denote them as the model office M7. The UWP fund is assumed to be invested

in both equities and zero coupon bonds. The proportion of total fund invested in

equities, EBR (Equity Backing Ratio), can be managed by the insurer. And the

rest 1−EBR of the fund is invested in bonds. In this stage we use a bond model

with constant rate of compound return. If the price of the bond is B0 at time 0, the

bond price at time time t, Bt, is given by

B(t) = B(0) exp{rt}, (6.8)

where r is the constant compound risk free rate. The investment return from equity

is given by the GBM and exp-NIG models fitted to SGTRI23 data.

We assume yearly risk free rate r = 0.06 in this thesis. Assume each cash-flow is

discounted to the start of its corresponding policy year. This may include premiums,

early death claims and surrenders. The recursive expression of the asset share at

time t+ 1 is given by

AS(t+ 1) = (AS(t) + CFt)

(
αt
S(t+ 1)

S(t)
+ (1− αt)

B(t+ 1)

B(t)

)
, (6.9)

where αt is the equity backing ratio (EBR) at time t.

At the maturity time T , the asset share value AS(T ) is

AS(T ) =
9∑

t=0

CFt

10∏
i=t+1

(
αi
S(i+ 1)

S(i)
+ (1− αi)

B(i+ 1)

B(i)

)
.

We adopt all the assumptions of UWP model as in M0, except for re-adjusting the

EBRs of the fund at 70% at start of every policy year.

Comparison to the “rebalanced EBR” case described above, we consider a static

EBR case. All cash-flows of the UWP fund are diversified in equity and bond as the
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same as the fund EBR at the time it paid in. This means for each cash-flow at time

t, the fixed proportion αt will be invested in/withdrawn from the fund invested in

equities and the rest part is invested in/withdrawn from bonds. During the term of

the policy no management actions will be taken, the EBR only changes because of

the investment performance of the assets. It is an “invest-and-forget” strategy. At

maturity, the asset share value AS(T ) is

AS(T ) =
9∑

t=0

αtCFt

10∏
i=t+1

(
S(i+ 1)

S(i)

)
+ (1− αt)CFt

10∏
i=t+1

(
B(i+ 1)

B(i)

)
. (6.10)

One would expect a higher mean EBR at the maturity for the investment portfolio

in the static EBR case than the rebalanced EBR case because the mean return of

the share is higher than the bond.

Table 6.7: 70% Rebalanced EBR UWP simulation using exponential NIG and GBM
models.

POSF MOL V aR95 V aR99 CTE95 CTE99
GBM
Loss(PRO,Y) 0.0237 10.3729 0 9.5757 4.9168 18.7705
Loss(PRO,M) 0.0189 10.2569 0 7.2900 3.8771 16.5415
Loss(RETRO,Y) 0.0252 9.7310 0 12.1876 4.9044 21.7738
Loss(RETRO,M) 0.0231 11.3861 0 10.5893 5.2604 20.0133

exp-NIG
Loss(PRO,Y) 0.0351 11.5880 0 15.4223 8.1348 25.0782
Loss(PRO,M) 0.0277 11.3513 0 12.5311 6.2886 22.1136
Loss(RETRO,Y) 0.0353 11.5419 0 18.0675 8.1486 27.8343
Loss(RETRO,M) 0.0325 12.6167 0 16.4290 8.2009 25.8845

Table 6.7 shows the risk measures of insurer’s maturity loss for the dynamic

EBR case and the results of the static EBR case are shown in Table 6.8. The loss

distribution of four strategies are observed, which are:

Loss(Pro,Y) yearly bonus earning power method using deterministic projected

maturity asset share with a 25 percent terminal bonus cushion (see M2);

Loss(Pro,M) monthly bonus earning power method using deterministic projected

maturity asset share with a 25 percent terminal bonus cushion (see M2);
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Table 6.8: 70% Static EBR UWP simulation using exponential NIG and GBM
models.

POSF MOL V aR95 V aR99 CTE95 CTE99
GBM
Loss(PRO,Y) 0.0231 8.3494 0 7.0516 3.8574 15.0244
Loss(PRO,M) 0.0156 7.0999 0 3.6289 2.2152 10.1698
Loss(RETRO,Y) 0.0239 8.0512 0 8.8770 3.8485 15.7663
Loss(RETRO,M) 0.0200 7.8572 0 6.3694 3.1429 12.8381

exp-NIG
Loss(PRO,Y) 0.0371 10.0293 0 13.2862 7.4417 22.5208
Loss(PRO,M) 0.0253 8.6781 0 9.0504 4.3911 16.0437
Loss(RETRO,Y) 0.0362 10.2650 0 14.1294 7.4319 20.9646
Loss(RETRO,M) 0.0304 9.0751 0 11.3806 5.5177 17.8252

Loss(Retro,Y) annual reversionary bonus rates are calculated by retrospective

method with participating rate p = 0.33 and one year smoothing period; and

Loss(Retro,M) monthly reversionary bonus rates are calculated by retrospective

method with participating rate p = 0.33 and one year smoothing period.

Same comments of the risk measures between different asset models, bonus mech-

anisms and bonus frequencies from previous model office observations apply:

• the risk measures are larger under exp-NIG model than under GBM model.

It suggests GBM model underestimate most of the risk measures because exp-

NIG is proved to be a more realistic model;

• with the same investment strategy and bonus mechanism, the risk measures

are reduced when declaring monthly bonus instead of yearly; and

• the improvement of declaring monthly bonuses is more significant with BEP

method than the Retrospective method.

The static EBR case is a linear combination of a portfolio including a UWP

policy worth 70% of the original one with all funds invested in shares and a cash

account. Thus the guarantee under both the retrospective and the bonus earning

power methods can be split into two blocks. Since the bonus only add a percentage
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of return and bonus earning power has a terminal bonus cushion less than one,

the guarantee which is built by bond account investment return will definitely be

achieved at the maturity and the excess amount in cash account will reduce the risk

in the share investment.

For the re-balancing case, the guarantee liability cannot be split, but a 30%

fixed investment in bond still effectively reduce the volatility of the portfolio. The

risk measures are low in this example because we assume a constant monthly cash

account return rate 0.005 equivalent to 6 percent per year, which seems to be slightly

higher than usual assumption and the constant interest rate model is somehow

unrealistic for long term bond return model.

However comparing these two strategies, the rebalanced EBR case which the

insurer try to keep the fund at a fixed EBR rate each month has higher MOL and

quantile risk measures in all the relative sub-cases. And for the two yearly bonus

under exp-NIG cases, the static EBR case have higher POSF. The mean of maturity

EBRs for the asset share in static EBR case are observed respectively as 76.98 and

76.78 percent for GBM and exp-NIG models. So the static case has a higher return

with almost lower risk measures. This is because under the parametric models fitted

to SGTRI23 data, the ergodicity properties of the asset model have mean return

rate around 0.0086 which is higher than the bond return. In most cases, what the

re-balancing EBR strategy do is switching the high return risky asset to lower return

bond in order to reduce the total volatility of the investment returns. It suggests the

re-balancing strategy may change the EBRs in the wrong direction. If we look at

the investment returns for the portfolio, under the re-balancing strategy, the total

return is always locally comes from, in our example, 70 percent equity return and

30 percent bond return. With the static EBR, if the investment returns are poor,

the portfolio will have more proportion invested in bond. This reduce the total

volatility of the return rate of the portfolio, hence the volatility of the bonus. And

in the case when returns are good, the total return will have more weight on the

equity returns. To this end the static EBR strategy seems to be a more advanced

investment strategy than dynamic EBR case. To see this we test the re-balancing

strategy at 76 percent of EBR which is same as the maturity EBR for the static
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case, results are presented in Table 6.9, higher risks are observed compared to static

EBR case. In the next section, an investment strategy based on dynamic hedging

will be discussed.

Table 6.9: 76% Rebalanced EBR UWP simulation using exponential NIG and GBM
models.

POSF MOL V aR95 V aR99 CTE95 CTE99
GBM
Loss(PRO,Y) 0.0327 11.5644 0 14.4163 7.5631 23.9434
Loss(PRO,M) 0.0257 11.5308 0 12.0366 5.9268 21.4295
Loss(RETRO,Y) 0.0350 10.7614 0 17.8926 7.5330 27.6435
Loss(RETRO,M) 0.0325 12.7329 0 16.1228 8.2764 25.7091

exp-NIG
Loss(PRO,Y) 0.0473 12.9612 0 20.5286 12.2613 30.7931
Loss(PRO,M) 0.0369 12.7391 0 17.6160 9.4015 27.3897
Loss(RETRO,Y) 0.0472 12.9941 0 24.2530 12.2664 34.0650
Loss(RETRO,M) 0.0441 14.2310 0 22.3442 12.5517 31.9012

6.3 Hedging for vanilla options

A dynamic hedging strategy is previsible stochastic process that describe the amount

invested respectively in share and bond. To be more specific, define the admissible

strategies as some previsible processes ψ(t) and ζ(t). Denote Φ(t) as the cumulative

hedging portfolio, in mathematical form

Φ(t) = Φ(0) +

∫ t

0

ψ(u)dSu +

∫ t

0

ζ(u)dBu, (6.11)

where St is the share price and Bt is the bond value. At any t, the self-financing

condition gives:

Φ(t) = ψ(t)St + ζ(t)Bt. (6.12)

The share and bond models used in calculation of the hedging quantities are called

the option models and we use some parametric models to simulate the investment

performance of the portfolio called the real-world models. The option models are

not necessary to be the same as the real-world models. In the model office M8 and

107



M9, we adopt the Black-Scholes hedging strategy. According to the Black-Scholes

framework, GBM models are used to calculate the hedging quantities in this chapter.

The delta, ∆, of a portfolio is defined as the sensitivity of the portfolio to the

underlying. Delta-hedging reduces or eliminates the risks by taking the opposite

positions on correlated (delta) underlying assets and the contingent claims. One

example of delta hedging is the variance-optimal or mean-variance hedging which

minimises the squared `2-distance of the maturity mismatching between the asset

and liability,

E((Φ(T )−GT )2),

see Schweizer (2001) and Schweizer (1996). Gamma hedging can reduce the costs of

hedging and increase the time between the re-balancing time of the hedging. Other

common model-dependent hedging strategies include: superhedging, crash-hedging

etc. The Black-Scholes methodology which is a delta hedge based on GBM share

model and bond model with constant risk-free rate, offers an intuitive mathematical

framework and a good approximation.

We tend to use the Black-Scholes option model in calculation. This does not mean

the market is Black-Scholes, but use the formulae as an operator which gives some

approximated value of delta and hedging quantities for the diffusion-like models.

The option model can be a Lévy model. Under the Lévy driven models, the

market is incomplete, see Chan (1999). The risk-neutral martingale measure is not

unique and the vanilla options are not perfectly hedgeable. Hubalek and Sgarra

(2005) discuss the variance-optimal hedging under the exponential GH models and

gives the analytical hedging quantities for the variance-optimal hedging strategy. We

do not use these results in this thesis because, first, the complicated mathematical

form of the variance-optimal hedging quantities dramatically increase the calculation

expenses. And second, it is derived by assuming the exponential i.i.d. GH option

models. As we will see in the next chapter, the structures of the real-world models

can be more complex to capture some important features such as volatility clustering

in the asset returns. It is not possible to derive the analytical forms of hedging

quantities for all these Lévy driven asset models. The numerical results for hedging

error of the European option in Hubalek and Sgarra (2005) show that the Black-
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Scholes approach produces a reasonable hedge for the European call even if real data

follows the jump-type exp-GH models.

The underlying asset referred as “share price” in this chapter is the SGTRI in-

dices. The bond value follows the equation 6.8. Wilkie et al. (2003) and Wilkie et al.

(2005) introduce the“vanilla” type option so-called maxi that model the embedded

options used in modeling the participating life insurance guarantee. The European

type option expires at time T with strike price K and underlying reference portfolio

St at time t. The payoffs of a maxi option is max(ST , K). This is equivalent to a

long position in reference portfolio St and a European type put option with same

underlying asset St, strike price K and expires at time T , by put-call parity,

maxi(St, K, T, t) = St + p(St, K, T, t) (6.13)

= Bt + c(St, K, T, t). (6.14)

The theoretical maxi option hedging portfolio H(St, K, T, t) is the sum of the

hedging quantities:

H(St, K, T, t) = HS(St, K, T, t) +HB(St, K, T, t),

where HS(St, K, T, t) is the hedging quantities invested in share and HB(St, K, T, t)

is the hedging quantities invested in bond.

According to the Black-Scholes formulae, the hedging quantities for the maxi

option are:

HS(St, K, T, t) = StN(d1) (6.15)

HB(St, K, T, t) = e−r(T−t)KN(d2) (6.16)

where:

d1 =
ln

(
St

K

)
+ (r + 1

2
σ2)(T − t)

σ
√

(T − t)
; (6.17)

d2 = σ
√

(T − t)− d1. (6.18)

The Black-Scholes hedging framework is based on an ideal market which assumes

a continuous adjusting of the H(St, K, T, t) without transaction costs. If the real

world share model is a GBM model with same volatility as the one used in hedging
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portfolio calculation, then the continuous hedging would exactly provides the payoff

for the maxi option. Thus, if we make

ψ(t) = HS(St, K, T, t)/St; and (6.19)

ζ(t) = HB(St, K, T, t)/Bt, (6.20)

at any 0 ≤ t < T , the cumulative portfolio at time T would be exactly max(ST , K).

In general, the discrete hedging strategy (ψ, ζ) does not give the desired payoffs of

the option value at maturity due to the model bias and the trading restrictions. The

mismatch part leads to the so-called the hedging errors. The trading restrictions

include, for example, the discrete management of the portfolio and expenses of the

management (transaction costs). And the hedging quantities are calculated under

the assumption that the market returns follow the asset models that used in the

equivalent martingale measure calculation (option models). The difference between

the option asset model and the “true” investment returns of the underlying is called

the model bias (Vega risk). The Monte Carlo method will be used to study the

discrete hedging errors in M8 in order to observe the maturity loss of the UWP

under dynamic hedging based investment strategy.

The implied volatility is not observable because there is no market price data

available for such long term European options. Instead the volatility parameter in

the option model 6.15-6.18 is not restricted to be a constant and can be chosen by

the insurer, although the Girsanov theorem suggests it should be the same as the

statistical volatility calibrated to the return of the SGTRI from 1923 to 2005.

Let 0 = t0 < t1 < t2 < · · · < tn = T , ti, i = 0, 1, 2, · · · , n be the time points that

the hedging quantities can be changed within the policy term. The initial hedging

quantities {φ(t0), ζ(t0)} are calculated by solving equation 6.19 and 6.20 at time

0. At each successive intermediate time point ti = i, 0 < i ≤ T , the value of the

hedging portfolio set up at time ti−1 is,

Φ(ti) = ψ(ti−1)St + ζ(ti−1)Bt. (6.21)

The theoretical hedging quantities calculated by Black-Scholes famework at time t

is,

H(ASti , GT , T, ti) = HS(ASti , GT , T, ti) +HB(ASti , GT , T, ti). (6.22)
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In general, for i ≥ 1 the real value of the hedging portfolio Φ(ASti , GT , T, ti)

would not equal the risk neutral value calculated by Black-Scholes formula,

H(ASti , GT , T, ti). Wilkie et al. (2005) gives three strategies for setting the hedg-

ing quantities at intermediate re-balancing points, which are, investing the correct

amount in the share and the balance in the bond; investing the correct amount in

the bond; and investing the correct proportions in the share and the bond. We use

the third strategy and set the hedging quantity in share as

ψ(ti) = Φ(ti)

(
HS(ASti , GT , T, ti)

H(ASti , GT , T, ti)Sti

)
(6.23)

at ti, 0 < i < n and the balance in bond.

Consider a 10 year UWP policy with initial investment asset share of 100. The

reversionary bonus rate is constant of 4% p.a. which corresponds to the deterministic

maturity guarantee amount of 148. The UWP fund is invested in market portfolio

of shares which is SGTRI i.e., the equity backing ratio is 100%. Thus the maturity

liability for the insurer is identical to the 10 year vanilla maxi option, which is given

by:

max(AST , GT ) = maxi

(
100

S0

ST , GT , T, T

)
. (6.24)

The market price of the UWP contract is the same as the maxi option value at

time t0 which is 119.92 calculated by Black-Scholes formula in Equation 6.15-6.18.

The insurer follows the Black-Scholes price and deducts an extra 19.92 charge from

the policyholder to construct the initial hedging portfolio by investing the amount

of hedging quantities φ(t0) in shares and ζ(t0) in bond. The insurer re-adjusts the

portfolio at start of each hedging steps, ∆t. We consider the hedging strategies in

three different frequencies which are yearly (∆t = 1), half yearly (∆t = 1/2) and

monthly (∆t = 1/12).

The statistics for the reference portfolio (SGTRI) are shown in Table 6.10, fol-

lowed by statistics for the hedging portfolio and the hedging errors deficit, for three

hedging frequencies, yearly, half yearly and monthly under the GBM model and

exp-NIG model. As we discussed before reference portfolio at the maturity is ap-

proximately log-normally distributed under both GBM and exp-NIG models. In

this example, we assume there is no charge, thus, the asset share is the reference

portfolio.
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Table 6.10: Statistics for reference portfolio, hedging portfolio and hedging error at
maturity for model office M8, simulated with GBM and exp-NIG models.

MEAN SD Lowest Highest
GBM
Reference 323.7578 185.2086 30.5131 3035.9
∆t = 1
Hedging 325.1809 177.0459 108.8807 2945.0
Error -2.0726 10.2409 -137.2670 27.8666

∆t = 1/2
Hedging 326.2054 179.2313 115.7024 2990.8
Error -1.0481 6.9827 -78.7617 25.2715

∆t = 1/12
Hedging 327.0772 181.0154 133.9343 3013.9
Error -0.1763 2.7955 -28.0483 14.7810

exp-NIG
Reference 323.0572 179.3749 28.0413 2608.0
∆t = 1
Hedging 324.9683 171.9588 91.5550 2589.2
Error -1.5991 9.8927 -147.1829 29.2088

∆t = 1/2
Hedging 325.9977 174.0033 94.6295 2576.2
Error -0.5697 7.1842 -105.6199 27.0605

∆t = 1/12
Hedging 326.8472 175.7475 96.4943 2617.8
Error 0.2798 4.2657 -51.5301 25.8465
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First we consider the case when the real world model is GBM with same volatility

as the option model which is the statistical volatility of SGTRI23 data, σ = 0.17.

The maturity mean value of the hedging portfolio is slightly higher but close to

the mean of reference portfolio. Within the 100, 000 simulated values of the refer-

ence portfolio, there are 11, 348 of them less than the guarantee 148.02, that is, a

probability around 11 percent. The distribution of the maturity reference portfolio

spread widely with a minimum value 30.5131 and the deficit (loss) is 117.51. The

minimum values of the yearly hedging fund is 108.88. It reduces the size of deficit,

the hedging error is 39.14. With a more frequent hedging, it is 115.70 for the half

yearly strategy and 133.93 for monthly case. Also the more frequent hedging has

closer maximum value because they rearrange the initial hedging quantities earlier.

In this case the ∆ or the ratio of hedging quantities Hs/H is close to one in most

intermediate times.

The hedging error is the difference between the value of maturity hedging portfolio

and the desired payout in equation 6.24. The mean values of the error are negative

under the GBM real world model. The standard deviation and the size of extreme

values reduced significantly by hedging more frequently. It can be seen the minimum

error, that is the largest deficit, is relatively high for yearly hedging. By studying

those simulation scenarios which generate large negative hedging errors, we found

most of these large errors appear in the case when the maturity maxi options are far

out-of-money. The largest possible loss that the insurer would have to pay in this

example is the minimum value of hedging portfolio minus the guarantee GT which

is 39.14 for yearly, 32.32 for half yearly and 14.09 for monthly strategies

Under the exp-NIG real world model, the underlying share price has the mean

close to the GBM case. The standard deviation is smaller, the distribution of the

log-share price are negatively skewed. There are 11, 149 out of 100, 000 simulation

outcomes that the reference portfolio is less than the guarantee at maturity, which is

round 11 percent in probability. Compared to the GBM case, the minimum values

of the yearly hedging fund under exp-NIG real world is 91.55, the size of extreme

loss increases to 56.47. The minimum value of hedging portfolio is 94.63 for the

half yearly strategy and 96.49 for monthly case. The improvement of extreme loss
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control with a more frequent hedging is not significant when using the GBM option

model in a exp-NIG real world.

Table 6.11 shows the statistics of the hedging errors and the insurer’s losses at

maturity. For the yearly rearranged strategy, the statistics are close under the two

different real world models.

The loss in the exp-NIG model real world case has fatter left tail than the GBM

case, although the GBM have on average larger hedging errors. The insurer will

underestimate the quantile based risk measures such as VaRs and CTEs by using

the GBM internal model.

The POSF of loss increases when ∆ decreases, i.e., the fund is re-balanced over

smaller time steps. Meanwhile, MOL, VaR and CTEs under GBM case are reason-

ably close, the CTE99 and CTE99.5 are respectively 4.81 and 5.88 with monthly,

they are acceptable compared with the previous examples. The required quantile

reserves for the UWP contract M8 under a monthly rebalanced investment are far

lower than those in model office M0-M7.

On the other hand, under exp-NIG model, the decreasing of risk measures are

slow. When the total times of re-adjustment of the fund increase from 9 (yearly)

to 119 (monthly), the MOL, VaR and CTEs for loss are still more than half of the

original value.

The POSF of error is an increasing function of ∆. One may expect a higher

probability of “super-hedge” under a more actively managed hedging portfolio.

Note that the more frequent hedging leads to path-dependent but larger, on

average, transaction costs. It can be estimated by applying the so-called integral-

by-path study (Mallivian calculus). The risk of the cost uncertainty is normally

quantified by the gamma, however, the gamma risk is unhedgeable without infinitely

many derivatives.

6.4 Hedging based investment strategy, M9

So far we have considered the dynamic hedging strategies for the “vanilla” typed

UWP contracts, i.e., the guarantee is deterministic and the reference portfolio is
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Table 6.11: Statistics for insurer’s loss and hedging error at maturity for model office
M8, simulated with GBM and exp-NIG models.

POSF MOL V aR99 CTE95 CTE99 CTE99.5
GBM
∆t = 1
Err 0.5350 8.8325 35.7130 30.0362 47.8583 56.3970
Loss 0.0517 6.0043 9.8206 6.2128 14.8364 18.2400

∆t = 1/2
Err 0.5251 5.8975 22.5066 19.2230 29.3022 34.2693
Loss 0.0538 4.4876 7.3645 4.8180 11.2579 13.9190

∆t = 1/12
Err 0.5112 2.2214 7.9823 6.8492 10.0683 11.5570
Loss 0.0559 1.9239 3.2829 2.1386 4.8091 5.8844

exp-NIG
∆t = 1
Err 0.5163 8.4629 33.7031 28.4401 44.6779 52.7290
Loss 0.0598 7.3742 12.7729 8.6721 19.0148 23.2901

∆t = 1/2
Err 0.4850 5.9737 23.1181 19.6025 31.0867 36.8486
Loss 0.0640 5.9479 10.5019 7.3807 15.7135 19.3329

∆t = 1/12
Err 0.4138 3.4870 13.1038 10.9506 17.3734 20.3215
Loss 0.0745 4.1442 7.6804 5.6899 11.5638 14.3216
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“external” asset as share return indices. In this section, we consider a dynamic

hedging based investment strategy for a UWP policy called “model office M9”. The

reference portfolio is the asset share and the guarantees are increased by the dynamic

reversionary bonuses. As we discussed in Chapter 4, in this particular contract, the

guarantee is path-dependant and there exists the so-called “investment bonus cycle”.

The investment strategy is a function of the guarantees so as the bonuses, meanwhile,

the size of bonuses is decided by the performance of investment.

Recall that, in M8, the UWP contract requires an initial charge worth 19.92 which

is close to 20% of the asset share. This guarantee seems to be too expensive for the

policyholders, although the 4 percent annual bonus rate seems to be reasonable.

However, the question here is that when the investment has been rather bad, the

policyholder might not expect bonuses to be as high as 4 percent per annum. And

if the investment has been good in early years of the policy, the policyholder would

like to have a high guarantee to protect the profits they have already achieved.

Given a proper probability space (Ω,Ft,P,Q), the Q is the market equivalent

martingale measure (pricing measure), the value of the maxi option is

maxi(S0, GT , T, 0) = S0 + p(S0, GT , T, 0) (6.25)

= S0 + e−rTEQ[(GT − ST )+] (6.26)

= S0 + e−rT

∫

Ω

(GT − ST )1{GT > ST}dQ(ω) (6.27)

where p(S0, GT , T, 0) is the put option whose value is calculated by the second

part in the right hand side of equation 6.27. The cost of hedging is decided by

the probability that the contract end up with in the money and the size of the

corresponding deficit. By using the dynamic bonus mechanism can reduce the value

of GT − ST in the cases when GT > ST , the cost of the guarantee could be covered

by a lower extra premium.

The support capital for the M9 can be made up by contribution from both poli-

cyholders and shareholders. For the simplicity, we consider a mutual life office, the

free asset which support the hedging is coming from the guarantee charge paid in

by the policyholders.

At policy inception, a single premium P is paid in by policyholder. We denote

the nominal asset share before any charges as AS ′0 which equals to P . The fix
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proportion of the nominal units which is c percent per annum will be cashed to pay

a guarantee charge. The net present value of asset share for a policyholder AS0 is

the nominal asset share AS ′0 less all the future guarantee charge, AS ′0(1 − c)T . We

assume the rest part of the asset share, AS ′0−AS0, will be invested separately from

the actual asset share AS0 and the insurer will use this amount to construct the

hedging portfolio. And the net present value of guarantee, G0, for policyholders is

the nominal guarantee G′0 less all the future guarantee charge, which is G′0(1− c)T .

At time t, ignore all the future bonus, the minimum projected maturity guarantee

for the asset, G′T (t) is given by

G′T (t) = Gt(1 + g)T−t, t = 0, 1, 2, ..., 9, (6.28)

where g is the guaranteed minimum bonus rate and Gt is the current net guarantee

level.

Thus, at time t, the UWP guarantee G′T (t) can be achieved by a maxi option,

see Wilkie et al. (2005), with the expires at time T , exercise price G′T (t) and current

underlying asset with value of ASt invested in same portfolio as asset share. The

payoff at the maturity is max(AST , G
′
T (t)). (This is identical to a portfolio which

invest the asset share in same asset and hold a put option with same maturity and

reference portfolio as the maxi option. )

Note that the underlying assets for these options are the policyholder’s asset

share and not necessary to be any tradable assets in the market. When the EBR is

less than 100 percent, the reference portfolio of the maxi option is a combination of

shares and bonds.

We denote the Φ(St, K, T, t) as the value of the hedging portfolio at time t with

the underlying asset St, strike price K and the maturity at T . At time t = 0, the

Φ(St, K, T, t) is assumed to be the same value as the maxi option with underlying St,

strike K and maturity T . The free asset (free estate), in our example as the amount

of the guarantee charge will be invested in the hedging portfolio Φ(St, K, T, t) to

support the expenses replicating portfolio. The amount of this support capital is

limited and sometimes the put option backed up for the 100 percent EBR asset

share investment is not affordable. In this case, at each portfolio readjustment time

t, we adopt the investment strategy as follow:
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At time t, if the free asset FAt is less than the hedging expenses which is the

value of the put option,

FAt ≤ p(St, G
′
T (t), T, t); (6.29)

St = AS(t), (6.30)

where GT (t) is the minimum maturity guarantee given in Equation 6.28. In this

case, we maximise the EBR of the asset share, et, under the condition that the put

option of the asset share invested in risky asset, St, is affordable by support capital.

The et can be calculated by solving the follow equations:

FAt = p(St, K(t), T, t); (6.31)

St = etAS(t), 0 < et ≤ 1; (6.32)

K(t) = G′T (t)− (1− et)AS(t)
B(T )

B(t)
. (6.33)

p(St, K(t), T, t) in Equation 6.31 is a monotonic function with respect to et, the

solution is unique. The free asset FAt is the value of the vanilla put option that

expires at time T , exercise price K(t) and current underlying asset value etAS(t)

invested in shares. The exercise price K(t) is calculated as the minimum guarantee

G′T (t) less the part of the guarantee which can be achieved by the 100(1−et) percent

of the asset share invested in bond. The maturity value of the asset share invested

in bond is (1− et)AS(t)B(T )/B(t).

We assume that bonuses are declared after the re-arrangement of the portfolio if

they happen at same date. Thus at each rearranging time, we need to recalculate

the asset share, minimum guarantee and the amount of free assets. We assume

in the hedging portfolio, the two components, free asset and policy holders’ asset

share, always keep the same ratio. For example, at time t, the hedging portfolio is

constructed as,

ΦH(t) = ΦA(t) + ΦF (t),

where ΦA(t) is the asset share component of the hedging portfolio and ΦF (t) is

the free asset component. At time t they have relation ΦA(t)/ΦF (t) = C, then

just before the next re-balancing time, t + δ−, the value of the hedging portfolio is
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ΦH(t+ δ−). The free asset component is,

ΦF (t+ δ−) = ΦH(t+ δ−)

(
1

1 + C

)
. (6.34)

The minimum guarantee,

G′T (t+ δ) = GT (t)′
∏

s∈(t,tδ]

(
1 + bs
1 + g

)
. (6.35)

Thus, at time t+δ, we have the asset share AS(t+δ), minimum guarantee G′T (t+δ)

and the free asset FA(t + δ). The new investment portfolio can be constructed by

solving equation 6.31-6.33.

We ignore the mortality risk and the transaction costs.

Table 6.12: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually re-arrange the portfolio, simulated with GBM
and exp-NIG models.

POSF MOL V aR99 CTE95 CTE99 CTE99.5
GBM
Loss(i) 0.0739 10.6999 18.1626 14.3031 20.9960 22.8757
Loss(ii) 0.0233 4.0667 3.8996 1.8951 6.9821 9.0002
Loss(iii) 0.0694 9.6262 16.1922 12.5736 23.9471 30.0889
Loss(iv) 0.0131 5.3155 0.7523 1.3927 6.9432 11.8985

exp-NIG
Loss(i) 0.0787 12.0091 20.5324 16.6520 24.6054 27.4537
Loss(ii) 0.0299 5.2468 6.1558 3.1376 10.0699 12.7128
Loss(iii) 0.0769 11.3858 19.6254 15.9265 31.3425 40.2826
Loss(iv) 0.0195 7.4873 3.2641 2.9200 13.5040 21.5960

We first check the model office M9 when the real-world model is same as the

option model, that is a GBM model with same volatility. This is necessary condition

for the Girssanov theorem to be hold. The hedging portfolio is rearranged annually.

The loss distribution of four strategies are observed, which are:

Loss(i) annual reversionary bonus rates are calculated by retrospective method

with participating rate p = 0.33 and one year smoothing period,

Loss = max{GT − AST , 0};
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Loss(ii) annual reversionary bonus rates are calculated by retrospective method

with participating rate p = 0.33 and one year smoothing period, the free asset

will be paid under deficit,

Loss = max{GT − AST − FAT , 0};

Loss(iii) bonus earning power method using deterministic projected maturity asset

share with a 25 percent terminal bonus cushion (see M2), without support of

the maturity free asset;

Loss(iv) bonus earning power method using deterministic projected maturity asset

share with a 25 percent terminal bonus cushion (see M2), with the free asset

paid under deficit.

The risk measures are listed in Table 6.12. One can see, with the retrospective

bonus mechanism, loss(i), the hedging based investment strategy M9 have POSF

which is 7.39%. The MOL is 10.6999 and the 99% VaR is 18.1626, the CTEs at

level 95%, 99% and 99.5% are 14.3031, 20.9960 and 22.8757. Loss(ii) requires the

support of the maturity free asset FAT . The POSF in Loss(i) of suggests that it has

probability of 7.39% that part or whole of free asset will be paid in order to meet the

guarantee. The probability of the free assets being insufficient to meet the deficit is

2.33%. Both VaR and CTEs are reduced, which suggest the Loss(ii) has a relatively

thin right tail. The difference between V aR99 of Loss(i) and Loss(ii) is 14.0139.

These figures seem to be acceptable for an insurer, there is a low probability that

the liability guarantee is unaffordable.

With the annually bonus calculated by BEP we described in Chapter 5, the hedg-

ing based investment strategy M9 have a relatively low POSF, which is 6.94% for

Loss(iii) and 1.31% for Loss(iv). If hedging quantities had been theoretically rear-

ranged continuously, the POSF of Loss(iv) would converge to zero in this example.

With the support of maturity free asset, the MOL is 5.3155 which is around 2%

of the mean maturity asset share. The 99% VaR is close to 0. For hedging based

investment strategy M9, if the real-world model is the same as the option model,

the maturity loss distributions have thin tails under annual rearrangement.
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We now consider the case that the exp-NIG is used to simulate the real world

share returns. The statistics of the insurer’s maturity loss are given in lower part of

Table 6.12. All risk measures we observed in this example increase. Thus we argue

that if the real world model is exp-Lévy which, in this case, is an exp-NIG model,

the distribution of the hedging error has a fatter right tail than the GBM real world

models.

Table 6.13 shows the mean and standard deviation of the maturity asset share

and guarantee for model office M9. The mean of the guarantee is 137.7378 under

GBM and 137.7448 under exp-NIG. And the standard deviation is less than 19 under

both asset models. Thus there is a large probability to achieve maturity guarantee

at a range of low value. This is because under the hedging strategy, the volatility of

the asset share is reduced. Tt seems that a UWP contract with bonus which declare

33 percent of last year’s investment return is not attractive to the policyholders and

it is necessary to increase the participating rate p in this case.

Table 6.13: Statistics for asset share and guarantee at maturity for model office M9,
hedging based investment strategy, annually rearrange the portfolio, simulated with
GBM and exp-NIG models.

MEAN SD
Asset Share
AST (Pro-GBM) 279.3927 155.8326
AST (Pro-NIG) 278.7333 150.9961
AST (Retro-GBM) 280.0110 157.7917
AST (Retro-NIG) 279.7270 152.2732
Free Asset
FAT (Pro-GBM) 18.9932 1.3383
FAT (Pro-NIG) 18.9766 1.3042
FAT (Retro-GBM) 18.9343 1.4081
FAT (Retro-NIG) 18.8915 1.3856
Guarantee
GT (Pro-GBM) 204.1193 99.9518
GT (Pro-NIG) 203.9140 96.7131
GT (Retro-GBM) 137.7378 18.8508
GT (Retro-NIG) 137.7448 18.2015
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Hedging portfolio and EBRs

The left subplot in Figure 6.8 shows the mean proportion of asset share et that

invested in the asset linked to market portfolio (risky asset). The star line (GBM(P))

shows the et simulated by using GBM model, the guarantee is increased by declaring

BEP bonus. If we assume the SGTRI as the market portfolio, the UWP fund

invested in share indexes and the risk free bond is lying on the “Capital Market

Line” which is the Markowitz efficient frontier of the market. And the proportion

et, of which the asset share invested in the hedging portfolio, is the ratio of the

portfolio risk divided by the market risk, σe/σM . By solving the equation 6.31-6.33,

the projected guarantee at policy inception is affordable by the free asset, i.e., et = 1

at time t = 0.

The solid line (GBM(R)) shows the et simulated by using GBM asset model,

and the broken line (exp-NIG(R)) shows the et simulated by using exp-NIG asset

model, both of guarantees are increased by retrospective bonus with participating

rate p = 1/3 and n = 1. The mean proportion of the asset share that can be afforded

to invest in share is decrease through out the policy term. At start of final policy

year at time t = 10, under GBM model, there are 97.96 percent of the asset share

on average is invested in share indices. The figure decrease to 97.39 percent under

exp-NIG model. More-on, there is 98.26 percent of the probability for GBM case

and 97.82 percent of the probability for exp-NIG case that the EBRs for the final

year is one. That is more than 97 percent of probability that the whole asset share

can be hedged using the accumulated free asset at start of the final policy year. We

can see that in most cases the asset share can be invested in shares.

The dot line (exp-NIG(P)) shows the et simulated by using exp-NIG model,the

guarantee is increased by declaring prospective bonus. In this case, the e0 at the is

same as the GBM case because we use the same option model and have same initial

asset share, free asset and guarantee. The mean of e10 at start of the 10th policy

year is 0.97819, which is slightly lower than the GBM case. There is 97.73 of the

probability that the EBRs for the final year is one.

The right subplot in Figure 6.8 shows the mean of actual EBR of the asset share at

start of each policy year. The star line (GBM(P)) shows the actual EBR simulated
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Figure 6.8: Proportion of AS invested in hedging portfolio and the EBR for UWP
fund

by using GBM model, the guarantee is increased by declaring prospective bonus.

At the time when policy setup it is 0.9093 for both the GBM and exp-NIG real

world models because of the the same option model, initial asset share, free asset

and guarantee. With GBM real world model, the mean of the actual EBR at start

of the 10th policy year is 0.9048. The dot line (exp-NIG(P)) shows the actual EBR

simulated by using exp-NIG model. The mean of actual EBR at start of the 10th

policy year is 0.9025, which is almost no difference from the GBM case.

The solid line (GBM(R)) and the broken line(exp-NIG(R)) show the actual EBRs

simulated by using GBM and exp-NIG models respectively. The actual EBRs are

increasing function of policy year t in these cases and the exp-NIG(R) case has lower

EBR throughout the policy term.

The mean of actual EBR is an increasing function of time t from 2 to 10 under

the retrospective bonus rate. However the scale of axis in the graph is so small
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varying from 0.9041 to 0.9168, actually the mean EBR has very little fluctuations.

The mean EBR has a large downward shift at time 10 for the BEP cases. This is

because both of the mean and standard deviation of BEP increases rapidly in the

last two years, see Figure 5.4. Thus it costs more than the early year in the policy

term and less proportion of the asset is invested in shares.

Varying the volatility parameter

It has been discussed in previous sections that the insurer can adjust the parameters

used in option models. Keeping the risk free rate r fixed at 0.005 per month, we

are now varying the volatility parameter σ in the option model used to calculate

the hedging quantities in M9. Values of 0.10, 0.15, 0.20, 0.25, 0.30 are chosen for σ.

The statistics of the maturity asset share and guarantee are shown in Table 6.14.

Table 6.14: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually rearrange the portfolio, simulated with GBM
and exp-NIG models.

SD Mean of SD of Mean of SD of
σ asset share asset share guarantee guarantee

GBM
0.10 305.7682 165.5516 209.3829 105.9056
0.15 300.7732 160.7955 205.8275 102.6305
0.20 294.3428 149.6081 201.8564 95.4082
0.25 288.0676 140.9068 198.5109 89.3703
0.30 283.8702 135.2877 197.3210 85.0436

exp-NIG
0.10 305.0581 160.7793 209.4266 102.4133
0.15 300.0367 155.4265 205.3594 99.3432
0.20 293.8104 145.7810 201.4774 92.2735
0.25 288.7323 137.2934 199.0686 86.7884
0.30 283.0620 130.1693 196.9989 81.5008

We can see from Table 6.15 that the insurer can achieve smaller risk measures by

using a larger volatility parameter in the option models. With the higher volatility,

it costs more to hedge the guarantee of the policy. It leads to lower deltas and EBRs

of the UWP fund, so as the expected return of the fund and expected guarantees.
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Table 6.15: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually rearrange the portfolio, simulated with exp-
NIG models, BEP.

SD(σ ) POSF MOL V aR99 CTE95 CTE99 CTE99.5

GBM
0.10 0.0155 6.4331 1.7765 1.9943 9.7066 16.0232
0.15 0.0145 6.3472 1.0995 1.8407 9.1392 15.8012
0.20 0.0113 4.6333 0.2999 1.0471 5.3771 9.5315
0.25 0.0080 4.1275 0 0.6604 3.3569 6.4885
0.30 0.0051 3.3760 0 0.3444 1.7218 3.5699

exp-NIG
0.10 0.0236 9.5333 5.5419 4.4997 19.9432 30.6708
0.15 0.0212 7.6127 3.9388 3.2278 14.6562 22.8530
0.20 0.0174 6.6684 2.3541 2.3206 11.2022 18.1186
0.25 0.0130 5.9121 0.8485 1.5371 7.8172 13.3448
0.30 0.0087 5.5464 0 0.9651 4.9967 9.2900

Table 6.14 shows the mean and standard deviation of the maturity asset shares and

the guarantees.

For the same volatility parameter, the risk measures simulated using exp-NIG

models are always greater than those under GBMs. For example, the statistics of

σ = 0.15 under the GBM model are less than those of σ = 0.20 under the exp-NIG

model and greater than σ = 0.25 under the exp-NIG model. It shows if the insurer

would like to achieve the close results as the 15-percent-volatility hedging simulated

using the GBM real-world in the M9, he/she can add a margin between 5 to 10

percent to the volatility in option models if the “true” investment returns follow the

exp-NIG.

In M9, varying the volatility in the option model improves the insurer’s risk

management, meanwhile it reduces the possible high return and guarantee of the

policyholder. In this way, varying option model parameters can be seen as a kind

of hidden charge or cost.
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6.4.1 Terminal bonus cushion and participating rates

So far we have used a 25 percent of the projected maturity asset share as the

terminal bonus cushion. We vary the terminal bonus cushion in bonus earning

power calculation in equation 5.5 from 12% to 30%.

Table 6.16: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually rearrange the portfolio, simulated with GBM
and exp-NIG models.

Mean of SD of Mean of SD of
TB asset share asset share guarantee guarantee

GBM
0.3 300.0583 157.3442 191.7824 93.0096
0.28 299.7137 158.7743 197.0484 96.6703
0.26 298.6500 155.8425 201.8319 98.2006
0.24 297.1099 154.9314 206.0451 100.8629
0.22 297.6734 156.9109 211.8519 104.9679
0.20 295.6406 152.7616 215.8301 105.2472
0.18 294.6797 151.8487 220.9944 107.9667
0.16 292.0854 150.1379 224.7394 109.9103
0.14 291.5596 149.1847 230.5945 113.3518
0.12 289.9302 147.4597 235.2463 114.5312

exp-NIG
0.3 299.4081 152.8185 191.8194 89.9358
0.28 298.9875 153.4560 196.5895 93.5583
0.26 298.1225 151.8737 201.4593 94.9847
0.24 297.8678 151.0099 206.7260 97.9949
0.22 296.7417 150.9905 211.4789 100.6686
0.20 295.3509 150.2151 216.0279 103.2177
0.18 294.4245 146.9580 221.0398 104.3724
0.16 292.2576 146.2080 225.2544 106.8056
0.14 291.0030 144.0876 230.0995 108.1660
0.12 289.9136 143.9428 235.0550 111.3830

Table 6.16 shows the statistics of the maturity asset shares and guarantee. The

lower the terminal bonus cushion, the lower the mean of the asset share. This is

because the lower TB leads to higher projected guarantee in each intermediate time

point throughout the policy. It increases the costs of the hedging portfolio, so less

proportion of the asset share will be investment in share. Thus the asset share has
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lower mean and less SD with a lower TB. The mean of the maturity guarantee, for

both real-world models, is rapidly increasing in the range of investigation TBs. We

can expect the lower TB and the lower asset share effect the projected guarantee

simultaneously, with the former increase the reversionary bonus rate and the latter

bring down the projected maturity asset share. It seems the increasing of the mean

of guarantees is more significant than the reducing of the mean of the asset share.

One reason for this is because we assume a 6 percent yearly risk free return which

seems to be higher than in practice. The difference in expected investment returns

between shares and bonds are close.

Table 6.17: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually rearrange the portfolio, simulated with exp-
NIG models, BEP.

TB POSF MOL V aR99 CTE95 CTE99 CTE99.5

GBM
0.3 0.0074 2.8858 0 0.4271 2.1355 4.2685
0.28 0.0095 4.7522 0 0.9124 4.5621 8.5901
0.26 0.0119 5.0868 0.4562 1.2107 6.1847 10.9235
0.24 0.0142 6.0182 1.1501 1.7092 8.6598 14.9338
0.22 0.0184 6.4462 2.3304 2.3722 11.2317 18.3978
0.20 0.0228 7.1294 3.8361 3.2510 14.6036 23.1836
0.18 0.0292 7.2700 5.4657 4.2457 17.7890 27.4730
0.16 0.0337 8.0694 8.1873 5.4387 21.4447 31.7239
0.14 0.0444 8.2841 10.7968 7.3563 25.9314 36.9208
0.12 0.0556 8.2181 13.8813 9.1751 28.3626 39.0205
exp-NIG
0.3 0.0120 5.8826 0.4934 1.4118 7.1938 12.5739
0.28 0.0150 5.9653 1.5720 1.7896 8.7944 14.6661
0.26 0.0187 7.0984 2.6071 2.6548 12.6276 20.4702
0.24 0.0220 7.9856 4.3283 3.5137 15.9070 25.1263
0.22 0.0253 8.5926 5.3388 4.3479 19.1420 30.2218
0.20 0.0327 8.4629 7.8606 5.5347 21.7937 32.5967
0.18 0.0374 9.3739 10.6546 7.0117 26.2039 37.5189
0.16 0.0448 9.1009 12.9371 8.1544 27.8033 38.8505
0.14 0.0538 9.6178 15.5765 10.4408 33.0560 46.0445
0.12 0.0630 9.4007 16.9693 11.7726 33.2136 45.4144

The risk measures are listed in Table 6.17. We can see all risk measures under

both of the two asset models are increased with lower TB. The quantile risk measures
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include V aR99 and CTEs are highly sensitive to TB. Under the GBM real world,

the 30 percent terminal bonus cushion strategy has the POSF very close to zero

and all quantile risk measures are relatively low. With the TB varying from 0.28 to

0.12, the risks measures raise up quickly. With exp-NIG models, the quantile risk

measures are much larger than the figures in corresponding GBM case. We can see

actually the model parameter TB in BEP bonus control the risks of hedging and

the model bias.

Next we vary the participating rate p. In model office M0 to M7, the participating

rate is assumed to be 33 percent.

Table 6.18: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually rearrange the portfolio, simulated with GBM
and exp-NIG models.

Mean of SD of Mean of SD of
p asset share asset share guarantee guarantee

GBM
0.30 299.5046 157.9309 132.5411 16.4657
0.35 298.5785 159.0623 141.3335 20.5428
0.40 296.7958 155.8530 150.4389 24.8874
0.45 294.3746 154.4075 159.8796 29.8276
0.50 293.6105 155.9446 170.0810 35.2615
0.55 290.0748 150.9077 180.4213 40.6139
0.60 287.0213 148.6899 191.2687 46.6226
0.65 281.9405 145.2967 201.7778 52.4120
0.70 277.9931 140.8753 212.9759 58.9053
0.75 272.3033 135.8590 223.6197 64.5505

exp-NIG
0.30 298.9050 152.8545 132.5904 15.9393
0.35 297.6670 153.0647 141.2917 19.7854
0.40 296.4259 152.7103 150.4342 24.0957
0.45 295.2280 151.0880 160.1420 28.8716
0.50 292.2692 150.5215 169.9562 34.0225
0.55 290.4331 149.4495 180.6862 39.6643
0.60 285.2387 142.9560 190.8931 44.5485
0.65 282.1919 142.2827 201.9961 50.9533
0.70 278.7846 139.2701 213.1016 57.0111
0.75 272.1692 132.5011 223.5919 62.3650
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Table 6.19: Statistics for insurer’s loss at maturity for model office M9, hedging
based investment strategy, annually rearrange the portfolio, simulated with exp-
NIG models, BEP.

p POSF MOL V aR99 CTE95 CTE99 CTE99.5

GBM
0.30 0.0189 3.8348 2.8697 1.4496 5.9988 7.9707
0.35 0.0263 4.2994 4.6998 2.2615 7.6828 9.7343
0.40 0.0363 4.9607 6.8449 3.6015 10.0519 12.2453
0.45 0.0523 5.6303 9.2397 5.8962 12.8305 15.1732
0.50 0.0717 6.3336 11.6596 8.4764 15.6886 18.4349
0.55 0.0990 7.5058 15.6975 12.0119 19.8983 22.7503
0.60 0.1424 8.5643 19.2456 15.8725 23.8356 26.9706
0.65 0.1939 9.9765 24.6164 20.5435 29.6476 33.2027
0.70 0.2614 11.8121 30.6535 26.3647 36.4472 40.5423
0.75 0.3505 13.8949 38.1856 33.4844 46.0236 51.4953

exp-NIG
0.30 0.0242 4.8592 4.8151 -0.6717 8.6558 11.1899
0.35 0.0332 5.5866 6.9969 2.5727 11.0061 13.7432
0.40 0.0466 6.4553 9.9267 5.9876 14.4601 17.5469
0.45 0.0587 7.2481 12.4756 8.3950 17.1115 20.2936
0.50 0.0826 7.8151 15.2493 11.4271 20.2917 23.8698
0.55 0.1114 9.0316 19.1656 15.2209 25.4646 29.9313
0.60 0.1506 10.1690 23.8420 19.4053 29.8077 33.9553
0.65 0.2024 11.4163 28.2713 23.7858 34.5857 38.9422
0.70 0.2653 13.1582 34.1395 29.3857 41.2294 46.1850
0.75 0.3500 15.0733 41.3944 36.0659 49.3263 54.7728
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Compare with diversified EBR and 100 % EBR cases

By studying the model office M9, we find that a investment strategy based on

hedging can reduce the maturity risks of the insurer, under both GBM and exp-NIG

real-world models. So far we have discussed three types of investment strategies,

the 100% EBR investment strategies, the diversified EBR strategies and the hedging

based ones.

The hedging based investment strategies need the support capital which, in this

example, we assume it is the guarantee charge deducted from the asset share. The

charges income is the free capital for the insurer which in our assumption is de-

ducted from the asset share. The insurer can use this extra capital to improve their

investment portfolios. Consider the same support capital for the 100% EBR cases

and the dynamic EBR cases. There are two simple ways to invest the free asset, in

bond or in share, after it is once deducted from the asset share. When a shortfall

happen, the maturity value of the free asset portfolio will be paid to the policyhold-

ers to cover part of the loss. Table 6.20 shows the risk measures of insurer’s loss at

maturity when supported by the free asset.

For each investment strategy, investing free asset in bond scenario always gives

lower risk measures than investing free asset in share. Since in most cases when

shortfall happens, the share returns are poor and it leads to low free asset value at

maturity.

6.5 Concluding Remarks

As a reminder, we repeat the description of Case M7, M8 and M9 considered in this

Chapter:

M7 investment strategies based on diversification, EBR less than one;

M8 hedging strategies for a 10-year vanilla type UWP contract with fixed annual

bonus rate; and

M9 partial hedging based strategies which has limited support free capital, only

part of UWP fund can be hedged.
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Table 6.20: UWP simulation using exponential NIG and GBM models.

POSF MOL V aR95 V aR99 CTE95 CTE99

100% EBR M0
Loss (GBM) 0.0722 19.1296 9.1592 36.0618 25.6835 45.6409
Loss (exp-NIG) 0.0946 21.4323 16.7054 44.1215 33.4324 53.7207

100% EBR free asset in share
Loss (GBM) 0.0463 17.8760 2.0865 28.2637 16.5532 38.9054
Loss (exp-NIG) 0.0633 20.3493 6.2396 36.9275 24.9427 47.6710

100% EBR free asset in bond
Loss (GBM) 0.0340 14.1086 0 18.6391 9.5939 28.2182
Loss (exp-NIG) 0.0487 16.4276 0 26.6988 16.0097 36.2980

Static EBR(76%) free asset in share
Loss (GBM) 0.0173 7.6941 0 7.5988 2.6622 18.5990
Loss (exp-NIG) 0.0246 9.7862 0 14.4110 4.8148 25.5879

Static EBR(76%) free asset in bond
Loss (GBM) 0.0105 5.9982 0 0.4699 1.2596 10.2208
Loss (exp-NIG) 0.0164 8.0560 0 6.8302 2.6424 16.6423

Dynamic EBR(70%) free asset in share
Loss (GBM) 0.0074 3.9833 0 0 0.5895 5.1460
Loss (exp-NIG) 0.0134 6.0802 0 3.2360 1.6295 10.8071

Dynamic EBR(70%) free asset in bond
Loss (GBM) 0.0032 6.1302 0 0 0.3923 1.9617
Loss (exp-NIG) 0.0064 9.0275 0 0 1.1555 5.7776
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Supporting by the maturity free estate to the UWP fund, the risk measures using

100% EBR investment strategy are reduced. Actually adding the maturity free asset

just shifts the location of the loss distribution to the left by a random variable FA(t).

Compare the other two investment strategies, diversified investment strategy (dy-

namic EBR) and hedging strategy M8. The former method tries to reduce the vari-

ance of the invest return distribution while sacrificing the possible high return from

risky asset investment. Hedging investment strategy, however, narrows the left tail

of the maturity loss distribution by paying an extra amount of expenses, which is

called the “market price of risk”, see Hull (1999). Both of the loss distributions

under these two investment strategies have less volatility than 100% EBR case.

The hedging based investment strategy M9 in our example is actually a combi-

nation of these two investment strategies. Sometimes the 100% UWP fund invested

in share is too expensive to hedge. Thus we try to reduce the market risk of the

equity investment part of asset share by paying the fund cost supplied by free asset

and using a dynamic EBR strategy under principle of given the ”affordable highest

expected return”. The EBR of the UWP fund in M9 is more flexible than in M7, in

the case when the contract is “out-of-money”, there is large EBR in the fund which

leads to higher expected future return in this case.

The model offices M8 and M9 hedge the liabilities in a bond-share market and

the insurer does not use derivatives because there is few long term options in the

market. If we assume that there exist some long-duration tradeable options written

on share indices, a direct alternative investment strategy would be to use the free

asset to buy put options to achieve the maturity guarantee on the final step instead

of rearrange the hedging quantities. For example, assume now there exist one year

term put options on same asset as asset share invested in, this would remove the

random hedging errors at maturity. In model office M9, if we can buy one year term

put p(St, K(t), T, t) in equation 6.31 at t = 9 (start of 10th policy year), then the

maturity guarantee will be achieved with probability one.
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Chapter 7

Extension of Lévy models

7.1 Introduction and objectives

In the previous chapters, the risk in the return of asset investment was observed

by Lévy driven asset models. The risk management of life offices selling the UWP

policies were studied by applying different bonus mechanisms and frequencies, in-

vestment strategies include dynamic EBR rearrangement and simple hedging based

asset allocations.

However, as mentioned before, there is other big category of stylised facts for

financial data have not been tackled so far in the Lévy models described in this

thesis, which are the stochastic volatility and clusters of the extreme returns.

Evidence of so-called “long range dependence” in autocorrelation function of the

daily returns has been documented in many studies (see Kirman (2006) for the def-

inition of long/short range dependence). Ding et al. (1993) show the absolute value

of S&P500 returns has the long-memory property in which the sample autocorrela-

tion function of absolute returns decays very slowly and remains significant even at

long time lags.

For the monthly SGTRI data, the nonlinear autocorrelation of the return process

include the absolute return and squared return series have positive autocorrelations

(see section 7.2). Thus i.i.d. increment Lévy models are not able to capture these

features, some extension are required.

In order to model the volatility clustering property in the SGTRI data, the ex-
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ponential Lévy model can be extended by adding in time series properties in the

long term. Two possible approaches are GARCH/ARCH type models and stochastic

volatility type models, driven by the Lévy processes. Eberlein et al. (2001) studied

volatility models include GARCH, exponential AR, composite and implied volatility

in combination with the hyperbolic process and tested their performance on daily

German stock index data fitting. Barndorff-Nielsen and Shephard (2001) proposed

a stochastic volatility model which is a Ornstein-Uhlenbeck process driven by in-

verse Gaussian Lévy process. Both of these two models can be represent as the

time-homogeneous Lévy processes models.

Also, there are existing asset models that have been proved to be successfully

capture key features of the returns of the long-term financial asset. For a summary

and comparison of the statistical properties of some of these models we refer to

Lee and Wilkie (2000). Other example of long term asset model is the Barrie &

Hibbert Economic Scenario Generator (see Hibbert et al. (2001)). We consider the

multi-variable Wilkie model described in Wilkie (1995). The total return process in

Wilkie model are driven by the normal distributed random factors. We will discuss

the possibility to use GH processes in the Wilkie model.

The estimation of these models will be discussed with the parameters fitted to

SGTRI series. And the risk measures for a 10 years single premium UWP policy

loss will be investigated. The chapter is organised as follows.

In section 7.2, the empirical non-linear autocorrelation, specifically, the volatil-

ity behaviour of SGTRI is studied. Then we build ARCH/GARCH type stochastic

volatility models in combination with the basic exp-Lévy model and describe the

estimation procedure in section 7.3. In section 7.4 we apply the stochastic bridges

driven by Lévy processes in multi-variable models. We test the statistical proper-

ties of the de-volatilized residuals of the fitted models and show backtest of VaR

riskmeasures in section 7.5. Finally, in section 7.6, the riskmeasures for insurer are

simulated using these more realistic asset models.
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7.2 Volatility clustering

A typical empirical behaviour of daily stock returns is that the large movement (up-

ward or downward) are more likely to be followed by another large movement. There

are some periods of time in which the fluctuation of asset value or economic indices is

more active than the others when during the “quiet” time period, returns are stable

and change relatively slow. It gives the evidence of the volatility clustering property

for the return processes. The empirical study of the SGTRI data in Chapter 1 shows

the autocorrelation of the monthly SGTRI log-return processes is insignificant only

with small positive value for lag of one. We plot the autocorrelation function of the

squared returns of monthly SGTRI and absolute returns of SGTRI in Figure 7.1.

The subplot on the left hand side is the autocorrelation values for squared SGTRI23

monthly log returns. The autocorrelation function stays positive and decays slowly

with the first 5 smallest time lags are higher than the horizontal line which is the

bound of the 95% confidence interval of 0 autocorrelation hypothesis. Same pattern

can be found in the right hand side subplot which is the autocorrelations of absolute

SGTRI23 monthly log returns that the autocorrelations for the time lags from 1

month to 16 months are lying outside of the 95% confidence interval.
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Figure 7.1: Left: Sample autocorrelation function for squared SGTRI23 monthly
log returns. Right: Sample autocorrelation function for absolute SGTRI23 monthly
log returns. Horizontal solid lines give the 95% confidence interval.
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7.3 Stochastic volatility models and Lévy process

We consider the similar univariate asset model as the exp-Lévy models. By X =

(Xt)t≥0 we denote the return process of share indices S = (St)t≥0, i.e.

St = S0 exp(Xt). (7.1)

The return process Xt is of the form

dXt = µdt+ σt−dLt, (7.2)

where Lt is a Lévy process with stationary, independent increment starting at 0 and

σt− denotes a previsible process referred as the instant volatility.

For simplicity, the σt can be modelled as discrete-time time series model. One

possible discrete time stochastic volatility model is the GARCH(1,1)-m process, see

Eberlein et al. (2001).

7.3.1 GARCH(1,1)-GH

Given a time scale ∆t, we work with the discrete analogue of the Equation 7.2

∆Xt = µ∆t+ σt∆Lt, (7.3)

The volatility σt is piecewise constant between integer time points and is modelled

by GARCH(1,1)-m processes,

σ2
t = c+ aσ2

t−∆t(∆Lt −m)2 + bσ2
t−∆t, (7.4)

where parameters c is the weighted long term mean of the σt,

c = (1− a− b)σ2
L, (7.5)

where σ2
L is the long term mean of the volatility process and m = E(∆Lt). Also

under the monthly time scale we assume that Var(∆Lt) = 1

The domain of the parameters is,

σ1 ≥ 0, c ≥ 0, a ≥ 0, b ≥ 0 and a+ b ≤ 1. (7.6)
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The driving process Lt has the GH distributed increment law or it’s subclasses

and limiting cases include the normal, normal inverse Gaussian, hyperbolic, variance

Gamma and student-t distributions.

The GARCH(1,1)-GH model is given by:

St = S0 exp{µt+ σt(βTt +W (Tt))}, (7.7)

where T1 has GIG(λ, δ, γ) law given in 2.10. The driving process

Lt = βTt +W (Tt)

is GH process. We also consider two subclasses of the GARCH(1,1)-GH model

which are fixing the GARCH(1,1)-NIG model when λ is −0.5, and GARCH(1,1)-

HYP model when λ is 1.

The GARCH(1,1)-VG model is given by:

St = S0 exp{µt+ σt(θTt + (1− θ2ν)W (Tt))}, (7.8)

where Tt is a gamma process which T1 is Gamma(ν,1) distributed and σt is given

by equation 7.4. We note the VG process has 3 parameter {θ, σ, µ} and in

GARCH(1,1)-VG model, the σ parameter is replaced by the term 1− θ2ν. It makes

the standard deviation of the de-volatized VG process L1 to be 1.

The GARCH(1,1)-GBM model is given by:

St = S0 exp{µt+ σtWt}, (7.9)

where σt is the GARCH(1,1)-m type stochastic volatility process.

The linear drift term µt of the GARCH(1,1)-GH model in equation 7.7 is taken

outside of the GARCH volatility part. The reason we do not make the drift a

GARCH process is that the GARCH typed linear drift leads to positive linear au-

tocorrelation of the return for all lags (because the Lévy processes term have zero

autocorrelation and the ACF of µσt will be positive). It is inconsistent with the

shape of empirical autocorrelation function in Figure 1.3.

To apply the GARCH volatility on the time changing Brownian motion term, on

the other hand, leads to another model setting choice,

St = S0 exp{µt+ βTt + σtW (Tt)}, (7.10)
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We prefer the form in Equation 7.7 because one may like to make the process σt

more intuitive by referring it to the standard deviation of the returns instead of only

acting as a scale parameter of the time changing Brownian motion as in Equation

7.10.

7.3.2 Likelihood Function of the GARCH(1,1)-GH

Next, we look at the likelihood function of the GARCH(1,1)-GH models. The obser-

vations are given by monthly log-return rate x1, x2, ...xn in order. Here the difference

from the estimation of the independent increment models in Chapter 3 is that the

monthly log-returns x1, x2, ...xn are not i.i.d. random variables but the whole sample

series is a single correlated sample sequence. The general form of the GARCH-Lévy

log-return increment log(St/St−1) is:

xt = µ+ σt(Lt − Lt−1). (7.11)

Given parameters of the return increment Λ = {λ, α, β, δ, a, b}, the likelihood

function for observations is:

L(Λ) =
n∏

i=1

f(xi − µ|Λ,Fi−1). (7.12)

where f(y|Λ,F) is the density of xi.

The initial condition (F0) of the volatility σ0 is assumed to be the standard

deviation of the sample observations and x0 is assumed to be the mean of sample

observations. At time i, the σi is upgraded by applying the equation 7.4. Thus, the

likelihood function 7.12 can be calculated recursively. The contribution to likelihood

of the i-th observation is,

1

σi

gh

(
xi − µ

σi

|Λ,Fi−1

)
, (7.13)

where gh(y|Λ) is the density of GH law in equation 2.12.

7.3.3 Maximum Likelihood Estimation

For each model, adding a GARCH(1,1) stochastic volatility model leads to two

additional parameter, a and b. The parameter c is calculated by

c = (1− a− b)

∑n
i=1(Xi −X)2

n− 1
. (7.14)

138



The maximum likelihood estimation results for the GARCH(1,1)-GH, GARCH(1,1)-

NIG and GARCH(1,1)-HYP are shown in Table 7.1. The variance and correlation

between the estimators are given approximately by calculating the information ma-

trix numerically.

Table 7.1: Maximum likelihood estimates of GARCH(1,1)-GH and the following
subclasses: NIG (λ = −1/2) and HYP (λ = 1). The first line gives the maximum
likelihood estimates of all 7 parameters where λ has not been fixed.

λ α β δ µ a b LogLH

Share Gross Total return Jan 1950 - May 2005

-2.3066 0.5272 -0.3543 1.6999 0.0256 0.1463 0.7757 1100.32
NIG 1.2562 -0.3671 1.1687 0.0261 0.1479 0.7721 1099.90
HYP 1.7628 -0.3805 0.6741 0.0266 0.1468 0.7723 1099.28
Share Gross Total return Dec 1923 - May 2005

-1.8626 0.6973 -0.2298 1.6504 0.0179 0.1818 0.7768 1706.51
NIG 1.1886 -0.2319 1.2269 0.0180 0.1820 0.7767 1706.31
HYP 1.6528 -0.2303 0.6814 0.0179 0.1818 0.7772 1705.72

Table 7.2: Maximum likelihood estimates of GARCH-VG and GARCH-GBM.

a b µ ν θ LogLH

Share Gross Total Return Jan 1950 - May 2005
GARCH-VG 0.1384 0.7762 0.0261 0.5015 -0.3346 1098.37
GARCH-GBM 0.1288 0.8040 0.0103 1064.11

Share Gross Total Return Dec 1923 - May 2005
GARCH-VG 0.1685 0.7860 0.0171 0.5164 -0.2069 1704.86
GARCH-GBM 0.1296 0.8360 0.0086 1644.80

The seven parameter GARCH(1,1)-GH model has the highest log-likelihood,

which is 1100.32 and 1706.51 for SGTRI 50-05 and SGTRI 23-05 data. The MLE

results for GARCH(1,1)-VG and GARCH(1,1)-GBM models are shown in Table 7.2.

Compared with the GARCH(1,1)-GBM, which is 1064.11 and 1644.80 for SGTRI

50-05 and SGTRI 23-05, all the GARCH type stochastic volatility models with
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non-Gaussian marginal returns offer a considerable improvement in likelihood. The

difference between the subclasses include NIG and HYP by fixing λ and the gen-

eral case is small. Recall the likelihood of the constant volatility GBM model is

1013.10 and 1557.55 for SGTRI 50-05 and SGTRI 23-05. And the likelihood of the

constant volatility GH model is 1075.18 and 1650.90 for SGTRI 50-05 and SGTRI

23-05. It is obvious that using GARCH stochastic volatility models can capture the

autocorrelation structure of the SGTRI data.

We can see that the estimation values of b in GARCH-GH, GARCH-HYP,

GARCH-NIG and GARCH-VG are all very close to 0.77. Moreon, the a and b

estimations are stable for each sample set. Changing the types of driving processes

within GH family has little effect on volatility time series.

7.3.4 MCMC for GARCH-GH models

The Metropolis-Hastings algorithms we used to estimate the parameters of the GH-

BDLP in GARCH(1,1)-GH are very similar to those we applied in Chapter 3 Section

3.4.

The parameters a and b are constrained to lie in (0, 1). The prior distributions

used for the parameter a and b are Beta(0.6, 2.4) and Beta(3, 1.275) giving the prior

mean of 0.2 and 0.7 and standard deviation of 0.2 and 0.2 respectively for a and b.

The proposal distributions are also Beta, with Ca ∈ Beta(0.2, 0.8) for a and

Cb ∈ Beta(1.167, 0.5) for b. The proposal distributions have the same means as

the prior distributions with bigger standard deviations. The acceptance rates are

approximately 33 percent and 36 percent for SGTRI23 sample and approximately

32 percent and 34 percent for SGTRI50 sample data respectively.

For the prior and proposal distributions of the GH MCMC estimators are similar

to those we used in Chapter 3, only with different distribution parameters.

The HYP and NIG distributions are subclasses of the GH. They share the same

parametrisation but with fixed λ, i.e., λ = −0.5 for the NIG and λ = 1 for the HYP.

Normal prior distribution will be used for λ with large variance for GH.

Table 7.3 gives the prior and proposal distributions and the acceptance probabil-

ities for each model fitted to respectively two data sets, SGTRI50 and SGTRI23.
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Table 7.3: Prior&Proposal distributions for GH MCMC

Prior Proposal AP(SGTRI50) AP(SGTRI23)

GH

λ N(0, 0.602) N(λ(r), 0.62) 26 22
α Γ(0.25, 0.25) Γ(0.25, 0.25/α(r)) 30 26
β N(0.0, 0.52) N(β(r), 0.32) 19 19
δ MN(0.05, 0.12) N(δ(r), 0.072) 48 46
µ N(0.1, 0.32) N(µ(r), 0.012) 21 20
a Beta(0.6, 2.4) Beta(0.2, 0.8) 32 33
b Beta(3, 1.275) Beta(1.167, 0.5) 34 36

NIG

α Γ(0.25, 0.25) Γ(0.25, 0.25/α(r)) 41 37
β N(0.0, 0.52) N(β(r), 0.32) 38 35
δ MN(0.05, 0.12) N(δ(r), 0.072) 30 27
µ N(0.1, 0.32) N(µ(r), 0.012) 29 24
a Beta(0.6, 2.4) Beta(0.2, 0.8) 33 35
b Beta(3, 1.275) Beta(1.167, 0.5) 34 37

HYP

α Γ(0.45, 0.05) Γ(0.25, 0.25/α(r)) 37 36
β N(0.0, 0.52) N(β(r), 0.32) 39 35
δ MN(0.05, 0.12) N(δ(r), 0.072) 31 28
µ N(0.1, 0.32) N(µ(r), 0.012) 30 25
a Beta(0.6, 2.4) Beta(0.2, 0.8) 33 35
b Beta(3, 1.275) Beta(1.167, 0.5) 34 37

141



We use same prior and proposal for SGTRI50 and SGTRI23. The acceptance

probabilities(AP) of the candidate parameter are not sensitive to these two sample

sets. The AP(SGTRI50) is often higher than AP(SGTRI23) under same prior and

proposal distributions for each parameter.

7.3.5 The results

Table 7.4 shows the results for the GARCH(1,1)-GH distribution. The most of the

λ samples lie within a negative interval around −1.1 for SGTRI23. We note that

the λ estimator of the GARCH-Lévy model has a relatively high standard deviation.

Table 7.5 shows the correlation matrix of the simulated samples. The driven process

parameter {λ, α, β, δ, µ} is loosely correlated to the volatility structure parameters

{a, b}. It suggests that round the proper MCMC estimator of the stochastic volatility

model parameters a and b, the estimators are robust. On the other hand, one can

see the dependence structures which are modelled by GARCH time series cannot be

captured by the driving process. If the volatility clustering effect can be modelled by

using GH processes alone, changing GARCH parameters a, b will lead to a driving

process paramization shift. λ and δ are extremely strong negatively correlated , i.e.,

around −0.96. And α is positively correlated to λ, i.e., over 0.85. It suggests that

the model can equally perform well in a large range of λ as long as choosing proper

α and δ.

Table 7.6 shows the estimation results for the GARCH(1,1)-NIG. Same patterns

applies for two sample set. The SGTRI23 estimators often have less standard de-

viations than the SGTRI50 ones. Compare with the general seven parameter GH

estimation, the SD for α is reduced because the fixed λ. We use the medium of each

posterior sample as the “best estimator”, for SGTRI23 the likelihood is 1705.98.

Table 7.7 shows the estimation results for the HYP distribution. We use the

medium of each posterior sample as the “best estimator”, for SGTRI23 the likelihood

is 1704.56.

The MCMC estimators for GARCH(1,1)-VG model and their correlation is shown

in Table 7.8. Also it shows loose correlation between the volatility model parameters

a and b and the driven VG process parameters.
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Table 7.4: Markov Chain Monte Carlo of GARCH-GH.

λ α β δ µ Gα Gβ

Share Gross Total return Jan 1950 - May 2005

Mean -1.6378 1.0710 -0.4067 1.5598 0.0273 0.1628 0.7173
SD 1.5990 0.5472 0.1275 0.5165 0.0044 0.0482 0.0945

Share Gross Total return Dec 1923 - May 2005

Mean -1.1298 1.0541 -0.2470 1.4521 0.0200 0.1934 0.7523
SD 1.8526 0.5616 0.0791 0.5497 0.0027 0.0364 0.0503

Table 7.5: Parameters Correlations for G-GH

λ α β δ µ a b

Share Gross Total Return Jan 1950 - May 2005
λ 1.0000 0.8590 0.0186 -0.9560 -0.0060 0.0317 -0.0333
α 1.0000 -0.3031 -0.7309 0.2868 -0.0472 0.0236
β 1.0000 -0.0609 -0.9179 0.1561 -0.1141
δ 1.0000 0.0641 -0.0128 0.0537
µ 1.0000 -0.1236 0.1071
a 1.0000 -0.8115
b 1.0000

Share Gross Total Return Dec 1923 - May 2005
λ 1.0000 0.8767 0.0380 -0.9632 -0.0373 0.0095 -0.0087
α 1.0000 -0.1197 -0.7798 0.0963 -0.0320 0.0162
β 1.0000 -0.0705 -0.8956 0.0406 0.0300
δ 1.0000 0.0744 0.0082 0.0115
µ 1.0000 0.0047 -0.0714
a 1.0000 -0.9167
b 1.0000
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Table 7.6: Markov Chain Monte Carlo of G-NIG

Mean SD Parameters correlations with:
α β δ µ a b

Share Gross Total Return Jan 1950 - May 2005
α 1.4391 0.2298 1.0000 -0.5779 0.7860 0.5051 -0.1219 0.0737
β -0.4054 0.1263 1.0000 -0.2079 -0.9153 0.0717 -0.0378
δ 1.1933 0.1579 1.0000 0.2367 0.0180 0.0964
µ 0.0270 0.0043 1.0000 -0.0318 0.0146
a 0.1413 0.0455 1.0000 -0.8108
b 0.7590 0.0966 1.0000

Share Gross Total Return Dec 1923 - May 2005
α 1.2368 0.1640 1.0000 -0.3573 0.8117 0.2682 -0.0924 0.0387
β -0.2409 0.0712 1.0000 -0.1012 -0.8700 -0.0074 0.0688
δ 1.1804 0.1316 1.0000 0.0913 0.0611 0.0320
µ 0.0180 0.0024 1.0000 0.0547 -0.1131
a 0.1866 0.0365 1.0000 -0.8996
b 0.7587 0.0529 1.0000

Table 7.9 lists the logarithm of margin likelihood of the GARCH-GH models we

have discussed.
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Table 7.7: Markov Chain Monte Carlo of G-HYP

Mean SD Parameters correlations with:
α β δ µ a b

Share Gross Total Return Jan 1950 - May 2005
α 1.8810 0.1778 1.0000 -0.5604 0.7904 0.4625 -0.1772 0.0773
β -0.3984 0.1153 1.0000 -0.2485 -0.9011 0.1070 -0.0748
δ 0.6833 0.1959 1.0000 0.2554 -0.0251 0.0951
µ 0.0269 0.0040 1.0000 -0.0620 0.0513
a 0.1483 0.0465 1.0000 -0.8051
b 0.7475 0.0966 1.0000

Share Gross Total Return Dec 1923 - May 2005
α 1.7210 0.1394 1.0000 -0.4341 0.8178 0.3582 -0.1659 0.0471
β -0.2504 0.0783 1.0000 -0.1873 -0.8914 0.0214 0.0539
δ 0.6414 0.1748 1.0000 0.1752 -0.0277 0.0556
µ 0.0182 0.0026 1.0000 0.0212 -0.0991
a 0.1839 0.0346 1.0000 -0.8881
b 0.7621 0.0498 1.0000

Table 7.8: Markov Chain Monte Carlo of GARCH-VG.

Mean SD Parameters correlations with:
µ θ ν a b

Share Gross Total Return Jan 1950 - May 2005
µ 0.0247 0.0036 1.0000 -0.9014 -0.4013 -0.0023 0.0490
θ -0.3000 0.0813 1.0000 0.4450 -0.0021 0.0618
ν 0.5183 0.0984 1.0000 -0.0529 -0.0639
a 0.1852 0.0481 1.0000 -0.8845
b 0.6964 0.0921 1.0000

Share Gross Total Return Dec 1923 - May 2005
µ 0.0190 0.0024 1.0000 -0.8784 -0.3489 0.0398 -0.0299
θ -0.2088 0.0632 1.0000 0.3692 -0.0239 -0.0012
ν 0.5421 0.0922 1.0000 -0.0552 -0.0323
a 0.1763 0.0336 1.0000 -0.9159
b 0.7544 0.0542 1.0000
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Table 7.9: Logarithm of marginal likelihood for GH, NIG, HYP, VG, Student-t and
GBM.

Model Log(MLH) Log(MLH)
Jan 1950 - May 2005 Jan 1923 - May 2005

VG 1093.96 1696.67
HYP 1094.46 1696.89
NIG 1095.16 1697.26
GH 1095.10 1697.00

7.4 Multi-Variable model

In this section, we look at the multi-variable models. The Wilkie model is widely

used by actuaries in UK. It is designed in order to capture the long term features

of the assets returns. The Wilkie model is defined on annual intervals. To the

purpose of the risk management for the UWP which could be based on monthly or

more frequent time intervals, for example, the bonus declaration and hedging, the

“stochastic bridges” are built in order to extend the model to a continuous model

between the “gaps” of the each year.

Before constructing the stochastic bridges for the Wilkie model, we need to first

calibrate the yearly Wilkie model to the full series of the data which is SGTRI23.

7.4.1 Update the Wilkie Model paramizations

The parameters given in Wilkie (1995) is fitted to the data from 1923 to 1995. Here

we adopt the same notation system described in Wilkie (1995). We upgrade the

parameters and fit the first three indices which are the inflation rate I(t), the share

yield Y (t) and the dividend D(t). This is because the Wilkie model has a cascade

structure and in order to get the share total investment return rate, which is

r(t,∆t) =
St+∆t +

∑
s∈(t,t+∆t]D(s)

St

, (7.15)

requires the models for the inflation rate, the share yield and the dividend. Table

7.10 gives the upgraded maximum likelihood estimators of the Wilkie model up

to the 2004 data. We use the same estimation method and boundary conditions
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as described in Wilkie (1995). Except for the dividend process D(t), the original

Wilkie model used a long series of data before 1922 to run in the DM(t) series. We

were not able to get those data and we estimate starting value DM(0) as an extra

parameter to maximise the likelihood. Table 7.10 shows the estimation results. First

the suggest parameter values given in Wilkie (1995) are listed in column “Wilkie95”.

Then we re-calibrate the model to 1923-1994 data and the estimators are given in

column “1923-1994”. The 1923-1994 results are very close to the results in Wilkie

(1995). The last column “1923-2004” shows the parameter estimators for 1923-2004

data set.

Table 7.10: Maximum likelihood estimates of Wilkie model.

Parameter Wilkie95 1923-1994 1923-2004

Retail Price Index
QA 0.58 0.5773 0.5791
QMU 0.047 0.0473 0.0447
QSD 0.0425 0.0425 0.0403

Share Yield
YW 1.8 1.7940 1.6782
YA 0.55 0.5492 0.6235
YMU 0.0375 0.0377 0.0367
YSD 0.155 0.1551 0.1542

Dividend
DW 0.58 0.5821 0.5797
DD 0.13 0.1370 0.1577
DMU 0.016 0.01569 0.0133
DY -0.175 -0.1765 -0.1516
DB 0.57 0.5721 0.6110
DSD 0.07 0.0671 0.0653

7.4.2 Wilkie Model with Lévy bridge

There is no analogue in continuous time to cascade time series structure of the

Wilkie model. The Brownian bridges of the Wilkie model is discussed in Wilkie

et al. (2003) and Wilkie et al. (2005). We construct the stochastic bridge using
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Lévy processes for the Wilkie model.

Suppose that we have simulated values of the process Xt at time ti and tk. The

increment Xtk − Xti is random variable with distribution F , density f . We are

interested in interpolate the value of Xt at any time t between time ti and tk with

conditional distribution of the increment Xt −Xti , given the values of Xtk and Xti .

Set time scale to be yearly and starting from July of each year, Yt is the total

share return process simulated by the Wilkie model at each integer period. Assume

Xt is the total share log-return process. Continuous stochastic bridges driven by

Lévy processes can be built between each integer time step with the condition that

Xt = Yt, when t = 1, 2, 3 · · · ;

and Xt is continuous.

One of the method to interpolate the Xt is to combine two stochastic processes

by adjusting the linear drift term. For ti ≤ t ≤ tj, suppose Zt is some continuous

Lévy process and we have simulated the value of Yt at time ti and tj and Zt between

time period (ti, tj). The value of Xt at time ti is given by

Xti = Yti .

We then compare the increments of these two processes, calculate the difference, h:

h = (Ytj − Yti)− (Ztj − Zti); (7.16)

and calculate the drift adjustment, µti :

µti =
h

tj − ti
. (7.17)

We then add the drift adjustment µti and increment of Zt to the Xt,

Xt = Xti + Zt − Zti + µti(t− ti), ti ≤ t ≤ tj.. (7.18)

Then we have Xt is locally a Lévy process between time period (ti, tj) with Xti = Yti

and Xtj = Ytj .

Re-calibrate the model

The parameters of the bridging-Lévy processes need to be re-calibrated to the same

data base that used to estimate the Wilkie model. x = x0, x2, · · · , x984 are the
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sample observations of the monthly share total return index starting in June 1922

and include the data up to June 2004, gives 985 values. x0 is the total share return

index at the end of and x984 is the index at the end of June 2004. Note that

this sample set is different from the SGTRI23 data which the monthly total share

returns lie in the time horizon from December 1923 to April 2005. There are 82

yearly log-return rates

yi = log

(
x12i

x12(i−1)

)
, i = 1, 2, ..., 82. (7.19)

The residuals of the linear interpolation in i− th year are

z̃i,j = log

(
x12(i−1)+j

x12(i−1)+j−1

)
− yi

12
, j = 1, 2, ..., 12. (7.20)

Let k = 12(i− 1) + j, we define the series of the residuals

zk = z̃i,j. (7.21)

The statistics of the monthly returns residuals z are shown in Table 7.11. The

skewness for SGTRI23 is 0.18443 and kurtosis is 11.65396.

Table 7.11: Statistics for log-return of the SGTRI
Statistics Mathematical xk

Form 06/22-06/04

Mean E[Y ] 0.00000

Standard Deviation m
(1/2)
2 0.04645

Skewness m3/m
3/2
2 0.18443

Kurtosis m4/m
2
2 11.65396

Maximum Ymax 0.40652
Minimum Ymin -0.29405

Table 7.12 shows the estimation result for the variance gamma, student t and

Gaussian distributions. The estimation of µ and θ in VG case is close to zero. Hence

we can simplify the model by setting µ = 0 and θ = 0, we show the estimation of

the σ and ν parameters in VG(s) case in Table 7.12. The log-likelihood for the

VG case is 1707.96 and 1706.92 for the VG(s) case. With simple calculation, the

AIC and BIC for VG(s) is higher than the VG case. The 2-parameter VG(s) case

149



is acceptable in the likelihood sense. The student t performs better than VG in

the residual fitting. This may because the conditional residual is approximately

symmetric and Student t is more flexible in modelling the tail behaviours. Gaussian

estimation gives the lowest log-likelihood.

Table 7.12: Maximum likelihood estimates of conditional monthly residuals using
variance gamma (VG), simplified variance gamma (VG(s)), student t and Gaussian.

µ σ ν θ LogLH

Share Gross Total return Dec 1923 - May 2005
VG 0.00281 0.04487 0.80229 -0.00288 1707.96
VG(s) 0 0.04497 0.81061 0 1706.92
Student t 0.00108 0.03202 3.72265 1711.55
Gaussian 0.00000 0.04645 1624.51

The estimation results for generalised hyperbolic, normal inverse Gaussian and

distributions are shown in Table 7.13. Compare the result with those in Table 3.1,

one can see that parameters µ and β in all three cases are relatively small. The

distributions could be simplified by letting µ = 0 and β = 0 and the estimation of

the parameters are given in GH(s), NIG(s) and HYP(s) cases in Table 7.13.

Table 7.13: Maximum likelihood estimates of generalised hyperbolic , normal inverse
Gaussian (λ = −1/2) ,hyperbolic (λ = 1) distributions and their simplified version
by making µ = 0 and β = 0

λ α β δ µ LogLH

basic
-1.58387 7.31710 -1.64105 0.05709 0.00347 1712.49
NIG 19.13362 -1.75969 0.03958 0.00364 1711.82
HYP 33.34054 -1.80226 0.01287 0.00360 1709.05

β = 0 and µ = 0
-1.72630 4.92131 0 0.05960 0 1711.20
NIG 19.07894 0 0.03972 0 1710.36
HYP 33.15751 0 0.01256 0 1707.70
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The “linear drift adjustment” method we discussed above is straightforward, easy

to simulate and re-calibrate. We can also add more complex time series structures

and conditional autocorrelations to the bridge processes. The volatility of the bridge

processes can be stochastic such as GARCH(1,1)-m. Time is discretised into 12 time

steps in a year, t = t0, t1, ..., t12 = t+1 up to the time t+1. The monthly log-return

process Xt is

Xti = µt + σt(Lti − Lti−1
), i = 1, 2, ..., 12, (7.22)

where Lt can be any suitable driving Lévy processes, and σt is the GARCH(1,1)-m

volatility time series given in Eqn 7.4. Let µt to be the yearly linear drift adjustment

simulated by the Wilkie model, we show result of parameter estimation in Table 7.14

and Table 7.15.

Table 7.14: Maximum likelihood estimates of conditional monthly residuals using
variance gamma (GVG), simplified variance gamma (GVG(s)), GARCH student t
and Gaussian.

µ ν θ a b LogLH

VG 0.0011 0.3739 -0.0495 0.2040 0.7609 1783.20
VG(s) 0.3724 0 0.2046 0.7604 1782.85
Student t -0.0007 9.8623 0.2514 0.7299 1782.29
Gaussian -0.0012 0.2087 0.7548 1760.36
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Table 7.15: Maximum likelihood estimates of generalised hyperbolic , normal inverse
Gaussian (λ = −1/2) ,hyperbolic (λ = 1) distributions and their simplified version
by making µ = 0 and β = 0

λ α β δ µ a b LogLH

-3.47455 0.059314 -0.0593 2.3461 0.0010 0.2147 0.7594 1787.12
NIG 1.3619 -0.0521 1.5175 0.0011 0.2181 0.7551 1785.40
HYP 1.7719 -0.0495 1.0467 0.0011 0.2197 0.7533 1784.91

β = 0 and µ = 0
-3.42085 0.0000 0 2.3291 0 0.2154 0.7586 1785.84
NIG 1.3671 0 1.5276 0 0.2192 0.7541 1785.00
HYP 1.7739 0 1.0555 0 0.2206 0.7525 1784.54

Multi-variable model by SDE

Other method to model the multi-variables long term is the continuous investment

model driven by Lévy processes due to Chan (1998). We introduce this model here

as an alternative of the multi-variable time series model such as the Wilkie model.

Calibrating and applying the Lévy SDE models are out of the scope of this thesis,

we point it as a further research topic.

Let Z1, Z2, Z3 and Z4 be four independent Lévy processes. The model has a

cascade structure. We start by modelling the consumer price indices:

Retail prices index and inflation Let Qt = exp{Pt} be retail prices index, where

the process P takes form:

dPt = Rtdt

dRt = −a1Rtdt+ φ(t)dt+ σ1dZ1(t) (7.23)

where Rt is the force of inflation, a1 > 0, σ1 ∈ R and φ is a deterministic positive

periodic function with period h > 0. Solving the stochastic differential equation

(7.23), we have the explicit formula for Rt:

Rt = e−a1tR0 +

∫ t

0

e−a1(t−s))φ(s)ds+

∫ t

0

σ1e
−a1(t−s)dZ1(s).
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Dividend yield Let Yt denote the share dividend yield.

Yt = Y∗ exp{Xt + ζRt}
dXt = −a2Xtdt+ b1dt+ σ2dZ2(t) (7.24)

where Y∗ = Y0e
−(X0+ζR0), a2 > 0, σ2 ∈ R and we have explicit solution for

equation(7.24)

Xt = X0e
−a2t + b1

(
1− e−a2t

a2

)
+

∫ t

0

σ2e
−a2(t−s)dZ2(s).

Share dividend Let Dt be the share dividends.

d(logDt) =

(
b2 + βλ

∫ t

0

e−λsRt−sds+ γRt

)
dt+ η2dZ2(t) + η3dZ3(t)(7.25)

where b2, β, λ, η2, η3 ∈ R. Interchanging the order of integration one obtains:

λ

∫ t

0

∫ s

0

e−λuRs−ududs =

∫ t

0

(1− e−λ(t−u))Rudu

therefore from 7.25:

Dt = D∗ exp

{
η2Z2(t) + η3Z3(t) + β

∫ t

0

(1− e−λ(t−u))Rudu+ γ

∫ t

0

Rudu+ b2t

}

where D∗ is a constant determined by D0 and R0 in a similar manner to Y∗.

Share price The share price St in this model is related to the dividends and the

yield by St = Dt/Yt. Applying Itô’s lemma one gets:

dSt

dDt

=
Yt −Dt · dYt/dDt

Y 2
t

then,

dSt =
dDt

Yt

− dYt ·Dt

Y 2
t

=
d(logDt) ·Dt

Yt

− dYt ·Dt

Y 2
t

= St · d(logDt)− St · d(logYt)

= St ·
{(

b2 + βλ

∫ t

0

e−λsRt−sds+ γRt

)
dt+ η2dZ2(t) + η3dZ3(t)− dXt − ζdRt

}
.

This is consistent with a geometric Lévy model of share prices. We obtain,

dSt = ctStdt+ St(δ1dZ1(t) + δ2dZ2(t) + δ3dZ3(t))
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where

ct = b1 + b2 + βλ

∫ t

0

e−λsRt−sds+ γRt + a1ζRt + a2Xt − ζφ(t),

δ1 = ζσ1, δ2 = η2 − σ2, δ3 = η3

Consol yield The yield on consols Ct:

Ct = ξρ

∫ t

0

e−ρsRt−sds+ C∗eVt ,

dVt = −a4Vtdt+ σ4dZ4(t), V0 = ν.

The explicit form for Vt can be solved in a similar way to Rt.

7.5 Goodness of fit

7.5.1 Devolatilized residuals

Ideally, one would expect the devolatilized residuals (∆Lt) defined in Equation 7.3

to be independent, identically distributed random variables. Besides, we would

like to know whether these devolatilized residuals are normally distributed. If the

volatilized residuals are normally distributed, it is not necessary to use Lévy pro-

cesses with non-Gaussian margin as driven processes.

Thus, we test the devolatilized residuals in order to observe:

• whether using GARCH volatility models reduce the non-linear autocorrela-

tions substantially for Devolatilized residuals; and

• whether using GARCH volatility models eliminate the non-Gaussian property

in residuals.

Given monthly log-return rate x1, x2, ...xn and the parameter estimations of the

model, we calculate the devolatilized residuals as

z̃i =
xi − µ̃

σ̃t

, (7.26)

where σ̃t can be calculated recursively by Equation 7.4 corresponding to parameters

for each model with different driving processes in this chapter.

In Figure 7.2, we plot the sample autocorrelation functions for squared de-

volatilized residuals corresponding to:
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Figure 7.2: Sample autocorrelation function for squared devolatilized residuals of
SGTRI23 monthly log returns and QQ plots
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GARCH(1,1)(a) GARCH(1,1)-m with a = 0.1296 and b = 0.8360, this is the case

for SGTRI23 data under Gaussian innovations assumption.

GARCH(1,1)(b) GARCH(1,1)-m with a = 0.1818 and b = 0.7768, these are

the estimators for GH driven case, we can see from Table 7.13 that all non-

Gaussian GARCH models estimators are similar.

The dotted lines show asymptotic 95% confidence bounds under the null hypoth-

esis that the autocorrelation is zero. One can see from Figure 7.2 that both of the

GARCH volatility models reduce the autocorrelation of squared residuals.

The two plots in right column display the QQ plots of the empirical quantiles of

devolatilized residuals against quantiles of standard normal distribution. Both of the

plots show inverse “S” shape of the quantiles curves which suggest the devolatilized

residual distributions have heavier tails than Gaussian distribution.

The results of Jarque-Bera test for GARCH(1,1)(a) and GARCH(1,1)(b) de-

volatilized residuals, SGTRI and Bridge residuals are shown in Table 7.16. The

JB statistics for GARCH(1,1)(a) and GARCH(1,1)(b) are 437.83 and 424.95, the

p-values are close to zero and the Gaussian hypothesis are rejected for both cases.

The distribution of Bridge residuals has similar JB statistic as the SGTRI23. Non-

Gaussianity has been found in all these four samples.

Table 7.16: Jarque-Bera statistics for GARCH(1,1)(a) and GARCH(1,1)(b) de-
volatilized residuals, SGTRI and Bridge residuals

Sample GARCH(1,1)(a) GARCH(1,1)(b) SGTRI23 Bridge residuals

JB statistic 437.83 424.9 3063.78 3076.11

The BDS test given in Brock et al. (1987) is one of the most widely used tests

to detect non-linear structure in time series. For parameters m ∈ N and ε > 0, the

BDS statistic is defined as

Vm,T (ε) =
√
T
Cm,T (ε)− C1,T (ε)m

σm,T (ε)
, (7.27)

and

Cm,T (ε) =
∑

1≤t<s<Tm

Is,t(ε)
2

Tm(Tm − 1)
, (7.28)
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where Tm = T −m + 1 and Is,t(ε) = I[−ε,ε](maxi∈{0,...,m−1}|Xt+i −Xs+i|). σm,T (ε) is

a consistent estimator of the asymptotic standard deviation Cm,T (ε)− C1,T (ε)m

KT (ε) =
∑

1≤t<s<r≤Tm

2(Iε(t, s)Iε(s, r) + Iε(t, r)Iε(r, s) + Iε(s, t)Iε(t, r))
Tm(Tm − 1)(Tm − 2)

, (7.29)

σ2
m,T (ε) = 4(KT (ε)m + 2

m−1∑
j=1

KT (ε)m−jC1,T (ε)2j

+(m− 1)2C1,T (ε)2m −m2KT (ε)C1,T (ε)2m−2). (7.30)

Under the null hypothesis that {Xt}t∈N is i.i.d., the BDS statistic Vm,T (ε) →
N(0, 1) for any ε > 0 and m = 2, 3, 4, .... We use m = 5 and ε = 2

√
Xt and show

the results of the test in Table 7.17.

Table 7.17: DBS test on independent returns and devolatilized residuals
Sample BDS statistic BDS p-value

SGTRI23 0.7971 42.54%
GARCH(1,1)(a) 0.1563 87.58%
GARCH(1,1)(b) 0.0516 95.88%
Bridge residuals 0.8877 37.47%

Both GARCH(1,1)(a) and GARCH(1,1)(b) models reduce the BDS statistics for

the residuals in which the GARCH(1,1)(b) case gives the highest p-value. This is a

strong evidence show that the devolatilized residuals under GARCH(1,1)(b) model

are i.i.d. .

We study the moment statistics of the driving processes. For each process we sim-

ulate the monthly returns and calculate numerically their mean, variance, skewness

and kurtosis. The results are shown in Table 7.18.

The empirical kurtosis of the devolatilized residuals is 5.9239 for GARCH(1,1)(a)

and 5.8874 for GARCH(1,1)(b) which are higher than for the Gaussian distributions.

Among the de-volatilized return processes simulated by various Lévy processes, GH,

NIG and VG seem to perform better than the Gaussian and t in modelling the

kurtosis.
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Table 7.18: Statistics for simulated driving processes
Statistics Mathematical Gaussian t VG NIG GH

Form

Mean E[Y ] 0.0000 0.0000 -0.2069 -0.2000 -0.2008
Variance m2 1.0000 1.0025 1.0003 1.0682 1.0327

Skewness m3/m
3/2
2 0 0 -0.4037 -0.4073 -0.4126

Kurtosis m4/m
2
2 3.0000 N/A 4.9053 5.0129 5.2107

7.5.2 Backtesting of Riskmeasures

We have used GARCH volatility models to get approximately i.i.d. devolatilized

returns. There are 976 observations for SGTRI23 data xi. We use the most recent

500 observations to backtest VaR. At time t, where t is from 476 to 975, at time t+1

the V aRα(Xt+1|Ft) under different α for log-returns can be estimated by simulating

Xt+1 using the model with parameters calibrated to data in Ft at time t. Thus

initial model parameters are estimated using first 476 observations. The model is

upgraded by re-calibrating the parameter vector θ at time t = 100, t = 200, t = 300

and t = 400.

The number of observations that xt+1 > V aRα(Xt+1|Ft) during those N = 500

tests is denoted by n. The actual frequency is n/N , while the expected probability,

p, is 1 − α%. We use a likelihood ratio statistic to test the riskmeasures. The null

hypothesis is that the expected probability is equal to p. Under the null hypothesis,

n is sample from Binomial distribution with size N and probability p, the likelihood

ratio statistic is given by

LR = 2[(N−n) log(1−n/N)+n log(n/N)]−2[(N−n) log(1−p)+n log(p)], (7.31)

is asymptotically χ2
1 distributed.

The statistics of V aR95 and V aR99 backtesting are shown in Table 7.19. For

α = 95, the p-values are acceptable for all GARCH models. However, there is

strong evidence to reject the null hypothesis at for GARCH-GBM and GARCH-t

models at level α = 99.
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Table 7.19: VaR violation backtesting for SGTRI
α = 95 α = 99
n/N LR p-value n/N LR p-value

GBM 0.058 0.6421 42.29% 0.028 10.9940 0.09%
ST 0.054 0.1643 68.52% 0.022 5.4191 1.99%
VG 0.048 0.0426 83.64% 0.018 2.6126 10.60%
HYP 0.044 0.3942 53.00% 0.016 1.5383 21.49%
NIG 0.042 0.7107 39.91% 0.014 0.7187 39.66%

7.6 Risk Measures for With-Profits

With the Lévy driven stochastic volatility models and stochastic bridges fitted to

total return data, we have been able to simulate the distributions of the insurer’s

losses using more realistic asset models incoperate the volatility clustering.

We start by re-investigating risk measures for model office M0, all assumptions

are the same as given in Chapter 4, besides seven new asset models are applied:

G-GBM geometric Brownian motion with GARCH(1,1)-m volatility;

G-VG variance Gamma with GARCH(1,1)-m volatility;

G-NIG normal inverse Gaussian with GARCH(1,1)-m volatility;

HG-GBM hyper geometric Brownian motion with GARCH(1,1)-m volatility;

HG-VG hyper variance Gamma with GARCH(1,1)-m volatility;

HG-NIG hyper normal inverse Gaussian with GARCH(1,1)-m volatility; and

Wilkie Wilkie model.

Risk measures for M0 are shown in Table 7.20.

Recall that the riskmeasures for i.i.d. increment models are listed in Table 4.2.

All the quantile measures include V aR95, V aR99, CTE95 and CTE99 increase under

the GARCH volatility models. Among these models, G-NIG and HG-NIG have some

extremely high risk measures. As we pointed out before, the M0 is a very “risky”
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Table 7.20: Risk measures for G-GBM; G-VG; G-NIG; HG-GBM; HG-VG; HG-NIG
and Wilkie model.

POSF MOL V aR95 V aR99 CTE95 CTE99

G-GBM 0.0767 25.4780 12.7016 50.1521 35.9530 68.4691
G-VG 0.0836 41.0957 25.4993 83.5768 61.0030 108.7327
G-NIG 0.1287 42.1246 45.1424 95.9892 76.4579 118.8470
HG-GBM 0.1011 31.6413 32.2367 67.2835 51.6422 89.4564
HG-VG 0.1203 36.8878 36.7702 83.9015 65.5224 104.2108
HG-NIG 0.1647 51.2319 65.4562 112.8109 106.3019 184.2572
Wilkie 0.0763 19.3344 10.0181 38.1612 27.0326 49.1271

Table 7.21: Mean, standard deviation and kurtosis for (log) maturity asset shares
and guarantees.

Asset share Guarantee
MEAN SD L-Kurtosis MEAN SD L-Kurtosis

G-GBM 294.9001 182.6894 4.3011 142.0154 25.5415 5.9470
G-VG 278.3153 145.2343 10.9132 139.9257 21.7008 5.2149
G-NIG 273.5725 152.0734 12.1396 139.1113 20.4003 6.5303
HG-GBM 292.1378 201.3235 4.2561 141.9981 27.1684 4.1758
HG-VG 278.0892 155.5319 9.3219 139.1204 20.6450 4.9072
HG-NIG 268.4721 163.3400 15.9209 139.9457 51.9850 9.6911
Wilkie 274.4747 127.6874 3.0321 148.1267 20.5009 3.0379
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contract and there is no risk management operations either on the guarantee by

adjusting bonus mechanism or on the asset by controlling the EBR of UWP fund.

Table 7.21 shows the mean, standard deviation of the simulated maturity asset

shares and guarantees. And we also list the kurtosis of the logarithm of the simulated

maturity asset shares and guarantees. The plots of sample kurtosis against the first

n simulation results with respect to losses under different asset models are shown in

Figure 7.3. If the kurtosis of the maturity asset shares and guarantees does not exist,

the sample kurtosis is an increasing function of the sample size n and goes to infinity

eventually. The results show the kurtosis for logarithm of maturity asset shares

converge and exist under all Lévy driven GARCH models. As one may expected, the

kurtosis of log maturity asset shares and log guarantees under Gaussian innovation

Wilkie model are close to 3. The L-Kurtosis of the maturity asset shares for G-GBM

and HG-GBM are both greater than 4 which shows the distributions of the maturity

asset share has heavier tails than the Gaussian distribution. The kurtosis of the log

maturity asset shares are relatively high under GARCH-VG, GARCH-NIG, Hyper-

GARCH-VG and Hyper-GARCH-NIG models.

We now pack in some risk management operations. First, a bonus earning power

mechanism is used as we did in model office M2. We also allow more frequent bonus

declaration on a monthly basis (M5). The Wilkie model is used with six sub-classes

of the stochastic bridges:

Wilkie-B Wilkie model with Brownian bridge;

Wilkie-V Wilkie model with variance-Gamma bridge;

Wilkie-N Wilkie model with normal inverse Gaussian bridge;

Wilkie-GB Wilkie model with Brownian bridge with GARCH(1,1)-m volatility;

Wilkie-GV Wilkie model with variance-Gamma bridge with GARCH(1,1)-m

volatility; and

Wilkie-GN Wilkie model with normal inverse Gaussian bridge with GARCH(1,1)-

m volatility.
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Figure 7.3: Kurtosis for logarithm of maturity asset shares

162



The simulated risk measures are shown in Table 7.22. Recall that in M2 we assume

a 25% terminal bonus cushion and average futrue return rate as 6%.

Table 7.22: Risk measures for G-GBM; G-VG; G-NIG; HG-GBM; HG-VG; HG-NIG
and Wilkie model.

POSF MOL V aR95 V aR99 CTE95 CTE99

Bonus earning power, yearly
G-GBM 0.0787 24.3191 11.8804 47.6860 35.3073 72.2112
G-VG 0.0918 37.7959 25.3485 80.2824 60.0187 109.2451
G-NIG 0.1330 38.1069 40.4472 88.6196 71.8961 116.1389
HG-GBM 0.0800 23.7436 12.4228 46.9096 34.7379 70.8738
HG-VG 0.1227 33.9034 33.2135 79.1361 62.1692 104.1818
HG-NIG 0.1655 45.4986 59.8052 103.2285 92.3338 141.6455
Wilkie 0.1108 19.7567 17.8407 43.9315 34.2220 59.4083

Bonus earning power, monthly
G-GBM 0.0674 21.4301 7.5805 40.5823 28.2420 59.4348
G-VG 0.0743 35.2697 15.8715 72.6945 49.2361 95.2042
G-NIG 0.1242 35.7580 36.0803 84.8165 65.6626 107.6502
HG-GBM 0.0683 22.7242 7.9405 42.6785 29.9432 62.6459
HG-VG 0.1076 33.6019 29.4309 75.9391 57.1875 94.3519
HG-NIG 0.1539 42.7059 54.4958 97.7897 83.8436 126.2656
Wilkie-B 0.0710 16.8268 7.7323 32.0212 22.6238 42.2788
Wilkie-V 0.0711 16.8656 8.0538 31.6589 22.5982 42.6773
Wilkie-N 0.0711 17.0401 7.7932 31.8656 22.7662 42.9232
Wilkie-GB 0.0737 17.9014 8.9185 33.5571 24.7972 48.5407
Wilkie-GV 0.0750 17.5209 8.6978 32.5993 24.9610 49.9339
Wilkie-GN 0.0749 17.3104 9.3666 32.5247 23.8628 44.0139

One can see the risk measures for model office M2 under GARCH type models

follow a similar pattern to the M0 in Table 7.20.

There are some differences in the patterns of risk measures under the Wilkie

model in M2 compares to the patterns of risk measures under the Wilkie model

in M0. The POSF, VaRs and CTEs for M2 are much higher than for M0. It is

because the mismatch of internal asset model used to calculate the bonuses and real

world model. In M2, we assume the future investment returns for the asset share

are i.i.d. with mean r. However, the yearly log-returns of the shares in the Wilkie

model are negatively autocorrelated, so-called “mean-reverting” property. In this

case the i.i.d. internal asset model fail to give reasonable projected asset share in
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Table 7.23: Risk measures for G-GBM; G-VG; G-NIG; HG-GBM; HG-VG; HG-NIG
and Wilkie model.

Bonus earning power, yearly, M2
G-GBM 294.9001 182.6894 212.4313 124.3549
G-VG 278.5132 145.6741 203.4719 95.0584
G-NIG 273.2639 152.8793 202.4320 92.9849
HG-GBM 292.0432 201.4234 213.2702 138.6234
HG-VG 278.0892 155.5319 204.3588 96.2887
HG-NIG 268.1146 161.4850 202.3264 101.6761
Wilkie 274.2235 127.4662 202.4383 80.7026

Bonus earning power, monthly, M5
G-GBM 294.9001 182.6894 227.8965 132.3585
G-VG 278.5132 145.6741 220.1097 107.1806
G-NIG 273.2639 146.8793 215.0894 100.5625
HG-GBM 292.0432 201.4234 225.9166 142.5266
HG-VG 278.0892 155.5319 217.7145 108.1980
HG-NIG 268.1146 161.4850 213.7352 109.3955
Wilkie-B 273.9812 126.9117 214.0767 88.9247
Wilkie-V 273.9812 126.9117 213.9256 88.7298
Wilkie-N 273.9812 126.9117 214.2444 89.2226
Wilkie-GB 273.9812 126.9117 214.7112 89.6580
Wilkie-GV 273.9812 126.9117 214.4406 89.7539
Wilkie-GN 273.9812 126.9117 214.6166 89.6432
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the bonus earning power mechanism. For example, in simulation under the Wilkie

models, the returns which are high in early years in the lifetime of the contract have

higher probability to decrease and goes back to long term mean in the remaining of

the contract duration than under i.i.d. models. Also the 6% average of future asset

share return assumption seems to be too high for the Wilkie model.

The risk measures reduce when increase the frequency of declaring bonuses from

annual BEP to monthly. The risk measures under the Wilkie models with different

bridge processes are very close, even when a GARCH volatility model is added in

the bridge. On the other hand, declaring bonuses on monthly basis in M5 for the

Wilkie model with bridges reduce its riskmeasures sharply.

We now consider hedging based investment strategy M9 under more realistic asset

models described in this chapter. The simulated risk measures are shown in Table

7.24. The case“(i)” for each asset model, for example “G-GBM(i)”, represents the

risk measures for insurer’s loss without free asset at maturity and the case “(ii)”

represents the risk measures for insurer’s loss with free asset.

Table 7.24: Risk measures for insurer’s payout at maturity, hedging based invest-
ment strategy, annually re-arrange the portfolio, simulated with GARCH volatility
models and Wilkie model.

POSF MOL V aR95 V aR99 CTE95 CTE99 CTE99.5
G-GBM(i) 0.0503 13.0248 0.0425 17.9418 13.4201 38.9447 55.3223
G-GBM(ii) 0.0089 17.8199 0 0 3.1720 15.8597 31.5897
G-VG(i) 0.0628 16.5050 3.8977 29.7225 20.5188 51.3779 66.0527
G-VG(ii) 0.0190 16.7475 0 10.7885 6.3641 28.3512 41.2843
G-NIG(i) 0.0901 16.0545 9.2262 36.2751 25.8474 55.8789 70.0212
G-NIG(ii) 0.0311 14.6855 0 16.6647 9.1344 34.3354 47.3010
HG-GBM(i) 0.0674 12.4924 3.3586 20.4865 17.1218 47.5174 70.0250
HG-GBM(ii) 0.0127 17.6832 0 1.7028 4.4915 26.0614 46.3907
HG-VG(i) 0.0774 14.1180 6.0317 29.1795 20.4336 47.0667 60.6602
HG-VG(ii) 0.0220 13.3443 0 9.4002 5.8715 25.8197 37.7305
HG-NIG(i) 0.1191 17.0236 13.6224 45.1037 32.5221 67.4909 85.0819
HG-NIG(ii) 0.0434 17.0334 0 25.1909 14.7850 46.5871 61.8081
Wilkie(i) 0.0878 10.6353 6.5211 21.7028 16.4093 33.0361 41.0791
Wilkie(ii) 0.0095 9.3136 0 0 1.7696 8.8479 16.4621

Within each group of models, the pattern of different driving processes are similar

to what we have observed in the original M9 case in Chapter 6. The models with

165



NIG driving processes have highest risk measures in GARCH and hyper-GARCH

models. The Gaussian driven models often under estimate the risk measures.

Compare to the case M2, the hedging based investment strategy brings down all

the risk measures of the insurer’s payout. In G-GBM, G-VG, HG-GBM and HG-

NIG, the (ii) case have close MOL or even larger MOL than the (i) case. This is

because with the hedging strategies, there is large amount of small negative values

of losses, we called hedging errors. The free assets in M9 are assumed to be invested

in same EBR as the asset shares. Thus they can cover these small losses but have

less effect on reducing the large value of losses.

As we have discussed in Chapter 6, the cutting of risk measures in M9 is caused

by extra hidden charges in the policy. Policyholders pay a proportion of their asset

shares as the costs of hedging.

7.7 Concluding Remarks

We tried to model the volatility clustering in the SGTRI data by using GARCH(1,1)-

m volatility models in this Chapter. Both MLE and MCMC estimation of the models

indicate improvement of the likelihood functions. We consider the Lévy bridges in

the Wilkie models. The form of bridge is still very simple while we adjust the linear

drift within each year for the monthly returns. Some more advanced method could

be used to improve the bridges, for example, we can assert the periodic economic

cycle within each year by using non-linear drift term.

The GARCH(1,1) model in Equation 7.4 is a discrete time series on monthly

basis. It works fine in simulation of the monthly returns and volatilities until we

change the time scales, say, for daily returns and daily volatilities. In this case

the continuous stochastic volatility model such as the OU processes introduced in

Schoutens (2003) may be much easier to apply. Although there are literatures

considered the continuous GARCH model, for instance, Drost and Werker (1996),

most of the work is based on strong mathematical assumptions and hardly applied

in risk management.
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Model selection

One can see in case M0, M2, M5 and M9, the risk measures under HG-NIG model

are often in the highest levels compare to the others. It is because the hyper-models

with the Bayesian estimations add in margin of so-called estimation risk. Recall that

the MCMC estimations of the GARCH-GH models have high standard deviations

(see Table 7.4). And the GH processes, include it’s subclasses have flat log-likelihood

functions. This leads to high estimation risks incorporate in the hyper-GARCH-GH

models. We suggest that sensitivity tests of the outcomes, in this situation, be

constructed to check the varying of risk measures or other statistics by changing of

the model parameters. Since the model selection is out of the scope of this thesis,

it could be one of further research topics.

Student-t

One may note that we only fit the student-t distribution to the historical data in

this thesis but haven’t applied it in modelling the asset returns in Monte Carlo

simulation. As we have discussed in Chapter 2 that student t distribution have

heavy tails (power function) on both sides. The existence of moments which are

higher than first order depends on the estimated value of shape parameter ν.

The risk measures are statistics of the random samples generated by Monte Carlo

simulation. We should always ensure that the sample statistics do indeed converge

to the theoretical quantities we are supposed to estimate. The Chebyshev’s Inequal-

ity and the Weak Law of Large Numbers require variance of the random variable

to be finite. And most statistical estimation procedures and hypothesis tests are

based upon the central limit theorem which (in some cases) requires the high-order

moments of the random variable to be well defined. The results based on heavy-

tailed student-t processes are not as reliable as the semi-heavy tailed distributions

especially when combined with non-linear autocorrelation.
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Beyond the models

The Lévy models discussed in this thesis are based on historical data and statistical

methods. We look at the statistical properties of the historical sample paths of the

assets and construct stochastic models which can capture these properties. Then the

information in historical data is distracted by the parameter estimation procedure.

On the other hand, however, the historical data represent only the information from

the past. There are market data which involve information about the forcasts or

the believes of the future. These data is based on the historical information and

will effect the actions of the market players. One example is the volatility data in

the model estimations. The historical volatility is calculated by the past returns

and the implied volatility is calculated by the market prices of the assets. Compare

with these two estimators, the implied volatility may be more logical to use than a

historical volatility in short term cases because the implied volatility is the market-

consensus forcast of the future volatility based on historical information. One may

expect the time series asset models to be stationary over the time. Thus in a long

run, the historical long term volatility is a better estimation.

We use the mathematical models to explain the market behaviours and give sug-

gestions of possible future scenarios. However, one shouldn’t only rely on outcomes

of models since the financial market is a far more complex system than mathemat-

ical models. It is more than necessary to add in personal views and judgements

of market rather than only run the simulations on computer based on the models.

As Wilkie (1995) pointed out that “An important feature of the way I believe this

model should be used is that those using it should form their own opinions about

the choice of appropriate mean values.” in its inflation model parameter estimation.
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Chapter 8

Conclusions and further research

The contribution of this thesis is threefold. First, we investigate the empirical prop-

erties of the historical UK share total return indices. Second, we construct long term

stochastic investment models driven by Lévy processes and demonstrate how to fit

these models to financial data by using either MLE or MCMC methods. Finally,

we show the applications of the Lévy asset models in risk management of unitised

with-profits policies.

In section 8.1 we briefly summarise the main conclusions of this thesis. Then

some possible extensions to this research are discussed in Section 8.2.

8.1 Conclusions

Chapter 1 investigated the statistical properties of long-term returns of the monthly

UK share total return index. The main conclusions were:

• The empirical unconditional distribution of the log-return process displays

non-Gaussian properties with positive excess kurtosis;

• The statistical tests and the graphs show the empirical distribution belongs to

distribution classes with heavy or semi-heavy tails;

• The Gaussian marginal distributions are not able to model extreme values in

the SGTRI return series; and
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• The data shows a small positive linear autocorrelation of monthly returns for

first lag.

Chapter 2 provided an extensive review of the general structure, path properties

and the decompositions of Lévy processes and the applications in financial modelling.

Brief outline of the theoretical facts were given and, specifically, the Lévy-Khintchine

formula shows the general form of the characteristic exponent of the infinitely divis-

ible laws and the decomposition of the Lévy processes. Then Lévy processes were

constructed either by defining an infinite divisible distribution as its increment law

or by the stochastic time changing skills. We introduced the driving processes of

our model which have generalized hyperbolic distributed unit increments.

In Chapter 3, We provided reliable and relatively fast algorithms for calibrating

Lévy driven asset models. The main conclusions were:

• The GH increment Lévy processes were fitted to SGTRI data, both for maxi-

mum likelihood estimation and the Bayesian estimation using Markov Chain

Monte Carlo;

• The results of MLE estimation show a significant improvement in performance

of modelling data return distributions based on the likelihood function;

• The five parameter general GH case has the highest likelihood but the differ-

ence between the general case and its subclasses are relatively small;

• The MCMC estimation results for GH are close to those estimated by MLE;

• Estimation risk were considered by using Hyper models; and

• The Anderson & Darling statistics were calculated to give a goodness of fit in

sense of distance measure.

Chapter 4 considers the key factors in modelling, reserving and valuation of

unitised with-profits policies. We investigated a model office called M0 and list the

main results as following:

• UWP policies were modelled by providing the operation rules which include

asset allocation, charging, reserving and bonus declaration;
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• Risk measures included probability of shortfall (POSF), mean of loss (MOL),

value at risk (VaR) and conditional tail expectations (CTE) were calculated

using Monte Carlo simulation under three different Lévy asset models;

• The exp-Lévy models driven by VG and NIG processes which have been proved

to be more realistic show higher risk measures; and

• The hyper-models which use the generated sample of the Metropolis-Hesting

Algorithm show an extra margin of risk measures for all three models while

taking the parameter uncertainty into consideration.

In Chapter 5 some dynamic bonus mechanisms were introduced as tools to control

the maturity guarantee liabilities of the UWP policies. The model office studies and

results are summarised as follows:

M1 Case M1 considered retrospective bonus calculated as the weighted arithmetic

average of the last n years returns on the asset share. The risk measures

can be reduced by either increasing the smoothing period n or by cutting the

participating rate p.

M2 The results in Case M2 using a bonus earning power (BEP) method with deter-

ministic projected maturity asset share and 25 percent terminal bonus cush-

ion are similar to the risk measures in M0. Comparing to retrospective bonus

method, the BEP method offers some considerable advantages. We looked

into the distribution of the maturity guarantee and asset share. We found a

higher mean guarantee with higher standard deviation. The coupled Monte

Carlo sample (AST , GT ) are more close related. There seems less possibility

that an extreme loss happens in M2. Normally the policyholder will expect a

higher guarantee at the maturity.

M3 We show BEP methods can be highly flexible by making the targeted maturity

guarantee as any forms depend on the office internal models. The projected

maturity asset share and unit values can be stochastic and path dependent.

M4 There seems to be little advantages in risk measures by trying to declare ret-

rospective bonus on a monthly basis in Case M4.
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M5 On the other hand the risk measures drop rapidly with the monthly reversionary

bonus calculated by BEP in Case M5.

M6 In M6 we consider bonus earning power declared on any frequency. A significant

improvement in risk controls was found when the frequency of declaring bonus

increase from yearly to monthly. The risk measures were not sensitive to

frequency of bonus declaration which more than once a month.

In Chapter 6 we consider the insurer’s investment strategies for UWP policies.

The main conclusions for model office Case M7, M8 and M9 are summarised as

follows:

M7 investment strategies based on diversification, an invest-and-forget strategy and

a re-balanced EBR strategy are tested. Both of the strategies reduce the risk

measures of the maturity loss of the insurer ;

M8 hedging strategies for a 10-year vanilla type UWP contract with fixed annual

bonus rate. Compare the other two investment strategies, diversified invest-

ment strategy M7 and hedging strategy M8. The former method tries to

reduce the variance of the invest return distribution while sacrificing the pos-

sible high return from risky asset investment. Hedging investment strategy,

however, cuts the left tail of the maturity loss distribution by paying an extra

amount of expenses. Both of the loss distributions under these two investment

strategies have less volatility than 100% EBR case; and

M9 Partial hedging based strategies which has limited support free capital, only

part of UWP fund can be hedged. The EBR of the UWP fund in M9 is more

flexible than in M7, in the cases when the contract is “out-of-money”, there

is large EBR in the fund which leads to higher expected future return in this

case.

In Chapter 7 we extend the exp-Lévy models by replacing the GIG stochastic time

by a GARCH(1,1)-m volatility process to capture the volatility clustering properties

in the SGTRI data. Also, multi-variable models are considered, we added continuous

time models using stochastic bridges driven by Lévy processes in the annual Wilkie
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model. Both maximum likelihood estimators and Bayesian estimators using Markov

Chain Monte Carlo are presented. We re-considered model office M0, M2, M5 and

M9. The main conclusions are summarised as follows:

M0(r) All GARCH volatility models have higher risk measures than the corre-

sponding constant volatility asset models. The distributions of maturity asset

share and guarantee under GARCH volatility models are no longer Gaussian.

M2(r) the risk measures for model office M2 under GARCH type models follow a

similar pattern to the M0. The POSF, VaRs and CTEs for M2 under Wilkie

model are much higher than for M0. It is because the mismatch of internal

asset model used to calculate the bonuses and real world model. The yearly

log-returns of the shares in the Wilkie model are negatively autocorrelated,

from the “mean-reversion” property. In this case the i.i.d. internal asset

model fail to give reasonable projected asset share in the bonus earning power

mechanism.

M5(r) The risk measures are reduced when increasing the frequency of declaring

bonuses from annual BEP to monthly. The risk measures under the Wilkie

models with different bridge processes are very close, even when a GARCH

volatility model is added in the bridge. On the other hand, declaring bonuses

on monthly basis in M5 for the Wilkie model with bridges reduce its risk

measures sharply.

M9(r) The pattern of different driving processes are similar to what we have ob-

served in the original M9 case in Chapter 6. The models with NIG driving

processes have highest risk measures in GARCH and hyper-GARCH models.

The Gaussian driven models often under estimate the risk measures. Compare

to the case M2, the hedging based investment strategy brings down all the risk

measures of the insurer’s loss. In G-GBM, G-VG, HG-GBM and HG-NIG, the

(ii) case have close MOL or even larger MOL than the (i) case. The cutting

of risk measures in M9 is caused by extra hidden charges in the policy. Poli-

cyholders pay a proportion of their asset shares as the costs of guarantee and

fund management.
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8.2 Suggestions for further research

Throughout this thesis, we use a constant force of interest rate model. A natural

path of further research is to bring in the interest rate dynamic by using stochastic

interest rate models. One can either construct/use a separate interest rate model

driven by Lévy processes, or use multi-variable asset models which incorporate the

interest rate models and give the cross correlations between different asset classes.

Also we would like to build a continuous multi-variable model driven by Lévy

processes. We discussed a model proposed in Chan (1998) which is defined by

stochastic differential equations. This model has its advantage in many theoretical

applications while is a big challenge to fit the model to the data. We would be

interested to see further research on this topic.

Some of the possible combinations of asset models and risk control strategies were

not investigated in the thesis because of the volume of the work. Some of them are

worth being tested, for example:

• A life office both declares bonuses and hedges on monthly basis;

• A hedging strategy for UWP policies in any time intervals and other hedging

strategies; and

• Some BEP under risk measures based on the management purpose such as

those we described in M3.

We consider the guarantee liability of UWP model by assuming that there is

no surrender and early death payment. This is majorly because the mortality risk

and surrender risk are different from the financial investment risk we focus on.

However, there is no reason why these risks could not be taken into account in more

complicated liability models. Based on the existing result in this thesis, a mortality

model both as a deterministic mortality table or a stochastic mortality model can

be asserted in each simulation study. For the surrenders of the contract, guarantee

surrender values can be considered during the term of the UWP policies. This could

be interesting because in this case the UWP liability model would be “American

option style” under the allowance of surrenders.
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In this thesis, we focus on a single generation of UWP policies, within which

each “unit” have the same value of guarantee and asset share. A possible extension

would be to consider a multi-generation liability model of UWP policies. For a single

generation of UWP policies, we assume that the insurer never defaults. However,

for multi-generation liability model, we can consider the UWP “fund-wise”, insurers

face the risk not only from shortfall of each generation of UWP policies but from

insolvency of the whole fund if they cannot pay the guarantee at any maturity.

We can even include shareholders to share the profits if the insurer is not mutual.

Thus the liability model in this case is more complicated and the author would be

interested to see further research on whether insurers can pool these risks by selling

policies with different maturities.

As we discussed in Chapter 7, more work is required to investigate the robustness

and reliability of the asset models. For example, sensitivity tests are required on

estimation and simulation of the Lévy models.

Last but not the least, in order to improve the efficiency of the Monte Carlo

methods of the asset models, one can apply variance reduction techniques and quasi-

Monte Carlo techniques in simulation studies.
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process

Bayes factor, 52

Bayesian information criterion

BIC, 51

Bessel function

modified Bessel function, 21

modified Bessel function of the third

kind, 21

bonus earning power, 82

BEP, 78

Brownian subordination, 20

conditional tail expectation, 69

CTE, 69

copula, 73

EBR, 103

equity backing ratio, 85

EBR, 71

fine scales, 5, 7

free asset, 117

free estate, 117

generalised hyperbolic, 15, 20

density, 21

log-likelihood, 32

GH, see generalised hyperbolic

Girssanov theorem, 119

hyper-model, 57

hyperbolic, 15

infinitely divisible, 17

inverse Gaussian, 23

IG, see inverse Gaussian

inverse Gaussian distribution (GIG), 20

Kolmogorov test, 50

marginal likelihood

MLH, 52

Markov Chain Monte Carlo

MCMC, 31

maxi option, 109

184



maximum likelihood estimation

MLE, 31

Metropolis-Hesting Algorithm

MHA, 32

minimum maturity guarantee, 117

NIG, see normal inverse Gaussian

normal inverse Gaussian, 15, 22

MHS algorithm, 79

normal mean-variance mixture, 20, 23

option model, 107

participating rate, 79

policyholder’s reasonable expectations,

11

PRE, see policyholder’s reasonable

expectations

probability of shortfall

POSF, 68

prospective bonus strategy, 78

real-world model, 107

retrospective bonus strategy, 77

SGTRI, 5, see Share Gross Total Return

Index, 8

SGTRI23, 8

SGTRI50, 9

Share Gross Total Return Index, 6

smoothing period, 79

stochastic bridge, 146

student t, 15

stylised empirical facts, 7

stylised facts, 5

terminal bonus cushion, 78

time changed Brownian, 20

unitised with-profits, 63

Value-at-Risk, 68

V aRα, 68

confidence level α, 68

VaR, 68

variance gamma, 15, 25

VG, see variance gamma

Wilkie model, 4

185


