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Abstract

We study the supersymmetric quantum mechanics of monopoles in bosonic, N = 2

and N = 4 supersymmetric Yang-Mills-Higgs theory, with particular emphasis on

monopoles of charge–(1, 1) in a theory with gauge group SU(3) spontaneously broken

to U(1)× U(1).

In the moduli space approximation, the quantum states of bosonic monopoles can

be described by functions on the moduli space. For N = 2 supersymmetric monopoles,

quantum states can be interpreted as either spinors or anti-holomorphic forms on the

moduli space. The quantum states of the N = 4 supersymmetric monopole correspond

to general differential forms on the moduli space. In each case, we review the moduli

space approximation and derive general expressions for the supercharges as differential

operators. In the geometrical language of forms on the moduli space, the Hamiltonian

is proportional to the Laplacian acting on forms. We propose a general expression for

the total angular momentum operator and verify its commutation relations with the

supercharges.

We use the known metric structure of the moduli space of charge–(1, 1) monopoles

to show that there are no quantum bound states of such monopoles in the moduli space

approximation. We exhibit scattering states and compute the corresponding differ-

ential cross sections. Using the general expressions for the supercharges we construct

the short supermultiplet of supersymmetric monopoles, and study its decomposition

under the proposed angular momentum operator.
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Chapter 1

Introduction

One of the most intriguing aspects of Yang-Mills-Higgs theory is that it generically

contains magnetic monopoles as classical, solitonic solutions, with properties which

appear to be dual to those of the electrically charged quantum particles in a dual

theory. The strongest formulation of this duality is the electromagnetic duality con-

jecture of Montonen and Olive [1] in the setting of supersymmetric Yang-Mills-Higgs

theories, according to which the physics of massive, electrically charged particles (W-

bosons) in the theory should be equivalent to the physics of magnetically charged

particles (magnetic monopoles) in the dual theory. In this dual theory, the gauge

group is replaced by its dual and the coupling constant is inverted. If the conjec-

ture is correct, electromagnetic duality provides a means to investigate the physics of

strongly coupled electric particles by studying the physics of magnetic monopoles at

weak coupling, using perturbative or semiclassical techniques in the dual theory.

The properties of monopoles in supersymmetric Yang-Mills-Higgs theory have been

studied extensively, often motivated by the electromagnetic duality conjectures, or

their generalisations to S-duality. A crucial tool in these studies has been the moduli

space approximation. This approximation was originally introduced by Manton in

order to study the classical dynamics of several interacting monopoles [2]. He showed

that the classical trajectories of monopoles correspond to geodesics on the moduli

space. However, the metrics of moduli spaces prove exceedingly difficult to derive,

and only for a few moduli spaces is this metric known. The moduli space of a single

monopole is M1 = R3 × S1 with a flat metric. The moduli space of two monopoles
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has, roughly speaking, a factor corresponding to the centre of mass motion (which

is equivalent to M1) and a factor corresponding to the relative motion of the two

monopoles (which is curved, hence giving rise to non-trivial dynamics). For two iden-

tical SU(2) monopoles (charge-2) this relative moduli space is the Atiyah-Hitchin

manifold [3, 4], while for two distinct SU(3) monopoles in a theory with maximal sym-

metry breaking (charge-(1, 1)) it is the Taub-NUT manifold [5, 6]. Some useful facts

about general monopole moduli spaces are known. One is that all monopole moduli

spaces in theories with maximal symmetry breaking are hyperkähler manifolds. An-

other is that the multi-monopole moduli space decomposes into the product of single

monopole moduli spaces in the limit of infinite separation between monopoles.

The quantisation of the effective theory in the moduli space approximation was

first considered in the context of the non-supersymmetric, bosonic theory by supposing

that quantum states are scalar functions on the moduli space and that the Hamiltonian

is proportional to the Laplacian on the moduli space [4]. This model was then used [7, 8]

to compute bound state energies and scattering cross sections for elastic and inelastic

monopole-monopole scattering in Yang-Mills-Higgs theory with gauge group SU(2)

broken to U(1).

Gauntlett [9] subsequently showed that the application of the moduli space approx-

imation to N = 2 supersymmetric monopoles leads to a model where the quantum

states can be described in terms of either anti-holomorphic forms or spinors on the

moduli space. The equivalence of the two descriptions follows from the hyperkähler

property of monopole moduli spaces. He explained how certain supercharges corre-

spond to Dolbeault operators acting on forms, or the Dirac operator acting on spinors.

The Hamiltonian is given by either the Laplacian acting on forms, or the square of

the Dirac operator acting on spinors. In this thesis, we show that the remaining

supercharges correspond to twisted Dolbeault operators, or twisted Dirac operators,

and we demonstrate the equivalence of the two interpretations of the quantisation

explicitly for the examples of the single monopole, and charge-(1, 1) monopoles.

In the second viewpoint, both fermionic and bosonic degrees of freedom of the

original N = 2 supersymmetric field theory are encoded in spinors on the moduli

space. This may seem puzzling at first, and this viewpoint is less convenient than the
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geometrical one, when it comes to interpreting the moduli space quantum mechanics in

terms of the original fields. However, the spinorial viewpoint provides interesting links

with the large literature on spectral properties of Dirac operators. We will see and

exploit this explicitly in our case study where earlier work by Comtet and Horváthy [10]

on the Dirac operator on the Taub-NUT manifold provides useful guidance.

The moduli space approximation to the quantum dynamics of N = 4 supersym-

metric monopoles is closely related to, and a natural extension of, the effective theory

for N = 2 supersymmetric monopoles. In the geometrical interpretation, wavefunc-

tions are now arbitrary differential forms on the moduli space (as opposed to anti-

holomorphic forms only); the supercharges correspond to the Dolbeault operators and

their twisted counterparts, and the Hamiltonian is again the Laplacian [9, 11, 12]. This

model played a crucial role in the genesis of the S-duality conjecture.

Until now, many investigations have focused on the calculation of lowest bound

states, the so-called BPS states, which play a key role in testing the S-duality conjec-

ture. Among the most important results in this area are the following. Taking the spin

of particles and monopoles into account, S-duality can only possibly hold for N = 4

supersymmetric Yang-Mills-Higgs theories. Furthermore, Sen [13] showed, in the case

of charge-2 monopoles, that it requires the existence of a unique, normalisable, har-

monic form on the relative moduli space (which we now call a Sen-form), and he

explicitly gave the formula for this form on the Atiyah-Hitchin manifold. Gauntlett

and Lowe [5] later repeated his argument for charge-(1, 1) monopoles and gave the

corresponding Sen-form on the Taub-NUT manifold.

In this thesis we take a step further. We study the low energy dynamics of N = 2

supersymmetric monopoles in theories with maximally broken gauge symmetry us-

ing the moduli space approximation. We derive general expressions for all of the

supercharges of the effective theory and show how they can be interpreted as natural

differential operators in the quantum theory (either the (twisted) Dolbeault operators

or the (twisted) Dirac operators). Furthermore, we propose a formula for the angular

momentum operator as a differential operator in the quantum theory. Focussing on

monopoles of charge-(1, 1), we show that there are no bound states and study the

scattering states. We find that the scattering cross section of two distinct monopoles
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in this theory is the same, at low energies, as that of two BPS monopoles in the

SU(2) theory with the symmetry breaking to U(1). Using our expressions for the

supercharges and the angular momentum operator, we discuss the multiplet structure

of N = 2 supersymmetric monopoles.

We then extend these studies to N = 4 supersymmetric monopoles. Our goal is to

illustrate how semiclassical techniques can be used to compute details of the quantum

mechanics of magnetic monopole interactions. Hopefully, via electromagnetic duality,

these calculations can be used to learn more about the physics of strongly interacting

electric particles. A secondary purpose is to exhibit some of the interesting geometrical

features of the low energy quantum dynamics of supersymmetric monopoles in the

moduli space approximation.

Summary and Outline

This thesis consists of two parts. Part I deals with the general theory of monopoles

and their low energy dynamics. In the second part, we work out two examples in

detail: first of all the single, charge-1 monopole, and secondly the more interesting

case of charge-(1, 1) monopoles.

Our discussion of the low energy dynamics of monopoles starts off, in the following

chapter, with a review of the moduli space approximation of bosonic monopoles. We

briefly present the field theoretical model that gives rise to monopoles, fixing our

conventions and notation. Next we review the moduli space approximation and the

hyperkähler structure of the moduli space. We introduce a quaternionic description

of zero-modes, which is closely related to the viewpoint that zero-modes correspond

to solutions of a Dirac equation, the subjects of the subsequent sections. We finish

the chapter by discussing the zero-modes of a single monopole of charge-1 and the

hyperkähler structure of its moduli space.

In chapter 3 we start again with a presentation of the field theory, this time an N =

2 supersymmetric Yang-Mills-Higgs theory. The bosonic zero-modes of this theory are

the same as those of the bosonic model in chapter 2, and we focus our discussion on

the fermionic zero-modes. These are closely related to the bosonic zero-modes due to

the supersymmetry of the theory, and the quaternionic description of zero-modes is
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useful to show how the hyperkähler structure acts. For the first time, now, we use

the equivalence between spinors and anti-holomorphic forms, in this case to view the

zero-modes (spinors) as anti-holomorphic forms on Euclidean 4-space. In section 3.3

we present the effective Lagrangian which governs the low energy dynamics of N = 2

supersymmetric monopoles. The next two sections discuss the quantisation of this

effective theory, in terms of spinors on the moduli space and in terms of forms on the

moduli space respectively. These two quantisation procedures are equivalent due to

the hyperkähler structure of the moduli space. This is the second time we come across

the equivalence between spinors and anti-holomorphic forms, now on the level of the

moduli space. The effective Lagrangian of section 3.3 hasN = 4 real supersymmetries.

We give general expressions for all of the corresponding supercharges and give their

interpretation as (twisted) Dirac operators in the context of quantisation using spinors

(section 3.4), and as (twisted) Dolbeault operators in the context of quantisation using

anti-holomorphic forms on the moduli space (section 3.5).

Chapter 4 deals with N = 4 supersymmetric monopoles. The effective theory

of the moduli space approximation now possesses N = 8 real supersymmetries, and

we quantise the effective theory in terms of forms on the moduli space. The doubled

supersymmetry (compared to the previous chapter) leads to the fact that holomorphic

and anti-holomorphic forms both appear as quantum states of the supersymmetric

monopole, and play an equivalent role in the quantisation procedure. The set of

supercharges is similarly doubled, and their geometrical interpretation is given by the

set of (twisted) Dolbeault operators of the previous chapter, supplemented with their

complex conjugates.

The final chapter of Part I, chapter 5, is devoted to a particularly important

observable, namely the angular momentum operator. The naive guess that its com-

ponents are simply the infinitesimal generators of the SO(3) action on the moduli

space cannot be correct. This action does not respect the complex structure used to

define the quantum states (i.e. the anti-holomorphic and holomorphic forms). We

propose a modification which does act on the spaces of anti-holomorphic forms and

holomorphic forms independently, and we show that it has the required commutation

relations with the supercharges.
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In Part II of this thesis we illustrate the results of the previous chapters in two

examples. Chapter 6 deals with the simplest example, namely the moduli space ap-

proximation of the dynamics of a single monopole. Then, in chapter 7, we consider

the moduli space quantisation of two distinct monopoles in a (supersymmetric) Yang-

Mills-Higgs theory with gauge group SU(3) broken to U(1) × U(1). The relevant

moduli space is an eight-dimensional hyperkähler manifold of the form R3 × (R ×
MTN)/Z, where MTN is the complete self-dual Taub-NUT space with positive mass

parameter [5, 6, 14]. The reason for choosing this example is that the scalar Laplace

equation on this space can be solved exactly, and that the complex structures are

known. As a result, we are able to exhibit many features of the bosonic and super-

symmetric quantum mechanics explicitly: we show that there are no bound states,

and give explicit formulae for differential cross sections of scattering states. Finally,

using our expressions for the supercharges and the angular momentum operator, we

discuss the multiplet structure of N = 2 and N = 4 supersymmetric monopoles.
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Part I

Low Energy Monopole Dynamics
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Chapter 2

Bosonic Monopoles

In this chapter, we review the construction of monopole moduli spaces. First of all, to

get a feeling for the concept of moduli spaces, we construct the moduli space for a clas-

sical point particle moving along a 2-dimensional surface. Then we discuss the field

theoretical model that gives rise to monopoles and the interpretation of monopoles

as translationally invariant instantons in Euclidean R4. In the next sections we con-

struct the moduli space of BPS monopoles and discuss its hyperkähler structure. We

introduce a description of zero-modes in terms of quaternions, which is closely related

to the interpretation of zero-modes as solutions to a Dirac equations. Finally, we

briefly discuss the zero-modes of the charge-1 ’t Hooft-Polyakov monopole.

2.1 Prelude: The classical point particle

To introduce the idea of the moduli space approximation, we start off with the simplest

example: a classical point particle moving along a 2-dimensional surface. We assume

there is a potential energy function with a 1-dimensional space of minima.

For example, we may think of a particle moving along a curved surface, under

influence of a vertical, uniform (Newtonian) gravitational field. In this section we will

be interested in a surface with the shape of a Mexican hat. In this case, the minima

of the potential energy function lie on a circle at the bottom of the hat’s surface.
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The Lagrangian we’re interested in is

L(~r) =
1

2
m|~̇r|2 − V (r), (2.1)

V (r) = λ(r2 − a2)2 ; λ > 0. (2.2)

In polar coordinates the Lagrangian becomes

L(r, θ) =
1

2
m(ṙ2 + (rθ̇)2)− λ(r2 − a2)2. (2.3)

The equations of motion are given by the Euler-Lagrange equations:

∂t
∂L

∂ṙ
=

∂L

∂r
mr̈ = mrθ̇2 + 2λ(r2 − a2)r (2.4a)

∂t
∂L

∂θ̇
=

∂L

∂θ
m∂t

(
r2θ̇

)
= 2mrṙθ̇ + mr2θ̈ = 0 (2.4b)

The conjugate momenta to r and θ are

pr =
∂L

∂ṙ
= mṙ, pθ =

∂L

∂θ̇
= mr2θ̇. (2.5)

The Hamiltonian, or energy, H is given by the following Legendre transformation of

the Lagrangian L,

H = ṙpr + θ̇pθ − L =
1

2
m(ṙ2 + (rθ̇)2) + V (r). (2.6)

Suppose we do not know how to solve the equations of motion exactly. We will

then try to find approximate solutions instead. We start by looking for solutions of

lowest energy.

Solutions of lowest energy are static (ṙ = θ̇ = 0), and satisfy V (r) = 0, which im-

plies r = a. The space of these solutions of minimal energy, V0, can be parameterised

by the angular coordinate θ:

V0 =
{
(a, θ) ∈ R2 | 0 ≤ θ < 2π

} ∼= S1 (2.7)

In this simple case, all elements of V0 are physically distinct, and we call this set the

moduli space, M = V0. (Monopoles appear in the context of a gauge theory, and then

the moduli space will be the set of gauge equivalence classes of solutions of minimal

energy.)
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When the energy of a particle is low enough, it will stay close to minima of the

potential. In these cases we can approximate the exact behaviour of the particle

with motion in the moduli space. In the present case we only have one moduli space

parameter θ, so the moduli space approximation implies that we should look for

solutions of the form

~r0(t) = ~r0 (θ(t)) = (a, θ(t)). (2.8)

By inserting a solution of this form into the Lagrangian (2.3) we find the effective

Lagrangian, which is now only a function of θ:

Leff(θ) = L(~r0) =
1

2
ma2θ̇2. (2.9)

The equation of motion for this Lagrangian is

ma2θ̈ = 0. (2.10)

and the solution has constant velocity in the moduli space, θ = vθt. This corresponds

to a constant angular velocity of the particle moving along the surface:

~r0(t) = (a, vθt). (2.11)

This is not an exact solution of the original equations of motion (unless vθ = 0): when

we insert this solution into equation (2.4a), we find

av2
θ = r̈, (2.12)

and we see that for any non-zero velocity, the particle will radially accelerate away

from the minima of the potential (which will in turn affect vθ).

Tangent vectors to the moduli space are called zero-modes. The zero-mode corre-

sponding to the coordinate θ on M is the tangent vector ∂θ. Thinking of the moduli

space as imbedded in the total space of solutions, we may also denote a zero-mode by

∂θ (~r0(θ)).
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2.2 BPS monopoles

We now turn to the theory of magnetic monopoles, which appear in certain classes

of Yang-Mills-Higgs field theories with spontaneously broken symmetries [15, 16]. We

study Yang-Mills-Higgs models on (3 + 1)-dimensional space-time with a Lorentzian

metric of signature (+,−,−,−). The Lagrangian that we are interested in is the

Georgi-Glashow Lagrangian, given by

L =

∫
d3x L =

∫
d3x

(
−1

4
Fµν · F µν +

1

2
DµΦ ·DµΦ

)
. (2.13)

The fields are in the adjoint representation of the gauge group G = SU(n); i.e. they

take values in the Lie-algebra g = su(n). The dot-product is an invariant inner

product on the Lie-algebra. The field strength F is given by

Fµν = ∂µAν − ∂νAµ − e [Aµ, Aν ]

= ∂µAν −DνAµ = DµAν − ∂νAµ, (2.14)

where −e is the coupling constant, and the covariant derivative of the Higgs field Φ is

DµΦ = (∂µ − e ad Aµ) Φ = ∂µΦ− e [Aµ, Φ] . (2.15)

We impose boundary conditions for the fields at infinity to break the symmetry,

lim
r→∞

Φ · Φ = a2. (2.16)

We will assume that the symmetry breaking is maximal; specifically, SU(n) is broken

to U(1)n−1. The action of the model is given by

S =

∫
dtL. (2.17)

The equations of motions are

DµD
µΦ = 0, (2.18a)

DµF
µν = −e [DνΦ, Φ] . (2.18b)
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The conjugate momenta to Ai and Φ are

Ei ≡ ∂L
∂Ȧi

= Fi0, (2.19)

Π ≡ ∂L
∂Φ̇

= D0Φ. (2.20)

Ei is called the (non-Abelian) electric field; the magnetic field Bi is defined by

Bi =
1

2
εijkF

jk. (2.21)

The conjugate momentum to A0 vanishes. Therefore we must impose Gauss’ Law

(the equation of motion for A0; equation (2.18b) for ν = 0) as a constraint on the

gauge fields.

The Hamiltonian H is defined by the Legendre transformation

H =

∫
d3x H =

∫
d3x

(
EiȦ

i + ΠΦ̇− L
)

. (2.22)

The Lagrangian and the Hamiltonian can be written in terms of the kinetic and

potential energy as

L = K − V, H = K + V, (2.23)

where the kinetic and potential energy are given by

K =

∫
d3x

(
1

2
|Ei|2 +

1

2
|Π|2

)
, (2.24)

V =

∫
d3x

(
1

2
|Bi|2 +

1

2
|DiΦ|2

)
. (2.25)

Bogomol’nyi [17] first observed that the potential energy can be written as

V =

∫
d3x

(
1

2
|Bi ∓DiΦ|2 ± ∂i (Φ ·Bi)

)
. (2.26)

Then
∣∣∣∣
∫

d3x∂i (Φ ·Bi)

∣∣∣∣ =

∣∣∣∣
∫

S2∞

dSi (Φ ·Bi)

∣∣∣∣ =
4πa

e
b(~k), (2.27)

where ~k = (k1, . . . , kn−1) ∈ Zn−1 is the topological charge and b(~k) is a positive, real

function of the topological charge which depends on the details of the vacuum expec-

tation value of the Higgs field. Hence the potential energy satisfies the Bogomol’nyi
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bound

V ≥ 4πa

e
b(~k). (2.28)

BPS monopoles have minimal energy, which means that they are static and they

saturate the Bogomol’nyi bound. The latter implies that they must satisfy the Bogo-

mol’nyi equations

Bi = ±DiΦ. (2.29)

Here the upper sign corresponds to monopoles (positive topological charge, i.e. all

integers k1, . . . , kn−1 are ≥ 0), and the lower sign to anti-monopoles (negative topolog-

ical charge, i.e. all integers k1, . . . , kn−1 are ≤ 0). The Bogomol’nyi equations imply

the equations of motion for static field configurations, which we will show below (at

the end of the next section) in the temporal gauge, A0 = 0.

2.3 Euclidean 4-space

The temporal gauge, A0 = 0, is a convenient gauge to work in, and from now on we

assume this gauge. We define

Wi = Ai, W4 = Φ, (2.30)

so that we can think of Wi (underlined indices i run from 1 to 4) as a connection

on Euclidean R4, if we introduce a fourth spatial dimension and assume all fields to

be independent of this fourth dimension, ∂4 ≡ 0. The covariant derivatives on this

Euclidean R4 are defined by

Di = ∂i − e ad Wi. (2.31)

Infinitesimal gauge transformations can be written as

δΛWi = −1

e
DiΛ (2.32)

for some gauge parameter Λ, which is again taken to be independent of the fourth

dimension.
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Gauss’ Law, equation (2.18b) for ν = 0, becomes

DiẆi = 0, (2.33)

where a dot denotes a time derivative. In terms of the field strength Gij corresponding

to Wi, the remaining equations of motion become

Ẅj = DiGij, (2.34)

and the kinetic and potential energy can be written as

K =

∫
d3x

1

2

∣∣∣Ẇi

∣∣∣
2

, (2.35)

V =

∫
d3x

1

4
|Gij|2. (2.36)

The Bogomol’nyi equations (2.29) become

Gij = εijkBk = ±εijkDkΦ = ±εijk4Gk4. (2.37)

Permuting the indices, this is equivalent to the (anti-)self-duality equations for G,

Gij = ±1

2
εijklGkl. (2.38)

Therefore we may think of monopoles as instantons in Euclidian 4-space that are

independent of the fourth dimension.

Static field equations

It is now, in the temporal gauge A0 = 0, fairly straightforward to show that the

Bogomol’nyi equations imply the equations of motion for static field configurations.

Using the Bianchi identity we have

DiGi4 = DiDiΦ = ±DiBi = 0, (2.39)

and, using equation (2.37),

DiGij = ±εijk4DiGk4 = ±εijkDiDkΦ =

= ±1

2
εijk [Di, Dk] Φ = ∓1

2
e εijk [Fik, Φ] =

= ± e [Bj, Φ] = e [DjΦ, Φ] . (2.40)
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Together they can be summarised by

DiGij = 0, (2.41)

which is the same as equation (2.34) for static field configurations, Ẇj = 0.

2.4 The moduli space approximation

The moduli space is the space of physically distinct monopoles of minimal energy

(within a particular topological class ~k). Field configurations of monopoles related

to each other by gauge transformations are not physically distinct, and the moduli

space is therefore the space of gauge equivalence classes of BPS monopoles. The

main reference for this section is the book on Topological Solitons by Manton and

Sutcliffe [18].

We denote the set of finite energy field configurations Wi by A, and the group of

short-range gauge transformations by G. Short-range gauge transformations are those

gauge transformations that tend to the identity at infinity. The configuration space

is obtained by identifying field configurations that are related via a short-range gauge

transformation,

C = A/G. (2.42)

Long-range gauge transformations, with non-trivial action on the fields at infinity, are

excluded from G, because when we allow such gauge transformations to become time

dependent, they have a physical effect on the monopoles (turning them into dyons

with electric charge [19]), unlike time dependent short-range gauge transformations.

The set of field configurations corresponding to BPS monopoles of charge ~k, V~k ⊂
A, is the subspace of A of field configurations satisfying the Bogomol’nyi equations in

the topological class ~k. We now define the moduli space of charge-~k monopoles, M~k,

to be the subspace of C corresponding to static solutions of the Bogomol’nyi equations

with topological charge ~k,

M~k = V~k/G ⊂ C. (2.43)
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The idea of the moduli space approximation is to describe the low energy dynamics

of monopoles by motion in the moduli space [2]. This is an adiabatic description and

a good approximation provided the monopoles move slowly [20].

In order to compute the equation of motion governing the path in the moduli

space, we lift this path to a path in V~k ⊂ A and insert it into the Lagrangian of

the field theory, interpreting the parameter along the path as time. In practice this

means picking a representative (static) field configuration in each equivalence class

of solutions of the BPS equations along the path, thus leading to field configuration

Wi(t, x
1, x2, x3) which depend on time and space coordinates. Time derivatives of

such field configurations correspond to tangent vectors along the path, provided that

they satisfy Gauss’ Law, which ensures that the time evolution is orthogonal to gauge

orbits. The potential energy on the moduli space is constant, saturating the Bogo-

mol’nyi bound (2.28), and using expression (2.35) for the kinetic energy, the effective

Lagrangian for charge-~k monopoles is therefore

Leff =

∫
d3x

1

2

∣∣∣Ẇi

∣∣∣
2

− 4πa

e
b(~k). (2.44)

Here Gauss’ Law in the form (2.33) must be satisfied, which ensures that the effective

Lagrangian is well defined, as we will show below.

Weinberg [21] first argued that the dimension of the moduli space M~k is 4k, where

k = |k1 + . . . + kn−1|, generalising an earlier index calculation by Callias [22] (see also

section 2.7, and Taubes [23] and Atiyah and Hitchin [3]). Therefore, we can parame-

terise the moduli space with 4k parameters, or moduli, Xa. Using these coordinates,

tangent vectors to M~k can be decomposed as

Ẇi = δaWi Ẋ
a, (2.45)

where the zero-modes δaWi form a basis of vector fields on M~k.

The metric on M~k is obtained by restricting the metric on A. The natural metric

on A is given by

g(Ẇ , V̇ ) =

∫
d3x Ẇi · V̇i, (2.46)

and the components of its restriction to the moduli space M~k, with respect to the
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basis of zero-modes δaWi, are

gab =

∫
d3x δaWi · δbWi. (2.47)

From Gauss’ Law (2.33), we derive the background gauge condition for the zero-

modes,

DiδaWi = 0. (2.48)

which implies that the tangent vectors Ẇi to the lifted path in V~k ⊂ A are orthogonal

to gauge transformations:

g(δaW, δεW ) =
1

e

∫
d3x δaWi ·Diε = −1

e

∫
d3x (DiδaWi) · ε = 0. (2.49)

Therefore the effective Lagrangian (2.44) is well defined.

Since field configurations corresponding to points in M~k satisfy the Bogomol’nyi

equations, tangent vectors to M~k must satisfy the linearised Bogomol’nyi equations,

DiẆj −DjẆi = ±εijklDkẆl. (2.50)

Inserting the decomposition of tangent vectors with respect to the basis of zero-

modes (2.45) into the effective Lagrangian (2.44), we find

Leff =
1

2
g(Ẇ , Ẇ )− 4πa

e
b(~k)

=
1

2
gabẊ

aẊb − 4πa

e
b(~k). (2.51)

(This final step is analogous to the derivation of the effective Lagrangian (2.9) of

the classical point particle in section 2.1, by inserting the parametrisation (2.8) into

the Lagrangian (2.3).) Because the potential energy on M~k is constant, the equa-

tions of motion for this Lagrangian are simply the geodesic equations for the moduli

space. Therefore, classically, slowly moving monopoles follow geodesics on the moduli

space [2]. The quantum mechanics of monopoles is described by wavefunctions on the

moduli space, as we will discuss in the context of supersymmetric monopoles in the

next two chapters.
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2.5 The hyperkähler structure of M~k

In the case of maximal symmetry breaking, moduli spaces of monopoles are hyperkähler

manifolds. A hyperkähler structure on a Hermitian manifold is generated by three

parallel complex structures, Ii, that obey the quaternion algebra,

IiIj = −δij + εijkIk. (2.52)

This implies that there is a whole two-sphere of complex structures, parameterised

by aI1 + bI2 + cI3 such that a2 + b2 + c2 = 1. A hyperkähler manifold is Kähler with

respect to each of these complex structures. We will sometimes denote the complex

structures by

I = I3, J = I1, K = I2. (2.53)

The standard reference for hyperkähler manifolds is the book by Besse [24].

The existence of a hyperkähler structure on the moduli space is deeply connected

to the fact that the field theory allows for an N = 4 supersymmetric extension [25].

The hyperkähler structure on the moduli space derives from the hyperkähler structure

on Euclidean R4. In the following we use the same symbols Ii for the action of the

complex structures on R4, on the space of field configurations A, and on the moduli

space M~k.

Kähler structures

A Hermitian manifold is a Riemannian manifold with a metric g and a complex

structure I that satisfy

g(Ẇ , V̇ ) = g(I(Ẇ ), I(V̇ )). (2.54)

On a Hermitian manifold, we define the Kähler form ω by

ω(Ẇ , V̇ ) = g(Ẇ , I(V̇ )). (2.55)

If the Kähler form is closed, dω = 0, the underlying manifold is called a Kähler

manifold. A general reference on Kähler manifolds is the book by Moroianu [26].
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For a basis of tangent vectors {∂a}, the components of the Kähler form are given

by

ωab = ω(∂a, ∂b) = g(∂a, I(∂b)) = g(∂a, ∂cIc
b) = gacIc

b. (2.56)

Complex structures on M~k

When we interpret Wi as a connection on R4, the space of field configurations inherits

complex structures from this R4, via [27, 9]

(Ii(Ẇ ))j = (Ii)jk Ẇk. (2.57)

We will give an explicit matrix representation of the complex structures Ii in the next

section. If Ẇj is a tangent vector to M~k, then so is the linear combination (Ii)jkẆk,

and therefore the complex structures on A can be restricted to complex structures on

the moduli space. The metric on A (2.46), and its restriction to M~k, are Hermitian

with respect to these complex structures, i.e. they satisfy equation (2.54), as can be

verified using equation (2.57).

We can define three Kähler forms on the space of field configurations by equations

(2.55), using the three complex structures Ii inherited from R4. Using equation (2.57)

we have

ωi(Ẇ , V̇ ) ≡ ωIi
(Ẇ , V̇ ) ≡ g(Ẇ , Ii(V̇ )) =

∫
d3x Ẇi · (Ii)ij V̇j. (2.58)

Since both the complex structures and the metric can be restricted to the moduli

space, the Kähler forms can be restricted to M~k as well. Decomposing vectors on

M~k as usual, via equation (2.45), the components of the Kähler forms are given by

(ωi)ab =

∫
d3x δaWi · (Ii)ij δbWj, (2.59)

which we now compare to the general expression (2.56),

(ωi)ab = gac(Ii)
c
b =

∫
d3x δaWi · δcWi(Ii)

c
b. (2.60)
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Since δbWi is orthogonal to gauge modes, so are the linear combinations (Ii)ij δbWj

and δaWi(Ii)
a
b. Therefore δaWi(Ii)

a
b is completely defined by the integral (2.60), and

we have

δaWi(Ii)
a
b = (Ii)ij δbWj. (2.61)

It is now straightforward to check that the (Ii)
a
b obey the quaternion algebra,

δaWi(Ii)
a
b(Ij)

b
c = δaWi(−δij1

a
c + εijk(Ik)

a
c) (2.62)

The metric is parallel, and by explicit calculation it is possible to show that the

Kähler forms are as well,

∇a(ωi)bc = 0. (2.63)

This in turn implies that the complex structures must be parallel too, and therefore

M~k is hyperkähler. The hyperkähler structure of the moduli space can also be shown

by interpreting the moduli space as a hyperkähler quotient [28, 3].

2.6 Quaternionic description

Some of the above statements can be understood most easily by combining the bosonic

zero-modes into a quaternion as follows,

wa = δaW4 −  δaW1 − κ δaW2 − ı δaW3 = ei δaWi. (2.64)

The choice for minus signs in this definition will prove useful for the explicit calcula-

tions for the two examples in chapters 6 and 7. We have now identified R4 with the

quaternions, via

e4 = 1 e1 =  e2 = κ e3 = ı. (2.65)

They obey the quaternion algebra, ı2 = 2 = κ2 = ıκ = −1.

The action of the complex structures (2.61) corresponds to multiplication of the

quaternions wa, and its quaternionic conjugate wa = δaW4 +  δaW1 +κ δaW2 + ı δaW3,
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with the unit quaternions. We may choose the definition of the three complex struc-

tures so that

Ii(wa) = −waei, Ii(wa) = eiwa. (2.66)

With this definition, Ii(wa) = ei(Ii)ijδaWj = −ejei δaWj, and the components of Ii

are given by

(Ii)ij =
〈
ei, ek(Ii)kj

〉
=

〈
ei,−ejei

〉
, (2.67)

where 〈·, ·〉 is the standard inner product on H ∼= R4. Therefore we see that, in the

ordered basis {e1, e2, e3, e4} ↔ {, κ, ı, 1}, definition (2.66) corresponds to

(I1)ij =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0




ij

(2.68a)

(I2)ij =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0




ij

(2.68b)

(I3)ij =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




ij

(2.68c)

We may summarise the action of the complex structures by

(Ii)(ej) = ek(Ii)kj = δije4 + εijkek, (2.69a)

(Ii)(e4) = ek(Ii)k4 = −ei. (2.69b)

The components of the metric and the Kähler forms on the moduli space are given

by the real and imaginary parts of
∫

d3x wawb = gab + ei(ωi)ab (2.70)
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respectively, which can be verified directly by inserting definition (2.64), and com-

paring with equation (2.59) using the expressions (2.68) for the complex structures.

We see again that the metric and Kähler forms are invariant under the action of the

complex structures:

Ii (gab + ei(ωi)ab) = Ii

(∫
d3x wawb

)

=

∫
d3x (−waei) (eiwb)

=

∫
d3x (wawb) = gab + ei(ωi)ab (2.71)

The background gauge condition (2.48) and the linearised Bogomol’nyi equations

(2.50) can also be written together in quaternionic form. We define the quaternionic

differential operator

D = ejDj, (2.72)

in terms of which the background gauge condition and the linearised Bogomol’nyi

equations become the real and imaginary parts of

Dwa = 0 (2.73)

respectively. Therefore, the action of the complex structures (2.66) leaves this set of

equations invariant:

Ii(Dwa) = D(−waei) = −(Dwa)ei = 0. (2.74)

2.7 Zero-modes as solutions to a Dirac-equation

Notice that equation (2.73) is very similar to a Dirac-equation. We may identify the

unit quaternions with SU(2) matrices,

ei = −iσi, e4 = 12, (2.75)
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where σi are the Pauli matrices. Under this identification, wa becomes a (2×2)-matrix,

which is completely determined by either of its two columns:

wa = δaΦ + iσiδaAi =


 δaΦ + iδaA3 iδaA1 + δaA2

iδaA1 − δaA2 δaΦ− iδaA3


 =


 χ1 −χ2

χ2 χ1


 .

(2.76)

The operator D defined in equation (2.72) now becomes the Dirac operator

D = D412 − iσjDj. (2.77)

The fact that wa is a zero-mode of D, as expressed by this equation, then implies that

 χ1

χ2


 = χ,


 −χ2

χ1


 = −iσ2 χ, (2.78)

are zero-modes of D,

Dχ = 0, −i Dσ2χ = 0. (2.79)

Conversely, if χ is a zero-mode of D, then so is wa. Using the fact that σ1 = σ1,

σ2 = −σ2 and σ3 = σ3,

−i D (σ2χ) = −i (−e ad Φ12 − iDjσj) σ2χ

= −i (−e ad Φσ2 + iD1σ2σ1 − iD2σ2σ2 + iD3σ2σ3) χ

= −i σ2 (−e ad Φ12 + iD1σ1 − iD2σ2 + iD3σ3) χ

= −i σ2Dχ = −i σ2Dχ

= 0. (2.80)

Together with the original assumption Dχ = 0, this then implies Dwa = 0.

We conclude that the bosonic zero-modes wa of the monopole, correspond to the

(2-spinor) zero-modes of the Dirac operator D.

Dimension of the moduli space

We can deduce the dimension of the moduli-space from the dimension of the kernel

of the Dirac operator, but we need to be careful. The Dirac operator D is a complex
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operator acting on complex 2-component spinors. Therefore its kernel is a complex

vector space of complex dimension dimC ker D. However, the matrices wa and iwa

correspond to linearly independent zero-modes of the monopole, so that the dimension

of the moduli-space is equal to the real dimension of kernel of D:

dimM~k = dimRM~k = dimR ker D = 2 dimC ker D. (2.81)

The index of a complex operator is defined as

ind D = dimC ker D− dimC ker D†. (2.82)

D† has no normalisable zero-modes, dimC ker D† = 0, so that ind D = dimC ker D, and

the real dimension of the moduli space is twice the index of the Dirac operator D,

dimM~k = 2 ind D. (2.83)

Callias [22] has found that for the Dirac operator corresponding to SU(2) monopoles

ind D = 2k, so that

dimMk = 4k. (2.84)

As mentioned before in section 2.4, Weinberg [21] first argued that more generally

dimM~k = 4k, (2.85)

where k = |k1+ . . .+kn−1| (where again the integers k1, . . . , kn−1 are either all positive

or all negative).

2.8 Zero-modes of the ’t Hooft-Polyakov monopole

For a single, charge-1 monopole, we know that there are 4 zero-modes. Three of these,

δ1Wj, δ2Wj and δ3Wj, correspond to translations in space. The fourth, δ4Wj = δχWj,

corresponds to gauge transformations g(χ) in the unbroken gauge group.

The naive guess for the zero-modes of translation would be δiWj = ∂iWj. However,

as we have seen, the actual zero-modes are perpendicular to gauge modes, because

the field configurations must satisfy Gauss’ Law. Therefore, the zero-modes are given

by a gauge transformation of the naive guess

δiWj = ∂iWj − 1

e
DjΛi, (2.86)
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and we need to choose Λi in a suitable way, to ensure that the zero-modes satisfy the

background gauge condition. This can be done by choosing

Λi = eAi. (2.87)

The zero-modes of translation are then

δiWj = ∂iWj −DjWi = Gij. (2.88)

As stated above, the fourth zero-mode δχWj is given by an infinitesimal gauge trans-

formation in the unbroken gauge group, with gauge parameter Λ ∼ Φ,

δ4Wj = −DjΦ = G4j. (2.89)

The four zero-modes together can therefore be written as

δiWj = Gij. (2.90)

Finally, since the Bogomol’nyi equations imply the equations of motion for static field

configurations (2.41), we see that δiWj satisfies the background gauge condition:

DjδiWj = DjGij = 0. (2.91)

The translational zero-modes δiWj give rise to a factor of R3 in the moduli space of

the ’t Hooft-Polyakov monopole. In contrast, the gauge transformations g(χ) = e−χΦ
a

have a periodic parameter: g(χ) = g(χ + 2π). Therefore, the gauge transformations

give rise to a factor of S1 in the moduli space. The total moduli space is hence

M1 = R3 × S1. (2.92)

Action of the complex structures

From the zero-mode δχWi corresponding to gauge transformations, we form the quater-

nion

wχ = δχΦ− eiδχAi = ei(DiΦ). (2.93)
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Acting with the complex structures Ij we find, using equation (2.29),

Ij(wχ) = −wχej

= −(DiΦ)(eiej)

= DjΦ− εijkek Bi

= DjΦ− ek Fjk

= δjΦ− ek δjAk

= wj, (2.94a)

where wj is the quaternion corresponding to the translational zero-modes δjWi. A

similar calculation yields

Ii(wj) = −δijwχ + εijkwk. (2.94b)
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Chapter 3

N = 2 Supersymmetric Monopoles

We now turn to N = 2 supersymmetric monopoles. As in the bosonic case, we will

first review BPS monopoles and the corresponding zero-modes. Then we will discuss

the effective Lagrangian in the moduli space approximation of the supersymmetric

model, and its quantisation. This can be done in terms of either spinors (section 3.4),

or anti-holomorphic forms on the moduli space (section 3.5). We review the realisation

of particular supersymmetry charges as a Dirac operator on spinors and a Dolbeault

operator on anti-holomorphic forms. The standard reference for this discussion is

the article by Gauntlett [9]. A recent review by Weinberg and Yi [29] discusses these

topics in a wider context. The lecture notes on electromagnetic duality by Figueroa-

O’Farrill [30] are a useful guide for many of the calculations.

To complete the discussion of the quantisation of the effective model, we construct

the differential operators corresponding to the remaining supercharges, and interpret

them as twisted Dirac operators acting on spinors (in section 3.4.4), and twisted

Dolbeault operators acting on anti-holomorphic forms (in section 3.5.5). The identifi-

cation of all the supercharges is essential for finding all the states in a supermultiplet,

as we will illustrate in chapters 6 and 7.
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3.1 N = 2 supersymmetric BPS monopoles

The Yang-Mills-Higgs Lagrangian (2.13) can be extended with N = 2 supersymmetry.

The supersymmetric Lagrangian is given by [9]

L =

∫
d3x L =

∫
d3x

(
− 1

4
F µν · Fµν +

1

2
DµS ·DµS +

1

2
DµP ·DµP − e2

2
|| [P, S] ||2

+ iψ · γµDµψ + ieψ · (ad S − iγ5 ad P )ψ
)
. (3.1)

Here S is a scalar field, P a pseudo-scalar field, and ψ a Dirac spinor. The chiral

operator γ5 is defined by γ5 = iγ0γ1γ2γ3. The supersymmetries of the Lagrangian

(3.1) are given by

δAµ = i
(
αγµψ − ψγµα

)
, (3.2a)

δP =
(
ψγ5α− αγ5ψ

)
, (3.2b)

δS = i
(
ψα− αψ

)
, (3.2c)

δψ =

(
1

2
γµγνFµν + ieγ5 [P, S] − γµDµ(S − iγ5P )

)
α, (3.2d)

where the parameter α is a Dirac spinor. A Dirac spinor is equivalent to two Majo-

rana spinors, which explains the number of supersymmetries, N = 2. These super-

symmetries are most easily exhibited by deriving this Lagrangian and its supersym-

metries from an N = 1 supersymmetric Lagrangian in 6 dimensions by dimensional

reduction [31, 32] (see appendix B.1 for details).

The rotational symmetry of the extra dimensions reduces to an SO(2) chiral ro-

tational symmetry in four dimensions [30]:

S + iP 7→ e−iµ(S + iP ),

ψ 7→ eµγ5/2ψ,

Aµ 7→ Aµ. (3.3)

As in the bosonic case, the symmetry breaking is induced by choosing appropriate
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boundary conditions on the fields at infinity:

lim
r→∞

(||S||2 + ||P ||2) = a2. (3.4)

The kinetic and potential energy for the N = 2 supersymmetric model are

K =

∫
d3x

(
− ||1

2
F0i||2 +

1

2
||D0S||2 +

1

2
||D0P ||2 + iψ · γ0D0ψ

)
, (3.5)

V =

∫
d3x

( 1

4
F ij · Fij +

1

2
||DiS||2 +

1

2
||DiP ||2 +

e2

2
|| [P, S] ||2

+ iψ · γiDiψ − ieψ · [S − iγ5P, ψ]
)
. (3.6)

The BPS monopoles are defined, as before, to have minimal energy. This implies

again that they are static.

To find the zero-modes we first use the SO(2) chiral rotational symmetry, so that

we may assume that only the scalar field S has a non-zero vacuum expectation value.

(If we require the vacuum to be parity-invariant, the vacuum expectation value of

pseudoscalar field P must be zero to begin with.) In this case S = Φ takes on the role

of the Higgs field of the bosonic model, and it must satisfy the Bogomol’nyi equations

(2.29). To minimise the potential energy (3.6), ψ must satisfy the following Dirac

equation in the presence of a monopole background,

γ0γiDiψ − eγ0 [S, ψ] = 0. (3.7)

We define Euclidian gamma-matrices by

γi = γ0γi, γ4 = γ0, (3.8)

which satisfy {γi, γj} = 2δij. In terms of these, the Dirac equation (3.7) becomes

D/ψ ≡ γiDiψ = 0, (3.9)

where Di is the covariant derivative in Euclidian space defined in equation (2.31).

3.2 Zero-modes

Since ψ = 0 is a solution of the Dirac equation (3.9), the purely bosonic monopole

solutions discussed in chapter 2 are solutions of the N = 2 supersymmetric model as
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well. The bosonic zero-modes of this model are therefore exactly the same as those

of the purely bosonic model. The fermionic zero-modes are the solutions of the Dirac

equation (3.9).

A convenient representation for the Euclidian γ-matrices is given by

γi =


 0 iσi

−iσi 0


 , γ4 =


 0 12

12 0


 . (3.10)

We now identify the unit quaternions with SU(2) matrices, as in section 2.7,

e1 ∼ −iσ1, e2 ∼ −iσ2, e3 ∼ −iσ3, e4 ∼ 12, (3.11)

so that we may write the Dirac equation (3.9) as

D/ψ ≡

 0 D†

D 0


 ψ = 0, (3.12)

where D is defined in (2.73). Since D† has no normalisable zero-modes, the fermionic

zero-modes can all be written in terms of the bosonic zero-modes as [9]

ψ = ψaλ
a, (3.13a)

with

ψa = γiδaWi


 0

χ


 =


 eiδaWi χ

0


 =


 wa χ

0


 , (3.13b)

where wa is the bosonic zero-mode defined in equation (2.64), and χ is a constant,

normalised, commuting two-component spinor. Since the fermionic zero-mode ψ is

an anti-commuting spinor, and χ is a commuting spinor, λa must be a Grassmann

number.

ψ defined in equation (3.13a) is a fermionic zero-mode for any constant, complex

spinor χ and complex valued λa. Using equation (2.73), we have indeed

D/ψ ≡

 0 D†

D 0


 ψ =


 (Dwa) χ

0


 λa = 0, (3.14)

However, the complex structures can be used to identify many of the fermionic zero-

modes obtained in this manner. We shall see that the vector space of fermionic

zero-modes can be thought of as an R-vector space with basis {ψa}, where the ψa are

defined by equation (3.13b) using a single, fixed spinor χ.
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3.2.1 Action of the complex structures

The complex structures act on the fermionic zero-modes (3.13b) via equation (2.61)

or (2.66). Using hats to distinguish the action of the complex structures on fermionic

zero-modes from the action of the complex structures on bosonic zero-modes, we have

Îi(ψa) =


 Ii(wa)χ

0


 =


 −waeiχ

0


 . (3.15)

Choice of χ

The fermionic zero-modes ψa =


 wa χ

0


 and ψ′a =


 wa χ′

0


 are related via the

action of a complex structure. The spinors χ and χ′ are related by a U(2) transfor-

mation, χ′ = Uχ, so that

ψ′a =


 wa χ′

0


 =


 wa U χ

0


 =


 w′a χ

0


 , (3.16)

where w′a = waU is the bosonic zero-mode obtained from wa using the action of the

complex structure corresponding to U (which in general is a linear combination of the

Ii). For example, if χ =


 1

0


 and χ′ =


 0

1


, then U = e2, w′a = −I2(wa) and

ψ′a = −Î2(ψa). Therefore, we can obtain all fermionic zero-modes from the bosonic

ones using equations (3.13) with a single, fixed χ.

Action of the complex structures

From equation (3.15) we see that there is a complex structure Î (which depends on

the choice of χ) such that [9]

Î(ψa) = iψa. (3.17)

For example, if we choose

χ =


 1

0


 , (3.18)
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then

Î = Î3. (3.19)

Having made a choice, and fixed χ, the remaining two complex structures that make

up the hyperkähler structure, Ĵ and K̂ act anti-linearly:

Ĵ (iψa) = Ĵ Î(ψa) = −ÎĴ (ψa) = −iĴ (ψa), (3.20)

and similarly for K̂.

3.2.2 The vector space of fermionic zero-modes

Equation (3.17) shows that the 4k fermionic zero-modes ψa (defined by (3.13b) in

terms of the 4k bosonic zero-modes using a single, fixed spinor χ) are not linearly

independent over C. Therefore, the 4k-dimensional real vector space of bosonic zero-

modes corresponds to a 2k-dimensional complex vector space V of fermionic zero-

modes, in agreement with Callias’ index theorem [22]. If

BC
V = {ψ1, . . . , ψ2k} (3.21)

is a basis of V over C, then, by equation (3.17), a basis of V over R is given by

{ψ1, . . . , ψ4k}, where ψ2k+α = Î(ψα):

BR
V = {ψ1, . . . , ψ2k, Î(ψ1), . . . , Î(ψ2k)}. (3.22)

3.2.3 Zero-modes as anti-holomorphic forms on R4

The fermionic zero-modes ψa (3.13) are static spinors in (3+1)-dimensional space-

time. Extending space-time to R × R4, as we did in section 2.3, we may also view

them as spinors on R4 that are independent of the fourth dimension. These spinors

can now be identified with anti-holomorphic forms [33]. For example, we can identify

the fermionic zero-modes ψa with anti-holomorphic forms υa by

ψa =




χ1

χ2

0

0




∼ υa = χ1α1 + χ2α2, (3.23)
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where we use the basis α1 = 1√
2
(dx3 − idx4) and α2 = 1√

2
(dx1 − idx2) of anti-

holomorphic forms (with respect to the complex structure I) on R4. This identifica-

tion agrees with equation (3.17).

The complex structures I, J and K act naturally on the space of all differential

forms, and hence on this basis. One finds (see also appendix A)

I(α1) = iα1, J (α1) = iα2, K(α1) = α2,

I(α2) = iα2, J (α2) = −iα1, K(α2) = −α1. (3.24)

These (linear) actions of the complex structures on forms are related to the (linear)

action of Î, and the (anti-linear) actions of Ĵ and K̂ on spinors defined in (3.15)

as follows. Using the identification (3.23), we can pull the maps Î, Ĵ and K̂ back

to maps on anti-holomorphic forms. We will denote these pull-backs by the same

letters Î, Ĵ and K̂. If we choose χ as in (3.18), and write the bosonic zero-mode

corresponding to ψa in the form (2.76), we find that

Ĵ (ψa) = Ĵ

 wa χ

0


 =





 χ1 −χ2

χ2 χ1


 iσ1


 1

0




0

0




=




−iχ2

iχ1

0

0




. (3.25)

Under the identification (3.23) we therefore have

Ĵ (ψa) ∼ Ĵ (υa) := −iχ2α1 + iχ1α2 = −J (υa). (3.26)

Summarising the action of the complex structures on anti-holomorphic forms we have

Î(υa) = I(υa) = i υa, Î = I, (3.27a)

Ĵ (υa) = −J (υa) = −J (υa), Ĵ = −J , (3.27b)

K̂(υa) = −K(υa) = −K(υa), K̂ = −K, (3.27c)

where J and K are anti-linear maps from the space of anti-holomorphic forms to itself.

It is straightforward to verify that the complex structures acting on the fermionic

zero-modes interpreted as forms obey the quaternion algebra.
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3.3 The moduli space approximation

We now turn to the moduli space approximation. As before, we must parameterise

the lowest energy states with moduli space parameters, and by inserting this param-

eterisation into the Lagrangian of the model, we can derive the effective Lagrangian

for the moduli space approximation.

We view the space of fermionic zero-modes as a 4k-dimensional real vector space,

and we parameterise the fermionic zero-modes using equations (3.13) with real valued

Grassmann variables λa. Inserting this parametrisation into the Lagrangian (3.1) and

expanding to lowest non-trivial order, Gauntlett [9] has found (see also Weinberg and

Yi [29]) that the effective Lagrangian for the moduli space approximation is given by

Leff =
1

2
g(Ẋ, Ẋ) +

i

2
g(λ,Dtλ)− 4πa

e
b(~k), (3.28)

where the covariant derivative Dt = ẊaDa, and

(Dtλ)a = λ̇a + Γa
bcẊ

bλc. (3.29)

We see that the N = 2 supersymmetry of the theory has added a fermionic term

to the bosonic effective Lagrangian. The effective Lagrangian of the moduli space

approximation of N = 2 supersymmetric monopoles (3.28) is a σ-model with target

space M~k. In the moduli space approximation, half of the original supersymmetries

are broken, and we discuss the remaining supersymmetries of the effective Lagrangian

below in the context of the quantisation of the effective model.

On our way to a quantum mechanical description of the N = 2 supersymmetric

monopoles at low energies we may now proceed in two different, but equivalent ways.

If we continue to work with real coordinates Xa on the moduli space, we naturally end

up with a quantum theory of spinors on the moduli space (section 3.4). Alternatively,

if we choose to work with complex coordinates, the natural way to quantise the theory

leads to anti-holomorphic forms on the moduli space (section 3.5). Since the moduli

space is hyperkähler, and hence Ricci flat, these two descriptions are equivalent [27],

as we shall demonstrate explicitly for the examples M1 and M1,1 in chapters 6 and

7.
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3.4 Quantisation using spinors on the moduli space

The quickest route towards quantisation is to continue to work with real coordinates

on the moduli space, but to start by introducing an orthonormal frame to parameterise

the fermionic zero-modes (Friedan and Windey [34], Davis, Macfarlane, Popat and Van

Holten [35, 36], and Gauntlett [27]). The effective Hamiltonian can be derived without

such a frame, but the canonical momenta one finds in this case are not suitable for

quantisation, and an orthonormal frame will have to be introduced eventually.

We define the orthonormal frame e by

gab = δABeA
ae

B
b, eA = eA

adXa. (3.30)

We denote the inverse of eB
c by ec

B, in the sense that ec
BeB

d = δc
d and eA

ce
c
B = δA

B,

so that

δAB = gabe
a
Aeb

B, dXa = ea
AeA. (3.31)

Using the orthonormal frame, we define the fermionic variables

λA = eA
aλ

a, (3.32)

and in terms of the orthonormal frame, the covariant derivative of λ becomes

(Dtλ)A = λ̇A + ωa
A

BẊaλB, (3.33)

where the spin connection ω is determined by a gauge transformation

ωa
A

B = eA
bΓ

b
ace

c
B + eA

b∂ae
b
B. (3.34)

The effective Lagrangian (3.28) becomes

Leff =
1

2
gabẊ

aẊb +
i

2
δABλA(Dtλ)B − 4πa

e
b(~k). (3.35)

3.4.1 Effective Hamiltonian

The canonical momenta corresponding to the effective Lagrangian (3.35) are

pa =
∂Leff
∂Ẋa

= gabẊ
b +

i

2
ωaABλAλB, (3.36a)

πA =
∂Leff
∂λ̇A

= − i

2
δABλB, (3.36b)
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where ωaAB = δACωa
C

B. The effective Hamiltonian is given by

Heff = Ẋapa + λ̇AπA − Leff

= Ẋa(gabẊ
b +

i

2
ωaABλAλB)− i

2
δABλ̇AλB

− 1

2
gabẊ

aẊb − i

2
δABλA(λ̇B + ωa

B
CẊaλC) +

4πa

e
b(~k)

=
1

2
gabẊ

aẊb +
4πa

e
b(~k)

= H0 +
4πa

e
b(~k). (3.37)

Here we have defined

H0 =
1

2
gabp̃ap̃b, (3.38)

and

p̃a = pa − i

2
ωaABλAλB = gabẊ

b. (3.39)

3.4.2 Dirac brackets

The canonical way of quantisation is to replace Poisson brackets by (anti-)commutator

brackets. In this case, however, the expression for the fermionic momenta leads to

constraints. We must therefore use Dirac brackets instead of Poisson brackets, so that

brackets with the constraints vanish identically. This allows us to set the constraints

equal to zero, and canonical quantisation is done by replacing Dirac brackets with

(anti-)commutators. This also affects the discussion of the supersymmetry of the

effective model later on. Normally a symmetry is generated by its corresponding

charge through a Poisson bracket, but here too we shall have to employ Dirac brackets

instead, due to the constraints.

Having used an orthonormal frame to define the fermionic variables λA, we find

that the Dirac brackets of the bosonic and fermionic variables decouple. We can

therefore quantise the effective model by changing the Dirac brackets into (anti-)

commutators.
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Dirac brackets are defined in terms of the canonical Poisson brackets by

{f, g}DB = {f, g}PB − {f, ξu}PB (∆−1)uv {ξv, g}PB , (3.40)

where ∆ is given in terms of the constraints ξ by

∆rs = {ξr, ξs}PB . (3.41)

It is now straightforward to show that Dirac brackets with a constraint function

vanish:

{f, ξr}DB = {f, ξr}PB − {f, ξu}PB (∆−1)uv {ξv, ξr}PB

= {f, ξr}PB − {f, ξu}PB (∆−1)uv∆vr

= {f, ξr}PB − {f, ξr}PB

= 0 (3.42)

The canonical Poisson brackets are

−{zs, pr}PB = {pr, z
s}PB = δs

r (3.43a)

{
λB, πA

}
PB

=
{
πA, λB

}
PB

= δB
A (3.43b)

We will also need the following:

{pr, δAB}PB =
∂pr

∂pa

∂gAB

∂za
= ∂rδAB = 0 (3.44)

The constraint functions corresponding to the canonical momenta (3.36) are given by

ξA = πA +
i

2
δABλB (3.45)

and using the naive Poisson brackets we find

∆AB = {ξA, ξB}PB

=

{
πA,

i

2
δBDλD

}

PB

+

{
i

2
δACλC , πB

}

PB

= iδAB (3.46)
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The Dirac brackets are therefore

{f, g}DB = {f, g}PB + i {f, ξA}PB δAB {ξB, g}PB (3.47)

We now compute

{zr, ξA}PB = 0 (3.48)

{pr, ξA}PB =
i

2
{pr, δAB}PB λB = 0 (3.49)

Therefore Dirac brackets with zr or pr are the same as the original Poisson brackets.

Here we see the use of the orthonormal frame we have introduced: without it, the

Poisson bracket between the bosonic momenta and the metric would in general be

non-zero ({pr, gab}PB = ∂rgab), and as a result the Poisson brackets between the

momenta and the constraints would not vanish.

For the fermionic variables, however, we find

{
λA, ξB

}
PB

= δA
B (3.50)

{πA, ξB}PB =
i

2
gBC

{
πA, λC

}
PB

=
i

2
δAB (3.51)

and therefore Dirac brackets between λA become

{
λB, λA

}
DB

=
{
λA, λB

}
DB

= iδA
CδCDδB

D = iδAB (3.52)

The only non-vanishing Dirac brackets are

{
pa, X

b
}

DB
= δb

a,
{
λA, λB

}
DB

= iδAB. (3.53)

3.4.3 Quantisation

To quantise the theory we follow Friedan and Windey [34], Alvarez-Gaumé [37], and

Gauntlett [9]. Dirac brackets of bosons are replaced with commutators, while Dirac

brackets of fermions are replaced with anti-commutators.

{
pa, X

b
}

DB
= δb

a 7→
[
p̂a, X̂

b
]

= −iδb
a (3.54)

{
λA, λB

}
DB

= iδAB 7→
{

λ̂A, λ̂B
}

= δAB (3.55)
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The anti-commutator of the fermions defines a Clifford bundle over M~k, and we

identify the Hilbert space of states with the space of spinors on the moduli space.

Such spinors are sections of a 22k-dimensional complex vector bundle over M~k which

is acted upon by the Dirac matrices generating the Clifford bundle.

The bosonic coordinates act by multiplication and the bosonic momenta are rep-

resented as derivatives,

pa 7→ −i∂a. (3.56)

We have a natural map from the fermions to the Dirac matrices on the moduli space:

λA 7→ i√
2
γA, {γA, γB} = −2δAB. (3.57)

We see that p̃a acts as the covariant derivative on spinors,

p̃a = pa − i

4
ωaAB

[
λA, λB

] 7→ −i

(
∂a − 1

8
ωaAB

[
γA, γB

])
= −iDa. (3.58)

Finally, the quantisation of the effective Hamiltonian H0 gives half the Laplacian,

H0 =
1

2
gabp̃ap̃b 7→ −1

2
gabDaDb =

1

2
∆. (3.59)

Here we have defined the Laplacian to be the positive definite operator, which corre-

sponds to the usual definition for the Laplacian acting on forms, ∆ = (d + d†)2.

3.4.4 Supersymmetry

The effective action corresponding to the effective Lagrangian (3.28) is invariant under

N = 4 supersymmetry transformations [9]:

δ1X
a = ελa δ1λ

a = iεẊa (3.60a)

δIj
Xa = ε (Ij)

a
bλ

b δIj
λa = ε

[
−i(Ij)

a
bẊ

b − Γa
cd(Ij)

c
bλ

bλd
]

(3.60b)

which have their origin in the unbroken supersymmetries of the field theory. The

supersymmetries of the original field theory (3.2) have a Dirac spinor α as parameter,

which has 8 real independent components. Of these, the N = 4 supersymmetries

(3.60) remain in the effective model. The corresponding supercharges are

Q1 = p̃aλ
a, QIi

= p̃b(Ii)
b
aλ

a. (3.61)
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The supercharges generate the supersymmetry transformations via Dirac brackets,

{Q,Xa}DB = δXa, {Q, λa}DB = δλa, (3.62)

and they obey the N = 4 supersymmetry algebra:

{Q1, Q1}DB = 2iH0,
{
QIi

, QIj

}
DB

= δij 2iH0, (3.63)

and all other brackets vanishing. This agrees with the fact that the supersymme-

try transformations square to i times a time-derivative, and that time evolution is

generated by the Hamiltonian.

When we quantise the supercharges using the quantisation procedures given above,

Q1 becomes the Dirac operator for spinors on the moduli space

Q1 = p̃aλ
a 7→ 1√

2
γaDa =

1√
2

D/, (3.64)

while the remaining supercharges become twisted Dirac operators [38]

QIj
= p̃b(Ij)

b
aλ

a 7→ 1√
2
(Ij)

b
aγ

aDb =:
1√
2

D/ Ij
. (3.65)

From the fact that the Hamiltonian is given by the Dirac bracket of supercharges, we

find again that the quantisation of H0 gives half the Laplacian:

H0 = − i

2
{Q1, Q1}DB 7→ 1

2
D/ 2 = −1

2
gabDaDb =

1

2
∆. (3.66)

3.5 Quantisation using forms on the moduli space

3.5.1 Complex coordinates on the moduli space

We now take a few steps back to discuss the quantisation of the effective model

on the moduli space in terms of anti-holomorphic forms on the moduli space. We

choose 2k complex coordinates Zα on the hyperkähler manifold M~k (α runs from 1

to 1
2
dimM~k = 2k) that diagonalise the complex structure I = I3. The real and

imaginary parts of Zα form a basis of real coordinates Xa (the index a runs as usual

from 1 to dimM~k = 4k). We may choose this basis such that

Zα = Xα + iXα+2k ∂α =
1

2

(
∂

∂Xα
− i

∂

∂Xα+2k

)

Z
α

= Xα − iXα+2k ∂α =
1

2

(
∂

∂Xα
+ i

∂

∂Xα+2k

)
(3.67)
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which satisfy

I(∂α) = i∂α I
(

∂

∂Xα

)
=

∂

∂Xα+2k

I(∂α) = −i∂α I
(

∂

∂Xα+2k

)
= − ∂

∂Xα
(3.68)

The components of the metric in real and complex coordinates are defined by

gab = g(∂a, ∂b), gαβ = g(∂α, ∂β). (3.69)

The metric is Hermitian, g(Ẋ, Ẏ ) = g(I(Ẋ), I(Ẏ )), so that

gαβ = g(∂α, ∂β) = g(i∂α, i∂β) = −g(∂α, ∂β) = 0, (3.70)

and similarly gαβ = gαβ = 0. The first term in the effective Lagrangian can be

written in complex coordinates as

1

2
g(Ẋ, Ẋ) =

1

2

(
gαβŻ

α

Żβ + gαβŻαŻ
β
)

= gαβŻαŻ
β

= gαβŻ
α

Żβ. (3.71)

Using real coordinates

I(Ẋ) = Ẋα ∂

∂Xα+2k
− Ẋα+2k ∂

∂Xα
(3.72)

and the Hermiticity of the metric implies that

gαβ = gα+2k,β+2k, gα+2k,β = − gα,β+2k. (3.73)

The components of the metric in real and complex coordinates are related via

gαβ = g(∂α, ∂β)

=
1

4
g

(
∂

∂Xα
+ i

∂

∂Xα+2k
,

∂

∂Xβ
− i

∂

∂Xβ+2k

)

=
1

4
(gαβ + gα+2k,β+2k) +

i

4
(gα+2k,β − gα,β+2k)

=
1

2
(gαβ + i gα+2k,β) (3.74)
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Equation (3.17) implies that in the basis BR
V (3.22) we have ψα+2k = I(ψα) = iψα.

Therefore, when we view the space of fermionic zero-modes as a 2k-dimensional com-

plex vector space with basis BC
V (3.21), the fermionic zero-modes are parameterised

by

ψ = ψaλ
a

= ψα

(
λα + iλα+2k

)
, (3.75)

where as usual a ∈ {1, . . . , 4k} and α ∈ {1, . . . , 2k}. We now define

ζα = λα + iλα+2k, ζα = λα − iλα+2k. (3.76)

The fermionic zero-modes are then parameterised by

ψ = ψαζα. (3.77)

For the second term of the effective Lagrangian we find

gabλ
aDtλ

b = 2Re(gαβ)
(
λαDtλ

β + λα+2kDtλ
β+2k

)

+ 2Im(gαβ)
(
λα+2kDtλ

β − λαDtλ
β+2k

)

=
(
gαβ + gαβ

) (
λαDtλ

β + λα+2kDtλ
β+2k

)

− i
(
gαβ − gαβ

) (
λα+2kDtλ

β − λαDtλ
β+2k

)

= gαβ

((
λα − iλα+2k

)
Dtλ

β + i
(
λα − iλα+2k

)
Dtλ

β+2k
)

+ gαβ

((
λα + iλα+2k

)
Dtλ

β − i
(
λα + iλα+2k

)
Dtλ

β+2k
)

= gαβ

(
λα − iλα+2k

)
Dt

(
λβ + iλβ+2k

)

+ gαβ

(
λα + iλα+2k

)
Dt

(
λβ − iλβ+2k

)

= gαβ

(
λα − iλα+2k

)
Dt

(
λβ + iλβ+2k

)

− gαβDt

(
λα + iλα+2k

) (
λβ − iλβ+2k

)

= 2gαβζαDtζ
β (3.78)
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so that the effective Lagrangian (3.28) in terms of these coordinates becomes

Leff = gαβŻαŻ
β

+ igαβζα
(
ζ̇β + Γβ

γδŻ
γζδ

)
− 4πa

e
b(~k). (3.79)

We introduce an orthonormal frame θ for the fermionic variables, choosing it so

that it respects holomorphicity [27].

gαβ = δABθA
αθB

β θA = θA
αdZα ζA = θA

αζα

θA = θA
αdZ

α
ζA = θA

αζα (3.80)

Here

δAB =





1 if A = B,

0 otherwise.

(3.81)

The effective Lagrangian then becomes

Leff = gαβŻαŻ
β

+ iδABζA

(
ζ̇B + ωα

B
CŻ

α

ζC + ωα
B

CŻαζC

)
− 4πa

e
b(~k), (3.82)

where the spin connection ω is again determined by a gauge transformation,

ωα
A

B = θA
βΓβ

αγθ
γ

B + θA
β∂αθβ

B, ωα
A

B = θA
β∂αθβ

B. (3.83)

3.5.2 Effective Hamiltonian

We compute the canonical momenta from the Lagrangian.

Pα =
∂Leff
∂Żα

= gαβŻ
β

+ iωαACζAζC ΠA =
∂Leff
∂ζ̇A

= −iδBAζB

Pα =
∂Leff

∂Ż
α = gβαŻβ + iωαACζAζC ΠA =

∂Leff
∂ζ̇A

= 0 (3.84)
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The effective Hamiltonian is

Heff = ŻαPα + ŻαPα + ζ̇AΠA − Leff

= Żα(gαβŻ
β

+ iωαACζAζC) + Żα(gβαŻβ + iωαACζAζC)− iδBAζ̇AζB

− gαβŻαŻ
β

− iδABζA

(
ζ̇B + ωα

B
CŻ

α

ζC + ωα
B

CŻαζC

)
+

4πa

e
b(~k)

= gαβŻαŻ
β

+
4πa

e
b(~k)

= H0 +
4πa

e
b(~k), (3.85)

where we have defined

H0 = gαβP̃αP̃β, (3.86)

and

P̃α = Pα − iωαACζAζC = gαβŻ
β

, (3.87a)

P̃α = Pα − iωαACζAζC = gαβŻβ. (3.87b)

3.5.3 Dirac brackets

Just like in section 3.4, where we used real coordinates, we must use Dirac brackets in

order to quantise the theory, because of the constraints that arise from the expressions

for the fermionic momenta. As before, having used an orthonormal frame for the

fermionic variables, we find that the brackets of the bosonic and fermionic variables

decouple.

The canonical Poisson brackets are

{
Pα, Zβ

}
PB

= δβ
α

{
ΠA, ζB

}
PB

= δB
A

{
Pα, Zβ

}
PB

= δβ
α

{
ΠA, ζB

}
PB

= δB
A

(3.88)
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The constraints are now given by

ξA = ΠA + iδABζB (3.89a)

ξA = ΠA (3.89b)

We find that

∆AA = ∆AA = {ξA, ξA}PB

=
{

ΠA + iδABζB, ΠA

}
PB

= iδAA (3.90)

while

∆AB = ∆AB = 0 (3.91)

Poisson brackets between Z or P and the constraints vanish, and therefore Dirac

brackets of Z and P are the same as the original Poisson brackets. The only non-

vanishing Dirac bracket involving the ζ is
{

ζA, ζB
}

DB
=

{
ζA, ζB

}
PB

+ iδCD
{
ζA, ξC

}
PB

{
ξD, ζB

}
PB

= iδAB (3.92)

The only non-vanishing Dirac brackets are hence

{
Pα, Zβ

}
DB

= δβ
α

{
Pα, Z

β
}

DB
= δβ

α

{
ζA, ζB

}
DB

= iδAB (3.93)

3.5.4 Quantisation

To quantise the theory we follow the usual procedure again. Dirac brackets of bosons

are replaced with commutators, and Dirac brackets of fermions are replaced with

anti-commutators.

{
Pα, Zβ

}
DB

= δβ
α 7→ [

Pα, Zβ
]

= −iδβ
α (3.94a)

{
Pα, Z

β
}

DB
= δβ

α 7→
[
Pα, Z

β
]

= −iδβ
α (3.94b)

{
ζA, ζB

}
DB

= iδAB 7→
{

ζA, ζB
}

= δAB (3.94c)
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We interpret the Hilbert space of states as the space of square-integrable (0, p)-forms

on M as follows. The bosonic coordinates act by multiplication and the bosonic

momenta are represented as derivatives,

Pα 7→ −i∂α Pα 7→ −i∂α (3.95)

while the quantisation of fermions is given by

ζA 7→ θA∧ ζA 7→ ι(θA) (3.96)

where ι(θA)(θB) = δAB. The P̃ act as covariant derivatives,

P̃α = Pα − iωαACζAζC 7→ −i
(
∂α + ωαACθA ∧ ι(θC)

)
= −i∇α, (3.97)

P̃α = Pα − iωαACζAζC 7→ −i
(
∂α + ωαACθA ∧ ι(θC)

)
= −i∇α, (3.98)

and the quantisation of the effective Hamiltonian gives again half the Laplacian,

H0 = gαβP̃αP̃β 7→ −gαβ∇α∇β =
1

2
∆. (3.99)

We have seen above that the quantisation of the spinorial zero-modes of the original

field theory can be interpreted in terms of anti-holomorphic forms on the moduli space.

The quantisation also automatically allows for the possibility that multiple fermionic

zero-modes are excited. Such excitations are represented by wedge products of anti-

holomorphic forms, with the antisymmetric nature of the wedge product reflecting

the fermionic nature of the spinor zero-modes.
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3.5.5 Supersymmetry

The effective action is invariant under the N = 4 supersymmetry transformations [30]

δ1Z
α = εζα δ1ζ

α = iεŻα

δ1Z
α

= εζα δ1ζ
α = iεŻ

α

(3.100a)

δIZα = iεζα δIζα = εŻα

δIZ
α

= −iεζα δIζα = − εŻ
α

(3.100b)

δJZα = εJ α
βζβ δJ ζα = −iεJ α

βŻ
β

− εΓα
βγJ β

δζ
δζγ

δJZ
α

= εJ α
βζβ δJ ζα = −iεJ α

βŻβ − εΓα
βγ
J β

δζ
δζγ (3.100c)

δKZα = εKα
βζβ δKζα = −iεKα

βŻ
β

− εΓα
βγKβ

δζ
δζγ

δKZ
α

= εKα
βζβ δKζα = −iεKα

βŻβ − εΓα
βγ
Kβ

δζ
δζγ (3.100d)

The corresponding supercharges are

Q1 = P̃αζα + P̃αζα, QJ = P̃αJ α
αζα + P̃αJ α

αζα,

QI = iP̃αζα − iP̃αζα, QK = P̃αKα
αζα + P̃αKα

αζα. (3.101)

They generate the supersymmetry transformations via Dirac brackets, and they obey

the N = 4 supersymmetry algebra. The supersymmetry transformations square

to i times a time-derivative, δ2 = i∂t, and the Hamiltonian is once more H0 =

− i
2
{Q1,Q1}DB = − i

2
{QIi

,QIi
}DB.
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It is now convenient to define new linear combinations of the supercharges by

Q̃ =
i

2
(Q1 + iQI) = iP̃αζα, (3.102a)

Q̃∗ = − i

2
(Q1 − iQI) = −iP̃αζα, (3.102b)

Q̃J =
i

2
(QJ − iQK) = iP̃αJ α

αζα, (3.102c)

Q̃∗
J = − i

2
(QJ + iQK) = −iP̃αJ α

αζα. (3.102d)

The only non-vanishing brackets of these supercharges are

{
Q̃, Q̃∗

}
DB

=
{
Q̃J , Q̃∗

J
}

DB
= iHeff. (3.103)

The supercharges Q̃ and Q̃∗ are quantised, using the quantisation procedures given

above, as

Q̃ = iP̃αζα 7→ θα ∧∇α = ∂, (3.104)

Q̃∗ = −iP̃αζα 7→ −ι(θα)∇α = ∂
†
, (3.105)

where ∂ and ∂
†

are the Dolbeault operator and its adjoint operator respectively.

For the remaining supercharges, we find that they are quantised as [38]

Q̃J = iP̃αJ α
αζα 7→ J (θα) ∧∇α = J ∂J −1 = ∂J , (3.106)

Q̃∗
J = −iP̃αJ α

αζα 7→ −ι
(J (θα)

) ∧∇α = J ∂†J −1 = ∂
†
J , (3.107)

where ∂J and ∂
†
J are the twisted Dolbeault operator and its adjoint respectively (see

appendix A.2 for more details).

The quantisation of the Hamiltonian as the Dirac bracket of the supercharges gives

once more half the Laplacian [12]:

H0 = −i
{
Q̃, Q̃∗

}
DB

7→ ∂ ∂
†
+ ∂

†
∂ =

1

2
∆. (3.108)

3.5.6 The action of the complex structures

The complex structure I acts on anti-holomorphic one-forms by multiplication with

the complex number i, but the complex structures J and K map forms which are
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anti-holomorphic with respect to I to holomorphic forms. This should be contrasted

with the maps Î, Ĵ and K̂ acting on the spinor zero-modes in the original field theory

(3.15). We can implement these maps on the anti-holomorphic forms on the moduli

space, using their relation to I, J and K given in section 3.2.3, equations (3.27):

Î = I, Ĵ = −J and K̂ = −K. This way we obtain again an (anti-linear) action

of the quaternion algebra on the space of anti-holomorphic forms, this time on the

moduli space.
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Chapter 4

N = 4 Supersymmetric Monopoles

In this chapter we study N = 4 supersymmetric monopoles. As in the bosonic and

N = 2 supersymmetric cases, we will first review BPS monopoles, the zero-modes

of the theory and the moduli space approximation [9, 11]. Then we will discuss the

quantisation of the effective action of the N = 4 supersymmetric model (section 4.4).

Following Weinberg and Yi [29], we identify the Hilbert space of states with the

space of forms on the moduli space. However, we choose a slightly different quanti-

sation prescription that identifies two independent (but equivalent) sets of fermionic

zero-modes with holomorphic and anti-holomorphic forms, analogous to the quanti-

sation procedure of section 3.5. Weinberg and Yi mix up the two sets of fermionic

zero-modes in their quantisation prescription, obscuring their independence. As we

will see in chapter 5, our quantisation prescription allows us to define a natural angu-

lar momentum operator as a differential operator acting on forms, that can be applied

to both N = 2 and N = 4 supersymmetric monopoles.

As in the N = 2 supersymmetric model, we construct the differential operators

corresponding to the supercharges, and interpret them as (twisted) Dolbeault opera-

tors and their adjoints. As mentioned before, the identification of all the supercharges

is essential for finding all the states in a supermultiplet. We will illustrate this in the

chapters 6 and 7.
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4.1 N = 4 supersymmetric BPS monopoles

The extension of the Yang-Mills-Higgs Lagrangian (2.13) with N = 4 supersymmetry

is given by

L =

∫
d3x

(
− 1

4
F µν · Fµν +

1

2
DµSı ·DµSı +

1

2
DµP ·DµP

− e2

4

(|| [Sı, S] ||2 + 2|| [Sı, P] ||2 + || [Pı, P] ||2
)

+
i

2
ψr · γµDµψr +

e

2
ψr ·

(
αı

rs ad Sı − iβ
rsγ

5 ad P

)
ψs

)
. (4.1)

Here Sı are three scalar fields, P are three pseudo-scalar fields, and ψr are four

Majorana spinors. The indices have the following ranges: ı, , . . . ∈ {1, 2, 3} and

r, s, . . . ∈ {1, 2, 3, 4}. The chiral operator γ5 is again defined by γ5 = iγ0γ1γ2γ3. αı

and β are 4× 4 real anti-symmetric matrices, satisfying

[αı, α] = − 2εıκακ, {αı, α} = − 2δij14,

[βı, β] = − 2εıκβκ, {βı, β} = − 2δij14,

[αı, β] = 0. (4.2)

An explicit representation of these matrices is given by the following.

α1 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0




β1 =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0




α2 =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0




β2 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



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α3 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




β3 =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0




(4.3)

The supersymmetries of the Lagrangian (4.1) are given by

δAµ = iεrγµψr, (4.4a)

δSı = −εrα
ı
rsψs, (4.4b)

δP = i εrγ5β

rsψs, (4.4c)

δψr =
(1

2
γµγνFµνδrs − iγµDµSıα

ı
rs + γµγ5DµPβ


rs

− e

2
εıκ [Sı, S] α

κ
rs − ieγ5 [Sı, P] α

ı
rtβ


ts −

e

2
εıκ [Pı, P] β

κ
rs

)
εs, (4.4d)

where εr are four Majorana spinor paramaters. These supersymmetries are most

easily exhibited by deriving the Lagrangian and its supersymmetries from an N = 1

supersymmetric Lagrangian in 10 dimensions by dimensional reduction [31, 32] (see

appendix B.2 for details). Under the dimensional reduction, the rotational symmetry

of the extra dimensions gives rise to an SU(4) internal symmetry of the Lagrangian

(4.1) in four dimensions. As in the bosonic and N = 2 supersymmetric cases, the

symmetry breaking is induced by choosing appropriate boundary conditions on the

fields at infinity:

lim
r→∞

(Sı · Sı + P · P) = a2. (4.5)

The kinetic and potential energy for the N = 4 supersymmetric model are

K =

∫
d3x

(
− ||1

2
F0i||2 +

1

2
||D0Sı||2 +

1

2
||D0P||2 +

i

2
ψr · γ0D0ψr

)
, (4.6)

V =

∫
d3x

( 1

4
F ij · Fij +

1

2
||DiS||2 +

1

2
||DiP||2

− e2

4

(|| [Sı, S] ||2 + 2|| [Sı, P] ||2 + || [Pı, P] ||2
)

+
i

2
ψr · γiDiψr − e

2
ψr ·

(
αı

rs ad Sı − iβ
rsγ

5 ad P

)
ψs

)
. (4.7)
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The BPS monopoles are defined, as before, to have minimal energy, which implies

again that they are static. To find the zero-modes, we first use the internal SU(4)

symmetry of the Lagrangian, so that we may assume that only the scalar field S3 has

a non-zero vacuum expectation value. (Once more, a parity-invariant vacuum would

already require that the vacuum expectation values of the pseudoscalar fields P are

zero. We can then still use the internal symmetry of the Lagrangian to assume that

the vacuum expectation value of the Sı fields lies in the S3 direction.) In this case

S3 = Φ takes on the role of the Higgs field of the bosonic model, and it must satisfy

the Bogomol’nyi equations (2.29). To minimise the potential energy (4.7), ψ must

then satisfy the following Dirac equation in the presence of the monopole background

γiDiψr + ieγ4α
3
rs ad S3ψs = 0. (4.8)

where the Euclidean γ-matrices are defined in (3.8). We now define

ξ+ = ψ1 − iψ2, ξ− = ψ3 − iψ4, (4.9)

which are eigenstates of α3 in the representation (4.3). Writing

ξ =


 ξ+

ξ−


 , (4.10)

the Dirac equation (4.8) becomes

D/ξ ≡ γiDiξ =


 γiDi ξ

+

γiDi ξ
−


 = 0, (4.11)

where Di is the covariant derivative in Euclidean space defined in equation (2.31). We

see that ξ+ and ξ− both obey the same Dirac equation as ψ in the N = 2 supersym-

metric model, equations (3.9). Therefore, they both independently correspond to a

set of fermionic zero-modes equivalent to those of the N = 2 supersymmetric model.

4.2 Zero-modes

The bosonic zero-modes of this model are again exactly the same as those of the purely

bosonic model. The fermionic zero-modes are the solutions of the Dirac equation
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(4.11), and both ξ+ and ξ− have the same form as the zero-modes ψ in the N = 2

supersymmetric model (see section 3.2),

ξ± = ξ±a λa
±, (4.12a)

with

ξ±a = γiδaWi


 0

χ±


 =


 eiδaWi χ±

0


 =


 wa χ±

0


 , (4.12b)

where the bosonic zero-mode wa was defined by equation (2.64), χ± are fixed, nor-

malised, commuting two-component spinors, and the λa
± are real valued Grassmann

numbers.

Again, the complex structures act on the fermionic zero-modes (4.12) via equation

(2.61) or (2.66). Using hats to distinguish the action of the complex structures on

fermionic zero-modes from the action of the complex structures on bosonic zero-modes,

we have

Îi(ξ
±
a ) =


 Ii(wa)χ

±

0


 =


 −waeiχ

±

0


 . (4.13)

We see that we may choose χ± such that there is a complex structure Î for which

Î(ξ±a ) = ±iξ±a . (4.14)

For example, if we choose

χ+ =


 1

0


 , χ− =


 0

1


 , (4.15)

then

Î = Î3. (4.16)

Having made a choice, and fixed χ+ and χ−, the remaining two complex structures

that make up the hyperkähler structure, Ĵ and K̂ act again anti-linearly, as in the

N = 2 supersymmetric model.

The vector space V of fermionic zero-modes is now a 4k-dimensional complex

vector space, which can also be viewed as an 8k-dimensional real vector space.
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With the choice of signs given in equation (4.14), the fermionic zero-modes ξ±a

(4.12b) can be interpreted as forms on R4, analogous to the interpretation of fermionic

zero-modes as anti-holomorphic forms in the N = 2 supersymmetric model. ξ+
a and

ξ−a are static spinors in (3 + 1)-dimensional space-time. Extending space-time to

R × R4, as we did in section 2.3, we may also view them as spinors on R4 that are

independent of the fourth dimension. These spinors can now be identified with (anti-)

holomorphic forms. For example, we can identify the fermionic zero-modes ξ+
a with

anti-holomorphic forms υa, and ξ−a with holomorphic forms τa on R4 by

ξ+
a =




a1

a2

0

0




∼ υa = a1α1 + a2α2, (4.17a)

ξ−a =




b1

b2

0

0




∼ τa = b1α1 + b2α2, (4.17b)

where we use the basis α1 = 1√
2
(dx3 + idx4) and α2 = 1√

2
(dx1 + idx2) of holomorphic

forms (with respect to the complex structure I) on R4. This identification agrees

with equation (4.14).

The identification of ξ+
a with anti-holomorphic forms is completely independent

of the identification of ξ−a with holomorphic forms. The relationship between an

anti-holomorphic form and its complex conjugate is a natural relationship from a

geometrical point of view, but the corresponding relationship between fermionic zero-

modes depends on the explicit choice of the identifications (4.17a) and (4.17b).

The complex structures I,J ,K act naturally on the space of all differential forms,
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and hence on this basis. One finds (see also appendix A)

I(α1) = −iα1, J (α1) = −iα2, K(α1) = α2,

I(α2) = −iα2, J (α2) = iα1, K(α2) = −α1, (4.18a)

I(α1) = iα1, J (α1) = iα2, K(α1) = α2,

I(α2) = iα2, J (α2) = −iα1, K(α2) = −α1. (4.18b)

These (linear) actions of the complex structures on forms are related to the (linear)

action of Î, and the (anti-linear) actions of Ĵ and K̂ on spinors defined in (4.13) in

the same was as in section 3.2.3. Using the identification (4.17), we pull the maps Î,

Ĵ and K̂ back to maps on forms, and we denote these pull-backs by the same letters

Î, Ĵ and K̂. We find, for example,

Ĵ (ξ−a ) =





 b2 b1

−b1 b2


 iσ1


 0

1




0

0




=




ib2

−ib1

0

0




. (4.19)

Under the identification (4.17) we therefore have, for example,

Ĵ (ξ−a ) ∼ Ĵ (τa) := ib2α1 − ib1α2 = −J (τa). (4.20)

We may again summarise the action of the complex structures on forms by

Î = I, Ĵ = −J , K̂ = −K, (4.21)

as we did in the N = 2 supersymmetric case.

4.3 The moduli space approximation

Once more we come to the moduli space approximation. As before, we must param-

eterise the lowest energy states with moduli space parameters, and the effective La-

grangian can be found by inserting this parameterisation into the original Lagrangian

of the model.
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4.3.1 Effective Lagrangian

We view the space of fermionic zero-modes as an 8k-dimensional real vector space,

we parameterise the fermionic zero-modes using equations (4.12) with real valued λa
±,

which we combine into the two-component Grassmann function

λa =


 λa

+

λa
−


 . (4.22)

Inserting parametrisation (4.12) into the Lagrangian (4.1) and expanding to lowest

non-trivial order, Blum [11] has found (see also Gauntlett [9], and Weinberg and Yi [29])

Leff =
1

2
gabẊ

aẊb +
i

2
gab(λ

a)T (Dtλ)b − 1

8
Rabcd(λ

a)T λb(λc)T λd − 4πa

e
b(~k). (4.23)

Compared to the effective Lagrangian of the N = 2 supersymmetric monopole, we

now have two copies of the fermionic term,

i

2
gab(λ

a)T (Dtλ)b =
i

2
gabλ

a
+Dtλ

b
+ +

i

2
gabλ

a
−Dtλ

b
−, (4.24)

and an extra term involving the curvature of the metric, with components Rabcd. The

curvature term provides a coupling between the fermionic variables λa
+ and λa

−.

4.3.2 Supersymmetry

The effective action corresponding to the effective Lagrangian (4.23) is invariant under

N = 8 supersymmetry transformations [29],

δ1X
a = ελa

δ1λ
a = −iẊaσ2ε− ελbΓa

bcλ
c, (4.25)

δIj
Xa = ε (Ij)

a
bλ

b

δIj
λa = i(Ij)

a
bẊ

bσ2ε− ε(Ij)
c
bλ

bΓa
cdλ

d, (4.26)

where ε are two-component Grassmann parameters, and ε = εT σ2. They are again

reminiscent of the supersymmetries of the original field theory. The corresponding

supercharges are

Q±
1 = p̃aλ

a
±, Q±

Ii
= p̃b(Ii)

b
aλ

a
±. (4.27)
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The supercharges generate the supersymmetry transformations via Dirac brackets,

and they obey the supersymmetry algebra

{
Q±
1 , Q±

1

}
DB

= 2iH0,
{

Q±
Ii

, Q±
Ij

}
DB

= δij 2iH0, (4.28)

and all other brackets vanishing.

4.4 Quantisation using forms on the moduli space

The quickest route towards quantisation of the effective Lagrangian (4.23) is to start

again by introducing an orthonormal frame to parameterise the fermionic zero-modes

as in (3.30). The effective Lagrangian can then be written as

Leff =
1

2
gabẊ

aẊb +
i

2
δAB(λA)T (Dtλ)B − 1

8
Rabcd(λ

a)T λb(λc)T λd − 4πa

e
b(~k), (4.29)

where

λA
± = eA

aλ
a
±. (4.30)

4.4.1 Effective Hamiltonian

The curvature term has no influence on the canonical momenta, so that the canonical

momenta of the effective Lagrangian (4.29) are

pa =
∂Leff
∂Ẋa

= gabẊ
b +

i

2
ωaAB(λA)T λB, (4.31)

π±A =
∂Leff
∂λ̇A±

= − i

2
δABλB

±, (4.32)

Again, the expression for the fermionic momenta leads to constraints, and we will

have to replace Poisson brackets by Dirac brackets.

The effective Hamiltonian is given by

Heff = Ẋapa + λ̇A
+π+

A + λ̇A
−π−A − Leff

= H0 +
4πa

e
b(~k), (4.33)
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where we have defined

H0 =
1

2
gabp̃ap̃b +

1

8
Rabcd(λ

a)T λb(λc)T λd, (4.34)

and

p̃a = pa − i

2
ωaAB(λA)T λB = gabẊ

b. (4.35)

4.4.2 Quantisation

Having used an orthonormal frame to define the fermionic variables λA, the Dirac

brackets of the bosonic and fermionic variables decouple, as for the N = 2 supersym-

metric monopoles (see section 3.4.2). The only non-vanishing Dirac brackets are

{
pa, X

b
}

DB
= δb

a,
{
λA

+, λB
+

}
DB

= iδAB,
{
λA
−, λB

−
}

DB
= iδAB, (4.36)

which can be quantised as follows,

{
pa, X

b
}

DB
= δb

a 7→
[
p̂a, X̂

b
]

= −iδb
a (4.37)

{
λA

+, λB
+

}
DB

= iδAB 7→
{

λ̂A
+, λ̂B

+

}
= δAB (4.38)

{
λA
−, λB

−
}

DB
= iδAB 7→

{
λ̂A
−, λ̂B

−
}

= δAB (4.39)

We may interpret the Hilbert space of states generated by the λA
+ and λA

− as the

space of two spinors on the moduli space, just as the λA in section 3.4 gave rise to a

Hilbert space of states corresponding to a single spinor on the moduli space. However,

this is not a convenient interpretation of the quantum states. We are interested in a

quantisation in terms of forms on the moduli space. In their review paper Weinberg

and Yi [29] describe an interpretation of quantum states as forms on the moduli space.

In particular, they define ϕa = 1√
2

(
λa

+ + iλa
−
)
, which is then quantised as dXa∧.

The supercharges can then be interpreted as the exterior derivative, its adjoint, and

the related operators obtained via a twisting with the complex structures. This is

a valid quantisation, although it obscures the relationship between the λA in the

N = 2 theory, with the λA
± in the N = 4 theory: we would like to quantise the
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N = 4 supersymmetric model in terms of all forms on the moduli space, in such a

way that the λA
+ correspond to anti-holomorphic forms, and the λA

− correspond to

holomorphic forms, in accordance with equation (4.14). To this end, we introduce

complex coordinates once more.

Complex coordinates

We use complex coordinates Z, as defined in equation (3.67), and we define

ζA
± = λA

± + iλA+2k
± , ζA

± = λA
± − iλA+2k

± , (4.40)

We write the first two terms of the effective Lagrangian (4.29) in terms of these

variables, and find

Leff = gαβŻαŻ
β

+ iδAB(ζA)T
(
Dtζ

B
)− 1

8
Rabcd(λ

a)T λb(λc)T λd − 4πa

e
b(~k). (4.41)

The curvature term has no influence on the canonical momenta, for which we find

Pα =
∂Leff
∂Żα

= gαβŻ
β

+ iωαAC(ζA)T ζC , (4.42)

Pα =
∂Leff

∂Ż
α = gβαŻβ + iωαAC(ζA)T ζC , (4.43)

Π±
A =

∂Leff
∂ζ̇A±

= −iδBAζB
± , (4.44)

Π±
A

=
∂Leff
∂ζ̇A±

= 0. (4.45)

The non-vanishing Dirac brackets are then

{
Pα, Zβ

}
DB

= δβ
α,

{
Pα, Z

β
}

DB
= δβ

α,
{

ζA
± , ζB

±
}

DB
= iδAB. (4.46)

We quantise the Dirac brackets as usual, by

{
Pα, Zβ

}
DB

= δβ
α 7→ [

Pα, Zβ
]

= −iδβ
α (4.47a)

{
Pα, Z

β
}

DB
= δβ

α 7→
[
Pα, Z

β
]

= −iδβ
α (4.47b)

{
ζA
+ , ζB

+

}
DB

= iδAB 7→
{

ζA
+ , ζB

+

}
= δAB (4.47c)

{
ζA
− , ζB

−
}

DB
= iδAB 7→

{
ζA
− , ζB

−
}

= δAB (4.47d)
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We can now interpret the Hilbert space of states as the space of square-integrable

forms on M. The bosonic coordinates act by multiplication and the bosonic momenta

are represented as derivatives,

Pα 7→ −i∂α Pα 7→ −i∂α (4.48)

while the quantisation of fermions is given by

ζA
+ 7→ θA∧ ζA

+ 7→ ι(θA) (4.49)

ζA
− 7→ θA∧ ζA

− 7→ ι(θA) (4.50)

where ι(θA)(θB) = δAB, ι(θA)(θB) = δAB and ι(θA)(θB) = ι(θA)(θB) = 0.

The covariant momenta are

P̃α = Pα − iωαAC(ζA)T ζC = gαβŻ
β

=
1

2
(p̃α − ip̃α+2k) , (4.51)

P̃α = Pα − iωαAC(ζA)T ζC = gαβŻβ =
1

2
(p̃α + ip̃α+2k) , (4.52)

and they are quantised as before, as

P̃α = Pα − iωαAC(ζA)T ζC 7→ −i∇α, (4.53)

P̃α = Pα − iωαAC(ζA)T ζC 7→ −i∇α. (4.54)

The Hamiltonian becomes, in terms of the covariant momenta,

H0 = gαβP̃αP̃β +
1

8
Rabcd(λ

a)T λb(λc)T λd, (4.55)

We define complex linear combinations of the supercharges, analogous to those in

equations (3.102), by

Q̃± =
i

2
(Q±

1 + iQ±
I )

=
i

2

(
p̃α(λα

± + iIα
α+2kλ

α+2k
± ) + p̃α+2k(λ

α+2k
± + iIα+2k

αλα
±)

)

=
i

2

(
p̃α(λα

± − iλα+2k
± ) + p̃α+2k(λ

α+2k
± + iλα

±)
)

=
i

2
(p̃α + ip̃α+2k) (λα

± − iλα+2k
± )

= iP̃αζα
±, (4.56a)
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(Q̃±)∗ = − i

2
(Q±

1 − iQ±
I ) = −iP̃αζα

±, (4.56b)

Q̃±
J =

i

2
(Q±

J − iQ±
K) = iP̃αJ α

αζα
±, (4.56c)

(Q̃±
J )∗ = − i

2
(Q±

J + iQ±
K) = −iP̃αJ α

αζα
±. (4.56d)

From (4.28) we find that the algebra they satisfy has the following non-vanishing

Dirac brackets

{
Q̃±, (Q̃±)∗

}
DB

= iH0,
{
Q̃±
J , (Q̃±

J )∗
}

DB
= iH0, (4.57)

The supercharges are quantised as [9, 38]

Q̃+ = iP̃αζα
+ 7→ θα ∧∇α = ∂, (4.58)

(Q̃+)∗ = −iP̃αζα
+ 7→ −ι(θα)∇α = ∂

†
, (4.59)

Q̃+
J = iP̃αJ α

αζα
+ 7→ J (θα) ∧∇α = J ∂J −1 = ∂J , (4.60)

(Q̃+
J )∗ = −iP̃αJ α

αζα
+ 7→ −ι

(J (θα)
) ∧∇α = J ∂†J −1 = ∂

†
J , (4.61)

and

(Q̃−)∗ = iP̃αζα
− 7→ θα ∧∇α = ∂, (4.62)

Q̃− = −iP̃αζα
− 7→ −ι(θα)∇α = ∂†, (4.63)

(Q̃−
J )∗ = iP̃αJ α

αζα
− 7→ J (θα) ∧∇α = J ∂J −1 = ∂J , (4.64)

Q̃−
J = −iP̃αJ α

αζα
− 7→ −ι (J (θα)) ∧∇α = J ∂

†J −1 = ∂†J , (4.65)

Finally, the Hamiltonian is quantised as

H0 7→
{
Q̃+, (Q̃+)∗

}
= ∂ ∂

†
+ ∂

†
∂ =

1

2
∆. (4.66)

The action of the complex structures

As in section 3.5.6, the action of the complex structures Î, Ĵ and K̂ on the spinor

zero-modes in the original field theory (3.15) can be implemented as an action on
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the forms on the moduli space, using their relation to I, J and K given in section

4.2, equations (4.21): Î = I, Ĵ = −J and K̂ = −K. This way we obtain again

an (anti-linear) action of the quaternion algebra on the space of forms on the moduli

space, that respects the holomorphicity of those forms.

Summary

The discussion and results in this chapter can be summarised as follows. The moduli

space approximation of the N = 4 supersymmetric Lagrangian in (3+1)-dimensions

leads to an N = 8 supersymmetric σ-model on the moduli space. The quantisation

of this model can be done in terms of general differential forms on the moduli space

and the supercharges corresponding to the N = 8 supersymmetries correspond to the

Dolbeault operator and the J -twisted Dolbeault operator, their complex conjugates,

and all of their adjoints. The effective Hamiltonian in this geometrical interpretation

is half the Laplacian acting on these differential forms.
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Chapter 5

Angular Momentum

The spin operators for the fermionic zero-modes of the N = 2 and N = 4 supersym-

metric SU(2) monopole of charge 1, derived from the field theory by Osborn [39], are

given by

~S =
1

2

∑

n,s,s′
an

s
†(~σ)ss′a

n
s′ , (5.1)

where n indicates the fermion species, and s and s′ indicate the spin state of the

fermion zero-mode (i.e. up or down). In the case of N = 2 supersymmetry there is

only one fermion species. For N = 4 supersymmetric monopoles there are two fermion

species and n ∈ {1, 2}. The spin operator acts on the Hilbert space generated by the

an
s
† acting on a vacuum state

∣∣∣0
〉
, defined by an

s

∣∣∣0
〉

= 0.

The states of the N = 2 supersymmetric monopole multiplet can be grouped into

two singlets and a doublet under the action of the spin operator,

2 singlets:
∣∣∣0

〉
and

∣∣∣↑↓
〉

,

1 doublet:
(∣∣∣↑

〉
,
∣∣∣↓

〉)
,

where

∣∣∣0
〉

=
∣∣∣0

〉
,

∣∣∣↑↓
〉

= a†↓a
†
↑

∣∣∣0
〉

, (5.2a)

∣∣∣↑
〉

= a†↑

∣∣∣0
〉

,
∣∣∣↓

〉
= a†↓

∣∣∣0
〉

. (5.2b)
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The N = 4 multiplet consists of five singlets, four doublets and a triplet,

5 singlets:
∣∣∣0

0

〉
,

∣∣∣↑↓
0

〉
,

1√
2

(∣∣∣↑↓
〉
−

∣∣∣↓↑
〉)

,
∣∣∣ 0

↑↓

〉
,

∣∣∣↑↓↑↓
〉

4 doublets:
(∣∣∣↑

0

〉
,
∣∣∣↓

0

〉)
,

(∣∣∣0

↑

〉
,
∣∣∣0

↓

〉)
,

(∣∣∣↑↓↑
〉

,
∣∣∣↑↓↓

〉)
,

(∣∣∣ ↑↑↓
〉

,
∣∣∣ ↓↑↓

〉)

1 triplet:

(∣∣∣↑↑
〉

,
1√
2

(∣∣∣↑↓
〉

+
∣∣∣↓↑

〉)
,
∣∣∣↓↓

〉)

where the two entries in the kets correspond to the two fermion species n = 1, 2,

analogous to the states (5.2). For example,

∣∣∣↑
0

〉
= a1

↑
†
∣∣∣0

〉
,

∣∣∣↑↓↓
〉

= a2
↓
†
a1
↓
†
a1
↑
†
∣∣∣0

〉
. (5.3)

In this chapter, we would like to translate Osborn’s result into geometrical lan-

guage, where we describe the quantum states corresponding to fermionic zero-modes

with (anti-)holomorphic forms on the moduli space. We would like to define a differ-

ential operator acting on forms, which corresponds to the (spin) angular momentum

operator acting on zero-modes [38].

In general, the spin operator for higher charge monopoles is not well defined since

it is not unambiguously possible to separate orbital angular momentum from spin,

due to the extended nature of monopoles. Therefore we have to look at the total

angular momentum operator ~J instead. However, in special cases (in particular for

the charge-1 monopole, and for well separated monopoles) we expect that a spin

operator, corresponding to ~S in equation (5.1), could reappear. This would allow

us to determine the spin of individual (well separated) monopoles, which should be

possible if we are to compare monopole scattering with the scattering of electrically

charged particles in the dual theory.

We will explicitly construct a spin-operator for the charge-1 monopole in sec-

tion 6.5, and confirm that it agrees with Osborn’s spin operator (5.1). We will discuss

some of the issues involved in computing spins of well-separated monopoles in our

outlook at the end of this thesis.
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5.1 The total angular momentum operator on the

moduli space

The total angular momentum operator ~J should act on quantum states by an in-

finitesimal SU(2) or SO(3) action. It obeys the angular momentum algebra

[Ji, Jj] = i εijkJk, (5.4)

and acts via a Leibniz rule on tensor products of states. We expect ~J to contain

orbital and spin contributions, but, as explained above, neither of these needs to

be separately well-defined. It would be natural to guess that Ji acts by rotating

the spatial coordinates through the Lie derivative LYi
, where the vector fields Yi

generate such rotations. To agree with equation (5.4), these vector fields must satisfy

[Yi, Yj] = εijkYk. However, we want the expression for ~J to respect our decomposition

of vectors and forms into their holomorphic and anti-holomorphic parts, because in

the N = 2 theory only the (0, p)-forms are identified with fermionic zero-modes.

Furthermore, in the N = 4 theory, the geometrical interpretation of the two species

of fermionic zero-modes as holomorphic and anti-holomorphic forms are independent,

and an angular momentum operator should not mix between the two. Therefore we

require that

[Ji, ad Ij] = 0. (5.5)

Here we use the adjoint action of the complex structure, ad Ij, which is the extension

of the complex structure that acts on p-forms following the Leibniz rule [40]. This

means that the Lie derivative by itself cannot be the angular momentum operator,

since Atiyah and Hitchin [3] have found that the complex structures are rotated into

each other through the SO(3) action: LYi
(Ij) = εijkIk. For the action on p-forms,

this becomes

[LYi
, ad Ij] = εijk ad Ik. (5.6)

To correct for this unwanted rotation of the complex structures, we note that the

action of the complex structures generate an SU(2) action on the bundle of forms
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themselves [40, 41],

[ad Ii, ad Ij] = 2εijk ad Ik, (5.7)

and therefore we define the operator Ji by [38]

Ji = i

(
LYi

− 1

2
ad Ii

)
. (5.8)

It obeys the Leibniz rule and the angular momentum algebra (equation (5.4)), and

it leaves the complex structures invariant (equation (5.5)). In particular, the three

generators Ji map (anti-)holomorphic forms to (anti-)holomorphic forms, even though

J1 and J2 are made up of two operators (LY1 and ad I1, and LY2 and ad I2 respectively)

which, individually, mix up anti-holomorphic forms and holomorphic forms.

5.2 Supercharges and angular momentum

The supercharges can be used to create spin states from bosonic states, and therefore

they correspond to spin-1
2

operators. As such, the angular momentum operators must

obey the appropriate algebra with the supercharges. We find that they do, and that

the Dolbeault operators ∂ and ∂J increase the total angular momentum of states

(with respect to J3) by 1
2
, while ∂J and ∂ decrease it by 1

2
. The supercharges are

therefore indeed spin-1
2

operators.

To derive the commutators of the total angular momentum operators Ji with the

Dolbeault operators, we first need to compute some basic geometrical identities.

5.2.1 Geometrical identities

In this subsection (only) we do not use Einstein’s summation convention; repeated

indices are not summed over, unless explicitly stated using the summation symbol
∑

.

We start off by writing the (twisted) Dolbeault operators in terms of (twisted)

exterior derivatives [40, 41]

∂ =
1

2
(d + idI), ∂J =

1

2
(dJ + idK),

∂ =
1

2
(d− idI), ∂J =

1

2
(dJ − idK), (5.9)
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where the twisted exterior derivative1 is defined by dIi
= IidIi

−1. To compute the

brackets of Ji with the (twisted) Dolbeault operators, using (5.9) and definition (5.8),

we need to compute the brackets of ad Ii and LYi
with the complex structures and

the (twisted) exterior derivatives.

First of all, we compute the brackets between ad Ii and the complex structures.

[ad Ii, Ij] = [ad Ii, (Ij ⊗ Ij ⊗ . . .⊗ Ij)]

= ([ad Ii, Ij]⊗ Ij ⊗ . . .⊗ Ij) + (Ij ⊗ [ad Ii, Ij]⊗ Ij ⊗ . . .⊗ Ij)

+ . . . + (Ij . . .⊗ Ij ⊗ [ad Ii,⊗Ij])

=
∑

k

2εijk

(
(Ik ⊗ Ij ⊗ . . .⊗ Ij) + (Ij ⊗ Ik ⊗ Ij ⊗ . . .⊗ Ij)

+ . . . + (Ij . . .⊗ Ij ⊗ Ik)
)

=





0 if i = j

2 ad IiIj if i 6= j

(5.10)

= 2(1− δij) ad(Ii)Ij

Similarly we have

[LYi
, Ij] =





0 if i = j,

ad(Ii)Ij if i 6= j.

(5.11)

Since the action of I−1
j on p-forms is given by I−1

j = (−1)pIj, we also have

[
ad Ii, I−1

j

]
=





0 if i = j,

2 ad(Ii)I−1
j if i 6= j,

(5.12)

[LYi
, I−1

j

]
=





0 if i = j,

ad(Ii)I−1
j if i 6= j.

(5.13)

1Viewing the moduli space as a Kähler manifold (M~k, I) we have dI = IdI−1 = dc.
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To compute the bracket of a complex structure with the exterior derivative, we

first write the latter in terms of Dolbeault operators with respect to this complex

structure. Denoting the Dolbeault operators corresponding to the complex structure

Ii by ∂i and ∂i, we have

[ad Ij, ∂j] = −i∂j, (5.14)

[
ad Ij, ∂j

]
= i∂j, (5.15)

and therefore

[ad Ii, d] =
[
ad Ii, ∂i + ∂i

]
= −i

(
∂i − ∂i

)
= dIi

. (5.16)

This means that the twisted exterior derivatives can be obtained from the ordinary

exterior derivative by taking the bracket with the adjoint action of the complex struc-

tures. We can now compute

[
ad Ii, dIj

]
=

[
ad Ii, IjdI−1

j

]

= [ad Ii, Ij] dI−1
j + Ij [ad Ii, d] I−1

j + Ijd
[
ad Ii, I−1

j

]

= 2(1− δij) ad IiIjdI−1
j + IjIi d I−1

i I−1
j − 2(1− δij)IjdI−1

j ad Ii

= −δijd−
∑

k

εijkdIk
+ 2(1− δij)

[
ad Ii, dIj

]

=




−d if i = j,

−εijkdIk
+ 2

[
ad Ii, dIj

]
if i 6= j.

Solving the latter equation for the case i 6= j we find

[
ad Ii, dIj

]
=




−d if i = j,

∑
k εijkdIk

if i 6= j,

which can be rewritten as

[
ad Ii, dIj

]
= −δijd +

∑

k

εijkdIk
. (5.17)
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The latter equation, together with equation (5.16), suggests that we can think of the

commutator with the adjoint action of a complex structure as a twisting operator for

exterior derivatives on a hyperkähler manifold: when d is either d or dIi
,

[ad Ii, d] = IidI−1
i . (5.18)

Since the Dolbeault operators can be written in terms of d and dIi
(as in equation

(5.9)), this relation holds for all Dolbeault operators d as well.

For the Lie-derivative part of the angular momentum operator, we know that

[LYi
, d] = 0, and we compute

[LYi
, dIj

]
=

[LYi
, IjdI−1

j

]

=
(
[LYi

, Ij] dI−1
j + Ijd

[LYi
, I−1

j

])

= (1− δij)
(
ad IiIjdI−1

j + Ijd ad IiI−1
j

)

= (1− δij)
(
ad IiIjdI−1

j − IjdI−1
j ad Ii

)

= (1− δij)
[
ad Ii, dIj

]

=
∑

k

εijkdIk
. (5.19)

5.2.2 Lie brackets with the angular momentum operator

We are now ready to compute the Lie brackets of the angular momentum operator

with the (twisted) exterior derivatives and Dolbeault operators. First of all,

[Ji, d] = i

[
LYi

− 1

2
ad Ii, d

]
= − i

2
dIi

, (5.20)

[
Ji, dIj

]
= i

[
LYi

− 1

2
ad Ii, dIj

]
= − i

2

(
−δijd−

∑

k

εijkdIk

)
. (5.21)

We define raising and lowering operators as usual by

J± = J1 ± iJ2, (5.22)
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and the algebra satisfied by the angular momentum operators and the Dolbeault

operators is the following:

[
J3, ∂

]
=

1

2
∂,

[
J3, ∂J

]
= −1

2
∂J ,

[
J+, ∂

]
= 0,

[
J+, ∂J

]
= i∂,

[
J−, ∂

]
= −i∂J ,

[
J−, ∂J

]
= 0, (5.23)

and by complex conjugation

[J3, ∂] = −1

2
∂, [J3, ∂J ] =

1

2
∂J ,

[J−, ∂] = 0, [J−, ∂J ] = i∂,

[J+, ∂] = −i∂J , [J+, ∂J ] = 0. (5.24)

We see that indeed the action of ∂ or ∂J increases the angular momentum of a state

with respect to J3 by 1
2
, whereas ∂J or ∂ decreases it by 1

2
. Finally, using d† = −∗ d∗

and [ ~J, ∗] = 0, we have

[ ~J, d†] = − ∗ [ ~J, d ]∗ =
(
[ ~J, d ]

)†
. (5.25)

Explicitly, therefore, we find that the (twisted) adjoint Dolbeault operators and the

angular momentum operators satisfy the following algebra, as expected.

[
J3, ∂

†]
= −1

2
∂
†
,

[
J3, ∂

†
J
]

=
1

2
∂
†
J ,

[
J+, ∂

†]
= −i∂

†
J ,

[
J+, ∂

†
J
]

= 0,

[
J−, ∂

†]
= 0,

[
J−, ∂

†
J
]

= i∂
†
, (5.26a)
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and

[
J3, ∂

†] =
1

2
∂†,

[
J3, ∂

†
J
]

= −1

2
∂†J ,

[
J−, ∂†

]
= −i∂†J ,

[
J−, ∂†J

]
= 0,

[
J+, ∂†

]
= 0,

[
J+, ∂†J

]
= i∂†. (5.26b)
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Part II

Examples
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Chapter 6

Charge-1 Monopoles

As a first example, we now consider a monopole of unit charge, in YMH-models with

maximal symmetry breaking, for example SU(2) → U(1) or SU(3) → U(1) × U(1).

In the latter case, the charge-1 monopole is an embedding of the SU(2) monopole in

the SU(3) model. We discuss the classical dynamics and the quantum mechanics of

the bosonic, N = 2 supersymmetric monopole [38], and finally N = 4 supersymmetric

monopoles. We will explicitly exhibit the equivalence between quantisation in terms

of spinors and quantisation in terms of anti-holomorphic forms on the moduli space.

To conclude this chapter, we discuss the angular momentum and spin of charge-1

monopole states.

In this example, and the next, we use geometrical units, in which we have scaled

the coupling constant and the vacuum expectation value of the Higgs field to unity,

e = 1, a = 1. (6.1)

This implies that Planck’s constant ~ is dimensionless, but in general not equal to 1.

The moduli space of a single monopole in this theory is [4],

M1 = R3 × S1. (6.2)

The factor R3 corresponds to translation of the monopole, and the S1 factor to long-

range gauge transformations (of the form g(χ) = e−χΦ). The metric on M1 is the flat

metric

ds2 = m
(
d~x2 + dχ2

)
= (e1)2 + (e3)2 + (e3)2 + (e4)2, (6.3)
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where the mass of a monopole is m = 4π, the vector ~x = (x1, x2, x3), and the vier-bein

is defined by

ei =
√

m dxi, e4 =
√

m dχ. (6.4)

The range of χ is 0 ≤ χ < 2π.

6.1 Classical dynamics

The classical motion of the monopole in the moduli space approximation is given

by the geodesics on M1 (see section 2.4). Since M1 is flat, these are straight lines,

corresponding to uniform motion through space and a constant electric charge.

The Lagrangian corresponding to the system of a single monopole is

L =
m

2

(
~̇x · ~̇x + χ̇2

)
− m. (6.5)

The Euler-Lagrange equations give us the conserved quantities, the momentum and

the electric charge of the monopole (or dyon if the electric charge is non-zero),

~p =
∂L

∂~̇x
= m~̇x, q =

∂L

∂χ̇
= mχ̇. (6.6)

The energy, given by the usual Legendre transformation,

E =
∂L

∂~̇x
· ~̇x +

∂L

∂χ̇
χ̇− L =

m

2

(
~̇x · ~̇x + χ̇2

)
+ m, (6.7)

is conserved, as well as the angular momentum ~J = ~x× ~p.

6.2 Quantum mechanics of bosonic monopoles

The discussion of the quantisation of supersymmetric monopoles in terms of forms

on the moduli space shows that the quantum mechanics of bosonic monopoles is

described by wavefunctions (0-forms) on the moduli space. The Schrödinger equation

is given by

i~∂tΨ = HeffΨ. (6.8)
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As we have found in section 3.5, the Hamiltonian is half the Laplacian plus the mass

of the monopole. In this case the metric (6.3) is flat, so that the Schrödinger equation

becomes

i~∂tΨ =
~2

2
∆M1Ψ + mΨ = − ~

2

2m
(∂2

i + ∂2
χ)Ψ + mΨ. (6.9)

By separation of variables, we find plane wave solutions

Ψ = f(t)F (~x, χ), f(t) = Ae−
i
~Et, F (~x, χ) = Be

i
~ (~p·~x+qχ), (6.10)

for arbitrary constants A, B, ~p, and q, such that the energy of the monopole is

E = m +
1

2m

(|~p|2 + q2
)
, (6.11)

where ~p is its momentum, and q its electric charge. Since the range of χ is 0 ≤ χ < 2π,

the electric charge q is ~ times an integer.

The probabilistic interpretation of the wavefunction is the usual one: |Ψ(~x, χ)|2 is

the probability density for the monopole at the point (~x, χ) in the moduli space. This

means that |Ψ(~x, χ)|2 is the probability density for the Yang-Mills-Higgs fields of the

original field theory to be in the (charge-1 monopole) configuration that corresponds

to the point (~x, χ) in the moduli space.

6.3 N = 2 supersymmetric monopoles

Starting with a solution Ψ to the bosonic Schrödinger equation, we can use super-

symmetry to find other solutions. By applying the supercharges, i.e. the Dolbeault

operator ∂, its twisted counterpart ∂J and their adjoints ∂
†
and ∂

†
J , we may generate

the other states of the supermultiplet containing Ψ. Since on a Kähler manifold they

commute with the Hamiltonian, the solutions that we find by applying these operators

to the wavefunction Ψ also obey the Schrödinger equation (see appendix A.2.2).

BPS states of N = 2 supersymmetric monopoles are those states which have mini-

mal energy for given charges of the states. They correspond to short supermultiplets,

which contain two spin-0 states, and one spin-1
2

doublet. A short multiplet for a

charge-1 monopole is obtained whenever the spin-0 state Ψ with which we start, is
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an eigenstate of the Hamiltonian. The states in a short multiplet can then be found

using only the (twisted) Dolbeault operators ∂ and ∂J . The states we find this way

are

2 singlets: Ψ and ∂∂JΨ = −∂J ∂Ψ

1 doublet:
(
∂Ψ, ∂JΨ

)

In this case, using the adjoint operators to the (twisted) Dolbeault operators give us

no new independent states. For example, ∂
†
J ∂Ψ = −∂∂

†
JΨ = 0, and ∂

†
∂Ψ = 1

2
∆Ψ is

not an independent state if Ψ is an eigenstate of ∆, for any eigenvalue.

In the next two sections we will explicitly show the equivalence between anti-

holomorphic forms and spinors on the moduli space. We obtain equivalent expressions

for the Dirac operator and Hamiltonian for both descriptions of the fermionic zero-

modes, and we give an explicit correspondence between forms and spinors.

6.3.1 Quantisation using spinors

We now construct the Dirac operator and Hamiltonian acting on spinors on M1. The

Dirac operator is defined by

D/ s =
1√
m

γa∂a. (6.12)

We use the following representation for the Dirac γ-matrices,

γj =


 0 σj

−σj 0


 , γ4 =


 0 i1

i1 0


 , (6.13)

which satisfy {γα, γβ} = −2δαβ. The Dirac operator is therefore

D/ s =
1√
m


 0 σj∂j + i∂χ

−σj∂j + i∂χ 0


 . (6.14)

The Hamiltonian is then given by

H0 =
1

2
D/ 2

s = − 1

2m

[
∂2

j + ∂2
χ

]
14 =

1

2
∆M114. (6.15)
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6.3.2 Quantisation using forms

To identify the Dirac operator acting on forms, D/ ∂ =
√

2(∂ + ∂
†
), with the Dirac

operator on spinors, we need to find an appropriate matrix representation of this op-

erator. This implies that we need to look for a matrix representation of the Dolbeault

operator and its adjoint. We do this by choosing a basis of anti-holomorphic forms,

and representing a general anti-holomorphic form as a vector with respect to this ba-

sis. The Dolbeault operators map anti-holomorphic forms to anti-holomorphic forms

and can therefore be represented by a matrix with respect to this basis.

Kähler coordinates for the moduli space M1
∼= C× C∗ are given by [3]

z2 = x1 + ix2, z1 = ex3+iχ. (6.16)

We define the complex structures Ii on the moduli space defined by

Ii(e
j) = δije

4 + εijke
k

Ii(e
4) = −ei (6.17)

where the vier-bein e was defined in (6.4). The complex structure corresponding to

the Kähler coordinates (6.16) is I = I3. A convenient basis of holomorphic 1-forms,

with respect to this complex structure, is

α2 =

√
m

2
dz2 =

1√
2
(e1 + ie2), α1 =

√
m

2

dz1

z1
=

1√
2
(e3 + ie4). (6.18)

The metric on M1 then becomes

ds2 = m

[
∣∣dz2

∣∣2 +

∣∣∣∣
dz1

z1

∣∣∣∣
2
]

= 2|α2|2 + 2|α1|2. (6.19)

The exterior derivative is decomposed into the Dolbeault operator and its comple-

ment, d = ∂ +∂, as usual. The action of the Dolbeault operator is given by the action

of the exterior derivative followed by a projection onto the anti-holomophic forms,

∂ = π0,• ◦ d, π0,• : Ω•(M) → Ω0,•(M). (6.20)

We choose {α1, α2, 1, α1 ∧α2} as an ordered basis of Ω0,•(M), to represent the action
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of the Dolbeault operator ∂, and its adjoint ∂
†
= − ∗ ∂∗, as matrices.

(
∂
)

=




0 0 f 1 0

0 0 f 2 0

0 0 0 0

−f 2 f 1 0 0




(
∂
†)

=




0 0 0 f2

0 0 0 −f1

−f1 −f2 0 0

0 0 0 0




(6.21)

The operators f1 and f2 are given by

f1 =
1√
2m

(∂3 − i∂χ) , f2 =
1√
2m

(∂1 − i∂2) . (6.22)

The Dirac operator in the chosen basis of anti-holomorphic forms is therefore the

same as the Dirac operator acting on spinors, found in section 6.3.1,

D/ ∂ =
√

2
(
∂ + ∂

†)
=

1√
m


 0 i∂χ + σk∂k

i∂χ − σk∂k 0


 = D/ s, (6.23)

which means that our chosen basis of anti-holomorphic forms provides an easy way

to translate between spinors and anti-holomorphic forms on the moduli space:

α1 ∼




1

0

0

0




, α2 ∼




0

1

0

0




, 1 ∼




0

0

1

0




, α1 ∧ α2 ∼




0

0

0

1




. (6.24)

The Hamiltonian H0 = 1
2
D/ 2

∂
= ∂

†
∂ +∂ ∂

†
= 1

2
∆M1 is the same as the one found in

section 6.3.1. Since H0 acts diagonally, we see that the spectrum of the N = 2 super-

symmetric monopole is simply a four-fold degenerate copy of the bosonic monopole

spectrum.

We compute the matrix representation of the twisted Dolbeault operator and its

adjoint, using ∂J = J ∂J −1 and ∂
†
J = J ∂†J −1,

(
∂J

)
= i




0 0 f2 0

0 0 −f1 0

0 0 0 0

f1 f2 0 0




,
(
∂
†
J
)

= i




0 0 0 f 1

0 0 0 f 2

f 2 −f 1 0 0

0 0 0 0




. (6.25)
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Now we can compute the operators ∂ ∂J = −∂J ∂ and −∂
†
∂
†
J = ∂

†
J ∂

†
.

(
∂ ∂J

)
=

i

2




0 0 0 0

0 0 0 0

0 0 0 0

0 0 ∆M1 0




(
∂
†
∂
†
J
)

=
i

2




0 0 0 0

0 0 0 0

0 0 0 ∆M1

0 0 0 0




(6.26)

These expressions can be verified using the Kodaira relations [41],

[
LΩ, ∂

†]
= ∂J ,

[
LΩ, ∂

†
J
]

= −∂. (6.27)

Here LΩ is an operator of exterior multiplication by Ω, and

Ω = ωJ + iωK = iα1 ∧ α2 (6.28)

is the canonical holomorphic symplectic form (see appendix A.1.5). Since the highest

degree of an anti-holomorphic form on the 4-dimensional moduli space M1 is (0, 2),

we know that ∂ ∂J must act trivially on (0, 1)- and (0, 2)-forms. To compute its action

on functions, we note that, again because of the dimension of the moduli space,

∂LΩf = ∂LΩf = 0, (6.29)

and therefore, using ∂
†
∂f = 1

2
∆M1f ,

∂ ∂J f = −∂J ∂f = −
[
LΩ, ∂

†]
∂f

= −LΩ ∂
†
∂f

=
i

2
α1 ∧ α2 ·∆M1f, (6.30)

as claimed in equation (6.26). Similarly, the Kodaira relations show that acting on a

(0, 2)-form ψ,

LΩ ∂
†
∂
†
Jψ =

[
LΩ, ∂

†]
∂
†
Jψ = ∂J ∂

†
Jψ =

1

2
∆M1ψ (6.31)

which, using equations (6.28), implies the second of equations (6.26).
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6.4 N = 4 supersymmetric monopoles

To construct the N = 4 supersymmetric monopole states, we start again with a

solution Ψ to the bosonic Schrödinger equation. By applying the supercharges, i.e.

the Dolbeault operators ∂ and ∂, their twisted counterparts, ∂J and ∂J , and their

adjoints ∂†, ∂
†
, ∂†J and ∂

†
J , we may generate the other states of the supermultiplet

containing Ψ.

BPS states of N = 4 supersymmetric monopoles are those states which have mini-

mal energy for given charges of the states. They correspond to short supermultiplets,

which contain five spin-0 states, four spin-1
2

doublets and one spin-1 triplet. A short

multiplet for a charge-1 monopole is obtained whenever the spin-0 state Ψ with which

we start, is an eigenstate of the Hamiltonian. The states in an N = 4 short multiplet

can then be found using only the (twisted) Dolbeault operators ∂, ∂, ∂J and ∂J .

As in the N = 2 supersymmetric case, using the adjoint operators does not lead to

independent states. The N = 4 short multiplet breaks down into

5 singlets: Ψ, ∂J∂Ψ, ∂J∂Ψ, ∂J∂∂J∂Ψ,
1√
2

(
∂J∂ − ∂∂J

)
Ψ

4 doublets:
(
∂Ψ, ∂JΨ

)
, (∂Ψ, ∂JΨ) ,

(
∂∂J∂Ψ, ∂J∂J∂Ψ

)
,

(
∂∂J∂Ψ, ∂J∂J∂Ψ

)

1 triplet:

(
∂∂Ψ,

1√
2

(
∂J∂ + ∂∂J

)
Ψ, ∂J∂JΨ

)

6.5 Angular momentum and spin

The total angular momentum operator ~J is defined by equation (5.8), where the vector

fields Yi generating the SO(3) action are defined by

Yi = −εijkx
j∂k. (6.32)

They satisfy [Yi, Yj] = εijkYk. Using

LYi
(ej) = diYi

(ej) = εijke
k, LYi

(e4) = 0, (6.33)

we find that

[LYi
, Ij] (e

a) = εijkIk(e
a) (6.34)
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Since ad Ii(e
a) = Ii(e

a) we immediately also have

[LYi
, ad Ij] (e

a) = εijk ad Ik(e
a). (6.35)

Because LYi
and ad Ij both satisfy the Leibnitz rule, we deduce that in general the Lie

derivatives with respect to these vector fields obey indeed the commutation relations

(5.6) with the complex structures (6.17): [LYi
, ad Ij] = εijk ad Ik.

We can write the Lie-derivative in terms of the exterior derivative and interior

product using Cartan’s formula,

LYi
= ιYi

d + dιYi
. (6.36)

The complex structure ad Ii and the term dιYi
act trivially on functions, as 0. Fur-

thermore, since the 1-forms α1, α2, α1 and α2 are closed, the term ιYi
d acts on them

as 0. This suggests that we identify the orbital angular momentum and spin operators

as

Li = i (ιYi
d) , Si = i

(
dιYi

− 1

2
ad Ii

)
, (6.37)

which both act on forms obeying the Leibniz rule. With these definitions,

~L(αm) = ~L(αm) = 0, ~S(f) = 0. (6.38)

We have also, for example,

J1(α1) = S1(α1) =
i√
2

(
dιY1 −

1

2
ad I1

)
(e3 + ie4)

=
i√
2

(
−e2 − 1

2
(−e2 − ie1)

)

= − i

2
√

2
(e2 − ie1)

= −1

2
α2, (6.39)

and in general we find that the spin operator acts on α1, α2, α1 and α2 by

Ji(αm) = Si(αm) = −1

2
(σi)mnαn, (6.40a)

Ji(αm) = Si(αm) =
1

2
(σi)mnαn. (6.40b)
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6.5.1 N = 2 supersymmetric monopoles

The pair {α1, α2} form the two-dimensional fundamental representation of SU(2),

and we identify the basic spin-states (5.2) by

∣∣∣↑
〉

= α1,
∣∣∣↓

〉
= α2. (6.41)

Writing a general state in the basis {α1, α2, 1, α1 ∧α2} of anti-holomorphic forms,

the orbital angular momentum and spin operators for N = 2 supersymmetric monopoles

take the form

(
Li

)
= iYi 14,

(
Si

)
=

1

2


 σi 0

0 0


 , (6.42)

where the vectors Yi act as derivatives on functions, and 0 is the (2 × 2)-matrix of

zeros. This result perfectly agrees with Osborn’s result, equation (5.1), for N = 2

supersymmetric monopoles (involving only a single fermion species, n = 1). The

states (6.41) form a doublet, while
∣∣∣0

〉
= 1 and

∣∣∣↑↓
〉

= α1 ∧ α2 are the two singlets.

6.5.2 N = 4 supersymmetric monopoles

The pair {α1, α2} form the two-dimensional conjugate representation to the pair

{α1, α2}. Since these two representations are isomorphic, we may transform the con-

jugate representation into the fundamental representation: we define

β1 = −iα2, β2 = iα1, (6.43)

and the spin operator acts on these states by

Si(βm) =
1

2
(σi)mnβn. (6.44)

We now identify the basic spin-states by

∣∣∣↑
0

〉
= α1,

∣∣∣↓
0

〉
= α2, (6.45a)

∣∣∣0

↑

〉
= β1,

∣∣∣0

↓

〉
= β2, (6.45b)

for which the spin operator acts in perfect agreement with Osborn’s result for N = 4

supersymmetric monopoles, equation (5.1).
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The decomposition of the full multiplet is then the following. The singlets are

∣∣∣0

0

〉
= 1 (6.46)

∣∣∣↑↓
0

〉
= α2 ∧ α1 (6.47)

∣∣∣ 0

↑↓

〉
= α1 ∧ α2 (6.48)

1√
2

(∣∣∣↑↓
〉
−

∣∣∣↓↑
〉)

=
1√
2
i (α1 ∧ α1 + α2 ∧ α2) (6.49)

∣∣∣↑↓↑↓
〉

= α1 ∧ α2 ∧ α2 ∧ α1 (6.50)

Two doublets are given by equations (6.45a) and (6.45b). The remaining two doublets

are

∣∣∣↑↓↑
〉

= −iα2 ∧ α2 ∧ α1 (6.51a)

∣∣∣↑↓↓
〉

= iα1 ∧ α2 ∧ α1 (6.51b)

and

∣∣∣ ↑↑↓
〉

= α1 ∧ α2 ∧ α1 (6.52a)

∣∣∣ ↓↑↓
〉

= α1 ∧ α2 ∧ α2 (6.52b)

The triplet is

∣∣∣↑↑
〉

= −iα2 ∧ α1 (6.53a)

1√
2

(∣∣∣↑↓
〉

+
∣∣∣↓↑

〉)
=

1√
2
i (α1 ∧ α1 − α2 ∧ α2) (6.53b)

∣∣∣↓↓
〉

= iα1 ∧ α2 (6.53c)

We notice that the 2-forms corresponding to singlets are anti-self-dual, and related
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to the hyperkähler forms (see appendix A.1.4) by

ω1 = e4 ∧ e1 − e2 ∧ e3 = −i
(∣∣∣↑↓

0

〉
+

∣∣∣ 0

↑↓

〉)
, (6.54a)

ω2 = e4 ∧ e2 − e3 ∧ e1 =
(∣∣∣↑↓

0

〉
−

∣∣∣ 0

↑↓

〉)
, (6.54b)

ω3 = e4 ∧ e3 − e1 ∧ e2 = −
(∣∣∣↑↓

〉
−

∣∣∣↓↑
〉)

. (6.54c)

The canonical holomorphic symplectic 2-form Ω3 and its conjugate correspond to

Ω3 = ω1 + iω2 = −2i
∣∣∣ 0

↑↓

〉
, Ω3 = ω1 − iω2 = −2i

∣∣∣↑↓
0

〉
. (6.55)

The 2-forms corresponding to the triplet states are self-dual: they can be combined

in to the three forms

T 1 =
(∣∣∣↑↑

〉
−

∣∣∣↓↓
〉)

= e4 ∧ e1 + e2 ∧ e3, (6.56a)

T 2 = −i
(∣∣∣↑↑

〉
+

∣∣∣↓↓
〉)

= e4 ∧ e2 + e3 ∧ e1, (6.56b)

T 3 = −
(∣∣∣↑↓

〉
+

∣∣∣↓↑
〉)

= e4 ∧ e3 + e1 ∧ e2, (6.56c)

which satisfy

SiT
j = iεijkT

k. (6.57)

The doublets are dual to each other,

∗
∣∣∣↑

0

〉
= α2 ∧ α2 ∧ α1 = i

∣∣∣↑↓↑
〉
, (6.58a)

∗
∣∣∣↓

0

〉
= α2 ∧ α1 ∧ α1 = i

∣∣∣↑↓↓
〉
, (6.58b)

and

∗
∣∣∣0

↑

〉
= iα2 ∧ α1 ∧ α1 = −i

∣∣∣ ↑↑↓
〉
, (6.59a)

∗
∣∣∣0

↓

〉
= −iα2 ∧ α2 ∧ α1 = −i

∣∣∣ ↓↑↓
〉
, (6.59b)

and finally we have

∗
∣∣∣0

0

〉
=

∣∣∣↑↓↑↓
〉
. (6.60)
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Chapter 7

Charge-(1, 1) Monopoles

As a second example we study the system of charge-(1, 1) monopoles in YMH the-

ory with symmetry breaking SU(3) → U(1) × U(1). These monopoles may be

thought of as being composed of two constituent monopoles which are each SU(2)

BPS monopoles of charge 1, but embedded into SU(2) subgroups associated with dif-

ferent simple roots of SU(3). The masses of the constituents depend on the direction

of the vacuum expectation value of the Higgs field in the Cartan subalgebra of SU(3)

and are denoted m1 and m2 in the following. The centre of mass dynamics and the

relative motion can be separated, as we will discuss in each of the following cases.

As in the previous chapter we begin with the classical dynamics, then consider the

quantum mechanics of the bosonic and N = 2 supersymmetric monopoles and exhibit

explicitly the equivalence between quantisation in terms of spinors and quantisation

in terms of anti-holomorphic forms on the moduli space [38]. We discuss the quantisa-

tion of N = 4 supersymmetric monopoles in terms of forms on the moduli space. The

short multiplet of states for N = 4 supersymmetric monopoles requires the existence

of a unique harmonic form on the component of the moduli space corresponding to

the relative motion, which is called a Sen-form. Finally we also discuss the angular

momentum and spin of charge-(1, 1) monopole states.

The main references for this section are the papers by Gauntlett and Lowe [5], and

by Lee, Weinberg and Yi [6]; they include a detailed discussion of magnetic and electric
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charges and a derivation of the metric on moduli space for charge-(1, 1) monopoles:

M1,1 = R3 × R×MTN

Z
, (7.1)

where MTN is the 4-dimensional Taub-NUT manifold with a positive length parame-

ter. Topologically MTN
∼= R4, but it has a curved metric, given below. For practical

calculations it is usually convenient to work with the covering space of the moduli

space, M̃1,1 = R3 × R × MTN , and impose the identification by Z on the results

at the end. The physics behind the Z action is explained carefully in the main

references [5, 6], and can be summarised as follows. Each of the constituent monopoles

that make up a given charge-(1,1) monopole are invariant under one of the residual

U(1) gauge symmetries. Thus one may pick generators of U(1) × U(1) so that each

monopole can carry electric charge with respect to one but not the other generator.

The angular coordinates conjugate to those charges have the usual range [0, 2π), but

angular coordinates appearing in the above decomposition are related to those angles

by linear transformations which depend on the masses of the constituent monopoles

and therefore have a non-standard range, which we will specify below.

The metric on the centre of mass moduli space R3 × R is the flat metric. Using

centre of mass coordinates ~R and χ, the metric is analogous to (6.3), replacing the

mass m with the total mass of the charge-(1, 1) monopole system, M.

The metric on the Taub-NUT manifold MTN is given by

ds2 = µ
[
V (d~r · d~r) + V −1(η3)

2
]

= µ
[
V

(
dr2 + r2

(
(η1)

2 + (η2)
2
))

+ V −1(η3)
2
]
, (7.2)

where µ is the reduced mass of the monopole system, and

V =

(
1 +

1

r

)
. (7.3)

The right-invariant 1-forms ηi are

η1 = − sin ψdθ + cos ψ sin θdφ, (7.4a)

η2 = cos ψdθ + sin ψ sin θdφ, (7.4b)

η3 = dψ + cos θdφ = dψ + ~A · d~r, (7.4c)
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which satisfy dηi = 1
2
εijkηj ∧ ηk. The coordinates ~r = (x, y, z) correspond to the

relative position of the two monopoles. We define spherical coordinates as usual by

x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ. The Euler angles θ, φ and ψ are

coordinates on S3 with the usual ranges: 0 ≤ θ < π, 0 ≤ φ < 2π and 0 ≤ ψ < 4π.

As explained in the main references [5, 6], the angle ψ is the conjugate variable to half

the difference between the electric charges of the constituent monopoles. The range

[0, 4π) reflects the fact that half the difference necessarily is an element of 1
2
Z. Finally,

the division by Z on the total moduli space corresponds to identifying the points

(~R, χ, ~r, ψ) ∼ (~R, χ + 2π,~r, ψ + 4m2

m1+m2
π), (7.5)

which, as explained above, depends on the constituent monopoles’ masses [5, 6].

A similar and closely related system is that of charge-2 monopoles in Yang-Mills-

Higgs theory with SU(2) broken to U(1). In this case the moduli space is M2 =

R3 × (S1 × MAH)/Z2, where the relative moduli space MAH is the 4-dimensional

Atiyah-Hitchin manifold. Asymptotically, the metric of the Atiyah-Hitchin manifold

approaches the Taub-NUT metric given by equation (7.2), but with opposite sign for

the mass parameter, V = (1− 1
r
). Gibbons and Manton [4] have studied the classical

and quantum mechanics of this system, and to a large extent we follow their approach.

We will see that the opposite sign for the mass parameter in the Taub-NUT metric

for charge-(1, 1) monopoles has a crucial effect on the existence of bound states in

this system.

7.1 Classical dynamics

Using the product structure of the moduli space, we separate the centre of mass motion

and the relative motion. The centre of mass dynamics, corresponding to motion in

R3 × R, is analogous to the single monopole dynamics discussed in example 1. For

the remaining part of this section, we will focus on the relative motion of the two

monopoles, described by the moduli space MTN .

The Lagrangian for the relative motion is

L =
µ

2

[
V

(
~̇r · ~̇r

)
+ V −1

(
ψ̇ + cos θφ̇

)2
]

. (7.6)
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The Euler-Lagrange equation ∂L
∂ψ

= ∂t
∂L
∂ψ̇

gives us the conserved quantity

q = µV −1
(
ψ̇ + cos θφ̇

)
. (7.7)

The energy is given by

E =
∂L

∂~̇r
· ~̇r +

∂L

∂ψ̇
ψ̇ − L =

µ

2
V

(
~̇r · ~̇r +

(
q

µ

)2
)

. (7.8)

Following Gibbons and Manton, we now define ~p by

∂L

∂~̇r
= µV ~̇r + q ~A = ~p + q ~A, ~p = µV ~̇r, (7.9)

which is only part of the momentum canonically conjugate to ~r. The remaining

equations of motion are then found to be (see below for a detailed computation)

~̇p = −µ

2

~r

r3

(
~̇r · ~̇r −

(
q

µ

)2
)
− q

~̇r × ~r

r3
(7.10)

Two conserved quantities are the angular momentum ~Jand a Runge-Lenz type vector

~K (again, see below for more details):

~J = ~r × ~p + qr̂, ~K = ~p× ~J − (
µE − q2

)
r̂. (7.11)

Since ~r × ~p and r̂ are orthogonal, the magnitude of the orbital angular momentum,

l = |~r × ~p| =
√

J2 − q2, is also conserved.

At the end of this section, we show that the conservation laws imply that all

classical orbits are unbounded.

Derivation of equation (7.10)

We first compute the derivatives of V :

∂rV = − 1

r2
(7.12)

V̇ = − 1

r2
ṙ (7.13)

∂r(V
−1) = −V −2∂rV =

1

r2
V −2 (7.14)
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We now compute the Euler-Lagrange equations corresponding to Lagrangian (7.6).

∂L

∂r
= − π

r2

(
ṙ2 + r2(θ̇2 + sin2 θφ̇2)

)

+ 2πrV (θ̇2 + sin2 θφ̇2)

+
π

r2
V −2

(
ψ̇ + cos θφ̇

)2

∂t
∂L

∂ṙ
= ∂t(2πV ṙ)

therefore: ∂t(V ṙ) = rV (θ̇2 + sin2 θφ̇2)− 1

2r2

(
~̇r · ~̇r −

( q

2π

)2
)

(7.15)

∂L

∂θ
= 2πr2V sin θ cos θφ̇2

− sin θφ̇ 2πV −1
(
ψ̇ + cos θφ̇

)

∂t
∂L

∂θ̇
= ∂t(2πr2V θ̇)

= ∂t(r · 2πrV θ̇) = ṙ
(
2πrV θ̇

)
+ r∂t

(
2πrV θ̇

)

so that: ∂t(V rθ̇) = V (r sin θ cos θφ̇2 − ṙθ̇)− sin θφ̇

2πr
q (7.16)

∂L

∂φ
= 0

∂t
∂L

∂φ̇
= ∂t(2πr2 sin2 θV φ̇) + ∂t

(
2πV −1(ψ̇ + cos θφ̇) cos θ

)

= ∂t(r sin θ)(2πr sin θV φ̇) + r sin θ∂t(2πr sin θV φ̇)

+ ∂t(q cos θ)

and: ∂t(r sin θV φ̇) = −V φ̇(ṙ sin θ + r cos θθ̇) +
1

2πr
θ̇q (7.17)
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We will need the following identities.

~r = rr̂ =




r

0

0


 (7.18)

~̇r = ṙr̂ + r(θ̇θ̂ + sin θφ̇φ̂) =




ṙ

rθ̇

r sin θφ̇


 (7.19)

~̈r = ∂t(ṙ)r̂ + ṙ(θ̇θ̂ + sin θφ̇φ̂)

+ ∂t(rθ̇)θ̂ + rθ̇(−θ̇r̂ + φ̇ cos θφ̂)

+ ∂t(r sin θφ̇)φ̂ + (r sin θφ̇)(−φ̇ sin θr̂ − φ̇ cos θθ̂)

=




∂t(ṙ) − (rθ̇2 + r sin2 θφ̇2)

∂t(rθ̇) + ṙθ̇ − r sin θ cos θφ̇2

∂t(r sin θφ̇) + ṙ sin θφ̇ + r cos θθ̇φ̇


 (7.20)

and

~̇r × ~r = r2




0

sin θφ̇

−θ̇


 (7.21)

~r × (~̇r × ~r) = r3




0

θ̇

sin θφ̇


 = r3 ˙̂r (7.22)
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Now we can calculate ~̇p.

~p = 2πV ~̇r = 2πV




ṙ

rθ̇

r sin θφ̇


 (7.23)

~̇p = 2π
(
V̇ ~̇r + V ~̈r

)

= 2π




∂t(V ṙ) − V
(
rθ̇2 + r sin2 θφ̇2

)

∂t(V rθ̇) + V
(
ṙθ̇ − r sin θ cos θφ̇2

)

∂t(V r sin θφ̇) + V
(
ṙ sin θφ̇ + r cos θθ̇φ̇

)


 (7.24)

Inserting the Euler-Lagrange equations, we find:

~̇p =




− π
r2

(
~̇r · ~̇r − (

q
2π

)2
)

−1
r
sin θφ̇q

1
r
θ̇q




= −π
~r

r3

(
~̇r · ~̇r −

( q

2π

)2
)
− q

~̇r × ~r

r3
(7.25)

Derivation of equations (7.11)

The angular momentum ~J = ~r × ~p + qr̂ is conserved:

∂t
~J = ∂t(~r × ~p + qr̂)

= ~r × ~̇p + q ˙̂r

= ~r ×
(
− q

r3
(~̇r × ~r)

)
+ q ˙̂r

= 0 (7.26)
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and the Runge-Lenz type vector ~K = ~p× ~J − (2πE − q2) r̂ is also conserved:

2πE − q2 = 2π2

(
1 +

1

r

)(
~̇r · ~̇r +

( q

2π

)2
)
− q2

= 2π2

(
1 +

1

r

)
~̇r · ~̇r + 2π2

( q

2π

)2

+
1

r
2π2

( q

2π

)2

− q2

= 2π2

(
1 +

1

r

)
~̇r · ~̇r − q2

2
+

q2

2r
(7.27)

while

∂t(~p× ~J) = ~̇p× ~J

= − π

r3

(
~̇r · ~̇r −

( q

2π

)2
)

~r × (~r × ~p)− q

r3
(~̇r × ~r)× qr̂

=

[
−2π2

(
1 +

1

r

)(
~̇r · ~̇r −

( q

2π

)2
)
− q2

r

]
~r × (~r × ~̇r)

r3

= −
[
−2π2

(
1 +

1

r

)
(~̇r · ~̇r) +

q2

2
− q2

2r

]
˙̂r

=

[
2π2

(
1 +

1

r

)
(~̇r · ~̇r)− q2

2
+

q2

2r

]
˙̂r

=
[
2πE − q2

]
˙̂r (7.28)

and therefore

~̇K = ∂t(~p× ~J)− [
2πE − q2

]
˙̂r = 0 (7.29)

Classical Orbits

We now show that there are no classical bound orbits. These calculations were done

in collaboration with my supervisor.

In order to determine the orbits we need to distinguish the cases q = 0 and q 6= 0.

In the former case we find

~J · ~r = 0, ~K · ~r = J2 − µEr, (7.30)

as well as ~J · ~K = 0. Thus the motion takes place in the plane orthogonal to ~J , and

the vector ~K is contained in that plane. In terms of polar coordinates (r, ϕ) in that
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plane, with ϕ = 0 corresponding to the direction of ~K, the second equation in (7.30)

becomes

r =
J2

K cos ϕ + µE
. (7.31)

Since K = | ~K| =
√

2µEJ2 + µ2E2 > µE, this is the equation for a hyperbola.

For q 6= 0 the orbits are determined by the simultaneous equations

~J · r̂ = q, ~N · ~r = J2 − q2, (7.32)

where ~N = ~K + 1
q
(µE − q2) ~J . The first of these is the equation of a cone with

axis ~J and opening angle 2α determined by J cos α = q. The second is the equation

of a plane orthogonal to the vector ~N . Hence the orbits are conic sections, but to

determine which kinds of conic sections occur we need to find the angle between the

vectors ~N and ~J . A lengthy calculation shows that

N = | ~N | =
lµE

|q| , ~N · ~J =
l2(µE − q2)

q
. (7.33)

Let us assume for simplicity that q > 0 from now on, so that the vector ~J is inside

the cone, and that α ∈ [0, π
2
); the case q < 0 can be dealt with analogously, but using

− ~J instead of ~J (the second equation in (7.33) is invariant under simultaneous sign

change of q and ~J). It then follows from (7.33) that the angle β between ~N and ~J

satisfies

cos β =
µE − q2

µE

l

J
. (7.34)

On the other hand we can use q2 + l2 = J2 to see that the complementary angle to

half of the opening angle of the cone satisfies

cos(π
2
− α) =

l

J
. (7.35)

Hence cos β < cos(π
2
− α) or β > (π

2
− α). We conclude that the intersection of the

plane and the cone is always hyperbolic and that all orbits are unbounded.

7.2 Quantum mechanics

The Hamiltonian for the charge-(1, 1) monopole system is given by half the Laplacian

on the total moduli space M1,1, plus the total mass. Separating the center of mass
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and relative motion variables, using the product structure of the moduli space, the

Schrödinger equation becomes

i~∂tΨ =
~2

2
∆M1,1Ψ + MΨ =

~2

2
(∆R3×R + ∆MTN

) Ψ + MΨ. (7.36)

Now we separate variables by assuming

Ψ(t, ~R, χ, ~r, ψ) = f(t)F (~R, χ)Φ(~r, ψ), (7.37)

where F (~R, χ) is a wavefunction corresponding to the centre of mass motion, and

Φ(~r, ψ) is a wavefunction corresponding to the relative motion. For stationary states,

the Schrödinger equation reduces to the following Schrödinger equation on the relative

moduli space:

~2

2
∆MTN

Φ = EΦ, (7.38)

where E is the energy of the relative motion. The total energy is given by the sum of

the total mass, the energy of the centre of mass motion and the energy of the relative

motion, E = M + 1

2M

(
|~P |2 + Q2

)
+ E, where ~P is the total momentum and Q is a

kind of ”centre of mass” electric charge. Since the constituent monopoles are charged

with respect to different U(1) groups, the charge Q is a linear combination of different

kinds of electric charges [5, 6]; in particular it is not necessarily an integer but obeys

a quantisation condition that follows from (7.5). From now onwards we shall assume

that for plane wave solutions of the centre of mass wavefunction F (~R, χ) analogous

to (6.10) the value of Q is such that (7.5) holds. This does not affect the relative

motion, to which we now turn.

The Laplacian on MTN can be computed from the metric on the Taub-NUT mani-

fold, given in equation (7.2),

∆MTN
f = − 1

µ

[
1

r2V
∂r

[
r2∂rf

]
+

1

r2V

[
ξ2
1 + ξ2

2

]
f + V ξ2

3f

]
. (7.39)

Here ξi are the vector fields dual to ηi, ηi(ξj) = δij:

ξ1 = −cos θ

sin θ
cos ψ

∂

∂ψ
− sin ψ

∂

∂θ
+

cos ψ

sin θ

∂

∂φ
, (7.40a)

ξ2 = −cos θ

sin θ
sin ψ

∂

∂ψ
+ cos ψ

∂

∂θ
+

sin ψ

sin θ

∂

∂φ
, (7.40b)

ξ3 =
∂

∂ψ
. (7.40c)
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Writing ε = 2µE
~2 , and multiplying with V , the Schrödinger equation (7.38) becomes

1

r2
∂r

[
r2∂rΦ

]
+

1

r2

[
ξ2
1 + ξ2

2 + ξ2
3

]
Φ +

(
1 +

2

r

)
ξ2
3Φ + ε

(
1 +

1

r

)
Φ = 0. (7.41)

7.2.1 There are no bound states for the bosonic monopole

We expand Φ in terms of the Wigner functions Dj
sm(θ, φ, ψ) = eimφdj

sm(θ)eisψ on SU(2)

with indices j, s,m ∈ 1
2
Z and j ≥ 0. They are eigenfunction of ξ3 and (ξ2

1 +ξ2
2 +ξ2

3)
[42]:

ξ3D
j
sm = isDj

sm, (ξ2
1 + ξ2

2 + ξ2
3)D

j
sm = −j(j + 1)Dj

sm. (7.42)

For Φ = h(r)
r

Dj
sm(θ, φ, ψ) the Schrödinger equation (7.41) reduces to

1

r

[
∂r

2 − j(j + 1)

r2
+ (ε− s2) +

1

r
(ε− 2s2)

]
h(r) = 0. (7.43)

To solve this equation, we use the Ansatz h(r) = rj+1eikrF , and compute its deriva-

tives.

∂r(h(r)) = (j + 1)rjeikrF + rj+1eikr (ik + ∂r) F

∂r
2(h(r)) = j(j + 1)rj−1eikrF

+ 2(j + 1)rjeikr (ik + ∂r) F

+ rj+1eikr
(−k2 + 2ik∂r + ∂r

2
)
F

=

(
j(j + 1)

r2
+

2(j + 1)ik

r
− k2

)
rj+1eikrF

+

(
2(j + 1)

r
+ 2ik

)
rj+1eikr∂rF

+ rj+1eikr∂r
2F

We now set

k2 =
(
ε− s2

)
, (7.44)

so that the Schrödinger equation becomes

0 =

[
∂r

2 +

(
2(j + 1)

r
+ 2ik

)
∂r +

2(j + 1)

r
ik +

1

r

(
ε− 2s2

)]
F. (7.45)
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Multiplying by r
−2ik

and substituting x = −2ikr we find

0 =

[
r

−2ik
∂r

2 +
1

−2ik
(2(j + 1) + 2ikr) ∂r −

(
(j + 1) +

1

2ik
(ε− 2s2)

)]
F

=

[
x∂x

2 + (2(j + 1)− x) ∂x −
(

(j + 1) +
1

2ik
(ε− 2s2)

)]
F, (7.46)

so F is a confluent hypergeometric function. We define

λ = − 1

2k
(ε− 2s2) = − 1

2k
(k2 − s2) (7.47)

so that the solution for F is

F = F ((j + 1) + iλ, 2(j + 1),−2ikr) . (7.48)

The solution of h(r) is therefore

h(r) = rj+1eikrF ((j + 1) + iλ, 2(j + 1),−2ikr) . (7.49)

Bound states correspond to square integrable solutions of h(r). For these, the

exponential term must vanish for large r and the series expansion of F must terminate.

For the exponential term to vanish, k must be i times a positive real number (ik < 0),

so

ε < s2. (7.50)

The expansion of F (a, b, u) is

F (a, b, u) = 1 +
a

b
u +

a(a + 1)

b(b + 1)

u2

2!
+ . . . , (7.51)

which terminates if a is a non-positive integer. In this case a = (j + 1) + iλ, so we

require

−iλ = n, n = j + 1, j + 2, . . . . (7.52)

Since −ik > 0 and j ≥ 0, the only solutions occur when

ε− 2s2 > 0, (7.53)

which contradicts equation (7.50). Hence there are no quantum mechanical bound

states in this system, reflecting the absence of bound orbits in the corresponding

classical system.
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7.2.2 Scattering states

To find the scattering states we follow Gibbons and Manton’s approach [4]. We first

write the Schrödinger equation (7.41) as

0 =
1

r2
∂r

[
r2∂rΦ

]
+

1

r2
∇2

S3Φ +

(
1 +

2

r

)
ξ2
3Φ + ε

(
1 +

1

r

)
Φ

=
1

r2
∂r

[
r2∂rΦ

]
+

1

r2

[
1

sin θ
∂θ(sin θ∂θΦ) +

1

sin2 θ
(∂φ

2 + ∂ψ
2 − 2 cos θ∂φ∂ψ)Φ

]

+
(
ε + ξ2

3

)
Φ +

1

r

(
ε + 2ξ2

3

)
Φ. (7.54)

We change from polar coordinates {r, θ, φ, ψ} to cylindrical coordinates {r, z, φ, ψ},
and we introduce parabolic coordinates

ξ = r + z, η = r − z, (7.55)

so that

1

r2
∂r(r

2∂rΦ) +
1

r2 sin θ
∂θ(sin θ∂θΦ)

=
1

r

[
∂r(r∂rΦ) + ∂rΦ +

1

r sin θ
∂θ(sin θ∂θΦ)

]

=
1

r
[∂r(r∂rΦ) + ∂r(z∂zΦ) + ∂z(z∂rΦ) + ∂z(r∂zΦ)]

=
4

ξ + η
[∂ξ(ξ∂ξΦ) + ∂η(η∂ηΦ)] (7.56)

We now use the Ansatz

Φ = eimφeisψΛ(ξ, η), (7.57)

with s ∈ 1
2
Z in order to respect the range of ψ. We find, substituting cos θ = ξ−η

ξ+η
and

r2 sin2 θ = ξη, that the Schrödinger equation (7.41) reduces to

0 =
4

ξ + η
[∂ξ(ξ∂ξΛ) + ∂η(η∂ηΛ)]− 1

ξη

(
m2 + s2 − 2ms

ξ − η

ξ + η

)
Λ

+
(
ε− s2

)
Λ +

2

ξ + η

(
ε− 2s2

)
Λ. (7.58)
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To solve this equation, we separate variables as follows,

Λ(ξ, η) = f(ξ)g(η), (7.59)

and we find that f and g must satisfy

4

f
∂ξ(ξ∂ξf)− 1

ξ
(m + s)2 + k2ξ + 2

(
2ε− s2

)
= C, (7.60)

−4

g
∂η(η∂ηg) +

1

η
(m− s)2 − k2η = C. (7.61)

We use the following trial solutions:

f(ξ) = ξ
1
2
|m+s|e−ikξ/2F1(ξ), g(η) = η

1
2
|m−s|e−ikη/2F2(η), (7.62)

and find

∂ξf =
1

2
|m + s|ξ 1

2
|m+s|−1e−ikξ/2F1(ξ) + ξ

1
2
|m+s|e−ikξ/2

(
−1

2
ik + ∂ξ

)
F1(ξ),

ξ∂ξf =
1

2
|m + s|ξ 1

2
|m+s|e−ikξ/2F1(ξ) + ξ

1
2
|m+s|+1e−ikξ/2

(
−1

2
ik + ∂ξ

)
F1(ξ),

∂ξξ∂ξf =

(
1

2
|m + s|

)2

ξ
1
2
|m+s|−1e−ikξ/2F1(ξ)

+

(
(
1

2
|m + s|) + (

1

2
|m + s|+ 1)

)
ξ

1
2
|m+s|e−ikξ/2

(
−1

2
ik + ∂ξ

)
F1(ξ)

+ ξ
1
2
|m+s|+1e−ikξ/2

(
−1

2
ik + ∂ξ

)2

F1(ξ)

= ξ
1
2
|m+s|e−ikξ/2

{
1

4
(m + s)2ξ−1

+ (|m + s|+ 1)

(
−1

2
ik + ∂ξ

)

+ ξ

(
−k2

4
− ik∂ξ + ∂ξ

2

)}
F1(ξ)

= ξ
1
2
|m+s|e−ikξ/2

{
ξ∂ξ

2 + (|m + s|+ 1− ikξ) ∂ξ

− k2

4
ξ − 1

2
ik (|m + s|+ 1) +

1

4
(m + s)2ξ−1

}
F1(ξ).
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Similarly

∂ηη∂ηg = η
1
2
|m−s|e−ikη/2

{
η∂η

2 + (|m− s|+ 1− ikη) ∂η

− k2

4
η − 1

2
ik (|m− s|+ 1) +

1

4
(m− s)2η−1

}
F2(η).

From equations (7.60) and (7.61) we find then that F1 and F2 have to satisfy

4

F1

{
ξ∂ξ

2 + (|m + s|+ 1− ikξ) ∂ξ − 1

2
ik (|m + s|+ 1)

}
F1(ξ) + 2

(
ε− 2s2

)− C =

4

F1

{
ξ∂ξ

2 + (|m + s|+ 1− ikξ) ∂ξ − 1

2
ik (|m + s|+ 1) +

1

2

(
ε− 2s2

)− C

4

}
F1(ξ) = 0

(7.63)

and

− 4

F2

{
η∂η

2 + (|m− s|+ 1− ikη) ∂η − 1

2
ik (|m− s|+ 1)

}
F2(η)− C =

− 4

F2

{
η∂η

2 + (|m− s|+ 1− ikη) ∂η − 1

2
ik (|m− s|+ 1) +

C

4

}
F2(η) = 0. (7.64)

Introducing

x = ikξ, y = ikη, (7.65)

and dividing by 4
F1

ik and − 4
F2

ik respectively, we find

{
x∂x

2 + (|m + s|+ 1− x) ∂x − 1

2
(|m + s|+ 1) +

1

2ik

(
ε− 2s2

)− C

4ik

}
F1 = 0

(7.66)

and

{
y∂y

2 + (|m− s|+ 1− y) ∂y − 1

2
(|m− s|+ 1) +

C

4ik

}
F2 = 0 (7.67)

and we see that F1 and F2 are again confluent hypergeometric functions:

F1 = F (c1, |m + s|+ 1, ikξ), F2 = F (c2, |m− s|+ 1, ikη), (7.68)

where c1 and c2 are constants that must satisfy

c1 + c2 = 1 +
1

2
|m + s|+ 1

2
|m− s| − iλ. (7.69)
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We can use the remaining freedom to specify the scattering situation we want

to describe. The constituent monopoles are distinguishable particles (with different

magnetic charges and, in general, different masses) so we can label them 1 and 2. Then

we can assume without loss of generality that ~r is the position vector of monopole 1

relative to monopole 2, and ψ the phase of monopole 1 relative to that of monopole 2

(see [5, 6] for details), so that s = 1
2
×(electric charge of monopole 1 minus electric

charge of monopole 2). We would like to consider scattering where monopole 1 comes

in along the negative z-axis, and monopole 2 along the positive z axis. This can be

achieved by setting m = −s and c1 = 1:

Φ = eis(ψ−φ) (r − z)|s| e+ikz F (|s| − iλ, 2|s|+ 1, ik(r − z)), (7.70)

where we have used the fact that F (1, 1, x) = ex. To compute the scattering cross

section, we will need to find the asymptotic form of Φ. For large |x|,

F (a, b, x) ≈ Γ(b)

Γ(b− a)

1

(−x)a

{
1− a(a− b + 1)

x
+

Γ(b− a)

Γ(a)

(−1)aex

xb−2a

}
(7.71)

so that we find

Φ ≈ eis(ψ−φ)K

{(
1 +

(s2 + λ2)

2ikr sin2
(

θ
2

)
)

ei(kz+λ log(k(r−z)))+

(|s| − iλ)

2ikr sin2
(

θ
2

)ei(τ+π|s|)ei(kr−λ log(k(r−z)))

}
, (7.72)

where

K =
Γ(2|s|+ 1)

Γ(|s|+ 1 + iλ)

1

(−i)|s|−iλk|s|
, τ = arg

Γ(|s|+ 1 + iλ)

Γ(|s|+ 1− iλ)
. (7.73)

The differential cross section is thus the same as found by Gibbons and Manton [4] in

the Taub-NUT approximation to dyon scattering in SU(2) Yang-Mills-Higgs theory:

dσ

dΩ
=

1

4

(
1 +

s2

4k2

)2

sin−4

(
θ

2

)
. (7.74)

It is interesting that a very similar cross section is found for the scattering of a charged

particle off a BPS monopole [43] when exponential terms in the fields are neglected.

In the case where the relative electric charge s vanishes, which includes the case

of pure monopole scattering, one obtains the purely geometric (energy independent)
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expression

dσ

dΩ
=

1

4
sin−4

(
θ

2

)
. (7.75)

It was shown by Schroers [8] that the symmetrised version of this formula is also a very

good approximation to the differential cross section for pure monopole scattering in

the SU(2) theory: the s-wave phase shift correction to the Taub-NUT approximation

is zero for all energies in that case. Remarkably, two identical SU(2) monopoles and

the two distinct SU(3) monopoles that make up the charge-(1, 1) configuration thus

have the same scattering behaviour in the quantum theory at low energies, apart from

symmetrisation effects.

7.3 N = 2 supersymmetric monopoles

As before, we use the product structure of the moduli space to separate centre of

mass and relative motion variables. This procedure is most transparent using the

quantisation in terms of forms on the moduli space, although the equivalence between

anti-holomorphic forms and spinors assures us that it can be done for the latter as

well.

Anti-holomorphic forms on the total moduli space can be written as wedge prod-

ucts of anti-holomorphic forms on the centre of mass and relative moduli spaces. The

supercharges, the (twisted) Dolbeault operators and their adjoints, decompose into

a sum of (twisted) Dolbeault operators on the centre of mass and relative moduli

spaces. The Laplacian is then seen to decompose into the sum of centre of mass and

relative moduli space components as well. For an anti-holomorphic form υ = υ1 ∧ υ2,

where υ1 and υ2 are anti-holomorphic forms on R3 ×R and MTN respectively,

∂M1,1υ = (∂R3×Rυ1) ∧ υ2 + (−1)deg(υ1)υ1 ∧ (∂MTN
υ2), (7.76)

∆M1,1υ = (∆R3×Rυ1) ∧ υ2 + υ1 ∧ (∆MTN
υ2). (7.77)

See appendix A.3 for more details.

The centre of mass dynamics are equivalent to the charge-1 monopole dynamics,

and again we refer back to the previous chapter. Focussing on the moduli space
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for the relative motion of the monopoles, we can as before generate multiplets of

states, starting with a wavefunction Φ on MTN , and applying the (twisted) Dolbeault

operators on the Taub-NUT manifold. When Φ is an eigenstate of the Laplacian

∆MTN
we obtain, in general, four independent states. By taking the wedge product

of these states with a multiplet of four centre of mass states, we obtain a multiplet of

16 states with the same energy.

BPS states in the original field correspond to the short multiplet of 4 states on

the total moduli space. Therefore, these would correspond to a normalisable har-

monic form on the relative moduli space, which does not generate a multiplet of 4

independent states on the moduli space. However, the only normalisable harmonic

form on the Taub-NUT manifold is of degree (1, 1) [5, 6]. It is therefore not an anti-

holomorphic state corresponding to any fermionic or bosonic state of the system. The

N = 2 supersymmetric charge-(1, 1) monopole system therefore has no BPS states in

the moduli space approximation.

7.3.1 Quantisation using spinors

Having described how we may separate the centre of mass motion and relative motion

in the previous section, we now focus our attention on the relative moduli space. We

construct the Dirac operator and Hamiltonian acting on spinors on MTN , which we

will compare to the corresponding operators acting on forms in section 7.3.2, and

show that they are equivalent.

The Taub-NUT metric can be rewritten as

ds2 = µ
[
V (d~r)2 + V −1

(
dψ + ~A · d~r

)2 ]
= (e1)2 + (e2)2 + (e3)2 + (e4)2, (7.78)

where as before ~A · d~r = cos θdφ, and we have defined the vier-bein

ei = ei
jdxj =

√
µV dxi, e4 = e4

jdxj =

√
µ

V

(
dψ + ~A · d~r

)
. (7.79)

The Dirac operator on a general manifold is defined by

D/ s = γ̂a (∂a + Γa) , (7.80)

where

γ̂a = (ea
b)
−1γb, Γa = −1

8
[γb, γc]ωbc(∂a), (7.81)
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and the spin connection ω corresponding to the viel-bein e is defined through

dea + ωa
b ∧ eb = 0, ωab = −ωba. (7.82)

A solution to these equations for the Taub-NUT manifold is

1

2
εijkω

ij = ω4
k = −

[
1

2V
√

V
(∂kV )e4 − 1

2V
√

V
(∂kω

j − ∂jω
k)ej

]
(7.83)

where

ωj =
r + z

z
Aj (7.84)

which satisfies

εijk∂jω
k = − 1

r3
xi = ∂iV. (7.85)

Furthermore, we have:

1

2
[γi, γj] = γiγj =


 −iεijkσ

k 0

0 −iεijkσ
k


 (7.86)

1

2
[γ4, γj] = γ4γj =


 −iσj 0

0 iσj


 (7.87)

and we find

Γα =


 iσkω4

k(∂α) 0

0 0


 =

1

2


 iεijkσ

kωij(∂α) 0

0 0


 (7.88)

where

ω4
k(∂α) = − 1

2V
εijk(∂iV )δj

α −
1

2V 2
(∂kV )

(
δ4
α + Ajδj

α

)
(7.89)

We use the same representation for the Dirac γ-matrices as before (6.13), so that

γ̂j =
1√
µ


 0 1√

V
σj

− 1√
V

σj 0


 , (7.90)

γ̂4 =
1√
µ


 0 i

√
V − 1√

V
σjAj

i
√

V + 1√
V

σjAj 0


 . (7.91)
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Now we note that

− 1

V
σjπj(

√
V χ) = i

1

V
σj

[
(∂j

√
V )χ +

√
V (∂jχ)−

√
V Aj∂ψχ

]

= i
1

2V
√

V
σj(∂jV )χ− 1√

V
σjπjχ (7.92)

while

γ̂µ∂µ =


 0 1√

V
σj∂j + (i

√
V − 1√

V
σjAj)∂ψ

− 1√
V

σj∂j + (i
√

V + 1√
V

σjAj)∂ψ 0




= i


 0 1√

V
σjπj +

√
V ∂ψ

− 1√
V

σjπj +
√

V ∂ψ 0


 (7.93)

and

γ̂jΓj =


 0 0

(− 1√
V

σj)
(−iσk

(
1

2V
εijk(∂iV ) + 1

2V 2 (∂kV )Aj
))

0




= i


 0 0

(δjk + iεjklσ
l)

(
1

2V
√

V
εijk(∂iV )

)
+ (σjσk)

(
1

2V 2
√

V
(∂kV )Aj

)
0




= i


 0 0

i 1
V
√

V
σj(∂jV ) + σjσk 1

2V 2
√

V
(∂kV )Aj 0


 (7.94)

γ̂4Γ4 =


 0 0

(i
√

V + 1√
V

σjAj)
(−i 1

2V 2 σ
k(∂kV )

)
0




= i


 0 0

−i 1
2V
√

V
σk(∂kV )− σjσk 1

2V 2
√

V
(∂kV )Aj 0


 (7.95)

The Dirac operator is therefore

D/ s =
1√
µ


 0 i 1√

V
σjπj + i

√
V ∂ψ

−i 1
V

σjπj
√

V + i
√

V ∂ψ 0


 =:

1√
µ


 0 T †

T 0


 ,

(7.96)
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where we have defined the operator T and its adjoint T †,

T = −i
1

V
σjπj

√
V + i

√
V ∂ψ, (7.97)

T † = i
1√
V

σjπj + i
√

V ∂ψ, (7.98)

and

πj = −i(∂j − Aj∂ψ). (7.99)

We check that T † is the adjoint operator of T with respect to the given metric:

< α, Tβ > =

∫

M

α†(Tβ) dvolM

=

∫

M

α†
(
−i

1

V
σjπj(

√
V β) + i

√
V ∂ψβ

)
V dx4

=

∫

M

−α†σj(∂j − Aj∂ψ)(
√

V β) + iV
√

V α†(∂ψβ)dx4

=

∫

M

−α†σj∂j(
√

V β) + α†σjAj∂ψ(
√

V β) + iV
√

V α†(∂ψβ)dx4

=

∫

M

(∂jα
†)σj(

√
V β)− (∂ψα†)σjAj(

√
V β)− iV

√
V (∂ψα†)βdx4

=

∫

M

[(
1√
V

σj∂jα

)†
β −

(
1√
V

σjAj∂ψα

)†
β +

(
i
√

V ∂ψα
)†

β

]
V dx4

=

∫

M

(
i

1√
V

σjπjα + i
√

V ∂ψα

)†
β dvolM

=

∫

M

(
T †α

)†
β dvolM

= < T †α, β > (7.100)
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To derive the Hamiltonian, we need to compute TT † and T †T . We find

TT †χ =

(
1

V
σjπj − ∂ψ

) (
σkπk + V ∂ψ

)
χ

=
1

V
σjσkπjπkχ− V ∂2

ψχ

+
1

V
σjπj(V ∂ψχ)− ∂ψσkπkχ

=
1

V
(δjk + iεjklσ

l)πjπkχ− V ∂2
ψχ− i

V
σj(∂jV )∂ψχ

=
1

V
πjπjχ− V ∂2

ψχ (7.101)

and

T †Tχ =

(
1√
V

σjπj +
√

V ∂ψ

) (
1

V
σkπk

√
V −

√
V ∂ψ

)
χ

=
1√
V

σjπj 1

V
σkπk

√
V χ− V ∂2

ψχ

=
1√
V

σjσkπj 1

V

(
−i∂k

√
V

)
χ +

1√
V

σjσkπj 1√
V

πkχ− V ∂2
ψχ

=
1√
V

σjσkπj 1

V

(
−i∂k

√
V

)
χ+

+
1√
V

σjσk

(
−i∂j

1√
V

)
πkχ +

1

V
σjσkπjπkχ− V ∂2

ψχ

= −i
1√
V

σjσkπj 1

2V
√

V
(∂kV ) χ+

i
1

2V 2
σjσk (∂jV ) πkχ +

(
H0 +

i

V
σj(∂jV )∂ψ

)
χ

= TT †χ − i
1

2V 2
σjσk (∂kV ) πjχ− 1√

V
σjσk

(
∂j

1

2V
√

V
(∂kV )

)
χ+

i
1

2V 2
σjσk (∂jV ) πkχ +

i

V
σj(∂jV )∂ψχ
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= TT †χ − 1

2
√

V
σjσk

(
∂j

1

V
√

V

)
(∂kV ) χ− 1

2V 2
σjσk (∂j∂kV ) χ+

− 1

V 2
(εjklσ

l) (∂jV ) πkχ +
i

V
σj(∂jV )∂ψχ

= TT †χ +
3

4V 3
σjσk (∂jV ) (∂kV ) χ− 1

2V 2
(∂j∂jV ) χ+

− 1

V 2
(εjklσ

l) (∂jV ) πkχ +
i

V
σj(∂jV )∂ψχ

= TT †χ +
3

4V 3

1

r4
χ + εjkl

1

V 2

xj

r3
σlπkχ− i

V

xj

r3
σj∂ψχ (7.102)

or

T †T = TT † +
3

4V 3r4
+

1

V 2r3
~σ · (~r × ~π)− i

1

V r3
~r · ~σ∂ψ

= TT † +
3

4V 3r4
+

1

V 2r3
~σ · ~L0 − i

1

V 2r3
~σ · ~r∂ψ, (7.103)

where

~L0 = ~r × ~π − ir̂∂ψ. (7.104)

This disagrees with the result found by Comtet and Horváthy [10], who studied the

Dirac equation in Taub-NUT space in the context of gravitational instantons.

The Hamiltonian is then given by

H =
1

2
D/ 2

s =


 H2 0

0 H1


 , (7.105)

where

H1 =
1

2µ
TT † =

1

2µ

[
1

V
πjπj − V ∂2

ψ

]
, (7.106)

H2 =
1

2µ
T †T = H1 +

1

2µ

[
3

4V 3r4
+

1

V 2r3
~σ · ~L0 − i

1

V 2r3
~σ · ~r∂ψ

]
. (7.107)

Notice that H1 acts diagonally - a fact we will come to appreciate further when we

compute the Dirac operator acting on forms in the following section.
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7.3.2 Quantisation using forms

Once again we will construct a matrix representation of the Dirac operator action on

anti-holomorphic forms, by finding a matrix representation of the Dolbeault operators

with respect to a suitable basis of anti-holomorphic forms.

A set of Kähler coordinates on the Taub-NUT manifold MTN is defined by [44]

w = r sin θeiφ, v = r(1 + cos θ)er cos θ+i(ψ+φ). (7.108)

We define the 1-forms α2 and α1, which form a convenient basis of holomorphic 1-forms

with respect to the complex structure corresponding to the hermitian coordinates w

and v, by

α2 =
1√
2
(e1 + ie2) =

√
µV

2
dw, (7.109a)

α1 =
1√
2
(e3 + ie4) =

√
µ

2V

(
dv

v
+ (cos θ − 1)

dw

w

)
. (7.109b)

The Taub-NUT metric can then be written in terms of Kähler coordinates as

ds2 = µ

[
V |dw|2 + V −1

∣∣∣∣
dv

v
+ (cos θ − 1)

dw

w

∣∣∣∣
2
]

= 2|α2|2 + 2|α1|2. (7.110)

Again we choose {α1, α2, 1, α1 ∧ α2} as and ordered basis of Ω0,•(M), and using

the same procedure as before, we represent the action of the Dolbeault operator ∂,

and its adjoint ∂
†
= −∗ ∂∗, as a matrices. The calculations involved are lengthy, but

straightforward. As an example, we compute ∂ϕ for a function ϕ which corresponds

to the third column of the matrix of ∂. The final results, the matrices for ∂ and ∂
†

are given below in equations (7.119) and (7.120).

To compute ∂ϕ, we first observe the following. On the one hand, the exterior

derivative of a function ϕ is given by

dϕ = (∂iϕ)dxi + (∂ψϕ)dψ, (7.111)

while on the other,

dϕ = ∂ϕ + ∂ϕ = f1(ϕ) α1 + f 1(ϕ) α1 + f2(ϕ) α2 + f 2(ϕ) α2, (7.112)
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where

∂ϕ = f1α1 + f2α2, ∂ϕ = f 1α1 + f 2α2. (7.113)

We now compute

f1α1 + f 1α1 = f1

(
1√
2
(e3 + ie4)

)
+ f 1

(
1√
2
(e3 − ie4)

)

=

√
µ√
2

(
(f1 + f 1)

√
V dx3 + i(f1 − f 1)

1√
V

(dψ + ~A · d~r)

)
, (7.114)

f2α2 + f 2α2 = f2

(
1√
2
(e1 + ie2)

)
+ f 2

(
1√
2
(e1 − ie2)

)

=

√
µ√
2

(
(f2 + f 2)

√
V dx1 + i(f2 − f 2)

√
V dx2

)
. (7.115)

Therefore, comparing equation (7.111) with (7.112), we have

∂ψϕ = i

√
µ√
2
(f1 − f 1)

1√
V

(7.116)

∂3ϕ =

√
µ√
2
(f1 + f 1)

√
V (7.117)

which can be solved for f1 by

f1(ϕ) =
1√
2µ

i

(
1√
V

π3 −
√

V ∂ψ

)
(ϕ), (7.118)

where π3 is defined in (7.99). Similarly, comparing the components of dx1 and dx2 of

equations (7.111) and (7.112) gives us an expression for f2.

As a final result we find the following matrices for the Dolbeault operator and its

adjoint.

(
∂
)

=




0 0 f 1 0

0 0 f 2 0

0 0 0 0

g1 − f 2 g2 + f 1 0 0




(7.119)

(
∂
†)

=




0 0 0 f2

0 0 0 −f1

−g2 − f1 g1 − f2 0 0

0 0 0 0




(7.120)
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The functions g1 and g2, and operators f1 and f2, are given by

g1 = − 1√
µ

1

2V
√

2V
(∂1 − i∂2)V, f1 = i

1√
µ

1√
2V

(
π3 − V ∂ψ

)
,

g2 =
1√
µ

1

2V
√

2V
(∂3V ), f2 =

1√
µ

1√
2V

(
π2 + iπ1

)
, (7.121)

where πj is defined in (7.99). The Dirac operator in the chosen basis of anti-holomorphic

forms is therefore the same as the Dirac operator acting on spinors, found in sec-

tion 7.3.1.

D/ ∂ =
√

2
(
∂ + ∂

†)
=

1√
µ


 0 i

√
V ∂ψ + i 1√

V
σkπk

i
√

V ∂ψ − i 1
V

σkπk
√

V 0


 = D/ s

(7.122)

This means that our chosen basis of anti-holomorphic forms gives an easy way to

translate between spinors on the moduli space and anti-holomorphic forms on the

moduli space, as in equation (6.24).

The Hamiltonian H = 1
2
D/ 2

∂
=

(
∂
†
∂ + ∂ ∂

†)
= 1

2
∆MTN

is again the same as the

Hamiltonian for spinors on the moduli space, (7.105). We see that the effective

Hamiltonian for the bosonic fields in the original field theory (the 0-forms and 2-

forms on the moduli space) is H1. Since it is diagonal, it acts on functions and 2-

forms independently. The Hamiltonian for fermionic fields H2, however, mixes the two

different fermionic modes through the terms involving the Pauli-matrices. Since the

Hamiltonian commutes with the Dolbeault operators, the spectrum for the fermionic

sector of the theory must be the same as the spectrum for the bosonic sector. This

agrees with Comtet and Horváthy’s argument using supersymmetry on the moduli

space to argue that the bosonic and fermionic spectra are the same.

Finally, we compute the matrix representation of the twisted Dolbeault operator

and its adjoint.

∂J = i




0 0 f2 0

0 0 −f1 0

0 0 0 0

g2 + f1 −(g1 − f2) 0 0




(7.123)
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∂
†
J = i




0 0 0 f 1

0 0 0 f 2

−(g1 − f 2) −g2 − f 1 0 0

0 0 0 0




(7.124)

We can again directly compute the operators ∂ ∂J = −∂J ∂ and ∂
†
∂
†
J = −∂

†
J ∂

†
, but

it is easier to use the Kodaira relations (6.27). This gives once more the simple results

∂ ∂J =
i

2




0 0 0 0

0 0 0 0

0 0 0 0

0 0 ∆MTN
0




, ∂
†
∂
†
J =

i

2




0 0 0 0

0 0 0 0

0 0 0 ∆MTN

0 0 0 0




, (7.125)

analogous to equations (6.26).

7.4 N = 4 supersymmetric monopoles

BPS states of N = 4 supersymmetric monopoles correspond to short supermultiplets

which contain five spin-0 states, four spin-1
2

doublets and one spin-1 triplet. To

construct the N = 4 supersymmetric monopole states, we start again with a solution

Ψ to the bosonic Schrödinger equation, and generate the remaining states in the

multiplet using the (twisted) Dolbeault operators and their adjoints. As discussed

above, we may separate these operators into their centre of mass and relative moduli

space components.

A wavefunction on the centre of mass moduli space generates a full short N = 4

multiplet on the centre of mass moduli space. The full wavefunctions correspond to

wedge products of these forms with normalisable forms on the relative moduli space

(see also section 7.3 and appendix A.3). A multiplet of BPS states can therefore

only exist if there is a unique normalisable harmonic form on the moduli space, as

first argued by Sen [13]. We will call this form the Sen-form. It must necessarily be

anti-self-dual or self-dual.

The discussion about the structure of the short multiplet of N = 4 supersym-

metric monopole states for charge-1 monopoles carries over straightforwardly from
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the multiplet of states on the centre of mass moduli space. We will now discuss the

Sen-form, required to build the wavefunctions of BPS monopoles on the total moduli

space.

7.4.1 The Sen-form

As pointed out by Gauntlett and Lowe [5] there exists a normalisable harmonic 2-form

on the Taub-NUT manifold,

ωS =
r

r + 1
η1 ∧ η2 +

1

(r + 1)2
dr ∧ η3 = d(V η3) (7.126)

which can be rewritten as

ωS = V −1

(
− 1

r3

)
1

2
εijkx

idxj ∧ dxk +
r2

(r + 1)2 r2

xi

r
dxi ∧ ηR

3

= − 1

µ
V −2 xi

r3

(
1

2
εijke

j ∧ ek − ei ∧ e4

)

= − 1

µ
V −2 (∂iV ) T i (7.127)

where we have defined the triplet T i as before by

T i = e4 ∧ ei +
1

2
εijke

j ∧ ek. (7.128)

They are self-dual and therefore the Sen-form is self-dual as well.

The Sen-form is normalisable, since

∫
ωS ∧ ωS = 8π3

∫
r

(r + 1)3
dr = 4π3, (7.129)

which is finite.

7.5 Angular momentum and spin

The total angular momentum operator ~J is once again defined by equation (5.8). As

usual we decompose the total moduli space into the centre of mass and relative moduli

spaces. The vector fields generating the SU(2) action on the Taub-NUT manifold are
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denoted ξL
i (see also Gibbons and Manton [4]). They are given by

ξL
1 = − cos φ

sin θ

∂

∂ψ
+ sin φ

∂

∂θ
+

cos θ

sin θ
cos φ

∂

∂φ
(7.130a)

ξL
2 = − sin φ

sin θ

∂

∂ψ
− cos φ

∂

∂θ
+

cos θ

sin θ
sin φ

∂

∂φ
(7.130b)

ξL
3 = − ∂

∂φ
(7.130c)

They satisfy

[
ξL
i , ξL

j

]
= εijkξ

L
k . (7.131)

Again, the Lie derivatives with respect to these vector fields obey indeed the commu-

tation relations (5.6) with the complex structures. Furthermore, we have

LξL
i
(V ) = ξL

i

(
1 +

1

r

)
= 0 (7.132)

so that

LξL
i
(ej) = V

1
2LξL

i
(dxj) (7.133)

LξL
i
(e4) = V − 1

2LξL
i
(η3) (7.134)

Now we use the fact that



dx1

dx2

dx3


 =




sin θ cos φ r cos θ cos φ −r sin θ sin φ

sin θ sin φ r cos θ sin φ r sin θ cos φ

cos θ −r sin θ 0







dr

dθ

dφ


 (7.135)

to compute

LξL
i
(dxj) = εijkdxk, (7.136)

and

LξL
i
(η3) = LξL

i
(dψ + cos θdφ) = 0, (7.137)

Therefore

LξL
i
(ej) = εijke

k LξL
i
(e4) = 0 (7.138)
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and as in section 6.5 we find that the Lie derivatives with respect to these vector

fields obey indeed the commutation relations (5.6) with the complex structures (6.17):[
LξL

i
, ad Ij

]
= εijk ad Ik.

We now have, for example,

J1(α1) =
i√
2

(
LξL

i
− 1

2
ad I1

)
(e3 + ie4)

=
i√
2

(
−e2 − 1

2
(−e2 − ie1)

)

= − i

2
√

2
(e2 − ie1)

= −1

2
α2, (7.139)

and in general we find that the total angular momentum operator acts on α1 and α2

as

Ji(αm) = −1

2
(σi)mnαn, (7.140a)

Ji(αm) =
1

2
(σi)mnαn. (7.140b)

Again we have that {α1, α2} and {−iα2, iα1} form an angular momentum doublet.

The multiplet decomposition on the Taub-NUT manifold is the same as that on the

flat moduli space in section 6.5.

The Sen-form, written in the form of equation (7.127), is a singlet under the

angular momentum operator. It is of the form ωS = UjT
j, for a vector Uj so that

JiωS = Ji(UjT
j) = (εijkUk)T

j + Uj(εijkT
k) = 0, (7.141)

which agrees with the uniqueness of the Sen-form.
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Chapter 8

Outlook

By applying supercharges to the bosonic scattering wavefunctions Φ on the Taub-NUT

manifold found in section 7.2.2 we generate multiplets of scattering states. Wedging

these with the multiplet of centre of mass states as outlined in chapter 6 one obtains

the full multiplets of supersymmetric monopole scattering states. In general, for

the N = 4 supersymmetric monopoles this gives a 256-dimensional supermultiplet

of states. The total angular momentum of these states can be computed using the

general formula (5.8) and the expressions for the angular momentum action on the

centre-of-mass states and on the relative wavefunction, as discussed in sections 6.5

and 7.5.

It remains a challenge to interpret the resulting multiplets of scattering states

in terms of monopole-monopole (or dyon-dyon) scattering. One would like to be

able to compute spin-polarised differential scattering cross sections, where spins of

the in- and out-going monopoles or dyons are specified. To do this in practice one

needs to relate the individual monopoles’ spin degrees of freedom to the differential

forms on the centre of mass and relative moduli space. As explained in the opening

paragraphs of chapter 5, this is only possible in the asymptotic region of the moduli

space, where the corresponding monopoles are well-separated. The starting point for

such a calculation would thus be the decomposition of the asymptotic region of the

total moduli space M1,1 (equation (7.1)) into copies of the constituent monopoles’

moduli spaces, as discussed in [5, 6]. Using this decomposition one needs to decompose

scattering states on M1,1 into states which have definite values of the spin for the
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constituent monopoles.

An important motivation for carrying out a detailed study of spin-polarised monopole-

monopole scattering cross sections comes from the electric-magnetic duality conjec-

ture, summarised in the introduction. An interesting continuation of this research

project would therefore be to see if the duality conjecture continues to hold for the

non-BPS states, and to investigate further which predictions for strongly interacting

particle scattering may be formulated from these calculations on monopole-monopole

scattering.
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Part III

Appendices
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Appendix A

Hyperkähler Manifolds

For most purposes of this thesis, we shall only need to consider 4-dimensional hyper-

kähler manifolds M. The extension to 4k-dimensional hyperkähler manifolds is

straightforward. In particular we are interested in R4, M1 = R3 × S1 and the Taub-

NUT manifold MTN . As explained in chapter 7, the (cover of the) 8-dimensional

moduli space M1,1 naturally decomposes into the flat 4-dimensional manifold corre-

sponding to the centre of mass motion, and the Taub-NUT manifold corresponding

to the relative motion of monopoles. In section A.3 we discuss the behaviour of

differential operators on product manifolds, such as M1,1.

We write the metric on a 4-dimensional manifold M in terms of an orthonormal

frame e, as

ds2 = (e1)2 + (e2)2 + (e3)2 + (e4)2, (A.1)

where ea form the vier-bein corresponding to e. We denote the vectors dual to the ea

with eb:

ea(eb) = δa
b (A.2)

Indices at the beginning of the alphabet, a, b, c, . . ., run from 1 to dimM = 4, while

indices in the middle of the alphabet, i, j, k, . . ., run only from 1 to 3.
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A.1 Hyperkähler structure

A complex structure on a manifold is a map I from the tangent bundle to itself,

such that I2 = −1. The hyperkähler structure is generated by a set of 3 complex

structures Ii that act on the tangent bundle of M, and satisfy the quaternion algebra

IiIj = −δij1+ εijkIk. (A.3)

This implies that the action of the complex structures on vectors satisfies

[Ii, Ij] = 2εijkIk. (A.4)

A.1.1 Complex structures

We define the action of the complex structures on vectors by1

Ii(ej) = δije4 + εijkek, (A.6a)

Ii(e4) = −ei, (A.6b)

which satisfies the quaternion algebra A.3.

The action of the complex structures on 1-forms

The action of the complex structures on 1-forms is defined by

(Ii(e
a)) (eb) = −ea (Ii(eb)) . (A.7)

The minus-sign is there so that the action of the complex structure on 1-forms is

compatible with the identification of vectors and co-vectors using the metric, gab = δab.

1An alternative choice would be

Ii(ej) = −δije4 + εijkek,

Ii(e4) = ei,

However, this choice does not correspond with our chosen definition of the complex structures in

section 2.6.
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In more detail:

(Ii(e
a)) (eb) = (Ii(δ

acec)) (eb)

= (δac(δice4 − eiδ4c + εickek)) (eb)

= ((δa
i e4 − δa

4ei + δacεickek)) (eb)

=
(
(δa

i g4de
d − δa

4gide
d + δacεickgkde

d)
)
(eb)

= ((δa
i δ4b − δa

4δib + δacεickδkb))

= ((−δa
4δib + δa

i δ4b + εiab)

= −ea (δibe4 − δb4ei + εibkek)

= −ea (Ii(eb)) . (A.8)

We now compute

(Ii(e
j))(ek) = −ej(Ii(ek)) = −ej(δike4 + εiklel) = εijk, (A.9)

(Ii(e
j))(e4) = −ej(Ii(e4)) = −ej(−ei) = δij, (A.10)

(Ii(e
4))(ek) = −e4(Ii(ek)) = −e4(δike4 + εiklel) = −δik, (A.11)

(Ii(e
4))(e4) = −e4(Ii(e

4)) = 0, (A.12)

and from this, we can read off the following action on forms:

Ii(e
j) = δije

4 + εijke
k, (A.13a)

Ii(e
4) = −ei, (A.13b)

For composition of the action of the complex structures on forms we find again

IiIj = −δij1+ εijkIk. (A.14)
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The components of the complex structures are given by

(Ii(e
a))(eb) = (Ii)c

aec(eb) = (Ii)b
a = (A.15)

−ea(Ii(eb)) = −ea((Ii)
c
bec) = −(Ii)

a
b (A.16)

The action of the complex structures on p-forms

Ij acts on p-forms by extension via

Ij(φ ∧ ψ) = Ij(φ) ∧ Ij(ψ). (A.17)

On functions, the complex structure acts trivially

Ij(f) = f. (A.18)

Acting on p-forms, the composition of complex structures satisfies

IiIj = (−1)pδij + εijkIk. (A.19)

The adjoint action of the complex structures

We define the operator ad Ij as follows. Its action on 1-forms is defined by

ad Ij(φ) = Ij(φ), (A.20)

and its action on k-forms is given by extending the action using a Leibniz rule

ad Ij(φ ∧ ψ) = ad Ij(φ) ∧ ψ + φ ∧ ad Ij(ψ). (A.21)

The ad Ij obey the same commutation relations as the Ij:

[ad Ii, ad Ij] = 2εijk ad Ik, (A.22)
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while, using equation (A.4), we find (here we do not sum over the indices)

[ad Ii, Ij] =
[
(Ii ⊗ 1⊗ . . .⊗ 1) + (1⊗ Ii ⊗ 1⊗ . . .⊗ 1) + . . . + (1⊗ . . .⊗ 1⊗ Ii) ,

(Ij ⊗ Ij ⊗ . . .⊗ Ij)
]

= ([Ii, Ij]⊗ Ij ⊗ . . .⊗ Ij) + (Ij ⊗ [Ii, Ij]⊗ Ij ⊗ . . .⊗ Ij)

+ . . . + (Ij ⊗ . . .⊗ Ij ⊗ [Ii, Ij])

=





0 if i = j,

2 ad IiIj if i 6= j.

(A.23)

Inverse action of the complex structures

On 1-forms, the complex structures satisfy I2
i = −1, so that I−1

i = −Ii. For p-forms,

however, this doesn’t hold. In general, I4
i = 1, and I3

i = I−1
i , from which we deduce

that the inverse action of the complex structures generalises to p-forms as

I−1
i = (−1)pIi. (A.24)

Products of complex structures and inverse complex structures can now be derived

from the composition of the complex structures. Acting on p-forms,

I−1
i Ij = IiI−1

j = (−1)pIiIj = (−1)p((−1)pδij + εijkIk) = δij + εijkI−1
k (A.25)

which gives

[Ii, I−1
j

]
= 2εijkI−1

k . (A.26)

A.1.2 Decomposition of complex forms

The holomorphic forms with respect to the complex structure I = I3 are α1 and α2:

α1 =
1√
2
(e3 + ie4) α2 =

1√
2
(e1 + ie2) (A.27)

Using equations (A.13) we find that

I(α1) = −iα1 I(α2) = −iα2

I(α1) = iα1 I(α2) = iα2 (A.28)
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and the action of the remaining complex structures, J = I1 and K = I2, on these

forms is given by

J (α1) = −iα2 J (α2) = iα1

J (α1) = iα2 J (α2) = −iα1 (A.29)

K(α1) = α2 K(α2) = − α1

K(α1) = α2 K(α2) = − α1 (A.30)

If there exist holomorphic coordinates w1 and w2 such that α1 and α2 are holo-

morphic linear combinations of dw1 and dw2 (and vice versa), as is the case for the

manifolds R4, M1 and MTN , then

I(dwα) = −idwα, I(dwα) = idwα. (A.31)

In components,

Iα
β = −i(1)α

β, Iα
β = i(1)α

β, (I3)α
β = (I3)α

β = 0. (A.32)

and J = I1 and K = I2 map holomorphic forms (ϕ) into anti-holomorphic forms,

and vice-versa. For example,

I(Jϕ) = −J (Iϕ) = iJ (ϕ), (A.33)

Therefore,

Jα
β = Jα

β = 0 Kα
β = Kα

β = 0 (A.34)

Finally, some useful identities are

α1 ∧ α1 = −ie3 ∧ e4 (A.35a)

α1 ∧ α2 = −1

2
(e1 ∧ e3 − e2 ∧ e4)− i

2
(e1 ∧ e4 + e2 ∧ e3) (A.35b)

α1 ∧ α2 = −1

2
(e1 ∧ e3 + e2 ∧ e4)− i

2
(e1 ∧ e4 − e2 ∧ e3) (A.35c)

α2 ∧ α2 = −ie1 ∧ e2 (A.35d)
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A.1.3 The Hodge star operator

The Hodge star operator, ∗, maps p-forms to (4− p)-forms, where 4 is the dimension

of the manifold M. It is defined by

ψ ∧ ∗ψ = dvol, (A.36)

where dvol is a volume form on the manifold M. The natural definition of the volume

form on a Kähler manifold is

dvol = α1 ∧ α1 ∧ α2 ∧ α2 = −e1 ∧ e2 ∧ e3 ∧ e4. (A.37)

Using the expressions for holomorphic and anti-holomorphic forms in terms of the

orthonormal frame, we find the following Hodge-duals:

∗α1 =
1√
2
∗ (e3 + ie4)

= − 1√
2
(e1 ∧ e2 ∧ e4 − ie1 ∧ e2 ∧ e3)

= −α2 ∧ α2 ∧ α1, (A.38a)

?α2 = −α2 ∧ α1 ∧ α1, (A.38b)

and using equations (A.35) we find

∗(α1 ∧ α1) = −α2 ∧ α2, (A.39a)

∗(α1 ∧ α2) = −α1 ∧ α2, (A.39b)

∗(α1 ∧ α2) = α1 ∧ α2. (A.39c)

The remaining identities can be found using

∗ψ = ∗ψ, (A.40)

∗(∗ψ) = (−1)deg ψψ. (A.41)

125



A.1.4 Hyperkähler forms

The hyperkähler forms are defined by

ωi(X,Y ) = g(X, IiY ). (A.42)

The requirement for the moduli space to be a Kähler manifold with respect to the

complex structure Ii is that ωi is closed:

dωi = 0. (A.43)

Using equation (A.7), we compute

ωi = −ej ⊗ Ii(e
j)− e4 ⊗ Ii(e

4)

= −ej ⊗ (δije
4 + εijke

k) + e4 ⊗ ei

= e4 ∧ ei − 1

2
εijke

j ∧ ek. (A.44)

The hyperkähler forms are of degree (1,1) with respect to their corresponding complex

structure. For example,

ω3 = −i(α1 ∧ α1 + α2 ∧ α2). (A.45)

They are of mixed degree (2, 0) and (0, 2) with respect to the other complex structures,

as we will show below in the following section. The hyperkähler forms are anti-self-

dual:

∗ωi = −ωi. (A.46)

A.1.5 The canonical holomorphic symplectic form

The canonical holomorphic symplectic form of a hyperkähler manifoldM with respect

to the complex structure I3 is defined by

Ω3 = ω1 + iω2. (A.47)

Taking cyclic permutations of the indices we can also define the canonical holomorphic

symplectic forms with respect to the other complex structures. In terms of our basis
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of holomorphic forms, we have

Ω3 = e4 ∧ e1 + e3 ∧ e2 + i(e4 ∧ e2 + e1 ∧ e3)

= −i(e3 + ie4) ∧ (e1 + ie2)

= −2iα1 ∧ α2. (A.48)

It is of degree (2,0) with respect to the complex structure I3, and closed since the

hyperkähler forms ω1 and ω2 are closed. These two hyperkähler forms are the real

and imaginary part of Ω3 and are therefore forms of mixed type (2, 0) and (0, 2) with

respect to the complex structure I3.

A.2 Differential operators

A.2.1 Dolbeault operators

The exterior derivative maps p-forms into (p + 1)-forms. On a Kähler manifold, it

can be separated into the Dolbeault operator (with respect to a complex structure I)

and its conjugate, via

d = ∂ + ∂, (A.49)

where

∂ : Ωp,q → Ωp+1,q, ∂ : Ωp,q → Ωp,q+1. (A.50)

The space Ωp,q is the space of forms of degree (p, q) with respect to the complex

structure. They are eigenstates of the complex structure I with eigenvalue i(q − p).

On a hyperkähler manifold, we have three complex structures, Ij, which all have

their own corresponding Dolbeault operators, ∂j and ∂j, and we can split up the

exterior derivative as

d = ∂j + ∂j, (A.51)

where

∂j : Ωp,q
j → Ωp+1,q

j , ∂j : Ωp,q
j → Ωp,q+1

j . (A.52)

127



We will often pick a complex structure, I = I3, and work with (p, q)-forms with

respect to this complex structure. We will then omit the subscript 3 for the Dolbeault

operators, ∂ = ∂3 and ∂ = ∂3.

A.2.2 The Laplacian

The Laplacian ∆ is given in terms of the exterior derivative by

∆ = ∇2 = (d + d†)2. (A.53)

On a Kähler manifold it becomes, in terms of the Dolbeault operator,

∆ = 2∆∂ = 2(∂ + ∂†)2 = 2∆∂ = 2(∂ + ∂
†
)2. (A.54)

d2 = ∂2 = ∂
2

= 0, which implies that the exterior derivative and the Dolbeault

operators commute with the Laplacian. For example,

∆∂ = 2(∂∂† + ∂†∂)∂ = 2∂∂†∂ = 2∂(∂∂† + ∂†∂) = ∂∆, (A.55)

and similarly for d and ∂.

A.2.3 Twisted exterior derivatives

On a Kähler manifold, we can define a twisted exterior derivative:

dc = dI = −I−1dI = IdI−1. (A.56)

We have, for a (p, q)-form ψ,

dIψ = IdI−1ψ

= (i)p−qIdψ

= (i)p−q
(
(−i)p+1−q∂ψ + (−i)p−(q+1)∂ψ

)

= i
(
∂ − ∂

)
ψ. (A.57)

On a hyperkähler manifold we have three complex structures, and we define twisted

exterior derivatives by

dIi
= −(Ii)

−1d(Ii) = (Ii)d(Ii)
−1. (A.58)
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We choose a particular complex structure I = I3, so that dI3 = dI . Furthermore we

define J = I1 and K = I2 as usual. We now also define twisted Dolbeault operators

by

∂J = −J −1∂J = J ∂J −1, ∂J = −J −1∂J = J ∂J −1. (A.59)

Since J (and its inverse) transforms a (p, q)-form into a (q, p)-form, ∂J increases the

holomorphic degree by one, while ∂J increases the anti-holomorphic degree by one:

∂J : Λp,qM → Λp+1,qM, ∂J : Λp,qM → Λp,q+1M. (A.60)

We could also define twisted Dolbeault operators using the complex structures I and

K, but those can then be simply reexpressed in terms of the Dolbeault operators and

the J -twisted Dolbeault operators respectively.

* * *

The twisted Dolbeault operators ∂J should not be confused with Dolbeault operators

corresponding to the different complex structure ∂j. The twisted Dolbeault operators

have a capital index indicating the complex structure that does the ‘twisting’, whereas

a lowercase index indicates that we work with a Dolbeault operator corresponding to

a different complex structure from the chose complex structure I.

* * *

Since Jα
α = Jα

α, the twisted Dolbeault operator satisfies

∂Jψ = J ∂J −1ψ = J ∂ J −1ψ = J ∂ J −1ψ = J ∂ J −1ψ = ∂Jψ. (A.61)

We find, using that for a (p, q)-form ψ we have Jψ = (−i)p−qKψ,

dJ = ∂J + ∂J , dK = −i(∂J − ∂J ), (A.62)

and

∂J =
1

2
(dJ + idK), ∂J =

1

2
(dJ − idK). (A.63)
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* * *

The complex structures are integrable, so

∇(Ii) = 0, (A.64)

from which we deduce that

Ii(∇Xψ) = ∇X(Ii(ψ))− (∇XIi)ψ = ∇X(Ii(ψ)). (A.65)

Now, using

d =
∑

j

ej ∧∇ej
(A.66)

we find

dIi
= (Ii)d(Ii)

−1 = (Ii)

(∑
j

ej ∧∇ej

)
(Ii)

−1 =

(∑
j

(Ii)e
j ∧∇ej

)
. (A.67)

Similarly, using

∂ =
∑

α

eα ∧∇eα , ∂ =
∑

α

eα ∧∇eα
, (A.68)

we find

∂J =
∑

α

J eα ∧∇eα , ∂J =
∑

α

J eα ∧∇eα
. (A.69)

* * *

Finally, we can write the Dolbeault operators with respect to the other complex

structures in terms of the exterior derivative and complex structures,

d =
(
∂j + ∂j

)
, dIj

= i
(
∂j − ∂j

)
, (A.70)

so that

∂j =
1

2
(d + idIj

), ∂j =
1

2
(d− idIj

). (A.71)
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A.2.4 Adjoint operators

Adjoint operators are defined using the natural inner product for forms,

(ψ, φ) =

∫
ψ ∧ ∗φ. (A.72)

A† is defined to be the adjoint operator of A if

(A†ψ, φ) = (ψ, Aφ). (A.73)

The adjoint operators to the exterior derivative and Dolbeault operators are

d† = − ∗ d∗ = −ι(ei)∇i = −ι(eα)∇α − ι(eα)∇α, (A.74)

and

∂† = −ι(eα)∇α, ∂
†

= −ι(eα)∇α, (A.75)

where

ι(ea)(eb) = gab ι(eα)(eβ) = gαβ, ι(eα)(eβ) = gαβ, (A.76)

so that indeed ∂† lowers the holomorphic degree of a form by 1 (via contraction with a

(0,1)-form) and ∂
†
lowers the anti-holomorphic degree of a form by 1 (via contraction

with a (1,0)-form).

The adjoint action of the complex structure is

I†i = I−1
i , (A.77)

which allows us to compute the adjoint operator to the twisted exterior derivatives.

We find

d†J = J d†J −1. (A.78)

A similar result holds for the adjoint operator to the twisted Dolbeault operators:

∂†J = J ∂
†J −1 = −J ι(eα)∇αJ −1

= −ι(J eα)∇α, (A.79)

∂
†
J = J ∂†J −1 = −ι(J eα)∇α. (A.80)
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A.2.5 Commutation relations

In general

d2 = (∂ + ∂)2 = ∂2 + (∂∂ + ∂∂) + ∂
2

= 0, (A.81)

so that, by separating out operators of different degree, we have

∂2 =
{
∂, ∂

}
= ∂

2
= 0. (A.82)

From the formulae for the adjoint operators, e.g. ∂† = − ∗ ∂∗, we immediately have

(d†)2 = (∂†)2 =
{

∂†, ∂
†}

= (∂
†
)2 = 0. (A.83)

On a Kähler manifold

{
d, d†

}
= 2

{
∂, ∂†

}
= 2

{
∂, ∂

†}
= ∆, (A.84)

{
∂, ∂

†}
=

{
∂, ∂†

}
= 0. (A.85)

Commutation relations of the twisted operators

Since on a hyperkähler manifold ∂I = −i∂ and ∂K = −i∂J we need only concern

ourselves with the J -twisted operators. We immediately have

d2
J = J d2J −1 = 0, (A.86)

∂2
J = J ∂

2J −1 = 0, (A.87)

∂
2

J = J ∂2J −1 = 0, (A.88)

{
∂J , ∂J

}
= J {

∂, ∂
}J −1 = 0. (A.89)

Similarly

(d†J )2 = (∂†J )2 =
{

∂†J , ∂
†
J
}

= (∂
†
J )2 = 0, (A.90)

and also

{
∂J , ∂

†
J
}

=
{

∂J , ∂†J
}

= 0. (A.91)
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Since the Laplacian commutes with the complex structures,

{
dJ , d†J

}
= J {

d, d†
}J −1 = ∆, (A.92)

2
{

∂J , ∂†J
}

= 2J
{

∂, ∂
†}J −1 = ∆, (A.93)

2
{

∂J , ∂
†
J
}

= 2J {
∂, ∂†

}J −1 = ∆. (A.94)

Commutation relations of twisted operators with untwisted operators

Since I, J , and K are integrable, d, dI , dJ , and dK pairwise anti-commute. Using

equations (A.82) we find

{
d, dIj

}
=

{
∂j + ∂j, i(∂j − ∂j)

}

= i
{
∂j, ∂j

}− i {∂j, ∂j}+ i
{
∂j, ∂j

}− i
{
∂j, ∂j

}

= 0, (A.95)

and therefore we also have

{
dIi

, dIj

}
= Ii

{
d, dI−1

i Ij

}
I−1

i = 0. (A.96)

Finally, therefore, ∂ = 1
2
(d + idI), ∂ = 1

2
(d − idI), ∂J = 1

2
(dJ + idK) and ∂J =

1
2
(dJ − idK) anti-commute as well.

A.3 Product manifolds

We start out with two complex manifolds, Mi (i = 1, 2), with coordinates Xi and the

usual operators di, ∂i, ∗i and d†i = −∗i di∗i and ∂†i = −∗i ∂i∗i, and complex structures

Ii. The product manifold M = M1 ×M2 then has induced operators d, ∂, ∗, ∂† and

I. For example,

d = dX i
1 ⊗

∂

∂X i
1

+ dXj
2 ⊗

∂

∂Xj
2

= d1 + d2. (A.97)
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For ω = ω1 ∧ ω2 with ωi a form on Mi,

ω ∧ (∗ω) = dvolM

= dvolM1 ∧ dvolM2

= ω1 ∧ (∗1ω1) ∧ ω2 ∧ (∗2ω2), (A.98)

so that

∗ω = (−1)deg(∗1ω1)·deg(ω2)(∗1ω1) ∧ (∗2ω2). (A.99)

If we assume separation of variables for a form ω ∈ Ω•,0M , i.e. ω = ω1 ∧ ω2

where ω1 is independent of the coordinates X2 on M2, and ω2 is independent of the

coordinates X1 on M1, then we have

dω = (d1 + d2)(ω1 ∧ ω2) = (d1ω1) ∧ ω2 + (−1)deg(ω1)ω1 ∧ (d2ω2) (A.100)

∂ω = (∂1 + ∂2)(ω1 ∧ ω2) = (∂1ω1) ∧ ω2 + (−1)deg(ω1)ω1 ∧ (∂2ω2) (A.101)

This allows us, for example, to compute the action of ∂† on a form:

∂†ω = − ∗∂ ∗ ω

= −(−1)deg(∗1ω1)·deg(ω2) ∗∂(∗1ω1) ∧ (∗2ω2)

= −(−1)deg(ω1)·deg(ω2) ∗(∂1 ∗1 ω1) ∧ (∗2ω2) +

−(−1)deg(ω1)·deg(ω2)(−1)deg(∗1ω1) ∗(∗1ω1) ∧ (∂2 ∗2 ω2)

= (−1)deg(ω1)·deg(ω2)(−1)(deg(ω1)−1)·deg(∗2ω2)(−1)deg(ω2) (∂†1ω1) ∧ (ω2) +

(−1)deg(ω1)·deg(ω2)(−1)2 deg(ω1)(−1)deg(ω1)·deg(∂2∗2ω2) (ω1) ∧ (∂†2ω2)

= (∂†1ω1) ∧ (ω2) + (−1)deg(ω1)(ω1) ∧ (∂†2ω2), (A.102)

and similarly for other differential operators, such as the exterior derivative d.

d†ω = (d†1ω1) ∧ (ω2) + (−1)deg(ω1)(ω1) ∧ (d†2ω2). (A.103)
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Here we have used that M1 and M2 are even dimensional, so that

(−1)deg(∗iωi) = (−1)deg(ωi), (A.104)

(−1)deg(∂i∗iωi) = (−1)deg(ωi)+1, (A.105)

∗i ∗i ωi = (−1)deg(ωi)ωi, (A.106)

and

deg(∂†i ωi) = deg(ωi)− 1. (A.107)

We can now express the Laplacian as follows:

∆ω = (d + d†)2ω = (dd† + d†d)ω

= (d1d
†
1ω1) ∧ ω2 + (−1)deg(d†1ω1)(d†1ω1) ∧ (d2ω2) +

(−1)deg(ω1)(d1ω1) ∧ (d†2ω2) + ω1 ∧ (d2d
†
2ω2) +

+ (d†1d1ω1) ∧ ω2 + (−1)deg(d1ω1)(d1ω1) ∧ (d†2ω2) +

(−1)deg(ω1)(d†1ω1) ∧ (d2ω2) + ω1 ∧ (d†2d2ω2) +

= (∆1ω1) ∧ ω2 + ω1 ∧ (∆2ω2). (A.108)

We see that if ωi are eigenstates of ∆i with eigenvalues Ei (i.e. ∆iωi = Eiωi, without

summing over the index i), then ω = ω1 ∧ ω2 is an eigenstate of ∆ with eigenvalue

E = E1 + E2.

135



Appendix B

Supersymmetric Lagrangians By

Dimensional Reduction

In this appendix we derive the N = 2 and N = 4 supersymmetric extensions of the

Georgi-Glashow Lagrangian (2.13) in 4 dimensions. We follow the approach of Brink,

Schwarz and Scherk [31].

B.1 The N = 2 supersymmetric Lagrangian

The N = 2 supersymmetric Lagrangian in 4 dimensions, equation (3.1), can be derived

from the N = 1 supersymmetric Lagrangian in 6 dimensions,

L6 =

∫
d5x L6 =

∫
d5x

(
−1

4
Fmn · Fmn + iΨ · ΓmDmΨ

)
. (B.1)

The Lorentzian metric g = η in 6 dimension has signature (+,−,−,−,−,−). Ψ is a

complex Weyl spinor,

Γ7Ψ = −Ψ, (B.2)

where Γ7 = Γ0 · · ·Γ5, and the 8× 8 Γ-matrices satisfy

{Γm, Γn} = 2ηmn18. (B.3)
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The action, S =
∫

dt L6, is invariant under the supersymmetry transformation defined

by

δAm = i
(
ε ΓmΨ−Ψ Γmε

)
,

δΨ =
1

4
[Γm, Γn] Fmn ε,

δΨ = − 1

4
ε [Γm, Γn] Fmn, (B.4)

where ε is a spinor of the same chirality as Ψ.

We dimensionally reduce to 4 dimensions by making the fields independent of the

5th and 6th dimensions, so that

∂4 = ∂5 = 0. (B.5)

Some of the components of the gauge fields become independent scalar fields by this

procedure. We define

P = A4 = −A4, S = A5 = −A5. (B.6)

The six matrices Γm can be decomposed as

Γµ = γµ ⊗ 1 =


 γµ 0

0 γµ


 ,

Γ4 = ±γ5 ⊗ iσ1 = ±i


 0 γ5

γ5 0


 ,

Γ5 = ±γ5 ⊗ iσ2 = ±

 0 γ5

−γ5 0


 . (B.7)

The 4-dimensional γ-matrices satisfy

{γµ, γν} = 2ηµν , (B.8)

and we have

Γ7 = Γ0 · · ·Γ5 = − γ5 ⊗ σ3 =


 −γ5 0

0 γ5


 . (B.9)
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The Weyl condition on the spinors,

Γ7Ψ =


 −γ5 0

0 γ5





 ψ+

ψ−


 =


 −γ5ψ+

γ5ψ−


 =


 −ψ+

−ψ−


 , (B.10)

therefore implies that

Ψ =


 Lψ

Rψ


 , L =

1

2
(1 + γ5), R =

1

2
(1− γ5), (B.11)

where ψ is a Dirac spinor in 4 dimensions. The operators L and R satisfy

Lγ5 = γ5L = L, Rγ5 = γ5R = −R, (B.12)

and

L2 = L, L + R = 1,

R2 = R, L−R = γ5. (B.13)

We can now derive the dimensionally reduced Lagrangian. First of all, we note

that

D4 = −e ad P, D5 = −e ad S, (B.14)

so that the first term in the Lagrangian (B.1) becomes

−1

4
Fmn · Fmn = −1

4
F µν · Fµν (m = µ, n = ν)

+ 2

(
1

4
DµP ·DµP

)
(m = µ, n = 4 or m = 4, n = µ)

+ 2

(
1

4
DµS ·DµS

)
(m = µ, n = 5 or m = 5, n = µ)

+ 2

(
−1

4
e2|| [P, S] ||2

)
(m = 4, n = 5 or m = 5, n = 4).

To compute the second term, we note that, since Lγµ = γµR,

Ψ =
(
ψ†L ψ†R

) (
γ0 ⊗ 1) =

(
ψ†γ0R ψ†γ0L

)
=

(
ψR ψL

)
, (B.15)

138



and, using equations (B.12), we have

iΨ · ΓmDmΨ = iΨ · ΓµDµΨ− ieΨ · Γ4 ad PΨ− ieΨ · Γ5 ad SΨ

= i
(
ψR ψL

) · (γµ ⊗ 1) Dµ


 Lψ

Rψ




− ie
(
ψR ψL

) · (±γ5 ⊗ iσ1) ad P


 Lψ

Rψ




− ie
(
ψR ψL

) · (±γ5 ⊗ iσ2) ad S


 Lψ

Rψ




= i
(
ψγµL ψγµR

) ·Dµ


 Lψ

Rψ




±e
(−ψR ψL

) · ad P


 Rψ

Lψ




±e
(−ψR ψL

) · ad S


 −iRψ

iLψ




= iψ · γµ(L2 + R2)Dµψ

±eψ · (L2 −R2) ad Pψ

±ieψ · (L2 + R2) ad Sψ

= iψ · γµDµψ ± eψ · γ5 ad Pψ ± ieψ · ad Sψ

= iψ · γµDµψ ± ieψ · (ad S − iγ5 ad P )ψ.

Therefore, the dimensionally reduced Lagrangian is given by equation (3.1). Fur-

thermore we find that the supersymmetry transformations of the bosonic fields after

139



dimensional reduction give

δAµ = i
(
ε ΓµΨ−Ψ Γµε

)

= i


(αR αL) (γµ ⊗ 1)


 Lψ

Rψ


− (

ψR ψL
)
(γµ ⊗ 1)


 Lα

Rα







= i


(αγµL αγµR)


 Lψ

Rψ


− (

ψγµL ψγµR
)

 Lα

Rα







= i
(
αγµψ − ψγµα

)
,

δA4 = δP = i
(
ε Γ4Ψ−Ψ Γ4ε

)

= i


(αR αL) (±γ5 ⊗ iσ1)


 Lψ

Rψ


− (

ψR ψL
)
(±γ5 ⊗ iσ1)


 Lα

Rα







= ± i


(−αR αL)


 iRψ

iLψ


− (−ψR ψL

)

 iRα

iLα







= ± (
ψγ5α− αγ5ψ

)
,

δA5 = δS = i
(
ε Γ5Ψ−Ψ Γ5ε

)

= i


(αR αL) (±γ5 ⊗ iσ2)


 Lψ

Rψ


− (

ψR ψL
)
(±γ5 ⊗ iσ2)


 Lα

Rα







= ± i


(−αR αL)


 Rψ

−Lψ


− (−ψR ψL

)

 Rα

−Lα







= ± i
(
ψα− αψ

)
.
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Finally,

ΓmΓnFmn = γµγν ⊗ 12 (Fµν) m = µ, n = ν

± 2 iγµγ5 ⊗ σ1 (DµP ) m = µ, n = 4

± 2 iγµγ5 ⊗ σ2 (DµS) m = µ, n = 5

+ 21⊗−iσ3 (−e [P, S]) m = 4, n = 5

so that the supersymmetry transformation of the fermionic field Ψ is given by

δΨ =
1

2
ΓmΓnFmn ε

=
(1

2
γµγνFµν ⊗ 12 + 1⊗−iσ3 (−e [P, S])

± γµγ5 ⊗ iσ1 (DµP ) ± γµγ5 ⊗ iσ2 (DµS)
)


 Lα

Rα




=
1

2
γµγνFµν


 Lα

Rα


 + ie [P, S]


 Lα

−Rα




± iγµDµP


 −Rα

Lα


 ± γµDµS


 −Rα

−Lα




=


 L (1

2
γµγνFµν) α

R (1
2
γµγνFµν) α


 +


 L (ieγ5 [P, S]) α

R (ieγ5 [P, S]) α




+


 L (∓iγµDµP ) α

R (±iγµDµP ) α


 −


 L (±γµDµS) α

R (±γµDµS) α




=


 L

(
1
2
γµγνFµν + ieγ5 [P, S] ∓ (γµDµS + iγ5γ

µDµP )
)

α

R
(

1
2
γµγνFµν + ieγ5 [P, S] ∓ (γµDµS + iγ5γ

µDµP )
)

α


 .

Therefore, the supersymmetry transformation of the dimensionally reduced fermionic

field ψ is given by

δψ =

(
1

2
γµγνFµν + ieγ5 [P, S] ∓ γµDµ(S − iγ5P )

)
α. (B.16)
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We have confirmed that the supersymmetries of the 4-dimensional Lagrangian (3.1)

are given by (3.2).

B.2 The N = 4 supersymmetric Lagrangian

The N = 4 supersymmetric Lagrangian in 4 dimensions (4.1) can be derived from the

N = 1 supersymmetric Lagrangian in 10 dimensions,

L10 =

∫
d9x L10 =

∫
d9x

(
−1

4
FAB · FAB +

i

2
Ψ · ΓADAΨ

)
. (B.17)

The Lorentzian metric g = η in 10 dimension has a signature that is mostly minus,

(+,−,−,−,−,−,−,−,−,−). Ψ is a Majorana-Weyl spinor:

Γ11Ψ = −Ψ (Weyl) (B.18)

Ψ = Ψ†Γ0 = ΨtC (Majorana) (B.19)

where Γ11 = Γ0 · · ·Γ9, and the 32× 32 Γ-matrices satisfy

{Γm, Γn} = 2ηmn132. (B.20)

The Majorana condition can be rewritten as follows

Ψ∗ = (Ψ†)t =
(
ΨtCΓ0

)t

= (CΓ0)
t Ψ

= CΓ0Ψ, (B.21)

and therefore it can be interpreted as a reality condition on Ψ. The action, S =
∫

dt L10, is invariant under the supersymmetry transformation defined by

δAm = iε ΓmΨ = −iΨ Γmε,

δΨ =
1

4
[Γm, Γn] Fmn ε,

δΨ = − 1

4
ε [Γm, Γn] Fmn, (B.22)
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where ε is an anti-commuting Majorana-Weyl spinor of the same chirality as Ψ.

We dimensionally reduce to 4 dimensions by making the fields independent of the

5th – 10th dimensions,

∂4 = . . . = ∂9 = 0 (B.23)

Some of the components of the gauge fields become independent scalar fields by this

procedure. We define

Sı = A3+ı = −A3+ı, Pı = A6+ı = −A6+ı. (B.24)

The ten matrices Γm can be decomposed as

Γµ = γµ ⊗ 14 ⊗ σ3, Γ3+ı = 14 ⊗ αı ⊗ σ1, Γ6+ = γ5 ⊗ β ⊗ σ3, (B.25)

where αı and β are 4× 4 real anti-symmetric matrices, satisfying

[αı, α] = − 2εıκακ {αı, α} = − 2δij14

[βı, β] = − 2εıκβκ {βı, β} = − 2δij14

[αı, β] = 0 (B.26)

The 4-dimensional γ-matrices satisfy

{γµ, γν} = 2ηµν . (B.27)

The decomposition of the Γ-matrices gives us

Γ11 = Γ0 . . . Γ9 = −14 ⊗ 14 ⊗ σ2 (B.28)

and the requirement on the charge conjugation matrix C,

CΓt
µC

−1 = −Γµ (B.29)

leads us to define

C = C ⊗ 14 ⊗ 12 (B.30)

where C is the charge conjugation matrix in four dimensions.
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The Weyl condition on the spinors,

Γ11Ψ = −Ψ (B.31)

suggests that we decompose Ψ as

Ψ = ψ ⊗ 1√
2


 1

i


 (B.32)

The decomposition of the Γ-matrices (B.25) suggests that we can further decompose

ψ as

ψ = ψ ⊗ θ. (B.33)

Now the Majorana condition, Ψ∗ = CΓ0Ψ, implies

Ψ∗ = ψ∗ ⊗ θ∗ ⊗ 1√
2


 1

−i


 = (Cγ0 ⊗ 14 ⊗ σ3)


ψ ⊗ θ ⊗ 1√

2


 1

i







=


Cγ0ψ ⊗ θ ⊗ 1√

2
σ3


 1

i







=


Cγ0ψ ⊗ θ ⊗ 1√

2


 1

−i





 (B.34)

In other words, ψ satisfies the Majorana condition in 4 dimensions, ψ∗ = Cγ0ψ, and

θ is a vector with real components, θ∗ = θ. We use the standard orthonormal basis

{er} in R4,

θ = θrer (B.35)

to define ψr by

ψ ⊗ θ = ψ ⊗ θrer = θrψ ⊗ er ≡ ψr ⊗ er. (B.36)

We now interpret ψr as a quartet of Majorana fermions in four dimensions.

It remains to derive the dimensionally reduced lagrangian density. First of all,

Dm = − e ad Sı for m = 3 + ı

Dm = − e ad P for m = 6 +  (B.37)
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so that the first term in the Lagrangian (B.17) becomes

−1

4
Fmn · Fmn = − 1

4
F µν · Fµν (m = µ, n = ν)

+ 2

(
1

4
DµSı ·DµSı

)
(m = µ, n = 3 + ı or m = 3 + ı, n = µ)

+ 2

(
1

4
DµP ·DµP

)
(m = µ, n = 6 +  or m = 6 + , n = µ)

− 1

4
e2|| [Sı, S] ||2 (m = 3 + ı, n = 3 + )

+ 2

(
−1

4
e2|| [Sı, P] ||2

)
(m = 3 + ı, n = 6 +  or m = 6 + ı, n = 3 + )

− 1

4
e2|| [Pı, P] ||2 (m = 6 + ı, n = 6 + )

To compute the second term, we note that

Ψ =

(
ψ†r ⊗ et

r ⊗
1√
2

(1 − i)

) (
γ0 ⊗ 14 ⊗ σ3

)
=

(
ψr ⊗ et

r ⊗
1√
2

(1 i)

)
, (B.38)
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so that

i

2
Ψ · ΓADAΨ =

i

2
Ψ · ΓµDµΨ− ie

2
Ψ · Γ3+ı ad SıΨ− ie

2
Ψ · Γ6+ı ad PΨ

=
i

2
Ψ · (γµ ⊗ 14 ⊗ σ3) Dµ


ψs ⊗ es ⊗ 1√

2


 1

i







− ie

2
Ψ · (14 ⊗ αı ⊗ σ1) ad Sı


ψs ⊗ es ⊗ 1√

2


 1

i







− ie

2
Ψ · (γ5 ⊗ β ⊗ σ3) ad P


ψs ⊗ es ⊗ 1√

2


 1

i







=
i

2

(
ψr ⊗ et

r ⊗
1√
2

(1 i)

)
·Dµ


γµψs ⊗ es ⊗ 1√

2


 1

−i







− ie

2

(
ψr ⊗ et

r ⊗
1√
2

(1 i)

)
· ad Sı


ψs ⊗ αıes ⊗ 1√

2


 i

1







− ie

2

(
ψr ⊗ et

r ⊗
1√
2

(1 i)

)
· ad P


γ5ψs ⊗ βıes ⊗ 1√

2


 1

−i







=
i

2

(
ψr · γµDµψs ⊗ (er)

tes ⊗ 1
)

− ie

2

(
ψr · ad Sıψs ⊗ (er)

tαıes ⊗ i
)

− ie

2

(
ψr · γ5 ad Pψs ⊗ (er)

tβes ⊗ 1
)

=
i

2
ψr · γµDµψr +

e

2

(
ψr · αı

rs ad Sı ψs

)− ie

2

(
ψr · β

rsγ5 ad P ψs

)
.

Here we have used that (er)
tes = δrs, (er)

tαıes = αı
rs and (er)

tβıes = βı
rs, where αı

rs

and βı
rs are the matrix elements of αı and βı. Therefore, we find that the dimen-

sionally reduced Lagrangian is given by equation (4.1). Furthermore we find that the
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supersymmetry transformations of the bosonic fields after dimensional reduction give

δAµ = i

(
εr ⊗ et

r ⊗
1√
2

(1 i)

)
(γµ ⊗ 14 ⊗ σ3)


ψs ⊗ es ⊗ 1√

2


 1

i







= iεrγµψr,

δSı = i

(
εr ⊗ et

r ⊗
1√
2

(1 i)

)
(14 ⊗ αı ⊗ σ1)


ψs ⊗ es ⊗ 1√

2


 1

i







= − εrα
ı
rsψs,

δPı = i

(
εr ⊗ et

r ⊗
1√
2

(1 i)

)
(γ5 ⊗ β ⊗ σ3)


ψs ⊗ es ⊗ 1√

2


 1

i







= i εrγ5β

rsψs,

and using

ΓmΓnFmn = γµγν ⊗ 14 ⊗ 12 Fµν (m = µ, n = ν)

+ 2 (γµ ⊗ αı ⊗ iσ2 DµSı) (m = µ, n = 3 + ı)

+ 2 (γµγ5 ⊗ β ⊗ 12 DµP) (m = µ, n = 6 + )

+ 14 ⊗ αıα ⊗ 12 · −e [Sı, S] (m = 3 + ı, n = 3 + )

+ 2 (γ5 ⊗ αıβ ⊗−iσ2 · −e [Sı, P]) (m = 3 + ı, n = 6 + )

+ 14 ⊗ βıβ ⊗ 12 · −e [Pı, P] (m = 6 + ı, n = 6 + )
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we find

δΨ =
1

2
ΓmΓnFmn


εs ⊗ es ⊗ 1√

2


 1

i







=
1

2
γµγνFµν


εs ⊗ es ⊗ 1√

2


 1

i







− iγµDµSı


εs ⊗ αıes ⊗ 1√

2


 1

i







+ γµγ5DµP


εs ⊗ βes ⊗ 1√

2


 1

i







− e

2
[Sı, S]


εs ⊗ αıαes ⊗ 1√

2


 1

i







− ieγ5 [Sı, P]


εs ⊗ αıβes ⊗ 1√

2


 1

i







− e

2
[Pı, P]


εs ⊗ βıβes ⊗ 1√

2


 1

i







Therefore, using αıes = erα
ı
rs and βıes = erβ

ı
rs,

δψr =
(1

2
γµγνFµνδrs − iγµDµSıα

ı
rs + γµγ5DµPβ


rs

− e

2
εıκ [Sı, S] α

κ
rs − ieγ5 [Sı, P] α

ı
rtβ


ts −

e

2
εıκ [Pı, P] β

κ
rs

)
εs, (B.39)

which completes the verification that the supersymmetries of the 4-dimensional La-

grangian (4.1) are given by (4.4).
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