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ABSTRACT

In this thesis, a suite of techniques and algorithms is presented to tackle three

main tasks. Firstly, many existing image-related approaches (processing or analysis)

need to be extended from low-dimensional space (e.g. 2D) to a higher-dimensional

space (3D). In addition, they often also need to be improved to achieve better accuracy

and more efficiency to enable processing of massive volumetric images. Frequently new

techniques or algorithms also need to be developed to cover the gap in these previous

requirements. Based on these approaches, the second task is to extract the geometric and

topological properties of the pore space directly from 3D images of rock samples. The

third task is then to study and to establish the relationship between the microstructure

and the macroscopic properties by constructing realistic network structures for network

models or by conducting some numerical experiments such as mercury injection etc.

In the framework of the methodology presented in this thesis, many commonly

used image processing and analysis approaches form the basis of the pore space

quantification procedure. These primarily include 3D Euclidean distance

transformations, 3D geodesic distance transformations, component labelling

(clustering), and morphological operations. Among these techniques, some are either

unavailable in 3D discrete space or are of too low-efficiency for handling the huge size

of rock samples, and others simply did not exist prior to my work.

The next level of the methodology is to quantify the pore space. In order to

process 3D images efficiently thus, firstly, the medial axis (skeleton) of the object (e.g.

the pore space) is generated so that simple and compact basic information of the object

remains while irrelevant redundant information is neglected in the resultant skeleton

image. Having obtained the skeleton of an object, most of the geometric and topological

quantities of this object can then be easily derived. After reviewing many existing

algorithms, a more accurate and efficient thinning algorithm is presented to meet the

specific requirements for the study of pore microstructure. Furthermore, general

geometric and topological properties of the pore space are calculated and analysed,

including pore size distribution, bond (or node) radiillengthlvolume, shape factor and



coordination number etc. As an important contribution, a novel algorithm to compute

the Euler-Poincare characteristic (Euler number) is presented and a new topological

descriptor is introduced to overcome the limitations of the Euler number and the

coordination number.

To validate the methodology and to carry out some basic analysis of the

microstructure of porous media, I investigate the geometric and topologic features

directly from 3D binary images of rock samples. The volumetric pore size distribution

is obtained, and the frequency of pore inscribed radii (or diameter) is calculated, the

shape of cross sections along pore channels is quantified as the shape factor and the

corresponding algorithm is created. In this study, many quantities for describing the

morphological properties of porous media have been successfully introduced.

To carry this novel methodology into the use of network models for the prediction

of flow processes, three rock samples are selected and analysed. A new approach is

developed for partitioning the pore space into the network of nodes and bonds. This

partitioning differs from existing methods and it aims to solve some specific problems

which often occur in unconsolidated (high porosity) porous media. Following this some

single/multi-phase properties are calculated for these three rock samples, such as

absolute permeabilities and relative permeabilities. A number of relations between pore

size and the absolute permeability, or between pore connectivity and absolute

permeability, are explored. The comprehensive relation between pore size, connectivity

and absolute permeabilities is also studied and preliminary results are given.

This research has created new tools that will play important roles in the analysis

of porous media.
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Chapter 1 Introduction

Fluid flows through porous media, and the thermal, electrical, and acoustic

properties of these materials, are largely controlled by the geometry and topology of the

pore systems. It is now well understood that these macroscopic properties cannot be

derived theoretically without consideration of the micro-geometry and connectivity of

the pore space through which transport takes place. The elucidation of the relationship

between the microstructure and macroscopic flow behaviour in porous media is a

fundamental problem of longstanding interest and of significant commercial

importance. The major theme in this study is the representation of the pore space by a

network of discrete "elements" and then predicting macroscopic properties across the

network by applying certain fluid transport rules; this is referred to as pore-scale

network modelling. In recent years, a large number of network models have been

successfully used for this purpose, but the full power of the network approach depends

strongly on the accurate and direct characterization of pore microstructure (i.e. the

determination of geometric and topological features of the pore systems). Recent

advances in high-resolution tomography have provided high quality 3D Images

necessary for the pore-scale characterization of porous media systems. The voxel

representation (image) of the pore space makes it possible to quantify the microscopic

characteristics. For the quantification of the pore space in 3D binary rock images, I have

focused on extracting microscopic information of relevance to transport processes in a

more accurate and systematic way by introducing a series of new approaches or by

utilizing and refining existing techniques. These methods can be regarded as relating to

the general fields of image processing/analysis, digital geometry/topology, and network

modelling.

1.1 Background

The immediate motivation for this research is related to concerns associated with

maximising recovery from hydrocarbon reservoirs. After a new oil field has been
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discovered and primary conventional oil recovery has been carried out, a secondary or

an enhanced recovery development plan may need to be implemented since as much as

60% of the original oil may otherwise be left in place (Macdonald et al., 1986[97]). Any

such development depends on having a good understanding of the reservoir. That

understanding will include issues related to the properties of the rocks.

Secondary and enhanced recovery processes usually involve the injection of

various fluids or gas into the reservoir to displace the remaining oil. Although the

length-scale of an oil field is measured in kilometres, the ultimate success of an oil

recovery scheme is the net result of countless displacement events at a scale measured

in microns. All recovery processes depend on the redistribution of reservoir fluids

during production and injection, and the precise manner in which this occurs determines

how much of the initial hydrocarbons will be recovered and how much will be left

trapped (Silin and Patzek, 2006[ 157]). Traditional methods model multi-phase flows in

this system using an averaging approach (e.g. Darcy's law). In fact, the effectiveness of

the multi-phase flow oil displacement process is to a large extent determined by the

pore-scale behaviour within the reservoir rock (Zhao et al., 1994[193]). The pore-scale

behaviour in tum is governed by capillary displacements depending on the interfacial

tensions, the wettability or phase contact angle at the pore surfaces and the pore sizes

(van Dijke and Sorbie, 2003b[173]). The oil recovery is determined by the residual

saturation - the volume fraction of the pore space (PS) occupied by oil which cannot be

recovered because it is trapped or bypassed in the reservoir rock by the combined

effects of capillarity or heterogeneity. Most of the existing methods for determining

multi-phase macroscopic physical properties (e.g. residual saturation) and constitutive

relations (e.g. capillary pressure-saturation, relative permeability) have either been

measured experimentally or calculated using largely empirical approaches which are

limited in their detail and applicability (Al-Raoush and Willson, 2005[7]). More

recently alternative means of predicting fluid flow have been developed. For example,

pore-scale modelling (e.g. network and Lattice Boltzmann) methods have been

extensively explored to improve on our understanding of single-/multi-phase flow in

porous media to obtain realistic estimations of residual saturations. Pore-scale

modelling methods, particularly network models, offer a systematic approach to

developing the relationship between microstructure and macroscopic properties. Recent

advances in pore-level network modelling give researchers and engineers better insights
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into pore-level displacement mechanisms, which playa profound role in influencing the

mechanisms of secondary and enhanced oil recovery processes (Macdonald et al.,

1986[97]). Furthermore, credible predictions of the impact of the rock wettability and

fluid properties on the relative permeabilities and capillary pressures, as well as on the

trapped oil and gas saturations, are now possible. Therefore, the study and use of

network models makes it possible to design a physically based oil recovery

development plan to pursue the goal of optimal reservoir development.

In the network modelling of flow through porous media, the pore structure is

represented as a network of pore-bodies connected by pore-throats. The pore-bodies and

pore-throats are often assigned some idealized geometry (e.g. spheres, cubes, or

cylinders in 3D), and, by applying rules that govern the transport and arrangement of

fluids in pore-bodies and pore-throats, macroscopic properties can then be predicted

across the network (Lopez et al., 2003[93]). The prediction of physical properties of

porous media from their microscopic origins usually involves three major steps (0ren

and Bakke, 2003[119]): (i) the quantitative characterization of the microstructure; (ii)

the characterization of wettability and the relevant pore-scale physics; (iii) an exact or

approximate solution of the equations of motion that govern the transport phenomena of

interest. To do so, two general approaches are commonly used. The first attempts to

create an equivalent network using some statistical parameters (e.g. Vogel and Roth,

2001[185]; Delerue and Perrier, 2002[38]; Silin and Patzek, 2006[157]]), and the

second tries to directly map a specific porous medium onto a network structure in order

to provide a one-to-one spatial correspondence between the porous medium and the

network structure (e.g. Valvatne and Blunt, 2004[170]; Knackstedt et al., 2004[72];

Lindquist, 2006[86]; Van Dijke and Sorbie, 2006[174] and 2007[175]; AI-Kharusi and

Blunt,2007[3]).

Network models have successfully been used to study a wide range of single- and

multi-phase flow processes. In the 1950s, Fatt (1956a[ 45], 1956b[46] and 1956c[47])

pioneered the network modelling approach for predicting relative permeability and

capillary pressure. A number of studies following Fatt's approach appeared over the

following decades (e.g. Larson et al., 1977[80]; Koplik, 1982[77]; Wilkinson and

Willemsen, 1983[187]; Lenonnand et al., 1983[82]; Kantzas and Chatzis, 1988[70];

Sahimi, 1988[142] and 1998[143]). Jerauld and Salter (1990[65]) investigated the effect

of pore structure on relative permeability and capillary pressure hysteresis in two-phase
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systems. Reeves and Celia (1996[134]) investigated the functional relationship between

capillary pressure, saturation, and interfacial area using a pore network flow model. And

Dillard and Blunt (2000[43]) modelled the fluid dissolution by tuning a network model

to match the capillary pressure measured by dissolution experiments. Large scale

computer simulations using pore network models of porous systems were carried out by

Knackstedt et at. (2001 [71]) who studied the effects of power-law fractal correlations on

the pore-size distribution, and the effects of correlated heterogeneity on two-phase flow

through porous media. Meanwhile the. effect of variation of the wettability from pore to

pore on three-phase flow was investigated by Van Dijke and Sorbie (2002[171 D. And
later they (van Dijke and Sorbie, 2003a[ 172]; 2003b[ 173]) developed a three-

dimensional pore-scale network model for modelling capillary-dominated three-phase

flow in porous media where the wettability varies from pore to pore, and the multi-cycle

water-alternating-gas injection floods were simulated (Van Dijke and Sorbie,

2006[174]). The above rather selective summary of work indicates that pore network

modelling has already become an effective tool to investigate or predict macroscopic

properties from an understanding of fundamental pore-scale behaviour.

However, the difficulty of adequately describing the complex PS of real rock has

substantially hampered network modelling of porous systems. According to 0ren and

Bakke (2003[119]), the quantification of pore structure combined with characterization

of the wettability and the relevant pore-scale physics is essential for generating a

network structure with genuine prediction capability. Particularly, quantitative

characterisation of the pore microstructure of the porous medium is of utmost

importance in the prediction of macroscopic fluid flow properties (Lindquist, 2006[86]).

Blunt (2001 [21]) emphasised: "More research is needed to determine if we can

characterize the pore space and wettability of reservoir rocks with sufficient ease and

accuracy to make predictions of relative permeability and other properties a practical

reality. If this is possible. then pore-scale modelling will have a huge impact on

improved core analysis and characterization of multiphase flow properties". Therefore,

in order to relate laboratory measurements conducted on core plugs to the larger scale

(e.g. the field scale), much effort needs to be made to effectively characterise pore

structure from the core scale down to the pore scale (Sheppard et al., 1999[151]). In

other words, based on realistic and accurate morphological (i.e. geometrical and
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Chapter 1 .' Introduction

topological, GT) information on the PS, the full power of the network approach may be

realized to better understand macroscopic phenomena (Vogel, 2000[183]).

Quantitative characterisation of the GT of the PS includes (1) the determination of

geometric/spatial features (e.g. pore size, pore shape, area, volume and physical

locations), (2) the identification of pore connectivity (e.g. coordination number, specific

Euler number and connectivity function), (3) the calculation of correlations between

these quantities (e.g. two-point coordination function); and (4) the measurement of the

statistical distributions (e.g. pore size distribution, coordination number distribution).

With accurate and rich descriptors, we can then construct realistic network structures for

the prediction of macroscopic properties using the network model approach. Moreover,

we may then be able to explore single/multi-phase flow by establishing some analytical

equations based on these characteristics.

In general, there are two kinds of methods which have been used extensively to

characterise the pore microstructure. The first is to undertake experimental

measurements of microscopic properties. For instance, the pore size distribution (PSD)

of the PS can be obtained using experimental results such as water retention curves,

mercury intrusion porosimetry, nitrogen adsorption isotherms or water desorption

isotherms. But the accuracy of such measurements and the difficulty of unambiguously

interpreting such laboratory experiments undermine the value of these kinds of

methods. The second approach is to apply image processing and analysis techniques for

extracting GT information directly from 2/30 rock images. Although some excellent

methods, based on 20 thin sections (slices in 3D images), have been developed (e.g.

Vogel, 1997a[181] and 1997b[182]), the results are not entirely accurate because all

pairs of two parallel spatial close slices (i.e. disectors) do not provide sufficient

information about the global connectivity and spatial variation of the 3D digital space

(Kong et aI., 1992[75]). Alternatively, using 3D images as the basis to quantify the pore

microstructure has become a popular method in recent years.

There are various ways to obtain 3D images of porous media, For example, by

directly simulating the actual sedimentary process, compaction and diagenesis, 3D rock

images can be generated using numerical techniques (e.g. 0ren and Bakke, 2003[119]).

From 20 thin sections, 3D image reconstructions have been reported (Okabe and Blunt,

2005[117]; Wu et aI., 2006[188]). Also micro-Cl' scanning of 3D images has been

developed by several groups (Baldwin et aI., 1996[13]; Lindquist and Venkatarangan,
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1999[88]; Sok et al., 2000[ 160]; Delerue and Perrier, 2002[38]; Knackstedt et al.,

2004[73]). In fact, recent advances in these techniques have allowed researchers to

obtain 3D rock images at levels of the resolution down to -1 urn or even smaller

(Sheppard et al., 2005[153]). The acquisition of these extremely rich data sets has

motivated the development of algorithms for characterising the PS.

Quantitative characterisation of the PS from 3D rock images can be broadly

categorised into two classes: medial-axis-based and non-medial-axis-based approaches.

For a porous medium, if we neglect the solid parts that "float" in the PS, the

medial axis (skeleton) of the PS appears as a set of lines ofvoxels, which is located at or

near the centre of the PS. The medial axis (MA) provides simple and compact (i.e. a

lower dimensional representation) information about the GT of the PS and it is easier to

analyse. Thus, several characterization approaches focus on the use of the pore skeleton.

Additionally, the MA can be used as an embedded search structure to find specific sites

(e.g. junctions) in the PS.

Based on the pore skeleton, Lindquist et a1. (1999[88] and 2000[89]) developed

algorithms to measure many morphological properties such as coordination number,

pore channel length, pore volume, throat surface area, and pairwise correlations between

these parameters. Recently, Prodanovic et aI. (2007[130]) presented an implementation

to compute principal diameters for pores and throats, and surface areas and shape

factors. Using a distance-ordered homotopic thinning algorithm (Pudney, 1998[132]),

Knackstedt and co-workers (http://wwwrsphysse.anu.edu.aul-coll10/disord.html) also

built up a series of medial-axis-based algorithms to describe the microstructure of

porous media, including effective throat/pore radii, coordination number, and pore

channel lengths etc. In addition, some distributions, such as the correlation between

throat-area and average pore volumes are also calculated and analysed extensively (Sok

et al., 2000[160]). Ioannis and Ioannidis (2000[61]) utilised the template-based thinning

algorithm (Ma and Sonka, 1996[96]) to extract the medial axis, and they then

characterised many geometrical and topological parameters, such as pore volume, throat

area, throat hydraulic radii, coordination number, effective pore size (radius) and throat

size.

In non-medial-axis techniques, the general idea is to use mathematical

morphology approaches to process the image and to quantify the disordered

morphologies of porous media. Many researchers have made progress in the study of .
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these algorithms and applications. Delerue et a1. (1999a[39] and 1999b[40]) introduced

the concept of local pore size, which is defined as follows: At each point or voxel, the

local pore size is the size of the maximum ball included in the PS and including the

voxel. And they then developed a determination algorithm for the local size map. Based

on the map, the PSD was straightforwardly calculated and a numerical simulation of

mercury intrusion was carried out. Vogel and Roth (2001[185]) measured the

morphological size distribution using morphological operations (e.g. erosion and

dilation) and introduced the connectivity function which relates the specific Euler

number to the corresponding pore size. However, inspired by the basic idea of pore

skeleton, Silin and Patzek (2006[ 157]) analysed the GT of the PS based on a "maximal

inscribed ball" algorithm. In their approach, a thinning image (skeleton-like) was used

to distinguish between pore-bodies and pore-throats, and then the PSD and coordination

number were easily obtained.

With high quality 3D images of porous media at hand, it is then possible for one

to characterise the pore GT features, which are relevant to fluid flow and transport

properties. However, the question is how to obtain accurate and sufficient quantities in a

very efficient way. The answer is to establish a suite of comprehensive tools for image

processing, feature description and statistical analysis. The quantification of the PS

involves the application of several disciplines such as mathematical morphology, image

processing, digital geometry and digital topology, and this is a complicated and

demanding task. By doing so, we can construct a realistic network model directly

mapped from 3D microstructure of the complex PS. This should retain the pore

morphology and any inherent spatial correlations, and should make possible the

predictions of macroscopic flow and transport properties. Most of the necessary

microscopic properties have been successfully extracted from 3D images of porous

media, good matches with experimental results have been reported, and reasonable

predictions have also been reported through specific numerical experiments (e.g. Liang

et al., 2000a[84] and 2000b[85]; Sok et al., 2000[160]; Vogel, 2000[183]; Van Dijke

and Sorbie, 2002[171]; Okabe and Blunt, 2005[117]; Silin and Patzek, 2006[157]).

However, an important question now arises: how can one fully capture the pore-scale

GT characteristics with a network model? Such a question arises due to the inherent gap

between often-used numerical representations and the complex morphology of the PS.
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The accuracy and efficiency of algorithms are the main considerations of this thesis for

the quantification of the PS.

1.2 Challenges in Characterisation of the Pore Space

For 3D rock images, I make the assumption that they are of high quality (e.g.

appropriate resolution, noise-free), which means that they provide sufficient detailed

information about the microscopic structure of the PS. The image itself may have

originated from computer tomography (CI'), image reconstruction from 2D thin

sections, a computer model of rock deposition, or any other source. Instead of exploring

the techniques to acquire such images and any artefacts related to the methods, I

concentrate on the characterisation of the PS from 3D binary rock images, which is very

useful for pore structure analysis, since this still poses challenging problems (Silin and

Patzek, 2006[157]) in terms of (i) topological description, (ii) skeletonization and (iii)

algorithm efficiency, as discussed in the following.

Topological description: The topology (connectivity) of the PS plays an important

role in flow and transport in porous media. Unfortunately, a quantitative description of

the connectivity of the complex porous structure is difficult (Vogel and Roth,

200 I [185]). Most of the previous studies on this topic have focused on the

determination of coordination number, i.e. the number of connections from one pore to

others, which significantly depends on the definitions of pore-bodies and pore-throats

and their corresponding partitioning algorithms. It is commonly recognised that the

coordination number is a local topological property and is not sufficient for the

statistical analysis of macroscopic fluid flow. Therefore, the Euler-Poincare

characteristic (EPe, or the Euler number) is regarded as an alterative descriptor, which

is defined as the number of isolated components minus the number of redundant

connections plus the number of completely enclosed cavities in the PS. For the EPe,

there exist two problems that need to be solved: (a) the EPe is very sensitive to the

image noise, and this highlights the importance of introducing a robust descriptor of the

pore connectivity; (b) accurate computation of the EPe is still demanding. Vogel and

Roth (200 1[185]) presented an algorithm for obtaining the unbiased estimation of the

EPe. They introduced the concept of connectivity function and applied it in their

tunable network models. Apart from the exact computation of the EPe, counting
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exactly how many pore components and how many redundant connections existing in

the PS are also difficult problems.

Skeletonization (medial axis transformation): The concept ofMA plays a pivotal

role in subsequent investigations, such as partitioning the PS and measuring GT

properties. Apart from morphology-based (e.g. Baldwin et al., 1996[ 13]) and Voronoi

diagram-based (e.g. Delerue et al., 1999a[39]) approaches, many skeletonizations (i.e.

the way to extract skeleton) are based on homotopic thinning (e.g. Lee and Kashyap,

1994[81]; Ma and Sonka, 1996[96]; Puciney, 1998[132]). The thinning algorithm relies

on removing voxels layer by layer, while preserving certain GT properties of the object.

This process continues until no more such voxels can be removed, and the remaining set

of pore voxels becomes the medial axis of the PS.

However, intuitive extension of topological methods to digital images may be

insufficient for rigorous analysis because it is difficult to transfer basic topological

concepts to the discrete space (Vogel, 1997a[18ID. Two of the unwanted side effects of

thinning algorithms are pointed out by Silin and Patzek (2006[157]). One is that a

refinement of the resolution can lead to less accurate results, and the other is that the

result of thinning may be unstable with respect to the choice of the starting point. In

addition, the sensitivity to the object boundaries always produces a large number of

spurious branches in the MA and the check of the discrete topological invariants at each

iteration or sub-iteration during the thinning process can be a daunting computational

task. The essence of solving these problems lies in improving the robustness and

efficiency of the thinning algorithm.

In obtaining the medial axis, the general requirement is topology preservation.

Common morphological and Voronoi diagram-based algorithms cannot meet this

demand. Another important geometrical constraint during the thinning process is that

the MA should be located in the middle of the PS. Most of the existing algorithms either

neglect this requirement or simply rely on additional trimming processes. Other features

of the MA, including primary branches (related to the dead-end pore) and single voxel

width, also need to be taken into account.

Therefore, much work involved in the skeletonization need to be done including

comparison of thinning algorithms, determination of requirements about the MA and

development of a robust as well as efficient thinning algorithm and extension of the

applications of the medial axis.
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Algorithm eefflciency: Suppose we wish to analyse 3D binary images with large

dimensions of 5123 on a common PC within 1.5 hours (e.g. IG RAM, 2.8GHz CPU).

Developing appropriate algorithms to achieve this target without a high performance

parallel computer is a very challenging task.

There are a lot of critical attributes of computer algorithms used in the

measurement of GT properties and the pore partitioning, where the memory-

consumption and computational complexity must be taken into account very carefully.

It is well known that many quantities computed in discrete space may not retain the

features of their continuous analogues. For instance, in the continuum space, a ball of

radius rl centred at Cl includes a ball of radius ri centred at C2 if and only if r: + distici,

C2) ~ rI,where disticv; C2) is the Euclidean distance between the two centres Cl and C2

(Silin and Patzek, 2006[157]). But this criterion does not necessarily work in the

corresponding discrete space. Such a paradox of discretisation imposes some additional

complexity on the procedure of quantification and partitioning of the PS. Naturally,

influenced by the original definition in the continuum space we could get the idea of

doing something similar on the discrete space. For example, by dilating a described ball

centred at a fixed voxel with radius addition of one voxel in each step until the ball

touches the pore-solid boundary, the radius of the maximal described ball is then

determined. In fact this method has no significant difference from one which directly

computes the shortest distance from a pore voxel to the pore-solid boundary by

comparing all the distances to the boundary voxels, and this kind of "algorithms" can be

found in some literature. Therefore, in this study, the efficiency and accuracy of

algorithms for measuring microscopic properties and statistically characterizing porous

media have high priority.

For the construction of a network of pore-bodies and pore-throats, the PS needs to

be partitioned into individual elements. Whether to partition the PS into pore-bodies and

pore-throats, or just into pore-bodies, is a controversial issue in the network modelling

literature. Some network models (e.g. Oren and Bakke, 2003 [119]; Blunt, 2001 [21])

appear to prefer some volume allocated to pore-throats in order to match experimentally

observed residual saturations, while other models (e.g. Chang and Ioannidis, 2002[32])

perform adequately without this additional complexity. In this thesis, I have applied a

different technique and used the resultant network structure to feed into the Imperial
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College network model (Valvatne and Blunt, 2004[ 170]) for the prediction of

macroscopic properties.

1.3 Motivation and Objective

It has been noted that the characterisation techniques for 3D porous media are still

under development (Silin and Patzek, 2006[ 157]). The study of the digital topological

attributes of porous media is essential to supply the relevant quantities for pore network

modelling. We require a suite of accurate, efficient, robust and systematic tools for

measuring GT properties of the PS or characterizing porous media in terms of various

statistical quantities.

The main objective of this thesis is to develop a suite of algorithms and tools,

which can be employed to quantify the PS, to conduct some basic analysis, and to

construct a much more accurate and realistic network structure for predicting the flow

properties of reservoir rocks. This general objective is achieved through the following

steps:

• To intensively study the discrete topology of the PS by introducing effective

topological invariants, developing algorithms for computing the EPC, and exploring the

relationship between common topological quantities and the inherent connectivity of the

PS.

• To analyse the advantages and disadvantages of previous skeletonization

algorithms, and then develop a more robust and efficient thinning algorithm which will

be suitable for generating the MA (implemented on a PC) in a reasonable time for a

high resolution, large size and high porosity 3D rock image.

• To compare existing measurements and characterization techniques, find out

the general demands for such approaches, and design more accurate and efficient

algorithms to do the same task or an extended range of study.

• To extract the pore network structure that will be used as input for the network

flow model to predict flow properties.

• A potential objective is to relate the functional relationship between

macroscopic flow or transport properties and certain statistics, such as between absolute

permeability and inscribed diameter, between absolute permeability and connectivity

etc.
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1.4 Outline of This Thesis

This thesis is structured as follows. Chapter 1 has given a brief introduction to the

study of GT characterisation of porous media highlighting some recent research

findings. Chapter 2 reviews the general topics of image processing and analysis

techniques with emphasis on the current state of pore characterisation. In Chapter 3, I

present the implementation and improvement of some important image processing

algorithms including component labelling, morphological operations, the calculation of

EPC and the extraction of skeleton from images. In Chapter 4, some pore structure

analysis techniques are proposed of particular use for the study of multi phase fluid flow.

In Chapter 5, some examples of applications of our methodology are given based on

three rock sample datasets and some preliminary results on the analysis of pore structure

are given. A summary of the main findings and the conclusion which I have achieved

are given in Chapter 6.
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2.1 Morphological Image Processing

2.1.1 Digital Images

In general, the intensity (or grey level) of experimental images may be thought of

as a continuous function of the position in the image, where the set of all positions in

the Euclidean space is called the image space. In order to computationally handle and

analyse images we first need to digitise them in order to obtain digital images. The

digitisation is carried out by mapping the image onto a grid with quantization of the

grey level. Usually, the image space of 20 (3D) digital images is represented by a

lattice of squares or cubes shown in Figure 2-1. Each square (cube) is centred at a lattice

point, corresponding to a pixel (20) or a voxel (3D). Usually, the range of grey levels is

divided into intervals and the grey level at any lattice point is required to take only one

of these values. Binary images are just the special case of the grey level images when

only two values are used, which are usually obtained by thresholding the range of grey

level. However, in the study of digital geometry and topology (Kong and Rosenfeld,

1989[76]), an alterative definition of a binary image is given later which combines the

identity of object and the adjacency of object points together.

To facilitate the discussion in the following, some mathematical definitions and

notations are introduced in this section. Let P be a grey level (or binary) image with

image space 0/ in the d-dimensional discrete space z: Often 11 is ch~sen as a

rectangular subset of Zd, in other words, there are d positive integers MI ... Md such that

0/= {(PI, P2 ... Pd): 0 5. pj 5. ~ for j = 1, 2 ... d}. When d = 3, MI, M2 and MJ are the

coordinates in the x, y, and z directions, respectively. For each lattice point q E 0/,

hence, its coordinates can be simply written as (i, j, k) and the corresponding grey value

at q of image P is denoted by (]_{i,j, k). Usually, the intensity is digitised in the range [0,

255], and with respect to the grey value all voxels (or pixels) in the image space are

classified as either object (foreground) or non-object (background). In the following
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discussion, I focus on introducing some basic concepts in mathematical morphology

with emphasis on the morphological image processing of binary images.

• • •
• • •
• • •

/ L L

• • •
• • •
• • •

(a) (b)

Figure 2-1: The representations of 2D or 3D image in terms of lattice of (a) squares -

pixel or (b) cubes - voxels, respectively.

2.1.2 Mathematical Morphology

An ideal 2D or 3D digital image, such as computer-generated images (e.g.

reconstructed images), is one that is free of noise and other artefacts which may affect

the quantification of pore microstructures. Unfortunately, as is well known, genuine

images obtained from CT (computed tomography), MRI (magnetic resonance imaging),

or MRA (magnetic resonance angiograms) are certainly not perfect. Therefore, image

pre-processing may be necessary before describing objects in such images in words or

other quantities.

Digital image processing IS very important for many industrial, medical and

scientific applications. There is a vast amount of literature on this subject and a wealth

of basic image processing techniques is available. As a branch of image processing,

morphological image processing can be applied to enhance image quality or to extract

image characteristics.

Mathematical morphology is essentially a set theory. By selecting a primitive

shape as a probe (filter or template), set transformations may then be carried out to

extract information about the shapes of objects in question. This approach was first

investigated by Matheron (1975[104]) at the Paris School of Mines and extended by

Meyer (1977[107]) and Serra (1982[149]). In the following, I summarise basic concepts

in mathematical morphology in order to give a glimpse into the mathematical

foundations and corresponding intuitive interpretations for describing objects (patterns,

structures) in images.
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Considering a point p = (P),P2 ... Pd) and a set S in d-dimensional Euclidean space

Ed, Spdenotes the translation of S by P, i.e. Sp= {p + b: b E S}. The basic morphological

operations are dilation and erosion, which can be extended to create many other

morphological operations such as opening and closing.

The dilation of )I by ClJ is defined as the union of all translations of (]3 by every

point in)l. Equivalently, this is a set that consists of all possible vector sums of pairs of

elements, one coming from a and the other from (]3, i.e.

)I E9ClJ = UbeilVIb = {a + b: a E )I, b E cB}. (2.1)

The erosion is the morphological dual to the dilation. It combines two sets using

vector subtraction of set elements. For two sets )I and CB in Ed, the erosion of)l by (]3 is

the set of all elements x for which x + b E )l for every b E cB, which is given by

)l0 cB == {x E 1{!: cBx c)l} . (2.2)

Obviously the roles of the sets )l and (]3 are symmetric in the dilation, i.e. )l E9(]3 =

cB E9)l, but this is not true for the erosion. The dilation is identical to Minkowski

addition (Michielsen et al., 2002[109]), however, one should be aware that the erosion

is different from Minkowski subtraction, which is the intersection of all translations of

)l by the elements b E ClJ.

The basic morphological operations Ea and 0 can be used to construct other

operations that perform more comprehensive filtering operations. Two of them are

commonly used in pore structure analysis. They are opening 0 and closing. operations,

which playa very important role in morphological image processing and analysis. The

opening and the closing are defined, respectively, as

)I 0 ClJ = ()l 0 cB) E9cB, (2.3)

and

(2.4)

Both of them have the basic mathematical properties that are necessary for

morphological image processing. For example, both opening and closing are

15



Chapter 2: Literature' Review

idempotent, i.e. ()l 01]3) 01]3 =)l 0 1]3 and ()l • 1]3) • 1]3 =)l • 1]3, which mean that it does not

help to "open" or "close" an image twice or more using the same template.

(-1 (0,0)

(a) (b) (c) (d)

Figure 2-2: Some examples of grey level structuring elements used in morphological

image processing. Here the intensity (grey level) is digitised in the range [0,255] (from

black to white). Structuring element (a): '1(-1,0) = 240, '1(0,-1) = 180, '1(1,0) = 120,

'1(0,1) = 60, '1(0,0) = 0; (b): '1(0,0) = 240, '1(1,-I) = 180, '1(2,0) = 120, '1(1,1) = 60, '1(1,0)

= 0; (c): '1(0,0) = '1(1,0) = '1(2,0) = 0, '1(0,-1) = '1(1,-1) = 140, '1(0,-2) = 230; (d): '1(-1,-1)

= '1(1,-1) = '1(-1,1) = '1(1,1) = 230, '1(0,-1) = '1(1,0) = '1(0,-1) = '1(-1,0) = 130, '1(0,0)=0.

In relation to digital images, the morphological operations can be visualized as

working with two images and then creating another image for output. The image being

processed is referred to as the active image, and the other image, a kernel (i.e. a

template), is referred to as the structuring element. Each structuring element has a

designed shape which can be thought of as a probe or filter of the active image. We can

modify the active image by probing it with various structuring elements. Usually a

symmetrical shape is chosen as a structuring element with its centre as its origin

(although this is not necessary). For simplicity, in the following I focus on 20 to

demonstrate the basic ideas of mathematical morphological operations. The extension to

3D is trivial theoretically and in practice as well.

The structuring element or template is a key concept in morphological image

processing. A structuring element is a predetermined geometrical structure, which

represents the viewer's prior knowledge or expectation about the morphological content

(e.g. shape and connectivity) of objects. There are two factors that are closely related to

the use of the structuring element: one is its origin (0, 0), and the other is its shape (e.g.

square, disc, star, sphere or cube etc.). For simplicity, we define a structuring element T

by specifying the displacement (k, !) relative to its origin together with the value '1(k, !).
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Some examples of structuring elements are shown in Figure 2-2. Very often the

structuring element is chosen to be a symmetric shape (see Figure 2-2(a) - (cj),

Given two 2D grey level images cP and rr, according to Michielsen and Raedt

(2001[108]), the dilation, erosion, opening and closing of cP by q'defined in (2.1-2.4)

can be rewritten as:

cP EBfJ(i, j) == Max(k.l)eV(!1(i - k, j -1)+fJ(k, 1)),

P e fJ(i, j) == Min(k.l)eV(!1(i + k, j + 1)-fJ(k, 1),

po tJ' == (p e IJ) Ea -i;

cp. tJ'= - «-~ o(-q'».

(2.5)

(2.6)

(2.7)

(2.8)

Where the maximum in (2.5) and minimum in (2.6) are to be taken over all points in the

image space 'lIofthe structuring element T, and -P(IJ) is the image with the same image

space 'lias pbut with opposite grey level value with P(IJ). Note that a point (i, j), (i - k,

j -I) or (i + k,j + I) may go out of the image boundary of Cl'. It is convenient to assign

minus infinity (-00) to such pixels (i, j) which means that non value is given for these

pixels at position (i, j), called undefined pixels (voxels). Usually undefined pixels are

considered as belonging to image's background.

In image processing, the two basic morphological operations EBand e have local

interpretations illustrated in Figure 2-3. For two images}l (square) and 13 (disk), if we

think of each point p of}l as a seed that grows the object <Bp (by placing the origin of 13

at p), the union of all the grown objects is the dilation of}l by CB, i.e.}I Ea 13={x: CBx n}l

::I; 0 }; And the erosion of}l by 13 can be interpreted as the locus of all centres c of 13.: if

the translation 13.: of 13 by c is entirely contained within )t It is noted that the erosion of

}I by CB may be empty if }I is smaller than 13.

As for the intuitive interpretation of opening and closing, if the structuring

element is of convex shape such as a disk or sphere, a kind of simple interpretation of

opening and closing is demonstrated in Figure 2-3. The opening of}l by 13 is the region

which is formed by moving 13 within the interior of }I, while the closing of}l by 13 can

be referred to the locus of 13 rotating along the exterior boundary of }I. Generally

speaking, the opening smoothes the contour of an image, breaks narrow passages, and
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eliminates thin protrusions, while the closing fills the small non-convex shapes and

bridges closed parts.

}l

i

}lEB!J3 }l8!J3

Figure 2-3: Illustration of dilation and erosion of}l by !J3in 2/30 discrete space. }l is an

active image and !J3 is a structuring element of circular or spherical shape.

In pore structure analysis, geometrical or topological information of the PS can be

extracted by performing a number of morphological operations on 3D binary images of

porous media.
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Figure 2-4: An interpretation of opening and closing of jI by CB: opening breaks narrow

passages and eliminates thin protrusions while closing fills the small non-convex shapes

and bridges closed parts.

2.2 The Study of Topological Properties of the Pore Space

The topology (connectivity) of the PS describes the way in which the pores are

interconnected. The general framework for studying digital topological properties of

objects from binary images has been developed by Kong and Rosenfeld (1989[76]). The

topological properties of an object remain invariant under translation, rotation, scaling,

and rubber-sheet transformation of the object (Gonzalez and Woods, 1993[53]), which

include deformations, twisting, and stretching, but tearing is not allowed. From the

topological point of view, there is no difference between a circle and an ellipse, or

between a sphere and an ellipsoid. Hence, topological information is useful in object

classification, thinning and skeletonization of objects, segmentation, and many other

applications. In fact, for the study of fluid flow in porous media, Vogel and

Kretzschmar (1996[184]) proved that the pore connectivity may be more important than

the pore size with respect to fluid transfer in porous media.

In the characterization of the topological properties of the PS, there are two types

of approaches which are commonly used in the literature. The first is to directly extract

the topological quantities (e.g. the Euler-Poincare characteristic) by counting certain

topological elements, such as isolated components, redundant connections (tunnels) or

completely enclosed cavities, from 3D binary images of porous media. The second is to

implicitly determine the topology by constructing net-like structures through the choice

of network configuration, i.e. the arrangement of pore-bodies and pore-throats and

certain correlations rules. In a classical pore-throat model, the pore structure is always

partitioned into a network of pore-bodies connected by pore-throats. The number of

pore-throats linked to a pore-body, i.e. the coordination number, is then used to quantify
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the local connectivity of the pore structure. Apparently, the determination of

coordination number totally depends on the pore partitioning, as will be discussed later.

2.2.1 Euler-Poincare characteristic

The Euler-Poincare characteristic (EPe), or Euler number for short, is a well-

known topological descriptor to an object. In statistical physics and in material science,

the Euler number is used as a characteristic describing the connectivity of the

components of a composite material or of the PS of a porous medium (Ohser, et al.,

2003[115); Levitz, 2007[83)). In percolation theory (OKun, 1990[118)), the Euler

number is used to describe the degree of connectivity of disordered (complex) systems

(Zallen, 1983[192]) and to provide quantitative information in the determination of a

percolation threshold (Stauffer,1985[161)). It belongs to the finite set of Minkowski

functionals whose origin lies in the mathematics of convex bodies and integral

geometry (Hadwiger, 1957[55)).

There are many equivalent ways for stating the definition of the EPe; see the

books of Matheron (1975[104)), Schneider (1993[147)), and Serra (1982[149)). From

the mathematical point of view, the EPe XtAX) of a set X in the d-dimensional

Euclidean space Ed, is a basic quantity of integral geometry. In the case when X belongs

to the convex ring (e.g. a polyhedral set in 3D), i.e. it can be represented as a finite

union X = Vi = 1,2 ... m Xi of compact convex sets Xi (e.g. convex polyhedra in 3D; i.e. for

every open cover of a compact set S there exists a finite subcover of S in Ed) the EPe

Xa{X) can be defined using the inclusion-exclusion formula (Kong and Rosenfeld,

1989[76]) with the initial settings xa(0) = ° and Xa{X;) = I for every compact convex

setA'; for i = 1,2 ... m, i.e.

m m-I m

Zd(X)= LZd(Xj)- L LzAX; nXj)
i_I ;=1 j=i+1 (2.9)

m

+ LZd(Xj r.x, nX.)+ ...+(-I)m+IZd(nXj)
ISi<j<k!.m ;=1

For the EPe of a polytope, i.e. the convex hull of a finite set of points, there is an

alternative definition in terms of the numbers of its lower-dimensional faces. Let X c Ed

be a ploy tope. For k = 0, I ... d, denote by :sk(X) the set of all k-faces of X, and let
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#3k(X) be the number of elements in 3\X) (i.e. cardinal number). Thus, the EPC is

defined by

(2.10)

Most of the existing algorithms for computing the EPC of a digital image are

based on counting the total number of k-faces in a polyhedral representation of the

image. For example, for any arbitrary triangulation of a set X in 3-dimensional

Euclidean space E3
, which is illustrated in Figure 2-5, X3(X) is equal to the following

sum:

X3(X) = number of vertices in X - number of edges in X

+ number of faces (triangles) in X - number of tetrahedra in X.

(a) (b)

Figure 2-5: Computation of the Euler number for triangulation. (a) A 3D shape

triangulated by two tetrahedra, X3 = 6 - 11 + 8 - 2; (b) A triangulation of Spock's head

with 230k tetrahedra (www.lcg.ufrj.br).

However, the recursive definition given by Hadwiger (1957[55]) is much more

intuitive in different dimensional spaces, which is consistent with Kong and Rosenfeld's

axioms (1989[76]). Considering a closed set X in d-dimensional Euclidean space Ed, the

EPC Xd(X) is defined as:

d-J

Zd(X)= L(-IY hj(X),
j~O

(2.11 )
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where hi(X) is the j'h Betti number.

For the Betti numbers, in different spaces the interpretations are slightly different.

In l-dimensional space, Xl (X) is the number of segments of X on a straight line. In 2D

(see Figure 2-6(a», X2(X) is the number ho(X) of separate components of X minus the

number h1(X) of redundant connections (tunnels) within X where the latter equals to the

number of holes in X:

(2.12)

In 3D (see Figure 2-6(b», X3(X) is the number ho(X) of isolated components

minus the number of redundant connections h1(X) (also called the genus, or tunnels)

plus the number h2(X) of completely enclosed cavities in X:

(2.13)

The number of redundant connections (genus, tunnels) h1 of an object is the

maximum number of ways an object may be cut by closed loops (e.g. the black ring in

Figure 2-6(b» without losing its initial connectivity. For example, h1 = 0 for a ball and

h, = 1 for a torus.

In the context of image processing and analysis it is usually assumed that the

object set X (e.g. the PS) in the n-dimensional space is observed on a point lattice Ln =

a: (where Z denotes the set of integers, c> 0 is called the resolution of image). The

intersection XnL n is the mathematical expression for the observable information about

X. In practical applications, the lattice Ln is restricted to a bounded window WeEn. Let

Ix denote the characteristic function X, i.e. Ix(x) = 1 if x E X otherwise h(x) = o. The
set {(x, hex»~:x E wn Ln} is said to be the binary image of X observed in W. Usually

in 3D, a set of cubic grid points is used as the observing window for 3D digital images.

Then, according to the concept of continuous analog introduced by Kong et al.

(1992[75]), a 3D digital image Pcan be associated with a continuous analog C(<P) (e.g. a

polyhedral set), which corresponds to a kind of image representation. Thus the EPe

X3( <P) is then defined as X3( <P) = X3( C( <P» (Kong and Rosenfeld, 1989[76]).
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(a) Xz = ho - h, = 3 - 2 (b) X3 = ho - h, + hz = 2 - 1 + 0

Figure 2-6: Euler-Poincare characteristic X in 2/30. b« = number of isolated

components, h, = number of redundant connections (also called genus, or tunnels in 3D)

and h: = number of completely enclosed cavities in 3~.

At this stage of the topological analysis of a digital image, the remaining key

problem is to compute the EPe based on different image representations. Generally

there are three ways to represent the 3x3x3 neighborhood of a voxel in 3D discrete

space (see Figure 2-7) .

./ ../ ./
./ ../i ./

./ - ft~ ./
./ 1 )

./ 1./ ./
./ V ./

(a) (b) (c)

Figure 2-7: Three ways to represent 3D discrete object. (a) Lattice of points, (b) lattice

of cubes and (c) lattice of surface patches.

A detailed review of previous presentation-based methods is given by Osher et al.

(2003[ 115]). As stated by them, the computational complexity of the previous methods

may be inadequate to meet the critical time requirements for large images, especially for

large 3D images. Saha and Chaudhuri (1995[139]) proposed a new approach to tackle

this problem. Based on computing the change in the number of black components,

tunnels and cavities in a 3x3x3 neighbourhood of an object point, they described an

approach to compute the EPe of a 3D digital image from its lattice representation.

Some much more efficient approximations of the EPe have also been investigated such

as Vogel's disector method and Ohser's discretisation method.
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A 3D binary image <P is regarded as the combination of serial parallel surfaces (or

sections, see Figure 2-8(c» Xi, i.e. P = Ui=1 ... rnXi. Each pair of closely spaced 2D

sections is called a disector, denoted by CDS{Xi,Xi+I). Gundersen et a1. (1993[54]) stated

that an unbiased estimate of the 3D EPC can be obtained with the disector. Based on

this idea, Vogel and Kretzschmar (1996[ 184]) developed an estimate of :O( rP). In

contrast to the direct determination of the basic topological quantities ho, h, and hi in

(2.13), for example, DeHoff et a1. (1972[37]) presented a method for counting the basic

topological quantities using serial sections. The estimation of X3{ rP) is a local

measurement.

For a disector VS(Xi, Xi+l) ofP{see Figure 2-8(a) and (b)), the Euler number

X3( VS{Xi, Xi+ I)) is calculated by

(2.14)

Where Xi n Xi+1 is obtained through the logical AND operator applied to these

binary images and X2(Xi) can be easily obtained using Equation (2.12). The EPC X3{ rP)

is then estimated by

(2.15)

Vogel and Roth (2001[185]) noted that this approach does not lead to an

unequivocal description of the topology because the absolute values of ho, h, and hi are

unknown. Principally, an exact determination of the topological quantities requires a

global approach, i.e. the complete structure should be known. Consequently, this is the

price which has to be paid for a local estimation of topological properties.

Osher et a1. (2002[114]) also proposed four approaches to the estimation of the

EPC of digital images which are observed in the points of a lattice (see Figure 2-7{b».

The key point is to introduce four versions of a discretisation that is based on different

adjacency systems. By conducting comparisons of their four estimators, they found that

the estimators, except for (26, 6) yield infinitely large systematic errors when the lattice

spacing goes to zero.
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Figure 2-8: Disector and its Euler number. (a) X2(X1) = I -- 1; (b) X2(X2)= I - I; (c)

X2(X, n X2) = 1 - 2; thus X3(<DS(X"X2)) = 1. Where grey region are object and white

region are background of a section.

In the sense that the EPe of an object X in E3 is defined as the EPe of its

continuous analog aX), X3(C(X))is said to be the exact value of X. Along this research

direction, Kong and Rosenfeld (1989[76]) presented an important localization axiom:

the Euler number of a 3D digital image can be computed by calculating the change in

the Euler number in 3x3x3 neighborhood of object voxels. Based on this idea, Saha and

Chaudhuri (1995[139]) described a new approach for computing the EPe of a 3D

digital image, which is based on computing the change in numbers of isolated

components, tunnels and cavities in the 3x3x3 neighborhood of an object voxel due to

its deletion. To do so, a look-up-table is built up by analyzing all configurations of a

voxel.

The Euler number is an important topological quantity, however, its

discrimination capabilities are limited since it is a single number derived from a linear

combination of a certain number (i.e. Betti numbers) of topological elements. That is

why many other quantities related to the EPe have been introduced in recent years.

Vogel (1997b[ 182]) presented a connectivity function, which correlates the connectivity

and pore size. In contrast to point-to-point correlations, which are most frequently used

to introduce topological aspects into models of heterogeneous structure, the connectivity

function provides information about the connectivity of the entire region of the model.

Bykov et al. (1999[29]) define the concept of the index of a point in a 3D digital image.

Based on this concept, an algorithm for computing the EPe was proposed. Ohser et at.

(2003 [115]) introduced the concept of the density of Euler number and gave an

estimation of the EPe. However, currently available topological descriptions and
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corresponding algorithms based on image analysis are limited by their inability to

quantify the extent of the 3D connectivity of the PS in reservoir rocks.

2.3 Medial Axis (Skeleton)

Geometric analysis of an irregularly shaped object such as the PS of a rock is

difficult due to the complicated morphology. This motivates us to reduce the object into

a lower dimensional entity, which is called the skeleton of the object. In geometry,

every object has a skeleton. The skeleton of an object is a subset of the object, which

captures the geometric proximity of the boundary in a simple form. For a two-

dimensional object the skeleton may consist at most of a union of curved arcs (see

Figure 2-9(a) and (bj). For a three-dimensional object, the skeleton may be a network of

surfaces and curved arcs (Figure 2-9(c)). However, if the object does not contain any

interior cavities (i.e. the completely enclosed background components, or the floating

solid particles), the surfaces in the 3D skeleton can be further reduced to a set of curved

arcs. This resulting 3D skeleton is then called the MA if the skeleton only contains

curves; otherwise, it is called the medial surface.

Besides the lower dimensional representation, the MA can also hold certain

topological and geometrical properties, such as being topology preserving and central

location etc. In this case, the MA of an object gives basic information on the topology

and geometry; it is a simple and compact representation.

The MA can qualitatively describe how a complex object (e.g. the PS) is

decomposed into simpler parts (e.g. nodes and bonds), how these parts bend (i.e.

curvature, tortuosity or length of flow paths), and what is the shape and size of

individual elements (e.g. pore channels, junctions) in the PS. Using the medial axis, we

can clearly partition an object into individual portions and then measure their

geometrical quantities. In fact, since the concept was first introduced, the medial axes

have found many uses in areas of image processing and visualization. In the next

section, I will focus on reviewing the quantification of pore microstructures, where

some successful applications of MA are involved, for 3D binary images. In the

following discussion, accurate definitions, existing algorithms and properties of the

medial axes will be briefly discussed.
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2.3.1 Definitions of Medial Axis

In 2D, the MA of an object is defined as the locus of the centres of the maximal

inscribed disks (Blum, 1967[20]). In other words, in the continuum space it is the locus

of points which are equidistant from at least two points on the boundary of the object. It

has been proved that the MA of a 2D object must consist of a set of curves - a ID

representation. In 3D, the maximal inscribed spheres are used to define the

corresponding concept although the problem becomes more complicated. The set of the

centres of maximal inscribed spheres may contain surface patches in addition to a set of

curves, which will then be called the medial surface rather than the medial axis. Figure

2-9 show a MA for a 2D object and a medial surface of a 3D object.

The definition of the medial surface can be formulated as follows (Kong and

Rosenfeld, 1989[76]): let X c E3 be a 3D object, a sphere of radius r centred at x E X is

defined as S,.(x) = {y E E3: d(x, y):S r}, where d(x, y) is the Euclidean distance between

two points x and y in E3 (i.e. d(x, y) = [(Xl - yd + (X2 - Y2)2 + (X3 - Y3)2t2). A sphere

Sr(x) ~ X is maximal if it is not completely included in any other sphere included in X.

The medial surface is then the set of centres of all maximal spheres included in X. A

more illustrative definition of the medial axis or surface (skeleton) is given by the grass-

fire analogy (Blum, 1967[20]), where the boundary of an object made entirely of dry

grass is set on fire and the skeleton consists of the loci where the fire fronts meet and

quench each other. The process of obtaining a skeleton is called skeletonization, and is

also called the medial axis transformation (MAT) if the inscribed radii of each MA

voxel are also recorded.

In the OT analysis of the PS, it is assumed that most of the flow paths in porous media

have tubular-like shapes which will lead to a network of curves as the result of

skeletonization. For example, the skeleton of a torus is a curved arc shown in Figure

2-10. In many applications, a concise representation of 3D objects with curved arcs or

straight lines is desirable because of its simplicity. This line-like representation of a 3D

object is also known as the centreline, curve-skeleton or the MA and is a simplified 1D

representation of its medial surface, consisting only of curves. However, the definition

of skeleton cannot directly lead to the generation of a curve-skeleton. In Figure 2-11

only such skeletons, which contain both curved arcs and surfaces, can be extracted

based on the maximal inscribed spheres. So alternative definitions of 3D MA (curve-
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skeleton) need to be further clarified and the corresponding skeletonizations also need to

be reviewed.

.. ,,,, ,,, , ,-, ... .., .. .
r .,,. "
, ",

(a)

.
r
I,,,

(b)

Figure 2-9: The medial axis in 2D (a, b) and the medial surface in 3D (c) and a few

examples of inscribed disks in 2D and spheres (ball) in 3D. (b) The MA is sensitive to

boundary noise because noisy spurs remain in the skeleton due to the small variations

on the boundary of the object.

Figure 2-]0: A wire frame torus with medial axis (the central curve).

The above definitions of skeleton were formulated in continuous space. In discrete

space, the definitions are analogous to the continuous case. However, problems may

occur because of discretisation. For example, a maximal sphere may touch the discrete

boundary of an object at a single point rather than at least two points in the continuous

space. As a result, in order to include all centres of maximal spheres, the discrete

skeleton may be more than one image element (pixel or voxel) thick. Furthermore,
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resolution can cause a loss of detail for certain objects. Some skeletonization algorithms

work on geometric data (continuum), others deal with discrete objects only (distance

field, thinning). In this section, I will focus on the discrete case.

(a) (b)

Figure 2-11: The skeleton of a 3D object with surfaces and curve arcs. (a) Without any

cavities (from Pudney, 1998[ 132]) and (b) with a cavity. A cavity is a background

component that is completely enclosed in an object.

2.3.2 Algorithms (skeletonization)

Since Calabi and Harnett (1968[30]) proposed the "grassfire" concept, many

different MA extractions were developed targeting different materials and applications.

Although some of the 2D algorithms are supposed to scale to 3D, I restrict my

discussion only to algorithms explicitly designed for 3D. From the multiphase flow

point of view, the line-like skeleton (the medial axis) of 3D objects plays a central role

in pore analysis. The discussion below reviews general 3D curve-skeleton algorithms,

i.e. the generation of a ID curve-like representation for a 3D object. However, some

medial surface algorithms will be included for the purpose of further reducing the

medial surface into a medial axis (e.g. Borgefors et aI., 1999[26]; Svensson et aI.,

2002[164]). Unless otherwise stated, in the following I consider 3D objects to be

represented by voxels on a regular grid.
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Most existing algorithms can be classified into three types: thinning methods,

distance map based methods, and hybrid methods.

• Thinning methods

Thinning is described as a procedure for iteratively deleting object points while

satisfying certain topological and geometric constraints, until no more points can be

deleted (Kong and Rosenfeld, 1989[76]). The remaining subset of the object is then

called the skeleton of the object. The thinning method can be imagined as peeling off

the boundary of the object contained in an image layer by layer. The key aim is to

remove the object points as efficiently (quickly) as possible without changing the

topology of the original image. The basic topological quantities of a 3D object include

the numbers of isolated components, tunnels and cavities. Therefore, during the

thinning process no isolated components, no tunnels or no cavities are allowed to be

created or deleted to fulfil the topological constraint.

Morgenthaler (1981 [110]) introduced the notion of a simple point to localise the

topological constraint in the 3x3x3 neighbourhood. A simple point (Kong and

Rosenfeld, 1989[76]; Bertrand and Aktouf, 1994[17]) is an object point which can be

deleted without changing the topology of the object. The thinning process can then be

described as starting from the object's boundary and continuing inward until no more

simple points can be removed. In addition to the topological constraint, certain

geometric conditions are used to prevent removal of some simple points (e.g. surface or

curve endpoints) in order to maintain desired geometric properties of the object (for

example, in order to ensure the desired width and location of the skeleton). These

conditions are usually implemented as templates (or masks), of size 3x3x3 or larger.

Based on a counting approach, however, several local characterizations of simple points

were proposed (e.g. Bertrand, 1994[14], 1995[15] and 1996[16]; Lohou and Bertrand,

2005[92]). The deletion of simple points is carried out either sequentially (Bertrand and

Malandain, 1994[18]; Pudney, 1996[131] and 1998[132]; Saito and Toriwaki,

I994[ 144] and 1995[ 145] etc.) or in parallel (Lohou and Bertrand, 2004[91] and

2005[92]; Xie at eL, 2003[189]; Palagyi and Kuba, 1997[120], 1998[121] and 199[122]

9; Manzanera et al., 1999[100]; Saha at el., 1997[141]; Ma and Sonka, 1996[96]; Gong

and Bertrand, 1990[52] etc.) or with morphological operations (Jonker, 2000[69]). Of
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the various parallel thinning algorithms, many of them are involved in the directional

category. Directional thinning methods remove voxels only from one particular

direction in each iteration (for example, North, South, Up, Down) using different

numbers of directions and conditions to identify endpoints (Tsao and Fu, 1981[168];

Gong and Bertrand, 1990[52]; Bertrand and Aktouf, 1994[17]; Lee and Kashyap,

1994[81]; Saha et al., 1997[141]; Palagyi and Kuba, 1999[122]; Lohou and Bertrand,

2004[91]).

The main feature of thinning algorithms is topology-preservation and that the

resultant skeleton is thin (no redundant points in the sense of topology-preservation, i.e.

the topology of the original images will change if any point on the skeleton is further

deleted), but the skeleton is not necessarily centred because of the explicit or implicit

directional strategy.

• Distance map based methods

For a 3D binary image, its distance map is defined as another grey level image in

which a distance value is assigned to each point in the image space. The distance of a

point is defined as the smallest distance from that point to the boundary of the object,

where different distance metrics (or functions) may be involved. Various distance

functions can be chosen such as the Euclidean distance or its approximations (e.g. city-

black, chessboard or chamfer distance metric). A distance map can also be

approximated using fast marching methods (Sethian, 1999[150]; Telea and Vilanova,

2003[165]).

In distance map based methods, the idea is to find local maxima (ridge points,

saddles) from the distance map of an object as potential candidates, and to prune these

points to produce aiD skeleton, and finally to connect these candidates using a path

connection or minimum spanning tree approach (Zhou et al., 1998[194]; Wan et al.,

2001[186]; Sundar et al., 2003[162]). Methods used to find candidate voxels include:

distance ordered thinning (Pudney, 1998[132]; Gagvani and Silver, 2001[49]; Couprie

and Zrour, 2005[35]), gradient searching (Bitter et al., 2001[19]), divergence

computation (Bouix and Siddiqi, 2000[27]), geodesic front propagation (Perchet et al.,

2004[126]), thresholding the bisector angle (Malandain and Vidal, 1998[99]) or
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shrinking the surface along the gradient of the distance map (Schinnacher et aI.,

1998[146]).

After obtaining candidate voxels from the original object, these voxels are

clustered and connected. For connectivity, most approaches use minimum spanning

trees, shortest paths (He et aI., 2001[56]) or other graph algorithms. In Zhou et al.'s

paper (1998[194]), an "LM path" defines the connectivity of local maxima clusters. An

alternative is provided by the fixed topology skeleton which is a set of a fixed number

of connected active contours driven by the underlying distance map (Golland and

Grimson,2000[51]).

The principle of the MA transformation (MAT) is similar to the approach based

on the distance map (Calabi and Harnett, 1968[30]; Malandain and Vidal, 1998[99]).

The idea is to calculate the distance map of the object in an image, to find local maxima,

and to reconnect the maxima. Delerue et al. (l999a[39]) used a ball-growing algorithm

to extract the skeleton of the PS in a porous medium. The resulting skeleton based on

MAT is centred in the local PS by construction, depending on the local maxima

threshold. Unfortunately, this algorithm is not necessarily topology-preserving, as it

depends on the path reconstruction and may produce redundant points on the skeleton.

In principle, the distance map based method can accurately extract the medial

surface. However, it cannot extract a curve-skeleton from arbitrary objects without

employing additional techniques to prune the medial surface. For example, for the shape

in Figure 2-11(a), the voxels along the medial surface (in white) all have the same

distance value. Therefore, some sort of pruning must be used to simplify these medial

surfaces into central lines. The main advantage of the distance map based method is that

computation of the distance map is very fast and it is widely used. In particular, for

tubular objects (i.e. flow channels), the distance map approach works very well.

• Hybrid methods

To take advantage of both of the above approaches, hybrid methods have been

introduced. One such method, called Distance Ordered Homotopic Thinning (DOHT

Morgenthaler, 1981I.ll.Q.l), iteratively deletes object points in increasing distance map

order without changing the topology of the original object. However, it imposes an
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additive step, i.e. a distance transformation on its thinning process, and the resulting

skeleton is still not truly in the central region. This is because in the region of points of

the same distance value, the location of skeleton points depends on the scanning order.

During the thinning process, in which some object points are deleted (called

deletable points), the deleting order determines the position of the resultant skeleton.

For most of the MA applications, the "medialness" (i.e. central location) is an important

property; however most of the existing thinning algorithms do not guarantee that the

MA is located in the centre of the object. To minimise ordering effects and to ensure

that the MA is as close to the geometric centre as possible, Saito and Toriwaki

(1995[ 145]) proposed a Euclidean distance-based thinning method to produce a medial

skeleton. Inspired by this approach, Pudney (1996[ 131] and 1998[132]) presented a

similar algorithm. To meet the homotopic requirement (i.e. topological preservation),

Pudney (1996[131]) used Kong and Rosenfeld's (1989[76]) local definition of topology

preservation. There are two conditions which should be tested for: (1) if there is only

one connected component in the 3x3x3 neighbourhood of a point; (2) if the Euler

number is unchanged in the 3x3x3 neighbourhoods before and after removing object

points. An object point is called a simple point if its removal does not change the

topology of the original object. These conditions have established a rough

characterization for a simple point. Due to the difficulty of computing the 3D Euler

characteristic, Pudney (1998[132]) used a much more efficient characterization of a

simple point introduced by Bertrand and Malandain (1994[ 18]). As for the distance

applied in Pudney's algorithms, the chamfer metric is used as the distance function and

the distance is defined as the length of the shortest chamfer distance from the object

point to the background. The chamfer distance is a good approximation to the Euclidean

distance. In fact, a chamfer distance with CDC (3, 4, 5) can minimise the upper bound

on the difference between the chamfer and Euclidean distances (Borgefors, 1984[24]).

In most contrast to the similar algorithms, the calculation of the chamfer distance is

carried out on the fly rather than beforehand. Therefore, Pudney's thinning process is

controlled by the order of ascending distance, which can be efficiently implemented

using ordered queues (Vincent, 1991[180]). To ensure that the resultant MA contains

fewer spurious branches, Sheppard et al. (2004[151] and 2005[153]) modified Pudney's

(l998[ 132]) method by applying a Gaussian smoothing kernel to the Euclidean distance

map, and using this as the ordering function for the thinning algorithm. Moreover, to
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eliminate connections being fonned across voxel comers or edges in the final 26-

connectivity medial axis, they perform the first few steps of the homotopic thinning

under the assumption that the object being thinned is 6-connected before switching to

26-connectivity for the remainder of the process.

• Skeletonization algorithms used for pore structure analysis

There are a number of published algorithms for pore structure analysis based on

the MA of the PS. For thinning of the PS, two issues are widely discussed: topology-

preservation and geometric constraints.

Lee and Kashyap (1994[81]) proposed a 6-directional parallel thinning, which has

been used and improved by Lindquist at e1. (2000[89]) later. They stated that their

extracted MA should be topology-preserving, thin and at the central location. The

topological constraints are satisfied by deriving an Euler table, counting objects using a

labelling algorithm based on the octree representation of local configurations, and

sequentially re-checking the connectivity before simultaneously removing simple points.

For a 3D binary image P = {cv, c, p, <13} defined on a rectangular region 'IIc Z3,

where <13 is the object set (e.g. the PS of a porous medium) and (o, p) = (6, 26) or (26, 6),

the EPC X(CB) is defined in (2.13). For a point (voxel) p of <13, the EPC of its 3x3x3

neighbourhood 1V(p) of p is denoted by X( <13 11 1V(p».

According to the definition and Proposition 1 introduced by Morgenthaler

(1981[110]), Lee and Kashyap (1994[81]) described the topological thinning process as

repetitively deleting one type of border points in <13 one after another in parallel

satisfying the following conditions until no more points can be removed:

(Cl) x(CBIl1V(p» = X(<13Il1V(p)\{p});

(C2) ho(CBIl1V(p» = 1;

(C3) ho( {S 1l1V(p)} U {(CB\S) 1l1V(p)}) = 1, where S is the set of current simple

points that satisfies (Cl) and (C2).

For checking condition (Cl), the idea of Lobregt et a1. (1980[90]) was used to

calculate the EPC X(cB 11 :N(p» based on a predefined Euler-table. To determine the

connectivity (i.e. condition (C2) and (C3», an octant-type data structure (i.e. octree) for
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each point p is proposed to represent the local configuration in, the 3x3x3

neighbourhood !Mp) of p. Taking advantage of the recursive nature of the octree, they

implemented an efficient labelling algorithm to count the number of connected object in

!Mp).

As a parallel thinning algorithm, potential drawbacks of simultaneous removal of

multiple simple points must be considered. To achieve parallel thinning without

changing connectivity, 6 subiterations are introduced in each thinning iteration and a

sequential re-checking procedure is used in Lee at el. 's algorithm. A border object point

p is identified as of type N(North), S(south), W(west), E(east), U(up) or B(bottom) if

the corresponding 6-neighbour (i.e. having common face with p in the direction) is a

background point (e.g. belonging to solid phase), respectively. This strategy has been

used by many researchers (e.g. Palagyi and Kuba, 1998[121]; Lohou and Bertrand,

2005[92]), but the major problem with this directional parallel thinning is that they

cannot avoid destroying the original topological structure during the thinning process

without additional checking. To solve this problem, Lee et al. sequentially re-examine

each simple point p, which has already been labelled in the current subiteration, to

determine if all simple points and the remaining points in the 3x3x3 neighbourhood of

p are still connected.

The topological preservation has been discussed briefly above. The remaining

issue is how to decide the geometric constraints to ensure the thinness and the central

location of the skeleton. Focusing on the skeleton consisting of only curved arcs (e.g.

central lines), the concept of endpoint is needed which is defined as a point that has only

one neighbour at a stage during homotopic thinning process. Taking account of this, all

endpoints are to be retained even though they are also simple points. Using this

algorithm, obviously the resultant skeleton of an object must be a MA which contains

only curved arcs if the object has no cavities and the thinning process continues until no

more voxels can be removed.

Lindquist et al. (1996[87]; 1999[88] and 2000[89]) used Lee at al.'s algorithm for

geometric analysis of the PS in rock images. They found that their original algorithm is

very sensitive to boundary noise (see Figure 2-12(a». Boundary noise occurs for two

reasons: inherent irregularities of the boundary between the pore and the solid phase,

and disconnected components of pore voxels or dead end pores. The former should be

avoided and the latter should be retained. However, distinguishing between spurious
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paths which derive from boundary noise and genuine dead end pore channels is very

difficult. To tackle this problem, Lindquist et al. (2000[89]) proposed criteria to trim all

dead end paths from the medial axis, so that the remaining structure is the percolating

backbone of the PS (see Figure 2-12(b)).

(a) (b)

Figure 2-12: The medial axis extracted from a sandstone image (a) with many spurious

paths and (b) trimmed backbone of the PS.

(http://www.ams.sunysb.edU/%7Elindquis/3dma/3dma_rock/3dma_rock.html).

Besides the sensitivity to boundary noise, Lee at al.'s algorithm leads to the

systematic north-south, east-west, up-down biasing because the location of the MA

depends on the thinning order. Lindquist and co-workers (1999[88] and 2000[89]) then

introduced a rule to reorganize the thinning order according to the number of surface

faces each border voxel has, in order to overcome this drawback of the original

algorithm.

To achieve the central location of the medial axis, Pudney (1996[ 131])

implemented the thinning operation in the order of ascending distance. The distance of

an object point is defined as the length of the shortest path from this point to the

background. Instead of using the Euclidean distance metric, a chamfer metric with

coefficients (nt, ni, n3) is used as the approximation of the Euclidean distance between a

pair of adjacent points such that ndn, ~ Ii, i = 2, 3. To preserve the topology, Pudney

apply Kong and Rosenfeld's (1989) definition of a simple point: let p be an object point

in a 3D binary image P = (Z3,a, p, iB), where (a, B) = (6, 26) or (26, 6). p is a simple

point if and only if the following conditions hold:

(Cl) P is a-adjacent to just one connected component of :N(p);
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(C2) x(Z3,a,~, (]3n:Mp» = x(Z3,a,~, {<B\{p}}n :Mp», where X (P) is the EPC of

a binary image <P.

An endpoint is defined an object point that has less than two object neighbours.

The endpoint should be preserved and thus a point p is deletable if it is simple and has

more than one object neighbour. The algorithm is implemented using ordered queues so

that pre-calculation of the distance transform is not required.

Pudney (1998[ 132]) improved the above algorithm using a simplified

characterisation of simple points (Bertrand and Malandain, 1994[14]) and using the

chamfer metric with CDC (3, 4, 5). This localised characterisation does not involve

calculation of the EPC but the counting of the number of components. Let p be an

object point in a 3D binary image (Z3, a, p, CB), where (a, p) = (6, 26) or (26, 6). Thenp

is a simple point if and only if the following conditions hold:

(Cl) P is a-adjacent to just one connected component of :lVa(P) n <B;

(C2) pis p-adjacentto just one connected component of :Na(p)VE.

To implement the removal of multiple simple points in parallel, a technique called

sequential rechecking (Lee and Kashyap, 1994[81]) is used to avoid changing the

topology during the parallel thinning process.

Recently, Sheppard at el. (2005[153]) used Pudney's algorithm for the extraction

of the MA of the PS with several minor changes. They found that by applying a

Gaussian smoothing kernel to the Euclidean distance map, and using this as the ordering

function for the thinning algorithm, the resultant MA contains fewer spurious features.

They also suggested that it would be better to perform the first few steps of the thinning

assuming that the object being thinned is 6-connected, before switching to 26-

connectivity for the remainder of the process. Also the algorithm has been parallelised

using a simulator. The problem with the above algorithms for parallel implementation is

that additional measurements (i.e. sequential checking or simulator) substantially

degrade the efficiency of the algorithms. Thus, Ma and Sonka (1996) designed a fully

parallel thinning based on template matching to deal with this problem.

For a 3D image <1'= (0/, 26, 6, (]3), they used the following definition (Malandain

and Bertrand, 1992[98]) to determine the simplicity of an object point.
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(Cl) pis 26-adjacent to only one object in ~)\{P};

(C2)pis 6-adjacent to only one background component in :Nis(P).

Only when one simple point at a time is removed can we preserve connectivity.

However, it is not true if more than one simple point has been deleted simultaneously in

each iteration. As suggested by Kong (1993[74]), a set (])of points can be deleted in

parallel if (J) is a simple sequence, i.e. (J) can be ordered as a sequence such that every

point is simple after all its predecessors in the sequence are deleted. Such a set is called

a simple set. Therefore a parallel thinning algorithm is said to preserve topology if it is

only allowed to delete simple sets from the object region. Obviously this condition has

theoretical value but is not easy to implement. Thus, Ma (1994[95]) proposed more

general sufficient conditions and then used these to design deleting templates (i.e.

configurations in the direct neighbourhood of a point). First, four basic templates (cores)

were defined (see Figure 2-13); after reflecting and 90° rotating the template cores with

some specific conditions, four classes (i.e. Class A, B, C and D) of deleting templates

(for example, four Class A templates shown in Figure 2-14) were generated and then

used to check whether an object can be identified as a candidate to be deleted.

To preserve the geometry of the original object, Ma and Sonka gave a definition

of nontail points in order to retain end points. A tail point is either a line-end point or

near-line-end point; any other points on a line are called nontail points. Appling this

definition and the deleting templates, a MA are generated by the following algorithm:

Repeat

In parallel, delete every nontail object point which satisfies at least one deleting

template;

Until no point can be deleted.

Furthermore, they provided an option for eliminating end points which resulted in

removal of all "dangling ends" in the fmal medial axis. This algorithm is used by Liang

et al. (2000a[84]) for partitioning the PS. However, this algorithm seems to neglect the

central location of the medial axis, which would lead to inaccurate identification of pore

necks.
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Figure 2-13: Four basic template cores of Ma and Sonke's parallel thinning algorithm

which are used to generate deleting templates by reflecting and 900 rotating these

template cores. Where a grey point is a "don't care" point which can be either an object

point (black) or a background point (white).
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Figure 2-14: Six Class A templates for deleting west, east, south, north, down, and up

border points, respectively. Where black points are object points, white points are

background points, and a grey point can be either object or a background point.

In spite of the above thinning algorithms, some authors tried to find more efficient

algorithms using morphological operations or other general image processing

techniques. Baldwin et al. (1996[ 13]) developed a morphological thinning algorithm to

obtain the "medial axis" of the PS. In the same year Lindquist and Lee (1996[87])

developed a "bum" algorithm motivated by the "grassfire" idea (Calabi and Harnett,

1968[30)). Delerue et al. (l999a[39]) developed another approach using geometric

modelling where a ball growing algorithm using the Voronoi diagram was used to

extract the skeleton of the PS (Delerue et al., 1999b[40]; Delerue and Perrier, 2002[38]).

The major problem of these algorithms was that topology-preservation could not be

satisfied or at least could not be proved, which is crucial for single-/multi-phase flow

using network models.
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2.3.3 Medial Axis Properties

The desirable properties of the MA depend on the applications for which it is

required. For example, object recognition requires medial axes with primitive shape

features to make similarity comparisons. On the other hand, statistical reconstruction of

porous media (Thovert et al., 1993[167]) needs medial axes that contain detailed

geometric information and are of the same connectivity to reduce the approximation

error in the reconstruction process and to extract network structures for network models.

Below, Ibriefly describe some important properties which may link to the pore analysis.

The connectivity of the MA faithfully represents the connectivity of the original

object (i.e. the PS), has a strict geometric relationship to the object's surface and

preserves important geometric properties.

Homotopic property (topology preservation): The homotopy of the MA

requires us to faithfully represent the connectivity of the original object, which is

closely related to the definition of connectivity. In three-dimensional discrete space Z3,

two voxels are 6-adjacent if they share a face, I8-adjacent if they share a face or an edge

and 26-adjacent if they share a face, an edge or a vertex. An a-path is a sequence of

voxels XI, X2 ... Xm with Xi a-adjacent to Xi+l, where a is 6, 18 or 26. A a-component 5 is

then a set of voxels such that each pair of voxels in 5 is connected by a a-path included

in S. For a 3D binary image P, in order to avoid topological paradoxes (Kong and

Rosenfeld, 1989[76]), a pair of connectivities (a, P) must be chosen for the object and

for the background, where a for the object connectivity and f3 for background

connectivity. For the object CB in (V, a, p, CB), the MA of CB, denoted by MA(cB), is

defined as a subset of the CB. According to Kong and Rosenfeld's definition, MA(cB) and

cBhave the same topology if they have the same number of a-components, tunnels and

cavities. A cavity is a background f3-components surrounded by an object component.

Algorithms to count the number of connected components, tunnels and cavities in an

object are given in (Saha and Chaudhuri, 1996[140]; Svensson, 2002[164]). Notice that

a MA (only contains curve arcs) cannot be obtained from an object with cavities under

the condition of topology preservation. To accommodate objects with cavities, we can

either remove the cavities before generating the MA or relax the definition of topology

preservation. This property is explicitly checked only by the thinning methods while
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deleting points. None of the other methods provides any guarantees regarding

homotopy.

Thin (Single voxel width): The medial axes should be one-dimensional, that is at

most one voxel thick in all directions, except at junction points where the skeleton

might become thicker to ensure connectivity between the different branches. So in this

sense, the MA is a minimal deformation retraction of the object. Thus the points in the

MA can be distinguished as three types: regular points, endpoints and junction points,

which correspond to having exactly two neighbours, one neighbour, and more than two

neighbours, respectively. The check of the thinness property can be easily done if the

junction points are known in advance. Otherwise much more complicated methods may

be involved. Obviously thinning algorithms can directly produce a single voxel width

skeleton or further thin the medial surface to aID representation. The distance map

based methods do not produce such a representation directly, which thus requires

considerable post-processing.

Centred (central location): One important characteristic of a MA is its central

location along the object (i.e. central placement with respect to the pore-grain surface,

Lindquist et aI., 2000[89]), which preserves the important geometrical features of the

object. This is especially true for multi-phase flow where the central-line of a flow path

is desired. Clearly the curve-skeleton should lie on the medial surface of the object, but

this criterion alone does not guarantee centeredness. One possible way to quantify the

centeredness of a curve-skeleton is to seed a number of uniformly distributed radial rays

at each skeleton point and measure the distance to the boundary along each of these

rays. The central location can be achieved in the first steps of methods using a distance

map. However, once clustering and spanning trees are used, centeredness may be lost.

Thinning methods do not guarantee centeredness. For example, for directional thinning

the systematic north-south, east-west, up-down biasing cannot be avoided because the

position of medial axes would depend on the order of the directions.

Robust: As shown in Figure 2-9(b), the MA is very sensitive to boundary noise,

i.e. a small change on the boundary of an object can result in a drastic change in the

medial axis. This means that many extraneous branches will occur in the resulting

medial axis. This spurious branch formation makes it very difficult to quantitatively

compare different instances of the same structure. A desirable property of the MA is to
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exhibit weak sensitivity to noise and roughness on the boundary of the object. That is,

the medial axes of a noise-free object and the same object with noise should be' very

similar. This can be done either smoothing the original image in advance or by pruning

the resultant MA to distinguish between boundary noise and boundary irregularities.

Efficient to compute: Clearly, an algorithm should be efficient because many

applications need real-time computations for high-resolution images. The Euclidean

distance map of a 3D object can be computed in linear time using the algorithms of

Saito and Toriwaki, 1994[144]; Meijster et al., 2000[106] and Maurer et aI., 2003[105]).

The subsequent steps of filtering and reconnecting the skeleton, however, may be more

complex but they usually operate on a greatly reduced set of voxels. Thinning is also a

linear process in the number of object voxels, which is mainly dependent on the

checking of simplicity of object voxels.

2.4 Quantitative Characterization of the Pore Space

There are two steps in characterizing the PS. The first is to measure flow-relevant

geometrical and topological properties such as pore/throat radius (volume), cross

sectional/specific surface area, Euler-Poincare characteristic and coordination number.

Based on these basic quantities, the second step is to evaluate statistical quantities in the

forms of distributions and correlations such as pore size distribution, coordination

number distribution, spatial correlations and pore-body to pore-throat aspect ratios etc.

Most of the existing characterizations involve both of these steps with some exceptions

for computing simple statistical properties. With a good characterisation of the PS,

either an equivalent network can be created or a realistic network structure can be

mapped for a specific porous medium. Even more directly, numerical analysis can be

done based on characterized data. The resulting network model may then be used to

investigate or predict macroscopic flow and transport properties. From this point of

view, the characterisation of the PS is of fundamental importance to many network

models.

With a high-quality 3D binary image of a porous medium at hand, the first

question is to decide which parameters are of interest. This depends on our

understanding of the relationship between pore microstructure and macroscopic bulk

properties as well as on the requirements of a specific network model. The second
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question is how to quantify and to characterise the PS. Almost all pore structural

parameters are closely related to the definitions of pore-bodies and pore-throats, which

appear very complicated. Some definitions of pores may be intuitively clear, and other

seem to be rigorous in the sense of mathematical representation, but no universal

definition is available so far. For this reason, a large number of distinctive approaches

have been presented and each has found some sort of successful application in the

analysis of pore geometry. The practical value of partitioning PS into constituent

smaller elements (i.e. pore-bodies and pore-throats) was first noted by Fatt (l956a[ 45]),

who used a network model to describe drainage/imbibition processes in porous media.

This view is also emphasised by Ioannidis and Chatzis (2000[61]): 'The most rigorous

approach to quantitative characterization of the interior geometry of a porous medium

is to partition the pore space into discrete and well-defined collection of individual

pores. ' Partitioning PS can be done either based on the MA of the PS or by directly

partitioning the PS from the original 3D binary images of the porous medium. The

former is called the medial-axis-based approach and the latter is called the non-medial-

axis-based approach in this thesis. In the following, some important methods for

characterizing the PS, which are not related to identifying individual pore-bodies or

pore-throats, will be selectively reviewed. Much effort will be given to the investigation

of the methodologies that are involved in the partition of the PS. As a summary, I also

review many important pore geometrical and topological properties that have already

been quantified by other authors.

2.4.1 Intuitive Definitions and Geometry Measurement

Intuitively, in a fluid-bearing rock, pore-bodies are the larger openings where

most of the fluid is stored. To a large extent, pore-bodies determine the rock porosity.

Pore throats are the narrow gateways that connect the pore bodies and determine the

rock permeability. Silin et al. (2004[154] and 2006[157]) expressed this view for

capturing the natural features of pore microstructure. The algorithm proposed by Silin et

al. consists of three steps: (i) calculating the radius of the maximal ball centred at each

object voxel; (ii) removing the included balls to obtain the skeleton; (iii) distinguishing

voxels into either master or slave voxels. As a direct result, a stick-and-ball

representation of the PS can be developed to facilitate characterization of the PS. This
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procedure can successfully measure many important microscopic morphological

properties such as pore/throat size and coordination number.

Delerue et al (l999a[39] and 2002[38]) gave a definition of the pore where an

individual pore is thought of as being a portion of the PS surrounded by the solid matrix

with a homogeneous local aperture (in this definition no throats are involved). The local

aperture A(P) associated with a point p in the PS 0 is defined as the diameter d of the

maximal ball BCc, d) included in the PS and including the point p: A(P) = max{d : p e

B(c, d) and B(c, d) cO}, see Figure 2-15. The pore size is a mean of local apertures

calculated at each point in the PS. Therefore the pore size distribution is

straightforwardly obtained by computing the histogram of the local aperture over the

whole image.

(a) (b)

Figure 2-15: The concept of local aperture: (a) The local aperture A(P) of p is defined as

the diameter d (i.e. the length of the segment) of the maximal disk B(c, d) (solid circle)

centred at C including in the PS O. Note that the dotted circle centred at Co contains p but

not the maximal, which means that the diameter of this disk cannot be defined as A(P);

(b) an illustration of local aperture map with different grey level representing different

local aperture value.

From Vogel's point of view, the morphology of the PS can be interpreted in terms

of processes of pore structure formation and hence, these processes may be directly

related to flow and transport in the rock or soil. To simulate this process, morphological

operations were used to measure pore size rather than identifying individual pores. In

Figure 2-16, for a 3D binary image (Figure 2-16(a)) of a porous medium on a

rectangular grid, Vogel and Roth (2001 [185]) introduced a robust method to measure

the pore-size distribution applying a set of morphological openings. To determine the

cumulative pore-size distribution of a porous medium in the form of the proportion of

pores larger than a given diameter, a senes of discrete spheres of radius r is
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approximated which is used as different structuring elements. The opening, i.e. erosion

followed by dilation, removes all pores smaller than r, the volume of pores larger than

the diameter (2rt 1) can be straightforwardly calculated based on this kind of PS

partitioning. Using our dataset and my implementation of Vogel's algorithm, an

example of pore structure and the pore-size distribution are demonstrated in Figure 2-16

. Note that in their approaches no attempt is made to partition the PS into individual

pores. Instead, they directly determine the cumulative pore size distribution using

morphological opening with structuring elements of increasing radii on the original

binary image.
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Figure 2-16: Determination of pore-size distribution based on morphological

operations. (a) The original 3D binary image of a sandstone sample of 1.4049 mnr': the

porosity is 20.2%; the size of a voxel is 5.6 urn; (b) The PS of pore diameter ~ 39.2

urn; (c) The pore structure of pore diameters ~ 61.6 urn; (d) Cumulative morphological

pore-size distribution of the sample shown in (a).
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Vogel (2000[ 183]) also noticed that combining the porosity and the pore-size

distribution, the connectivity of the PS governs the transport of water, solutes and gases.

The Euler-Poincare characteristic (EPe) can be interpreted as a measure of connectivity,

increasing positive value indicates decreasing connectivity of the pore structure, and

decreasing negative values indicate increasing connectivity. Vogel and Kretzschmar

(1996[ 184]) proposed an unbiased estimation of the EPe based on the dissector (i.e. a

pair of parallel sections). Furthermore, the concept of connectivity function was

introduced to overcome the shortcomings of the EPe (Vogel, 1997b[ 182]). The specific

Euler number is defined as the EPe divided by the volume of the rock image, and the

connectivity functionf(a') is then calculated by the specific Euler number of the pores of

diameter larger than d (see Figure 2-17). In contrast to point-to-point correlations,

which are most frequently used to introduce topological aspects into models of

heterogeneous structure, the connectivity function provides information on the

connectivity of the entire region of the model. Combining topological and geometrical

information together, Vogel (2000[ 183]) proposed a method to generate a network

model adaptable to the measured connectivity function, which is dependent on pore

radius. In Figure 2-17, an example of connectivity function is given based on our data.
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Figure 2-17: A sandstone sample of volume 1.4049 mm", the connectivity function is

defined as the Euler number of the pore system with pores larger than the given pore

diameter. It seems that the connectivity of the PS mainly depends on these pores of

diameter between 28 and 50 11m.
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In this category, no rigorous pore definitions are given because there is no clear

boundary where a pore body ends and a pore throat begins. Apparently individual pores

cannot be found using these kinds of methods, which means that more complex

measures excluding pore size distribution, such as pore neck area and coordination

number, cannot be obtained without further analysis. Another drawback of the above

approach is that there is not a defined relationship between the topology of the PS

network and that of the original PS because there is no guarantee that pore bodies will

be simply connected.

2.4.2 Rigorous Definitions and Non-Medial-Axis-based Approaches

According to Dullien (1992[44 D, the PS can be partitioned into two kinds of

constituent elements - pore bodies and pore throats. The pore throats (or pore necks) are

defined as volumeless constrictions between two pore bodies. When two non-miscible

fluids are at equilibrium in the PS, the capillary forces at their interface can be modelled

using the Laplace Law, which relates the capillary pressure to the curvature radius of

the meniscus exhibited at the local boundary between the two fluids. The constrictions

are then defined as the interfaces of minimal curvature radius, which is inversely

proportional to the pressure required for an interface between two fluids to pass through

the constriction.

Measuring the curvature radius of a memscus IS difficult because of the

irregularity of the meniscus. So a normal cross section (CS) can be used as an

approximate entity for the meniscus, and the hydraulic radius is taken to be an

equivalent measure of curvature radius. The hydraulic radius, RH, is defined as RH =

AlP, where A is the area of a normal CS and P is its perimeter. Therefore, a pore body

can be defined as the region surrounded by solid phase and planes where the hydraulic

radius of the PS exhibits local minima (Dullien, 1992[44D.
The above definition has been applied to a series of sections of rock images on the

determination of pore characteristics by Kwiecien et a1. (1990[79]), and Zhao et a1.

(l994[ 193D. Zhao et a1. have used this definition and searched for pore necks directly

by inspecting multiple slices, at up to 13 orientations (see Figure 2-18) within an image,

for minima in the projection of the PS onto the scanning plane. As Zhao et al.

discussed, many pore necks will be missed when using this neck finding approach,
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while other regions can be mislabelled as necks. The latter can be improved using the

nine-orientation scanning scheme introduced by Zhao et al. (1994[193]). However, this

approach must always be a compromise relative to the complete unambiguous

partitioning of the volume. Meanwhile, Lymberopoulos and Payatakes (1992[94])

presented an algorithm for identifying pore "chambers" and "throats". The throat has a

volume and would be better represented as small capillaries rather than by defining pore

necks as volumeless constrictions.
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Figure 2-18: The thirteen scanning orientations which yield planar serial sections. (a)-

(c) The three orthogonal orientations including the directions (a) of physical serial

sectioning; (d)-(g) The four eomer-to-eomer orientations; (h)-(m) The six diagonal

orientations.

Motivated by the above observations, Baldwin and co-workers (1996[13])

developed a morphological thinning algorithm to obtain a fully thinned image and to

partition the PS into corresponding pores and throats. For a 3D binary image, the

thinning proceeds in an iterative fashion; for each pass through the border voxels are

identified and is eroded. This process continues until there are no more voxels

remaining. During the thinning process, each voxel is labelled in order to relate it to the

iteration at which this voxel is eroded. Thus a new thinned image is created after the

morphological erosion is finished, which provides a natural starting point for identifying

regions which are to become pores. Pores are identified as local maxima in intensity in

the thinned image in which two voxels have a common comer are considered as being
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connected (i.e. 26-connected). The algorithm proceeds by identifying local maxima at

each level found in the thinned image. These local maxima are then grown to, form

pores by finding all connected voxels at levels that are the same or lower than the

thinning level at which the local maximum was identified. This process is performed

iteratively until all voxels, which were originally identified as belonging to the PS, are

assigned to a pore. The thinning stage of the algorithm naturally partitions the PS into

individual pores; necks are regions which thin at an earlier stage to the pores to which

they are joined. For convenience, and to facilitate further analysis, a new image is

produced where each pore is identified by a sequence number; all voxels belonging to a

given pore are assigned the same integer value. At this stage, many statistics can then be

readily determined such as pore-size distribution, coordination number distributions,

and surface-to-volume ratios. However this approach leads to misidentification or less

accurate partitioning of the PS because the thinning process is based on a segmentation

algorithm.

2.4.3 Medial-Axis-based Approaches

The MA serves as a good basis for the characterisation of the PS. The MA of an

object provides a one-dimensional representation ofthe object which is easier to analyse

and has a strict geometrical relationship to the object's boundary and preserves

important geometric properties of the object. Thus many geometric properties of the

object can be taken directly from the object's skeleton, such as pore throat and pore

body size distributions, pore body to pore throat size aspect ratios, coordination number,

and spatial correlation with the porous system. Additionally, the MA can be utilized as

an embedded search structure to find specific sites in the object or to construct a

network structure. Many articles have appeared in recent years consistent with this view

(Lindquist and Venkatarangan, 1999[88]). Existing approaches for partitioning the PS

based on the MA can be broadly classified into two types, throat finding (e.g. Lindquist

et al., 1999[88] and 2000[89]; Shin, 2002[159] and 2005[ 158]; Liang et al., 2000a[84])

and pore detecting (e.g. AI-Raoush et al., 2003[6], 2005[5] and 2006[4]; Sheppard at el.,

2005[153]). Algorithms of the latter type locate pore bodies first and throats secondly.

Throat finding algorithms consist of two steps, locating the throat position on the MA

and constructing the throat surface.

50



Chapter 2 : Literature Review

Throat Finding Algorithms: From the flow point of view, a throat surface is a

CS where maximum resistance is locally imposed on the fluid flowing through a pore

channel.

Having improved Lee and Kashyap's (1994[81]) algorithm, Lindquist et al.

(1999[88] and 2000[89]) successfully extract their desired medial axes from 3D images

of consolidated systems. Venkatarangan (2000[177]) presented a dilation-based

algorithm to construct a throat surface along a given MA path. During the dilation, the

key point is for each voxel on the MA to obtain a closed loop of grain voxels, which is

formed by detecting a change in the local Euler characteristic of the set of contacted

grain voxels, and then constructing a triangulated surface (see Figure 2-19) to the closed

loop by joining the centre or the face points of the MA voxel to the respective centres of

the closed loop voxels. The area of the constructed triangular surfaces is then

approximated by summing all respective triangle areas. The triangular surface having

minimal area among all voxels on a MA path is defined as the throat surface of the path.

A similar algorithm is also given by Shin (2002[ 159]), but Lindquist et a1.'s algorithms

do not suppose the throat surface as being planar. The throat surfaces are taken as

triangulated interfaces; the set of voxels through which each triangulated throat surface

pass defines a throat region.

Figure 2-19: The construction of triangular throat surface.

Having located the throats, the PS can be partitioned into nodal pores separated by

throat surfaces. This partitioning of the PS does not include an attempt to define

channels connecting pores - rather two joining pores connect directly at the mutual

throat surface. At this stage, the size of a nodal pore, defined as its volume, can be

computed by considering partial volumes related to the corresponding throat surfaces.
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To obtain the coordination number, Lindquist et al. (2000[89]) studied the

relationship between the MA (percolating backbone) and node-channel structure in rock

images. They found that there is not a one-to-one correspondence between them, and

then they introduced a merge condition based on the shortest distance from the MA

voxels to the solid phase. After merging nodal pores under this condition, the

remaining paths and vertices of their modified MA then have a one-to-one

correspondence with the pore channels and nodal pores of the image. Hence the

coordination number distribution of the PS can be directly measured in terms of the

coordination number of the vertices on the modified medial axis. Additionally, if

removing all skeleton voxels which are located at multi-grain vertices (i.e. junctions on

the medial axis), the remaining voxels on the MA can produce distinctive pore channels.

Therefore the distance along the central portion of the pore channel connecting two

nodal pores is defined as the length of the pore channel, which leads to the generation of

the length distributions of the paths in the medial axis. An effective radius for a pore can

also be computed using the sphere of equivalent volume. In a similar manner, three

principal diameters (i.e. x, y and z) and an effective radius (from the circle of equivalent

area) are produced for each planar or non-planar throat surface. Distributions of the

principal diameters and the effective radius are produced for the pores and throats. They

concluded that the throat surface area and the pore volume could be characterised as the

log-normal-like distribution over an 18% porosity sample. Cross correlations between

each pair of variables may also be of interest. Currently they produce cross correlation

plots for a coordination number and pore volume and effective throat and pore radii.

Similar to Lindquist et al.'s approach (Lindquist et al., 1999[88] and 2000[89]),

Liang et al. (2000a[84D developed a PS partitioning method based on the

skeletonization of Ma and Sonka (1996[96]) and their concept of A-adjacency. Before

partitioning the PS, they classify each skeleton voxel as either a link point if it has

exactly two A-adjacent neighbours, or a nodal point if it has three or more A-adjacent

neighbours. And then all nodal points are clustered into distinct vertices while the

remaining link points are categorised as distinct pore paths. Using A-adjacency rather

than the commonly used 26(or 6)-adjacency leads to the identification of all intuitively

correct vertices, which cannot be classified correctly via common adjacencies. The

geometry of these pore paths are rigorously analysed by determining the cross sectional

area and perimeter of their intersections with planes normal at each point of the path.
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Using analytical geometry, they defined the tangent line at a MA point as the direction

of the plane (i.e. cross section) normal at this point. And thus the area and the perimeter

of each CS are readily determined. Local or absolute minima along each individual pore

path (see Figure 2-20) can be further found by comparing the hydraulic radius (area or

perimeter) of consecutive CSs.

Figure 2-20: Local or absolute minima along a pore path. Hydraulic radius of cross

sections reach to local minima at three positions but only the middle one reach absolute

minima.

To partition the PS, Liang et a!. (2000a[84]) argued that partitioning the PS into

nodal pores separated by throat cross sectional surface would be better in the sense of

the utility of the resulting pore and neck size distributions in network simulations

(Ioannidis et al., 1999[62]). In other words, they identity pore necks with absolute

minima rather than local minima in the hydraulic radius of individual pore paths. Pores

are defined as the pore portions bounded by solid and neck voxels, which means the

partition needs clustering pore voxels excluding neck voxels into individual pores.

Unfortunately clustering according to the 26-adjacency rule would fail to assign the

pore voxels on either side of the neck to different clusters. They then introduce a three-

step approach to overcome this difficulty. First, the original image is clustered using a

6-adjacency rule, and all clusters connected with the MA are given the same label as the

MA points. In a subsequent step, skeleton-6-connected clusters are partitioned into

necks. Finally, all pore voxels clusters that are not 6-connected with the skeleton are

reclustered using a 26-adjacency rule.

Once pores are correctly identified, their volume can be calculated by directly

counting the number of voxels comprising each pore cluster. The coordination number

of a pore can be easily determined by the number of pore throats connecting to the pore.

It is also possible at this stage to examine a variety of possible correlations between

pore and neck sizes, as well as the relationship between pore surface area and pore

volume.
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Pore detecting algorithms: To characterize the morphological structure of the PS,

Sheppard at el. (2005[153]) used a skeletonization based on Pudeny's algorithm

(1998[132]) to extract the MA of the PS. Rather than directly partitioning the PS, they

first constructed a starting network by dividing the MA into clusters of voxels that are

26-adjacent to more than two other MA voxels, and chains of voxels that connect just

two other MA voxels. Then a merging algorithm is developed with special

consideration of two important issues: topology preservation and "snowballing" (see

Figure 2-21). The direct result of the merging algorithm is a network of pore voxels and

throat voxels on the medial axis.

Having identified all the pore bodies and throats in the medial axis, it remains to

determine the geometry of these components, which means that one must partition the

PS. Their algorithm first partitions the PS into pore bodies alone and then takes volume

from the pore bodies to form pore throats. First, the PS is partitioned into pore bodies: a

throat is defined as the surface where the regions surrounding two adjacent pores touch.

This partitioning is achieved using the watershed transformation applied to the

Euclidean distance map, in which the seed (starting) regions are determined by the MA

voxels associated with each pore body. Then each of these pore bodies is taken and

some of its volume is allocated to the pore throats that connect to it.

"I

Figure 2-21: Cross sections through a geometry that will be mishandled by local pore

merging rules. This whole object, being composed of overlapping maximal spheres, will

be merged into a single pore.

With this partition of the PS, they computed many important quantities, such as

the distribution of throat size, pore size, coordination number, pore length, correlations

(e.g. between throat area and average the volumes of the two nodal pores, coordination
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and pore volume, effective throat radius and the average effective radius of the two

pores each throat separates etc.),

Once the morphological thinning MA is generated for the PS of a porous medium

image, local maxima voxels on the MA are identified and are then grown to form pores

by finding all connected voxels at the same or lower levels (Baldwin et al., 1996[13]).

Necks are regions that are thinned at an earlier state to the pores they join. Over the

whole PS, the pore size distribution, pore volume and throat area can be easily

calculated.

With the MA of the PS extracted using Lindquist and Lee's (1996[87]) burning

algorithm, a nodal point is then defined as a junction of three or more paths on the MA

(AI-Raoush et al., 2003[6]). The centre of a nodal pore is chosen randomly among all

connected nodal points, and the radius of the maximal sphere located at the nodal pore

centre is considered as the radius of the nodal pore. A dilation algorithm is performed to

find all spheres for all nodal pore centres in the PS, and a merging criterion is adopted

to merge inscribed pore bodies if they overlap. Similarly, an inscribed throat radius can

be calculated, in which the MA voxel with the minimum bum number along the path

connecting two nodal pores is defined as the centre of the inscribed throat sphere. The

smallest radius of inscribed spheres along a path is considered as the radius of the path

(throat).
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In this chapter, a set of image processing techniques are presented by extending,

improving existing approaches or developing new algorithms, aiming to provide a suite

of robust, accurate and efficient image analysis tools for pore structure analysis. The

tool (i.e. the pore analysis tools, PAT for short) mainly include distance transformation

(Section 3.2), component labelling (Section 3.3), Euler number computing (Section 3.4)

and medial axis transformation (Section 3.5). The commonly used definitions and

notations through this thesis are presented in Section 3.1 in order to clarify basic

topological concepts, which are closely associated with 3D binary images.

3.1 Basic Definitions and Notations

According to Kong and Rosenfeld (1989[76]), an n-dimensional binary image P

can be defined as a quadruple

P == (0/, a, J3, (3), (3.1)

where 'Vis a finite subset of the rectilinear grid z: called the image space of P, (a, J3) is
a pair of adjacencies and illc 'Vis the set of object points. In particular, an image Pcan

simply be represented as a pair (0/, ill) if no adjacencies need to be considered.

A point p in 'Vc r: is uniquely defined by a set of n integers (Cl p, c2P ••• cnp),

where Cl p, c2P ••• cnp represent the Cartesian coordinates of a point p in Zn. But in 2D or

3D discrete space it is more convenient to denote a point as (Px, Py) or (Px, Py, pz)

respectively, which is often called a pixel in 2D and a voxel in 3D. For digital image

processing, a finite rectangular lattice o/is commonly used, that is 0/= {(clp, c2p ••• cnp):

o ~ Jp ~ Lj and Lj E Z+, j = 1,2 ... n}. For example, in 3D 'Vis a set of all cubic grid

points in a finite rectangular parallelepiped. Thus in 0/ all points can be classified as

either interiors or border points.
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Definition 3.1 (Interior and border points): For an image P= (0/, ill), a pointp E 'V'

is said to be an interior point of P if ° < Jp < t), for all j E {I, 2 ... n}, otherwise p is

called a border point of P.

. Generally, a digital image P can be considered as a function P: 'V'c Zn ~ r£ C Zd

(d = 1, 2 ... ). In this dissertation, grey level images are considered occasionally, for

which r£ = {a, 1,2 ... 255} C z'. In particular binary images are often used, for which

'V'is mapped into r£ = {a, I}. In other words, for each point p E 'V'there are only two

possible integers, 0 or 1, which can be assigned to p, denoted by ([(P).

• ql -6- fJi - - - -e q3
(a) Cb)

, ,
0--- @ -----Q
,q4 , P 'f15

The top layer

...t':*" 7.~-.. ,~ ..,
~ A "'

The middle layer

The bottom lay

(d)

Figure 3-1: The direct neighbourhoods Mp) of a point p. (a) and (b) show different

representations of the 20 direct (3x3) neighbourhoods, where Mp) = {ql, q2, q3, qs, p,

q5, qs, q7, q8}; Cc)and (d) show two different representations of the 3D direct C3x3x3)

neighbourhood, where JV{p) = {ql, qi ... qvs, p, q14, q15 ... q26}.

In a binary image of interest, a point is called a black (foreground or object) point

if it is assigned a value of 1. Otherwise, it is called a white (background or non-object)

point. According to Definition 3.1, the set of all black points ill c 'V'can be represented

as ill = {P E 'V': cJ{p) = I} and the set of all white points as 1A,ill= {P E 'V': ([{P) == O}.
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Commonly a discrete object can be represented as a lattice of points or as a lattice

of squares (in 2D) or cubes (in 3D). Each point in the lattice has a direct neighbourhood,

which is also called a 3x3 or a 3x3x3 neighbourhood (see Figure 3-1) in 2D or 3D

respectively.

Figure 3-1 shows two different representations of the direct neighbourhoods of a

pixel and a voxel p. For a finite rectangular lattice 'tithe direct neighbourhood of a point

p E 'tIin an image (jJ= {V, cB} is defined as

:N(p) = {q E 'tI: max (leIp - eIq I ... Ie"p- e"q I) ~ I}. (3.2)

This means that, for example, in 3D for an interior voxel p of P the number of

elements in :N(p) is equal to 27, but for a border point this number is less than 27.

Furthermore, we denote the set of points of :Mp) excluding p, i.e. :Mp)\{P}, as JI(p),

and each point in JI(p) is called an adjacent point of p. Adjacency is defined more

specifically in the following using the concept of a-neighbourhood introduced in the

following.

Definition 3.2 (Adjacency): In 20 two distinct points p and q are said to be 8-

adjacent if q E JVs(P) (equivalently p E JVs(q» and 4-adjacent if q E 'J4(P). In 3D two

distinct points p and q are said to be 26-adjacent if q E !Ni6(P) (i.e. {q E Z3: Lxo(P, q) ~

I}), 6-adjacent if q E :J./6(P) (Le. {q E Z3: Ll(P, q) ~ I}) and IS-adjacent if q E :Ni8(P)

(i.e. {q E Z3: Ll(P, q) ~ 2} (1 !Ni6(P».

In Figure 3-1(a) and (b), each grey pixel of :N(p) is 4- and 8-adjacent to p, but

each black pixel of :N(p) is only 8-adjacent to p. In Figure 3-1(c) each white voxel of

:N(p) is 6-, 18- and 26-adjacent to p, each grey voxel of JI(p) is lS- and 26-adjacent to

p, and each black voxel of :N(p) is only 26-adjacent to p. In the cubic model shown in

Figure 3-1(d), two distinct voxels are 6-, lS- or 26-adjacent if they share at least one

face, one edge, or one vertex, respectively.

For any point p in Zn, let Jfa*(p) denote the set of all points in z: that are a-

adjacent to p excluding p and let Jfa(P), the a-neighbourhood of p be defined as Jfa(P) =

7V'a. *(P) U {P}, where a is equal to the number of elements of 7V'a. *(P) (a = 4, 8 in 2D or a

= 6, 18, 26 in 3D). For example, the 4-neighbourhood 'J4(P) of the central pixel p,
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shown in Figure 3-I(a) and (b), consists of 4 grey pixels qI. qs, qs and q7 and the central

pixel p. The 26-neighbourhood :Ni6(P) of the central voxel p, shown in Figure 3-1(c),

contains 26 voxels (in white, grey and black) and the central voxel p. Consequently, we

have :Ni6(P) = JV(p) and :Ni6·(P) = :N(p) in 3D, while :Ns(P) = JV(p) and :Ns.(p) = :N(p) in

2D.

According to Definition 3.2, we classify all voxels in :N (P) as three different

neighbours of P based on their adjacencies with p.

(I) A 6-neighbour is 6-adjacent to p;

(II) A I8-neighbour is I8-adjacent but not 6-adjacent to P;

(III) A 26-neighbour is 26-adjacent but not I8-adjacent to p.

Similarly, in 2D two kinds of neighbours, 4- and 8-neighbours, can be identified

according to the 4- and 8-adjacency.

The concept of a-neighbour is illustrated by the colours of the points in Figure 3-1.

Each white voxel in Figure 3-1(c) is a 6-neighbour of P, each grey voxel is an 18-

neighbour of p, and each black voxel is a 26-neighbour of p. The set of all a-neighbours

of p is called the a-neighbour-set of p, denoted by :ffaJp). For example, in Figure 3-1(c),

the 18-neighbour-set %g(P) consists of all grey voxels (i.e. qi, qs, qs. qg, qlO, q12, qis, q17,

The relation between the direct neighbourhood :N(p), the a-neighbourhood 'No.(P)

and the a-neighbour-set Nn(P), a = 6, 18, 26, of a voxel pis:

•'}fa(P)=1Va (P)u {p},a=6, 18,26;

:Ni6·(P) = 1ii6(P) U %g(P) U 116(P);. - -.%8 (P) = .%8(P) U !N6(P);. -!N6 (P) = !N6(P). (3.3)

Applying the definition of adjacency, connectedness of any two points can be

defined. Two points p and q are said to be a-connected if there exists a sequence {PI,

P2 ... Pm} between p and q such that Pi is a-adjacent to Pi+ I for all i =I, 2 ... m-I and PI

= p, Pm = q. Such a sequence is called a a-path with end points p and q. A path with
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the property of P» = pm is called a closed path. A closed path contains no end points. A

a-path is called a a-curve or simply a curve if it does not intersect (Figure 3-2(a» or

touch (Figure 3-2(b» itself, except at end points. Obviously, any point in a curve has

exactly either one or two a-adjacent points. Some examples with regard to these

concepts can be found in Figure 3-2.

Definition 3.3 (a-component): Let S be a subset of z; then S is said to be a a-

component if any two points in S are a-connected.

(a)

t
s

(c)

(b)

(d) (e)

Figure 3-2: Examples of paths, curves and components. (a) A path {I, 2 ... 9, 2, lO}

intersect itself; (b) a path {1, 2 ... lO} touches itself; (c) the set of grey pixels can be

organised as a closed 8-curve, but not as a 4-curve; (d) the set of grey voxels is a 26-

path, but not a 26-curve because voxel p has three 26-adjacent grey voxels. The set of

grey pixels in (c) is an 8-component but not a 4-component, and the set of grey pixels in

(d) is a 26-component but not an 18- or a 6-component. Note that in (a) - (d) all white

(background) voxels are invisible for clarity. In (e) an example is shown of 4 26-

components in 3D.

For instance, the set of grey pixels in Figure 3-2(c) is an 8-component but not a 4-

component, and the set of grey voxels in Figure 3-2(d) is a 26-component, but it is

neither an I8-component nor a 6-component.

For a binary image P = (0/, a, p, CJ3), the obj ect set CJ3and background set 'T/\CJ3 must

satisfies different adjacencies (a, P) according to the requirement of the digital curve
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and surface theorem. This theorem states that a simple closed curve or surface must

separate the 2D or 3D space into two disconnected parts, i.e. the interior and exterior.

In Figure 3-2(c), let (}3 be the set of grey pixels and its complement 0/ \(}3 be the set of

white pixels. Since only 4- and 8-adjacencies are available in 2D, the only two

adjacency pairs are (4, 8) and (8, 4) for (}3 and 0/\(}3. For instance, points s and t, both

belonging to o/\(}3, are 8-adjacent, so sand t cannot be separated by the 8-curve. Hence,

o/\tB must have 4-adjacency in order to be separated by a black 8-curve in tB. Similar to

the consideration in 2D, in 3D popular choices for (a, J3) are four pairs of adjacencies:

(6, 26), (6, 18), (26, 6), and (18, 6). Throughout this thesis, we use (26, 6), i.e. 26-

adjacency for black points «(}3) and 6-adjacency for white points (o/\tB), because 26-

adjacency for object voxels theoretically leads to smoother skeletons (Kong and

Rosenfeld, 1989[76]).

3.2 Distance Transformations

Distance transformation (DT) converts a binary image into another grey level

image, called a distance map (DM) of the original image, where the value of each object

point corresponds to its shortest distance to all background points, 0 is simply assigned

to background points. DMs are widely used in image processing and analysis. In this

thesis, DMs will be mainly used to control the thinning process in the skeletonisation

and to determine pore size (sphere equivalent or cross sectional sizes) in pore structure

analysis.

Clearly such a simple and brute-force algorithm can be used for computation of

the DM: for each object voxel, the distances to all background voxels are computed and

the smallest one is stored. Despite its apparent simplicity, however, this approach is

impractical, as it leads to prohibitively long computational times. Therefore, a major

concern associated with DTs is the algorithm efficiency. One solution is to use a

discrete distance metric (of integer values in discrete space), such as the city-block,

chessboard or chamfer distance metric, which is easy to compute, to provide an

approximation of the Euclidean distance.

In pore structure analysis, the exact Euclidean distance itself, rather than an

approximation, is crucial for accurate measurement of the pore size in terms of sphere

equivalent or cross sectional sizes, because the Euclidean distance is invariant under
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rotation about any axis. Many authors have developed DT algorithms, such as vector

distance transforms, fast marching methods and level set methods. A comprehensive

review ofDT can be found in Cuisenaire's PhD thesis (1999[36]) or lones et al's article

(2006[68]). According to Shih and Wu (2004a[154]), most techniques are either

inefficient or complex to implement and understand. This has motivated me to extend

and improve Shih and Wu's approach, aiming to handle large 3D images (e.g. volume

of 10243 voxels) to facilitate the pore analysis and network construction.

The concept of Euclidean distance between two points implies that there must be

a straight-line segment, linking these two points, in the Euclidean space (E3) associated

with a Euclidean distance value. In some applications, however, the straight-line

segment between two voxels is required to be completely located within a constraint

domain (a subset of E3
) rather than within the whole Euclidean space E3. This

requirement leads to the introduction of geodesic distance (GD). For my application,

this kind of distance will be employed to partition the PS or to determine individual

spatial cross sections. In the following sections, the GD will be discussed, which is an

extended squared Euclidean distance.

3.2.1 Distance Metrics

In n-dimensional Euclidean space En, the function d mapping from En X En to Z+

(the set of nonnegative integers) is called a distance metric, if it satisfies the following

distance metric criteria for any three points p, q and r E En:

(a) Positive: d(p, q) ~ 0,

(b) Definite: d(p, q) = 0 <=>p = q,

(c) Symmetric: d(p, q) = d(q,p),

(d) Triangular inequality: d(p, r) ~ d(p, q) + d(q, r).

Let the n-dimensional vector (clp, cZp ••• ClIp) represent the coordinates of a point p

in En, or the vectors (Px, py) and (Px, py, pz) in 2D and 3D, respectively. It is clear that

the following function 4., defined as

(3.4)
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is a distance metric for all nonnegative integers k.

Unlike the city-block (i.e. Ldp, q) = IPI- qd +...+ IPd - qdl) and chessboard

distances (i.e. Loo(P, q) = max(1P1 - qd ... IPd - qdl)), in the discrete space Z", the

Euclidean distance dE (i.e. L2) is not integer-valued because it involves the square root

operation. Consequently, in many applications, rather than using the ED, the SED is

used. The SED between p and q is then defined as

(3.5)

Unfortunately, dSEis not a distance metric because the triangular inequality is not

satisfied, which limits the application of the SED. Based on the definition of the £.., the

direct neighbourhood, the a-neighbourhood and the a-neighbour-set of a voxel with a =

6, 18,26 in Equation (3.2) and (3.3) can be redefined as follows:

:N6(P) ={qEZ3: LI(P, q) ~ I}; :N6(P) = {qEZ3: L1(p, q) = I},

1Vi6(P) ={qEZ3
: Loo(p, q) ~ I}; %6(P) = {qEZ3

: Loo(p, q) = I},

.JIiS(P)={qEZ3: dSE(P, q) s 2}n1Vi6(P);

:Mg(P)={qEZ3: dSE(P, q) = 2}n1Vi6(P).

3.2.2 Geodesic and Chamfer Distances

The definition of dE(P, q) is related to a segment linkingp and q, which is called a

path and is shown in Figure 3-3. The length of the segment equals to dEep, q). If the

straight segment (path) is required to be located totally within a constraint domain 'M c

Z", however, a single straight segment path between two points may not exist. In Figure

3-3, the dotted line is the path between p and q, but it is not entirely located within the

constraint domain 'M. (the bright grey region). If a path is allowed to consist of more

than one straight-line segment, a so-called geodesic distance (GD) can be introduced. In

Figure 3-3, between p and q there are two such paths, each of them contains a few

straight-line segments, which totally are located within 'M. In general, for any two points

p and q in 'M, we define the length of the shortest path which is totally located within 'M
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as geodesic distance betweenp and q, denoted by dG(p, q). Let dG(P, q) = 00 ifthere does

not exist any path between p and q that it is entirely located within 'M..

Figure 3-3: Geodesic distance between p and q, dG(p, q), with respect to the constraint

domain 'M. (the grey region) is defined as the length of the grey solid path. The length of

the dotted line corresponds to the Euclidean distance between p and q; dG(p, r) = 00

because no paths between p and r, with regard to the constraint domain 'Jvt, exist.

Let 'Jvtc Enbe a constraint domain, then P = {PI, P2 ... Pn} is a path in 'Jvt between

p (PI) and q (Pn), such that each pair of points Pi and pi+1 is linked by a straight-line

segment, which is totally located within 'Jvt, for all i = 1, 2 ... n-l. The length of the

path P, L(P), is calculated as

(3.6)

where d is a distance metric. Thus the geodesic distance between p and q is defined as

the length of the shortest path from P to q (e.g. the grey path in Figure 3-3). If the

Euclidean distance is adopted in (3.6), the GO is often called the geodesic Euclidean

distance, denoted by dGE.

In Z2, a basic straight-line segment of a path is considered as the locus of one step

move along horizontal, vertical or diagonal directions in the unit square of a pixel

(Figure 3-4(a)). A horizontal move or a vertical move is called an a-move because both

of them have the same moving length, and the diagonal move is called ab-move.

Clearly, the length of a path, which consists of only a-moves (e.g. black path in Figure

3-4(b», is the City-block distance (i.e. Lt in (3.4)) if we assume that the length of a

move is 1. In general, let a be the length of an a-move, and b be the length of ab-move.

Given a path of moves between p and q in 2D, let 1G. and % represent the numbers of a-

moves and b-moves in the path, then the length of the path is defined as
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da.b(P, q) = 'Xaa + 'Khb. (3.7)

In Z3, there are three kinds of moves shown in Figure 3-4(c), called a-, b- and c-

move, respectively, as basic straight-line segments. Let a, band c be the lengths of a-

move, b-move and a c-move, respectively, and 'Xa, 'Kh and 1(s; represent the numbers of

a-moves, b-moves and c-moves of a path between p and q in a path. Therefore, the

length of the path is similarly defined as

da,b,c(P, q) = 'Xaa + 'Khb + 1(s;c. (3.8)

Obviously, two points p and q in discrete space may be connected by an infinite

number of paths. Among all these paths, there must exist a path with minimum length,

which is called a shortest path. The length of the shortest path is defined as the chamfer

distance (CD) between p and q, denoted by dct« b)(P, q) or dci« h. c)(p, q) in 2D or 3D,

respectively. The coefficients (a, b) or (a, b, c) in (3.7) or (3.8) are referred to as the

chamfer distance coefficients (CDC), or chamfer coefficients. For the two pixels p and q

shown in Figure 3-4(b), for example, we can obtain many different CDs between p and

q for different CDCs, such as,

• den .Ji )(p, q) = 3..fi ;

• dC(I.2)(P, q) = 6 ;

• dC(3.4)(P, q) = 12 .

According to the four conditions for a distance metric (see Section 3.2.1), the CD

may not be a distance metric if the CDC is not chosen properly. As stated by Marchand-

Mailler and Sharaiha (1999[ 101]), the 2D chamfer distance dC(a. b) is a distance metric if

0< a< b <2a. (3.9)

This condition ensures that the triangular inequality is met for dco; b). Moreover,

the conditions on a, b, and c for dqa. h. c) to be a distance metric is

3.100 < a < b < c, b < 2a and c < b + a. (3.10)
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Considering the constraint domain 'M in discrete space (see Figure 3-5) and

applying the chamfer distance in (3.6) as the distance metric (i.e. d(p, q)) defines the

geodesic chamfer distance.

b-move /
/

/
/

/
// a-move

i

q

V ,
V /

V"'~
p

(a) (b) (c)

Figure 3-4: Moves and paths in 2D/3D: (a) a-move and b-move in 2D; (b) three paths of

moves: the black consists of only a-moves and its length is 6a, the grey consists of only

b-moves and its length is 3b, and the dashed consists of both a- and b-moves and its

length is 2a + 3b; (c) a-, b- or c-move in Z3.

Figure 3-5: Constraint domain 'M (white) with 8-adjacency containing paths between p

and r and between p and q with shortest chamfer distance. The constraint domain does

not allow any paths between p and o.

3.2.3 The Relationship between Squared Euclidean and Chamfer Distances

Given two pixels p = (Px, py) and q = (qx, qy) in Z2, according to the definition of

the chamfer distance (see (3.6) and (3.7)), the numbers of a-moves and b-moves ('1\a, 'Kb)

of the shortest path between p and q is computed as

(3.11 )
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Without loss of generality, we assume that !Px - qxl =::; !py - qyl, Equation (3.11) is

easy to prove using Dijkstra's shortest path theorem (1959[42]). Therefore, the SED (!Px

- qi + !py - qi, see Equation (3.6» betweenp and q in 2D can be calculated as

dSE(P, q) = (1Gi +('1(;. + 'Kbi (3.12)

In Z3 the numbers of moves ('1(;., 'Kb, '1G:) of a shortest path between p and q can

similarly be computed as

'1G:=min {lPx-qxl, Ipy-qyl, IPz-qzl},

'Kb= min {lPx - qxl- 'Ks;, !py- qyl- 'Ks;}

+ min {lPx - qxl- '1G:, !Pz - qzl- '1G:}

+ min {lPy - qyl - '1G:, IPz - qzl - ,%,

'1(;.=max {lPx - qxl, Ipy - qyl, Ipz - qzl} - 'Kb- '1G:.

(3.13a)

(3.13b)

(3.13c)

Assuming that IPx - qxl ~ lPy - qyl ~ IPz - qzl, the 3D SED between p and q is given

by

(3.14)

The chamfer distance is widely used as an approximation of the Euclidean

distance to reduce the computational cost. A key issue in the study of the CD is to

establish particular values of the chamfer coefficients as optimal. The latter refers to the

criterion of minimizing the error resulting in the approximation of Euclidean distance

values by chamfer distance values. The approximating error may be very large if the

chamfer coefficients are not properly chosen. In contrast to other criteria (see, e.g.,

Verwer 1991[179]; Thiel and Montanvert, 1992[166]), Forchhammer's (1989[48])

topological inconsistencies or errors, as explained below, can be used to assess whether

the CD calculations lead to the correct ordering of the Euclidean distances. This

criterion is the basis of my geodesic Euclidean transformation algorithm (Algorithm

3.3).

Essentially, the ordering of the discrete distances does not match the ordering of

the Euclidean distances. Consider the following 2D example (see Figure 3-6). Let the

chamfer coefficients be a = 3 and b = 4, and consider the three pixels, 0 = (0, 0), s = (1,

2) and t = (3,3). According to Equation (3.11), we have dC(3.4)(O, s) = 3x3 + lx4 = 13,
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dSE(o, s) = 12 + 42= 17, dC(3,4)(0, t) = Ox3 + 3x4 = 12, dSE(o, t) = 32 + 32= 18, which

means that the ordering of dC) is different from the ordering of the dSE (or dE)'

To characterize optimal chamfer coefficients, Marchand-Mailler and Sharaiha

(l999[ 101]) considered the criterion of topological ordering rather than the criterion of

minimizing the error in the approximation of the Euclidean distance values (e.g. min(a, b)

I dEep, q) - dC(a, b)(P, q)1 for all pairs p and q).

Besides the incorrect ordering, another type of topological error concerns the

inconsistency of equality of the two distances. For example, in Figure 3-6, the chamfer

distance dC(3.40, p) between 0 and p is equal to the chamfer distance dC(3,4o, q)

between ° and q but the SED dSE(O, p) between ° and p is not equal to the SED dSE(O, q)

between ° and q. Marchand-Mailler and Sharaiha defined the optimal pair among all

valid pairs (3.9) of CD coefficients as the smallest integer pair that guarantees the

maximum achievable Euclidean distance limit. And they stated that for all pairs with a

:s 10, the pair (3, 4) is a local optimum, in the sense that it is the smallest pair of CD

coefficients that leads to a (local) maximum Euclidean distance limit.

dC(3,4)(0, p) = 2x3 + 6x4 =30, dSE(o, p) = 62+82 = 100;

dC(3,4)(0, q) = 6x3 + 3x4 =30, dSE(o, q) = 32+ 92= 90;

dC(3,4)(0, s) = 3x3 + 2x4 = 13, dSE(o, s) = 12+ 42= 17;

dC(3,4)(0, t) = Ox3 + 3x4 = 12, dSE(o, t) = 32 + 32= 18.

Figure 3-6: Examples illustrating two types of topological errors between the chamfer

and the Euclidean distances.

Borgefors (1984[24]) has extended the chamfer distance in any arbitrary

dimension and he proposed methods to optimize the approximation of the Euclidean

distance. More recently, in addition to Marchand-Mailler and Sharaiha's 2D result,

Borgefors (1996[25]) confirmed that the triple of 3D chamfer distance coefficients (3, 4,

5) minimizes the upper bound on the difference between the chamfer and the Euclidean

distances.

3.2.4 New Distance Transformation algorithms
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In the following, several algorithms are developed to obtain the SED and the CD

transformations. When additionally taking a constraint domain into account, I propose

to approximate the geodesic Euclidean distance by a geodesic chamfer distance with

CDC (3, 4, 5) in 3D.

A 3D binary image 1(V, cB) divides 'V into foreground (object) cB and background

'V\c:B by assigning 0 to each voxel p in 'V\cB and I to each voxel in cB, denoted by <F(p) =

o or 1, respectively. A DT is used to convert an image into another grey level image,

called the distance map (OM). DM has the same image space 'Vas its original image and

for each voxel q E V, the value DM(q) is assigned as the distance to the nearest

background voxel, i.e.

DM(q) = Min {d(q, r): r E 'V\cB } (3.15)

If the city-block (Le. £1 in (3.4)) or the chessboard distance i.e. Lx, in (3.4» is used

III (3.15), the corresponding DMs are easy to compute as these distances can be

recursively accumulated by considering only 6- and 26-neighbours, respectively.

Unfortunately, this strategy cannot be directly applied to the computation of the SED

map because the SED has no linear relation with the relative coordinates between two

voxels.

Obtaining the distance map by directly applying Equation (3.15) is unpractical, as

it is too time-consuming for 3D large images. Many SED algorithms have been

proposed, which use morphological operators, filters, several paths on rows and

columns, propagating vectors, or Voronoi diagrams. A comprehensive review of DT

algorithms can be found in Cuisenaire's PhD thesis (1999[36]). In comparison with

other techniques, the idea of propagating the relative coordinates between current point

and its closest background point, in two scans of the original image, leads to a

favourable algorithm that is less time-consuming than other schemes. Based on this idea,

Shih and Wu (2004a[154]) presented a two-scan algorithm that uses 3x3

neighbourhoods to compute the exact 2D SED and they developed another two-scan

algorithm to obtain the 3D SED map by decomposing the SED into different types of

neighbourhoods. Motivated by these approaches, I present a similar algorithm to

compute 2D and 3D SED maps which has three advantages, as it: (i) simplifies the
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comparison of SED values In a 3x3x3 'neighbourhood, (ii) avoids any complex

decomposition of the SED structure, (iii) is easy to implement and to understand.

The basic idea behind my algorithm is simple. When scanning a binary image, the

zeros for background voxels are directly assigned as the values in the resultant DM. For

a foreground voxel p, an extra scan needs to be applied within its 3x3x3 neighbourhood

(i.e. 7V(p)), to obtain its current distance to the background as the shortest squared

Euclidean distance is calculated using the distance of one of its 26-neighbours to the

background. Simultaneously, for each object voxel (or relative coordinates between

current object voxel and) the nearest background voxel is recorded during each scan.

The 3x3x3 neighbourhood 7V(p) of voxel p is partitioned into two subsets, JVt<p)

and :JI/b(p), which are used for a forward and a backward scan, respectively. As shown

Figure 3-1(c), the:N(p) is halved as 1Vi{P) = {qI, qi ... q13} and :JI/b(p) = { qI4, qI5 ... q26}.

For an image q:{ rv, (3), notice that JVt<p) and :JI/b(p) may have less than 13 elements ifp is

a border voxel of P(see Definition 3.1).

Let R(P) record the relative coordinates vector R(P) == (Rx, Ry, Rz) = (Px - Ox, py - Oy,

p« - oz) of voxel p with respect to the coordinates of the nearest background voxel 0 (see

Figure 3-7). The SED between p and 0 is defined via the distance between a voxel q in

7V(p) and 0 as

dSE(P, 0) = (Px - oxi + (Py - Oyi + (Pz - oz)2

= (q; - oxi + 2(Px - qx)(qx - ox) + (Px - qxi +
(qy _ Oy)2+ 2(Py _ qy)(qy _ Oy) + (py _ qy)2 +

(qz - ozi + 2(Pz - qz)(qz - oz) + (Pz - qz)2

3.16 = dSE(q, 0) + CJp, q) + 2V(p,q)xR(q)T. (3.16)

Where CJp, q) = (Px - qxi + (Py - qyi) + (Pz - qz)2 = dSE(P, q) denotes the SED

value between a voxel and one of its 26-neighbours. Clearly, CJp, q) is only related to

their relative positions and independent of the absolute coordinates of p or q. The values

ofCJp, q) are

ifq E N6(P)
if q E N1s(p)

if q E N26(P)

(3.17)
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V(p, q) = (p""- q«, Pv - qy, p« - qz) in (3.16) is a vector that represents the difference

between the coordinates of a voxel and one of its 26-neighbours, with

V(p, q) E {(1, 1, 1), (0, 1, 1) ... (-1, -1, -I)}. (3.18)

The real vector of V(p, q), that will be used in (3.16), is determined by the

sequence number in (3.18) from 1 to 26 corresponding to qt, q2 ... q26 (see Figure

3-1(c».

Figure 3-7: Relative coordinates vectors R(P) and R(q) to a background voxel o.

Algorithm 3.1: Two-way scan algorithm for squared Euclidean DT

Input: a 3D binary image P(o/, (13), where C13 is the set of foreground voxels in 0/

Output: the squared Euclidean distance map DM

1. Forward Scan (left-to-right, near-to-far, bottom-to-top)
Ifp E ill then { l/foreground voxels

DM(P) = 00

For each q E :Nt<.p) Ili.e.{qI, q2 ... q13} in Figure 3-1(c)

dist = DM(q) + CJ.p, q) + 2V(p, q) x R(ql
If dist < DM(P) then {

DM(P) = dist and
R(P) = R(q) + V(p, q)

}
} else { Ilbackground voxels

DM(P)= 0
R(P) = (0, 0, O)T

}
2. Backward Scan(, top-to-bottom.far-to-near, right-to-left.)
Ifp E C13 then { l/foreground voxels

For each q E 1Vb(P) IIi.e.{ q/4, qis ... q26} in Figure 3-I(c)
dist = DM(q) + CJ.p, q) + 2V(p, q) x R(q{
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if dist < DM(P) then {
DM(P) = dist and
R(P) =R(q) + V(p, q)

}

Algorithm 3.2: Two-way scan algorithm for the chamfer DT

Input: a 3D binary image P( 0/, <13), where <13 is the set of object voxels in P.

Output: the chamfer distance map DMfor chamfer distance coefficients (a, b, c).
Initialise:

1. Forward Scan (left-to-right, near-to-far, bottom-to-top):
If p E <B then {

DM(P) = CIJ

For each q E NC(P)
DM(P) = min (DM(P), DM(q) + CIa,b,c(P,q»

} else {
DM(P) = 0

}
2. Backward Scan(, top-to-bottom,Jar-to-near, right-to-left.y:

Ifp E <B then {

For each q E Nb(P)
DM(P) = min (DM(P), DM(q) + CIa,b,c(P,q»

}

In the following, some examples are given of applications of the two-way scan

SED and CD transformations.

Figure 3-8 shows a 2D SED map extracted by the two-way scan algorithm

(Algorithm 3.1). The five red pixels form the background of the original image and all

other pixels are the object. The SED of the background pixels are zeros, and the SED

values of the object pixels are positive integers, which are the shortest SED to the

background.

The colours of object pixels in Figure 3-8 are used to represent different nearest

background pixels. In other words, two object pixels have the same colour if they have
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the same nearest background pixel in the SED map. This feature can be used to cluster

objects in many applications, such as partitioning the PS.

In Figure 3-9, a duct-network model is used to demonstrate the 3D SED map. In

the original binary image, shown in the first picture of Figure 3-9, each duct has a

square shaped CS with a constant size of 13xl3 voxels. The 45968 object voxels are

coloured grey and the background voxels are transparent. The image space is {(x, y, z):

o s x s 39, 0 ~ y ~ 39, 0 ~ z s 39}. From left to right and top to bottom, starting at the

second picture, the pictures show object voxels with SED values larger than 1, 2, 8, 20,

39, 48, 59, 79, and 97 respectively in the resultant SED map, and the corresponding

numbers of object voxels are 37904,36784,27216,11696,3280, 1744, 969, 56, and 8,

respectively.

we 0 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30
o 0 1 4 8 18 25 34 25 18 13 10 9 10 13 18 25 34 45 58 13 90 109 130 153 118 205 234 265 298 333 310
1 1 2 5 10 17 26 29 20 13 8 5 4 5 8 13 20 29 40 53 68 85 104 125 148 113 200 229 260 293 328 365
2 4 5 8 13 20 28 26 11 10 5 2 1 2 5 10 17 26 37 50 65 82 101 122 145 110 197 226 257 290 325 362
3 9 10 13 18 25 34 25 16 9 4 1 0 1 4 9 16 25 36 49 64 81 100121 144 169 196 225 256 289 324 361
4 16 17 20 25 32 37 26 11 10 5 2 1 2 5 10 17 26 37 50 65 82 101 122 145110197226 257 290 325 362
5 25 26 21 34 41 40 29 20 13 8 5 4 5 8 13 20 29 40 53 68 85 104125 148 113 200 229 260 293 328 365
6 38 'S7 40 45 50 45 34 25 18 13 10 9 10 13 18 25 34 45 58 73 90 109 130 153 118 205 234 265 298 333 370
1 40 37 36 38 'S7 40 41 32 25 20 11 16 11 20 25 32 41 52 65 80 97 116137 160 185 212 241 272305340 377
8 29 26 25 25 21 28 34 41 34 29 26 25 26 29 34 41 50 61 74 89 106 125 146 169 194 221 250 281 314349386
9 20 17 16 18 17 20 25 32 41 40 37 36 37 40 45 52 61 72 85 100 111136 157 180 205 232 261 292325360 391
10 13 10 9 8 10 13 18 25 34 45 50 49 50 53 58 65 14 85 98 113130 149 110 193 218 245 214 305 338 373 400
11 8 5 .. 4 5 8 13 20 21 40 53 64 65 68 73 80 89 100 113 128 145 164 185 208 233 260 289 320 353 362 361
12 5 2 2 5 10 17 a 'S7 50 85 52 85 90 97 106 117 130 145 162 181 202 225 250 277 306 333 328 325 324
13 4 1 4 8 18 25 38 • 64 81 100 109 116 125 136 149 164 181 200221 244 269 296 305 298 293 290 289
14 5 2 1 5 10 17 a 'S7 50 85 82 101 122 137 146 157 110 185 202 221 242265 290 281 212265 260 257 256
15 8 5 5 8 13 20 28 40 13 • 8S 104 125 148 169 180 193 208 225 244 265 274 261 250 241 234 229 226 225
16 13 10 10 13 18 25 34 45 se 73 80 108 130 153178 205 218 233 250 269 260 245 232 221 212205 200 197 196
17 20 11 16 18 17 20 25 32 41 52 85 80 W7 118137 180 185 212 241 260 269 250 233 218 205 194 185 118 173 110 169
18 29 26 25 25 21 28 34 41 50 11 74 • 108 125 148 189 194 221 250 265 244 225 208 193 180 169 160 153 148 145 144
19 40 31 36 36 37 40 45 52 81 n 85 100 117138 157 180 208 232 261 242221 202185 110 157 146 137 130 125 122 121
20 53 50 49 49 50 53 511 85 74 85 " 113130 ,.170193 218:z41 244 221 200 181 164 149 136 125 118 109 104 101 100
21 68 85 64 .. 85 • 73 80 81 100 1131211* 114 185 208 233 250 225 202 181 162 145 130 117 106 97 90 85 62 81
22 85 62 81 81 82 85 80 r1 108117 130 145182181 202 225 250 233 208 185 164 145 128 113 100 89 80 13 68 65 64
23 104 101 100 100 10t 104 108 118 125 "81. 1M 181 200 221 244:z41 218 193 110 149 130 113 98 85 14 65 58 53 50 49
24 125 122 121 121 122125130 137148157170 185 31:2 221 242261 232 205 180 157 136 117 100 85 72 61 52 45 40 31 36
25 148 145 144 144145148153 180 '.,80 113 208 225 244 2615250 221 194 169 146 125 106 89 74 61 50 41 34 29 26 25
26 173 170 169 ,.,70 173178 ,. 184 D 218233 2SO218 272 241 212185 160 137116 97 80 65 52 41 32 25 20 17 16
27 200 197 196 ,. 187 200 205 212 221 m~ 310 m_ 265 234 205 178 153 130 109 90 73 58 45 34 25 18 13 10 9
28 229 226 225 225 221 221 234 241 2SD »I m _ 308 293 260 229 200 173 148 125 104 85 68 53 40 29 20 13 8 5 4
29 260 257 256 _ 257 310 285 27231 __ 320 325 290 257 226 197 170 145 122 lot 62 65 50 37 26 17 10 5 2 1

30 293 290 289 218 2110 .. 324 288 256 225 196 169 1 121 100 81 64 49 36 25 16 9 0

Figure 3-8: a 2D squared Euclidean distance map of an image with 5 background pixels

(red zeros).
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Figure 3-9: An example of a 3D SED map for the image in the top left picture. The

colours indicate the SED values of object voxels to the background, and range from

grey (minimum SED 1) to deep blue (maximum SED 97).

7 20 19 18 18 19

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
15 12 11 10 9 10 11 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
14 11 8 7 6 7 6 11 14 17 20 23 26 29 32 35 36 41 44 47 50 53 56 59
13 10 7 4 3 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 56
12 9 6 3 0 3 6 9 12 15 16 21 24 27 30 33 36 39 42 45 48 51 54 57
13 10 7 4 3 4 7 10 13 16 19 22 25 26 31 34 37 40 43 46 49 52 55 56
14 11 8 7 6 7 8 11 14 17 20 23 26 29 32 35 36 41 44 47 50 53 56 59
15 12 11 10 9 10 11 12 15 18 21 24 27 30 33 36 39 42 45 46 51 54 57 60
16 15 14 13 12 13 14 15 16 19 22 25 28 31 34 37 40 43 46 49 52 55 56 61

8 17 16 15 15 16 17 18 19 18 17 16 15 16 17 18 19 20 23 26 29 32 35 38 41 44 47 50 63 56 59 62
9 14 13 12 12 13 1. 15 16 19 20 19 16 19 20 21 22 23 24 27 30 33 36 39 42 45 46 51 54 57 60 63

10 11 10 9 9 10 11 12 15 18 21 22 21 22 23 24 25 26 27 28 31 34 37 40 43 46 49 52 55 58 61 60
11 8 7 6 8 7 8 11 14 17 20 23 24 25 26 27 26 29 30 31 32 35 36 41 44 47 50 53 56 59 56 57
12 7 4 3 3 4 1 10 13 18 19 22 25 26 29 30 31 32 33 34 35 36 39 42 45 4B 51 54 57 56 55 54
13 6 3 0 0 3 8 9 12 15 18 21 24 27 30 33 34 35 36 37 36 39 40 43 46 49 52 55 54 53 52 51
14 7 4 3 3 4 7 10 13 18 19 22 25 28 31 34 37 36 39 40 41 42 43 44 47 50 63 52 51 50 49 48
15 8 7 6 8 7 8 11 14 11 20 23 28 29 32 35 38 41 42 43 44 45 46 47 48 51 50 49 48 47 46 45
16 11 10 9 9 10 11 12 15 18 21 24 'Z7 30 33 38 39 42 45 46 47 4B 49 50 49 48 47 46 45 44 43 42
17 14 13 12 12 13 14 15 111 19 22 25 28 31 34 37 40 43 ~ 49 50 49 4B 47 46 45 44 43 42 41 40 39
1e 17 16 15 15 111 17 18 19 20 23 26 29 32 35 38 41 44 47 48 47 46 45 44 43 42 41 40 39 38 37 36
19 20 19 18 18 19 20 21 22 23 24 27 30 33 38 39 42 45 ~ 47 44 43 42 41 40 39 38 37 36 35 34 33
20232221212223242528272831343740434B~46434039383736353433323130
212825242425282728293031323538~44~48~~39363534333231302928'Z7
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Figure 3-10: 2D chamfer distance map with CD coefficients (3, 4) of an image with 5

background pixels (red zeros).
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In Figure 3-10, the result is shown of using Algorithm 3.2, the chamfer DT, for

the original image in Figure 3-8. Again, the five background voxels are coloured red

and all object voxels are clustered into different classes depending on their nearest

background voxels. For each pair of pixels p and q, dC(3,4)(P, q) = [Max(iPx - qxl, iPy - qyl)

- Min(iPx - qxl, iPy-qyl)] x 3 + Min(lpx - qxl, iPy - qyi) x 4. In pore structure analysis, 3D

CD transformation with coefficients (3, 4, 5) will be used to guide the generation of the

GED map, which in turn will be used to partition the PS.

3.2.5 Geodesic Distant Transformation

The geodesic distance defined in (3.6) has many applications, for example in route

planning and object segmentation. In pore structure analysis it is useful to partition the

PS into individual pore-bodies and pore-throats. Furthermore, the geodesic distance

map can also be used to compute the length of flow paths or to find the major flow

paths from inlet to outlet. The simplest implementation of the distance metric in (3.6) is

the geodesic version of the city-block metric (i.e. £1 in (3.4». Also other metrics, such

as the chamfer distance, have been used but they are coarse approximations to the

geodesic version of the Euclidean distance. In 1999[36], Cuisenaire gave a

comprehensive review of DT algorithms, including the geodesic distance, in his PhD

thesis. He concluded that the GED transformation is difficult to compute, because it

requires much computer memory, exhausting floating-point arithmetic and floating-

point comparisons. To simplify the transformation, he extended the methods of Piper

and Granum (1987[127]) and Verwer et a1. (1989[178]) for geodesic distance

transformation. By generalizing the definition of the geodesic distance, Cuisenaire

(1999[36]) proposed two algorithms (the bucket sorting algorithm and the circular

propagation) to efficiently compute the new geodesic DT.

Cardenes et a1. (2003 [31]) gave a definition of occlusion points and presented a

local characterization of these points. An occlusion point p with respect to ° in a

constraining domain :M, illustrated in Figure 3-11(a), is defined as the point closest to 0,

for which for a given E > 0, there exists no straight line included in 9d that joins p and 0,

but there does exist a straight-line included in :M, between 0 and a point q such that q E

BJp), where BJp) is a ball centred at p of radiuse, In their algorithm for computation of
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the geodesic Euclidean DT, occlusion points and distance information are propagated

along the propagation forefront with increments of 1 after each step. Obviously, the

determination of occlusion points depends on the accuracy of current floating-point

distance values.

(a) (b)

(c)

Figure 3-11: Illustration of the concept of an occlusion point p with respect to

constraining domain 'Jvl (blank region): (a) in R2 the dotted straight-line between 0 and p

IS partially located beyond 'Jvf, while the black straight-line between 0 and q is

completely located within 'Jvl, in which q E BJp) = {r: dtir, p) ::; E: } for sufficiently

small E: > 0 (dE(r, p) is the Euclidean distance between rand p); (b) in Z2 the dotted

straight-line between 0 and p is partially located beyond the constraining domain 'Jvl

(white grids) and the black straight-line between 0 and q is located in 'Jvl, in which q E

:M(P); (c) a shortest path of straight-lines included in 'Jvl from PI to P6.

Among the various difficulties associated with the GED transformation, two

issues have not yet been completely resolved. They are: (i) correctly and quickly finding

the position of occlusion points and (ii) avoiding floating-point arithmetic.

Generally, the existing GED transformations are prohibited for large size 3D

images (e.g. volume of more than 5003 voxels), due to their huge memory- and

computing time- requirements. Although I have not found any practical methods to
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tackle the above two issues, a robust GED algorithm to tackle these issues should at

least have the following properties:

(a) The determination of occlusion points in discrete space should depend on the

discrete visibility of the digital straight-line (Coeurjolly et aI., 2004[34]);

(b) The length of each segment, connecting two occlusion points, along a path

should be integer-valued (e.g. the SED) rather than floating-point valued (e.g.

the ED).

Bearing these two properties in mind, instead of directly computing the GED map,

I develop an algorithm to obtain an approximation of the GED map. For two Euclidean

paths {PI, P2 ... pm, o} and {ql, q2 ... q-; a}, each straight segment in these two paths is

located within the constraining domain. For these paths, the ordering of their Euclidean

lengths is determined by the ordering of their chamfer lengths. In other words, we state

that

2::~1d E(P;, P;+I) + dE(Pm'o)::; 2::ldE(Q;,q;+I) + d E(qn'o) ,

if and only if

The triple (3, 4, 5) of chamfer distance coefficients is often used because it leads to

a local maximum Euclidean distance limit without topological errors (Marchand-Mailler

and Sharaiha, 1999[101]) and it also minimizes the upper bound on the difference

between the chamfer and the Euclidean distances (Borgefors, 1996[25]). Using the above

rule, the floating-point comparison between two Euclidean values is avoided, but it

comes at the expense of losing guaranteed accuracy for the Euclidean distances beyond

this so-called local maximum Euclidean distance limit.

Algorithm 3.3: Geodesic chamfer distance transformation

Input: a 3D binary image P (0/, (]3, 5\1): (]3 is the foreground of 0/, 9.1 is a

constraining domain with (]3 c 9.1 c 0/, V\9.1 is the obstructing domain for which no
distance can be obtained (-1 is commonly assigned in the distance map).
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Output: chamfer distance map CDM, squared Euclidean distance map i.e. SEDM
Initialise: CDM and SEDM are initialised as -1 for all voxels.

IIList TFront is used to track current propagation/rant
IIList CurobL is used to record obstructing voxels in a neighbourhood/or
Iidetermination 0/ occlusion points.
IIList TNext is used to track next propagation front

For eachp E <B {

CDM(P) = 0 and SEDM(P) = 0
For each q E JI(p) {

If q E '.M and CDM(q) = -1 then put q into list TFront
II Use CDM(q) = -/ to ensure no replicated element exists in TFront
CDM(q) = 00 and SEDM(q) = 00

}
while TFront is not empty {
while TFronl is not empty {
Take a voxel p from TFront and t = p;
For each q E JV(p) {

If q E o/\'.M then put q into list of CurobL;

IF (CDM(Q) = -1) {

put q into list of TNext;
CDM(q) = 00 and SEDM(q) = 00 }

if d(3.4,5)(P,q) + CDM(q) < CDM(P) {
CDM(P) = d(3,4,5)(p,q) + CDM(q)
t=q}

}II the end of For each q E :N(p)
SEDM(t) = dsE(P, t) and Limit Val = 25x SEDM(t)
al = P» - t.,hi = Pv - ty, Cl = p;; - tz
For each sin Curobl: { Iidetermining new occlusion points

a: =px - SX, h2 =py - Sy, C2= pz - Sz
if alxa2 + blxb2 + CIXC2>= 0 then {

ao = b2xci - C2xbl, bo = C2xal - a2 x Cl,
Co= a2xbl - C2xal, Dist = 100x[(ao)2 + (hoi + (coil
if Dist <Limit Val then {lip is a new occlusion point,

let r is the 26-neighbour of p
such that r becomes the new predecessor ofp in a path
al =px - r« hi =py - ry, Cl= pz - rz
SEDM(t) = (al)2 + (bl)2+ (cd}

} II the end of "if aixai + brsb: + C/XC2>= 0"
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} II the end of "For each s in CurobL "
Empty CurobL
} II the end ofTFront is not empty
TFront = TNext and Empty TNext
}

To illustrate Algorithm 3.3, the 2D binary image of Figure 3-10 is used, in which

an obstructing domain is introduced, represented by the "wall" shown in Figure 3-12.

The chamfer distances of the five foreground voxels are assigned as 0, the 2D CDC (3,

4) are used in this example. To all voxels in the constraining domain chamfer distances

are assigned, as well as their corresponding closest object voxels, which are coded by

different colours. Assisted by the chamfer distance value, a good approximation of the

GED can be computed, which follows from comparison of chamfer distances, shown in

Figure 3-13. In 3D, using the GED is very time-consuming because floating-point

calculations are involved. Therefore in the partition of the PS, I will instead use the

geodesic chamfer distance transformation unless higher accuracy is required.
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Figure 3-12: Geodesic chamfer distance map with CDC of(3, 4) .
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Figure 3-13: Geodesic Euclidean distance map generated with the assistance of chamfer

80



Chapter 3: Image Processing

3.3 Component Labelling Algorithm

3.3.1 Previous \Vork

Counting and labelling components in a binary image are very important for

computation of the EPC, extraction of the MA and conducting cluster analysis.

There exist many algorithms for searching and labelling the components in a 3D

binary image (e.g. Park and Rosenfeld, 1971[123D. Many algorithms work by scanning

only half neighbourhoods (i.e. only checking 13 neighbours rather than 26-neighbours)

and they need a table consisting of labels for the voxels which have been already

accessed. This table is used to manage the conflicts when a point belongs to more than

one component.

An important breakthrough in the analysis of cluster size statistics in percolation

theory occurred in 1976, when a cluster multiple labelling technique was introduced by

Hoshen and Kopelman (1976[59] or http://www.cs.utk.edu/-berry/parhklnode6.html)

for both 2D and 3D crystal structures. This algorithm is known in the statistical physics

literature as the Hoshen-Kopelman algorithm (HKA), which revolutionized spatial

cluster analysis in percolation theory. Only after the introduction of this algorithm did

Monte-Carlo simulations of very large lattices become possible. In image processing,

probably the most well known component labelling algorithms is the algorithm

introduced by Rosenfeld and Pfalz (1966[138]) for 2D binary images. This algorithm

led to the development of many other useful algorithms for both 2D and 3D images. In

general, the target of these algorithms is to provide a unique label for each component,

which is obtained after a second pass (backward scan). In contrast, the HKA can

determine the number and the size of components in just a single pass (forward scan).

The HKA's single and sequential pass through the lattice linearises the time and

memory space requirement as a function of the lattice size.

The classic HKA on lattices focuses on the determination of sizes and the labels

of individual clusters in a single pass (one-way scanning), with little attempt to improve

the efficiency based on the specific use of different adjacencies. Usually three kinds of

adjacencies (6-, 18- and 26-adjacencies) are used in Z3, which may lead to small ranges

of accessed voxels when different data structures are utilized. For that reason, I extend
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the HKA into 3D with the consideration of dealing with diverse adjacencies and

efficiently counting of the components.

The main idea of this extension of the HKA can be simply described as follows.

Consider a 3D binary image cl( 0/, m), where m is the set of object voxels with a-

adjacency. To label and count a-components in P, each object voxel p is scanned in a

certain order (e.g. Figure 3-14(b» to find out the set NL(P) that consists of m a-adjacent

voxels of p that have already been labelled, denoted as

(3.19)

and the corresponding labels (i.e. positive integers) are represented by

(3.20)

Then p gets a new label if NL(P) is empty, otherwise p gets the minimum label in

NL(P) i.e.

Minl: = Min {L(ql), L(q2) ... L(qs)} (3.21)

Meanwhile, the value of =Minl: is assigned to all elements of array LId with

entries L(qi) for i = I, 2 ... rn, to represent that the current label L(qi) is a temporary

label. Their proper labels (MinL) will only appear as the final labels. Note that the

elements of the array LId are either positive or negative, where the array indices denote

the a-component labels.

Following the one-pass scan, a a-component in the image may have more than

one distinct label, such as {LI, L2 ... Ls}. The minimum of these labels, ML, is defined

as the proper cluster label for which LId(ML) > O. For each other label Lj in {LI' L2 ...

Ls} where Lj :F. ML, LId(Lj) < 0, there exists a label L; E {L), L2 ... Ls} such that i = -

LId(Lj) ( i :I- j). In Figure 3-15, for example, let us consider the 8-component identified

by the set of labels {3, 4, 5}, for which the corresponding the array LId is found as

{LId(3), LId(4), LId(S)} = {14, -3, -3}.

LId(3) denotes the component size and the labels of pixel 4 and 5 will be changed

to -LId(4) and -LId(S) (see Figure 3-16). Therefore, the relationship among component

labels can be represented by a tree graph. The root of the tree corresponds to the proper

label. All other labels are nodes on the tree, which are connected directly or indirectly to
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the root. After this brief introduction to the classic HKA, our extension of the HKA is

outlined as follows.

3.3.2 Extended Hoshen-Kopelman Algorithm

Input: an image <1(0/, CB): CB is the set of object (foreground) voxels and 11\a3 is the

set of background voxels, a-adjacency is applied for object voxels.

Output:

(1) Labelled image Llmg, in which different a-components have different labels,

(2) Number of a-components,

(3) Size of each a-component.

Initialise:

Llmg is initialised as 0 for all voxels in cv,
Array LId records the relationship between different component labels, LId is initialised

as 0 for all entries;

Current available label CurLbl is initialised as 0 (i.e. starting from 1);

Note that the number of a-components in the image is equal to the number of

elements in Array LId with positive values (the size of the corresponding components)

in the end of this algorithm. For example, in Table 3-1, the final result of LId is {I, 4, 14,

-3, -3, 6, -6}. The number of elements with positive values in LId is 4, thus we know

there are 4 8-components in the image shown in Figure 3-14(a).

IIScan the whole image in any order
For each P E qJ { lito find all labelled voxels

For each q E 'Nrtp) rv 'Na(P) {
If Llmg(q) is positive then { Illabelled object voxels

Put Llmg(q) into the list NgLbl; }
IIRecord the label of q into temporary list NgLbl

}
IfNgLbl is empty then {

Lld(++CurLbl) = 1
Llmg(p) = CurLbl

} else {
Minl.bl = 00 lITo find the minimum label in the list of NgLbl
While NgLbl is not empty {

IINewly found cluster
IINew labels CurLbl
IILabel current object voxel

lIThe voxels, which are a-adjacent to P,
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II have already been labelled prior to p.
IIGet a label (lbl) from list NgLbl;
Newlbl = Ibl and Ibl = - Lld(lbl)
While ( Ibl> 0) { l/find its proper label
Newlbl = Ibl and Lbl = - Lld(lbl) }
If Newlhl < MinLbl then {MinLhI = Newlbl; }

lito find the minimum label
Put Newlbl into the list ProLbl;
} II the endfor NgLbl is not empty
Sum = 0 IIAccumulate the size of clusters
For each Ibl E ProLbl {

If Lld(lbf) > 0 then Sum += Lld(lhf)
Lld[lbl] = -Minl.bl

}
Lld [MinLbl] = Sum IICurrent valid label
Llmg(p) = MinLbl
Empty the list ProLbl;

} Ilend of "Ngl.bl is empty"
Empty lists of NgLbl;

} II end of "For each p E (}3"

NumCom = #{i: Lld[i] > O} lithe number of entries of LId with positive values
II Ouput sequence number for components if required
For eachp E (}3 { Iiscanning all object voxels

IIGet a label (Ibl)from list NgLbl;
Lbl =Llmg(p), Newlbl = Ibl, Ibl = - Lld(lbl)
While Ihl> 0 { Ilfind its proper label

Newlbl = Ibl, Lbl = - Lld(lbf) }
Llmg(p) = Newlbl

}

3.3.3 Explanation ofthe Extended HKA with examples

Figure 3-I4(a) shows a 2D binary image of dimensions 10xiO pixels, black pixels

are foreground and white are background. To label and count all 8- and 4-components,

the extended HKA is applied by scanning the image in a sequential order indicated in

Figure 3-14(b). For simplicity, I use positive integers as labels (starting from 1). The

data structure LId is defined as a one-dimensional array with its entries representing the

current labels, initialised as 0 for all entries, i.e. Lld(m) = 0, for labels m = 1, 2 .... This

structure is used to record currently available labels and the relationship between all
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already labelled pixels. The first block of Table 3-1 shows consecutive updates of LId

during the scanning process to label 8-components.

At the start, the pixel with scanning sequence number 1 in Figure 3-14(b) is

accessed and all pixels in its direct neighbourhood are checked. Then, the first label (i.e.

1) is used and any others remain unchanged, i.e. LId(1) = 1, but Lld(m) =0 for m > 1,

which is illustrated in the first row of Table 3-1. When pixel 2 is accessed, the new label

2 is used (see the second row in Table 3-1). However, when pixel 3 is scanned, no new

label is needed, because pixels 2 and 3 are 8-adjacent and they must have the same final

label. Instead, LId(2) is increased by 1 representing that one more pixel is found with

label2.

A complication occurs when pixel 12 in Figure 3-14(b) is accessed. In its

neighbourhood, there exist pixels with labels 4 and 3. At this stage, we find the minimal

label MinLb/(3), which is then used as the label of pixel 12, while Lld(MinLbl) =

Lfd(MinLbl) + LJd(4) + I and LJd(4) = - MinLM. Lfd( 4) = -3 means that label 4 is no

longer a valid label and its pixels are absorbed in the 8-component with label 3.

(a) (b)

Figure 3-14: 20 illustration for 8- and 4-component labelling: (a) original binary image;

(b) forward scanning sequence order for object voxels (black).

Following the one-way scan, the initial labels are shown in Figure 3-15. Seven

different labels (i.e. 1, 2 ... 7) have been used, but not all labels are valid. In the last row

of the left block of Table 3-1, the states of seven labels are listed. When Lld(m) > 0, m

is a valid label, otherwise it points to its corresponding valid label. Thus labels 1, 2, 3, 6

are valid and 4,5, 7 are temporary labels which point to label 3 (L/d(4) = LId(5) =-3) or

label 6 (L/d(7) = -6). In other words, for the original binary image shown in Figure
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3-14(a), there are only four 8-components and the sizes (number of voxels m a

component) of the four 8-components are 1,4, 14 and 6, respectively.

Based on the LId array, I adjust the labels to create a strictly sequential list which

is convenient for some applications, as shown in Figure 3-1S(a). Labelling of 4-

component is demonstrated in the right black of Table 3-1 and Figure 3-1S(b). For 3D

image, a labelling example is given in Figure 3-17.
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Table 3-1: Array LId for labelling 8-components (left) and 4-components (right) of

object pixels: The column numbers represent the entries of array LId, i.e. labels, and the

row numbers represent the scan order (see Figure 3-14(b )).

15 1

16 1

17

18 1

19

20 1

21

22 1

221 4 1 4 1

2241411

22141411

22141421

2 2 1 4 1

2 2 4

2 2 4

5 2 1

5 2
5 2

r)

o
23 1 2 2 1 4 1 5 2

24 2 2 4 1 5 6

25 1 2 2 1 4 1 5 6 1 -8
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Figure 3-15: Initial labels for labelling 8-components and 4-component after one-way

scan (i.e. finishing accessing all the 25 object voxels shown in Figure 3-14(b )).

Figure 3-16: Final cluster image with sequential labels for 8-components and 4-

components of object voxels .

........ .. ' ~. . ---._ --. - " "~:;l,:

,,·::::·············t·· .
(a)

L·:~:~~·.__._.__. ._.__._._....._.__...._.__.._.. .._.....•..

Figure 3-17: Labelling of30 object components using different patterns (background is

transparent): (a) original image; (b) seven 6-components; (c) four I8-components; (d)

two 26-components.
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3.4 Euler-Poincare Characteristic

Digital topology is the study of the topological properties of objects in digital

images. It provides an important mathematical basis for image processing applications

such as image thinning (skeletonisation), border tracing and object counting. Among the

topological descriptors, the Euler-Poincare characteristic (EPe or the Euler number) has

been proven to be an important quantity in image analysis which can be extended to

form other descriptors (e.g. the connectivity function of Vogel and Roth, 2001 [185]).

The EPe describes the connectivity properties of the components of a composite

material. It is used in such disparate applied areas as medicine, to characterise

cancellous bone (Boyce et a1. 1995[28]), statistical physics, to describe morphological

properties of fluids (Ohser et aI., 2002[114]), and material sciences, to analyse foams

and other porous media (Levitz, 2007[83 D. Estimation or computation of the EPe also

plays an important role in the approximation of other intrinsic properties, like surface

area, volume or curvature integrals (see Schneider and Weil, 1993[148]). Apart from

obtaining an accurate result, fast computation of the EPC from a 3D image is also

indispensable in pore structure analysis based on large amounts of 3D data.

In the previous chapter, I reviewed the relevant techniques to compute the EPC

and some basic applications in digital topology and pore structure analysis. In this
\

section, I describe and prove a finding - a relationship between topological numbers

(Bertrand, 1994[ 14]) and the numbers of tunnels and cavities (Kong and Rosenfeld,

1989[76]) in the 3x3x3 neighbourhood of a point. Then a new algorithm is presented

for the computation of the EPe of a 3D binary image, based on this relationship. By

comparison with other methods, the advantages and disadvantages of the algorithm are

demonstrated.

3.4.1 Previous \Vork

Let p= (0/, 26,6, CB)be a 3D binary digital image and letpE CBbe a black (object)

point in 0/. Following Saha and Chaudhuri (1995[139]) and Kong and Rosenfeld

(1989[76]), I introduce the following definitions.
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Definition 3.4 (Euler-Poincarec Characteristic, EPC): The EPC x( ~ of the image

Cl'is equal to the number of black connected components minus the number of tunnels

plus the number of cavities in P.

As stated by Kong and Rosenfeld (1989[76]), this definition is only the specific

3D case of the n-dimensional EPC. In line with the review of the computation of the

EPC in Section 2.2.1, the numbers of black (object) components, tunnels and cavities

correspond to the 1SI, 2nd and 3rd Betti numbers, (2.11), respectively . Consequently, for a

3D binary image <P, its EPC x( ~ is represented as

(3.22)

Note that the black components are 26-components defined in Definition 3.3. An

example of 26-component is given in Figure 3-2(c). A cavity of P is a white 6-

component of P that is completely surrounded by a 26-component of P. Both can be

easily identified and their numbers can be counted by applying the extended HKA.

The notion of a tunnel (hole, genus), which is closely related to the concept of

handles, is not easy to define. Kong and Rosenfeld (1989[76]) gave a definition of a

tunnel based on digital geometry, but this cannot be directly used to determine whether

a white component in a digital image is a tunnel or not. Recently, based on convex

deficiencies, Arcelli et al. (2005[8]) proposed a much more concrete definition for

tunnels. For the computation of the EPC we are only interested in counting the number

of tunnels in the whole range ofa 3D image, or at least in a 3x3x3 neighbourhood ofa

voxe1. Thus neglecting the precise location of the tunnels, we concentrate on how to

efficiently count the number of tunnels in a 3D binary image or in the direct

neighbourhood of a voxe1. The continuous transformation, proposed by Aktouf et a1.

(2002[ 1D, to determine the existence of a tunnel in an object, is crucial for the proof of

the theorem that underpins the development of my algorithm.

Given two closed a-paths 1t and y (see Section 3.1), with 1t = {PI, P2 ... Pi, ql, q2

n, k ~ 1), 1t is said to be an elementary a-deformation ofy, denoted by 7t -y, if both 1t'

and l' are included in the same unit square for the adjacency (6, 26) or in the same unit
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cube for any other adjacencies (26,6), (18,6) or (6,18) which is demonstrated in Figure

3-18.

q2 q3
oo---{e)--~.P4

\
\

,
,,' rl,

'~------- .-- ----e PI
P4 Ps

(a)
P9

Cb)
Figure 3-18: Illustration ofa 26-transformation for adjacency pair (26,6): (a) the closed

26-path y = {P1, P2, P3, ri, r1, P4, ps, pt} is an elementary 26-transformation of IT = {PI,

P2, P3, q., qi, q-; qs,P4, Ps, pd, because y'= {rI, rz} and IT'= {ql, q2, q3, q4} are included

in the same unit cube; (b) the closed 26-path y = {PI, P2, P3, ri, ri, r3,P4,pS,P6,P7,P8, P9,

PI} is not an elementary 26-transformation of IT = {P1, pz, p}, q1, qi, q}, P4, ps, P6, P7, Pg,

P9, pt} because y'= {r1, r2, r3} and IT'= {ql, q2, q3} are not included in the same unit

cube.

_./ ./ ./
./ ./., ./,
/ _/f ./

./ ,/, ./,
/ LV /'

./ V /"

Ca) Cb)

Figure 3-19: Illustration of Defmition 3.5: (a) two closed a-paths within a double torus

of two tunnels: IT is shrinkable and y is unshrinkable; (b) the black I8-path cannot be

shrunk to a single black voxel, because the central voxel is white, thus revealing a

tunnel.

Moreover, IT' is defined as an a-deformation of IT, denoted by IT :::: IT', if there is a

sequence of closed a-paths ITo, ITI ••. ITk such that IT = ITo, IT' = ITk and ITi-1 - 'Tti for i= 1,2

_.. k. Alternatively, 'Tt' is called homotopic to IT with respect to a-deformation, or IT can

be a-transformed to 'Tt'.
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Definition 3.5 (a-shrinkable): A closed a-path 1t is a-shrinkable (shrinkable for

short) if 1t can be o-transformed to a single point, otherwise 1t is called unshrinkable or

a handle (See Figure 2-18).

Using the concept of shrinkability, it follows from the discussion by Kong et al.

(1992[75]) that if a 3D digital image P= (0/, 26, 6, (3) contains no hollow torus, then the

number of tunnels equals to the number of solid handles (related to unshrinkable paths).

Considering a black voxel p and its direct neighbourhood :N(p), two sub-images can be

generated as follows.

JV(p) = (:N(p), 26, 6, :N(p )na3 \ { p})

1\{p) = (:N(p), 26, 6, :N(p)nCB)

(3.23)

(3.24)

Thus, JV(p) and 1\{p) are two 3D binary images with the same image space 'NCp).

Moreover, p is always white (background) in :NCp) while p is always black (foreground)

in :A{p). For any other voxel of J..{p), its colour in :i.{p) or :A{p) is the same as that of the

corresponding voxel in Po According to Kong and Rosenfeld (1989[76]), we have

Property 3.1: Let p= (0/, 26,6, CB)be a 3D binary image and letp Ea3 be a black

voxel in Po Then the EPe of (0/, 26, 6, CB) is equal to the EPe of (0/, 26, 6, CB\ {P}) plus

the change in the EPe in :N(p) due to the deletion of p.

Hence, the computation of the EPe of P can be calculated using the following

recursive relation (Kong and Rosenfeld, 1989[76]).

x( 0/, 26, 6, (3) = 0 if a3= 0;

for any point p E a3,

X(o/, 26, 6, CB)= X(o/, 26, 6, a3\{P}) + X(1\{p» - X(JV(p»· (3.25)

In (3.29) X(.w(p» - X(JV(p» represents the change of the EPe in the 3x3x3

neighbourhood of a black point p due to its deletion ofp.

To compute X(1\{p», we use the following observations (Saha and Chaudhri

(1995[ 139]):

1\{p) contains exactly one black component;
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7J(p) contains no cavities;

7J(p) contains no tunnels.

In the sub-image 7J(p), pis 26-adjacent to any other black voxels in !N(p) because

p is the central black voxel in :N(p). Therefore, there is exactly one black 26-components

in 7J(p). Due to the fixed colour (i.e. black) of p it is not possible that :Nr.p) contains an

enclosed white 6-component. Also, there are no cavities in 7J(p). If the central voxel is

black, any closed black 26-path in :N(p) is certainly 26-shrinkable. Therefore, according

to Definition 3.4, we have

x(:Nr.p)) = 1. (3.26)

Thus the work boils down to the computation of the EPC of :iI(p) if the recursive

relation (3.25) is used.

New Algorithm for Computing the Euler Characteristic

As mentioned in the literature review (Chapter 2), most of existing approaches to

computing the EPC consider an n-dimensional digital object as a polyhedron composed

of n-dimensional homogeneous structures. In those approaches the EPC of a binary

image is defined in terms of numbers of k-dimensional elements in the polyhedral

representation of the image (2.10).

Saha and Chaudhuri's (1995[139]) method is efficient for computing the EPC ofa

3D binary image, if a look-up-table is well established in advance. However, it is not

easy to build the look-up-table and the entries searching time is considerable. In this

section I describe a different approach to compute the EPe of a 3D binary digital image

from its digital representation.

Similar to Saha's approach, the algorithm is based on finding the change in

numbers of black components, tunnels and cavities in the 3x3x3 neighbourhood of a

point after its deletion (i.e. changing to white). However, instead of using any kind of

tables, I introduce a new analytical relationship between the topological numbers and

the three Betti numbers in the 3x3x3 neighbourhood of a voxel. Hence, the method only

involves the counting of topological numbers and the recursive expression (3.25), which
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is computationally efficient, because only a component-counting (cluster labelling)

algorithm and a one-way scanning process are involved.

In 1994, Bertrand (1994[ 14]) introduced the concept of geodesic neighbourhood

to define the topological numbers. In my approach, only two topological numbers are

used as follows.

Definition 3.6 (Geodesic neighbourhood and Topological numbers): For a 3D

binary image P = (0/, 26, 6, CB) and a point p E 0/, let the geodesic neighbourhood q26(P,

CB)be the set composed of all black 26-components of P in :Ni6· (p» = :Ni6(P)\ {p}. Then,

the topological number 'l26(P, !J3)is defined as 'l26(P, 1J) = #q26(P, !J3),'l26(P) for short. #s

denotes the number of elements in set S, i.e. its cardinal number. Moreover, let q6(P, 0/

\!J3)be the set of all white 6-components of <P in 5Vis(P)\ {P}such that each component IF,

in q6(P, 0/\!J3) is 6-connected to p, i.e. there exists at least one point q in IF, such that q is

6-connected to p, thus the topological number %(P, 0/\!J3) can be defined as <J6(P,o/\!J3) =

#q6(P, 0/ \!J3), <J6(p)for short.

} '"_./ .../
../ ./ ./

./ V r, V
V ./ ;0 /l

/" V V
V ./ r:o

r

(a) (b)

Figure 3-20: Geodesic neighbourhoods and topological numbers. (a) q26(P, !J3)= {{ql,

q2}, {ri, rz. r3}, {o} }, so Tzip, !J3)= 3; (b) qlp, 0/\!J3) = {{Q2, q3} }, so 'TJp, 0/ \!J3)= 1.

From the above definition, it is clear that the geodesic neighbourhood and the

corresponding topological number are independent of the colour of p. Figure 3-20

illustrates configurations of black and white voxels in the 3x3x3 neighbourhood of a

voxelp. In the example of Figure 3-20(a), it is easy to understand that q26(P,!J3) contains

three black 26-components. But for q6(P, 0/\!J3)and 76(P, o/\CB), it should be noted that:

1) Each white 6-component in q6(P, 0/\!J3) consists only of white voxels that are

located within 1Vjs·(p) (1Vjg(P)\{p}), so voxels wand q( do not belong to any

set in q6(P, o/\<B), because both voxels are only 26-neighbours of p;
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2) Each set Sin (j6(P, V\cB) must be 6-connected to p, which means that at least

one 6-neighbour of p must belong to S. Therefore, (j6(P, V\cB)does not contain

the white 6-components {o} even though 0 E :Nis·(p).

Below I state the key result, which facilitates the computation of the EPC and the

generation of many other topological quantities.

Let P= (0/, 26, 6, cB)be a 3D binary image and letp EVbe a voxel in 1'. Let:il(p)

be the sub-image (7V(p), 26, 6, 7V(p)rvB \{P}) of P and let h1(P) and h2(P) be the number

of tunnels and cavities in :N(p) respectively. Then we have

%(P) = hdp) - h2(P) + 1. (3.27)

Applied to Equation (2.11), the EPC of :iI(p) is then calculated as,

(3.28)

The number of black components ho(P) is obviously equal to the topological

number fJ26(P). Combing with Equation (3.25), the recursive algorithm for computing

the EPC of Pcan be stated as follows:

x( 0/, 26,6,cB)= 0 if cB= 0;

For any point p E cB,

x(o/, 26, 6, cB)= xCv, 26, 6, cB\{P})+ %(P) - fJ26(P). (3.29)

3.4.2 Theoretical Analysis

For any point p in the image space of P = (0/, 26, 6, cB), the number of cavities in

the sub-image §I(p) (3.23) is easy to count from the following lemma.

Lemma 3.1 (Saha and Chaudhuri, 1995[139]): The :iI(p) can contain at most one

cavity (i.e. hl(P) :s; 1), which occurs only when all 6-neighbours of p are black.

Otherwise, the number of cavities in :iI(p) is zero.

On the other hand, it is difficult to determine the number of tunnels h1(P) of :iI(p).

Kong and Rosenfeld (1989[76]) found that if a 3D digital image has no hollow torus,
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then the number of tunnels in the image equals to the number of solid handles. Itmay be

clear that 1i(p) cannot contain a hollow torus, otherwise at least one interior point must

be black, but the only one interior point of iI(p) is p, which is white by definition.

Therefore, we have the following lemmas.

Lemma 3.2 (Aktouf et al. 2002[1]): iI(p) contains at least one 'tunnel if there

exists a closed black 26-path in :N(p) that is unshrinkable.

In the proof of Equation (3.27) (i.e. Theorem 3.1 in the following), I will analyse

all possible configurations of points in :Nis·(P), for which at least one unshrinkable

closed black 26-path exists, in order to prove the existence of tunnels in :Mp).

Lemma 3.3: Based on Saha and Chaudhuri's (1995[139]) Theorem 1, we have

that !ir(p) contains no tunnels if and only if the set of all white 6-neighbours of p is 6-

connected in :Nis*(p)..-- ;>---,:; •• "'1../1,2)0"-• . ::=-.
~

• t:;,11./ 07 '1 v"
V !,./ /'/.

II ./ v·•. ,/ /

Figure 3-21: Illustration of opposite and link points. Point 1 is opposite to point 3, but

not to point 2.

In :N{p), two 6-neighbours of p are called opposite if they are not 26-adjacent (i.e.

the pairs {I, 3}, {2, 4} or {5, 6} in Figure 3-21), otherwise they are called non-opposite

6-neighbours ofp (i.e. {I, 2}, {2, 3} etc. in Figure 3-21). Note that for any pair of non-

opposite 6-neighbours {q, r} of p, there exists only one I8-neighbour of p such that it is

6-connected to both q and r , denoted by 1?w. r), which is called a link-point between q

and r (i.e. ~1.2) is shown in Figure 3-21). According to Saha and Chaudhuri (1995[139]),

we have the following lemma.
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Lemma 3.4: If two non-opposite 6-neighbours {r, q} of p in f;t(p) are not 6-

connected in 1I/is·(p)(i.e. 1?v.q) must be black), then the transformation of the link-point

1?v.q) to white removes exactly one tunnel from f;t(p).

The above lemmas (3.1-3.4) for computing the EPe of pis based on the following

theorem, which is an important result in this section.

Theorem 3.1: For a 3D binary digital image P= (0/, 26, 6, cB) and any point p E

cB, the topological number fJi,(P) is equal to the number of tunnels of f;t(p) minus the

number of cavities plus 1 (3.27).

Proof: Recall that fJi,(P) is the number of elements in the set (i.e. 96(P» composed

of all white components in :Nis·(p) that are 6-connected top. In Figure 3-22, :Nis·(p)

contains only two white components {P2} and {P3, P4}, but the first white component {

P2} is not 6-connected to p, so there is only one white component {P3, P4} in 96(P) (i.e.

fJi,(P) = 1). Thus, each white component Cof 96(P) must contain at least one 6-neighbour

q of P such that q E C. Furthermore, it is certain that 0 ::;fJi,(P) ::; 6, because there are at

most six 6-neighbours in :N(p). Therefore we need to analyse the theorem in four cases:

fJi,(P) = 0, fJi,(P) = 1, <J6(p) = 2 and 'Trip) > 2..--. .~I--.,./
~( '-:+-l-~{p
p_/ / /
V / rp l/ P
[jJ; / __ +-+-1/ .-+-+/-:0-.1/5

./_-~
Figure 3-22: Example of determination of 'TJp). There are five white points in :N(p) (p

is the central point), :Nis·(p) contains 3 white points, but only one white component {P3,

P4} is 6-connected to p, therefore %(P) = 1.

fJi,(P) = 0: All six 6-neighbours of P are black because 96(P) is empty. According

to Lemma 3.1 and Lemma 3.3, we have h2(P) = 1 and h,(P) = O.Hence, Equation (3.27)

is satisfied.
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'I6(P) = 1: There exists at least one white 6-neighbour q of p and any other white

6-neighbour of p is 6-connected to q in 'JIis*(p). Lemma 3.3 states that hl(P) = 0 and

h2(P) = 0 (see Lemma 3.1). Thus, Equation (3.27) is correct.

Figure 3-23: Positions of the white 6-neighbours q and r of p (the central point) that are

not 6-connected in :Ni8*(P), corresponding to the two independent configurations when

'I6(P) = 2. Under the condition of that q and r are not 6-connected in :Nis*(p), the colour

of grey points can be black or white.

'I6(P) = 2: There are exactly two white elements in q6(P), so we can find two

white 6-neighbours q and r of p such that q and r are not 6-connected in :Ni8*(p). When

allowing three-dimensional rotations in multiples of 90° about different axes, only two

essentially different (independent) configurations exist, which are illustrated in Figure

3-23. Lemma 3.1 states that h2(P) = 0, thus we need only to focus on the proof of h,(P) =

1 when 'I6(P) = 2.

Firstly, let us discuss the configuration shown in Figure 3-23(a). Obviously point

1 is black, otherwise q and rare 6-connected in :Nis*(p). Then, there are three

possibilities for the pair of points {6, 1O}.

Case 1: Both points in {6, 10} are black;

Case 2: Both points in {6, lO} are white;

Case 3: One of the points in {6, IQ} is white and the other is black.

For Case 1, of all points in {I2, 16, 14, 8, 3} shown in Figure 3-23(a) at least a

point x must be black. Then a 26-closed black path can be formed (e.g. if x = 14, the

black 26-path {l, 10, 14, 6, l) shown in Figure 3-23(a) appears) that cannot be

transformed to a single point. According to Lemma 3.2, :if (P) contains at least one

tunnel, i.e. hl(P) 2 1. However, if we change point 1 to white (i.e. we remove point 1),
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the two white 6-components in (}6(P) will merge into one white component and the

tunnel is destroyed (Lemma 3.3). Thus the number of tunnels in ir(p) is equal to one,

i.e. ht(P) = 1.

15
(a)

15
(b)

15
(c)

Figure 3-24: Illustration of the three independent subclasses for case 2, with (a) four, (b)

three and (c) two black points in {2, 4, II,S}.

Case 2: Due to the symmetrical properties of configurations in Mp), there are

only three independent subclasses for Case 2 (see Figure 3-24), i.e. four points, three

point or two points in {2, 4, 11, 5} are black.

15
(a)

15
(c)

Figure 3-25: Illustration of closed black 26-paths that cannot be transformed to a single

point for the first subclass of case 2, shown in Figure 3-24(a): (a) two closed black 26-

paths that are unshrinkable when 3 is black or 16 is black; two different closed black

26-paths when both points in (b) {9, 7} or (c) {IS, 13} are black. Notice that in each

example both points in {6, 10} can still be 6-connected to q and r, to ensure that T6(P) =

2.

For the first subclass of Case 2, shown in Figure 3-24(a), it is easy to find a closed

black 26-path that is unshrinkable if one of points 3 and 8 is black or one of points 12

and 16 is black, as shown in Figure 3-25(a). Conversely, if all points in {12, 16, 8, 3}
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are white as depicted in Figure 3-25(b), point 14 must be black. Now, ifpoints 15 and

13 are both black or points 7 and 9 are both black, a closed black 26-path can be found,

as shown in Figure 3-25(b). Otherwise, if 13 and 9 or 15 and 7 are black, a closed black

26-path can be found, as illustrated in Figure 3-25(c).

Hence for the first subclass of case 2 we can find a closed black 26-path in :Mp)

such that it cannot be transformed to a single point, similar to the discussion of case 1.

Then, according to Lemma 3.3, after removing point 1, hdp) = 1.

For the second subclass of case 2, shown in Figure 3-24(b), if one point in {12,

16} is black, a closed path is found, i.e. {I, 5, 12, 11, I} or {l , 5, 16, 11, I}; otherwise,

if both points in {l2, 16} are white, point 13 must be black to avoid that q and rare 6-

connected. Furthermore, this case can be discussed as follows:

• point 8 is black (see Figure 3-26(a»;

• both points 8 and 14 are white (see Figure 3-26(b»;

• point 8 is white, point 14 is black and one of the points in {IS, 9} is black (see

Figure 3-26(c»;

• point 8 is white, point ]4 is black and both points in {IS, 9} are white (see

Figure 3-26( a».

(a) (b) (c) (d)

Figure 3-26: Demonstration of unshrinkable closed black 26-paths for the second

subclass of case 2, shown in Figure 3-24(b), when points 12 and 16 are both white and,

additionally , (a) point 8 is black, or (b) points 8 and 14 are both white, or (c) point 8 is

white, point 14 is black and one of the points in {IS, 9} is black (indicated as dotted), or

(d) point 8 is white, point 14 is black and both points in {IS, 9} are white.

From Figure 3-26, in all cases for the second subclass of Case 2 (Figure 3-24(b»

an unshrinkable closed 26-path can be found, which means that tunnels must exist. ln

addition, it is impossible to find any unshrinkable closed 26-path after removal of link-
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points like point 1. Thus hl(P) = 1. Similarly, for the third subclass of Case 2, shown in

Figure 3-24(c), the same result can be obtained, as demonstrated in Figure 3-27.

15

(a) (b)

Figure 3-27: Demonstration of un shrinkable closed black 26-paths for the third subclass

of case 2, shown in Figure 3-24(c), when one of {4, 8} is black we have a unshrinkable

closed black path (a), otherwise each of {3, 7, 9} must be black in corresponding to the

consumption for this case, so a unshrinkable closed path can be found in (b).

Case 3: All possible configurations are depicted in Figure 3-28. The proof is

similar to the above method. Iomit it here.

15
(a)

15

Ce)

15

(b)

(f)

15

Cc)

(g)

15

(d)

Ch)

Figure 3-28: All possible configurations for case 3 shown in Figure 3-24(c): (a) one

point in {12, 16} is black; (b) both 12 and 16 are white, and one point in{8, 14} is

black; Cc)all points in {12, 16, 14, 8} are white, and point 3 must be black; (d) points

12, 16 and 13 are white, and one point in {3, 8} must be black; (e) all point in {12, 16,

3, 8}are white, and 14 must be black, etc. For all these configurations, obviously, we

can certainly fmd an unshrinkable closed 26-path.
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The second possibility for fJ6(P) = 2 arises when the two 6-neighbours of pare

opposite, as shown in Figure 3-23(b). Suppose that at least one of the points in {l, 2, 3,

4} is white, then the configuration becomes equivalent to one of the cases

corresponding to Figure 3-23(a). Otherwise all points in {l , 2, 3, 4} are black and the

closed 26-path {I, 2, 3, 4, I} is unshrinkable. For both cases, the result is the same, i.e.

ht(P) = 1.

To summarise, for fJ6(P) = 2 we have hz(P) = 0 and ht(P) =1, so Theorem 3.1 for

this case is true.

rr6(P) > 2: Each element of f}6(P) contains at least one white 6-neighbour of p, so

we can arbitrarily pick one white 6-neighbour of p for each element of f}6(P), and obtain

a set of91 ={ql, q: ... qm} where m = rr6(P) > 2, in which each pair of points in 91 is not

6-connected in :Nis*(p). For qt, there is at most one point in 91 such that it is opposite to

ql and any other point in 91 is non-opposite to ql. Therefore only two cases need to be

considered.

For the first case, in which each point in ~m{qd is non-opposite to ql, for all pairs

of points (q!, qj) (2 ~ j ~ m) there exist m-I link-points. After transformation of each

link-point 'Rwt,qj)(j = 2, 3 ... m) to white, exactly one tunnel in:il(p) is removed. When

all link-points are transformed to white, only one component is left in gip), therefore

no tunnels are left due to the same reason as the case rr6(P) = 1 discussed above. Hence,

there are exactly m tunnels in the direct neighbourhood of p. According to Lemma 3.4

we find that ht(P) = fJ6(P) - 1.

For the second case, in which there is one point in 9{\{qt} that it is opposite to qt,

without loss of generality, we assume that qm is opposite to qt and there are :Ni tunnels in

:iI(p). After transforming all link-points ~t, qj) (j = 2 ... m-I) to white, :Ni - (m - 2)

tunnels have been removed and only two white components are left in q6(P). From the

above proof we know that there is only one tunnel for the fJ6(P) = 2, i.e. :Ni - (m - 2) = 1,

hence hl(P) = rr6(P)-1.

According to Theorem 3.1, the Euler number of a 3D binary image can then be

easily computed using the recursive relationship (3.28) by removing object voxels one

by one.
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As a simple example, in Figure 3-29 a set of 3D objects are plotted and the

corresponding Euler numbers are also computed. Two concepts (i.e. component,

tunnels) are clearly demonstrated, no cavities exist in these objects. The number of

tunnels is also explained as the number of redundant connections (channels). A

connection is redundant, when it can be cut out without destroying the connectivity of

the original object

(a) (b) (c) (d) (e) (f)

Figure 3-29: Examples of objects with different EPCs: (a) X= 2, (b) X= 1, (c) X= 0, (d)

X = -1, (e) X = -2, (f) X = -3. The EPC = the number of components - the number of

redundant channels + the number of cavities. For the PS, the number of cavities

(floating solid particles) should be zero, therefore, the number of redundant connections

= the number of components - the Eu ler number.

Algorithm Assessment and Comparison

In pore structure analysis, Vogel's algorithm (2000[183]) for estimating the EPC

is used much more often than Saha and Chaudhuri's (1995[139]) exact computation.

This is due to the fact that the error resulting from Vogel's approximation of the truth

EPC can be ignored when the size of the targeted images is sufficiently large. The most

attractive feature of Vogel's method is its simplicity and efficiency. In comparison, the

algorithm for calculating the EPC developed by Saha and Chaudhuri is complex and

time-consuming. They stated that in the worst case, the computation of the change in

the EPe in a 3x3x3 neighbourhood of a point p due to its deletion requires checking of

all possible configurations of 26-neighbours of p. That means that a look-up-table with

226 entries needs to be created. Consequently, if each entry of the look-up-table needs

one byte, the complete table needs 64M bytes. For this reason, I only carry out a simple

comparison between the accuracy of my algorithm and Vogel's method for a rock

Image.
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Vogel's algorithm has already been explained in the previous chapter and the

details can be also found in Vogel (1997 a[ 181D. The general idea behind this algorithm

is to convert a complicated 3D problem into a series of easier 2D problems by referring

to a 3D binary image Pas a series of2D slices S, (i =1,2 ... m). The 2D EPC ofa slice

can be directly obtained by counting the number of components and holes, which can be

done by HKA. Considering two adjacent slices S, and Sj+l, called a "dissector" denoted

by DS(Sj, Sj+l), the 3D EPC of DS(Sj, Sj+l), is computed as X3(DS(Sj, Sj+l» = [X2(Sj)+

X2(Sj+l)- 2X2(Sjrl Sj+l)] / 2 (see Figure 2-8). Then, the 3D EPC of '1' can be estimated

by combining all dissectors together, i.e. X3(~ = Lj=1...m.lX3(DS(Sj, Sj+J).

Contrary to Vogel's algorithm, for a 3D binary image '1', my approach for

computing the 3D EPe of P is based on the recursive relation (3.25). The local EPe

change of p is calculated as

x(:N(p» - X(JV(p») = %(p) - 'Ti6(P). (3.30)

Therefore, the computation of the EPC involves only counting two topological

numbers which can be easily obtained using the extended HKA.

In Figure 3-30(a), a 3D tomography image Pofa sandstone is presented, which is

used for the comparison with Vogel's algorithm in the following. The image space is a

cubic matrix {(x,y, z): 0:5 x:5 199,0:5y:5 199,0:5 z:5 199} in Z3, and the PS shown in

Figure 3-30(a) is coloured in black. The 3D EPC of P are either estimated by Vogel's

algorithm (Euler2), or calculated by my algorithm (Eulerl), as -626 and -642,

respectively. The relative EPC error between two methods (i.e. (Euler2-Eulerl)lEulerl,

see Figure 3-30(b» can be very large when images are quite small and highly noisy.

From a statistical point of view, the EPC error can be measured over a set of sub-images

of different sizes or interior structures. Here we cut off a series of sub-images, denoted

by Qb, PI ... from P. For simplicity, let p. = (1-{, 26, 6, lEi) where 1-{ = {(x, y, z) I i :5x :5

199 - i, i :5y:5 199 - i, i :5z :5 199 - i} and <Bi = CBrl 1-1, i = 0, 1 ... 98. For all sub-images

Ihave calculated the EPC using both Vogel's and my algorithms, for which the results

are presented in Figure 3-30(a) and (b).

According to the proof of Theorem 3.1 and the recursive algorithm (3.29), the

computation of my algorithm leads to the exact Euler number rather than an

approximation. For the sandstone image shown in Figure 3-30(a), the relative error
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between Vogel's and my algorithm tends to be very large when small images or highly

noisy images are used. In other words, the estimating error of Vogel's method applied

to original small rock images cannot be neglected. This is the price of estimating the 3D

EPC using a series of 2D EPCs. However, the significant advantage of Vogel's

estimation is the algorithm efficiency. Figure 3-31 shows that Vogel's algorithm is

significantly faster than mine.
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Figure 3-30: (a) A 3D tomography sandstone image and the Euler number curve for a

set of sub-images '11 of the image, i = 0, 1 ... 98. The dimensions of this image are 2003

voxels, and the resolution is 5.6 micron. Black is the PS and grey is the solid matrix. (b)

The relative Error between estimated (by Vogel's algorithm) and calculated (by my

algorithm, HWU: Heriot-Watt University) the EPCs. Note that the relative error varies

between 0 and 5% when the size of the sub-images is larger than 0.9 mm'.
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Figure 3-31: Comparison of computation times using Vogel's and our algorithm (i.e.

HWU: Heriot-Watt University) for the calculation of 3D EPCs. Sub-images are cut

from the rock image shown in Figure 3-30(a).

3.4.3 New descriptor of topological properties

As discussed previously, the coordination number is a local descriptor of the pore

connectivity. The inability to represent globally the topology of the irregular PS of

natural rocks has motivated me to study the EPC and its computation. The EPC X (2.13)

is directly related to three quantities i.e. the number :Nof components, the number q of

tunnels and the number J{of cavities. :Nand J{can be obtained by applying a component

labelling (clustering) algorithm (e.g. HKA), and then the number q of tunnels is given

by

q=:N-x+Jf. (3.31)

q is also equivalent to the number of redundant connections. In pore structure

analysis, cavities are commonly neglected, because solid particles floating in the void
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space are assumed to be caused by image noise. Therefore, before extracting the

network structure from rock images, it is necessary to remove all floating solid particles.

The Euler number does not lead to an unequivocal description of the topology,

since the absolute values of 7V, q and J{ are unknown. Moreover, the Euler number

provides just a single number without considering the volume of objects for describing

the overall topology. Vogel (1996) introduced the definition of the specific Euler

number as

Xv = (1f- q+ JI)/V, (3.32)

where V is the volume of the image space. Based on this definition, the specific EPCs of

a series of sub-images cut off from the original image (Figure 3-30(a», are computed

and shown in Figure 3-32. Note that the specific EPCs do not tend to become stationary,

even though the volumes of image ~ are quite large. The reason is that many isolated

tiny pores appear in the image because of image noise. These isolated tiny pores

significantly degrade the ability of the EPC to describe object connectivity (i.e. :N is

very large), but they do not contribute to fluid movement in single- or multi-phase flow.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
-200 -

-250 CD

E
::l

-300 "0>
1::
CD.c

-350 E
::l
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Volume(mm3)
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Specific Euler number

Figure 3-32: The specific Euler number against the volumes of a series of sub-images of

the sandstone shown in Figure 3-30(a). It shows that the specific EPC could not be used

as to describe the pore connectivity of an object.
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Another issue related to the EPC is that it cannot distinguish a structure with the

same Euler number but different numbers of components. In Figure 3-33, two different

topological structures are presented that have the same Euler number.

(a) (b)

Figure 3-33: Structures with different topologies but the same Euler number (-1): (a) an

object with two redundant connections; (b) a combination of two objects with three

redundant connections.

For these reasons a new descriptor will be proposed, called the connectivity

coefficient, which will be discussed in more detail in Chapter 5.

3.5 Medial Axis Transformation (skeletonisation)

For a given 3D image, it is common to study the object structure (e.g. the pore

structure) by reducing the number of voxels as much as possible while preserving its

intrinsic properties. The reduced 3D object may become 2D (i.e. surfaces) or even ID

entities (i.e. curves), which makes it much easier to explore its structure.

More precisely, a MA (skeleton or network) of the foreground of a 3D image is

defined as a subset of the foreground that carries the necessary geometric and

topological (GT) properties in a simple and compact (highly compressed) form. The

first network extraction method (skeletonisation) applied to rock images was developed

by Lindquist and Lee (1996[87]) and similar approaches have subsequently been

presented by other authors, such as Vogel and Roth (2001 [185]) and Knackestedt et al.

(2004[73]). In Section 2.3, I have presented an extensive review of network extraction

methods, which is also called MA transformation or skeletonization. In this section, I

describe an new algorithm, which is designed for pore structure analysis, and the

extracted skeleton is called a GT network.
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3.5.1 GT Network Consideration

Based on the specific research needs, Le. to predict multiphase flow properties,

both geometric and topological features have to be included in the extracted network.

Therefore, the skeletonisation focuses on: topology-preservation (homotopy), single

voxel width, central location and integration of geometry. These issues are explained

below.

Topology-preservation (homotopy): The GT network of the PS must be

topologically equivalent to the original image. This means that all connected pores must

remain connected after extracting the skeleton from the original images - no artificial

false links should be added and no real links or pores should be removed. The objective

is to ensure that the flow paths have not been changed in the resultant GT network.

From a topological point of view, all components, tunnels and cavities in a skeleton

image are kept the same as in its original image. Figure 3-34 shows some instances

where this rule is broken.

Single voxel width (thinness): The GT network must be one voxel wide (i.e. each

voxel on the skeleton has not more than two neighbours) except at points (e.g. at some

junctions) where a thick skeleton is necessary to satisfy certain topological and

geometrical criteria, where the connectivity condition may require several points. A

single voxel width skeleton can easily be used to locate the centres and orientations of

flow paths. It also makes it possible to properly identify the centres of nodes (pore

bodies) and to accurately compute many other geometric properties. This rule is

demonstrated in Figure 3-35.

Central location (centredness): It is crucial to ensure that the GT network is in

the middle of the PS and invariant under the affine transformations including

translation, rotation and scaling. In the study of fluid flow, the centred skeleton is

important to calculate cross sectional areas normal to the central flow path and to

calculate cross sectional radii etc. For general image processing, this consideration

requires to capture the symmetry of a shape which is useful for object recognition. As

mentioned above, the positions of skeleton voxels depend on the scanning order in

which points are checked, and this order is often arbitrary. However, these methods
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involve an additional time-consuming procedure and give no guarantee of the

centredness of the equal distance domain in the 3D image, as illustrated in Figure 3-36.

Integration of geometry: In the application to the prediction of rock properties,

the computation of shape factor G, and the inscribed radius of a pore CS, are critical.

The shape factor is defmed as G = Air, where A is the cross sectional area and P is its

perimeter (Mason and Morrow, 1991). The pore CS must be perpendicular to its medial

line (skeleton) and independent of its scale, direction and position. In thinning

algorithms, if all simple points are to be deleted without any constraints, then the

resulting skeleton is called a pure topological network. In practical applications,

however, some simple points should be retained to hold certain geometric features,

which are often called endpoints. To create a network for flow prediction, it is necessary

to recognize some boundary points (in the inlet/outlet faces), terminal points of major

branches (called branch points) of dead-end pores, and anchor points (which are

important, but cannot be described by any explicit rules) as endpoints .

.I .I .L .I ./ ./ .--/ .I -{
./ ./ ./ .I ./ 0 .I ./ ,..( ./

/ , V , / b, , / , V.: , V ' rq / r , / °l , l(
0

/ /" V V / V ./ 7- r-- [7
/ /P V V /04 V / / V

Figure 3-34: Some instances of topology preservation: Considering an binary image P =

(0/, 26, 6, iJ3) where 'V'is the set of all voxels drawn in the figure and iJ3 is set of all black

voxels (object), p must be retained on the resultant skeleton, otherwise a tunnel will

disappear; {q, r} is a white 6-component which is completely enclosed, i.e. it is a cavity;

removing any voxel of {o I, 02, 03, 04} will destroy the cavity of {q, r}; removing twill

create a tunnel.

Figure 3-35: Skeleton of single voxel width except at the junction.
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(a) (b)

Figure 3-36: Centredness of skeletons in 3D. The skeleton shown in (a) is derived by

common DOHT approaches (Note that some recent thinning algorithms have improved

on this by employing alternating direction schemes.) The locations of the skeletons

depend on the scanning order within the region of same distance values. The skeleton

depicted in (b) is generated by our algorithm with symmetry deletion, which is

independent of scanning order.

3.5.2 Algorithm Description

The GT network extraction algorithm combines a novel thinning technique and an

improved version of the Euclidean distance transformation (EDT) to extract the network

of the foreground (e.g. pore voxels) of an image. In other words, all foreground voxels

are checked in ascending distance order (Saito and Toriwaki, 1995[145]; Lohou and

Bertrand, 2005[92]) to determine whether they can be removed. The thinning technique

aims at detecting and deleting as many points as possible at each iteration, rather than

just one point, before invoking a clustering procedure (e.g. extended HKA, Hoshen and

Kopelman, 1976[59]).

Usually, a clustering algorithm is utilised in the 3x3x3 neighbourhood of an

object point to determine the topological numbers of this point. As explained in Section

3.4, the topological numbers are defined as the number of 26-connected foreground

components in the neighbourhood and the number of particular 6-connected background

components. If both of the numbers are equal to one, the point is called "simple" and it

can be deleted without changing the topology of an object (Bertrand and Malandain,

1994b[I8]).

The concept of a simple point has been extended to that of a simple set (Ma,

1994[95]; Gau at el., 2003[50]), but so far no efficient algorithm exists to detect these

simple sets (Lohou and Bertrand, 2004[91] and 2005[92]; Xie et al., 2003[189]; Gong
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and Bertrand, 1990[52]; Ma, 1994[95]; Ma and Sonka, 1996[96]; Saha et al.,

1997[141]; Palagyi and Kuba, 1997[120], 1998[121] and 1999[122]). To find a simple

set, I introduce the concept of the foreground pure 6-component, a component of single

width aligned along one of the grid coordinates, which is used as a candidate for

checking in the algorithm. Additionally, in the envelope of a pure 6-component, two

particular types of adjacencies are defined (for foreground and background components)

analogous to the adjacencies in the neighbourhood of a point. In this Section I will

prove Theorem 3.2, which states that if the pure 6-component has exactly one

foreground and one background adjacent component, then the pure 6-component is

simple. Consequently, in the thinning algorithm all voxels in a simple pure 6-

component can be totally deleted together at a time. Note that the theorem only provides

a sufficient condition for the "simplicity" of a pure 6-component. In other words, if it

does not have exactly one foreground or one background adjacent component, then the

pure 6-component needs to be checked in the way of point by point. In the numerical

experiments, clustering of voxels in the neighbourhood of a single point is almost as

time-consuming as clustering voxels in the envelope of a set (about 2.45 voxels per set

for the sandstone samples). Therefore, the total number of times to invoke the clustering

procedure is reduced in the whole thinning process, greatly improving the efficiency of

the thinning algorithm.

Another advantage of the new thinning algorithm is that, because it checks within

the envelope of a pure 6-component, simple set detection can be carried out in parallel

at alternating rows or columns of the image. This interval detection strategy also

ensures that most foreground points are checked only once.

The thinning algorithm guarantees homotopy and thinness, but it does not

necessarily produce central-aligned skeletons. Unlike other thinning algorithms that

attempt to achieve centredness by scanning in 6 or 12 directions (Palagyi and Kuba,

1997,1998), my thinning algorithm achieves centredness through scanning in only 2

directions (forwards and backwards). The Euclidean distance map is used to control the

main order of scanning (i.e. voxels of small distances are checked first). Then, in a

given layer of the distance map (containing voxels of equal distance), the order of

scanning is controlled by symmetry detection. In other words, rather than removing

points during each scan, I keep all removable points until the end of a full iteration
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involving the two scans. This ensures that each point in the layer of the same distance

has an equal probability of being detected and subsequently removed.

Because of the nature of thinning algorithms, only topological information of the

pore system is preserved, yielding the so-called pure topological skeleton. Generally a

lot of geometrical information is lost, such as boundary features, dead end pores etc.,

which may also be important in the prediction of flow properties. Below I explain (in

outline) how I preserve the important geometrical information related to so-called

endpoints.

Boundary points: For the study of flow properties, it is important to identify inlet

and outlet pores (links), whereas the normal thinning process tends to remove most of

the points at inlets and outlets. I introduce a region-constraining rule to retain one voxel

in a local maximum SED (squared Euclidean distance) region at the corresponding

boundaries, even if this voxel is a simple point. In Figure 3-37, the preservation of two

boundary points, as endpoints of the resultant GT network, is illustrated.

Branch points: For some flow calculations, for example involving a diffusion

process, the medial lines of dead-end pores should be kept in the resulting GT network.

In Figure 3-38(a) a 2D dead-end pore is. shown. To retain the branch (dashed curve) its

length should be larger than a specified threshold. To achieve this, I calculate the

geodesic distance map from the pure topological medial line (black line in Figure

3-38(a», similar to the 2D calculation of Cardenes et a1. (2003[31]). A branch of the

MA is kept in dead-end regions (grey in Figure 3-38(a» that has a geodesic distance

larger than a threshold. A voxel in this region (a branch point) is retained if it has only

one 26-neighbour, and so is the medial line connecting it to the pure topological MA

through the thinning.

Anchor points: To process large 3D images, the images must be divided into sub-

images in which boundary link points must be retained to preserve a specific property.

These so-called anchor points are located on the boundary of a sub-image to integrate

the various sub-skeletons into a global skeleton.

Based on the criteria for thinning, different extracted skeletons are shown in

Figure 3-38(b) - (d) and in Figure 3-39. The further explanation will be given later.
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Figure 3-37: Retaining boundary points: (a) and (b) Slice of the 3D squared Euclidean

distance map on the inlet (and outlet). In each local maximum region one voxel is

retained, which means that two boundary voxels in the two rectangle regions depicted in

(a) are to be retained. Based on this criterion, an example of the skeleton with some

boundary voxels (and boundary links) is shown in (c).

(a) (b) (c) (d)

Figure 3-38: Skeletons with primary branches. (a) 2D example of a skeleton with a

branch (dashed curve), where the grey area indicates has a geodesic distance to the pure

topological MA (black curve), larger than a given threshold; (b) a pure topological GT

network without any branches; (c) and (d) skeletons with some branches based on

different thresholds.

(a) (b) (c)

Figure 3-39: Topological network. (a) Original 3D image with only one 26-component,

one cavity and three tunnels (Euler Characteristic is -1); (b) and (c) are two pure

topological networks of the image shown in (a).
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3.5.3 Algorithm Implementation

For simplicity, I first explain the extraction of the pure topological skeleton, i.e.

the topologically representative and centred skeleton, without geometry preservation

(See Figure 3-39). Then I take account of geometry preservation.

Extraction without Geometry Preservation

For a 3D binary image <P, the thinning operation is carried out as follows:

Computation of the Squared Euclidean Distance Map: First, the SED Map of an

image <P, a grey-scale image denoted by :MaJ{~, is calculated as described in Section

3.4, in which the value :MaN) of a foreground voxel p is the shortest squared Euclidean

distance from this voxel to the background of P, while the value of any background

voxel is zero. The distance map is used for controlling the thinning order to assure

centeredness of the GT network. During the thinning operation :MaJ{ iP) is updated when

points are deleted, i.e. removed from the foreground.

Two queues of object voxels, denoted by QJ and Q;, are used in the algorithm. All

candidate voxels are stored in QJ at the beginning. These voxels comprise the (layer of)

foreground voxels with current minimum SED. In Q; all voxels are stored that are

marked for deletion at the end of current iteration. Such points p in :Map are assigned as

infmite, i.e. :Map,p) =00.

Initialisation: At the start of the thinning process, QJ contains all voxels of current

minimum SED (usually 1) in 9t1aJ{~, and Q; is empty.

Thinning iteration steps: The thinning consists of the following steps:

Step 1: If QJ is empty, the thinning process is stopped, otherwise go to Step 2.

Step 2: Using our extended HKA, all voxels in QJ are clustered into a family F( QJ)

of all 6-components. Each 6-component in F( QJ) is divided into several pure 6-

components.

Step 3: For each pure 6-component S, check if (a) it is 26-connected to a marked

voxel in <P(i.e.interval detection) or (b) it cannot be determined as a simple set based on
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Theorem 3.2. Under these conditions, go to Step 5. Otherwise all voxels in S are marked

and all voxels in the black adjacent component are pushed into Qz.

Step 4: After processing all 6-components in F(Qj), all marked voxels in cP are

deleted (symmetrical deletion), which finishes one iteration. All voxels in Qz having the

new minimum distance value are pushed into Qj (which should obviously be emptied

before this operation); then go to Step 1.

Step 5: For each voxel p in a pure 6-component S, check if (a) pis 26-connected

to a marked voxel, or (b) not a simple point. If these conditions are not satisfied, p is

marked and all black 26-adjacent voxels ofp are pushed into Qz. Then go to Step 3.

Examples of extracted GT networks without endpoints (i.e. without geometry

preservation) are shown in Figure 3-38(b) and Figure 3-39(b) and (c).

Extraction with Geometry Preservation

For the end application, a GT network with geometry preservation (i.e. with

endpoints) is necessary. In addition to the above algorithm for extracting the general

network, the GT network must also include geometrical properties.

Removing isolated pores and cavities (pre-processing): Isolated pores and

floating solid particles (cavities) do not contribute to fluid flow and should be removed

before a network structure is constructed for a specific model. An isolated pore is a

black 26-component in porous images, and is usually thinned into a single voxel by

homotopic thinning. A cavity is a white (solid) 6-component in rock images, i.e. an

isolated solid particle floating in the PS, which produces a surface skeleton rather than a

curve skeleton. An example of a surface skeleton (spherical surface) is shown in Figure

3-39(b). Firstly, a 3x3x3 constructing element is chosen and a morphological opening

(dilating after eroding) is conducted in order to smooth rock images. Secondly, the

extended HKA is used to determine isolated pores in a rock image, and all the isolated

pores which do not link to image boundaries are then removed (i.e. replaced by solid).

A similar operation is performed to determine all isolated solid parts (cavities) and to

replace them by pores.
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Computing SEDM near boundariesi In order to retain boundary points on the

inlet and outlet, for calculation of the distance map I suppose that all voxels beyond the

boundaries are pore voxels.

Retaining endpoints: In Step 4 above, marked voxels are checked to determine

whether they occur on a boundary. If a marked voxel occurs on a boundary without any

other 26-adjacent voxels of larger or equal distance value, then it is retained as a

boundary point. Similarly, to retain branch points, all voxels with distance value larger

than the threshold are checked. If a marked voxel has no 26-connected pore voxels with

larger or equal distance value, then it becomes a branch point. Examples of extracted

GT networks with endpoints are shown in Figure 3-39(c) and (d).

3.5.4 Theoretical analysis

In the following, some basic definitions and notions which are closely related to

the study of digital topology are presented, and then I give the proof of the theorem.

(1) Basic definitions and notions

According to Kong and Rosenfeld (1989[76]), a 3D binary image q>isdefined as a

quadruple q> = (V, a, J3, CB), where 0/ c Z3 is a subset of 'the integer space Z3 in which a

point p is defined as a triple (PI. P2, P3) with integer coordinates. A point P is assigned a

value of 0 if it belong to background (white point P E <J,\<E, i.e. q:(p) = 0) or 1

(foreground or black pointp E <E, i.e. q{p) = 1), denoted by q{p) or q{p1.P2,P3)' During

the following image processing, a finite cubic lattice 0/= {(XI, X2, X3): LOi :::;Xi :::;LIi, Xi E

Z, i = 1,2,3) is used. <E is the set of all black points (or object points), and (o.,J3) is a pair

of adjacencies for foreground and background, respectively. (26, 6), (6, 26), (18, 6), and

(6, 18) are commonly used adjacency pairs, which are constrained by the Digital

Jordan's Curve/Surface Theorem (Rosenfeld, 1979[137]). We use 26-adjacency for

black points (in <E) and 6-adjacency for white points (0/\(13) because the adoption of such

a scheme generally leads to smoother skeletons (Kong and Rosenfeld. 1989[76]). More

details of the associated topology can also be found in the previous sections of this

thesis.
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Definition 1 - Adjacency and neighbourhood: For any two distinct voxels p and

q, three adjacencies (6-, 18- and 26-adjacencies) have been defined and discussed in

Chapter 3 (see Definition 3.3 and Equation (3.3». The corresponding neighbourhoods

of a point p are denoted as !JValp) (a = 6, 18, 26). For a set of points Se Z3, 'Ea(.s) =

upes!lVa. (P) is called the a-envelope of S.

Definition 2 - Path and component: A sequence of distinct points <Xo, XI ••• xn>

is said to be an a-path from point Xo to point Xn if Xi is a-adjacent to Xi-I for each 1 :$; i :$;

n (a = 6, 18, 26). Let S be a subset of Z3, then two points p and q are a-connected in the

set S if there exists a a-path in S between p and q, i.e. Xo =p, Xn = q, and Xi E S for each

o :$; i:$; n. A set S is a-connected if any two points in S are a-connected in S, in which S

is also called a a-component. For a 3D image cp= (V,a, p, CJ3), a a-component of 1]3 is

often called a black component, a p-component of 0/\1]3 is called a white component of P.

Definition 3 - Topological number (Bertrand, 1994[14]): For any voxelp, %.6(P,

CJ3) is the number of black 26-components of 1Vi6(P)nl]3\{p} and %(P,o/\I]3) is the number

of white 6-components in JVis *(p), in which each component contains at least one white

6-neighbour of p (see Definition 3.6). The set of such white points is denoted by q6(P)

called the geodesic neighbourhood.

Definition 4 - Simple Point: Bertrand (1994[14]) presented the following local

characterization of a simple point. Let p E Q3 be a black point in a 3D image Po Then, p

is a 26-simple point (a simple point for short) if and only if rri6(P, (3) = 1 and %(P, 'V'\(3)

=1.

Definition 5 - Simple Set: A set S of points is said to be simple in the 3D image <P

if the points of S can be arranged in a sequence in which each point is simple after all of

its predecessors in the sequence have been removed from <P (Ma, 1994[95]; Gau at el.

2003[50]).

The above definition is not quite useful for identifying a simple set directly from

original images, and we have not yet found a practical algorithm to identify a simple set

118



Chapter 3: Image Processing

even though some progress in this research has lately been made by Lohou and Betrand,

(2004[91] and 2005 [92]). In our algorithm, if a set cannot be recognized as simple, each

point in the set must be checked individually in the way of one point after another in our

algorithm. There are three additional concepts needed which are defined below .
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Figure 3-40: The Illustration of adjacent components and some examples of simple sets.

(a) An example of a local configuration of black and white circle voxels in the envelope

of 5 (triangle voxels); (b) i£B(5) is the set of all black circle voxels; 'E'1415(5)is the set of

all square and diamond voxels, and 'E'WI8(5) is the set of all white circle voxels, note that

grey voxels will be ignored according to definitions 6 and 7. Obviously there is only

one black adjacent component of 5, but two white adjacent components (set of squares

and circular voxels, set of only diamond voxels). (c) The set of {I, 2, 3} is a pure 6-

component (definition 8) but not if including 4 because that 2 is I8-connected with 4;

(d) All white 6-neighbours of triangle voxels are directly 6-connected ('E'WI8(5) is

empty). In (e) and (t), all object (pore) voxels are explicitly identified but all non-object

(solid) voxels are omitted for simplicity: (e) the pure 6-components (set of grey voxels)

can be simultaneously deleted because in their envelopes there is only one black

adjacent component and one white adjacent component; (t) the pure 6-components (set

of grey voxels) can not be identified as simple sets based on the theorem 1.

Definition 6 - Adjacent black component: Let 5 c 'V'and i£B(5) = (1£26(5)nc.B) \5

be the set of black points excluding elements of 5 in the 26-envelope of S. Each 26-

connected subset of 'Eti.s) is called an adjacent black component of S.
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Definition 7 - Adjacent white component (see Figure 3-40): Let Se 1-'and 1::'146(S)

= (~(S)(1(o/\cB»\S be the set of white points in the 6-envelope of S, but excluding

elements of S. Further, let 1::'WIs(S)=«1::IS(S)\~(S) (1 (o/\cB) \Sbe the set of white points

in the 18-envelope, of S , but excluding elements of S, and let each point in 1::'W)s(.5')be6-

connected to at least two points in 1::'Uti(S).Then each 6-connected set of 1::-u{S)= 1::'146(S)

U 1::'Wls(S)is called an adjacent white component of S.

Definition 8 - Pure 6-component: Let Se 1-'be a 6-component, then S is pure if

no two points in S are I8-connected.

From the above definition, it is apparent that S looks likes a "straight segment" in

three coordinate directions of the discrete space Z3 (see Figure 3-40(c)). So, for each

pure 6-component, there are exactly two terminal voxels and any other voxel is called a

non-terminal voxel.

(2) Sufficiency condition for a simple set

Theorem 3.2 - Sufficiency condition of simple set: Let S c ill be a pure 6-

component in an image P = (0/, 26, 6, ill). S is simple if the number of black adjacent

components of S is I and the number of white adjacent components of S is also 1.

Proof: From definition 8 for the black pure 6-component S, if an order, in which

all voxels in S can be deleted one after another without changing the topology of <P, can

be found, then this theorem will be proved, i.e. S is a simple set. Firstly, Iwill prove

that there always exists a simple point pin S, and then the remaining set s\{p} consists

of either only one black pure 6-component SI or two black pure 6-components SI and S2.

Secondly, Iwill prove that if both SI and S2 exist, the condition of theorem 3.2 will be

met.

Existence of a simple point p in So From definition 6 above, there exists at least

one point p in S such that the number of white 6-neighbors of p is larger than 0, denoted

by rrJp). Otherwise, ~(S) is empty, and hence 1::'WI8(S)is also empty, which disagrees

with the condition (i.e. the number of adjacent white components of S is I). If there is

not any point p in S such that 'l6(P) > I, then, based on this condition, all white 6-
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neighbours of such voxels of '16(P)=1 in 5 must be directly 6-connected (shown in

Figure 3-44(d», and obviously it must a simple set (Ma, 1994[95]). Suppose that there

is no such point oftJ'~.) >1 in 5such that it is a simple point. Having a pointp in 5with

tJ'Jp) > 1 means that the number of white 6-neighbours of p is larger than 1, and hence

the number of elements in 1£'U-ti(S)is larger than 1. If l£u'I8(S)is empty, then all elements

in 1£'U-ti(S)cannot be 6-connected becoming only one white component. Thus, 1£'WI8(S) is

not empty and, according to definitions 6 and 7, for each point in 1£'WI8(S) there are at

least two 6-neighbors in i£u6(S). Therefore, we have at least one point p in 1£'U-ti(5)such

that all its white 6-neighbours are 6-connected through some of the elements in i£.u18(5),

thus p is a simple point by defmition 4 above.

All ~compollents in SI{P) are pure and meet the conditions oj Theorem 3.2: The

remaining set 5\ {P} may be either one pure 6-component 51 (when p is a terminal voxel)

or two pure 6-components 51, 52 (when p is a non-terminal voxel), if the number of

elements of 5 is larger than 1. For the first case, according to definitions 6 and 7, we

have that f£J...5) = 1£n(51)and the number of white adjacent components of 51must be 1

because p is a simple point and p is also a 6-neighbour of one voxel in SI. For the

second case, there are only two possibilities that i£B(5)= f£B(51) = r&r!...52) or one of 51,52,

denoted by 5nl. which has the same adjacent black set as 5 (i.e. I£B (Snl) = 1£n(5»,

meanwhile the other one, denoted by J;,2.has an empty black adjacent set (i.e. I£B (J;,2)=

0). For $n2,the deletion sequence can be easily determined by starting from a terminal

voxel, so J;,2U {P} is a simple set (Ma, 1994[95]). For the same reason, the number of

white adjacent components of J;,Imust also be 1.

It is straightforward to prove that when 5 contains only one black voxel, this

theorem is equivalent to the definition of simple point (definition 4) and therefore the

theorem has been proved. Therefore, this theorem can be considered as being the

extension of local characterization of a simple point, but here only a sufficient condition

for the identification of simple set of a special set (pure 6-component) is given.

(3) Thinning based on theorem 3.2

Based on this theorem, in the GT network extraction, for a given candidate set 5,

all black 6-components in 5 will be firstly clustered using the HKA (Hoshen and
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Kopelman, 1976[59]). These clusters might be removed simultaneously rather than as

single points, depending on the following detection result. To determine black/white

adjacent components of the black 6-component, the algorithm starts scanning the

envelope of each black 6-component S'; if one voxel in S' is I8-connected to any other

scanned voxel in S', then the scanning process stops, and a pure 6-component is found.

Later, the number of black/white components can also be counted using the extended

HKA again. If this is a simple set, it will be labelled as a deletable set, otherwise each

voxel of this black 6-component will be checked for its simplicity.

In addition to the above improvement (i.e. checking the simplicity of a set rather

than a point), a further increase in efficiency is possible if other features of thinning are

taken into account. Because the simple point/set is only related to its neighbourhood or

envelope, i.e. the change of any point beyond the neighbourhood or envelop does not

affect the deletability. Thus, after an iteration of thinning, only those neighbouring

voxels are taken as a candidate set, which are 26-connected to a simple voxel or one

voxel in a simple pure 6-component, so the number of detections for deletability can

significantly reduced.

3.5.5 Examples of GT network

Illustration of the thinning processing: In the pore structure analysis, the GT

network (skeeton) of the PS of a 3D rock image is extracted, starting from the outside of

the PS, according to the squared Euclidean distances and certain rules to remove pore

voxels layer by layer. In Figure 3-41, this process is illustrated for a sandstone image.

Central location of the GT network: Using the same rock image, the GT

network of the PS is plotted in Figure 3-42. Visually the central location can be

recognised immediately.

GT network with adjustable branches: To retain the links to inlet and outlet,

some simple points on the border of an image should be kept. But improper rules could

lead to a lot of false links appearing in the resultant GT network. In Figure 3-43, the

first column shows two examples of this problem which is a side-effect of the retention

of border points. To tackle this problem, in the thinning algorithm, local maxima are

regarded as the candidates for retaining, but a check in the larger (e.g. 5x5x5)

neighbourhood rather than the 3x3x3 neighbourhood is carried out. During an iteration,
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all border voxels, that have local maxima in the corresponding SED map and have no

any other candidates in their SxSxS neighbourhoods, will be retained in the resultant GT

network. The result is shown in the second column in Figure 3-43.

Figure 3-41: A schematic illustration of the thinning process to extract the OT network

of a sandstone sample.
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Figure 3-42: The central location of the GT network (the PS is of transparency in grey

colour and the GT network coded in black).
------------------------------------, ------------------------------------,

I

(a) (b)

Figure 3-43: (a) Networks with many false links at the boundaries, when too many

boundary points are retained; (b) networks after checking its 5x5x5 neighbourhood

trying to find if there are any other border points which's distance value equal to or

larger than current border point and they are not deletable points at current iteration.

Doing so can ensure that as less as possible border points are retained, but some
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unwanted feature cannot be completely eliminated under the requirement of reasonable

efficiency.

GT network with cross sectional radii: The thinning order in the algorithm is

guided (controlled) by the SED map. This ensures the central location of the GT

network and it also provides information about the cross sectional radii at each skeleton

point (see Figure 3-44). The latter is very useful when numerical simulation of mercury

injection and computation of fluid transport properties through the network model are

carried out, because the distribution of cross sectional radii on the skeleton controls the

fluid flow to a large extent.

300
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180
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150
135
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90
75
60
45
30
15

SED 0

Figure 3-44: GT network with cross sectional radii. The value is coded by the Rainbow

colour system, in which the blue represents the smallest SED (i.e. 1) while the red

represents the largest SED value.

3.6 Conclusion
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The Euclidean distance transformation developed by Shih and Wu (2004a[154]) is

extended to 3D with several improvements including (1) simplifying the comparison of

SED values in a 3x3x3 neighbourhood, (2) avoiding complex decomposition of the

SED structure and (3) being easy to implement and to understand. These features in my

algorithm are achieved by introducing a simple SED relationship (3.16) between

neighbouring voxels and pre-calculating the distance coefficient (see (3.17) and (3.18».

Also, the efficiency is improved by only computing the new distance for the current

voxel through its already-accessed neighbours in the current scan, rather than through

the whole 3x3x3 neighbourhood. Moreover, I have explored other distance

transformations such as geodesic chamfer or Euclidean DT, which can be used to

compute the length of flow paths and to partition the pore space. Using geodesic

chamfer distance with CDC of (3, 4, 5), the upper bound on the difference between

chamfer and Euclidean distances is minimized (Borgefors, 1984[24]), and the maximum

achievable Euclidean distance limit without topological errors is guaranteed (Marchand-

Mailler, 1999[101]). For the geodesic Euclidean transformation, however, only an

approximation algorithm is given and more work needs to be done in pursuit of an

efficient implementation of the OED transformation.

The first very successful clustering algorithm was developed by Hoshen and

Kopelman ([59]) in 1976, which was extended into 3D later by themselves and other

researchers. This algorithm can produce both the clustering label and the number of

clusters after two-pass scans (forward and backward). If only the number of clusters is

required, only a single pass scan is necessary. In the pore structure analysis, different

adjacencies (26-, 18-,6- and A.-adjacencies) need to be considered for either foreground

or background or for different rocks (e.g. sandstone and siltstone). Thus, I have

extended the HKA for varying adjacencies and I have further improved its efficiency by

introducing a new data structure for storing temporary labels and its searching algorithm

with an object-oriented implementation.

To quantify pore connectivity, the basic features of the Euler number have been

intensively analysed and a new computation method has been introduced. The Euler

number is a single number describing the overall topology, i.e. decreasing negative

values indicate increasing connectivity. In Chapter 5, I explore its sensitivity to imaging

noise on three sandstone samples, which reveals instabilities (Figure 3-32). This

indicates that the Euler number cannot be simply used as a topological descriptor.

126



Chapter 3: Image Processing

Compared to Saha and Chaudhuri's approach (1995[139][139]), the computation of the

change in the Euler number in 3x3x3 neighbourhood is improved by establishing a

relationship (3.27) between topological numbers (they can be easily calculated by

invoking the extended HKA) and numbers of tunnels and cavities, rather than by

building up a look-up-table with 226 entries. To tackle the side-effect of tiny isolated

pores and floating solid particles on the Euler number, a more effective topological

descriptor will be presented in Chapter 5.

Taking into account topology-preservation, central location, thinness and

integration of geometry (e.g. primary branches, dead-end links and boundary links), I

have developed an efficient and robust homotopic thinning algorithm to generate the

pore GT-network (skeleton). Using the new strategy of symmetric delay deletion and

new data structures, the thinning process in my approach is controlled by descending

Euclidean distance order. The simplicity of a set or a point is checked using the

extended HKA. Compared to other thinning algorithms, in addition to topology-

preservation and thinness the significant different features of our skeletonization can be

stated as follows:

(1) Central location: Using the exact SED to guard the thinning process ensures,

to a large extent that the resultant GT-network is located in the central flow path of pore

channels. Besides, symmetric delay deletion and avoiding checking neighbours or

envelopes push the GT-network further near or at the central lines, even within equal-

distance regions.

(2) Efficiency: Checking the simplicity of sets rather than only points significantly

increases the number of deletable voxels at each iteration. And avoiding the checking of

the envelope of a simple set or the neighbourhood of a simple point within an iteration

reduces the number of detections for deletable voxels.

(3) Adjustable primary branches and boundary links: Using the pure topological

skeleton as central lines, a geodesic chamfer distance map can be computed in which

zeros are assigned to solid voxels, and the GCD value of pore voxels relative to the pure

skeleton are assigned to the pore voxel. Selecting a percentage of the maximal GCD

value in the distance map, voxels that have large enough GCD values and the

corresponding branches are retained in the resultant skeleton. Similarly, for each region

in the inlet or outlet (boundaries), only one voxel is retained leading to a boundary links

satisfying the 5x5x5 checking rule.
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Techniques

From the geometric point of view, the total pore space of a porous medium is

considered as a set of connected pores. Pore structure analysis then consists of the study

of geometric properties such as the pore size distribution. Taking topological features

into account, the pore space can be referred to as a network of pore elements, often

partitioned into nodes (pore-bodies) and bonds (pore-throats), with the nodes being

linked by bonds. Furthermore, to each network element (a node or bond) we can attach

a range of geometric attributes (e.g. shape factor, size, volume, coordination number

etc) based on a series of image processing operations conducted on 3D rock images.

With such a realistic pore network representation, we can idealise the pore space into a

network flow model that allows the prediction of transport properties. In this chapter, I

focus on three issues: (1) to partition the pore space into a set of pore elements; (2) to

compute the shape factor of each pore element; and (3) to construct a pore network

representation.

4.1 Partitioning the Pore Space into a Set of Pores

According to Dullien (1992[44]), pores can be defined as those portions of the

pore space (PS) confined by solid surfaces and planes erected where the hydraulic

radius of the PS exhibits local minima. Although this definition can lead to a good

partitioning of the PS using a multi-orientation scanning algorithm, apparently it can

result in the identification of too many false pore-throats (Zhao et al., 1994[193]). and

the definition does not provide a robust way to separate pore bodies from pore-

connection elements. This definition is also very time-consuming to implement in

discrete space (Liang et al., 2000a[84]).

If each pore in a porous medium is regarded as being of approximately spherical

shape, then the PS can be partitioned into a set of sphere-equivalent pores (plus or
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minus connection elements). This kind of approaches to partitioning of the PS into a set

of individual pores is often classified as a sphere-fitting technique in the literature. The

basic idea is simple (see Figure 4-1): a series of maximal inscribed spheres are fitted

into the PS, and then the PS is partitioned into the set of spherical pores represented by

those spheres.

-

(a) (b) (c) (d)

Figure 4-1: Illustration of sphere-fitting partitioning of the pore space. (a) The PS in a

porous medium; (b) three largest maximal inscribed spheres are fitted into at the very

beginning; (c) many smaller maximal inscribed spheres are further fitted into; (d) the

whole PS is occupied by a set of different spherical pores in the end.

Unfortunately, two major problems are bound to appear when the sphere-fitting

method is used to partition the PS. Firstly, the discrete spheres used in sphere-fitting

methods are quite coarse due to the nature of discrete space. In Figure 4-2, for example,

three discrete spheres (with radius of 0, 1, and 2, respectively) are used as three basic

sphere-like templates to be fitted into the PS. It is clear that this scheme could result in

a vague partition of the PS, because just a few small sphere-templates cover a very large

range of sizes of the PS. The three sphere-templates shown in Figure 4-2 contain 1, 7

and 33 voxels, respectively. And the number of voxels between the two spheres of radii

1 and 2 is 26. In general, any local region in the PS that consists of more than 7 but less

than 34 voxels will be classified as a pore of radius 2. In fact, a reasonable partition

could be chosen such that a local pore region consisting of more than l5 but less than 45

voxels is considered as a pore of radius 2. For this reason, i.e. that there may be a large

number of differently-sized pores that occur between two discrete spheres of radii rand

r + 1, the general sphere-fitting method produces a coarse partitioning of the PS, and the

pore size determined by this partition may have little value for pore structure analysis

when the imaging resolution is quite low.
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Secondly, too many false, tiny spherical pores are typically created. According to

Dullien (1992[44]), a pore should be surrounded by a ring (or a path) composed of the

solid. Otherwise, it should be regarded as a false pore. In Figure 4-3, some spheres

(discs in the drawing) are fitted into the remaining PS which is generated by removing

the two larger pores. These spheres are not surrounded by any rings within the solid

region in 3D. Such false pores are usually very small and may be composed of one

single voxel.

LJJ
(a) (b) (c)

Figure 4-2: The three discrete sphere-templates of radius 0, 1,2 respectively.

Figure 4-3: Some tiny spheres (filled) are fitted into the PS when large pores have been

removed from the PS.

To overcome these major drawbacks and to improve the algorithm efficiency, I

present a new version of the sphere-fitting method based on the skeleton and distance

map derived from 3D rock images. In this method, no predefined sphere-templates are

needed and the issues important to fluid flow through the PS are taken into account. The

latter consideration means that dead-end pores may not be regarded as individual pores

because no fluid flows through them. The partitioned PS is clustered into a set of

irregular-shaped large pores of distinct sizes rather than into spherical pores, and the

method avoids identifying a large number of false tiny pores.

4.1.1 Euclidean Distance Valued Skeleton
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Instead of directly operating on the original binary images of porous media, the

presented sphere-fitting partitioning method in this subsection is based on a composite

image which is generated by combining together two images - the skeleton (i.e. GT

network or MA) and the distance map.
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Figure 4-4: An example of coloured skeleton: (a) a 3D geometric object of regular

shape; (b) its coloured skeleton, where the colours are used to code the SEDs; (c) a part

of the coloured skeleton locating on the XY plane at the central point.

A pore skeleton is a ID entity that retains the pore topology, and it is used to

represent the central-lines of flow paths. Using skeletons rather than the original

images, many image operations can be implemented in a much easier and more efficient

way. In addition, the distance value at each skeleton voxel coincides with the radius of

the corresponding inscribed sphere, which makes the calculation of the inscribed radius

easy. Combining the skeleton and the distance map of a porous image together, the new

image is called the Euclidean distance valued skeleton, or coloured skeleton for

simplicity. For example, the skeleton of the geometric object shown in Figure 4-4(a) is

composed of three central-lines (Figure 4-4(b», and to each voxel on the skeleton a

distance value is assigned based on the distance map. In a distance map, for each

background (solid) voxel its distance is zero and for any other object (pore) voxel the

distance is defined as the SED to its closest background voxel. The colours in Figure

4-4(b) are used to represent different distance values along the skeleton, and a part of

the coloured skeleton on the XY plane is illustrated in Figure 4-4(c) where the SED

values are also given.
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4.1.2 New Sphere-fitting Approach

There are two steps involved in the new sphere-fitting approach. Firstly, the

Euclidean distance valued skeleton is partitioned into various regions of different sizes

based on the SED map. Such a region of skeleton voxels is a 26-connected component

and its equivalent pore size is determined by the maximum SED in the region. In the.

algorithm, after identifying all such regions the original coloured skeleton is modified to

another skeleton in which each voxel in a partitioned region has the same SED value.

Secondly, each region on the modified skeleton is expanded within the PS into an

individual pore, and the corresponding region on the skeleton is then called the

backbone of the individual pore. For example, the coloured skeleton (the central-line) in

Figure 4-5(a) is partitioned into three regions (segments) shown in Figure 4-5(b), and an

algorithm of volumetric partitioning is then used to expand the three regions into three

individual pores shown in Figure 4-5(c). In this method, pore sizes are determined by

the distance values and pore boundaries are formed by the normal planes and the

surfaces of inscribed spheres centred on the skeleton. The sphere-fitting process is

guided by a descending size order and a non-overlapping restriction. In other words,

larger pores are extracted before smaller pores and no overlapping between inscribed

spheres is allowed. These two features ensure that rigorous pores are extracted and no

false tiny pores appear in the resultant partitioning. This algorithm can be described as

two steps:

Step 1: Fitting and cutting out backbones of individual pores. Scanning the

coloured skeleton, a skeleton voxel can be found which has the maximum SED value.

Among all the skeleton voxels in Figure 4-6(a), the voxel p shown in Figure 4-6(b) has

the maximum SED value (i.e. 16), i.e. the inscribed radius at p is.Ji6 . Starting from

this voxel, a backbone can be generated by grouping in all skeleton voxels: (1) which

are connected with that voxel; and (2) whose distances dSE (i.e. dSE(P, q) = (q; _p,,) 2+

(qy - py) 2 + (qz - pz) 2) to the voxel are equal or less than the maximum SED value. In

Figure 4-6(b), all skeleton voxels within the maximal inscribed sphere (dotted circle) of

radius 4 centred at p are grouped as an individual backbone. Hence a modified skeleton

(Figure 4-6(c» is obtained by assigning the SED value of p to all voxels in the

backbone. Scanning the skeleton but skipping all skeleton voxels which have already
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been grouped into backbones, another voxel (e.g. q in Figure 4-6(d» having maximum

SED value can be found and a backbone is then grouped. This process repeats until all

skeleton voxels are grouped into different backbones.

(a) (b) (c)

Figure 4-5: Two steps of our sphere-fitting partitioning algorithm. (a) An Euclidean

distance valued skeleton; (b) the corresponding modified skeleton associated with

maximal inscribed spheres; (c) the set of individual pores. The different colours are used

to represent the SEDs of individual pores.

Step 2: Partitioning the PS into a set of individual pores. For each extracted

backbone on the modified coloured skeleton, some of its nearby pore voxels in PS are

further clustered as an individual pore if each of these pore voxels has the shortest

distance to the considered backbone than to any other backbone segment. In Figure 4-7,

the original coloured skeleton shown in Figure 4-6 is converted into a modified skeleton

of four backbones. These four backbones can then be expanded within the PS into four

individual pores by grouping the pore voxels one by one, and the sizes of these four

individual pores are determined by the labelling values (i.e. 16, 16, 13 and 4) on the

modified skeleton. Using the squared Euclidean distance, the pore voxel p shown in

Figure 4-7is clustered as belonging to an individual pore of size 16 because its distance

(25) to the backbone of label 16 reaches to the minimum among the four distances (25,

36,41 and 61). In the algorithm, the geodesic chamfer distance (see Equation (3.8» and

Figure 3-3) is used to approximate the geodesic Euclidean distance. Doing so ensures

that much higher efficiency can be achieved without losing necessary accuracy for pore

structure analysis. This is why I selected the geodesic chamfer distance transformation

(see Algorithm 3.3 in Chapter 3) to implement the grouping process.
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Figure 4-6: 2D illustration of how backbones are extracted from the skeleton. (a) A

skeleton with SED values; (b) a voxel p is found which has the maximum SED value

(16); (c) all keleton voxels which are connected to p and locate within the inscribed

phere (circle) are grouped as an individual backbone; (d) another voxel q of the

maximum ED is found and the corresponding backbone is obtained.

_~ 1

Figure 4-7: Pore voxels are clustered into individual pores of different sizes. A pore

voxel p is clustered into an individual pore of size 16 because the distance to its

backbone i the shortest one.
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4.1.3 Two Features and One Example

There are two features of the pore partitioning which are significantly different to

other published methods: being fluid flow relevant and accurate measurement of pore

size.

Based on the Euclidean distance valued skeleton of rock images, the PS can be

partitioned into a set of irregular pores of different sizes (see Figure 4-6(c» by applying

the GD transformation. Unlike the approach presented by Baldwin (1996[13]), my

approach extracts pores starting from the skeleton rather than just anywhere in the PS. A

clear relationship between pore partitioning and fluid flow paths is obtained. In fact, in

my method, only such regions on the main fluid flow paths (i.e. on the skeleton) can be

grouped into individual pores and any other regions in the PS can be either ignored or

combined into other pores. In other words, dead-end pores are not considered as

individual pores even though they are large. In Figure 4-8(a), the dead-end pore has not

been identified as an individual pore because the corresponding branch (the dotted

curve) does not appear in the resultant skeleton using the GT network algorithm, which

means that there is no fluid flowing through the dead-end pore. Using a network flow

model, we will see that the dead-end pores have of little effect on the prediction of

macroscopic transport properties, such as absolute permeability or conductivity.

More accurate pore size can be obtained using my algorithm. In Figure 4-8(b),

along the skeleton the region between the two maximal inscribed spheres can be filled

in by a smaller inscribed sphere (black disc). In general sphere-fitting methods, the size

of the corresponding pore at that position is usually labelled by a very small number

(i.e. the radius of the black disc). Obviously it is more reasonable if the size is

determined by the larger one (the length of the grey segment). In my algorithm, the pore

size is determined by the SED value at a skeleton voxel, i.e. the squared Euclidean

distance to its closest solid voxel, rather than by the radius of a real maximal inscribed

sphere. In addition, no discrete sphere-templates are used in the algorithm, which avoids

using discrete radii (1, 2 ....) as pore sizes. This scheme coincides with Thovert's

(1993[ 167]) instinct concept about pores, and also it finds a successful application in the

computation of pore size distribution.
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(a) (b)

Figure 4-8: Two features. (a) The dead-end pore is not considered as an individual pore

instead it is grouped into another pore because the dashed branch does not appear in the

resultant skeleton (the black curve). (b) The size of the remaining part on the skeleton

after removing two adjacent backbones depends on the inscribed radius (the length of

the grey segment) rather than the radius of the inscribed sphere (black disc).

As for an application of the partitioning method, a sandstone sample is used to

compute the pore size distribution. Figure 4-9(a) shows a 3D sandstone image where the

PS is visible and the solid matrix is transparent for simplicity. To highlight the idea of

the algorithm, Figure 4-9(b) illustrates that a subset of the PS is fitted in by a series of

maximal inscribed spheres. The green corresponds to the maximum pore size and the

red corresponds to the minimum. These inscribed spheres become the central parts

(including backbones) of irregular pores demonstrated in Figure 4-9(c), the irregular

pores are generated by expanding the central parts using the geodesic chamfer DT with

coefficients (3,4,5).

(a)

80

60

40

20

0-

(b) (c) urn

Figure 4-9: An example of our pore partitioning method. (a) The PS of a sandstone

sample (porosity is 20.6%, resolution is 5.6 micron); (b): a subset of the PS shown in (a)

is fitted in by a series of maximal inscribed spheres (different colours represent different

pore sizes); (c) the corresponding partitioned image of irregular and different size pores.
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As discussed above, the partitioning approach uses the skeleton to locate the main

flow paths and obtains a set of fluid-flow-relevant pores as its output. It also uses the

squared Euclidean distance on the coloured skeleton as the pore size rather than the radii

of discrete spheres (see Figure 4-2). This second feature leads to finer detail for relevant

geometric quantities, such as the pore size distribution. The pore size distribution (PSD)

contains the information about how different size pores occur in a porous medium,

which has been proved by Vogel and Roth (2001[185]) to be an important geometric

descriptor for better understanding of single-/multi-phase flow in porous media. For a

partitioned PS B in a rock image P(e.g. Figure 4-9(c», the PSD of pis defined as

PSD(r) = #{q E B : r -!::'r $ il{q) $ r + !::.r}1 #{q E B} (4.1)

where r represents the radius (size) of an individual pore and # denotes the operation of

counting the number in a set. In the resultant partitioned image P, a pore voxel q is said

to belong to a pore of radius r if r - !::.r < il{q) $ r + !::.r for an !::.r > O.

Figure 4-10 gives two PSDs of the sandstone sample shown in Figure 4-9(a). Using a

series of discrete spheres (see Figure 4-2), the general sphere-fitting obtains a coarse

PSD (the black curve shown in

Figure 4-10). It is clear that my algorithm gives much more detail about the PSD.
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Figure 4-10: Two PSDs of the sandstone sample shown in Figure 4-9(a).
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4.2 Calculation of Sbape Factor

It is stated by Patzek and Silin (2001[124]) that the hydraulic resistance to flow is

mostly in the narrow regions of the PS of a rock. Such a narrow region is commonly

represented by a surface which is perpendicular to the flow direction at a point, called a

cross section (CS). In a real rock, pore channels have complex and variable CSs. Often

they are idealised by triangles of arbitrary shape, rectangles and ellipses in many

network models. To quantify the PS or to construct a realistic network structure,

however, the complex shapes of CSs need to be described in a much more accurate way.

Mason and Morrow (1991[103]) proposed a dimensionless quantity, the shape

factor, to describe irregular shapes (e.g. CSs). The shape factor G of a shape S is defined

as its area A divided by its squared perimeter P, i.e.

(4.2)

Some regular shapes with constant shape factor are shown in Figure 4-11. Any

square has the shape factor of Jt ,and any circle has the shape factor of -f,r . For any

triangle, the shape factor ranges from zero for a slit shaped triangle to f[ for an

equilateral triangle.

c:::::::>
A

G=-p2

,, ,, ,, \ 1r G=-
16

\ ,, ,, ,

(0 1
G=-

41t

Figure 4-11: The defmition of the shape factor and three regular shape factors (Valvatne

and Blunt, 2004[170]).

In recent years, many properties and applications of the shape factor have been

investigated by many researchers (e.g. Patzek and Kristensen, 200 I[124]; Patzek and

Silin, 2001[125]). Its computation in 3D discrete space, however, becomes an important
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task in the pore quantification and network construction. To my knowledge, no one has

given a systematic study about the computation of shape factor for arbitrary spatial

shapes. In this section, I describe my efforts in pursuit of such a study.

(a) Cb) (c)

Figure 4-12: The computation of the shape factor. (a) Two CSs are extracted from the

3D PS; (b) a CS rt is projected on XY plane and a 2D shape n' is then generated; (c) the

cross sectional area A and perimeter P of n' is computed and transformed back ton.

With a 3D binary image of a porous medium, I propose three steps to compute the

shape factor: The first step is to extract the CSs from the PS; the second step is to

project those CSs to the coordinate planes (XY, YZ or XZ) in order to obtain the

corresponding 2D shapes; in the final step the area and perimeter of 2D shapes are

computed and transformed back to the original CSs. This process is demonstrated in

Figure 4-12, and the details will be given in the following three subsections.

4.2.1 Extraction of Cross Sections

To obtain a CS that is related to the conductance of pore channels, I choose the

planar region which is normal to the skeleton (i.e. GT network or the medial axis) of

the pore system. As described in Chapter 3, the skeleton extracted using my algorithm

has three important features which serve as the foundation of the shape factor

computing algorithm. They are: central location, topology-preservation and single-

voxel width. The first two features ensure that the extracted CSs are related to the fluid

flow, and the third one provides a much more intuitive way to determine the

orientations of the CSs. In this section, I present an efficient approach to determine the

normal orientation for the partition of individual CSs.

Normal orientation of cross sections
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Given a 3D binary image P of a porous medium and its skeleton SkI, the CS from

a skeleton point p is defmed as the intersection of the PS with a plane which is normal

atp. As described by Liang et al. (2000a[84]), in Figure 4-13, the dotted arrow (i.e. (Xq-

Xr, Yq - Yr, Zq - z-) is used as the orientation of the perpendicular plane at p, which is

normal to the skeleton atp. The equation of the plane is given by

Figure 4-13: A cross section from p normal to the skeleton.

(a)

(4.3)

!
I

(b)

Figure 4-14: A discrete CS (i.e. the black region) is extracted using the plane of y-2x =

O.(a) The normal orientation (solid arrow) of the perpendicular plane through the origin

of(O, 0, 0) is (-2,1,0) and the grey curve is the skeleton; (b) a part (the dashed line) of

the perpendicular plane locating on the coordinate place of Z = 0 will generate a

disconnected discrete line.

Using this equation, in 3D continuous Euclidean space E3
, bounded CSs can be

cut out from the PS. However, in Z3 discrete CSs are much more complex: at some
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points, the corresponding CSs may contain "holes". For example, with the

perpendicular plane (Figure 4-14(a» of normal orientation (-2, I, 0) through the origin

of (0, 0, 0), a CS (the black region) and a plane are cut out from either the PS or the

solid matrix. According to Equation (4.3), the plane can be represented by y - 2x = 0,

and then the corresponding CS on the XY -coordinate plane must look like the region

consisting of discrete lines shown in Figure 4-14(a). For the dashed line, its 2D

visualization is showed in Figure 4-14(b), and such a 3D CS of grey voxels is illustrated

in Figure 4-15. Apparently the CS plotted in Figure 4-15 is not a 26-connected

component because it only contains grey voxels rather than includes the black voxels as

well. Intuitively, a disconnected CS may lead to a significant error in the computation of

shape factor.

Figure 4-15: The cross section consisting of grey voxels is not 26-connected. It suggests

that the region including grey and black voxels should be the desired cross section.
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(b)

Figure 4-16: 2D illustration of a normal orientation and its approximated orientation.

The direction (black arrow) in (a) will result in a disconnected CS, whereas its

approximate direction (black arrow) in (b) leads to a connected CS.
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The reason that the extracted CSs may be disconnected suggests the way how to

choose the normal orientation. As shown in Figure 4-13, the normal orientation of the

plane at point p is determined by the positions of its neighbours q and r because the

skeleton can be interpolated to obtain the coordinates of any point (in continuous 3D

space) around p. In this way, to some configurations in the neighbourhood of a point,

the selected orientation at a point is bound to produce a disconnected region in 3D

discrete space. For instance, the grey direction (1, -2, 0) at p on the skeleton shown in

Figure 4-16 must generate disconnected CSs using Equation (4.3).

To solve this problem (disconnected CSs), one of the thirteen possible orientations

is used to approximate the normal orientation. The rule is that the angle between the

selected direction and the normal orientation reaches to the minimum over the thirteen

angles. The thirteen orientations, denoted by vectors ~ = (Xi, Yi, z.), i = 1,2 ... 13, are

demonstrated in Figure 4-17 within the 3x3x3 neighbourhood:N(p) at a pointp. Let V

be a normal orientation determined by two neighbours q and r of p, i.e. V = (v,, Vy, v,z)=

(qx - r-, qy - ry, qz - rz), the angle between Vi and V is then defined as

() «V;,v»i = arccos IV;IIVI . (4.4)

= 1, 2 ... 13. Thus, ~ is used to approximate V if e. ~ ~ for all j E {I, 2 ... 13} and j # i.

Having approximated the normal orientations, connected perpendicular planes can be

created using Equation (4.3). In other words, for each voxel in the PS, it is on the plane

if its coordinates meet the equation. Apparently, this checking is very time-consuming if

the PS is large. For this reason, a more efficient algorithm needs to be developed.

Instead of checking each pore voxel in the PS, the proposed algorithm generates CSs by

starting from skeleton points and keeps expanding the plane border layer by layer. This

is implemented using thirteen templates which are shown in Figure 4-17.

Given a 3D rock image (['= (0/, 26, 6, (}3), for each skeleton point p and an

orientation V, we can choose a template rrv from the thirteen templates in which only

black voxels are on the plane (see Figure 4-18).
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(a) (b) (c)

Figure 4-17: Thirteen normal orientation and perpendicular planes (templates). (a)

Three orthogonal orientations and their corresponding perpendicular planes; (b) Six

diagonal orientations and one of such perpendicular planes; Cc) Four corner-to-corner

orientations and one of such perpendicular planes.

Let Fran/Que, TmpQue and ResultSet be three queues used for tracing the

current front, temporary front and resultant perpendicular plane, respectively. In the

very beginning, FrantQue is initialised with the skeleton point p, i.e. FrantQue = {P}

and ResultSet = FrontQue.

a. TmpQue is emptied. For each point q in FrantQue, the template 'Tv is

virtually "placed" at q. If a voxel r at which a black point in 'Tv appears

locates in the PS, then r is pushed into TmpQue and ResultSet. This

process stops and goes to step (2) until all points in FrantQue have been

accessed in this way.

b. If TmpQue is empty, i.e. no pore voxels in the image space 0/ can be

found on the perpendicular place so that they are 26-connected with the

original skeleton voxel p, then this algorithm terminates, Otherwise,

FrantQue is swapped with TmpQue, and go to step (1).

The CS extracting algorithm can be further explained by an example shown in

Figure 4-19. Figure 4-19(a) shows a slice ofa 3D rock image on XV-plane where grey

voxels belong to the PS. Using one of the templates shown in Figure 4-18, the red

voxel is initialized into FrantQue and ResultSet. And then blue neighbours of the

central voxel are added into ResultSet. The process continues until no more pore

voxels can be found along the selected template. By the end of this process, purple

voxels are fmally identified. Therefore, the resultant CS ResultSet contains all coloured

voxels (Figure 4-19(b». In this way, I avoid checking a large number ofvoxels in the
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image space which do not locate on perpendicular planes, thus the algorithm achieves

a much faster extraction of CSs.
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Figure 4-18: Thirteen orientations and their corresponding discrete perpendicular planes

(templates) in the 3x3x3 neighbourhoods of central points. Each grey arrow represents a

normal orientation and each perpendicular plane consists of black voxels.

The Partition of Individual Cross Sections

Figure 4-20(a) shows that an orthogonal slice intersects with the skeleton (in red)

of a sphere-packed image. Using the algorithm described above, in Figure 4-20(b), all

CSs through any skeleton voxel of the same orientation will overlap each other and

become an extremely irregular shape. This phenomenon can be found in unconsolidated

sandstones.

To solve the problem, I simply assume that a CS should be equally shared by all

the skeleton voxels on the plane if they have the same normal orientation. In Figure

4-21, the CS should be considered as two individual CSs (see Figure 4-21(b) belonging
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to two skeleton voxels. This can be done by clustering each voxel on the original CS

into an appropriate CS associated with a skeleton voxel. For example, the white point in

Figure 4-21(c) on the original CS will be clustered into the CS associated with the blue

skeleton point, because it is closer to the blue point than to the black point. As usual, the

geodesic chamfer DT is used to implement this kind of partitioning of individual CSs.

For the CS shown in Figure 4-20(b), if we assume that all the skeleton voxels (red dots)

have the same orientation, it can be partitioned into a set of individual CSs (in different

colours) shown in Figure 4-20(c).
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(a) (b)

Figure 4-19: Illustration of the process how to extract a CS. (a) A slice of the PS in a

rock image (pore voxels are coloured in grey and solid voxels are coloured in white);

(b) using the template shown in Figure 4-18, starting from the red point, blue voxels are

firstly identified, and then green voxels etc.

(a) (b) (c)

Figure 4-20: Illustration of the partition of individual CSs. (a) An orthogonal slice

(green surface) intersected with the skeleton of a sphere-packed image; (b) the

perpendicular plane (pore voxels in green, skeleton voxels in red and solid voxels in

pink) at the corresponding position; (c) partition of individual CSs.

Geodesic chamfer distance

(a) (b) (c)

Figure 4-21: The partition of individual cross sections: (a) a CS (the white region) going

through two skeleton voxels; (b) Two desired individual CSs; (c) each pore voxel on the

CS is clustered either blue CS or the black one based on the comparison of the geodesic

distances to the two skeleton voxels.
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4.2.2 Projection of Cross Section

Considering a 3D discrete plane with one of the thirteen directions (Figure 4-18)

as its normal orientation, only three types of the perpendicular planes can be obtained:

edge-edge, face-face and edge-face (Figure 4-22). This classification is due to the

relationship between two adjacent voxels. On the edge-edge (face-face) CS, any two

voxels share at most one edge (face); and any two voxels on an edge-face share at most

either one face or one edge.

1/

1/

1/

(a) (b) (c)

(d)

Figure 4-22: Three types of 3D discrete perpendicular planes. (a) Edge-edge; (b) face-

face; (c) edge-face; (d) three kinds of spatial CSs (i.e. the grey surfaces).

Based on the classification of perpendicular planes, the spatial CSs can then be

classified as three kinds of cross sections. Figure 4-22(d) shows three spatial CSs (grey

surfaces) associated with only three voxels. In other words, the cross sectional area and

perimeter of a spatial CS should be computed based on the 2D grey shapes shown in

Figure 4-22(d). This coincides with the intuitive conception about a spatial planar shape

but makes it difficult to calculate the area and perimeter directly from the spatial CSs. A

simple way to solve this problem is to project CSs onto appropriate coordinate planes,

the calculation of the area and perimeter of spatial CSs is then shifted to the
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computation of the area and perimeter of corresponding 2D shapes on coordinate

planes. From Figure 4·18 I note that the thirteen discrete planes should be projected on

different coordinate plane. Some of them can be projected on any coordinate planes

(i.e. XZ or YZ-plane uch a the plane with the orientation of (1, 1, 1); others

may b pr ~ eted only on one or two coordinate planes. The requirement is that the

number of black pi el in a projected hape must equal to the number of black voxels in

the corre ponding patial . In Figure 4-23, if the nine black voxels on the spatial

plane ar projected on XZ-plane (or XY-plane), we can obtain the same number of

pixel (quar r triangle ). Ho e er, only three pixels (rectangles) can be obtained by

pr ~ ring th el on YZ-plane. In the following, I present an algorithm to

qui kly d l rmin th appropriat proj cting coordinate plane, in the case that there is

more than n co rdinate place a ailable, any of them can be chosen.

YZ

,0 ,0 ,0, , ,, " ,:~i::t;:.~;~;r~~l,,~
: : b ....?\.·.t···O······:·······;·····O

o --*~;~:t:~~~::t~~1'i,,/~
i,:. : O..··'!..•..·~·..·~···· ..l..··..T···O

. ·: ~ ~ ;Q: I [..••.;,·· :......• ~ ~..~.". : ~....,..'!' :
..u,·...····J.·····e..··..I.·..····1~...... • '

• t I' I t

:~: : A-
I I,

L::.. : L::..
I
I

L::J..

XZ

Figure 4-2 : Projection of a patial di crete plane consisting of only black voxels on

Xy - XZ- or YZ-plane.

v = ( It V Vz is a unit normal orientation .

• = 1 I' Ya= IVyl; Za = IVzl
coord= 3' llignore z-coordinate i.e. XY-plane
if •>

if B> Za coord=Y: // ignore x-coordinate, i.e. YZ-plane
} el e {

if Ya> Z; coord= 2' // ignore y-coordinate, i.e. XZ-plane
}
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At this stage, the area and perimeter of a projected shape on a coordinate plane

can be efficiently computed, which will be discussed in the next section. From the point

of view of analytical geometry, it is possible to obtain the corresponding values of

spatial CS by establishing an analytical relation between a spatial shape and its planar

shape. Unfortunately, the conversion is of little practical value because the border of the

CS i quite irregular and the computation of the perimeter is much more complicated.

To implify the conversion from 2D planar shapes to spatial shapes, I consider the

unit element (i.e. 0 el) which is commonly modelled as a cube. According to the

cIa sification of perpendicular planes shown in Figure 4-22, the unit shape of a voxel on

the corre ponding plane can also be classified as three general shapes, i.e. square,

rectangle and diamond, shown in Figure 4-24, however, all these three spatial shapes are

projected into th arne hape - square.

(b) (c)

Figure 4-24: Three types of spatial shapes and their corresponding projected shapes of a

voxel. (a) A quare on a face-face plane; (b) a rectangle on an edge-face plane; (c) a

diamond on an edge-edge plane.

Let Ac and P; represent the area and average edge length of a unit shape,

respectively, I can then compute three pairs of (Ac, Pc), called a projecting coefficient,

responding to the three types of unit shapes. The three projecting coefficients are given

in Figure 4-25. Using these coefficients, an algorithm will be developed to compute the

shape factor of spatial CSs.
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1 (Ac'~) == (Ji, (1+[2))

(Ac'~) == (.j3,Ji)
Figure 4-25: Projecting coefficients for three different types of unit shapes.

4.2.3 omputation of hape Factor of 2D Shapes

From the discussion in the last section, we know that any unit shape of a voxel is

projected into a quare on a coordinate plane(see Figure 4-24). Thus the 2D shape of

any patial can be regarded as an 8-connected component consisting of only squares;

uch an example is given in Figure 4-26(a).

(a) (b)

Figure 4-26: (a) A 2D shape on a coordinate plane; (b) four smoothing schemes.

In the computation of area and perimeter of a 2D shape, the key point is to

determine the border of the shape in order to get a better approximation. For a 2D shape

(e.g. Figure 4-26) its border's length being used to approximate its perimeter would be

overestimated and result in much smaller shape factor due to the perimeter square-

operation, which means that smoothing the borders of 2D shapes is necessary. In Figure

4-26(b, four smoothing schemes are illustrated, where the smoothed border is

c nsidered a the closed black curve and the corresponding shape is the region

surrounded by the closed black curve. The perimeter of a 2D shape is then determined

by the length of its smoothed border and its area is determined by the interior region of
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the smoothed border. In the following, I present an algorithm to compute the area and

perimeter of a 2D shape based on different smoothing schemes.

Gi en a hape S in Z2 I introduce four numbers to quantify the shape: the number

of pixel . the number of edges; the number of comers and the number of vertices, which

will b called bape numbers and are denoted by Np, Ne, Ne and N, respectively. The

four rele ant concepts (i.e. pixel, edge, comer and vertex) are illustrated in Figure 4-27.

on idering the 2D shape S shown in Figure 4-26(a), it is easy to obtain its four

hape number: p = 17 Ne = 30 Ne = 9 and N; = 13. Without smoothing the shape

border its area and perimeter are Np and Ne respectively. According to the definition of

hape fa tor (4.2) the hape factor of S can be computed by G = Np/(Nei (i.e. 0.01889).

In thi imp le computation of shape factor the outcome is not dependent on the other

two shap numb r v and ,but they will be involved in the calculation if the

111 thed b rders of 2D shapes are us d to calculate the area and perimeter.

An edge (Ne)

A orner { c
,,

Figure 4-27: A 2D shape of four pixels (squares) and its four shape numbers: Np = 4, Ne

= 10, Nc= 2 and N: = 6.

Let Av, Ae, P; and P; be four coefficients which are related to each vertex and

corner. Av and Ac tP; and Pc) are defined as the unit areas (perimeters) which need to be

added or subtracted when a vertex or a corner is considered. Four basic smoothing

schemes, denoted by SI, S2, S3 and S4, are demonstrated in Figure 4-26(b). In the

smoothing scheme S2, for example, for each vertex, Av (Pv) is the quarter area

(perimeter) of a unit circle which is the amount of area (perimeter) needed to be reduced

from the resultant area A (perimeter P) of the shape shown in Figure 4-26(a); for each

corner Ac (Pc) is the quarter area (perimeter) of a unit circle needed to be added in the

151



Chapter 4: Pore Structure Analysis Techniques

resultant area A (perimeter P). Thus, for different smoothing schemes, the

corresponding coefficients can be obtained and listed in Table 4-1.

Smoothing
cherne

Table 4-1: Five moothing schemes and their corresponding coefficients.

Therefore, for any 2D shape S with shape numbers (Np, Ne, Nv, Ne), its area A and

perimeter P can be estimated by

A = Np + NvAv +NcAc,

P = Ne +N'P; + NcPc.

(4.Sa)

(4.Sb)

For e ample, I compute the shape factor of the 2D shape shown in Figure 4-26(a)

under different smoothing schemes from So to S4 which are shown in Table 4-1, the

computed re ult is listed in Table 4-2. Note that the shape factor error between So and SI

reache to over 36% with respect to 0.02974. In general, for complex 2D shapes, i.e. if

one of v and e i quite large, the shape factor error can not be ignored in that case.

chemes So

P 30 23.5562 25.2788 28.0686 27.2102

17 16.5 16.785217.483316.3019A

G 0.01889 0.02974 0.02627 0.02219 0.02202

Table 4-2: The computation of shape factor of the 2D shape shown in Figure 4-26(a),

the shape numbers (Np, Ne, Ne, Ne) = (17, 30, 13,9).

At this stage, a question needs to be answered - which scheme is suitable for the

computation of shape factor of projected shapes in porous media. In Table 4-2, both

scheme S3 and S4 do not make much sense due to the different treatment for comers and

vertices. Hence only two positive coefficients are sufficient to reach a good

approximation, which are denoted by a and p, and called a smoothing area coefficient
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and a moothing perimeter coefficient, respectively. Equation (4.5) can then be adjusted

as

A =Np + a(Ne -Nv),

P =Ne - p(Nv +Ne).

(4.6a)

(4.6b)

Figur 4-2 : Geometrical explanation of the smoothing coefficients (a, p). S_ represents

a g neral mootbing eh m .

In I, a = 0.125 andp = 0.2929; in S2, a = 0.0537 andp = 0.2146.

Figure 4-2 give a geometrical explanation of the smoothing coefficients: a is the

area of th gr y hap , and p equals to the length of the dotted curve minus the length of

the black curve.

rom the definition of shape factor (4.2), the shape factor is much more sensitive

to th p rim t r (p) than to the ar a (a) because of the square operation. For this reason,

in order to arch for an appropriate p, we can assume that a = 0 when Equation (4.6) is

u ed to ompute the hape factor of everal regular shapes (Figure 4-29). In Figure 4-29,

the hap factors G are computed analytically because of the regular shapes, and then in

di crete pa e their hape numbers are counted. Using Equation (4.6b), the

corre pending moothing coefficients p can be estimated by

(4.7)

Comparing the smoothing schemes in Table 4-1, the scheme S2 seems to be an

appropriate choice in the sense of minimal errors for computing the regular shapes

shown in Figure 4-29.
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Right triangle Equilateral triangle Circle Star

G ::::0.0429. G ::::0.0481. G ::::0.0796. G::::0.0182.

.vp = 864 . .Yc = 164 N; = 972. N, = 175 Np = 1201, N, = 150 N; = 386, N, = 164

.Y, == 44 . .vc = 40; .v, = 50. S, = 46; N; = 51, Ne = 47; N, = 36. N; = 32;

r - 0.1619 r = 0.3317 r = 0.2772 r = 0.2885

(a) (b) (c) (d)

Figure 4-29: The selections of smoothing perimeter coefficients for approximating

different regular shapes.

To end this section. I describe an algorithm to count the shape numbers (sec

Figure 4-27), Let -P = {C< S) be a 2D binary image which contains a 2D shape S, and is

defined on a rectangle rcgion u' each pixel in S is called black, other pixels arc called

white. And we assume that any pixels beyond the image space q)are white. For any two

pixels P and q. they arc said to he -l-adjaccnt (S-adjaccnt) if p and q share an edge (an

edge or a face). Also q is said to be a -l-ncighbour (4-neighbour) of p if p and q are 4-

adjacent (Svadjaccnt but not -l-adjaccnt). In Figure 4-30, for example, qi, qs, qs and q7

are 4 4-neighbours of p, and qi, qs. q6 and qs are 4 8-neighbours of p.

q6 q7 qs

q~ P q5

ql q'! q3

Figure 4-30: The 2x2 neighbourhood of a pixel p.

Algorithm for counting shape numbers

Nr, Ne, N" and Nc are initialised as zeros.

For each pixel PES {

NI' ++
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For each 4-neighbour q of p (i.e. q E (q2, q4, q5, q7})
if q is a white pixel, then Ne++

For each 8-neighbour q ofp (i.e. q E (q], q3, q6, q8}){

if q is a white pixel then {
Let Stp,q) be the 2x2 neighbourhood that contains p and q.
lfthe other two pixels in S(p,q)l{p,q} are black then Nc++
lfthe other two pixels in S(p,q) I{p, q} are white then Nv++ }

}}

As an example, let us consider a CS extracted from a real rock image. In Figure

4-31, the 2D shape consisting of all pixels labelled by value 1 is created by projecting a

spatial CS on the XZ-plane. Using the shape number counting algorithm, we have (Np,
,

Ne, n; Ne) = (391, 148,43,39).

'1 1 1 1 1
1 '1
1 1
1 1 1 1

Figure 4-31: A cross section extracted from a rock image.

Using different smoothing schemes (Table 4-1) and Equations (4.6), the shape

factors of the CS shown in Figure 4-31 are listed in Table 4-3.
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Smoothing schemes a p G

So 0 0 0.0178

SI 0.125 0.2929 0.0254

S2 0.0537 0.2146 0.0229

S. 0.0894 0.2538 0.0241

Table 4-3: Shape factors of the cross section shown in Figure 4-31, where S. is a new

smoothing scheme by averaging their smoothing coefficients of SI and S2 (i.e. a =

(0.125 + 0.0537)/2 and p = (0.2929 + 0.2146)/2), G is the shape factor.

In a rock image. fr0111a skeleton point p, we firstly determine the orientation of a

discrete perpendicular plane based on its local configuration of skeleton voxels, and an

individual spatial CS S' is then extracted from the perpendicular plane applying the

partitioning approach. Secondly, the CS Sf is projected onto a proper coordinate plane

and a 2D shape S with shape factor of G is obtained. Using the algorithm and the

pro_jl'cting coefficients (figure 4-25), finally. after the shape numbers are counted the

area and perimeter of Sf is given by

A(S') = [.Vp - a (Ne -Nv)] Ac,

P(S') = [N~ - P (lVe + Nv)] Pc.

(4.8a)

(4.8b)

Therefore, we can compute the shape factor of a spatial CS Sf by

Np-tc(J{,-N.,) G
[~ -AA{.+A(,) f (4.9)

Projecting coefficients Ac = 1P; =1 A~= 1.414 P; =1.207 Ac = 1.732 P; =1.414

Shape factor 0.0229 0.0222 0.0198

Table 4-4: Shape factors of the spatial cross section which is projected into the 20

shape shown in Figure 4-31 for three projecting coefficients (Figure 4-25).

For the 20 shape shown in Figure 4-31, let us consider three cases in which the

20 shape may be generated by projecting a spatial CS with three different projecting
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coefficients (see Figure 4-25). Using (4.9) and smoothing scheme S2, we can obtain the

following result (Table 4-4).

4.3 Construction of Network Structure

With a 3D binary image of a porous medium at hand and a wealth of relevant

image processing algorithms available, it is time to predict the flow properties. One

simple method is to use a network flow model. We can construct a realistic network of

nodes linked by bonds directly from a porous medium, and then feed the extracted

network structure into one of the network models (e.g. Lopez ct al. 2003[93]; van Dijke

and Sorbic, 2002[ 171D. Network models can then predict some macroscopic properties

of the porous system, such as capillary pressure or relative permeability, by applying

rules that ,S(l\crn the transport and arrangement of fluids in ll(llk:, :IJll~hl'mk .\par(

from being used in a network model, the extracted network from a 3D rock image can

be also used to calculate some f1uid transport properties based on averaging laws.

I [ow to convert complex pore systems into node-bond network structures then

becomes an important issue. The general procedure could contain two major steps.

Firstly, the PS in rock images is partitioned into a network of individual nodes

connected together by bonds. Secondly, some geometric and topological properties,

which are necessary for and dependent on a specific network model, arc assigned to

each network element. This can be done by extracting the corresponding quantities

(such as shape factor, radii, length, volumes, connecting list etc) from rock images. In

this section, I discuss two relevant issues in order to facilitate the pore structure analysis

technique: partitioning the PS into a network and characterising the network elements.

4.3.1 Partitioning the Pore Space into a Network

Having a Euclidean distance valued skeleton (see Figure 4-4), i.e. the GT network

on which a squared Euclidean distance value is assigned to each skeleton voxel, of a

rock 3D image, the identifying process of nodes and bonds can be summarised as three

major steps: (l) to classify all skeleton voxels as either node-skeleton voxels or bond-

skeleton voxels; (2) to merge node-skeleton voxels into various backbones of individual

nodes; (3) to expand the skeleton voxels within the PS into individual nodes and bonds.
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(1) Classification of Skeleton Voxels

According to Thover et al. (1993[167]), the skeleton voxels can be simply

classified into two groups: edges and vertices, which are defined as composed of voxels

with exactly two neighbours (16-adjacency) and three or more neighbours, respectively.

This typical classification was analysed by Liang et al. (2000a[84]), and some

drawbacks were pointed out such as the identification of only one vertex. To address

these problems, based on the concept of A-adjacency and using the corresponding rules

a correct classification method was presented, and A-adjacency will be also used in my

approach.

In 3D discrete space, two distinct voxels p and q are said to be A-adjacent if dE(p,

q) = 1, or if dE(p, q) = .fi and no black (pore) voxels exist which are 6-adjacent to p

and q, or if dE(p, q) = .J3 and no black voxels exist which are IS-adjacent to p and q,

where dE(p, q) is the Euclidean distance function (i.e. £2 (p, q) in (3.4)). Some

examples of A-adjacent are given in Figure 4-32.

(a) (b) (c)

Figure 4-32: Illustration of A-adjacency. (a) Three A-adjacencies between p and q, q and

s, sand t; (b) p is A-adjacent to q because they are I8-adjacent and no 6-neighbours

between them, however, p is not A-adjacent to r even though they are 26-adjacent

because of the existence of q between them; (c) a A-adjacent path (Liang et al.

2000a[84]).

Based on the concept of A-adjacency, Liang et al. considered the following

defmition with regard to the classification of skeleton voxels as nodal or link points.

Definition 4.1: Skeleton points are classified as link points if they have exactly

two A-adjacent neighbours. Skeleton points are classified as nodal points if they have

three or more A-adjacent neighbours.
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There are two drawbacks with this definition to classify skeleton voxels. The first

one is that it ignores two cases when a skeleton point has no neighbour or only one 'A.-

adjacent neighbour. In the generation of the GT network, an isolated pore would be

shrunk to be a single voxels if it does not contain any cavities, and the boundary links

and primary branches would result in the generation of endpoints in the resultant

skeleton, which have only one neighbour. The second problem is that it may be unable

to distinguish different pore channels. Figure 4-33(a) shows the case in which the four

pore channels can not be obtained by identifying the central voxel as a nodal point

because the skeleton excluding the central point is still 26-connected. However, the

major drawback is that there is no consideration of inscribed spheres at skeleton voxels

when the classification is being carried out. Apparently, the backbone of a nodal pore

should contain all skeleton voxels in the PS which locate within its maximal inscribed

sphere demonstrated in Figure 4-33(b).

(a) (b)

Figure 4-33: Illustration of partition issues. (a) Four pore channels (in 4 different

patterns) which can not be distinguished by clustering the remaining skeleton voxels

after removing the central voxel; (b) The backbone of a nodal pore should contain all

skeleton voxels in the maximal inscribed sphere of the centre point.

To address the problem with Definition 4.1, I introduce the following definition

and rule to classify skeleton voxels.

Definition 4.2: A skeleton point (voxel) is said to be an isolated, or terminal, or

link or junction point if it has 0, or 1, or 2, or at least 3 'A.-adjacentneighbours.
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Rule 4.1: All link skeleton voxels are clustered as bond-skeleton voxels, and any

other skeleton voxels are clustered as node-skeleton voxels.

Two examples of the classification of skeleton points according to Definition 4.2

are shown in Figure 4-34. In Figure 4-34(a), there are four junctions (in orange), four

link points (in blue), three terminal points (in grey) and one isolated point (in turquoise).

After clustering the skeleton voxels using Rule 4.1, a set of original node-skeleton

voxels can be obtained. To solve the second problem of Definition 4.1, I further expand

the node-skeleton voxels. As suggested in Figure 4-33(b), all skeleton voxels within a

maximal inscribed sphere centred at a node-skeleton voxel should be further identified

as new node-skeleton voxels. The basic process is demonstrated in Figure 4-35, III

which all skeleton voxels on the red curves are re-identified as node-skeleton voxels.

(a) (b)

Figure 4-34: Classification of skeleton voxels: (a) an isolated point (light green), three

terminal points (grey), four link points (light blue) and four junction points (orange,

junctions); (b) a skeleton of the PS ofa sandstone sample with four colours representing

four types (i.e. isolated, terminal, link and junction) of skeleton voxels.

(a) (b) (c)

Figure 4-35: Illustration of expanding node-skeleton voxels: (a) a skeleton, (b) an

original node-skeleton voxel, (c) newly expanded node-skeleton voxels (in black).
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In the construction of the network structure, all node-skeleton voxels need to be

grouped into the backbones of individual nodes. However, the extracted node-skeleton

voxels are not separated naturally: most of them are 26-connected indeed. Hence, we

need to develop a proper rule to merge node-skeleton voxels to find "real" backbones of

nodes and bonds.

(2) Merging Node-Skeleton Voxels

Applying Definition 4.2 and Rule 4.1, any skeleton voxel can be clustered into

either a bond-skeleton or a node-skeleton voxcl. For convenience, these newly classified

node-skeleton voxels are called original node-skeleton voxels. And then their spatial

positions are used as the centres of maximal inscribed spheres and the Euclidean

distance values at these centres in the coloured skeleton (e.g. Figure 4-4) arc used the

radii of the maximal inscribed spheres. Having carried out the classifying and

expanding operations, a set of original and new node-skeleton voxels can be found in

the coloured skeleton. In order to create individual nodes. we need to further merge

some node-skeleton voxels together if they are connected and quite close, and then

partition the PS based on the clustered skeleton voxels. In the following, I discuss some

issues which are closely related to the correct merging of node-skeleton voxels and

present rules to address these issues.

The first issue is that only very close original node-skeleton voxels should be

merged together. In Figure 4-36, p and q are two original node-skeleton voxels and the

skeleton voxels within the maximal inscribed circles (spheres) are new node-skeleton

voxels by expanding p and q. Intuitively, all the node-skeleton voxels in Figure 4-36(a)

should be merged into just one individual node-backbone (part of a resultant node on

the skeleton). All the node-skeleton voxels in Figure 4-36(b), however, should be kept

as two node-backbones because they are not close enough.

The second issue is that all node-skeleton voxels In a single node-backbone

should be 26-connected within their maximal inscribed spheres. In Figure 4-37, p and q

are very close but they are not 26-connected within their maximal inscribed spheres.

Therefore, these node-skeleton voxels should not be merged into a single node-

backbone.
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The third issue is to ensure that not too many original node-skeleton voxels are

merged into a single node-backbone, which is also called a "snowballing" phenomenon

by Sheppard at el. (2005[153]). In Figure 4-38, all node-skeleton voxels should be

merged into a single node-backbone when we only consider whether or not candidate

node-skeleton voxels are close enough. This rule means that the so-called

"snowballing" would occur. For some samples, without control of snowballing, a very

large node could be found in the resultant network of nodes and bonds.

The last issue is that an individual node-backbone should be a 26-component

without cavities and channels, in other words, the extracted network must be topology-

preserving. Figure 4-39 shows the case when a tunnel appears nearby four very close

original node-skeleton voxcl.
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(a) (b)

Figure 4-36: (a) Merging all node-skeleton voxels within the two spheres (circles) into

one node-backbone or (b) keeping them as two individual node-backbones.

Figure 4-37: p is not 26-connected with q within the maximal inscribed spheres.

Figure 4-38: Too many node-skeleton voxels are merged into a single node-backbone.

Figure 4-39: There is a tunnel (the central region) surrounded by four close original

node-skeleton voxels.
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Based on the distance values at original node-skeleton voxels, to tackle the four

issues above, I introduce an algorithm for merging node-skeleton voxels into individual

node-backbones.

Let CSkl(P) (see Figure 4-4) be the Euclidean distance valued skeleton ofa binary

rock image P = {o/, 26, 6, cB}. CSkl( P) is generated by combining the GT network

(skeleton) and distance map of P together, i.e. each voxel p with CSkl(P) > 0 is a

skeleton voxel and CSkl(P) is the shortest squared Euclidean distance to the solid

matrix. Applying Definition 4.2, all skeleton voxels are clustered as either original

node-skeleton or bond-skeleton voxels. Let NS( P) represent the set of original node-

skeleton voxels. For any two voxels p and q in NS( P) (Figure 4-40), rp and rq are the

squared radii of their own maximal inscribed spheres, denoted by IS(P) and IS(q),

respectively. It is clear that rp = (,S/.;/(},) and rq = C5'kl(q). Let d(p, (1) be the squared

Euclidean distance betweenp and q, thus the two spheres can be described by IS(p) = {o

E ([3: d(o, p) :S rp } and IS(q) = {o E ill: d(o, q) :s rq }. Let E: > 0 be a predefined

coefficient used for avoiding the "snowballing". The smaller c is, and the less chance

node-skeleton voxels are merged together. Therefore, for different porous media,

different values can be used as E: to control the node size (avoiding generating too large

individual pores).

Figure 4-40: Two original node-skeleton voxels p and q, two squared inscribed radii rp

and rq and the squared Euclidean distance d(p, q) betweenp and q.

Algorithm for merging node-skeleton voxels
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For each pair of two original node-skeleton voxels p and q in NS( p) {

Let IS(p, q) be the set of skeleton voxels which locate within either IS(P) or
IS(q),IS(p, q) = { 0 E e. CSkl(q) >0 and 0 E IS(P) uIS(q)}.

If p is not 26-connected to q in IS(p, q), i.e, there is at least one 26-path in
IS(p, q) between these two voxels, then the procedure continues. Otherwise,

If d(p, q) - max(rp, rq)> Gmin(rp, rq)/2, then the procedure continues.
Otherwise,
If IS(p,q) contains cavities (i.e. completely enclosed solid components) or

tunnels, which can be simply determined by computing its Euler number, i.e.

X(IS(P,q)) = 1 when all isolated solid particles have already been removed before
generating GT network, then the procedure continues. Otherwise, merging all
voxels in IS(p, q) as an individual pore-bone.
}

(a) (b)

Figure 4-41: The node-skeleton voxels (in orange and red) in (a) are merged into one

node-backbone (in red) in (b); and the remaining skeleton voxels (in blue) in (a) are

clustered as six different bond-skeleton voxels (coded by different colours) because they

are six components.

(3) Partitioning the Pore Space into Network of Nodes and Bonds

Based on the coloured skeleton of the PS in a porous medium, the skeleton voxels

are firstly classified as four types of voxels applying Definition 4.2, and then are

clustered as (original) node-skeleton and bond-skeleton voxels using Rule 4.1.

Secondly, new node-skeleton voxels are generated by expanding the original node-
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skeleton voxels along the skeleton within corresponding maximal inscribed spheres.

The new and original node-skeleton voxels are then merged into individual node-

backbones utilising the merging algorithm. Furthermore, by removing all node-

backbones from the skeleton, the remaining skeleton voxels are clustered as different

bond-skeleton voxels in terms of 26-connected components using our component

labelling algorithm. The procedure end result is demonstrated in 2D and in 3D in Figure

4-41.

4.3.2 Characterising Network Elements

Having constructed the network of nodes and bonds from the PS in a porous

media, apart from the shape factor which has already been discussed in section 4.2,

more characteristics (c.g. \"01~1l11e,radii, length, connected relation ctc.) are needed to

assign to the network elements (nodes or bonds). These characteristics can be estimated

to construct an ideal network based on experimental results to investigate some

relationships between the permeability and the pore size distribution. However, the

construction of realistic networks directly from 3D images of porous media is much

more demanding. Hence, in the following, I explore how to modify the network

structure to meet the requirements for different network models and how to measure

most of the commonly used quantities from rock images.

Modifying the network structure

In essence network models usually simplify the realistic network elements to a

less-rich representation, thus obtaining a regular network. For example, individual

network elements are often regarded as uniform ducts with circular, triangular or square

cross sectional shapes. Meanwhile some network models (e.g. Lopez et al. 2003[93])

are not limited to regular network lattices, and instead are based on the voxel

representation of the pore space. Among these two types of network models, their

network structures are significantly different. Therefore, for a specific network model,

we need to transfer the extracted PS (as a GT network of nodes and bonds) to fulfil the

specific structure requirements of the target application.
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As an example, let us consider the Imperial College (IC) network model

(Valvatne and Blunt, 2004[170]) to show some of the issues involved in modifying the

realistic original network. In the following, I call the IC network structure an ideal

network and the original GT network a realistic network (the GT network is extracted

from rock images under no assumptions about the characteristics, which means that

very complex structures may appear). In Figure 4-42, some unusual phenomena are

demonstrated.

(a) Realistic pore network (b) Ideal pore network

Figure 4-42: The transformation from a realistic pore network to ideal pore network,

where discs represent nodes and curves represent bonds.

For a node in a realistic pore network, there may exist 0, 1, 2 or more bonds

connected with this node, which correspond to isolated pore, dead-end pore, channel

pore and nodal pores. In the IC network model, pores on the inlet/outlet of the system

are not allowed. For a bond, it may connect with one, two and even more pores in a

realistic network. This actual arrangement has to be adjusted to meet the model

requirement, which specifies that a bond must link two and only two distinct nodes

(pores), i.e. the red bonds in Figure 4-42 are not allowed to exist in the resultant ideal

network structure. And note that the rules of the IC model state that a pore cannot be

connected with itself by a bond, and two pores can be connected by only one bond. For

this reason, the following rules are given to convert a realistic network structure to the

IC network structure.

1. Create a virtual node (pore-body) at the terminal point of a bond if the bond is

connected with only one node;
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2. Remove all redundant bonds between two nodes where the inlet and outlet are

virtually regarded as two nodes of infinite size;

It is not known what effects are introduced in this transformation (if any) by the

removal of redundant/duplicate bonds, or whether certain bonds are critical, while

others are not. These issues are relevant for the conversion to this specific network

model, but it may not be necessary to address them if the target application does not

have those restrictions and can represent the realistic GT network.

Measuring properties of network clements

There are two kinds of properties - connectivity and geometry. The topological

property can he described by a graph in the Ie network model. Using my approach. the

network of volumetric nodes and bonds can be extracted from the PS. For a node in the

extracted network, it is easy to determine the directly linked bonds by checking the

neighbourhood of each voxel in the node volume. After finishing the check, all di fferent

bonds (different sequence numbers) can be identified and then a graph can be

established. In my implementation, I usc the node-backbones and bond-backbones

rather than the volumetric nodes and bonds for the check. Doing so, most of the false

links can be avoided.

The geometric properties of network elements include the shape factor, volume,

radii and length in the Ie network model. In the following, I introduce some skeleton-

based techniques to measure the shape factor and radii of bonds and nodes or to

establish the connection graph. As for volume and length, they can be simply derived by

counting the number of voxels.

Shape factor of bonds and nodes

From each skeleton voxel, a CS can be cut off from the PS using the approaches

described in Section 4.2 according to its local structure (neighbourhood). The number of

CSs from a skeleton voxel is determined by the number of normal orientations. For

example, only one normal orientation can be obtained if the skeleton voxel has only two

26-neighbours. And more than one normal orientation can be obtained if the skeleton

voxel has more than two 26-neighbours. If only one neighbour of the skeleton voxel
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exists, I use as the normal orientation the direction from the skeleton voxel to the

neighbour. If a skeleton voxel has no 26-neighbour, anyone of the thirteen orientations

(see Figure 4-18) can be selected.

For a 3D rock image P, we can extract a network of nodes and bonds from Pusing

the approach described above. Let Bsk1( P) be the set of all bond-skeleton voxels in the

extracted network. Each 26-component in Bsk1( P) is then considered as the bond-

backbone, {PI. pz ... Pm}, of an individual bond Bd. From each skeleton voxel Pi (black)

of Bd, we can cut off n, CSs, i.e. Cs1, Cs; ... CSni. For each CS Csj,} = 1 ... ni, further

we can compute its shape factor G(Csj) applying Equation (4.9). And the shape factor at

pi, denoted by Gi, is then defined as the harmonic (or arithmetic) mean of all G( c.\'j) for}

= 1 ... IIi, i.e.

(un)

Therefore, the shape factor of a bond Bd can be defined as

(4.11 )

As for a node, the computation of its shape factor is similar to that of a bond. But

the di ffcrence is that I only compute the shape factor for the origin of a node rather than

for all node-skeleton voxels of the node. Applying Definition 4.2 and Rule 4.1, a set of

original node-skeleton voxels can be identified, in which some original node-skeleton

voxels generate independent node-backbones and others are merged together to become

the node-backbones after invoking a merging operation. If the backbone of a node

contains only one original node-skeleton voxel, then the original node-skeleton voxel is

defined as the origin of the node, otherwise anyone of original node-skeleton voxels in

a node can be selected as the origin. For each node, the shape factor at its origin can

then be computed using Equation (4.11).

Radii of bonds and nodes

There are two types of quantities that can be used to characterise the radii of nodes

and bonds. The first one is the hydraulic radius which is defined as the cross sectional

area divided by the corresponding perimeter. Obviously, the measure can be done in the

same way for computing the shape factor described above. The second one is the radii
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of maximal inscribed spheres, called inscribed radii for short. In the following, I focus

on the computation of inscribed radii of nodes and bonds.

Given a rock image P and its Euclidean distance valued skeleton CSkl( P), let

Skl(Bd) represent the backbone of a bond Bd, i.e. for each P E Skl(Bd), we have CSkl(P)

> O. According to the definition of the distance map in CSkl( p), the distance value at a

pore voxel is defined as the squared Euclidean distance to the closest solid voxel.

Therefore, the radius of the maximal inscribed sphere at a skeleton voxel p, denoted by

R(P), is equal to the square-root of the corresponding distance value, i.e.

R(p) = .JCSkf(p) . (4.12)

Therefore, for a bond Bd and backbone Skl(Bd) = {PI, P2 '" Pm}, the inscribed

radius of Bd can then be calculated by harmonic (Of arithmetic) mean aIl1011.'!P. i = 1, 2

.. , m, Le.

R(Bd) = mlLi = I ._m~CSkl(pJ . (4.13)

As for a node, its inscribed radius is simply defined as the square-root of the

distance value at its origin.

4.4 Conclusion and Discussion

In this chapter, (1) an efficient skeleton-based sphere-fitting approach is

introduced; (2) a comprehensive investigation on the computation of shape factor is

carried out; and (3) an extraction of realistic network is developed based on the geodesic

chamfer distance transformation using the pore skeleton as searching structure.

The new sphere-fitting method provides sphere equivalent pore sizes, which

significantly differ from the cross sectional size (see Figure 5-6 and Figure 5-11) and in

more detail (see Figure 4-10). The sphere equivalent size is used to quantify the pore

volume while the cross sectional radii are utilized to characterize the pore-throat sizes,

since the cross sectional radius is defined as the shortest Euclidean distance from a

skeleton point to the pore solid surface.

Based on the central location and the SED values of the pore skeleton, an efficient

and accurate computation of the shape factor has been developed. This computation
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starts with extraction of spatial cross-sections by determining an optimal normal

orientation and by using a fast template transporting algorithm. Then spatial cross-

sections are projected onto coordinate planes to simplify the calculation of the areas and

perimeters of the corresponding 2D shapes, which is done by introducing an optimal

contour smoothing scheme. Finally, the shape factors of 2D shapes are converted back

to the shape factors of the original spatial cross-sections using the projecting

coefficients. For regular shapes, the computed shape factor coincides with analytical

values. However the calculation of the shape factor is not sufficient to distinguish

different rock samples (see Chapter 5), which are intrinsically different. One of the

reasons may be the restriction of choosing only 13 discrete normal orientations of cross

sections, which results in only 13 discrete perpendicular planes. To improve this, more

discrete perpendicular planes should be introduced and the related disconnectedness of

the discrete shapes should be resolved by new approaches such as interpolation

techniques. Another reason may be in the optimal smoothing scheme. In Chapter 5

several smoothing schemes have been compared, but no conclusion can be made for the

choice of a "best" smoothing scheme. The third reason may come from the vague

relationship between a spatial shape and its projections on the coordinate planes. Based

on three types of normal orientations, the conversion of area and perimeter from 2D

shapes to spatial shape may produce some errors in certain cases.

The A-adjacency and the clustering rule proposed by Liang et al. (2000a) have

been adapted to classify skeleton voxels into four classes: isolated, terminal, link and

junction voxels. This facilitates pruning of network structures according to the

requirements of a specific network model and it determines the basic structure of the

equivalent pore network. By incorporating skeleton voxels within the range of maximal

inscribed sphere of junctions, an appropriate node-skeleton backbone is generated

through a merging operation, which takes into account topological and spatial relation.

In particular the so-called "snowballing" and topology-breaking are avoided. Most

network parameters, such as average radii, shape factors, lengths of nodes and bonds

and coordination numbers can be readily computed when the pore skeleton is extracted.

To assign volumetric parameters for the network elements, a new method based

on the geodesic chamfer distance has been introduced to partition the pore space.

Unfortunately, the accuracy of this method is still not satisfactory because some shared

regions between two objects (node or bond) may be wrongly classified (see Figure 4-
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20(c) and Section (4.3). One alternative is to use the level set method. Another way to

improve the partition accuracy is to use geodesic Euclidean distance (OED)

transformation instead of the OeD transformation. However, the major problem with

the GED transformation is that its computational efficiency is unacceptably poor. To

design a practical OED transformation, a more efficient algorithm for the determination

of occlusion points and a discrete method for comparing two Euclidean distance values

are required.
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In this chapter, the set of image processing and pore structure analysis techniques

introduced in previous chapters is applied to three rock samples to explore their

macroscopic properties based on the quantification of their basic geometric and

topological features. Having microstructure information, pore network structures are

constructed for network flow models to predict fluid flow properties through the porous

media. In section 5.1, three sandstone samples are selected and pre-processed. The basic

geometric properties, such as pore size, shape factor etc., of the three rocks are studied

in section 5.2 with the additional numerical simulation of mercury injection. After

pointing out the limitations of the Euler number and the coordination number, in section

5.3, a novel topological descriptor - the connectivity coefficient - is introduced in order

to accurately describe the connectivity of the porous media. In section 5.4, I construct

network structures from the three rock images as input to the Ie network flow model

and the predicted results are briefly analysed. As for a trial to build up the analytical

correlation between microstructure and macroscopic properties, I design several

numerical experiments aiming to establish the correlations between absolute

permeability and connectivity coefficient, between absolute permeability and average

cross sectional diameter (pore size), and among these three quantities.

5.1 Dataset and Pre-processing

5.1.1 Sandstone Samples

Fontainebleau sandstone is a natural sandstone of Oligocene age from France

which has been widely used in texture studies (Arns et al., 2004[10]; Baldwin et al.,

1996[13]; Blunt, 2001[21]; Ioannidis et al., 1996[63]; Knackstedt et al., 2001[73];

Lindquist et al., 2000[89]; Vogel and Roth, 2001 [185] etc). Its composition is 100%

quartz grains, with minor amounts of cement (dominantly silica). The variation of

porosity ranges from 2% to 30% with constant grain size (around 250 urn). Because of

its usual features, i.e. the uniformly constant composition, grain size and porosity
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variation Fontainebleau sandstone allows for the study of effects of pore geometry

independent of other parameters. Berea sandstone has also been used by the petroleum

industry for many years as a standard material in core analysis research and in

laboratory core flooding experiments. For example, Oak (1990[112]) studied a water-

wet Berea sandstone to measure the relative permeability in the primary oil flooding and

secondary water flooding, and provided an array of experimental results used widely as

a good standard of comparison. Berea sandstone is relatively homogenous, and is made

up of well-sorted and well-rounded predominately quartz grains. Berea sandstone also

contains minor amounts of feldspar, dolomite, and clays (Churcher et al., 1991[33]).

In this chapter, I choose two Fontainebleau sandstone images and one Berea

sandstone image, which are shown in Figure 5-1. For convenience, they will be called

as FS-A, FS-B and BS, respectively, and their basic and quantified morphological (GT)

properties me lisll'd ill Table 5-1.

FS-A (4003 voxels) FS-B (3003 voxels)

Figure 5-1: Three CT scanned sandstone 3D images consisting of the PS (in black) and

the solid matrix (in grey). FS-A and FS-B are two Fontainebleau sandstone samples,

and BS is a Berea sandstone sample.

These three sandstone images were acquired (by others, and made available to my

study) via the scanning of cylindrical microplugs using a high resolution X-ray

computer tomography process to produce digital images. Each voxel of these 3D images

has a linear dimension of 5.72 11m, 7.5 11mor 5.345 11m for FS-A, FS-B or BS,

respectively, and takes on the value 0 (solid or grain) or 1 (pore or void). After the salt-

and-pepper noise has been removed from the digital images, the measured porosities

from the resultant images are 10.6252% (FS-A), 13.5527% (FS-B), and 19.6509% (BS)

by counting the number of pore voxels.
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~

FS-A FS-B BSFontainebleau Fontainebleau
sandstone sandstone Berea sandstone

)P<
Dimension (voxels) 400x400x400 300x300x300 400x400x400
Resolution (urn) 5.720 7.500 5.345
Volume (mm') 11.98 11.39 9.77
Porosity <I> (%) 10.6252 13.5527 19.6509
i, (urn) 46.7 51.6 45.2
Id (urn) .. 38.3 40.6 36.3
G 0.0425 0.0429 0.0447
en 3.0397 3.1109 3.0556
C.V (mm") 110.65 203.74 687.15
K (mD) 425 1189 1805

Table 5-1: Basic (a) and quantified (b) morphological properties of the three sandstone

samples shown in Figure 5-1 (Ld: average sphere equivalent pore diameter; Id: average

number; sv: connectivity coefficient; K: absolute penneability.)

cross sectional P0rC diameter; G: average shape factor; en: nveragc coordination

a FS-A

A FS-B

oBS

Volume of sub_Image (mmA3)

o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5-2: Representative elementary volume of the three rock images (i.e. FS-A, FS-

B and BS) with regard to their porosities.

In order to efficiently handle and compare these samples, it is necessary to cut off

sub-images from the original images such that they are quite small in volume of voxels
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without loosing the ability to represent the corresponding samples. This means that we

need to determine a common REV (representative elementary volume) for these three

samples. The simple way to do so is to find a minimum volume at which the porosities

of sub-images of a rock image tend to be stable. And the volume is then used to

minimise the size of our processed rock images. As indicated in Figure 5-2, the three

REV volumes are -3.2 mnr', -6.8 mnr' and -8.1 mnr' for FS-A, FS-B and BS,

respectively. Therefore, we choose 10 mm' as the common REV for these three

samples, and their corresponding dimensions (in voxels) are larger than the required

REV.

5.1.2 Image Pre-processing

The original sandstone images contain a large number of floating solid particles

and isolated pores due to artefacts of the C'I' scanning and digitalisation. In these images

(26, 6) is used as the adjacency pair, so a so-called floating solid particle is actually a

white (solid) 6-component which is completely enclosed within the PS, and an isolated

pore is a black (pore) 26-component which is very small and is not connected to both of

the inlet and outlet. The inlet and outlet are commonly chosen as two opposite

coordinate planes on the boundaries of the image space.

The occurrence of floating solid particles and isolated pores in rock images has

little impact on the computation of fluid flow properties, but has a significant effect on

the quantification of morphological (i.e. GT) properties of the PS. For example, both of

them have effect on the generation of skeleton (medial axis) of the PS. After

skeletonization, each isolated pore is shrunk into a single isolated voxel while each of

the floating solid particles produces a spherical surface in the resultant skeleton. In

Figure 5-3(a), two spherical surfaces and a lot of dots (single voxels) remain in the

resultant skeleton after the topology-preservation thinning has been carried out. As a

direct result, they will jeopardize the identification of topological junctions on the

skeleton and complicate the network structure when a network model is involved.

The Euler number is also an important quantity for describing the pore

connectivity (see Section 2.2.1). But the object components would be outnumbered by a

large number of isolated pores, and the cavities would be wrongly identified due to the

existence of floating solid particles, thus making the Euler number less meaningful if
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extracted from raw images. Table 5-2 shows an example for the three samples. In the PS

of FS-A there are in total 1106 pores (object 26-components): only one is connected to

both the inlet and outlet and occupies 97.16% of the PS; each of the other 1105 pores is

either not connected to both the inlet and outlet, or only connected to one of them, and

the accumulative volume of these 1105 pores is only 2.84% of the PS in FS-A. As

shown in the table, the porosity in the original image of FS-A is 10.6252%, and it is

reduced to 10.3231% after removing all the 1105 isolated pores. FS-A in total contains

402 solid particles, in which only one is the background (solid), but with 401 solid

particles are floating in the PS. Converting the floating solids into pores increases the

porosity of FS-A from 10.3231% to 10.3352. According to Equation (2.13), it is clear

that the numbers of isolated pores and floating solid particles significantly amplify the

influence of object components (ho) and cavities (h2) on the computation of the Euler

number (see Table 5-5). Both the isolated pores and floating solid particles degrade the

ability for the EPC to accurately describe the pore space. And it is the same for the other

two samples. Therefore, it seems to be necessary to remove isolated pores and floating

solid particles before initiating an analysis of the pore system.

Numbers of pores Numbers of solid Porosities (%)

Rocks
particles •

Total Isolated Total Floating Original R-Pore R-Solid

FS-A 1106 1105 402 401 10.6252 10.3231 10.3352

FS-B 680 679 33 32 13.5527 13.5001 13.5002

BS 2251 2250 388 387 19.6509 19.5399 19.5492

Table 5-2: Statistics of black 26-components (pores) and white 6-components (solid

particles) from samples FS-A, FS-B and BS and the e.ffect of pre-processing on porosity

of the PS. In the column Original, R-Pore and R-Solid, three porosities are listed for

each sample before and after removing isolated pores and removing floating solid

particles.

In order to reduce the effect of such imaging noise, I carry out some pre-

processing before any practical operation is undertaken. The pre-processing can be done

by invoking morphological operations (e.g. opening or closing) to smooth original
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images and removing isolated pores and floating solid particles from the smoothed

images. Figure 5-3(b) shows the result of the removing operation: the spherical surfaces

and single voxels in Figure 5-3(a) disappear in the resultant skeleton. The procedure can

be summarised as three steps: (1) identifying all black 26-components and white 6-

components using the component labelling algorithm described in Section 3.3; (2)

removing all black 26-components (tiny isolated pores) which are disconnected from

the inlet or outlet; (3) converting all floating solid particles except the background (the

maximum white 6-component in voxels) into the PS.

Figure 5-3: The effect of floating solid particles and isolated pores on the extraction of

pore skeleton (a) before and (b) after removing floating solid particles and isolated

pores.

5.2 Geometric Properties

In this section, some basic geometric properties of the three sandstone samples

will be investigated, which includes pore size, cross sectional area and shape factor, and

simulated mercury injection curves. As for the pore size, I introduce a new descriptor,

cross section size (radii or diameter), which is different from the sphere equivalent size.

The difference between these two pore sizes is demonstrated in Figure 5-4. In Figure

5-4(a), each pore pixel (voxel) is clustered into one of three different size pores, and the

size (sphere equivalent size) is then determined by the radius of the corresponding

inscribed sphere. A distinct value (grey level) is assigned to all pixels which belong to

an individual pore. In Figure 5-4(b), from each pixel on the skeleton, a CS can be

derived using the approach described in Chapter 4, and the radius of the corresponding

inscribed circle in the CS is regarded as the size of the skeleton pixel, which is called its
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cross sectional radius (size). Having determined all CSs on the pore skeleton, the area

and the shape factor of these CSs can then be computed and analysed using the methods

described in Chapter 4. Furthermore, numerical simulation of mercury injection can be

easily carried out based on the cross sectional sizes of skeleton voxels.

(a) Cb)

Figure 5-4: Comparison between sphere equivalent size and cross sectional radii (size).

Each pore voxel is assigned (grey level) a value corresponding to a sphere equivalent

radius while each skeleton voxel 1S assigned a value corresponc mg to a radius of an

inscribed circle within a CS.

5.2.1 Sphere Equivalent Pore Size

Having the distance map and skeleton of the PS, i.e. a Euclidean distance valued

skeleton (see Section 4.1.1), different sphere equivalent size pores can then be extracted

from the PS. In my algorithm, firstly the skeleton voxels are sorted into a list in the

descending order of skeleton voxels' SED in the coloured skeleton; secondly the

backbones of individual pores are classified using maximal inscribed spheres, the pore

size of an individual pore is determined by the corresponding SED on the skeleton;

finally the backbones are expanded within the PS into individual pores using the

geodesic chamfer DT described in Chapter 3 Algorithm 3.3. From rock images, I can

obtain two kinds of images - the maximal inscribed sphere images and the resultant

pores after partition (Figure 5-5), where distinct size pores are coded in different colours

(rainbow-inverted colour scheme).
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Figure 5-5: Individual pores of different sizes (i.e. sphere equivalent size) coded by

rainbow-inverted colour scheme: the maximal inscribed spheres (top) and extracted

pores (bottom) for sub-images of SF-A, SF-B and BS, respectively.

Pore size distribution (PSD) is an important characteristic of the PS. To obtain the

PSD, let N be the total number of pore voxels and LM represent the maximum pore size

(SED) in a rock image, thus the pore size range can be equally divided into m sub-

intervals: [Lo, L/), [L/, L2) ••• [Lm_l, Lm], where Lo is the minimal pore size and L; = LM

Counting the number N, of pore voxels that have been identified as belonging to the

pores of size from Li-I to L; I can then calculate the pore size distribution (volume

percentage) by dividing N, by N for all i = 1, 2 ... m. The shapes of the PSDs for the

three samples are shown in Figure 5-6, which indicates that there is significant

difference among them. Table 5-3 lists four kinds of statistics about the pore sphere

equivalent size, i.e. pore size variation, peak pore size, average pore size and the

standard pore size deviation. The average pore sizes ofFS-A, FS-B and BS are 46.7 urn,

51.6 urn and 45.2 urn, respectively. However, the three peak sizes are located at 36.7

urn, 46.3 urn and 34 urn rather than in the middle of the pore size range, which are also
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far away from the average pore sizes. From this analysis, the common feature of these

three samples is that most of the pores are smaller than the average pores.
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Figure 5-6: Pore Size Distribution of rock samples FS-A, FS-B and BS.

Samples Pore size range Peak pore size Average pore Standard

(urn) (urn) ", size (um) deviation (urn)

FS-A 5.72 -116 36.7 46.7 20.17

FS-B 7.5 -161, 46.4 51.6 26.2

BS 5.345 - 144 34 45.2 21.9

Table 5-3: Statistics about the pore size of FS-A, FS-B and BS, where the pore size is
1;~

described in terms of sphere equivalent size in diameter.

5.2.2 Cross Sectional Pore Size

The skeleton of the PS is the central path of fluid flowing through the PS of a

rock, which is illustrated in Figure 5-7. According to the discussion in Chapter 4, the

skeletonization ensures that the skeleton not only locates in the middle of the PS but

also contains information about the maximum inscribed distance (SED) to the solid

(grain) surface. Combining distance with the skeleton, a so-called Euclidean distance
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valued (coloured) skeleton can be generated, which is shown in Figure 5-8. For each

skeleton voxel, the distance from this voxel to its closest solid voxel is recorded and is

used as the radius of the corresponding CS (cross sectional radius).

However, this measurement of cross sectional radii has a significant drawback

when the PS is mainly connected by small pores (e.g. of radius of 1 or 2 in voxel). This

issue can be found in many rock images if the imaging resolution is very coarse. And

the measured radii for very narrow pore channels are certainly quite vague. For

example, the SED of 1 could correspond to a lot of complex configurations in 3x3x3

neighbourhood rather than a fixed pattern. Figure 5-9 highlights the problem when

small pores dominate the pore connectivity. The minimum value is I voxel (pixel in 2D)

but the corresponding configuration in its neighbourhood is complex: there exist more

than 26 distinctive configurations in terms of different adjacent number in the 3x3x3

neighbourhoods.

-
Figure 5-7: Skeleton's central location for sub-images of FS-A, FS-B and BS,

respectively.
100

80

60

40

20

0- -
Figure 5-8: Small sub-images of the skeleton with SED values from FS-A, FS-B and

BS, respectively. Voxels are supernova spectrum colour coded. Green represents

skeleton pore voxels closest to the grain surface and yellow represents the skeleton

voxels farthest from the grain surface.

182



Chapter 5 .' Applications

i""'"- ...... -....
/ -, ~ ~- ...
/ I' , '1 \ J( 1 ~IJ )\ ~ " J \.\ I

-, / ~ ... ' V- ...._......

0.75 0.75," ,,
:/~ "-/\ ,,' \( ,_ ...

J\ -,
1'-._ ....V

" ", ,

\,

0-'<;

'"",
I

-_ ...

1.25 1.25

1"/ .... , -,\.

( , ,
\
J
J

" ~," V,_ ~ ....

'"
~_- ... ,,"/......- ....

~'\, /
\ \: ( I I

\

\.' /,
'. -- "'"-_ ...

1.25

Figure 5-9: 2D illustration of some configurations in the neighbourhood of a pore voxel

of radius 1 (in voxel): All the pixels centred at each 3x3 square have the same radius of

1 in pixel (voxel) but have different configurations in its neighbourhood. The solid

circle shows the sphere (circle) associated with the initial radius (e.g. 1) measured

through the distance transformation while the dotted circle shows the ideal sphere

(circle) for a more accurate radius. The ideal radius is showed right below each figure.

Grey squares represent pore pixel and white square solid pixel.

In Figure 5-9, only a few of the configurations in the 3x3x3 neighbourhood of a

skeleton voxel are given under the assumption that all omitted voxels belong to the PS.

Besides different configurations, an example of the distribution (Figure 5-10) of the

number of adjacent voxels in the 3x3x3 neighbourhoods of skeleton voxels also suggest

that it is not accurate when 1 is used to approximate the cross sectional radii at the

central voxels (i.e. on the skeleton). This strongly suggests that the small pore size
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needs to be modified carefully in order to provide much more detail. For this reason I

propose a method to obtain a more accurate approximation to the cross sectional radii of

small pore channels. In Figure 5-9, the dotted circles (spheres) are used to indicate how

the modified radii are derived based on different configurations in the neighbourhood of

a voxel.

With the Euclidean distance valued skeleton and the modified radii, we can then

measure the frequency of skeleton voxels with regard to the cross sectional radii. This

can be done through (1) the whole range of cross sectional diameter in a rock image is

divided into many equal intervals, (2) the numbers of skeleton voxels whose cross

sectional diameter fall within different intervals are counted, and finally (3) the

frequency of cross sectional diameter of skeleton voxels is computed based on the

original and modified SED value on skeletons. From the three rock images, Figure 5-11

shows the frequency of skeleton voxels against the cross sectional diameter. it should be

noted that the distribution of FS-B is quite different from that of FS-A and BS, which

indicates that the PS in FS-B has many more small CSs when the cross sectional

diameter is used to measure pore size. In Table 5-4, some basic statistics are listed to

illustrate the differences among these three samples. Comparing with Table 5-3, it is

clear that the average cross sectional diameter is much smaller than the corresponding

sphere equivalent diameter at the same position for the same sample. Peak pore size

demonstrates greater differences in terms of sphere equivalent diameter than in cross

sectional diameter.
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Figure 5-10: The distribution of the number of 26-neighbours at a skeleton voxel with

SED of 1 for sample FS-B.

Samples Pore size range Peak pore size Average pore Standard

(urn) (urn) size (urn) deviations (urn)

fS-i\ 6.95 ~ 110 ,~ '" ....... ,) ...
1S.:>:J _) . .1.. ..lu . ..l

FS-B 6.95 ~ 105 33.9 40.6 22.2

BS 6.95 ~ 127 32.6 36.3 18.2

Table 5-4: Statistics of pore sizes of skeleton voxels for sample FS-A, FS-B and BS,

where the pore size are described in terms of cross sectional diameter.
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Figure 5-11: The distributions of cross sectional diameter of sample FS-A, FS-B and

BS.
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5.2.3 Cross Sectional Area and Shape Factor

For constructing a network structure or directly simulating the oil-flooding or

water-flooding process, the morphological features of CSs need to be explored aiming

to extract more quantities from the rock images. Many details associated with CSs have

already been given in Chapter 4, such as the orientation, projection and computation etc.

The orientation of a CS at a skeleton voxel is approximated by one of thirteen directions

(see Figure 4-18) by considering the relative positions of its neighbours on skeleton.

Using the extracting algorithm explained in Figure 4-19, CSs can be efficiently obtained

and projected on an appropriate coordinate plane (XY, YZ, or XZ-plane). The area and

perimeter of corresponding 2D shapes are calculated utilising Equation (4.6), and they

are then transformed to the original spatial CSs using equation (4.9).

To avoid under- or over-estimation of cross sectional area and perimeter, the basic

ideas in the algorithm are: (1) smoothing sharp points or corners by replacing them with

regular shapes such as circle, triangle or square (see Figure 4-26); (2) projecting spatial

CSs on an appropriate coordinate plane in order to simplify the computation of area and

perimeter; (3) readjusting the calculated area and perimeter based on the projection

directions.
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Figure 5-12: The distributions of cross sectional area of skeleton voxels.
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To investigate the distributions of cross sectional area in the sandstone samples,

the measured areas of CSs are firstly divided into a set of equal intervals, and then the

numbers of CSs locating within different intervals are recorded to build up the

frequency of cross sectional area. From Figure 5-12, I note that the distribution of FS-

B's cross sectional area is significantly different from others. This indicates that the

average cross sectional area of pores in FS-B is much smaller than that of other two

samples.

Figure 5-13 illustrates the distributions of shape factors of the three samples. The

average shape factors of FS-A, FS-B and BS are 0.0425, 0.0429 and 0.0447,

respectively, which mean that shape ofFS-A or FS-B tend to be more complex than that

of BS but do not have significant differences among them.
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Figure 5-13: The distributions of shape factor of skeleton voxels for the three samples.

5.2.4 Mercury Injection Simulation

Invasion percolation is a dynamic flow process introduced to model the slow

immiscible displacement of a wetting fluid by movement of a nonwetting fluid in a

porous medium. Drainage is characterised by the movement of menisci through the

porous medium and progressive invasion of the medium by the nonwetting fluid (Dias

and Wilkinson, 1986[41D.
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An invasion percolation algorithm simulating the process of mercury injection is

given in the following. For a porous medium, which is originally completely saturated

with wetting fluid (i.e. vacuum), a non-wetting fluid (e.g. mercury) is injected into one

face (inlet) of the system and the fluids may escape through the opposite face (outlet).

When the invading phase enters parts of the PS, the displaced fluid needs to escape. If

the wetting fluid is continuous throughout the system, then at very low injected rates the

wetting phase can escape from any pore or throat by flow in surface roughness to the

outlet of the system. This means that no wetting phase is trapped, which coincides with

the observation in mercury injection experiment.

During invasion of the non-wetting fluid, in a network of pores and throats, the

throats and pores are filled one at a time. A throat is considered available if it contains

no injected fluid, but is connected to a pore which does (i.e. contains injected fluid). At

each stage the available throat with the largest radius is filled, together with allY empty

pore attached to it. The injection pressure associated with the filling at an infinitesimal

flow rate is simply given by capillary equilibrium (the Young-Laplace equation)

p -2ycosB
r (5.1)

Where r is the mean radius of curvature. The capillary pressure P depends on the pore

geometry (pore size), on the interaction between fluids, y and on the amount and

location of each phase in the PS, e is the contact angle between the mercury and the

solid.

The mercury injection simulation is image based, and no specific network

structure is required. The extracted skeleton (OT network) of the PS is used to locate the

central flow paths and the SED values on the skeleton are used to indicate the radii of

CSs. Thus, the mercury injection algorithm can be described by the following.

Given a skeleton of the PS in a rock image cPo we regard it as the central line of

flow paths. Let 'J/= [0, Lx]x [0, Ly] x [0, Lz] be the image space of CPwhereLx, Ly and Lz

are the maxima of X-, Y- and Z-coordinates, respectively. Fluid flows along the

skeleton of pore channels, and the break-through point depends on the corresponding

cross sectional radius. To simulate this process, inlet and outlet are firstly selected, for

example, X- (Le. X = 0) is chosen as inlet and X+ (Le. X = Lx) as outlet.
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CSkl is a coloured skeleton, i.e. ea_chskeleton voxel p has positive distance value
i.e. CSkl(P) > 0 while any other non-skeleton voxels of distance value zero.
ValNum =Max(CSkl)12+1; IIPre-set the number of intervals
UnitV= Max(CSkl)IVaINum; lithe length of an interval
Initialize queue QI as all voxels on inlet and label. The accessed voxels indicate

they have already been put in queue QI, which are converted into negative value, i.e.
CSkl(P) = - CSkl(P)
I/Simulating the process of mercury invasion based on the skeleton CSkl
lIThe direct result of this operation is to convert all distance value of skeleton

voxels /Iinto distinct label (negative value).
While ValNum > 0 {

CurVal= (VaINum-I) * UnitV;
ExistLbl =false
Get a voxel p from queue QI until QI is empty
Ifabs(CSkl(P» > Cur Val then {

CSkl(P) = -, 'ol.VlIlJ/; /1Label is negative integer
Existl.bl = true; Ilindicate -ValNum is a valid label
IIInsert all 26-neighbours q of DMap(q) >0 into queue Q2

For each q E :N{p) { lithe 3x3x3 neighbourhood ofp
If CSkl(P) > 0 {

Put q into queue Q2
CSkl(q) = - CSkl(q)}

}
} else {

Insert p into the queue of Q2
}
If ExistLbl isfalse {VaINum--} Ili.e. - ValNum is not a valid label
Empty QI and swap QI with Q2

}

Equation (5.l) expresses the relationship between the applied mercury pressure P

(psi) and the radius r (J.1m)of the corresponding pore being invaded. The surface tension

'Y of mercury varies with purity, but the usually accepted value is 480 dynes/cm. The

contact angle a between the mercury and the solid, measured through the mercury,

varies somewhat with solid composition, but is normally close to 140°, Thus, r(J.1)

=1071P(psia). Appling this to the sandstone samples, the simulated invasion processes

are illustrated in Figure 5-14. At the beginning, only those pores, whose cross sectional

size (radius) is very large and connected with the inlet, are occupied by mercury, and

then the pressure is increased on non-wetting phase on the inlet face of the model to let

smaller pores be invaded by that non-wetting phase. From the left to the right in Figure
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5-14 smaller and smaller pores are invaded, the whole process is controlled by the

radius of the largest cross sectional size of skeleton voxels at each pressure increment.

At the end of primary drainage, all the pores are filled with mercury without traps, and

the injection curve is then plotted in Figure 5-15.

4 7 10 13 16 19 22 25 28 31
The number of invading steps

Figure 5-14: Illustration of invading process of mercury using our algorithm.
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Figure 5-15: Simulated mercury injection curves of FS-A, FS-B and BS.

5.3 Topological Properties

5.3.1 Coordination Number

As discussed in Chapter 4, the PS can be referred to as the network of nodes

connected by bonds. Thus the connectivity of such a pore network is often quantified by

the coordination number. For each node, the coordination number is defined as the

number of bonds connected with the specified node. The frequency of nodes of certain
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coordination number in the whole pore network can be plotted as the coordination

number distribution.

Figure 5-16 shows the coordination number distributions for the three sandstone

samples. The maximum coordination number of Both FS-A and BS is 5, and this

number is smaller than the maximum coordination number (i.e. 9) ofFS-B. For all three

samples, rna t of the nodes (more than 91%) are connected by three bonds. The average

coordination numbers are 3.0397, 3.1109 and 3.0556 for FS-A, FS-B and BS (see Table

5-1),re pecti ely.
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Figure 5-16: Distributions of the coordination number of pore networks extracted from

FS-A, FS-B and BS.

5.3.2 The Euler Number and its Limitation

The Euler number (i.e. EPe) can be used to describe the connectivity of the

components of a composite material or the PS of a porous medium (Ohser et al.,

2003[115]; Levitz, 2007[83]). However, the Euler number does not lead to an

unequivocal description of the topology, since the absolute values of ho, h, and hi (2.13)

are often unknown. Moreover, the Euler number provides just a single number,

describing the overall topology of the pore structure. Its value decreases with increasing

connectivity. Aiming to overcome these drawbacks of the Euler number, Vogel and
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Roth (2001 [185]) introduced the concept of the connectivity function, which is defined

as the specific Euler number in dependency of the minimum pore size being considered.

The specific (volumetric) Euler number Xvof the PS (i.e. all pores) is calculated as

Xv= XiV. (5.2)

where X is the Euler number of a rock image with volume V. This concept makes it

possible for comparing the connectivity among rock images of different volume. Let d

represent the sphere equivalent diameter when the PS of a porous medium has been

partitioned into a set of different size pores, and the connectivity function j(d) is then

defined as the specific Euler number of the set of pores whose sphere-equivalent

diameter is larger than d (see Section 2.4.1).
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Figure 5-17: Connectivity functions of sample FS-A, FS-B and BS.

The connectivity function provides quantitative information about the pore

connectivity against pore size. For BS its volume is V = 9.77 mm' (see Table 5-1), thus

the connectivity function of all pores,j(5.345), is calculated as Xvof the whole image of

sample BS, Le. j(5.345) = -704.81 mm" (see Figure 5-17). By removing all pores of

diameter less than d from the original image, the Xv of the new image is calculated

again andj{d) is obtained, where d is the minimum pore diameter of the new image. For

the three samples, their connectivity functions are illustrated in Figure 5-17. We note
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that for the whole PSs ofFS-A, FS-B and BS, the XvofBS is about 3.46 times as the Xv

(204.64 mm") of FS-B and it is 6.86 times as that (-102.69 mm") of FS-A. Moreover,

the three connectivity functions increase as the minimum diameter of pores considered

increases, which means that the pore connectivity reduces after removing smaller pores

from the original PS. However, the rate of reduction is different among the three

samples. For FS-A and FS-B, when the minimum pore diameter reaches to about 12

urn, the Xv at this point turns to be a positive value such that most of the remaining

pores are not connected any more. For BS this phenomenon occurs when the minimum

pore diameter is larger than 16 urn, Based on this observation, we can say that the pore

connectivity ofBS is better than that of both FS-A and FS-B.

Samples Euler characteristic Number of pores Percentage in volume (%)

! -2569 1 99.6117-----_- --------- -----.--,~.-- - ...~..---,.-. _ ... ----_.__ .._--_.
FS-l3 -1~94 0 4 0.0295

1 675 0.3587
-6995 1 99.4355

BS -4751 -1 1 0.01851
0 4 0.0166
1 2245 0.5293

Table 5-5: Statistics of the Euler number and the number of pores sample FS-B and BS.

Due to imaging noise, however, directly using such quantities associated with the

Euler number as topological descriptors may jeopardize their ability for describing the

overall pore topology. In fact, in the original rock images, there may be a large number

of tiny isolated pores and floating solid particles as the result of imaging salt-and-pepper

noise, which have an impact on the computation of the EPe (see Table 5-2). For FS-B. .
and BS, the relevant statistical results are shown in Table 5-5. In FS-B, there are in total

680 pores and 3659228 pore voxels, in which only one pore is connected to both of the

inlet and outlet and its volume occupies more than 99.6117% of the PS. The largest pore

in FS-B has no cavities but has 2570 tunnels, i.e. its EPC is -2569. Unfortunately, the

overall EPC is -1894 by directly computing it from the original image of sample FS-B.

As indicated in Table 5-5, all other pores in FS-B are very small (0.3883%) and should

have no contribution for fluid flow in the PS. The connectivity of the PS is

underestimated by these tiny isolated pores from -2569 to -1894, i.e. its negative impact

counts more than 26.275%. For the other samples, the same observation can be found.

This suggests that all quantities associated with the EPC seem to reflect the false pore
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connectivity if we ignore the effect of tiny isolated pores. Thus, there is a need to

introduce another robust topological descriptor to overcome this limitation.

5.3.3 Connectivity Coefficient

Given a rock image P, suppose that it has m pore components denoted by PI, P2

... P« with volumes (number of pore voxels) of NI, N2 ... Nm, respectively. For each

pore component Pi, let Xi be its Euler number, and then we define the weighted Euler

number ye as

Zw Im
·N·i=I%' ,

"mN.
~i=l '

(5.3)

Where L.M is actually the total number of pore voxels in the image P. Taking into

account the effect of volume of pore components on the calculation of Euler number,

we further compute a so-called volumetric weighted Euler number as

Zwv = Zw IV, (5.4)

Where V is the volume of P in unit of mnr'. For example, the volume of FS-B is

11.39 mrrr' and the volume of BS is 9.11 mrrr'. Based on the data shown in Table 5-5,

for FS-B Xw is -2559.02, and then Xwv is -224.67. It is clear that the value of the

weighted Euler number is dominated by the volume of the biggest pore component with

99.61% pore voxels of the PS in FS-B. For BS (see Table 5-5), Xw is -6955.51 and XWV

is -711.93.

The volumetric weighted Euler number provides more accurate information about

the pore connectivity by reducing the effect of image noise (tiny pores). In Table 5-5, I

note that most of the small pore components have no tunnels or a very small number of

tunnels (redundant connections). Notionally, the number of tunnels is important for the

pore connectivity because tunnels correspond to the pore flow channels. Moreover, it

seems unnatural for a smaller negative integer to represent better connectivity.

Therefore it is necessary to introduce another more explicit measure to quantify the

connectivity of porous media.
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For a rock image P of volume V, let X be its overall Euler number and he be the

number of pore components and h: be the number of cavities. Therefore the number of

tunnels, hI, can be computed by the following formula:

hi = ho + h: - X (5.5)

As discussed before, floating solid particles (cavities) are removed to obtain the

curve-skeleton, which means that hi = O.Having a rock image without any cavities, we

simply use the tunnels derived by the number ho of pore components minus the Euler

number X. For comparison between different samples, we need the volumetric number

of tunnels, i.e.

This quantity will be called the connectivity coefficient in the following. The

connectivity coefficient provides explicit information about pore connectivity. The

larger the connectivity coefficient, the better is the connectivity of the PS.
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Figure 5-18: The stable trend of connectivity coefficients of FS-A, FS-B and BS as the

volume of sub-images increase from about 0.1 mm'' to 5.0 mrrr'.
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To explore the representative elementary volume with regard to the connectivity

coefficient (~v), we need to ensure that ~v tends toward a stable value when the sample

volume is large enough. In my numerical experiment, a series of sub-images are taken

from the original images of FS-A, FS-B and BS of dimensions of 4003, 3003 and 4003,

respectively. And then for each of these sub-images the corresponding connectivity

coefficient and the number of pore components are calculated. The three curves of

connectivity coefficient against their volume of the underlying sub-image are plotted in

Figure 5-18.

According to Figure 5-18, we can say that ~vs of FS-A, FS-B and BS tend to be

stable (110.65 mm", 203.74 mm", and 687.15 mm") when the volume of the sub-

images reaches to about 2.1 mrrr', 3.25 mrrr' and 3.0 mrrr', respectively. Based on the

definition of ~v these three values can be explained in the following way. There are

about Ill, 204 and 6'67 tunnels for a single pore component in the sense of average

quantity per unit volume. Obviously the, connectivity of FS-A is the worst, but is close

to that of FS-B. The BS has much higher ~v.which means that the PS of BS provides

many more pore channels (tunnels) for fluid to flow through than that ofFS-A or FS-B.

5.4 Extracted Network for Network Flow Model

In this section, to predict flow properties of porous media, I describe how to

extract network structures from rock images to cope with the specific requirements of

network models. This includes (I) partitioning the PS into a network of nodes and

bonds, (2) assigning quantified geometric and topological properties to network

elements, and (3) using the extracted network as input of network flow model to predict

some macroscopic properties. In this section, the Valvatne and Blunt (2004[170])

network model is selected to predict absolute and relative permeabilities based on the

extracted network data. Additionally, I also try to do some preliminary investigations on

cross sectional radii, connectivity coefficient and absolute permeability in ideal

conditions.

5.4.1 re Network Model
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. The Valvatne and Blunt's (2004[170]) network model, i.e. the Imperial College

network model (IC network for short), was designed to predict single and multiphase

flow properties. It is not limited to regular network lattices. It was successfully applied

to predict relative permeability and oil recovery for water wet, oil wet, and mixed wet

data sets. In their network, the individual network elements are uniform ducts with

circular, triangular or square cross sectional shapes. Microporosity and water saturated

clays will typically not be drained during core analysis. This effect is included in the

network representation by assigning a constant volume to each pore or throat that

always remains water saturated. All the throats along the inlet face of the network

model are assumed to be connected to a reservoir of oil. The pressure in the oil phase Po

is then increased while the water phase pressure Pw is kept constant throughout the

network, resulting in increased capillary pressure Pc. The network elements are filled in

order of increasing capillary entry pressure (assuming they have an oil-filled

neighbour). This process continues until some predefined saturation is reached or all

elements have been filled by oil. Once a polygonal element has been filled by oil, water

still remains in the corners. This will ensure that water, as the wetting phase, will

remain connected throughout primary oil flooding, since escape to the outlet is always

possible through wetting layers.

In order to use this model, it is necessary to edit the networks of nodes and bonds

that have been extracted from the 3D rock images. To map the OT networks onto the

network structure of the IC network model, some factors must be considered very

carefully. In Figure 4-42 a realistic pore structure and an ideal network are illustrated.

The realistic structure may be extracted directly from the original image, but the ideal

structure is required by the IC network model. The ideal structure illustrates two major

characteristics required by the Ie network structure: (1) each bond (pore-throat) must

connect with two and only two distinct nodes (inlet/outlet is referred as two nodes of

infinite size); (2) for any two connected nodes there is only one bond between them.

Therefore some redundant branches (bonds, links) need to be removed and some virtual

nodes need to be created.

For the three samples, their network structures are demonstrated in Figure 5-19, in

which all the nodes are represented by regions with volumes but only the "backbones"

of the bonds are plotted for a better visualization. Note that most of the nodes have more

than 2 adjacent bonds while others have just one or two adjacent bonds. The nodes with
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one or two adjacent bonds are virtual nodes which are created in order to meet the

specific requirement of the Ie network model. Also a few of the existing bonds in the

original pore network, which have a single node as their two terminals, have been

removed (i.e. combining the bond and node into a new single node). As for other

geometrical and topological parameters of the network, much more detai I can be found

in the algorithm introduced in Chapter 4. In the following, I will present the calculation

of some transport properties using the network flow model for the three rock sample

Images.

Figure 5-19: Network structures of(1003) sub-samples of FS-A (left), FS-8 (middle)

and BS (right). The regions with volumes represent nodes and the grey lines bonds

without volume. In IC network model, both of them are assigned with volume.

5.4.2 Analysis of Network Structure

In order to use the IC network flow model, I need to create three network

structures for analysis and prediction for the three samples. The main network

parameters are listed in Table 5-6.

(i) Node size and bond size distributions

For the three samples, Figure 5-20 shows all size distributions of nodes and bonds

in the extracted networks. The node size is described by the cross sectional diameter at

the centre of each node, and the bond size is represented by the average cross sectional

diameter along the corresponding skeleton voxels. From Table 5-6, it can be seen that
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the average size of bonds is always smaller than the according average node size. And

both node and node sizes ofBS are much less than that ofFS-A and FS-B

Samples FS-A FS-B BS

Number of nodes 2890 3811 8147

Average node size (11m) 41.93 39.62 34.67

Number of bonds 4054 5546 11961

Average bond size (11m) 28.70 28.94 25.37

Average coordination number 3.0397 3.1109 3.0556

Number of inlet links 79 80 121

Number of outlet links 74 87 136

Bonds/radius ratio 8.32 7.45 6.96

Table 5-6: Network structure properties.
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Figure 5-20: Node and bond size distributions of FS-A, FS-B and BS.

(ii) Node size versus bond connection

Figure 5-21 shows the correlation between node size and the corresponding

average coordination number. The cross sectional diameter at the centre of a node is

used to describe the size of the node, and the coordination number of a node is the
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number of bonds that are connected with the node. From Figure 5-21, three correlations

between node cross sectional diameter and the number of adjacent bondes have linear

trend with similar slopes (about 0.04) but different intercepts (i.e. 2.92, 1.33 and 1.15).

The slopes reveal an inherent attribute of these sandstone materials while the intercepts

distinguish their connectivities from each other. This coincides with their connectivity

coefficients (Sv: 687.15 rnm', 203.74 111m"3 and 110.65 mm") shown in Table 5-1.
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Figure 5-21: The correlation between node size (cross sectional diameter at the centre of

each node) and the corresponding coordination number.

(iii) Node size versus bond length

Considering node size and adjacent bond length, for the three samples, we can

obtain the following data illustrated in Figure 5-22. The X-coordinate represents the

cross sectional diameter of nodes, and the Y-coordinate the average length of their

adjacent bonds. Figure 5-22 indicates that adjacent node length tends to linearly

increase at a similar rate (slopes: 0.34, 0.37 and 0.28) for the three samples as the

corresponding node's size increases. The intercepts (64,51 and 34) of the three linear

regression lines are significantly different and can be used to recognize the three

different sandstones. The average length of all bonds adjacent to a node in BS is shorter

than that in FS-A and FS-B, which coincide to the average node size shown in Table

5-6. The longer the length of adjacent bonds of a node is, the larger the coordination
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number of the node is. from Figure 5-22, the connectivity of BS seems to be the best

among them, because for the same size pores the length of the connected bonds ofBS is

much shorter than that ofFS-A and FS-B.
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Figure 5-22: The correlation between node size and the corresponding length of

adjacent bonds.

(iv) Node size versus neighbouring node size

In terms of the correlation between node size and the neighbouring node size, for

the three samples, the measured data is shown in Figure 5-23. It is clear that there is no

significant difference between the three samples in this correlation. Note that a smaller

node seems to be more likely connected with smaller nodes. For instance, for a node of

diameter of 60 urn the average diameter of nodes connected by some bonds with that

node is about 32 urn.
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5.4.3 Calculation of Conductance

According to Blunt and King (1992[23]), single-phase fluid flow through a porous

medium system can be modelled as a simplified network of pore-bodies and pore-

throats with some basic assumptions: (1) local capillary pressure in the pore-bodies can

be negligible; (2) the radius and volume of a pore throat is assumed to be small relative

to volumes of pore-bodies; (3) flow within pore-throats is assumed to be laminar and

given by Poiseuille's law; (4) the fluid is assumed to be incompressible. With these

assumptions, the fluid phase must obey volume conservation within each pore-body,

such that

(5.7)

Where N is the number of pore-bodies, Vi represents the volume of pore-body i, Si

represents local saturation of the fluid, qij is the volumetric flux from pore-body i to its

neighbour j, and N, is a list of all neighbour pore-bodies for pore-body i. The volumetric

flux is related to pressures at the pore-bodies by Poiseuille's law,
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(5.8)

where Pi represents pressures, and gij represents hydraulic conductance in the pore-

throat connecting pore-bodies i and j. Therefore,for a circular tube the fluid occupying

the pore-throat has conductance

(5.9)

where rij and Lij are the radius and length of the pore-throat linking pore-bodies i and j,

respectively, and J.1 is the viscosity of the fluid. Summation of Equation (5.7) over the

whole network gives the equation

" q.. == 0L...JjENj lj . (5.10)

When using networks extracted from rock images one would like to relate the

network pore shapes to those observed in the rock images. Since the real pore space is

highly irregular it is not feasible to reproduce it exactly, but one can describe the

observed shapes through the use of a dimensionless shape factor G, as suggested by

Mason and Morrow (1991[103]). In the Ie network models(Valvatne and Blunt,

2004[170]), once the shape factor has been measured, an equivalent irregular triangle

can be defined that characterises the irregular pore/throat, where G varies from 0 for a

slit shaped pore to .J3 /36 for an equilateral triangle. In other cases where pore shapes

are quite regular one can use other equivalent pore shapes like squares (G = 0.0625) or

circles (G = 0.0796). It is assumed that the wetting fluid residing in corners is connected

to that in adjacent pores and throats, with the result that the wetting fluid generally

spans the entire network.

The conductance gij of a circular cross section in Equation (5.9) is associated with

the shape factor G by Poiseuille's law: gij = kA2G (k = 0.5). Similar analytical

expressions for equilateral triangles and squares can also be developed (Patzek and

Silin, 2001 [125]) with k being 3/5 and 0.5623 respectively. Using square or triangular

shaped pore throats allows for the explicit modelling of wetting layers (water or oil

depending on the wetting state), whereby non-wetting phase occupies the centre of the
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element and wetting phase remains in the comers. The pore space in Teal rock is highly

irregular with water remaining in grooves and crevices after primary oil flooding, due to

capillary forces. This behaviour has been observed in micromodel experiments where

flow channels typically have a square cross-section (Lenormand et al., 1983[82]). The

wetting layers may not be more than a few microns in thickness, with little effect on the

overall saturation or flow but their contribution to the wetting phase connectivity is of

vital importance, as they ensure low residual wetting phase saturation by preventing

trapping.

Substitution of Equation (5.8) for the fluid fluxes qij provides a set of algebraic

equations with the pore-body pressures as unknowns. These can be solved using

standard matrix solution methods. When the network is fully saturated with a single

phase, the overall absolute permeability K of the network is found from Darcy's law,

K J.l qL
A t:1p (5.11)

The total single-phase flow rate q through the network is determined by imposing

a pressure drop t:1pacross its length L, with A being the cross sectional area of the

model. According to Poiseuille's law, i.e. g = kA2G, g strongly depends on the cross

sectional area and shape factor G. Thus, K is strongly influenced by the cross sectional

radii (diameter) of pores and their shapes.

The three rock samples' permeabilitie~ are predicted using the Ie network model

based on the extracted network structures (see Table 5-6) from the three rock images.

The predicted absolute permeabilities are listed in the last row in Table 5-1.

Taking into account the heterogeneity of sandstones, we need to investigate the

absolute permeabilities (K) at the dimensions (4003, 300\ and 400\ Hence, from the

three original images, a series of sub-images of different volumes from 0.5 mm' to 9

mnr' are randomly cut out, and based on each of such sub-images, a network structure is'

then extracted to feed into the Ie network model from which some transport properties

are predicted. In Figure 5-24, three predicted absolute permeabilities (K) are plotted to

show the stability of these values against the volumes of sub-images. The blue curve

corresponds to the result coming from sample BS, which is the maximum permeability

among the three stable values and the black from sample FS-A is the minimum. It is

quite clear that the variation of the calculated K intends to be smaller and smaller when

204



Chapter 5 : Applications

the volume of sub-images under consideration becomes larger for every rock sample.

This indicates that the minimal dimension of sub-images of FS-B should be larger than

2403 voxels in the sense of the error to stable value (1188 mD) less tban 5%. Similarly,

the stabilities of absolute permeabilities computed for FS-A and BS can also be

observed by constructing IC network for each sub-image of these two samples, the

result is shown in Table 5-6. Figure 5-24 shows the trends of absolute permeability K

when the volume of sub-images increases, they are 450, 1188 and 187) mD for FS-A,

FS-B and BS, respectively, and the corresponding minimal volumes are 5.58 mrrr' (3103

voxels), 6.59 mrrr' (2503 voxels), and 3.5 mm3 (2853 voxels), respectively.
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Figure 5-24: The stable trend of absolute permeabilities when the volume of sub-image

becomes larger and larger.

In the Ie network model, the shape factor is an important network parameter.

Given a shape factor G, if G ranges from 0 to 0.048 (equilateral triangle), then the

corresponding bond is idealized as a duct of triangular cross section; otherwise the cross

section is regarded as being either square-shaped or circle-shaped. For sandstone

samples, however, the latter (e.g. G > 0.048) is rather rare and can be ignored in the

computation of absolute permeability using the IC network model.

To have an insight in the relevance of the shape factor for the permeability, I

designed a simple numerical experiment in three steps: (I) constructing network
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structures from a sub-image of FS-A; (2) keeping all network parameters the same

(including inscribed radii), except for the shape factor, which is decreased the factor by

5%; (3) feeding modified network structure into the Ie network model to predict

absolute permeability and then go back to (2). The result is shown in Figure 5-25(a).

Note that the absolute permeability (K) decreases as the shape factor increases. From

Figure 5-25 (b) follows that the cross sectional area increases as the shape factor

decreases because the inscribed radii remains unchanged. Therefore, we can see that the

shape factor strongly affects the permeability.
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Figure 5-25: Relevance of the shape factor for the absolute permeability using the Ie

network model for sample FS-A. This result uses the same network for each

experiment, with the difference being the assigned shape factor for all pores in that

model.

When multi-phase fluid flow is considered in a network model, if flow rates are

computed using the same pressure drop as for single-phase flow, then the relative-

permeability is simply obtained by

(5.12)

Where Qun is the flow rate of a phase and Qts is the total flow rate for all phases.

For FS-A, FS-B and BS, the relative permeabilities (Figure 5-26) for primary drainage

and waterflooding are computed by finding the pressure field in the oil and water phases

assuming that each phase occupies a separate non-communicating sub-network and that

the oil and water are both Newtonian fluids. During primary drainage the network is

assumed to be strongly water-wet with a receding contact angle of 0 degrees. There are

no other parameters to adjust, with all geometric network properties (connection
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numbers, radii, shape factors etc) defmed in the sandstone reconstruction process.

Though the network is still water-wet during waterflooding the advancing contact

angles will be larger, due to roughness of the surface and minor intrinsic wettability

alteration.
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Figure 5-26: Predicted oil/water relative permeabilities by Ie network model for FS-A

(top row), FS-B (middle row) and BS (bottom row). The primary drainage relative

permeabilities illustrated in the left, secondary imbibition (waterflooding) relative

permeabilities in the right.

5.4.4 The correlation between Absolute Permeability and Inscribed Diameter
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As discussed before, there are many microscopic morphological (geometric and

topological) features which affect the macroscopic properties. Among them, the pore

size and the pore connectivity are two major factors. The former is quantified by cross

sectional radii and the latter by the connectivity coefficient. In order to study the

correlation between absolute permeability and the pore size, I test an array of rock

images, which are created by keeping their connectivities but imposing different pore

sizes onto the three rock images.

K 1805
Id 36.32

127

28.12

K 542
Id 27.18 23.53 21.56

K 80
Id 19.17 15.83

Table 5-7: Creation of a series of images of different average pore size but the same

topology (~v = 687mm-3) from the original image ofBS.

In the construction of network structures, the general procedure can be described

as follows: For a rock image lP, removing all current simple border pore voxels (see
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Chapter 3) leads to the creation of a new image. The newly created image contains the

shrunk PS, in other words, the average pore size is smaller than that of the original

image P. Based on this new image, the corresponding network structure can be

constructed and then the absolute permeability can be predicted using the IC network

model. This procedure continues by removing more and more border simple points until

the skeleton remains. At each step, an amount of pore voxeJs have been removed and a

new image is created based on its previous image. Therefore, an array of the

penneabilities against the pore size can be computed for a given PS topology.
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Figure 5-27: Measured data and their trend-lines of absolute permeability (K) again t

the average cross sectional inscribed diameter (Id) for FS-A, FS-B and BS.

For BS, I create a series of images from its original image illustrated in Table 5-7.

There are 8 newly created images of different average pore size h which decreases

from 36.32 urn to 15.83 urn. The corresponding absolute permeability (K) predicted by

the IC network model decreases from 1805 mD to 27 mD. The process of removing

pore voxels can be imagined as peeling off the outmost boundary of the PS layer by

layer. In a similar way, for FS-A and FS-B the (K, Id) curves are plotted in Figure 5-27.

If one imagines that the PS of a rock had been infilled by cement in such a way as to

mimic the layer-by-layer shrinking described here, we start to see a potential method for

predicting the influence of diagenesis on flow properties in the absence of a complete

suite of samples.
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In Figure 5-27, three sets of data correspond to the permeabilities plotted against

the average pore size for the three rock samples. The absolute permeability increases

exponentially with the increase of the average cross sectional diameter in each case, but

the rate of increase differs. The three trend-lines are illustrated in Figure 5-27 along the

scattered data.

5.4.5 The correlation between Absolute Permeability and Connectivity Coefficient

To explore the correlation between absolute permeability (K) and the connectivity

coefficient (l;;v) of porous media, the key point in the reconstruction of PSs is to keep

the geometry but to change the topology of the original image. Given a rock image and

its skeleton (see 2D schematic picture in Figure 5-28), I change the topology by

randomly eliminating a set of skeleton voxels. Note that in this process no pore voxcls

have been removed. In other words, the shape and the size of the PS remain unchanged.

Based on the modified skeleton, new network structure is re-constructed and its

macroscopic properties are predicted using the Ie network model. As an example, Table

5-8 lists 8 pairs of (K, l;;v)for BS. The ultimate result for the three samples is plotted in

Figure 5-29.

Figure 5-28: 2D schematic pictures demonstrate the idea for changing the topology by

removing skeleton voxels.

In Figure 5-29, the range of connectivity coefficient l;;vofFS-A goes from 25 mm-

3 to 127 mm" while the one of FS-B goes from 41 mm" to 226 mm", the maximum

range of l;;vis achieved by BS from 214 mm" to 716 mm". Note that these ranges are

used to compute the absolute permeabilities shown, but that the result may be

incomplete since l;;vshould range from 0 to its maximum value, theoretically. Even with

this caveat, we can roughly say that the correlation between K and l;;vlooks to be power
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function. The parameters of the regression lines (trendlines in Figure 5-29) seem to be

correlated to the average pore size due to the removal of skeleton voxels.

K(mD)

1805 715.86

1497 655.69

]247 600.23

1023 548.86

837 500.67

537 412.86

345 334.09

183 268.29

S J :2l4.37

Table 5-8: The predicted absolute penneabilities for images of different connectivity but

the same average pore size for BS.
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Figure 5-29: The correlation curves between absolute permeability K and connectivity

coefficients ~v with trend-lines of slops of 4.18, 6.38, and 3.39 for FS-A, FS-B and BS,

respectively.
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5.4.6 Comprehensive Correlation

Combing the two kinds of numerical experiments discussed above, I can

investigate the comprehensive correlation among absolute permeability (K), average

pore size (cross sectional diameter Id), and connectivity coefficient (Sv). For an input

rock image P, the numerical experiment is carried out in the following way.

From the skeleton of P(e.g. BS), I randomly remove a number of skeleton voxels,

such as m skeleton voxels, and obtain a new image PI Iwith a modified skeleton. For this

newly generated image PI I, its average cross sectional diameter Id and the connectivity

coefficient SVare determined. Then the absolute permeability K is predicted using the Ie
. I

network model based on the extracted network structure fr0111<PI • Further, removing the

outmost layer of border simple voxels from PI I, an image ~ I of smaller pore size is

generated and the corresponding triple of (Id, SV,K) is determined or computed based on

~ I. The removing of border simple voxels continues until only the skeleton remains. In

this way, seven rock images with the same topology but different average pore size have

) been generated, denoted by PI I, ~ I, CPJ 1•••• Prl. Their average cross sectional diameter Id

range from 22.74 urn to 40.48 urn, which is listed as the first row in Table 5-9 to

indicate the pore size, and the connectivity coefficient is the same value 226 mnf3. The

corresponding K values are listed in the row with entry mark 226 in Table 5-9. The

process begins again by randomly remove 2m skeleton voxels from the skeleton of P,

and then another seven reconstructed rock image pj2, ~2, PJ2 .To Pt For these images,

the corresponding triple (Id, sv, K) is computed and listed in the row of entry mark 217

in Table 5-9. The process described above repeats until the connectivity coefficient is

small enough (e.g. 145 mm"), From sample BS, the computed result is listed in Table

5-9 and illustrated in Figure 5-30.

In the similar way, I calculate the three quantities (i.e. K, sV and Id) from other

two samples, and the ultimate result is plotted in Figure 5-31. The X-coordinate axis

represents the connectivity coefficient Sv. For an array of reconstructed rock images,

which have the same average pore size (Id) but their connectivity coefficients (sv)

decrease, the predicted absolute permeabilities (K) are represented by theY-coordinate.

Each curve in Figure 5-31 corresponds to an array of reconstructed images of a single
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average pore size. For example, the curve of mark BS (33.70) indicates that the absolute

permeability K increases as the connectivity coefficient sv increases based on the

extracted images by removing skeleton voxels continuously. Due to the different

connectivity of the three samples, the SV locates within three distinct regions on the X-

coordinate axis in Figure 5-31. The ~vs of FS-A range from 0 to 120 mm", FS-B from

145 to 220 mm" and BS from 270 to 700 mm", respectively.

~VVd 22.74 28.43 31.96 36.53 39.12 39.75 40.48
145 72 101 200 340 370 425 533
166 87 125 243 401 472 550 664
187 103 147 291 538 666 688 844
195 109 154 308 613 716 735 889
202 117 160 322 640 770 856 934
209 124 168 345 678 837 885 1014
217 129 178 359 715 906 957 1110
226 137 188 378 764 970 1071 1189

Table 5-9: Triples of absolute permeability (K), connectivity coefficient (~v) and cross

sectional diameter (Id).

Based on this observation, it is clear that the absolute permeability is strongly

related to both the pore size and to the connectivity. In my data, the trend between K

and Id seems to be exponential, also the trend between K and sv look to be exponential

with different power coefficients. According to Figure 5-30 and Figure 5-31, more

suggestions can be made in the following.

For Fontainebleau sandstone, the connectivity (sv) is more important than the

pore size (Id), whereas Id is critical for Berea sandstone. In Figure 5-31, the slopes of

most curves of both FS-A and FS-B are larger than that ofBS, which means that a slight

enhancement of the connectivity of Fontainebleau sandstone would result in much

better permeability than would a similar change to Berea sandstone. For BS, a small

change of the pore size leads a big change of the conductivity. From Table 5-1, BS has

smallest cross sectional diameter (36.3 11m) but largest porosity (19.65%), which is why

it has highest connectivity.

The functional dependence of K on ~v and Id is significantly different between the

two Fontainebleau sandstones and the Berea sandstone, but there seems to be a set of

relationships that appear to transcend the differences between the individual rocks. It

seems that a set of curves could be fitted to these results that would predict permeability

as a function of sv and some normalisation of h At this time, I have not attempted to
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identify how to normalise the pore size, but this seems to be a useful avenue for further

work.

Figure 5-30: The correlation among absolute permeability (K), connectivity coefficient

(~v) and average cross sectional diameter (Id) for sample FS-B.
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Figure 5-31: Each curve corresponds to an array of reconstructed rock images with the

same average pore size after removing amount of skeleton voxels. It shows the change

of absolute permeability K against the connectivity coefficient ~vwithout changing the

pore size.
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5.5 Conclusion

In this chapter I have studied two Fontainebleau sandstone samples (FS-A and FS-

B) and one Berea sandstone sample (BS) with respect to their microstructure and

macroscopic flow behaviour. Using the C++ codes for image processing and pore

structure analysis, many pore geometric and topological properties have been extracted

from the three rock images. After combination with the pore partitioning technique,

network structures for the IC network flow model have been constructed. Subsequently,

single-/multi-phase flow properties have been predicted using this network model.

Using all these techniques, a series of numerical experiments on the three rocks have

been performed and many interesting correlations between network element properties

or among permeability, pore size and pore connectivity have been studied.

From Figure 5-2 ami Figure 5-1 S, the stable porosities and conncctivitics can be

obtained when the volumes of the sub-images of the three rock image are larger than

certain threshold volumes (e.g. -4 mrrr' for FS-A, -7 mrrr' for FS-B and -8 mrrr' for BS).

Naturally, the absolute permeabilities also become stable when the volumes of sub-

images are large enough (see Figure 5-24). All three rocks have representative

elementary volumes (11.98 mrrr', 11.39 and 9.77 mm') with respect to porosity and

connectivity, therefore the network predicted results are reliable and useful for

describing macroscopic properties.

In the three rock images there are a large number of separate pore components

and solid particles (see Table 5-2). Only a very small number of pore components are

connected from one side of the pore systems to the other, but they occupy almost 98%

of the total pore space volume, which any other pore components are tiny and isolated.

Also, besides the single background component (solid matrix) for each sample, a huge

number of small solid particles "float" in the pore space. The reason is the imaging

noise from CT-scan or digitalizing. The existence of tiny isolated pores and floating

solid particles in the pore space considerably degrades the quality of the Euler number

for describing pore connectivity (see Table 5-5). This highlights the importance of

image pre-processing or the introduction of a new topological descriptor, such as the

connectivity coefficient (5.6).

According to Table 5-1, there are no significant differences in terms of average

pore size (Id), average shape factor (G), average coordination number (Cn) between the
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three samples. Some descriptors (e.g. Id and G) reveal intrinsic structural variations of

the different rocks, but for others properties (e.g. Cn), the differences stem from the

descriptors themselves. The coordination number represents the level of local pore

connectivity, which is dependent on the construction of the network structure, but it

cannot reveal the global connectivity (see Figure 5-16). However, the connectivity

coefficients clearly quantify the global pore connectivities. From the data shown in

Table 5-2, we conclude that the connectivities (sv) and pore volumes (porosities)

identify the differences between the three rock samples with similar pore sizes (also see

Figure 5-15). From Figure 5-25 follows that as the average shape factors decrease, the

cross sectional areas, hence the conductance, of the idealized equivalent triangles

increases.

Using the network construction technique and the Ie network flow model, I have

predicted many characteristics (absolute pcrmcabilitics, sec Figure 5-24; relative

permeabilities, see Figure 5-26 and correlations of pore elements such as node size

against number of connected bonds, see Figure 5-21) and correlations of pore elements,

such as node size against number of connected bonds (Figure 5-22) as well as node size

against average adjacent node size (Figure 5-23). Also, the correlation between absolute

permeability, pore size and pore connectivity has been explored and preliminary

analysis are given.
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Future Research

In this chapter, I firstly present a discussion about the issues examined in this

thesis, and then I summarise and conclude my study. Finally, I propose some areas for

further research. In brief, this thesis presented a suite of newly improved methods for

characterising porous materials, and described the development of a set of pore analysis

tools (PAT). The original objectives of this thesis, as described in Chapter 1, have been

achieved.

6.1 Discussion

With high quality 3D rock images available, in this research I have focused on the

characterisation of the extremely irregular PSs in terms of their geometric and

topological descriptions. The quantification techniques can be used either to provide

realistic network structures for network flow models or to carry out some numerical

simulations. The basic targets mainly include three topics: (1) description of the

morphological (GT) properties of the PS; (2) algorithm efficiency and robustness; (3)

construction of network structures.

My skeleton-based algorithms and techniques range from basic distance

transformations, component labelling, skeletonization, and region partition to network

construction. I am mainly concerned about how much detail can be derived directly

from rock images while achieving certain accuracy in a very efficient way on a PC.

Without efficient algorithms, the thinning operation, GED transformation and pore

partitioning would be prohibitive for large 3D consolidated rock images using a desktop

PC. For skeletonization, although the resultant skeleton is certainly topology-preserving

if the corresponding thinning algorithm is based on the concept of a simple point, the

skeletonization still needs to be improved by some so-called multi-orientation or

parallel approaches. In this thesis, a new concept and its thinning algorithm were

presented to greatly improve the normal distance-based thinning. With the consideration

217



Chapter 6 : Discussion. Conclusion and Future Research

of fluid flow in porous media, specific geometric constraints in the thinning method

have also taken into account.

In the geometric description of the PS, the pore size is conunonly represented by

the pore equivalent spherical radius, i.e. the radius of the corresponding maximum

inscribed discrete sphere. The inscribed radii cannot give much detail about the real

pore size in relative to its irregularity in rock images, which means that an accurate

descriptor of pore size was needed. Meanwhile, current topological descriptions of the

PS cannot meet the requirement for explaining complicated fluid flow properties among

homogenous pore media. Due to the inherent noise in rock images, the Euler number

does not tend to be stable even though the considered image is very large (e.g., 5123

voxels). For this reason, the Euler number itself and its derived quantities (e.g. the

specific Euler number and the connectivity function) are not good enough to distinguish

SOI1ll: porous systems ih.u have very similar geometric features but different

connectivities. In this thesis, an analytical relationship between topological numbers

and the numbers of tunnels and cavities in a local neighbourhood is introduced and an

accurate computation of the EPC is then developed for 3D images. In the comparison

with Vogel's approximation of the EPC, the result can be summarised as follows (see

Section 3.4.2).

Calculation of the EPC Vogel's method My method

Existing error? Yes No

Efficient High low

Leading to the determination ofthree numbers
No Yes

of component, tunnels and cavities.

Dependent on the choice of slices (number of
NoYes

serial sections and coordinate directions)?

In the construction of network structures for network flow models, I find that the

network extracted directly from rock images is much more complicated than any

simplified network. The major issues are: (1) the definition of node (pore-body); (2) the

partition of the pore space; (3) the calculations of geometric and topological properties;

and (4) tailoring the extracted network for a specific network model. With distinct

definitions of node, the extracted network illustrates a significant difference. To
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investigate single- or multi-phase flow, it is necessary to take into account the hydraulic

features of fluid flow through pore channels. Therefore, the flow network consisting of

nodes and bonds becomes the favoured choice because the nodes and bonds can he

rigorously identified based on the determination of skeleton junctions. For the network

geometric parameters, the irregular shapes of spatial objects such as nodes, bonds and

cross sections need to be smoothed and approximated in digital space because of their

zigzagged edges. The morphological quantities (e.g. radius, volume, length, shape factor

and coordination number etc.) are calculated in the way of either arithmetic average or

harmonic average. To feed a realistic network into a network flow model, some virtual

network elements (nodes and bonds) may need to be added into the realistic network

while some real network elements may need to be removed from the network. Over

Oren and Bakke's method (2003[119]), my GT network has several significant

Atributes Oren and Bakke method My GT network extraction

not clear; it may depend on the guaranteed according to the 2D

Central location shape of structuring elements for and 3D Euclidean distance

dilating the grain space

Single-Voxel surface skeleton may occur, and guaranteed at nonjunction

Width (Curve) multi-voxels are common skeleton voxels, curve skeleton

can be assured.

Topology no yes

Preservation

Identification of not clear yes

Branches and

Dead-end pores

In order to make a comparison about the network construction from different

research groups, two sets of data are collected from Imperial College of London (ICL)

and 0ren's group - and my network structure parameters (HWU) are also calculated

using the PAT codes. All the network structure data come from the exact same sample

(a Fontainebleau sandstone with porosity of 13.83% and with similar microstructure to

the FS-B sample in Chapter 5, whose experimental permeability in lab is 1300 mD).
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After the networks are extracted, the Ie network model is used to predict the

permeability. The basic network parameters and network predicted permeabilities are

listed in the table below.

Network structure and permeabilities 0ren ICL HWU

Number of pores (nodes) 4997 3101 4480

Number of throats (bonds) 8192 6112 7185

Average Coordination number 3.19 3.85 3.16

Network perm (mD) 582 380 923.
My extracted network structure is close to that of Oren but quite different from

ICL. The reason is that both Oren's and my methods are skeleton-based but the TeL

approach is a type of sphere-fitting. The difference between Oren's and mine is the

topology-preservation; (2) no false junctions are identified as centres of pores because I

usc Liang's A-adjacency; (3) the range of a node on the skeleton is determined by its

cross sectional radii (squared Euclidean value); (4) reasonable volume partitioning

based on the geodesic distance chamfer transformation. For this sample, my network

predicted permeability is closest to the lab test result. As for the ICL method, due to its

artificial operations to adjust pore and throat volume the result is not as close to the lab

permeability.

6.2 Summary and Conclusions

In this thesis, I have developed a suite of image processing algorithms and pore

structure analysis techniques (PAT), which has been coded in C++. According to

Lindquist and Venkatarangan (1999[88]), my methods can be classified as skeleton-

based and they mainly include distance transformations, component clustering, MA

transformation (skeletonization), pore space partitioning, geometrical and topological

quantification and network structure construction. Aiming to accurately and efficiently

characterise the geometric and topological features and predict the macroscopic

properties of porous media systems, I extended and improved existing approaches in

different ways such as from lower to higher dimensions, from complicated to simple

implementations, from slow to fast handling, and from narrow to wide range of
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applications. Meanwhile, I developed algorithms to meet the specific need in the pore

structure analysis if no suitable techniques can be found, such as keeping the links with

inlet and outlet and branches under control of parameters. From the applications in the

three sandstone samples in this thesis, the PAT techniques have been verified to be very

useful in the network structure construction and the pore structure analysis.

The main conclusions and findings are as follows:

1. The relationship between Euclidean and chamfer distance in 2D or 3D has

been established (see (3.12) and (3.13)), which provides a rigorous

mathematical base to develop efficient algorithms for region partition.' And I

also gave a condition for the 3D chamfer distance metric (3.10).

2. Motivated by Shih and \Vu's (2004a[154]) approach, I extended and

improved their algorithm by propagating relative coordinates and distance

values in neighbourhoods without their complicated decomposition. Through

the two-scans (forward and backward), for any foreground voxel its nearest

background voxel is obtained by comparing the SED of its neighbours. In this

way, not only the algorithm efficiency has been improved, but also the

algorithm (Algorithm 3.1 and Algorithm 3.2) can be used to cluster

foreground voxels based on minimum distance criterion. Furthermore, the

three targets, i.e. 1) to simplify the comparison of SED values in a 3x3x3

neighbourhood, (2) to avoid the complex decomposition of the SED structure

and (3) to make algorithm easy to implement and to understand, have been

achieved in the design of the algorithms.

3. To avoid floating-point calculations, chamfer and geodesic chamfer distances

are used to approximate the Euclidean and geodesic Euclidean distance,

respectively. Similar to Cardenes et al.'s (2003[31]) method, a geodesic

chamfer distance transformation (Algorithm 3.3) has been proposed for the

GCD with CDC of (3, 4, 5). The GCD transformation is used to assist with

the geodesic Euclidean distance transformation, to partition the PS, to cluster
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individual CSs, to determine primary branches on skeleton or to plan route for

robot.

4. In order to compute the Euler number, to extract a skeleton from the object,

and to conduct cluster analysis, I extended the classical 11K algorithm into 3D

with a consideration of diverse adjacencies (6-, 18-, 26- and A-adjacencies)

and a more efficient algorithm for counting the number of components. The

method is based on the HK (Hoshen and Kopelman, 1976[59]) algorithm and

its extensions (Hoshen, 1998[58]; Al-Futaisi and Patzck, 2003[2]).

5. The analytical relationship among the topological number (Bertrand,

1994[14]), the number of tunnels and the number of cavities in the 3x3x3

neighbourhood of any voxcl has been round and PIOV.:J ('1hcorcin 3.1). This

is then used to efficiently compute the Euler number (3.29) because only a

component counting and one-way scanning are involved in the new algorithm,

and it also provides a theoretical foundation for topological thinning and

counting global redundant connections in the PS.

6. A sufficiency condition (Theorem 3.2) of a simple set has been presented and

proved in order to identify whether or not a pure 6-component is a simple set.

This theorem can be considered as being the extension of the local

characterization of a simple point (Bertrand, 1994[ 14]) because when a pure

6-component contains only one point, these two theorems are the same. Based

on this theorem, a more efficient and robust skeletonization algorithm has

been developed. The extracted skeleton can be used to quantify cross

sectional radii and the coordination number, to cluster a set of individual

pores, and to construct a network of nodes and bonds etc. To meet the four

requirements (Section 3.5.1) and to give an efficient implementation, my

thinning algorithm peels off object border voxels in the order controlled by

their SED values layer by layer. The efficiency is mainly achieved by

introducing a concept of pure 6-component (Definition 8) and the local

characterization of a simple pure 6-component (Theorem 3.2). In addition,

special strategies (e.g. symmetry and interval deletion) have been introduced
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in order that: (a) far fewer voxels need to be checked in an iteration; and (b)

the position of the skeleton voxels is located in the middle as much as

possible even when they have same Euclidean distance values.

7. Based on Theorem 3.2, an efficient and flexible thinning algorithm has been

developed to extract the GT network from rock images. The algorithm

efficiency is achieved by (1) checking the simplicity of a pure 6-col11ponent

rather than a single point, (2) avoiding redundant checking between two

iterations and (3) introducing queues storing candidate set or points. The

algorithm flexibility is obtained by: (1) introducing different parameters for

retaining boundary, branch and anchor points and (2) designing specific

routines for retaining 6-, 18-, 26- or A-skeletons. The extracted GT network

(skeleton) has the four properties required in pure structure analysis:

topology-preservation, single voxel width, central location and integration of

geometry.

8. Based on the Euclidean distance valued skeleton of porous media, a novel

sphere-fitting approach is introduced to solve the drawbacks of general

sphere- fitting:

• Avoiding using discrete spheres, my approach can derive much detail about

. the pore size;

• Dead-end pores may not be regarded as individual pores;

• Natural irregular pores can be kept in the resultant partition;

• Algorithm efficiency is significantly improved.

9. A comprehensive set of approaches is explored aiming to compute the shape

factor in a more accurate and efficient way. It includes three aspects in

particular:

• The extraction of CSs from rock images;

• The generation of 2D shapes by projecting spatial CSs into coordinate

, planes;

• The computation of shape factor of 2D shapes;
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• The convert of shape factor from 2D shapes to spatial CSs.

10. A method for extracting a network of nodes and bonds from 3D rock images

is presented to address four issues (close enough, 26-connected, not

snowballing and topology-preserving). The extracted networks are

constructed to meet specific network structure requirement, and are then fed

in network flow models, such as the Ie (Imperial College) network flow

model, to predict some macroscopic transport properties of porous media.

11. Apart from the commonly used relationship between the pore size - sphere

equivalent pore size, in the analysis of pore geometric properties, I present a

new measure, called cross sectional size (radius or diameter), to characterise

tl.c pore channel size based on the SED;:; itt skeleton \0.\:(;1.:;. The complication

of neighbour configurations of skeleton voxels with small SEDs (e.g. 1 in

voxel) is explored, and much more accurate cross sectional sizes can then be

measured from rock images. This new pore size measure facilities our

numerical simulation of mercury injection and improves the predicted result

of network model by assigning average cross sectional radii for pore-throats

(bonds).

12. In the application for studying sandstone samples, I study the pore

connectivity through measuring the coordination number distribution and

computing specific (volumetric) Euler number. The limitations of the Euler

number for describing the global pore connectivity are investigated, thus a

robust and accurate topological descriptor, connectivity coefficient, is

introduced because the effect of tiny isolated pores are weakened and the pore

volume are taken into account.

13. Based on three sandstone samples and using the IC network flow model, I

have done some preliminary studies of morphological properties, single/multi-

phase fluid flow properties and the correlations among absolute permeability,

average pore size (cross sectional diameter) and connectivity coefficient by
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reconstructing a series of images from the three original rock images. Some

major results are obtained in the pore analysis:

• The morphological statistics and permeability of the three sandstone

samples can be summarised in Table 5-1.

• The correlation between node cross sectional diameter and coordination

number can be approximated by linear equations with almost same slope but

different intercepts (Figure 5-21).

• The correlation between node and adjacent node sizes (cross sectional

diameter) seems to be linear with different slope but similar intercepts (Figure

5-23).

• The correlation between absolute permeability and pore size (average cross

sectional diameter) tends to be exponential with distinct powers (Figure 5-28).

• The correlation between absolute permeability and connectivity coefficient

seems to be exponential with distinct powers (Figure 5-30).

, • The comprehensive correlation among permeability, pore SIze and

connectivity indicates that the permeability is more sensitive to the pore size

than to the connectivity of the PS in porous media (Figure 5-31).

6.3 Future Research

As shown in this thesis, the PAT provides a series of efficient algorithms and state

of the art techniques for 3D image processing and pore structure analysis. From the

analysis of the three sandstone samples, the efficiency, accuracy and robustness of the

approaches have been verified. However, it should be noted that the techniques are not

perfect and there are still issues in some cases as discussed before. In future, more

research needs to be done in order to improve the capabilities of the PAT tool.

In PAT, some techniques need to be refmed. Using GCD transformation-based

pore partitioning would solve the challenge that arises when two individual bonds share

a large number ofvoxels. This method would produce systematic biases from its middle

surface between two bonds, hence the exact GED transformation needs to be developed

in the future in a very efficient way. For the calculation of shape factor, the optimal

smoothing scheme dependent on types of material should be explored and more than 13
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normal orientations and non-planar cross sections are also critical for idealizing pore

throats.

In this thesis, only preliminary correlations between pore sizes, connectivity and

absolute permeability have been explored. The next stage of this research will be

investigating the correlations among pore geometry, topology and multiphase flow

property (e.g. relative permeability), as well as the effect of wet ability of porous media.

Therefore, we need to design more effective algorithms to extract relevant GT clements

and validate the correlation hypothesis using experimental data and introduce new

techniques to extend this study. Apparently a good explanation of these correlations is

very important for better understanding of pore microstructures from rock images or

reconstructed models.

In Chapter 5, only three well consolidated sandstone samples are studied, and

some qu.mtitativc charucterisutions of g,:olll('~ric aud topological properties of the l'UI~

space and some good predictions have been reported. For unconsolidated materials,

related techniques (e.g. equal-distance pore partitioning; computation of shape factor

and A.-adjacency-based skeleton clustering) have already been successfully developed,

and some preliminary research has also been done (but is not included here). However,

there are three major problems which are totally different from consolidated samples:

(1) from any pore voxel and at any orientation, it is not possible to cut off such a cross

section that it has rigorous limited solid contour, which means one cannot identify any

limited cross section as a narrow surface (throat); (2) the possibility of any two.
inscribed spheres touching or overlapping centred at two skeleton junctions is very high,

thus certainly it is very difficult to cluster the pore skeleton into a network of node-

skeleton backbones and bond-skeleton backbones without "snowballing"; and (3) the

volume assignment for network elements is very sensitive to the scanning direction

when the partitioning algorithm is applied. Aiming to solve such problems which occur

in unconsolidated samples, some key techniques are in demand: (1) partitioning of

planar regions or 3D domains; (2) good merging rule of node-skeleton voxels; (3)

determination of flow-relevant flow paths. The extracted network structure should

coincide with experimentally intuitive observations of the fluid flow porous media, and

it should be independent of the scanning direction. The most important feature must be

having reasonable predictions of macroscopic properties with regard to the observation

in labs. For unconsolidated materials, I have not yet obtained ideal results due to two
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reasons: short of relevant techniques and datasets. Therefore my future research will

focus on the study of unconsolidated material and related techniques.
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