RESERVOIR
 CHARACTERISATION OF A LAMINATED SEDIMENT

THE RANNOCH FORMATION, MIDDLE JURASSIC, NORTH SEA

Patrick W. M. Corbett, BSc., MSc., Dip.Stat.

Abstract

This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author or the University (as may be appropriate)

Submitted for the
Degree of Doctor of Philosophy
Heriot-Watt University
Department of Petroleum Engineering
July 1993

LIST OF CONTENTS

DEDICATION i
ACKNOWLEDGEMENTS ii
ABSTRACT iii
INTRODUCTION 1
CHAPTER 1. LAMINATION IN RESERVOIRS 5
1.1. The origin of lamination in sedimentary rocks 5
1.2. Previous studies of laminated sediments in petroleum engineering 9
CHAPTER 2. THE RANNOCH FORMATION 11
2.1. The geological description of the Rannoch Formation 11
2.2. Petroleum engineering challenges in the Rannoch Formation reservoirs 19
CHAPTER 3. PETROPHYSICAL DESCRIPTION OF THE RANNOCH FORMATION 24
3.1. The physics of core plug permeability measurements 24
3.2. Traditional core plug sample scheme 26
3.3. The development of the probe permeameter 29
3.4. The physics of probe permeameter measurements 31
3.5. Probe permeameter sampling scheme 33
3.5.1. Probe measurements on Rannoch core plugs 37
3.5.2. Probe measurements on resinated core slabs 38
3.5.3. Probe measurements on unresinated blocks 44
3.6. Discussion of sample volume and spacing 45
CHAPTER 4. COMPARISONS OF PROBE AND CORE PLUG MEASUREMENTS OF PERMEABILITY 47
4.1. Measurements at the sub-core plug scale 47
4.2. Bounding surface permeability measurement 52
4.3. Plug-scale permeability measurements 54
4.4. Treatment effects affecting core plug and core slab measurements 58
4.5. Lamina and laminaset scale measurement of permeability 60
4.6. Laminaset and bed scale variability 63
4.7. Formation scale measurement of permeability 73
4.8. Anisotropy ($\mathrm{kv} / \mathrm{kh}$ ratio) measured at different scales 77
4.9 Discussion of the Rannoch permeability distribution 78
CHAPTER 5. TWO-PHASE FLOW PROPERTIES OF LAMINASET ELEMENTS 80
5.1. Introduction to two-phase flow 81
5.2. Single phase laminaset properties 83
5.3 Determination of two-phase properties 85
5.3.1. Capillary pressure 85
5.3.2. Relative permeability 87
5.3.3. Recovery and water cut performance 87
5.3.4. Pseudo relative permeabilities and capillary pressures 90
5.4 Rannoch laminaset two-phase properties 98
CHAPTER 6. SCALE-UP OF LAMINASET PROPERTIES FOR CROSS SECTIONAL WELL MODELS 99
6.1. Stratal elements and the geopseudo concept 99
6.2. Geopseudos for laminaset elements 100
6.3. Geological model for the arrangement of laminasets within the Rannoch Formation 101
6.4. Geopseudos for bedset elements 103
6.5. Discussion of bed scale simulations 108
CHAPTER 7. CROSS-SECTIONAL SIMULATION STUDY OF THE RANNOCH 109
7.1. Variability of the Rannoch Formation in North Sea fields 111
7.2. Cross-sectional well modelling in Thistle Field 113
7.3. Transportability of geopseudos 120
7.3.1. Statfjord Field 121
7.3.2. Cormorant Field 131
7.4. Discussion of cross-sectional model results 138
CHAPTER 8. CONCLUSIONS AND FURTHER WORK 140
8.1. The use of the probe permeameter in laminated reservoirs 140
8.2. The geopseudo methodology and implications for petrophysics 142
8.3. Rannoch Formation average reservoir properties and remaining oil 143
NOMENCLATURE 145
APPENDICES
I. STATISTICAL METHODS i
I.1. Measures of Central Tendency ii
I.1.1. The Arithmetic Average iii
I.1.2. The Geometric Average iii
I.1.3. The Harmonic Average iv
I.1.4. Differences Between Measures of Central Tendency iv
I.2. Measures of Variability vi
I.2.1. The Standard Deviation vi
I.2.2. The Coefficient of Variation vii
I.2.3. Dykstra-Parsons Coefficient ix
I.3. Distributions X
I.4. Sample Sufficiency xiv
I.5. Linear Regression xvii
I.6. Spatial Correlation xX
I.7. Statistical Testing xxvi
I.7.1. The t-Test xxvi
I.7.2. The F-Test xxvii
II. PROBE PERMEAMETER CALIBRATION
II.1. Empirical Calibration ii
II.2. Analytical Calibration vi
III. THE PROBE VOLUME OF INVESTIGATION
III.1. ECLIPSE Model Study i
III.1.1. Model Construction and Operation ii
III.1.2. Model Results ii
IV. CAPILLARY PRESSURE
IV.1. Definition of Drainage and Imbibition Capillary Pressure Curves i
IV.2. Capillary Pressure Distribution in Reservoirs v
IV.3. Rannoch Formation Drainage Capillary Pressure Curves vi
IV.4. Rannoch Formation Imbibition Pc Curves xi
V. RELATIVE PERMEABILITY
V.1. Relative Permeability and Wettability i
V.2. Relative Permeability and Lamination iii
V.3. Numerically Generated Relative Permeability Curves iii
VI. PSEUDOISATION
VI.1. Pseudo Relative Permeability and Capillary Pressure iii
VII. AN OUTCROP STUDY FOR STRATAL ELEMENT GEOMETRIES
VII.1. Stratal Element Terminology i
VII.2. Background to the Studied Outcrop Sections ii
VII.3. Quantification of Laminaset Geometry iv
VII.4. Data Acquisition vi
VII.4.1. Rannoch Formation vi
VII.4.2. Bencliff Grit ix
VII.4.3. Kennilworth Member xiv
VII.5. Statistical Laminaset Data Comparison xvi
VII.6. Lenticular Shoreface Laminaset Geometries for Engineering Studies xxi
VIII. ECLIPSE INPUT FILES
VIII.1 2-d Radial Probe Permeameter Model (MINIKMOD3C.DATA)
VIII. 2 Subfacies scale; Fine Grid A (EXFGA003.DATA)
VIII. 3 Facies scale; HCS bedform (HCS2D010.DATA)
VIII. 4 Formation scale; Thistle Field (A33GEOP2.DATA)
VIII. 5 Formation scale; Statfjord Field (STAT001.DATA)
VIII. 6 Formation scale; Cormorant Field (CORM001.DATA)
IX. ROCK CURVES AND GEOPSEUDOS
IX. 1 Rock relative permeability and capillary pressure curves $(3,15,50,150,500,1500 \mathrm{mD})$
IX. 2 Geopseudo relative permeability and capillary pressure curves IX.2.1 Ripple, high contrast, low contrast, wavy bedded - $8 \times 8 \mathrm{~cm}$
IX.2.2 HCS, SCS - $1.5 \times 12 \mathrm{~m}$ (5x40ft)
X. PROBE PERMEAMETER DATA SETS
X.1. Statfjord
X.1.a. Calibration data i
X.1.b. 33/12-B9 - Detailed Grids A-H ii
X.l.c. 33/12-B9 - Coarse Grids - Cores 4, 5 viii
X.2. Thistle
X.2.a. Calibration data xii
X.2.b. Thistle A31-Blocks xiii
X.2.c. Thistle A31-0.5cm spacing data xvi

LIST OF FIGURES (in text)

Fig. Page
CHAPTER 1.
1.1 Shield's diagram showing how fluctuations in current strength lead to alternating suspension and deposition of sediment of 6 sediment.
1.2 The hierarchy of stratal elements. 8
1.3 Relationships between permeability and grain size. 8
CHAPTER 2.
2.1 Location map for some Rannoch Formation producing fields in 11 the northern North Sea.
2.2 Typical lower Brent Group sequence, Middle Jurassic, North 12 Sea.
2.3 Photograph of typical Rannoch lamination types from the 14 various facies.
2.4 Photomicrograph showing typical pore-characteristics of a mica- 15 poor and mica-rich laminae in the Rannoch Formation.
2.5 Interpreted sketch of the HCS laminasets of the Rannoch 16 Formation.
2.6 Plot of mean flow velocity against median sediment size 16 showing stability field of bed phases.
2.7 A depositional model for the Rannoch Formation showing the distribution of lamination types and associated bedforms in a 18 storm-dominated shoreface.
2.8 Pressure data for the Rannoch-Etive flow unit from the Statfjord 19 Field, North Sea.
2.9 Core plug data for a typical lower Brent, Rannoch-Etive 21 sequence.
2.10 Schematic of Rannoch-Etive production performance as 22 suggested by previous simulation studies.
CHAPTER 3.
3.1 Core plug permeability measurement. 25
3.2 Limitations of core plug and whole core sample volumes and 27 spacings.
3.3 Statoil's laboratory probe permeameter. 30
3.4 Probe permeability measurements on a core plug. 31
3.5 Statfjord well 33/12-B9 showing location of intervals of cores 4 and 5 on which the initial probe permeability study of the 35 Rannoch Formation was carried out.
3.6 Thistle well A31 showing interval of cores which the more comprehensive probe permeability study of the Rannoch was 36 carried out.
Fig. Page
3.7 Quantification of visual assessments of heterogeneity with the 37 probe permeameter for a set of Rannoch Formation core plugs.
3.8 Heterogeneous plugs can be excluded from measurement comparisons by quantification of variability with probe 38 measurements.
3.9 Coarse and fine grid sampling scheme for the Statfjord core 40 study.
3.10 Procedure for the generation of subsamples from the original 41 sample population.
3.11 Number of samples from each subsample generated by the 41 procedure illustrated in Fig. 3.10.
3.12 Arithmetic average for each subsample generated by the 42 procedure illustrated in Fig. 3.10.
3.13 Comparison of large and small probe measurements over 43 selected core intervals.
3.14 Typical probe permeameter sample programme for an 46 unresinated block (B1-3) of the Rannoch in the Thistle Field.
CHAPTER 4.
4.1 Detailed permeability profiles for samples B1-3 and B1-2. 49
4.2 Detailed permeability profiles for sample A1-2. 50
4.3 Probe scale $\mathrm{k}_{\mathrm{v}}: \mathrm{k}_{\mathrm{h}}$ relationship for the Rannoch Formation. 51
4.4 Detailed permeability mapping of a bounding surface, sample 53 B1-2.
4.5 Comparison of probe and Hassler cell permeabilities on cleaned 57 homogenous plugs.
4.6 Comparison of averaged probe permeabilities on uncleaned 58 slabbed core with cleaned plug permeabilities.
4.7 Comparison of probe measurements after various treatments. 60
4.8 Probe permeability maps of the three main Rannoch laminaset 61 types.
4.9 Comparison of a semivariogram in a high mica, anisotropic, Rannoch laminaset with one from a relatively homogeous 62 (Etive) sediment.
4.10 Pattern of probe permeabilities showing distribution with a 64 single bed.
4.11 a Permeability variation within the SCS facies, Rannoch 66 Formation, Thistle Field.
4.11 b Permeability variation within the HCS facies, Rannoch 67 Formation, Thistle Field.
4.11 c Permeability variation within the WB facies, Rannoch 68 Formation, Thistle Field.
4.12 Permeability semivariogram for the probe data from the 71 Statfjord Field Rannoch interval shown in part by Fig. 4.10.
4.13 Permeability semivariogram from 1 ft spacing core plugs from 71 the same interval as shown in Fig. 4.12.
4.14 Probe permeability pattern and corresponding semivariogram showing well defined, repeated, bed structure at a scale-length 72 of $\pm 1.2 \mathrm{~m}$.
4.15 Permeability distributions for Rannoch facies from probe 73 permeameter measurements.
4.16 Permeability/porosity trends for the Rannoch Formation. 74
4.17 Plug and probe permeability summary for the Rannoch 76 Formation, Thistle Field.
4.18 Rannoch Formation permeability anisotropy plot. 77
CHAPTER 5.
5.1 Rate dependency of recovery for cross layer and along layer 82 waterflooding.
5.2 Probe permeability (arithmetic average of 4 measurements at each end of the plug) versus plug porosity for the homogeneous 83 Rannoch Formation plugs.
5.3 Capillary pressure curves for the Rannoch Formation from 86 Thistle A33 and the family of curves selected for this study.
5.4 Power-law relative permeability curves and the family of relative permeability relationships used in this study, generated by shifting connate water saturations in accordance with the 87 capillary pressure curves.
5.5 Arrangements of cells in subfacies model simulations. 88
5.6 Recovery and water cut performance for waterflood simulation 89 in HCS subfacies, Rannoch Formation.
5.7 Recovery and water cut performance for wavy bedded facies. 90
5.8 Comparison of detailed layered model performance, uniform model with "pseudos", and uniform model with arithmetic average permeability and corresponding capillary relative permeability curves. 91
5.9 Comparison of detailed layered model with uniform model. 92
5.10 a Bed-normal and bed-parallel pseudo relative permeability and capillary pressure curves for Rannoch Formation HCS/SCS 93 laminasets.
5.10 b Bed-normal and bed-parallel pseudo relative permeability and capillary pressure curves for Rannoch Formation wavy bedded 94 laminaset.
Fig.Page
5.11 Horizontal flow performance of three Rannoch Formation 95 laminasets.
5.12 Schematic representation of capillary trapping at the laminascale. 96
CHAPTER 6.
6.1 a Two-dimensional HCS bedform model showing internal 102 arrangement of laminaset styles.
6.1 b Two-dimensional gridblock representation of HCS bedform 103 model shown in Fig. 6.1 a.
6.2 Anisotropic flow performance in Rannoch Formation HCS 104 bedform model.
6.3 Bed-normal and bed-parallel pseudo relative permeability and capillary pressure curves for the Rannoch Formation HCS 104 bedsets.
6.4 Comparison of recovery performance for the geopseudo HCS bedform model with uniform models using arithmetic average or 105 harmonic average and single rock capillary pressure curve.
6.5 Flow through SCS stacked bedforms. 106
6.6 Flow performance for modified HCS and eroded bedform 106 models of amalgamated SCS.
6.7 Geopseudos for modified HCS, and eroded bedform models 107 for amalgamated SCS bedforms.
CHAPTER 7.
7.1 Location map of North Sea Rannoch-producing fields discussed 111 in this chapter.
7.2 Cross-section through lower Brent Group in the northern North Sea showing the west to east thickening and poroperm 112 improvement in the Rannoch reservoir.
7.3 Sketch map of the Thistle Field showing locations of wells and 113 modelled cross section.
7.4 Thistle Field cross-sectional well model. 115
7.5 Comparisons of model water cuts and production rates. 117
7.6 Numerically scaled kro rock curves suitable for a 8 cm square grid cell and for horizontally and vertically directions in a 118 rectangular grid block.
7.8 Thistle Field cross sectional model saturation distributions. 119
7.9 Simplified sketch map of the Statfjord Field. 121
7.10 Simplified Statfjord cross-section showing geometry of wells 122 on the w. flank.
7.11 Statfjord cross-sectional well model. 124
7.12 Bedset geopseudos for large grid blocks of Rannoch bedsets. 124
Fig. Page
7.13 Statfjord Field model water cut performance. 126
7.14 Time-lapse saturation logs in the Rannoch Formation, compared 127 with modelled saturation.
7.15 a Water saturation in the Statfjord model at 882 days: geopseudo 129 model.
7.15 b Water saturation in the Statfjord model at 882 days: rock curve model. 130
7.16 Sketch map of the northern Cormorant Field showing location 131 of modelled section in Fault Block III.
7.17 Cormorant Field cross-sectional model showing arrangement of 132 blocks, layers and wells.
7.18 Total fluid injected; field data and model control input. 134
7.19 Water cut performance of rock curve model and geopseudo 135 mode after breakthrough.
7.20 a Cross-section through Cormorant simulation model at 639 days: 136 geopseudo model.
7.20 b Cross section through Cormorant simulation model at 639 days; 137 rock curve model.
APPENDIX I
I. 1 Distributions of measures of central tendency. v
I. 2 Coefficient of variation for a range of geological materials. viii
I. 3 Graphical solution of the Dykstr-Parsons coefficient. \mathbf{x}
I. 4 Simple histograms. xi
I. 5 Probability distribution functions underlaying the sample xii histograms.
I. 6 Cumulative distribution functions associated with the above xii pdf's.
I. 7 Skewness as it appears in normal probability plots. xiv
I. 8 Two variables that show a positive relationship. xviii
I. 9 Method of least squares for y on x regression. xviii
I. 10 Residuals demonstrate the quality of the regression model. XX
I. 11 Characteristic shapes of autocorrelation functions in the xxi presence of correlation.
I. 12 Variogram terminology. xxii
I. 13 Characteristic shapes of autocorrelation functions for random xxii samples.
I. 14 Periodicity in sedimentary rocks and their variograms. xxiv
I. 15 Multiple correlation scales in sedimentary rocks, as shown by $\mathbf{x x v}$ the variograms.
Fig. Page
APPENDIX II
II. 1 a Empirically-derived calibration curves for the large probe. ii
II. 1 b Empirically-derived calibration curves for small probe (SP1). iii
II. 2 Empirically-derived calibration curves for small probe (SP1). vi
APPENDIX III
III. 1 Schematic illustration of the ECLIPSE probe permeameter iii model grid.
III. 2 ECLIPSE probe permeameter model pressure match. iv
III. 3 a Modelled probe permeameter response to an impermeable v boundary at an absolute distance from the probe tip.
III. 3 b Modelled probe permeameter response to an impermeable vi boundary at a dimensionless distance from the probe tip.
III. 4 Pressure disturbance around the probe permeameter tip. vi
APPENDIX IV
IV. 1 A capillary pressure curve. ii
IV. 2 Capillary pressure curves for typical reservoir rock types. iii
IV. 3 Capillary pressure hysteresis. iv
IV. 4 Static water saturation distribution in a homogeneous reservoir. v
IV. 5 Static water saturation distribution in a layered reservoir, where vi the capillary pressures of the interbedded reservoir rock varies.
IV. 6 Laboratory drainage Pc measurements for a series of Rannoch Formation core plugs, transformed to field units using the vii Leverett J-curve.
IV. 7 J-curves generated from the Rannoch laboratory data shown in vii Figure IV-6.
IV. 8 Families of drainage capillary curves. viii
IV. 9 Systematic Pc curves for $1-750 \mathrm{mD}$ generated using a J- ix function.
IV. 10 Connate water - permeability relationship for the Rannoch x Formation, Thistle Field.
IV. 11 Connate water - permeability relationships for various x formations.
IV. 12 Capillary pressure curves generated for the Rannoch Formation using the Leverett J-function, connate water, permeability and porosity permeability relationships determined from analysis of xi a petrophysical data.
IV. 13 Rannoch drainage/imbibition capillary pressure curves from xii Cormorant Field.
IV. 14 Comparison of Cormorant Field drainage capillary pressures xiii with those from Thistle Field in the Rannoch Formation.
Fig. Page
IV. 15 Comparison of drainage and imbibition capillary curves for xiv Cormorant Field Rannoch Formation.
IV. 16 Family of J-curved derived imbibition capillary pressure curves xv range of Rannoch permeabilities.
IV. 17 Performance and pseudos for high-mica lamination using xvi truncated drainage and scaled imbibition Pc curves.
APPENDIX V
V. 1 Relative permeability curves. ii
V. 2 Water displacing oil from a pore during a waterflood and the ii appropriate relative permeability curves.
APPENDIX VI
VI. 1 Sketch illustrating the determination of effective properties for a i large block from the simulation of many smaller blocks.
APPENDIX VII
VII. 1 Sedimentary log from the Bencliff Grit section at Osmington. iii
VII-2 A model facies succession in a storm-influenced parasequence. iv
VII. 3 Definition sketch for laminaset bounding surface features v measured in this study.
VII. 4 Examples of Rannoch Formation laminaset bounding surfaces vii as seen in slabbed core.
VII. 5 Bounding surface type and lamina relationships for low-angle viii cross lamination in Rannoch wells.
VII. 6 Bed thickness and truncation angle vs. depth for the Rannoch ix wells.
VII. 7 Laminaset elements in the Bencliff Grit at Osmington. xi
VII. 8 Example of HCS laminaset elements in the Bencliff outcrop. xii
VII. 9 Variation of bed length, thickness and aspect ratio with depth xii through the Bencliff Grit outcrop.
VII. 10 Example of larger scale bed elements in the Bencliff outcrop xiii showing downlapping lamination overlying the basal scour.
VII. 11 Antiformal lamination over undulating bank or erosional scour xiii in a larger scale element.
VII. 12 Example of HCS laminaset elements in the Kennilworth xiv outcrop.
VII. 13 Laminaset bounding surface types and lamina relationships for xv HCS in Kennilworth Member outcrop at Woodside.
VII. 14 Length-thickness relationships for HCS laminasets in the xx Kennilworth Member.

LIST OF TABLES (in text)

Table Page
No.
CHAPTER 4.
4.1 Comparison of core and probe estimated of horizontal and 55 vertical permeability.
CHAPTER 5.
5.1 Rannoch laminaset probe poroperm properties. 84
5.2 Rannoch laminaset plug poroperm properties for equivalent 85 intervals to Table 5.1.
CHAPTER 7.
7.1 Thistle model layer permeabilities. 114
7.2 Statfjord model layer petrophysical properties. 123
7.3 Cormorant model layer petrophysical properties. 133
APPENDIX II
II. 1 Empirically-derived conversion factors for probe flow rates to iv permeabilities.
II. 2 Comparison of empirical and calculated conversion factors. viii
APPENDIX VII
VII. 1 Comparison of Truncation and Dip Angles for Rannoch, Kennilworth and Bencliff Grit. xvi
VII. 2 Significance values for the natural log of dip angle. xvii
VII. 3 Significance values for the natural \log of truncation angle. xviii
VII. 4 Comparison of laminaset geometries for Rannoch, Kennilworth xviii and Bencliff Grit.
VII. 5 Significance values for the natural log of length. xiv
VII. 6 Significance values for the natural \log of thickness. xix

DEDICATION

This thesis is dedicated to all those who have played a part in the development of the probe permeameter.

Their faith has been rewarded,
the little things are important.

ACKNOWLEDGEMENTS

The author would like to take this opportunity to acknowledge the many contributions that have helped at all stages of this study. The most important figure has been my supervisor Jerry Jensen whose foresight initiated the project and whose guidance sustained me in those confusing early days. His persistence and dedication to the cause, which started with long-distance telephone calls to Kalimantan, has been rewarded. In addition, the practical assistance and moral support of colleagues in the Edinburgh Reservoir Description Group; Philip Ringrose, Gillian Pickup, Farag Feghi, Ken Sorbie and John Underhill was invaluable. Other members of the department have also provided many useful insights and shared their extensive knowledge of probe permeametry, particularly Jon Lewis and Kjell Rosvoll. The geopseudo ideas grew out of Philip Ringrose's theoretical studies and their application in this real-life case study.

Thanks also go to Adrian Pearce, Greg Geehan and Andy Hurst for promoting and setting up the project. Christian Halvorsen and Statoil are thanked for the painstaking probe measurements that were taken during this project. Statoil's probe permeameter, the care taken in the data acquisition and the resulting high quality of the data contributed much to the weight of my conclusions. Greg Geehan and BP are also thanked for their support of the Bencliff outcrop study. Philip Ringrose, Gerald Corbett and Jon Lewis are thanked for their help during the associated field work. Greg Geehan and Caroline Bajsarowicz assisted in the collection of the Rannoch truncation angle data. Simon Stromberg, Pat Brenchley and BP are also thanked for making the Kennilworth data available for the comparative analysis.

BP, Shell, Statoil and their partners are thanked for providing field data on the Thistle, Statfjord and Cormorant Fields. BP, Chevron, Elf, Exxon, Statoil, Shell, Mobil, Deminex, Enterprise, and the UK Department of Industry are also thanked for funding the various stages of this work. Intera Information Technologies are thanked for the provision of ECLIPSE on which all the numerical simulations were carried out. Cliff Ogle is thanked for his help in the preparation of the photographs for this thesis and the many slides he has been asked to prepare for me during the course of the project.

Finally, and most deeply, I thank Kate for her encouragement, understanding and support that has enabled to achieve an ambition. A doctoral study is, by nature, a lonely journey. Now the destination has been reached, we can resume normal family life again. William, Jessica and Hugo will doubtless appreciate a more relaxed father.

Abstract

The probe permeameter is a recently developed device providing a small scale measurement of permeability. About 15,000 probe permeameter measurements were acquired for analysis during this study. These data were acquired by Statoil from cores in two North Sea wells. These cores are from the Middle Jurassic Rannoch Formation of the Brent Group. This reservoir unit was selected for this study because of its laminated nature and challenge to conventional description and simulation practice.

All aspects of probe permeametry are investigated in this study; the volume of investigation, the compatibility with measurements at larger scales, the measurement statistics, the optimum sample spacing, the relationship of the measurements to the geological description and the scale-up of data for two-phase numerical reservoir simulation.

Careful analysis of probe and traditional plug data shows that the measurements are compatible. Systematic differences could be accounted for by different treatment effects of the material. The probe measurements show that the permeability distribution in the Rannoch Formation is closely related to the primary depositional structure of the sediment, at a hierarchy of scales. This observation is used in combination with conventional simulation techniques to build a more geologically-realistic numerical model of the Rannoch Formation. The scale-up of the small scale measurements is achieved by generation of effective properties for geologically representative elements at various scales and is called the "geopseudo" method. The scale of the natural building blocks within the sediment were determined with the aid of an appropriate outcrop analogue. The model results compare favourably with field production data.

This work demonstrates, for the first time, a systematic method for the scale-up of small scale petrophysical properties associated with lamination in sedimentary rocks, as measured by the probe permeameter. Laminated reservoirs are widely encountered and this work, therefore, makes a significant contribution to reservoir engineering practice.

INTRODUCTION

Reservoir simulation is widely used in the oil industry for planning and monitoring the development of oil and gas fields. Engineers routinely use computer models to plan wells or workovers and to determine the injection and production targets which define the operational priorities and recovery factors for a field under development. With the ever-increasing power of computing, accessability to workstations and sophistication of modelling techniques, reservoir simulation is likely to gain more practitioners and an even higher level of predictive reliance. The development of reservoir simulation is further encouraged by an increasingly detailed level of petrophysical characterisation to match the geological description of reservoir rocks. This study looks at one aspect of characterisation for reservoir simulation, that of a common geological phenomena - a laminated sediment.

A major problem in reservoir simulation has been the scale-up of petrophysical measurements required by the numerical models. Traditionally, reservoir model grid blocks have been relatively large and have been assigned properties from incompatibly small sample volumes by means of various averaging techniques. For this study, measurements at even smaller scales, smaller than were typically available previously, have been made available. Smaller scale measurements should potentially increase the demands of averaging techniques. The smaller scale measurements, however, provide an improved description of the geology (i.e., the lamination) and present a new opportunity for scale-up procedures. Despite the availability of increasingly powerful computers, the averaging or determination of effective properties at larger scales is expected to be needed for some time to come.

Computer models work by solving a well-defined flow equation (i.e., Darcy's Law), under the constraint of mass conservation. The finite difference flow equations are solved between adjacent grid blocks in response to applied pressure gradients
representing production or injection wells. The petrophysical properties which govern the location and flow of hydrocarbons (e.g., porosity, permeability, capillary pressure and relative permeability) are assigned to the centre of each grid block. These parameters apply to the volume of the grid block. The size of individual grid blocks is determined by the scale of the modelled reservoir. With $10,000-40,000$ grid blocks available from today's computers, these blocks are by necessity large (10 's of metres by 100 's of metres) relative to the scale of the typical measurement (usually a cylindrical core plug of a few centimetres diameter and length).

As several, or indeed many, core plugs may be available within each grid block at the cored wells, some data reduction or averaging is always required. Away from the wells, statistical and geological techniques are used to extrapolate the limited data set over the remaining reservoir volume. The effectiveness of the averaging and extrapolation techniques will determine the degree to which the models are able to predict real-life. The sampling programme (both volume and spacing) will determine how well real-life is described at the control locations. Appropriate sampling is, therefore, critical to the success of any reservoir simulation excercise.

The oil industry has relied largely on core plugs to provide the petrophysical measurements which form the feedstock of the reservoir models. The core plugs are a non-zero volume of the reservoir rock and therefore give average petrophysical properties for the respective volume. In many reservoir rocks, these core plug volumes are not homogeneous. Layering within the core plug volume (i.e., lamination) can strongly influence the measurement of certain properties, particularly permeability and relative permeability, which become affected by the orientation of the laminae. The measurement of permeability, for example, along laminae and across laminae may show anisotropy. Since permeability is an intensive variable, the desired value is dependent on the imposed boundary conditions. Such variables require careful assessment before scale-up procedures are applied.

Many techniques have been developed for averaging permeability measurements. These vary in complexity from simple algebraic methods for single phase permeability to more complicated procedures, involving numerical simulation or tensor mathematics, for two-phase (oil and water) properties. Each of these methods assumes some arrangement of the sample values (random or ordered) relative to the imposed boundary conditions. The correlation length, or the distance over which knowledge of permeability at one location can help predict the value at a second location, is a statistical measurement of order (or randomness). Averaging or homogenisation should ideally occur over volumes at least as large as the correlation lengths within the data in order to be representative.

Recently, a new device for the measurement of permeability, the probe permeameter, has been developed which, along with some other advantages, allows measurement of permeability at a smaller scale. These measurements, which may be more abundant and potentially more demanding to average, help by clarifying the correlation between permeability and geological features. This improved linkage is illustrated in this work and the geology exploited to determine the spatial structure of the petrophysical properties. Knowing the relationship between permeability and depositional structure, the data collection, averaging and extrapolation can be optimised for a given formation.

Geologists have appreciated for many years that sedimentary rocks consist of a hierarchy of stratal elements. The hierarchy implies a nested structure of correlation lengths. In this work, we show how homogenisation, at scales above the correlation lengths associated with laminae and beds, provides a scale-up procedure that incorporates the geology and mimics the natural architecture of reservoirs.

The Rannoch Formation (Middle Jurassic, North Sea) is a well described and strongly laminated reservoir unit. Flow performance at the larger scale implies an anisotropy (vertical permeability less than horizontal permeability) that is significantly different from that indicated by measurements at the core plug scale. The core plugs
are an inappropriate sample volume for the characterisation of laminated reservoirs. Indeed the measured anisotropy is a function of the scale measured. This is illustrated with the help of tine scale probe permeameter measurements and, from these, appropriate anisotropy estimates are derived to provide a different understanding of the production mechanism for this formation.

Laminated sediments are almost universal, resulting from the inherent periodicity in many depositional processes. Measurement of permeability contrasts between laminae is, therefore, the first step in the building of a reservoir model. It is at these small length scales that capillary forces are most apparent. If pervasive high contrast lamination is present within a reservoir unit it is likely to affect the flow performance of the unit.

In this study, an efficient method for the characterisation and scale-up of flow in laminated sediments has been developed. The geopseudo philosophy (i.e., that there exists at some, perhaps several, scales representative elements for which the effective two-phase flow parameters can be determined) provides a focus for the description of reservoir rocks. Application of the geopseudo method in reservoir simulation can improve the prediction of initial oil-in-place, flow performance and remaining oil saturation in petroleum reservoirs.

CHAPTER 1

LAMINATION IN RESERVOIRS

In this chapter, the origin of lamination in sediments is reviewed. A sedimentological perspective suggests that laminated sediments are the norm. The effects of lamination, however, despite being recognised in laboratory experiments in the 1970's has largely been ignored in everyday reservoir simulation practice.

1.1 The Origin of Lamination in Sedimentary Rocks

Lamination or small scale systematic variations in rock texture within clastic reservoirs is ubiquitous as a result of natural depositional processes. Truely massive sands (i.e., those without any internal structure) are very rare, whilst laminated sediments occur in virtually every major environment (Pettijohn et al., 1972, p.100).

The accumulation of detrital sediments dependant on sediment transport (Allen, 1970, p.56). In uniform, steady-state conditions deposition cannot take place. Only when the transport rate changes can either net erosion or deposition occur. In nature, the transport rates in air and water are continuously changing in some periodic or episodic form during storm or flood conditions. Periods of quiescent conditions tend to leave no mark (erosional or depositional) in the geological record. Most sedimentary sequences record the alternation of deposition and erosion and, for all preserved sequences, deposition prevailed in the long term.

Sediment particles travelling in a transporting medium (air or water) are subject to several forces of nature: inertial, viscous and gravity. Sediment particles are either transported as bedload in a thin, densely packed layer above the base of the liquid column, by sliding, rolling or saltating or by suspension (carried by turbulence within
liquid column). As gravitational forces exceed inertial forces (i.e., as the fluid velocity drops), the grains will either settle out from suspension or their bedload transport cease (Fig. 1.1). As transport velocities vary continuously, the depositional process can be a very effective sorting mechanism.

Bedload transport results in bedforms or spatially periodic mounds and hollows at the sediment liquid interface (Allen 1970, p. 67). Sediment transport by migrating bedforms results in internal lamination or stratification as a result of the periodic movement of that bedform (Allen, 1985, p. 70). Preserved bedforms within sediments deposited subaqueously are the fossilised form of the river or sea bed. In sediments, plane horizontal lamination, undulating lamination and cross-lamination all result from the preservation of the passage of migrating bedforms.

Dimensionless threshold stress $=$ f (fluid velocity,1/diameter, fluid density, 1/density contrast)

Figure 1.1: Shield's diagram showing how fluctuations in current strength lead to alternating suspension and deposition of sediment. Range of Rannoch Formation grain size shown (after Allen, 1985).

All detrital sediments will exhibit lamination. A lamina is a mm- to cm -scale stratal element with near uniform properties that is deposited over a relatively short period of time (Campbell, 1967; Van Wagoner et al., 1990). Laminae are the smallest megascopic elements in a hierarchy of stratal elements (Fig. 1.2). Laminae are bounded by laminar surfaces with no internal layering. There is no genetic distinction between a lamina and a uniform bed. Laminae, however, are often arbitrarily defined by a maximum thickness of 1 cm (Pettijohn et al., 1972). Other authors are less concerned by such a strict definition (Campbell, 1967; Van Wagoner et al., 1990) and allow a degree of overlap in the scale of elements. Laminae generally have a smaller areal extent and form in a shorter period of time than beds.

In this work, we are primarily interested in the effects due to capillary forces of contrasting laminae or thin beds at length scales up to 5 cm (Ringrose et al., 1992). Therefore, it is convenient to consider lamination (i.e., capillary-sensitive lamination) to refer to elements 5 cm thick or less.

Lamina are defined by a uniform internal texture, which implies relatively good sorting and a resulting narrow range in grain size. Whether laminae within any reservoir are defineable and/or have flow significance will depend on the range of grain characteristics (i.e., minerology, shape, size and colour) involved. Grain size and sorting have a fundamental control on pore throat geometries and, hence, permeability (Fig. 1.3).

The degree of permeability contrast between laminae is a function of the extreme range of current strength and the diversity of sediment available. A sediment that is contains a narrow range of grain sizes is not likely to produce strong permeability contrast laminae. On the other hand, a wider range of grain sizes in a sediment in a strongly fluctuating current can result in high heterogeneity.

Post-depositional process (e.g., dewatering, bioturbation or diagenesis) can modify, either destroying or enhancing, the depositionally-derived permeability fabric.

Figure 1.2: The hierarchy of stratal elements. (After Van Wagoner et al., 1990)

Figure 1.3: Relationships between permeability and grain size; (a) from Pettijohn et al., 1972; (b) from Krumbein and Monk, 1942.

However, in this study, we confine our investigations to sediments that (excluding compaction) have suffered little apparent post-depositional alteration. In such sediments, the permeability distribution is largely controlled by the depositional sedimentary fabric.

1.2 The Study of Laminated Sediments in Petroleum Engineering

In the large volume of papers published to date, concerning experimental floods of rocks and numerical reservoir simulation, very few specifically consider the effects of lamination. Indeed, many of the petrophysical measurements are made on homogeneous samples (i.e., specifically avoiding laminated rocks) and numerical simulations utilise grid blocks too coarse to require quantification of such small-scale heterogeneity. As a result, the effects of lamination have gone largely unquantified, if not totally unnoticed, to date. Many studies, using inappropriately large grid blocks or flow rates, have mistakenly concluded that such small scale features are insignificant (Kossack et al., 1990).

There are a few notable exceptions to the above. Over twenty years ago, experimental flooding of laminated sediments showed the effects of laminae to be significant at the laboratory scale (Robertson and Caudle, 1971). These effects, however, were not systematically incorporated in numerical reservoir models because of the lack of a scale-up procedure. Similarly, the effects of lamination on relative permeability measurements has also been well docummented (Hornapour et al., 1986, p. 52). Nevertheless, industry has largely ignored these effects to date.

More recently, a few numerical studies have investigated the flow performance of the small-scale geology, using appropriately sized grid blocks, and have shown the effects of systematic lamination (Kortekaas, 1985; Hartkamp-Bakker, 1991) or less ordered permeability fields (Lasseter et al., 1986) to be significant. That the smallscale structure in reservoirs (particularly lamination) can determine the distribution of
remaining oil is, however, more widely appreciated (Weber, 1986; van de Graff and Ealey, 1989) if not routinely quantified. For carbonates, the control of small scale structure on residual oil saturation has been well described (Wardlaw and Cassan, 1978).

The effects of small scale geology have largely been ignored in large scale reservoir simulations. A recent study, with more appropriately sized grid blocks ($0.25 \times 1 \mathrm{~m}$), has shown significance of capillary pressure on recovery efficiency (Hoimyr et al., 1993). In this latter study, the grid blocks are still relatively large compared with the primary depositional structure.

CHAPTER 2

THE RANNOCH FORMATION

2.1 The Geological Description of the Rannoch Formation

This study concentrates on a well documented reservoir from a shallow marine setting. The Middle Jurassic Rannoch Formation is a significant oil-bearing and oilproducing reservoir in the northern North Sea offshore area (Fig. 2.1).

Figure 2.1: Location map for some Rannoch Formation producing fields in the northern North Sea. Light shading shows location of Rannoch-producing fields, dark shading shows fields considered in this study.

The laminated sediments of the Rannoch Formation were deposited along a dissipative shoreline in advance of a northward prograding deltaic system (Budding and Inglin, 1981; Richards and Brown, 1986; Brown et al., 1987; Richards et al., 1988; Brown and Richards, 1987; Graue et al., 1989; Mitchener et al., 1992; Scott, 1992). The Rannoch Formation is characterised by low angle cross-laminated, micaceous, fine to very fine grained sandstone (Fig. 2.2). The Rannoch is directly overlain by the medium to coarse grained, upper shoreface/beach barrier sandstones of the Etive Formation.

Figure 2.2: Typical lower Brent Group sequence, Middle Jurassic, North Sea. The Rannoch Formation comprises intervals of hummocky cross-stratification (HCS), swaley cross-stratification (SCS) and a wavy bedded interval (WB).

The Broom Formation that underlies the Rannoch Formation is a variably developed, generally coarse grained, transgressive shoreline sandstone of an earlier depositional sequence (Mitchener et al., 1992). The Broom Formation is usually separated from
the Rannoch Formation by a thin shale. Together, the Broom, Rannoch and Etive Formations form the lower Brent Group.

More specifically, within the Rannoch Formation, hummocky cross stratification (HCS, Harms et al., 1975; Dott and Bourgeois, 1982; Walker et al., 1983; Duke, 1985; Walker, 1985) of the lower shoreface is overlain by swaley cross-stratification (SCS, Allen and Underhill, 1989) of the middle shoreface and nearshore bar (Fig. 2.2). The low angle cross-laminated sequence ($30-60 \mathrm{~m}$) is commonly overlain by a thin (3-5m) nearshore trough facies. This nearshore trough facies has been described in core from the Thistle Field and is seen to be wavy bedded to ripple laminated and strongly micaceous. This facies is described as wavy bedded (WB) for the purposes of this study as the interval is dominated by wavy bedded thin sandstones. Similar material is identified in published photographs by other workers (Scott, 1992, her Fig.15a) and is thought to be reasonably widespread.

The prograding shoreface is capped by the barrier beach, longshore bar or rip channel deposits of the overlying Etive Formation. Together, the Rannoch and Etive Formations form a single hydrodynamically-continuous flow unit, bounded by correlatable shales. These shales are considered to be the deposits of high relative sea levels and can be considered maximum flooding surfaces. In sequence stratigraphic terms, the Rannoch/Etive Formations describe a parasequence (Van Wagoner et al., 1990).

The microscopic fabric of the Rannoch Formation is of interest here, as the permeability will be controlled by the grain size and sorting of the sediment at the finest scale. Rannoch Formation sediments are characteristically feldspathic and micaceous. For example, Scotchman et al. (1989) describe the Rannoch mineralogy in Northwest Hutton: quartz (67\%), felspar (4.8\%), calcite (7.4\%), mica (2.8\%) and clay (16%). The distribution of the mica gives rise to the distinctive banded appearance of the Rannoch (Fig. 2.3) although at the pore-scale the mica is generally dispersed (Fig. 2.4). The quartz is uniform, very fine to fine sand.

Figure 2.3: Photographs of typical Rannoch lamination types from the various facies: a) low mica lamination (HCS/SCS); b) high mica lamination (HCS) with the distinctive banded appearance due to the contrast between dark mica-rich and light mica-poor laminae; c) ripple lamination (HCS) d) wavy bedded lamination (WB)

The hydrodynamic equivalence of medium mica platelets are sand grains approximately $1 / 12$ th the grain diameter (Berthois, 1962). The hydrodynamic properties of the mica in the Rannoch is, therefore, very similar to the accompanying sand. Subtle contrasts in the settling velocity of sand grains and mica platelets are therefore enough to generate the sorting into mica-poor and mica-rich couplets (Fig. 2.4).

Figure 2.4: Photomicrograph showing typical pore-characteristics of a micapoor (lower) and mica-rich laminae (upper) in the Rannoch Formation. Note that the mica platelets are disseminated in both elements and in neither do mica platelets form closely packed impermeable layers. (N.B.: m-mica platelets)

There has been much discussion on the depositional processes responsible for HCS/SCS beds (Kreisa, 1981; Duke, 1987; Klein and Marsaglia, 1987; Swift and Nummendal, 1987; Allen, 1989; Brenchley, 1989; Duke et al., 1991) and whether they are produced from pure oscillatory (Southard et al., 1990) or combined oscillatory/translatory flow (Nottvedt and Kriesa, 1987; Allen and Underhill, 1989). HCS bedforms are generally found in fine grained sediments, are characteristically circular in plan view with a lack of any slip face (Fig. 2.5). SCS bedforms are similar in geometry but lack the rippled hummock crests.

Figure 2.5: Interpreted sketch of the HCS laminasets of the Rannoch Formation. Note the circular plan view of the bedform and the similarity of the orthogonal sections. HCS laminasets are bounded by low angle, erosional bounding surfaces.

In fine grained sediments, however, migrating slipface dune bedforms will not be expected (Fig. 2.6).

Figure 2.6: Plot of mean flow velocity against median sediment size showing stability field of bed phases. (After Ashley, 1990). Grain size of typical Rannoch sediments indicated.

The fabric of typical HCS sandstones lack consistent particle alignment and imbrication (Cheel, 1991; Yokokawa and Masuda, 1991) suggesting deposition from a predominantly oscillatory flow. Unidirectional sole marks (such as those recognised in Wapiabi Formation HCS, Upper Cretaceous, Canada by Cheel, 1991), on the other hand, would support an initial unidirectional component. Sole marks have not been described to date from the Rannoch Formation HCS. Nevertheless, an early unidirectional component is considered to be the scouring mechanism within the Rannoch (Scott, 1992). In reading the literature, it is clear that the origin of beds described as HCS or SCS cannot be ascribed to a single environment of deposition and that the bedforms probably have a polygenetic origin (Southard et al., 1990).

Thin section analysis of Rannoch Formation sediments shows recurring coarseningup, mica-poor and fining-up, mica-rich laminae (Scott, 1992). For each lamina, Scott suggests a depositional mechanism. In her model, an initial high-density shear layer near the bed concentrates the coarsest grains at the surface. As the flow velocity falls below the threshold, the bedload freezes as a coarsening-up layer (the mica-poor lamina) and finer sediment falls from suspension forming a fining-up unit (the micarich lamina). The platey fabric of the mica also resists subsequent erosion as the flow velocity subsequently increases. The exact process which combines these processes remains speculative but is thought to be wave-oscillatory (i.e., driven by storm waves). Mica-poor and mica-rich laminae are, therefore, considered to form a wavedeposited couplet.

A storm origin in a shoreface setting for the Rannoch Formation (Fig. 2.7) is supported by evidence at all scales - the dominant grain fabric of wave-deposited couplets, the wave rippled and low angle lamination, the HCS/SCS bed associations, and the overlying coarse beach of the Etive. Shoreface sandstones are often extensive along the palaeo-shoreline but can be quite narrow in a seaward direction (Walker, 1985). The Rannoch shoreface unit, however, has been mapped over a large area

Figure 2.7: A depositional model for the Rannoch Formation showing the distribution of lamination types and associated bedforms in a storm-dominated shoreface. (Redrawn, with minor modifications, from Scott, 1992). The beach/shoreface is shown migrating from left to right in this figure.
within a relatively narrow age range (Mitchener et al., 1992), implying that a reasonable degree of reservoir continuity can be expected.

2.2 Petroleum Engineering Challenges in the Rannoch Formation

The Rannoch-Etive unit of the Middle Jurassic, Brent Group in the U.K. northern North Sea is a major oil-bearing and oil-producing horizon in a number of fields (Fig. 2.1). The Rannoch-Etive section generally forms a single flow unit with good pressure communication throughout. This is illustrated by the Repeat Formation Tester (RFT) data from a water injector on the western flank of Statfjord Field (Fig. 2.8). Although the up-dip production has been from the Rannoch interval only, the uniform water gradient over the Rannoch-Etive intervals records uniform pressure depletion. Similar data have been published from the Thistle Field (Bayat and Tehrani, 1985), although in this field some pressure discontinuities were observed in the lower part of the Rannoch section.

Figure 2.8: Pressure data for the Rannoch-Etive flow unit from the Statfjord Field, North Sea

The production performance of the Rannoch-Etive flow unit has been routinely modelled in the fields in which it produces. The interval generally produces oil under a waterflood process. There have been several publications outlining the reservoir simulation approach to the Rannoch-Etive unit. These include field-specific studies: Thistle (Bayat and Tehrani, 1985); Dunlin (Braithwaite et al., 1989); Cormorant (Grant et al., 1990); and, more recently, a Rannoch-specific study (Thomas and Bibby, 1991).

The common approach in the published papers, is to use the following simulation parameters :

1. Absolute horizontal permeability from core plugs.
2. Vertical permeability $\left(\mathrm{k}_{\mathrm{v}}\right)$ as a fixed ratio (initially, usually 10%) of horizontal permeability $\left(\mathrm{k}_{\mathrm{h}}\right)$.
3. Power-law relative permeability curves.
4. Zero capillary pressure.
5. Arbitrary adjustments to $\mathrm{k}_{\mathrm{V}} / \mathrm{k}_{\mathrm{h}}$ and/or transmissibilities to history match water cut.

Little special core analysis (SCAL) data are used because of the lack of averaging techniques for laboratory relative permeability and capillary pressure data. The analysis of poroperms under reservoir conditions is also not commonly reported.

As a result of the model matching procedure (item 5), the matched model parameters are difficult to relate back to the measured data. $A k_{v} / k_{h}$ ratio of 0.1 or less for the 3 m or larger grid blocks is significantly different from the average indicated by the core plugs in a typical Rannoch well (Fig. 2.9). Up to the present time there has been no systematic investigation of scale-up procedure for critical parameters such as $\mathrm{k}_{\mathrm{w}} / \mathrm{k}_{\mathrm{h}}$ ratio from core plugs to the grid block scale.

Figure 2.9: Core plug data for a typical lower Brent, Rannoch-Etive sequence. Porosity and permeability increase upward through the Rannoch shoreface. Significantly higher permeabilities are encountered in the Etive Formation. These data are from Thistle Field.

Typical cross-sectional well models (i.e., an injection-production well pair at either end of a modelled cross-section through part of the field) tend to show the over-riding of water through the high permeability Etive and bypassing of Rannoch oil (Fig. 2.10). This is contrary to what might be expected. In a waterflood of a flow unit with a high permeability zone at the top, gravitational effects on the heavier water would be expected to produce an efficient sweep of the low permeability zone at the base. The conclusions of the models, however, history matched by adjusting the input parameters, have been seen to be misleading. Recent experience of infill drilling has not found the large volumes of by-passed Rannoch oil that have been generally predicted by these models (BP Thistle Group, personal communication). This has driven some operators to further investigate the reservoir management of the Rannoch-Etive unit and has resulted in the acquisition of additional data which forms the basis for this current study.

Figure 2.10: Schematic of Rannoch-Etive production performance as suggested by previous simulation studies. Water over-riding the Rannoch suggests bypassed oil. (After Thomas and Bibby, 1991).

In these model studies, the significance of the Rannoch-Etive boundary (in effect the top few metres of the Rannoch) has become apparent. In addition to investigating the field-scale production performance, two detailed studies have attempted to measure the transmissibility at the boundary using local pressure differences induced by well testing or production (Dake, 1982; Bunn and Yaxley, 1986). In these studies, various permeabilities (5 mD in Dake and a variable 10-0.03mD in Bunn and Yaxley) were determined for this horizon. These values tend to be less, however, than the average vertical permeability of the interval, as measured in core plugs (Fig. 2.9), although in neither study were detailed geological descriptions or core plug data presented. Similarly, by studying the water infiltration into the Rannoch from the overlying Etive by gravity and capillary forces (sudation) in the Dunlin Field, Braithwaite et al. (1989) were able to determine a vertical permeability of $5-10 \mathrm{mD}$ for the interval.

The boundary between the Etive and Rannoch is geologically very variable, due mainly to the variable nature of the overlying Etive (Scott, 1992). Sharp, erosive boundaries occur where distributary or tidal channels, at the base of the Etive, erode

Rannoch sediments (Grant et al., 1990). In other regions, interdigitating Etive and Rannoch facies can be seen (Statfjord Field, well 33/12-B9, personal observation). A variable nature of transmissibility at the Rannoch-Etive boundary is to be expected from the variable nature of the geology. It is notable however, that the thin, very variable, WB layer at the top of the Rannoch Formation has rarely been adequately described or petrophysically sampled. The critical $\pm 3 \mathrm{~m}$ are commonly preserved for future studies, as it is recognised that the interval has reservoir significance.

To complicate the simulation of the Rannoch-Etive unit, sealing faults, due to clay smearing, have been recognised in some fields (e.g., Thistle Field: Bayat and Tehrani, 1985; Cormorant Field: Bentley and Barry, 1991). In addition, the injection of cold water is thought to induce thermal fracturing in the near-well region. These natural and man-made structural phenomena, while possibly very important in specific cases, are not considered further in this study. Here, we concentrate on the characterisation of the depositional variability of the Rannoch, which is present in all fields. For other reasons, the diagenetic concretions described from the Rannoch have also been ignored. Where the effects of concretions have been considered (Braithwaite et al., 1989), they have been shown to be relatively unimportant to fluid flow. The prime concern of this study was to focus on the primary depositional fabric the Rannoch Formation.

The challenges faced in this integrated geoengineering study of the Rannoch Formation are threefold: Firstly, to characterise the permeability distribution more effectively than past efforts. Secondly, to incorporate the pervasive lamination in a geologically-reasonable way in the reservoir simulation models. Thirdly, to explain the larger scale flow performance. If this can be achieved in an integrated fashion, a major step forward in the understanding of the flow behaviour of Rannoch Formation reservoirs will have been made.

CHAPTER 3

CORE PLUG AND PROBE PERMEABILITY MEASUREMENT

In this chapter, the measurement of permeability by core plug and probe methods is considered with specific reference to the Rannoch Formation in the studied wells. Traditional petrophysical sampling of the Rannoch Formation by core plugs is discussed prior to introducing the newly acquired data. The measurement of permeability usually presents a greater challenge than the measurement of porosity. Permeability varies over a greater range, is sensitive to the type and scale of measurement and its estimation has a major impact on fluid flow prediction. In this work, we concentrate on the permeability description of the Rannoch Formation, with reference to porosity where appropriate.

In particular, the limitations of the traditional sampling by core plugs are considered which, in keeping with industry-standard practice, imply a fixed volume and interval spacing. In contrast, the probe permeameter sampling scheme is more exploratory, no recommended practice having yet been adopted by industry (Sutherland, 1991). To study the many aspects of probe measurement, a flexible approach to sampling was required. Prior to a discussion of the sample schemes, the physics of measurement is considered.

3.1 The Physics of Core Plug Permeability Measurements

The physics and procedure for permeability measurement on core plugs is well established in the oil industry (API, 1960). Core plugs are usually cut by drilling horizontally or vertically (with respect to bedding) in whole, unslabbed, core material. Plugs are then trimmed, to give a cylindrical sample one-inch in diameter
and one-inch in length, and cleaned. In some cases, larger 1.5 in plugs are used. The core plugs are encased in a compliant sleeve within a steel cylinder (Archer and Wall, 1986). This type of measurement device (sleeve and cylinder) is often referred to as a Hassler Cell. Pressure on the sleeve ensures that the sample is sealed on faces parallel to the flow direction. Dry gas, usually nitrogen, is injected into the upstream end of the core, flows quasi-linearly through the plug, and vents to the atmosphere. The permeability is determined by Darcy's Law from the measurement of stable flow rate (Q), pressure drop $(\Delta \mathrm{P})$, area (A) and length (L) of the sample cylinder (Fig. 3.1).

Darcy's Law $\mathrm{k}=\frac{\mathrm{Q} 2 \mu \mathrm{~L} \mathrm{P}_{\mathrm{O}}}{\mathrm{A}\left(\mathrm{P}_{\mathrm{I}}^{2}-\mathrm{P}_{\mathrm{O}}^{2}\right)}$

Figure 3.1: Core plug permeability measurement

The relationship between permeability and flow rate is generally linear, as described by Darcy's Law. In regions of high flow rate or low permeability, however, nonlinear effects are apparent. At high flow rates, non-linear flow results from inertia leading to, at very high rates, turbulence. These effects can be corrected for (Firoozabadi and Katz, 1979) but, where possible (i.e., unless the permeability is very high), these flow regimes should be avoided by maintaining as low a pressure drop as practical on the sample.

In low permeability media, a second non-linear phenomena occurs. Gas slippage is the term given to the increased flow of gas relative to that expected from a liquid. The sample has an effective higher permeability to gas because a) gas molecules are loosely bonded and can travel easily before encountering neighbours and b) there is
no zero-velocity boundary layer (as found with liquids), increasing the effective diameter of the pores. The effects of slippage can, however, be corrected for and equivalent liquid permeabilities determined (Archer and Wall, 1986).

In summary, the physics of core plug measurements is well understood and the techniques are well accepted by industry. There are, however, limitations and these are discussed in the following section.

3.2 Traditional Core Plug Sample Scheme

One-inch core plugs are the traditional sample volume ($1.3 \times 10^{-5} \mathrm{~m}^{3}$) for the measurement of porosity and permeability. Taking core plugs at a one-foot spacing is the current industry-standard procedure. This method has been used extensively to provide the petrophysical description of the Rannoch Formation prior to this study. Horizontal and vertical plugs are, following convention, taken at one-foot intervals on which horizontal and vertical permeabilities, porosities and grain densities are measured.

The limitations of this traditional form of petrophysical sampling and measurement include the following (refer to Fig. 3.2):

1. The one-foot sample interval is rarely followed rigourously. The quality of core recovery and competency does not always allow such sampling (3.2a). There is also a tendency for operator bias towards the more permeable zones.
2. Horizontal and vertical measurements are made on adjacent but different material (3.2b). In very heterogeneous formations, these can lead to selective sampling a misleading quantification of anisotropy at the plug-scale.

Figure 3.2: Limitations of core plug and whole core sample volumes and
spacings. Refer to text for explanations
3. The boundary conditions for the measurement may be inappropriate, particularly for vertical permeability where the confined flow across laminae may not represent the conditions locally within the reservoir (3.2c).
4. Where the variability occurs at a similar scale to the sample volume, it is not easy to take representative samples (3.2d). This is a particular problem in laminated samples where cm -scale elements are sampled by $\pm 2.5 \mathrm{~cm}$ samples.
5. Most plug measurements are single phase, supplemented by a few whole-core, expensive, two-phase measurements. The latter tend to be on selected homogeneous samples (3.2e). The two-phase anisotropy within laminated sediments is, therefore, never quantified in routine or special core analysis. The average reservoir properties from a few differing whole core samples are not easily determined.
6. Heterogeneous intervals are insufficiently sampled. The number of samples required for the estimation of average properties varies as a function of variability (Appendix I). Variability is rarely constant so a fixed spacing will either over-sample homogeneous intervals and under-sample heterogeneous intervals (3.2f).

The limitations are generally understood and accepted with the argument that a costeffective alternative has not been available. With the development of the probe permeameter, however, such an alternative has recently become widely available. These limitations are most critical in strongly laminated reservoirs of which the Rannoch Formation is an example. As such reservoirs are widespread, these issues imply a serious shortcoming of the standard petrophysical practise. Core plugs are,
therefore, an inappropriate primary method for the petrophysical characterisation of laminated sediments.

Core plugs, however, are the only currently available means whereby petrophysical measurements can be made at overburden conditions. In the Rannoch Formation, significant ($30-40 \%$) differences have been noticed when such measurements have been made and compared to surface conditions (Stiles and Valenti, 1990). The need for special core analysis is not, therefore, in question. The selection of the few "representative" samples from which such overburden-corrected properties could be determined is the issue here.

3.3 The Development of the Probe Permeameter

Probe permeameters have undergone significant development since the technique was first described by Dykstra and Parsons (1950). Until the early 1980's, only Shell, applying the technique to unconsolidated sands (Eijpe and Weber, 1971; Weber et al., 1972) and aeolian sediments (van Veen, 1975) appear to have considered the application further. Development of the modern generation of probe permeameters followed with work at Heriot-Watt (Cadman, 1984; Clelland, 1984; Martin and Evans, 1988; Robertson and McPhee, 1990), the University of Texas at Austin (Goggin, 1988; Goggin et al., 1988; Kittridge et al., 1990), Imperial College (Daltaban et al., 1989; Lewis et al., 1990) and Statoil (Hurst and Rosvoll, 1989; Halvorsen and Hurst, 1990; Halvorsen, 1991; Gibbons et al., 1991). Other recent studies show the increasingly widespread acceptance of the technique within the industry (Dreyer et al., 1990; Daws and Prosser, 1992, Hartkamp-Bakker, 1991; Prosser and Maskall, 1993). At the time of this study, the most sophisticated laboratory device has been developed by Statoil (Halvorsen and Hurst, 1991). In this study, most of the data were measured by this device (Fig. 3.3).

Figure 3.3: Statoil's laboratory probe permeameter (courtesey of Christian Halvorsen). Automated table, controlled by computer-driven stepping motors, ensures an accuracy of measurment location to 0.01 mm (Halvorsen and Hurst, 1991).

The probe permeameter allows quick, relatively cheap, non-destructive, detailed (almost exhaustive) sampling of permeability, from which small-scale distribution maps of permeability can be derived. A characteristic of such sampling programs is the ability to closely correlate permeability with geological features.

There has been a rapid expansion of published probe permeameter studies in recent years as the field and laboratory devices have been developed. Most of the recent studies have been outcrop studies (Goggin et al., 1988; Dreyer et al., 1990; Kittridge et al., 1990; Lewis et al., 1990), but a significant number of core studies have also been published (Martin and Evans, 1988; Hurst and Rosvoll, 1989; Halvorsen, 1991; Gibbons et al., 1991). These studies have lead to an improved understanding of the relationship between geology and permeability variation (Goggin, 1991; Lake, 1992). In particular, the probe has been able to measure the permeability of individual
laminae, for the first time, and this development will be exploited in the scale-up for reservoir simulation in this study.

3.4 The Physics of Probe Permeameter Measurements

The physics of the probe permeameter (also previously called the minipermeameter) is reasonably simple (Fig. 3.4). Gas (usually nitrogen) is injected into the surface of the rock through a nozzle, venting to the atmosphere.

Figure 3.4: Probe permeability measurement on a core plug. Probe tip inner $\left(\mathrm{d}_{\mathrm{i}}\right)$ and outer $\left(\mathrm{d}_{\mathrm{o}}\right)$ diameters are used to determine the geometrical factor (G) which is a function of tip seal width relative to the aperture (refer to Goggin, 1988).

A linear relationship for pseudo-spherical flow for injected nitrogen through a probe tip has been derived from Darcy's Law (Goggin, 1988). This relationship holds well under ideal conditions and is commonly used to determine probe permeability (Dreyer et al., 1990). The relatively simple physics, however, is complicated by a number of operational practicalities:

- variable deformation of the tip seal (dependent on the application pressure)
- quality of the tip seal (function of tip seal material, application pressure and surface rugosity)
- surface preparation (damage, fines)
- presence of additional phases (moveable water, oil, residual oil)
- heterogeneity of the sample
- temperature fluctuations
- non-linear flow effects
- variable volume of investigation
- setting of core slabs in a bed of epoxy resin

As a result, the analytically derived calibrations can be erroneous if the above are not rigorously accounted for.

In the Statoil laboratory study of Rannoch Formation core, constant probe tip deformation, constant viscosity, good seal quality and linear flow were ensured by careful equipment design and operating procedures (Halvorsen and Hurst, 1990). Moveable fluids were not a problem in this study due to the use of dried core. The effects of residual fluids, resin imbibition and surface damage are discussed further in the following sections.

The determination of permeability from the probe can be achieved either analytically or empirically. In this study, various empirical calibrations were determined by a number of regression methods employing measurements on uniform plugs of known permeability. These are discussed fully in Appendix II. In general, a fair to good
comparison between empirical and analytical calibration constants (Goggin, 1988) was found and calibration was not considered a major issue in this study.

The volume investigated by a probe is the subject of much interest and speculation. Many probe permeameter operators have considered the depth of investigation. The depth of investigation will be influenced by the operating conditions and the nature of the sampled material. Empirical observations (Halvorsen and Hurst, 1991) and numerical simulation results (Goggin, 1988; Winterbottom, 1990) point towards a limited depth of investigation. The depth of investigation has been considered during this study and the results of a numerical simulation study are discussed in Appendix III.

The above work suggests the probe permeameter depth of investigation, at 50% pressure drop, to be of order two times the internal probe (aperture) diameter (2 to 8 x $10^{-7} \mathrm{~m}^{3}$). As such, the volume of investigation is $2-7 \%$ the volume of a one-inch core plug for typical laboratory probe sizes ($0.3 \cdot 0.6 \mathrm{~cm}$ internal radius). Comparison of probe with core plug measurements is often good, with systematic differences due to sample treatments or the effects of local heterogeneity occurring. The systematic differences are discussed more fully in later sections.

3.5 Probe Permeameter Sampling Scheme

In this study, various sampling schemes were adopted for a variety of applications. Cores from two Rannoch Formation wells were made available for this probe permeameter study. An initial pilot study on 8 m of Rannoch material from two intervals in a Statfjord Field (Fig. 3.5) well was followed by a more comprehensive study of a 40m interval from a Thistle Field well (Fig. 3.6). The location of the fields is given in Fig. 2.1. All the probe measurements in this study were taken by Christian Halvorsen with the Statoil probe permeameter (Halvorsen and Hurst, 1990). Three probes were used, the characteristics of which are as follows:

- Large Probe 1 (LP1): $\mathrm{d}_{\mathrm{i}}=5.9 \mathrm{~mm}, \mathrm{~d}_{\mathrm{o}}=10.5 \mathrm{~mm}$
- Small Probe $1(S P 1): \mathrm{d}_{\mathrm{i}}=3.6 \mathrm{~mm}, \mathrm{~d}_{0}=7.9 \mathrm{~mm}$
- Small Probe 2 (SP2): $\mathrm{d}_{\mathrm{i}}=3.4 \mathrm{~mm}, \mathrm{~d}_{\mathrm{o}}=10.2 \mathrm{~mm}$

The cores from each well had been plugged, slabbed and resinated prior to the study.

In the Thistle well, additional unresinated core material was also available. In this material, three types of probe measurement were taken:

- on the trimmed ends of cleaned core plugs,
- on the surface of resinated, uncleaned core,
- on cut, cleaned and uncleaned, unresinated core.

The probes, sample spacings, objectives and results of these measurements are discussed in the following sections.

Figure 3.5: Statfjord well 33/12-B9 showing location of intervals of cores 4 and 5 on which the initial probe permeability study of the Rannoch Formation was carried out.

Figure 3.6: Thistle well A31 showing interval of cores which the more comprehensive probe permeability study of the Rannoch was carried out.

3.5.1 Probe Measurements on Rannoch Core Plugs

Having calibrated the probes using methods discussed in Appendix II, the measurement of the cleaned Rannoch cores from a Thistle Field well were sampled. The objective of these measurements was to confirm the calibration. The plugs were given a visual estimate of heterogeneity and each plug was described as either massive, weakly laminated or laminated. The variability of the petrophysical properties could thus be related to the degree of lamination contrast.

Typically, four measurements at 1 cm spacing with a small probe (SP2) were taken on each end of the cleaned core plugs. The plugs were generally cut parallel to lamination. The ends of the core plug, therefore, cut across the lamination. In this way, the sub-core plug scale heterogeneity could be measured. Although there were 9 plugs (10%) with high heterogeneity (coefficient of variation: $\mathrm{Cv}>0.75$, refer to Appendix I), most (66%) of the plugs were relatively homogeneous ($\mathrm{Cv}<0.5$). The petrophysical variability effectively correlated with the qualitative visual assessment of heterogeneity suggesting that the variability is caused by the lamination (Fig. 3.7).

Figure 3.7: Quantification of visual assessments of heterogeneity with the probe permeameter for a set of Rannoch Formation core plugs.

When the average probe permeability measurements are compared with the core plug permeabilities, a clear relationship can be seen (Fig. 3.8 left). For the homogeneous plugs (i.e., those with $\mathrm{Cv}<0.3$, taking into account the fact that these Cv 's were based on only 8 samples) the correlation between measurements is even clearer (Fig. 3.8 right). From these data we confirm that the probe and plug measurements of permeability on the same, cleaned, relatively homogeneous core plugs is the same. It is noteable that most of the Rannoch core plugs are relatively uniform despite the laminated nature. The variability of probe measurements on core plugs proved to be an effective method for screening homogeneous core plugs.

Figure 3.8: Heterogeneous plugs can be excluded from measurement comparisons by quantification of variability with probe measurements

3.5.2 Probe Measurements on Resinated Core Slabs

The major number of measurements in this study were taken on core slabs. Measurements were taken on the exposed cut surfaces of core that had been set in resin. Resination of core is a standard practice for ensuring long term core preservation. Core slabs (representing approximately metre intervals) are carefully aligned and partially embedded in epoxy resin. The resinated material is perfect for probe permeametry as less handling of material is required and the geometry is fixed.

The automated probe permeameter can detect the breaks in the core and areas with excessive surface rugosity (Halvorsen and Hurst, 1990). Metre-lengths of core slab can, therefore, be sampled without supervision.

In the initial Statfjord well programme, two sample schemes were adopted (Fig. 3.9):

```
- Large probe (LP1), coarse, 1 cm (vertical down core) by 2 cm (lateral across core) grid over the length of the core (approx. 3000 measurements)
```

- Small probe (SP1), fine, $2 \times 2 \mathrm{~mm}$ or $5 \times 5 \mathrm{~mm}$ grids over selected intervals (approx. 5000 measurements)

The coarse grid measurements were taken for average properties for comparison with electric log properties. The fine grids were taken for lamina properties over selected intervals. These data are to be found in Appendix X.

With an automated probe permeameter device it is very easy, with no time constraints, to take measurements for any grid density specified. The important consideration, however, is to consider how many samples should be taken. If the goal is to establish average properties of the cored interval the average can be determined from subsets of the data and the variability in estimates to sample spacing investigated. A range of statistical parameters can also be calculated for the subsets.

A systematic study of sampling was carried out on the core from the Statfjord well. The results of this study are discussed for one of the studied intervals (interval Core 5 in Fig. 3.5). As it is the sampling strategy independent of the geology we are concerned with here, we can for the time being ignore the geological setting of the selected interval.

Figure 3.9: Coarse and fine grid sampling scheme for the Statfjord core study. Details of a metre interval of core 4 shown (refer Fig. 3.5).

A series of subsamples can be generated from the original sample population by treating the coarse grid as four separate profiles (Fig. 3.10). The number of samples in the subsamples declines with increasing spacing (Fig. 3.11).

Figure 3.10: Procedure for the generation of subsamples from the original sample population. The coarse grid (Fig. 3.9) was split into a number of profiles and points skipped at increasing increments.

In this interval, the 1120 samples can be broken down into four subsamples at 1 cm spacing with ± 280 data points, 20 samples with ± 56 samples, and so on. The subsamples are not all the same size because of gaps in the profiles.

Figure 3.11: Number of samples for each subsample generated by the procedure illustrated in Fig. 3.10.

The arithmetic average was determined for each of the subsamples. The variability increases as the sample spacing increases and the number of data points in each subsample declines (Fig. 3.12).

Figure 3.12: Arithmetic average for each subsample generated by the procedure illustrated in Fig. 3.10. The average permeability of the complete data set (the population in this case) is 146 mD . Lines $\pm 20 \%$ of the arithmetic average are shown.

Fig. 3.12 suggests that a $\pm 5 \mathrm{~cm}$ sample interval would be appropriate for this interval if the average $\pm 20 \%$ is desired. The Cv of the investigated interval is 0.86 . Using the optimum sampling criteria (see Appendix I) of Hurst and Halvorsen (1991) for the same tolerance of $\pm 20 \%, 74$ samples are required for this level of variability $\left([10 \mathrm{Cv}]^{2}\right)$. Seventy-four samples over 4 m suggests a spacing of 5.4 cm which agrees well with the observed result. This study shows that Hurst and Rosvoll's criteria can be used as a powerful sample design tool. The data from this study interval are approximately root-normally distributed which suggest that Hurst and Rosvoll's normal distribution limitation is not as critical as expected. Similar analysis for the Rannoch interval (core 4) and an Etive interval (core 3) showed similar results (Corbett and Jensen, 1992).

From the above, the additional information gained from the four profiles at the coarse spacing was very minor. This is despite the fact that each of the profiles sample different geological elements because the grid is not aligned to the geology (Fig. 3.9). Three of the four profiles provide redundant data. Following this analysis of the pilot study, the coarse grid was reduced to a single vertical profile for the Thistle study. The Thistle programme called for samples at a maximum 2 cm spacing, based on the estimated Cv from core plugs and a 20% required tolerance. In the event, data was acquired at 0.5 cm spacing (approx. 6200 measurements).

With grids taken over the same intervals of the resinated core with two different probe sizes, it was possible to investigate the effects of the resin. The depth of investigation of the probe is a function of probe aperture diameter (Appendix III). Different size probes should therefore have different depths of investigation. A comparison of the arithmetic averages for large (LP1) and small (SP1) probe measurements over comparable areas shows no systematic differences (Fig. 3.13). These data show that neither probe measurement is affected by the resin. In the fine grained Rannoch, the imbibition of resin is relatively shallow. The thickness of unresinated core available generally exceeds two aperture diameters. For this study, the resination is not going to present a problem.

Figure 3.13: Comparison of large and small probe measurements over selected core intervals.
permeameter that were not possible on resinated slabs. In particular, it was possible to investigate the affects of core cleaning, surface damage and probe orientation.

These criteria on which blocks were selected included:
> - representativity of typical Rannoch facies
> - correspondance with intervals of slabbed core
> - previously sampled by horizontal and vertical core plugs

Three blocks were finally selected (core depths given refer to Fig. 3.6):

A1-2	WB facies	$10055.5-.8 \mathrm{ft}$
B1-2	SCS facies	$10112.6-3.3 \mathrm{ft}$
B1-3		
	HCS facies	$10125.0-.3 \mathrm{ft}$

A series of measurements were completed on prepared and unprepared surfaces by Christian Halvorsen. On typical core slab surfaces normal to the bedding surfaces "horizontal" probe ($\mathbf{k}_{\mathbf{h}}$) measurements were taken. On surfaces cut parallel to bedding "vertical" probe $\left(\mathrm{k}_{\mathrm{v}}\right)$ measurements were taken. The orientation of the measurement refers to the orientation of the probe relative to bedding. The measurement is considered to be very localised and, therefore, dominated by the first few pores directly under the aperture. In this region, the flow of nitrogen is considered to be quasi-linear (i.e., directional). A model of hemispherical flow from a point source seems inappropriate given the shallow depth of investigation relative to a broad aperture.

The sampling scheme for these measurements (SP2) is shown in Fig. 3.14 and includes (Appendix X):

- probe k_{h} grids orientated parallel and normal to bedding surfaces,
- probe k_{v} grids on surfaces sub-parallel to bedding,
- measurements at 45° to the bedding surfaces.

These measurements were taken to study the effects of grain fabric anisotropy at the measurement volume for the probe permeameter. Some of these grids were repeated before and after cleaning and before and after cutting to investigate the effects of surface damage and residual fluids. The location of grids was such that averaging and scale-up of probe measurements could be investigated at the core plug scale, using the available core plug data on each block.

3.6 Discussion of Sample Volume and Spacing

The limitations of core plugs for heterogeneous laminated resevoirs have been described. A third of the Rannoch Formation core plugs showed significant internal heterogeneity. The small volume of the probe (1/15-1/60th of a one-inch core plug for LP1 and SP1, respectively) is expected to be more uniform.

A variety of probe permeameter sampling schemes has been demonstrated on plugs, unresinated and resinated core. Whilst it is possible with automated probe devices to collect exhaustive data for each sample, the additional information gained by such an approach can be rather limited. In this study, the following were found to be adequate:

1. Core plugs. Four measurements on each end.
2. Blocks. Grids orientated parallel and normal to the bedding.
3. Resinated slab. A single 2 cm spaced profile.

The analysis of these data is fully explored in the following chapter.

Figure 3.14: Typical probe permeameter sample programme for an unresinated block (B1-3) of the Rannoch in the Thistle Field. Grids are orientated with respect to bedding. After measurements were made on the slab surface (for k_{h} horizontal and vertical grids), the block was cut along one inclined $\left(45^{\circ}\right)$ surface and eight bed-parallel surfaces. Measurements were taken on these surfaces.

CHAPTER 4

COMPARISON OF CORE PLUG AND PROBE PERMEABILITY MEASUREMENTS

In this chapter, the results from the probe permeameter measurements at various scales are compared with core plug data and the implications for the petrophysical description of the Rannoch Formation discussed.

4.1 Measurements at the Sub-Core Plug Scale

A major objective of this study was to investigate the small scale (probe-scale) anisotropy measured by the ratio of vertical to horizontal permeability ($\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$). Three samples were used; two from the low contrast facies (B1) with clearly defined sub-cm laminae, and one from the wavy bedded facies (A1) with thicker laminae/beds (up to 2 cm).

The resulting permeability profiles for the three sampled blocks are shown in Figures 4.1 (blocks B1.3, B1.2) and 4.2 (A1.2). At each level, the average permeabilities and ± 1 standard deviation error bars are shown. The averages are determined from 3, 20,4 and 24 data points for vertical k_{h}, horizontal k_{h}, inclined and k_{v} grids, respectively.

The three samples are clearly laminated and the pattern of permeability variation reflects the sedimentary lamination. There is a good correlation between geology and petrophysics. High permeability layers consistently correspond with low mica intervals.

Comparing the measurements on the inclined 45° surface (Fig. 4.1 top) with measurements on a surface normal to bedding, we see that similar permeabilities are measured, particularly in the more uniform mica-bearing interval -5.0 to -5.6 cm . This suggests that the impact of mica platelets oblique to the probe orientation is not significant for the size of probe used. This probe is not able to show grain fabric anisotropy, the mica platelets being dispersed and significantly smaller than the area of the aperture. This is in keeping with the size of the mica platelets seen in the thin section analysis (Fig. 2.4). Differences at $-4.0,-4.7$ and -6.0 cm occur where the horizontal measurement cannot resolve the low permeability laminae.

The averages of probe k_{h} measurements are identical for the vertical and horizontal grids (open circles and black circles) for each of the investigated blocks. Indeed, given the low variability of the three adjacent measurements along a lamina on the vertical k_{h} grid, a single measurement within a lamina is considered sufficient to characterise its permeability. Laminae are defined as being texturally homogeneous. It appears that they are also homogeneous in terms of permeability, at least over a limited $(5 \mathrm{~cm})$ length. Note that the additional variability in the interval 0 to -2.5 cm in Fig. 4.1 (bottom) is attributable to orientation of the grid at an angle to the lamination above a laminaset bounding surface.

In all three blocks the probe-scale anisotropy has been measured at a number of locations. Over a wide range of permeabilities ($5-1200 \mathrm{mD}$), the probe $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ approaches unity. Exceptions (e.g., B1-3 at -2.5, -2.9 and $-4.1 \mathrm{~cm} ;$ B1-2 at -3.8 and -5.4 cm) can be attributed to shoulder bed effects (i.e., where permeability changes rapidly, k_{h} measurements will not resolve thin layers). A cubic Hassler Cell, with face dimensions of $1 \times 1 \mathrm{~cm}$, was cut from the wavy-bedded sandstone (block A1-2 at 6.5 cm) and also found to be isotropic (Halvorsen, pers. com.). It was, however, not possible to find homogeneous micaceous intervals of sufficient volume to test the apparent probe isotropy.

Figure 4.1: Detailed permeability profiles for samples B1-3 (above) and B1-2 (below). Higher variability in measurements above bounding surface because the grid is orientated parallel to bedding below this surface.

Figure 4.2: Detailed permeability profiles for sample A1-2.

In sample A1-2 (Fig. 4.2), the wavy-bedded facies, permeabilities in the ($10+\mathrm{cm}$) profile vary from $50-1250 \mathrm{mD}$. These data, therefore, reflect a degree of permeability heterogeneity $(\mathrm{Cv}=0.6)$ over short centimetre length scales. The core plugs fail to represent the heterogeneity, although the plug $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio (0.04) certainly indicates anisotropy. Whether this anisotropy is a "good" average for the block is another matter. Certainly, the different locations for k_{h} and k_{v} plugs has helped capture the anisotropy due to the lamination, but the plug volume is wholly inadequate to capture the average anisotropy of this cored interval. If the vertical plug had been cut in the same lamina as the horizontal plug, the $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio would have been closer to unity.

Figure 4.3: Probe scale $\mathrm{k}_{\mathrm{v}}: \mathrm{k}_{\mathrm{h}}$ relationship for the Rannoch Formation. (Error bars ± 1 s.d.).

The probe-scale k_{v} / k_{h} ratio for the Rannoch is summarised in Fig. 4.3. Over three orders of magnitude the data lie close to the diagonal $\left(\mathrm{k}_{\mathrm{v}}=\mathrm{k}_{\mathrm{h}}\right)$ line. The probe scale anisotropy as measured by the $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio lies between 0.5 and 1.0. From these data we conclude that lamina permeabilities tend to be isotropic and that the anisotropy in sediments commonly seen in core plugs results largely from lamination rather than grain fabric. The micaceous Rannoch has a strong fabric anisotropy so this result is surprising. The probe volume is generally above the microscopic/macroscopic (Haldorsen, 1986) threshold for these laminae and therefore gives a representative measurement of the properties of the stratal element.

From these detailed probe data from three blocks, representing two subfacies (A1 and $\mathrm{B} 1)$ and a wide range of permeabilities $(2-1250 \mathrm{mD})$, we observe that:
-No extra information is provided by extended profiles along laminae ("horizontal" grids) over the limited vertical grid. In these laminated sediments, a single profile provides a good estimate of lamina permeability. The variability observed along laminae over the 5 cm width of these core
samples is very limited: $0.07<\mathrm{Cv}<0.15$ in B1.3 and $0.1<\mathrm{Cv}<0.37$ in A1.2.

- Measurements inclined at 45 degrees to the bedding and, therefore, to the ubiquitous mica platelets in this formation, are comparable with measurements normal to bedding. The mica platelets (up to 0.3 mm) are small relative to the probe injection area (3.8 mm diameter). The probe does not, therefore, resolve fabric anisotropy which may exist from the mica at certain scales of measurement.
-Probe measurements normal to the bedding planes (" kv ") are generally comparable to horizontal (" k_{h} ") measurements suggesting the formation is isotropic at the probe scale (even with the grain fabric of mica-rich sediments). Notable exceptions indicate planes that cut adjacent laminae at a very low angle (<10 degrees), exposing very thin ($<2 \mathrm{~mm}$), low permeability laminae not resolved with "horizontal" probe measurements. These data highlight a limitation of the probe. Probe measurements on a slabbed core surface (or outcrop face) will not "see" the thin low permeability laminae that may control the vertical permeability. Such sample programmes are thus insufficient for defining all the permeability variation within laminated sediments.

4.2 Bounding Surface Permeability Measurement

Laminaset bounding surfaces are very prominent in Rannoch Formation core material. The surfaces mark the discordant boundary between concordant packages of laminae (for further discussion refer to Appendix VII). As these features are widespread within the Rannoch Formation, a detailed study was carried out to determine their petrophysical properties. Sample B1.2 included a bounding surface (Fig. 4.1 bottom) showing an apparent truncation angle of 27 degrees. A plane BB2 was cut at
a low angle to this bounding surface (Fig. 4.4 top). The grid of probe measurements acquired on this plane was aligned to the strike of laminae beneath the bounding

Minipermeameter profiles on plane cut obliquely to bounding surface

Figure 4.4: Detailed permeability mapping of a bounding surface, sample B12. The upper sketch shows the sampled block from the side with the top of the core to the top. The centre sketch shows the lower surface exposed along the sectioned plane BB2 in the upper sketch. The lower graph shows the 5 probe permeameter profiles at 0.5 cm spacing from the grid outlined on the surface in the centre sketch.
surface (Fig. 4.4 centre). From the resulting profiles the offset of the transition to a higher permeability lamina immediately above the bounding surface is apparent (Fig. 4.4 bottom).

From these data, there is no suggestion of any significant permeability reduction associated with the laminaset boundary. The observed permeability profile is consistant with erosion followed by rapid deposition without time for fines to settle or bioturbation to take place. This is as expected from the storm origin interpretation of these events. While it is possible to cut plugs through the laminaset boundaries and investigate their permeability, this is not generally done in a systematic way in reservoir characterisation. Whilst the Rannoch laminaset boundaries appear not to have flow significance, this will not necessarily be true in other formations/environments. As a significant element in reservoir sediments, laminaset bounding surfaces deserve systematic investigation.

In the B1.2 sample the horizontal plug hole lies beneath the bounding surface (Fig. 4.4 top). In contrast, the vertical plug hole is above the bounding surface (i.e., to the left of the discordancy in Fig. 4.4 centre). In this block, therefore, the horizontal and vertical plugs appear to be taken from different laminasets. This observation may have a bearing on the representivity of the k_{v} / k_{h} ratio at this depth.

4.3 Plug-scale Permeability Measurements

The probe permeameter sample volume represents approximately 1/60th (SP2) of the one-inch core plug volume. It is reasonable to expect the core plug permeability could be estimated as an average of many smaller measurements over the same total volume. The scale-up from probe to core plug measurement was investigated using the block sample data described above.

The blocks selected had previously been plugged in the horizontal and vertical directions. We make comparisons between the arithmetic and harmonic averages (refer to Appendix I) of the probe data with plug k_{h} and k_{v} measurements (Table 4.1). In each case, the probe intervals have been depth matched as carefully as possible with plug intervals. We note that because the plugs are trimmed after being cut, it is very difficult to ascertain the exact interval represented by the plug measurement. This uncertainty is more critical to the vertical plug intervals.

The arithmetic average is appropriate to flow along layers (i.e., comparable with a horizontal plug measurement) and the harmonic to flow across layers (vertical plug). If all the layers present in the core plug have been sampled with the probe, and the layers are relatively uniform the respective averages will estimate horizontal and vertical permeability.

> HORIZ. PERM. VERT. PERM.

B1-3 B1-2 \quad A1.1 \quad B1-3 \quad B1-2 \quad A1.1

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROBE HORIZ. | 23.8 | 140.6 | 550 | 19.4 | 129.8 | 200 |
| PROBE VERT. | 18.0 | 142.3 | 577 | 10.7 | 120.5 | 268 |
| | | | | | | |
| CORE PLUG | 20.6 | 150 | 893 | 2.2 | 59 | 37.6 |

Table 4.1: Comparison of core and probe estimates of horizontal and vertical permeability. (N.B., Probe horizontal $=$ arithmetic average; probe vertical $=$ harmonic average)

These data, bearing in mind the concerns over depth matching, suggest:

- that the arithmetic average of closely spaced probe data provides a reasonable estimate ($\pm 6-15 \%$ for B1-2 and B1-3; within $35-40 \%$ in A1-1) of horizontal plug permeability in these laminated facies, and,
- that the harmonic average of closely spaced probe measurements consistently overestimates the vertical permeability by 2-5 times. In these laminated facies, it is not possible to resolve thin low permeability layers with probe spacings of 2 mm . The preparation of more bed-parallel planes may have improved the resolution, but there are practical limitations to this approach.

In making these comparisons, we should also bear in mind the tendency for the probe to read lower permeabilities on uncleaned material (particularly for plugs above 100 mD). These differences are further discussed in the following section.

The fundamental differences in both flow geometry and scale of plug and probe measurements have been described previously. These differences suggest that only in the most homogeneous of media can the plug and probe measurements be expected to be identical. Nevertheless, carrying out a systematic comparison of the two measurements is a recommended procedure in any study for several reasons:
> - to highlight potential problems with either measurement,
> - to understand the effects of sample treatment and preservation,
> - to understand the effects of sub-core plug scale heterogeneity.

In this current study, probe permeameter measurements were taken on the ends of a series of core plugs from the Rannoch Formation. Using calibration factors empirically determined on homogeneous (non-Rannoch) core plugs, the probe measurements were compared with plug permeabilities (Fig. 4.5). The variablity in permeability seen in the core plugs, as measured by Cv , could be related to the degree of lamination. The more strongly laminated, heterogeneous plugs had $\mathrm{Cv}>0.75$ and could then be excluded from the comparisons. A good comparison for probe and plug measurements, with probe permeabilities tending to be slightly higher at high permeabilities, was observed.

Figure 4.5: Comparison of probe and Hassler cell permeabilities on cleaned homogeneous plugs.

The minor differences between cleaned probe and cleaned plug measurements (Fig. 4.5) may be due to heterogeneity in the Rannoch plugs that wasn't present in the calibration plugs. An alternative calibration, using these Rannoch core plugs, could correct for these minor effects.

There were significant differences, however, for both the Statfjord and Thistle wells when probe permeabilities measured on core slab surfaces in the immediate region of the plugs were compared with the plug permeabilities (Fig. 4.6). The probe permeabilities can be seen to be both consistently lower above 100 mD (core plug) and higher below 2 mD . This conflicts with the probe measurements directly on the cleaned Rannoch core plugs (Fig. 4.5).

Figure 4.6: Comparison of arithmetically averaged probe permeabilities on uncleaned slabbed core with cleaned plug permeabilities. Note tendency for probe permeabilities to be less than plug above 100 mD (plug) in both wells and greater than plug below 2 mD in the Thistle well. Error bars $\pm 1 \mathrm{~s} . \mathrm{d}$.

The discrepency at lower permeabilities can be explained by the lower limit of the operating conditions for the selected probe tip. For the designed range of pressures and injection rates for the probe used (SP2), 2 mD represents a practical lower limit. The differences at higher permeabilities are attributed to differences in the treatment of core plugs and core slabs (i.e., the preparation, cleaning, or preservation). For reasons previously discussed (section 3.5.2), that the resin is not considered to be a significant factor. The effects of cleaning were systematically investigated and are described in the following section.

4.4 Treatment Effects Affecting Core Plug and Core Slab Measurements

Systematic differences were recognised (Fig. 4.6) between probe measurements on cleaned core plugs and uncleaned core slabs. To investigate the effects of different
treatments, a series of probe measurements over the same grid (on block B1.2) were taken for the following sequence of treatments:

1. with no preparation (i.e., before cleaning),
2. after cleaning by immersion in methanol and toluene solvents,
3. after cutting a fresh surface a few mm parallel to the original surface,
4. after repeating step 3.

By comparing probe permeabilities, measured after each of the above steps, with those measured on the resinated core and the core plug k_{h} measurement (Fig. 4.7) it can be shown that:

- Block surfaces show less surface damage than the resinated core. (This possibly results from the practise geologists have of wetting the core surface during core description).
- Cleaning the (oil stained) blocks results in a marginal increase ($\pm 10 \%$) in permeability.
- Preparing a fresh surface increases the permeability.
- The variability, as measured by the coefficient of variation, appears relatively unaffected by the treatment for this sample.
- Cleaning the core and preparing fresh surfaces has resulted in probe permeabilities that are more comparable with those measured on the cleaned core plug. These data suggest that surface damage through ageing is primarily responsible for the permeability impairment observed on the core slab surfaces.

Figure 4.7: Comparison of probe measurements after various treatments.
Location and scale of core plug shown for reference.

4.5. Lamina and Laminaset Scale Measurement of Permeability

Detailed grids at $2 \times 2 \mathrm{~mm}$ spacing were measured on representative Rannoch laminasets from the Statfjord well. Permeability variation in the three main laminaset types, low mica lamination, high mica lamination and ripple lamination, was mapped out using the probe permeameter (Fig. 4.8). The lamination types were distinguished by mica content and laminar structure. The permeability showed a close relationship to both.

Figure 4.8: Probe permeability maps of the three main Rannoch laminaset types. Nearby plug k_{v} and k_{h} measurements are shown for comparison. High and low contrast lamination refer to the relative mica content of adjacent laminae and the resulting contrast in visual appearance.

The comparison between arithmetic probe averages and plug k_{h} permeabilities is reasonably good. Plug k_{v} values, however, tend to be over-estimated by the probe harmonic averages (as noted above), suggesting that all the low permeability micaceous laminae have not been measured. Nevertheless, the probe permeability maps show permeability structure effectively unseen by the core plugs.

A fourth facies type, the wavy-bedded facies was mapped in the Thistle well (block A1, Fig. 4.2). This facies is usually confined to the upper $\pm 3 \mathrm{~m}$ of the Rannoch Formation and is considered significant to the modelling of flow between the Rannoch and the overlying Etive.

The laminated nature of these sediments is reflected in the semivariogram (see Appendix I) generated from the 2 mm spaced data (Fig 4.9). Along the lamination (i.e., within the texturally uniform laminae) in the high mica laminaset (Fig. 4.8 centre), low variance and relatively long correlation lengths are seen. Across bedding, however, cm -scale correlation lengths and periodicity are characteristic. These short correlation lengths and regular statistical structures were unseen (and possibly unsuspected by the geostatisticians and engineers) prior to the development of the probe permeameter. They have been found to be characteristic of most, if not all, laminated sediments.

Figure 4.9: Comparison of a semivariogram in a high mica, anisotropic, Rannoch laminaset with one from a relatively homogeneous (Etive) sediment. The former shows the characteristic short correlation lengths and hole effects (periodic) structure associated with a laminated sediment. The high permeability correlated features responsible for the hole at 2.25 cm can be seen in Fig. 4.8 (centre). The semivariogram function (γ - Appendix I) has been normalised by dividing by the variance to give a semivariogram amplitude.

One should note that the features responsible for the hole in the vertical (i.e., down core) semivariogram on the left of Fig. 4.9 can be seen in Fig. 4.8 (centre). These are not the fine mm-scale laminae that are shown in the accompanying sketch (which are not resolved by the probe) but a larger scale periodicity that can be seen in the photograph of this interval (Fig. 2.3b). This periodicity, possibly related to bedform migration, is also seen in Rannoch material from Cormorant (Fig. 3a left in Scott, 1992). The semivariogram shows no indication of the finer scale lamination.

4.6. Laminaset and Bed Scale Variability

The core plug data can be used to provide some measure of variability at this scale. The one-foot core plugs, however, undersample the bed-scale variability and fail to reveal the well defined permeability structure that is typically associated with individual laminasets (Fig. 4.10). Bed thicknesses, typically a few feet, require a greater sample density than is traditionally available from core plugs. With the greater sample density offered by the probe, a relationship between sedimentary fabric and petrophysical properties can be seen.

In the 2 m section shown in Fig. 4.10, the high permeability interval closely correlates with the low mica lamination interval (subfacies 1). The low permeability intervals correlate with the high mica lamination (subfacies 2). The rippled laminated material (subfacies 3) has the lowest permeabilities. The probe data, therefore, show a close relationship between permeability and lamination type suggesting that the permeability distribution in this interval of the Rannoch Formation is related to depositional structure.

Comparing the probe permeabilities with the 6 core plugs in this interval we note the broad similarity. The low permeability rippled interval (subfacies 3), however, was not sampled by the horizontal plugs, probably because of problems associated with cutting the plug. This omission could lead to poor estimates of the vertical permeability in this interval.

Figure 4.10: Pattern of probe permeabilities showing distribution within a single bed. Note the location of the three detailed laminaset grids (Fig. 4.8) within a one-metre interval. Refer to Fig. 3.5 for location of interval (core 5).

It is interesting to consider the variability of the subfacies intervals in Fig. 4.10. The low mica lamination (subfacies 1) has $\mathrm{Cv}=0.31$ and, despite the apparent variability in the profile, is relatively homogeneous. The upper and lower high mica lamination (subfacies 2) intervals have comparable Cv 's of 0.83 and 0.99 , respectively. This lamination is petrophysically heterogeneous (Corbett and Jensen, 1992b). The ripple lamination (subfacies 3) has $\mathrm{Cv}=1.52$ and is very heterogeneous. The probe data, therefore, supply information on the variability of petrophysical properties. In subsequent chapters, we will try to establish how important this variability is to the flow of hydrocarbons in this reservoir.

This example from the Rannoch Formation shows the scale of typical hierarchies of elements in clastic reservoirs. These elements and, their associated petrophysical properties, invariably occur at scales poorly sampled by core plugs at one-foot spacings. If a depositional control over the petrophysical data can be identified, the petrophysical model of the reservoir can potentially be derived from a geological model of the formation. This possibility is developed further in later chapters.

The probe permeameter profiles can be used to illustrate the bed-scale variability for the three main facies in the Rannoch Formation. Figure 4.11 shows the permeability variation over a 10 -foot ($\pm 3 \mathrm{~m}$) interval of the SCS (Fig. 4.11a), HCS (4.11b) and WB (4.11c) facies (refer to Fig. 3.6 for location of intervals).

In an SCS interval (Fig. 4.11a), the variability is relatively low with $\mathrm{Cv}=0.63$. The plug and probe data are broadly comparable, the latter however do pick out some low perm intervals (e.g., 10061.1, 10063.8) that may have been overlooked by the plugs. A 61 pt. (i.e., 0.3 m) running probe average (arithmetic and harmonic) has been used to estimate k_{h} and k_{v}. Plug k_{h} and k_{v} are given for a comparison, which is very good at 10063,10067 and 10068 . These averages become uniform over zones (e.g., 10061-68ft) where 0.3 m -intervals provide representative

Figure 4.11a: Permeability variation within the SCS facies, Rannoch Formation, Thistle Field.

Figure 4.11b: Permeability variation within the HCS facies, Rannoch Formation, Thistle Field.

Figure 4.11c: Permeability variation within the WB facies, Rannoch
Formation, Thistle Field.
volumes of these facies. The Cv in this latter interval varies between 0.4 and 0.6 . For this variability, 36 samples (i.e., a spacing of $\pm 8 \mathrm{~cm}$) would be sufficient to determine the average permeability of this $\pm 3 \mathrm{~m}$ interval within $\pm 20 \%$ (refer to section on sample sufficiency in Appendix I). The ten plugs are insufficient for this purpose.

The HCS interval (Fig. 4.11b) has a greater variability with a $\mathrm{Cv}=0.93$. The $\pm 3 \mathrm{~m}$ interval shows a number of fining-up (i.e., reducing permeability) cycles in the probe data, an example of which can be seen between 10142 and 10138.2 ft . The core plugs, however, miss the low permeability intervals at 10142.0-. 8 and 10138.2-.8ft. Optimum sample spacing for this interval would be $\pm 3 \mathrm{~cm}$. The 61 pt . running average shows relative uniformity over the low mica lamination intervals (e.g., 10140-1ft) suggesting the $\pm 30 \mathrm{~cm}$ intervals are representative. That the more massive sand (from 10144.25-5.75ft) is isotropic, is confirmed by similarity of the probe arithmetic and harmonic averages over the interval and by the vertical and horizontal core plugs at 10145 ft .

Like those within the SCS interval discussed above, the low mica lamination intervals in the HCS have $\mathrm{Cv}=0.4-0.6$ (e.g., 10140-1ft). The heterogeneity is higher ($\mathrm{Cv}>$ 1) as the running average crosses bed boundaries (i.e., at 10138.5 and 10142.5 ft). If a larger running average was used (e.g., over 4 ft) the Cv and averages would be more representative of the HCS facies as a unit (i.e., 4 ft or 1.2 m , is the representative vertical "volume" for HCS in the hierarchy of representative volumes).

The probe permeameter data over this interval again clearly show the relationship between permeability and primary depositional geological structure. The core plugs, missing as they do the low permeability intervals in this section, would lead one to poor estimates of the average petrophysical properties of this interval.

It is in the WB interval (Fig. 4.1 lc), however, that the probe permeameter proves most useful. This interval is only $\pm 3 \mathrm{~m}$ thick and is almost completely represented by the 8.5 ft interval shown in Fig. 4.1 lb . The variability of this interval $(\mathrm{Cv}=0.99)$ is
similar to that of the previous HCS interval. In this WB facies, however, the variability occurs at the lamination scale. The 61 pt . running average shows relatively uniform properties, suggesting that $\pm 30 \mathrm{~cm}$ is a representative sample spacing for averages.
$\mathrm{ACv}=0.99$ suggests 100 samples are sufficient (this equates to a $\pm 3 \mathrm{~cm}$ spacing). Ten core plugs are clearly insufficient. The horizontal plugs tend to be preferentially located in the high permeability layers; the 10056 ft plug can be seen to come from 10055.5ft in Fig. 4.11c by detailed correlation of the detailed probe profile in Fig. 4.2. As a result of this preferential and insufficient sampling, the estimate of arithmetic average permeability for the WB interval from the plugs $(390 \mathrm{mD}$) is significantly higher than that derived from the probe data (172 mD). Because the latter is made from >100 data points, we can be confident that the population mean lies between 138 and 206 mD . Whilst the probe arithmetic and harmonic averages show relative anisotropy, the absolute values of $\mathrm{k} / \mathrm{k}_{\mathrm{h}}$ may be over-estimated because of the problems previously discussed concerning the probe resolution of thin low permeability laminae. For this thinly ($\pm 3 \mathrm{~m}$) developed, heterogeneous interval, the probe permeameter provides the only effective measurement device.

Providing sufficient closely spaced samples have been taken, the permeability structure can be revealed by the semivariogram (Appendix I). Periodicity in sediments gives rise to repetitive permeability patterns and these result in "holes" where the variance at certain lag distances is significantly reduced (i.e., pairs of data points at this spacing are likely to be more similar than those at a fraction of the spacing). Holes are commonly seen in variograms generated from probe data (Goggin et al., 1988) and these commonly represent average bed thicknesses. Their significance is often overlooked by the fitting of a spherical model. In the Rannoch Formation, the variogram is particularly useful for determining average HCS bed thicknesses. In the Statfjord well, a significant hole (Fig 4.12) suggested a bed
thickness of $\pm 1.4 \mathrm{~m}$. Hole lags could therefore be used to suggest a representative sample volume.

Figure 4.12: Permeability semivariogram for the probe data from the Statfjord Field Rannoch interval shown in part by Fig. 4.10. Semivariogram has been normalised by dividing by the sample variance.

Note, however, that the identification of the hole seems to require a sample spacing that is a fraction (1/10th appears to be a reasonable rule-of-thumb) of the hole lag. The semi-variogram for the same interval from core plugs at the $1 \mathrm{ft}(\pm 30 \mathrm{~cm})$ interval fails to identify the hole structure (Fig. 4.13).

Figure 4.13: Permeability semivariogram from 1 ft spacing core plugs for the same interval as shown in Fig. 4.12. Semivariogram has been normalised by dividing by the sample variance.

An interval in the Thistle well shows a variogram with a hole at a similar spacing (1.3m in Fig. 4.14). In this case the sedimentary structure (a 1.14 m -thick HCS bed) can be clearly seen in the permeability profile (Fig. 4.14 left, between 10142 and 10138.25 ft). More work on the statistical interpretation of the more complex semivariograms that are typical of sedimentary rocks is needed. The geological control, however, on the variogram structure has been clearly illustrated here and a petrophysical sampling significance suggested.

Figure 4.14: Probe permeability pattern and corresponding semivariogram showing well defined, repeated, bed structure at a scale-length of $\pm 1.2 \mathrm{~m}$. Compare with Fig. 4.12 from the Rannoch in the Statfjord well.

The probe data, acquired at 0.5 cm spacing along a single profile in the Thistle well, also allows the distribution type for the different facies to be determined (Fig. 4.15). Power transformation values (p-values, Appendix I) of $0.4,0.1$ and 0.3 were determined for the SCS, HCS and WB facies, respectively. The Rannoch facies, therefore, have distributions that lie between root- and log-normal pdf's (Appendix I).

Figure 4.15: Permeability distributions for Rannoch facies from probe permeameter measurements.

4.7. Formation Scale Measurement of Permeability

To complete the review of the petrophysical description of the Rannoch Formation at various scales, we consider the porosity/permeability description of the Rannoch at the formation (or parasequence, Fig. 1.2) scale. The coarsening-up shoreface sequence is reflected in the upward-increasing permeability and porosity trends. In the Thistle Field, where the overall level of permeability is lower, the trend in the plug data is more dramatic (Fig. 4.16a) than in Statfjord Field (Fig. 4.16b).

Figure 4.16: Permeability/porosity trends for the Rannoch Formation; a, Thistle Field (total vertical thickness, TVT, of the interval shown $= \pm 70 \mathrm{~m}$) and b, Statfjord Field (TVT $= \pm 100 \mathrm{~m}$).

The reason for the differences in porosity is related to the post-depositional compaction and is consistent with regional trends of reduction of primary porosity with depth seen in the Brent province (Harris, 1992). Thistle Field (average Rannoch porosity $\mathbf{2 0 . 4 \%}$ in the studied well) is deeper ($\mathbf{~} 2800 \mathrm{mss}$) than the Statfjord Field (porosity $=24 \%$) at $\pm 2590 \mathrm{mSS}$.

The depositional (i.e., pre-compaction) composition in both fields is thought to be similar and the observed systematic decrease in felspar with depth and increase in illite has been attributed to a diagenetic response to a temperature increase (Harris, 1992). The increase in illite content and a decrease in pore throat size due to compaction and quartz overgrowths (Scotchman et al., 1989) are the most likely reasons for the poroperm differences in the two fields studied.

Note that the variability of the permeability is much greater than that of the porosity in the Rannoch Formation $\left(\mathrm{Cv}_{\text {perm }}=0.76, \mathrm{Cv}_{\text {por }}=0.23\right.$ in the Thistle well). For this reason, the discussion of petrophysical description in this chapter has concentrated on the measurement of permeability.

The probe and plug permeability data are summarised for the Rannoch Formation in the Thistle well in Fig. 4.17. The plug data provide satisfactory average properties at this scale in all facies except the WB. The probe data presented here do not take into account the reduction in permeability due to surface degradation.

The arithmetic average of the core plug horizontal permeabilities and the harmonic average of the plug vertical permeabilities are shown for the intervals described (Fig 4.17). An estimate for the $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio, at this scale, can be derived from these averages. These estimates would be appropriate for a horizontally layered model. The k_{v} / k_{h} ratios generated by averaging plug data over intervals are significantly lower than the average core plug k_{v} / k_{h} ratio (0.65) or the probe k_{v} / k_{h} ratio (± 1.0). We examine in the following section how the k_{v} / k_{h} ratio declines systematically in the Rannoch Formation with increasing scale of measurement volume. This behaviour is
expected for all layered sedimentary rocks. The problems associated with the determination of appropriate grid block $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratios stem from an incomplete understanding of this behaviour.

Figure 4.17: Plug and probe permeability summary for the Rannoch Formation, Thistle Field. Core depths shown (log depths in parenthesis).

4.8 Anisotropy (kv/kh ratio) Measured at Different Scales.

Permeability anisotropy (i.e., $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio) is a traditional input into reservoir simulators. Data are generally taken from $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratios determined from core plugs. The k_{v} / k_{h} ratio, however, is a function of the volume of rock sampled. In Section 4.1 the probe volumes of rock were shown to be relatively isotropic. The anisotropy systematically increases (i.e., lower $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio) in the Rannoch Formation with increasing volume sampled (Fig. 4.18).

Rannoch anisotropy

Figure 4.18: Rannoch Formation permeability anisotropy plot. Refer to Fig 1.2 and Van Wagoner, et al. (1990) for definition of the stratal elements.

In Fig. 4.18, probe averages use the arithmetic average/harmonic average. Plug averages represent the arithmetic average $\mathrm{k}_{\mathrm{h}} /$ harmonic average k_{v}. The plugs from low permeability concretionary carbonate nodules have been included in the determination of the formation scale estimate.

At the probe scale the degree of anisotropy $\left(\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}\right)$ is equally low in all facies. In the core plugs the WB facies has higher anisotropy than the HCS, which is in turn higher
than the SCS. At the bed scale, the SCS and HCS have similar anisotropy. The averaged plug data suggest that the WB should have a higher anisotropy at this scale and probe harmonic averages have been shown to be a poor k_{v} estimator. Formation properties are dominated by the inclusion of the low permeability carbonate concretions. If these are considered not continuous (as has been shown for the Cormorant Field by Braithwaite et al., 1989) then they can be legitimately excluded from the averaging. When the carbonates are excluded, the formation anisotropy ratio is nearer 0.1 than 0.01 . From Fig. 4.18 , it can be seen that the k_{v} / k_{h} ratio for gridblocks in field-scale simulations will need to be much lower than such ratios for smaller-scale assessments. Understanding the scale sensitivity of the anisotropy ratio can, therefore, help in the correct assignment of gridblock properties.

The plug and probe measurements discussed in this chapter have all been single (gas) phase measurements. In the following chapter, we consider the measurement and scale-up of two-phase (oil-water) permeability and anisotropy charcteristics for simulation of the waterflood recovery process.

4.9 Discussion of the Rannoch Permeability Distribution

The probe data show, at several scales, that the permeability in the Rannoch is strongly controlled by the primary depositional structure of mica-rich and mica-poor sandstones. Clear relationships between permeability patterns and laminae, laminasets and beds have been identified. Many of these elements are highly variable.

The core plugs samples are sufficient to characterise the permeability of the Rannoch shoreface as a whole. The section is greater than 58 ft so the optimum sampling criteria ($\left[10^{\circ} 0.76\right]^{2}$) is satisfied by 1 ft samples. However, certain intervals (e.g., the WB) are poorly characterised by the plugs alone. The permeability patterns and variability are well described by the probe data although the absolute values are lower
(attributed to surface damage of the slab surface). The permeability patterns identify the stratal elements and assist in the scale-up of scale dependent properties (i.e., $\left.k_{v} / k_{h}\right)$.

The data presented here show that the permeability description in the laminated Rannoch Formation is best achieved by a combination of the probe permeameter (patterns and variability) together with selected core plugs (absolute values). The core plugs are optimumly selected from intervals shown by the probe to be relatively homogeneous. It is not advised that the probe permeameter device be used as the sole instrument of permeability measurement.

CHAPTER 5

TWO-PHASE FLOW PROPERTIES OF LAMINASET ELEMENTS

In the previous chapter, a clear relationship between sedimentary facies and permeability distribution for the Rannoch Formation has been demonstrated. Despite the subsequent diagenetic changes due to compaction and temperature increases, the patterns of permeability are clearly related to primary depositional fabric. The limitations of traditional core plugs (failure to capture small scale variation, volume dependency of plug $\mathbf{k}_{\mathbf{v}} / \mathrm{k}_{\mathrm{h}}$ ratios, important intervals missed, key facies undersampled, etc.) were also highlighted. The core plug data alone are insufficient for the permeability description. Measurements with the probe at a different scale provide the description of the variability and characteristics of thin facies that was previously unobtainable with plugs. The supplementary probe data also provide further description of the anisotropy.

In chapter 4 we also showed that the appropriate or representative averaging volumes are related to the stratal elements. The properties of these natural building blocks of reservoirs can be determined from probe (and selected plug) measurements. Average properties for large scale grid blocks in reservoir simulators are then derived from the distribution of sub-gridblock stratal elements.

The production mechanism for the Rannoch Formation is waterflood (edge-water drive and water injection). Waterflood requires grid block scale estimates of average twophase properties, not traditionally provided by core plugs. In this chapter, reservoir simulation of very detailed small-scale permeability fields is used to determine two-phase flow properties for the smallest representative groups of stratal elements (i.e., laminasets).

5.1 Introduction to Two-Phase Flow

Recent work on the flow response to small scale geological features and scaling their effects to field scale models (Ringrose et al., 1991) has shown that:
> -small scale geological structure (e.g., cross-bedded laminae) influence flow performance through localised capillary effects, and -these effects remain at larger scales when the aggregated small scale structure is taken into account.

In this study, influence of small scale lamination, present throughout the Rannoch Formation in varying degrees of contrast, on flow performance at the larger scales is studied. In this study, the effects are the lamination are quantified by numerical simulation rather than laboratory experiment.

The average or effective relative permeabilities of each phase are commonly determined by pseudofunctions (Appendix VI). The scaling-up of flow characteristics by the use of pseudofunctions or "pseudos" is widely advocated for reservoir simulations (Kyte and Berry, 1975; Lasseter et al., 1986; Lake et al., 1990; Kossack et al., 1990; Muggeridge, 1991). "Small scale" simulations are used to determine the properties for coarser scale simulations ("pseudo-properties") so that the small scale performance is accounted for. However, in many instances, the pseudofunction technique has been poorly applied because of:
-starting at a scale that includes heterogeneity and implies the use of a pseudo rather than a rock curve (1ft in Kossack et al., 1990)
*choosing to ignore the variation in capillary pressure with rock type because there is generally no sensitivity to capillary pressure for large grid blocks (Kossack et al., 1990; Muggeridge, 1991)
-failing to account for the aggregation of strongly structured (laminated) rocks in the scaling-up process, thus failing to incorporate the effects of small-scale sedimentary structure

Local capillary effects are important at low rates (i.e., less than $1 \mathrm{~m} /$ day, Fig. 5.1) and are thus likely to be manifest where interwell rates are of order $0.3 \mathrm{~m} / \mathrm{day}$ ($1 \mathrm{ft} / \mathrm{day}$), considered by many (Kortekaas, Tehrani, personal communication) to be appropriate for the Rannoch Formation in many North Sea fields (Thistle and Statfjord Fields included).

In this study, we combine permeability data at the smallest measureable scale (i.e., probe measurements at 2 mm spacing over centimetre-scale grids) with "rock" capillary pressure and relative permeability curves to generate pseudos (for porosity, permeability, relative permeability and capillary pressure) for the representative laminasets. The following chapter will consider how these effects can be scaled for input into conventional (metrescale gridblock) reservoir simulations using knowledge of the hierarchical structure of stratal elements.

Figure 5.1: Rate dependancy of recovery for cross layer and along layer waterflooding. Differences in recovery with flow orientation, due to local capillary forces, disappear in the viscous- dominated region. (From Ringrose et al., 1992).

5.2. Single-Phase Laminaset Properties

The permeability variation in the Rannoch Formation is closely related to the primary depositional fabric at the lamina (Figs. 4.1, 4.2, and 4.8) and bed scale (Fig. 4.10, 4.11). The (horizontal) permeability fields in various laminasets have been measured by detailed probe permeameter grids in geologically-representative intervals (Figs. 4.2, and 4.8). Vertical permeability approximates horizontal permeability (Fig. 4.3) at the scale of probe measurement. The inability of the probe to measure the properties of very thin laminae has previously been discussed (p. 61). It is considered, however, that the variability and the extreme values have been reasonably well characterised even if some thin low (or high) permeability laminae have been overlooked.

At present, no device exists for the simultaneous measurement of porosity and permeability at the probe scale. In the Rannoch, however, there is a strong linear relationship between average probe log permeability and core plug porosity for the more homogeneous core plugs (Fig. 5.2). This suggests a good relationship between porosity and permeability exists for relatively homogeneous materials.

Figure 5.2: Probe permeability (arithmetic average of 4 measurements at each end of the plug) versus plug porosity for the homogeneous Rannoch Formation plugs $(\mathrm{Cv}<0.3)$.

Lamina are texturally uniform in nature and effectively homogeneous so one can expect good poroperm relationships within laminae. Poor relationships between core plug porosity and permeability can be expected when there is sub-core plug scale heterogeneity. In the Rannoch, there are many relatively homogeneous plugs and a good relationship can be seen between core plug porosity and permeability. With the plug data alone, however, there is no systematic way to eliminate outliers with sub-plug heterogeneity.

Using the relationship in Fig 5.2, porosity can be easily determined for the permeability field. For the four recognised Rannoch laminaset types, the probe poroperm summary is presented in Table 5.1. Note that the permeability heterogeneity is consistently higher than the porosity heterogeneity.

For comparison, the plug values from the same intervals are shown in Table 5.2. Comparisons between 1) probe arithmetic average and plug horizontal and 2) plug and "probe" porosity show that reasonable characterisation of these parameters (k within 40%, and ϕ within 15%) have been achieved with the probe.

Probe permeability (mD) Porosity (\%)

Laminaset type	$\overline{\mathbf{k}}_{\mathbf{a r}}$	$\overline{\mathrm{k}}_{\mathrm{geom}}$	$\overline{\mathrm{k}}_{\mathrm{ar}}$	$\mathbf{k}_{\min }$	Cv	$\bar{\phi}_{\mathrm{ar}}$	Cv
High mica	43	26	15	2	1.06	19.6	0.11
Low mica	259	251	241	136	0.26	24.4	0.02
Rippled	4.46	3.38	2.94	1.6	1.28	15.3	0.08
Wavy bedded	550	422	234	30	0.60	25.5	0.07

Table 5.1: Rannoch laminaset probe poroperm properties.

The vertical permeability is, for reasons previously discussed, generally overestimated by the harmonic average of probe measurements. In the rippled and wavy bedded laminasets the probe estimate of vertical permeability is out by a factor of 10 (i.e., one order of magnitude). In the low and high mica laminasets, vertical permeability was estimated within 40%.

The probe poroperm grids for the high and low mica laminasets therefore adequately describe the petrophysical variation. Thin low permeability lamina in all but the rippled laminasets have been identified (see $k_{\min }$) and the potential of $\mathbf{k}_{\min }$ as an estimator of $\mathbf{k}_{\mathbf{v}}$ could be further investigated.

Laminaset type	$\mathrm{k}_{\mathrm{h}}(\mathrm{mD})$	$\mathrm{k}_{\mathrm{v}}(\mathrm{mD})$	$\phi(\%)$
High mica	52	11.9	22.5
Low mica	318	197	27.6
Rippled	n / a	0.2	14.6
Wavy bedded	893	37.6	28.0

Table 5.2: Rannoch laminaset plug poroperm properties for equivalent intervals to Table 5.1.

5.3. Determination of Two-Phase Properties

5.3.1 Capillary pressure

A family of capillary pressure curves have been derived from drainage rock capillary pressure data for the Rannoch Formation in the Thistle Field (Appendix IV). The derived curves cover the range of permeability values encountered in the above grids (Fig. 5.3).

These data are taken from volumes of rock (i.e., core plugs) that are significantly larger than the grid blocks or individual laminae within the laminasets. Assuming that the selected core plugs are reasonably uniform (the criteria on which such samples are conventionally selected), the curves should also be applicable to smaller volumes of homogeneous rock. Until the development of small scale capillary pressure devices that would allow the capillary pressures of lamina to be directly measured, there is no means of validating this assumption. Lamina capillary pressure data, together with porosity and permeability data, would show less scatter than is traditionally seen with core plugs if smaller scale devices were available.

The shape and spread of the curves, is consistent with those expected from reasonably well sorted, fine grained material. The similar shape to the curves suggest the pore distribution is consistent over a range of permeabilities. Although these curves are not imbibition curves, they are thought to be reasonable approximations, and their use in models is thought to represent the appropriate physics. Further discussion of Rannoch drainage and imbibition curves can be found in Appendix IV. At the present time there are insufficient imbibition data for our purposes. In future studies, however, a more systematic collection of imbibition data is called for.

Figure 5.3: Capillary pressure curves for the Rannoch Formation from Thistle A33 and the family of curves selected for this study.

5.3.2 Relative permeability

Power-law relationships between relative permeabilities to oil $\left(\mathrm{k}_{\mathrm{rO}}\right)$ and water $\left(\mathrm{k}_{\mathrm{rw}}\right)$ with water saturation (p. 113 in Archer and Wall, 1986; Muggeridge, 1990) have been adapted to the varying connate water saturations (S_{wc}) indicated by the capillary pressure curves (Fig. 5.4). The residual oil saturation (S_{or}) has been assumed constant (25%). No experimental relative permeability data have been used in this study. The power-law relationships are traditionally used to provide relative permeability curves in Rannoch field simulations (Thomas and Bibby, 1991) and this practice is followed here (refer to Appendix V). The issue of wettability has, by selecting numerical curves of a moderately water-wet character, been avoided in this study.

$\cdots \cdots \cdots$	$\mathrm{krw}=0.45\left(\mathrm{Sw}{ }^{\wedge} 2\right)$
	$\mathrm{kro}=(1-\mathrm{Sw})^{\wedge} 3$

Figure 5.4: Power-law relative permeability curves and the family of relative permeability relationships used in this study, generated by shifting connate water saturations in accordance with the capillary pressure curves. Constant end-point $\mathbf{k}_{\mathrm{or}}=0.8$ assumed.

5.3.3 Recovery and Water Cut Performance

To determine the two-phase flow characteristics of the Rannoch laminasets, detailed simulations were carried out on each of the permeability fields (Figs. 4.2 and 4.8) using the ECLIPSE (ECL, 1988) black oil simulator. The measured permeabilities (a single
profile for grids A, C and WB repeated to form the layered structure and grid B in entirety) were assigned to $2 \times 2 \mathrm{~mm}$ or $3 \times 3 \mathrm{~mm}$ grid blocks, preserving the scale and geometry of the measurement grids. Each grid block was considered isotropic at this scale $\left(\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=\mathrm{k}_{\mathrm{Z}}\right)$ and initially flooded parallel to the bedding (i.e., x -direction). Each subject grid (laminaset) was embedded in identically-constructed blocks before and after (with reference to the flooding direction). These two blocks acted as "buffers" between the subject block and the injection/production blocks (Fig. 5.5). These latter blocks were ten times the length of the subject block to ensure calculation of consistent pseudofunctions (Kossack et al., 1990). An example ECLIPSE input file (EXFGA003.DATA) is included in Appendix VIII.

BLOCK OF INTEREST

Figure 5.5: Arrangements of cells in subfacies model simulations

In each case, the 2-D (x, z) simulations were characterised a favourable mobility ratio (M $=0.63)$ waterflood with constant frontal advance rate $(0.24 \mathrm{~m} /$ day $)$. The constant advance rate was maintained by altering the y-dimension of the various models to maintain a constant pore cross-sectional area. These constraints are thought to represent "typical" North Sea Rannoch conditions. Recovery from the subject block was monitored as a function of grid volumes throughput for the three HCS subfacies (Fig.5.6) and the wavy bedded facies (Fig. 5.7). For these two responses, the high contrast lamination and the wavy bedded subfacies showed considerable anisotropy while the other two subfacies were nearly isotropic. Whilst the ultimate recovery is best for the more uniform grid (grid C) the pore volumes throughput required to achieve that recovery is significantly higher than in the more structured fields.

Figure 5.6: Recovery performance for waterflood simulation in HCS subfacies, Rannoch Formation. Bed parallel (horizontal) and bed normal (vertical) direction shown. Recovery is fraction of pore volume within the subject grid; pore volume is the volume injected in units of subject grid pore volumes. Expanded scale of plots on the left allow the early time behaviour to be more clearly seen.

Figure 5.7: Recovery for wavy bedded facies in bed parallel (horizontal) and bed normal (vertical) directions. Recovery as fraction of subject grid pore volume against subject grid pore volumes injected.

In the floods shown above, the porosity in the models was held constant at 15%. To examine the implication of this simplification, the recovery of total oil-in-place at one pore volume throughput was compared with that for a model in which porosity varied as a function of permeability using the relationship in Fig. 5.2. The difference between the horizontal and vertical recoveries in the high mica lamination (Fine Grid A) is reduced in the variable porosity model. The absolute differences in recovery are small (4-11\%) but not insignificant. The anisotropy is unaffected. In all subsequent simulations discussed in this study, constant porosity has been assumed. While this does not impact the flow conclusions, the simplification needs bearing in mind in any quantification of remaining hydrocarbons.

5.3.4 Pseudo Relative Permeabilities and Capillary Pressures

The pseudofunctions were determined using the Kyte and Berry (1975) equations in the ECLIPSE option PSEUDO. Back substitution of the rock curves in a coarse grid with pseudo permeabilities, pseudo relative permeabilities, and pseudo capillary pressures gave the same flow performance as the detailed grid (Fig. 5.8). In contrast, substitution
by the arithmetic average and the corresponding rock capillary and relative permeability curves did not, however, produce the same flow performance.

Fine grid A: Horizontal flood

Figure 5.8: Comparison of detailed layered model performance (using permeability-determined capillary pressure and relative permeability curves), uniform model with "pseudos", and uniform model with arithmetic average permeability and corresponding capillary pressure and relative permeability curves. High contrast lamination.

To determine pseudofunctions for flow in the vertical (z) direction, the permeability fields were rotated and flooded normal to the laminae. The gravitational field would not thus be correctly represented, however, its effects at this scale are considered negligible. The performance of the pseudos and the detailed simulation in comparison with the harmonic average permeability again showed that the latter fails to match the performance of the detailed simulations (Fig. 5.9).

Figure 5.10 shows the horizontal and vertical pseudos for each laminaset. The geopseudos for the laminasets are also listed in Appendix IX. The least and most variable laminasets (low contrast mica lamination $\mathrm{Cv}=0.26$, and ripple lamination, 1.26) behave isotropically. The high contrast mica lamination and WB lamination ($\mathrm{Cv}^{\prime} \mathrm{s}=1.06$ and 0.6 , respectively) are, in comparison, strongly anisotropic.

Fine grid A: Vertical flood

Figure 5.9: Comparison of detailed layered model with uniform model. High contrast lamination; vertical waterflood direction

The anisotropy in the anisotropic laminasets increase as the water saturation increases. At a certain saturation, the flow of oil decreases almost to zero whilst a reasonable relative permeability to water continues. The saturation cannot increase as the oil is trapped by the laminated structure. The end point $\mathrm{k}_{\text {or }}$ is reduced and $\mathrm{S}_{\text {or }}$ increased.

In the pseudos generated by the ECLIPSE option PSEUDO (Fig. 5.10) the average absolute permeability is always determined as the arithmetic average. This is not consistent with the Kyte and Berry (1975) procedure which called for the harmonic average for layer series flow. The effective oil permeability is given by the $\mathrm{kk}_{\text {ro }}$ product and is required in the Darcy two-phase flow equation. The anisotropy can be associated with the absolute permeability (i.e., by the $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio) or by the anisotropic relative permeabilities. Ideally both single-phase and two-phase anisotropies should be captured. This requires a pseudoisation technique that takes into account the orientation and nature of the permeability field. In this work, the anisotropy is captured by the pseudo relative permeabilities and not by the absolute $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio. We have seen earlier how sensitive the latter is to the scale of measurement.

Fine Grid A: HIGH CONTRAST LAMINATION

Fine Grid B: RIPPLE LAMINATED

Fine Grid C: LOW CONTRAST LAMINATION

Figure 5.10a: Bed-normal (vertical) and bed-parallel (horizontal) pseudo relative permeability and capillary pressure curves for Rannoch Formation HCS/SCS laminasets.

Figure 5.10b: Bed-normal (vertical) and bed-parallel (horizontal) pseudo relative permeability and capillary pressure curves for Rannoch Formation wavy bedded laminaset

The pseudo capillary pressure is derived as a pore volume weighted average of the input Pc curves (pseudo Pc is determined as the differences between the pore volume weighted block phase pressures). It is doubtful that the experimental Pc curves in orthogonal directions would look like this. A stepped curve as each lower permeability laminae is flooded in the vertical direction could be expected. High permeability laminae downstream (from the entrance face) of a low permeability lamina would be shielded until the injection pressure had exceeded the threshold of the low permeability lamina.

In the horizontal direction all the laminae with the largest pore throats would be accessible and flooded first. Differences between the experimental curves due to sub-plug scale heterogeneity would be manifest using different injection faces in a laminated sample. More work is obviously needed on the pseudoisation of capillary pressure. What is the appropriate physics during the waterflood that should be captured in the average property of a large grid block? In this study, however, we continue with the pore volume weighted pseudo Pc curves, having flagged some concerns over their physical meaning.

Contrasting the horizontal flow performance of the laminasets (Fig. 5.11), we can see that the most efficient recovery (with the combined benefit of viscous and capillary forces) is achieved in the high contrast mica lamination. The poorest recovery occurs in the ripple laminaset where oil is trapped in the isolated high permeability zones. Good recovery is achieved in the isotropic low contrast mica lamination, although for greater throughput of water than required in the high contrast lamination.

Figure 5.11: Horizontal flow performance of three Rannoch Formation laminasets.

At the pore scale, the trapping mechanism is represented schematically in Fig. 5.12. Significant trapping of oil in the centre of the large pores occurs in the high permeability, high porosity laminae, when impeded by smaller pores at residual oil saturation (in a water-wet reservoir). This occurs in vertical flow through horizontally laminated rocks, when isolated high permeability zones (e.g., ripples) are present or in cross-laminated systems under horizontal flow (Van der Graaf and Ealey, 1989).

The trapping at the lamina-scale is the reason behind the differences seen in Fig. 5.11. This is, therefore, a different capillary-trapping mechanism from that which might occur
in individual or dead-end pores. Oil trapped in this semi-continuous state (i.e., as a continuous phase within laminae) is potentially more significant than data from laboratory studies on "homogeneous" plugs, or whole core samples, might suggest.

Figure 5.12: Schematic representation of capillary trapping at the laminascale. The oil phase is trapped (by capillary forces) in the large pores in a waterwet system.

The pseudos for the Rannoch laminasets represent the effective two-phase flow properties for cm -scale grid blocks. The vertical/horizontal anisotropy is captured by different pseudos. These laminasets have been shown to be both statistically and
geologically representative of the cm -scale variability seen within the Rannoch Formation. The Rannoch two-phase properties are effectively characterised at this scale. The cm-scale grid blocks (i.e., four different laminasets) can be used in larger scale simulations, the pseudos capturing both the intrablock variability and capillary flow effects. This simulation of the representative laminasets therefore represents the first stage of a geologically-reasonable, stratal element based, scale-up procedure that has been called the geopseudo method. The geopseudo method is defined as the use of pseudoproperties obtained at a hierarchy of geologically-representative, stratal element scales. The mm-scale simulation is necessary to capture the significant lamina variability and capillary pressure effects of the Rannoch Formation. Simulations at larger scale cannot adequately capture either the inter-lamina variability or the flow physics of waterfloods in laminated sediments. In the next chapter, we examine the scale-up of these laminaset elements to the reservoir scale.

These mm-scale simulations could be replaced with carefully acquired experimental data on blocks the same scale as the laminaset grids (i.e., representative heterogeneous samples). These experiments, however, may be expensive and beyond the capabilities of many laboratories. The geopsuedo simulations, therefore, potentially provide an error free, well controlled, numerical alternative to establishing the petrophysical properties of laminated sediments. The accuracy of these simulations will, however, depend on the quality of input data. Whilst the probe permeameter is a significant development in the characterisation of lamina, further smal scale measurement devices are required for porosity, capillary pressure and relative permeability. In addition, new pseudoisation techniques are needed to adequately describe the anisotropy of relative permeability and capillary pressure in laminated sediments for a variety of boundary conditions.

5.4 Rannoch Laminaset Two-phase Properties

The effective two-phase properties of the Rannoch laminasets have been determined by a series of numerical experiments. The low contrast laminaset showed the characteristic performance of a uniform rock. The suggests that the variability described $(\mathrm{Cv}=0.26)$ is not significant. The rippled laminaset, with high variability $(C v=1.28)$, showed isotropic properties dominated by the poor quality matrix leading to a high S_{or}. The high contrast laminaset and WB laminaset ($\mathrm{Cv}=1.02$ and 0.6) showed a high degree of anisotropy.

Three of the laminasets described occur within a metre interval in the Rannoch (fine grids A, B and C in Fig. 4.10). The imposition of a single relative permeability function, Pc function and $S_{\text {or }}$ for the Rannoch Formation, when they can be seen to vary with the geological structure at such small scales, is clearly a gross oversimplification. In the next chapter the "averaging" of these results is determined by scaling-up these laminaset pseudos for metre-scale grid blocks. Clearly relative permeability curves cannot be averaged but have to be scaled-up as a function of the geology.

CHAPTER 6

SCALE-UP OF LAMINASET PROPERTIES FOR CROSS-SECTIONAL WELL MODELS

The effective properties of centimetre scale reservoir elements for the Rannoch Formation has been determined in the last chapter. In cross-sectional well models in practical field simulations, however, the grid blocks are metre to decametre scale. A further scale-up and pseudoisation stage is needed to get the effective properties of these larger grid blocks. The scale-up from laminaset to the bed scale is discussed in this chapter.

6.1 Stratal Elements and the Geopseudo Concept

As discussed in Chapter 2, the natural building blocks of sedimentary reservoirs are widely recognised to be the stratal elements: lamina, laminaset, bed and bedset (Fig. 2.2). The scale of these elements is not universally defined by geologists. Lamina, for example, are commonly defined as elements less than 1 cm thick (Pettijohn et al, 1972, p.100), however, some consider elements up to 25 cm to be laminae (Campbell, 1967). There is, however, general agreement that laminae should be texturally uniform. A better limiting length scale for the purposes of reservoir characterisation would be 5 cm : laminae would then be capillary sensitive and beds not (Fig. 5.1).

In the Rannoch laminasets, there are certainly laminae that are uniform in permeability (with inferred textural uniformity) and sufficient contrasts exist between laminae to induce capillary effects at the low rates expected away from the production/injection wells. The flow effects of these laminasets are appropriately captured (Chapter 5) by numerical simulation.

In the stratal element concept of sequence stratigraphy, the laminasets aggregate in specific stacking arrangements within sand bodies. Therefore, the numerical scale-up needs to represent the aggregation of stratal elements. Simply enlarging the dimensions of the grid blocks is wholly inappropriate as it reduces the variability, induces longer correlation lengths (particularly in the vertical) and reduces the strength of the capillary pressure gradients. The correct scale-up procedure is to aggregate the cm -scale laminaset blocks (or their pseudo flow properties) in a realistic geological stacking pattern. The pseudoisation, or determination of effective flow properties, at the hierarchical scale of the stratal elements is the geopseudo approach.

6.2 Geopseudos for the Laminaset Elements

The estimation of average porosities, absolute permeabilities, pseudo relative permeabilities and pseudo capillary pressures for the represenative Rannoch laminaset elements at the centimetre scale was discussed in Chapter 5. These pseudos (Appendix IX) are the pseudo properties for the laminaset elements at this scale. The geopseudos represent the effective flow properties of a given volume ($8 \times 8 \times 8 \mathrm{~cm}$) of the representative laminasets. If laminaset properties are required for significantly larger gridblocks, the pseudo volume must also incorporate additional laminae. Pseudos are linked to specific grid block dimensions. The laminaset block sizes are appropriate to capture lamina-driven capillary effects. If the sediment is homogeneous (i.e., $\mathrm{Cv}<0.5$) at this scale, lamina effects are likely to be less significant. Beds, therefore, in the absence of significant lamination, will tend to have isotropic pseudo properties for cubic cells.

6.3 Geological Model for the Arrangement of Laminasets Within the Rannoch Formation

There is no outcrop of the Rannoch Formation. The laminaset and bed geometries are, therefore, not directly measurable. Outcrop analogues can, however, be used to provide laminaset and bed geometries. For the Rannoch Formation, the Oxfordian Bencliff Grit on the Dorset Coast and the Upper Cretaceous Kennilworth member in Utah have been proposed as suitable analogues. Data have been collected from the former and compared with other workers' data from the latter (discussed further in Appendix VIII). From these data, the average dimensions of HCS laminaset geometries has been determined. In the outcrop data, most of the laminasets are of similar character. The lensoid groupings of laminae are bounded by laminaset bounding surfaces.

In any single profile or core section, it is not always possible to distinguish between the order of bounding surfaces. Some bounding surfaces can have the same laminasets above and below (i.e., first order). Other bounding surfaces clearly separate different laminasets (i.e., second order). In core, however, where the bounding surface cannot be examined over the entire length it is impossible to be rigorous and apply a more sophisticated hierarchy of bounding surfaces consistently. In this respect, the matching of core and analogue data is not as comprehensive as the sedimentologist might be seeking.

In this work, groupings of different laminasets in the Rannoch are termed beds, consistent with the spirit of the stratal terminology. For this reason, the laminasets in the outcrops may be different in scale from the beds in the Rannoch. Whilst more work is needed, relating the petrophysical patterns between outcrop and the Rannoch, the pervasive nature of the laminasets in the outcrop support the concept of aggregation of stratal elements in the shallow marine environment.

The Rannoch laminasets described in previous chapters are grouped in beds. When the beds are not tabular, it is common to refer to these scale elements as bedforms. The
bedform reflects the depositional character of the sea bed which in the case of HCS, was undulatory. A simplified representation of a 2-D section through an HCS bedform is shown in Fig. 6.1a (derived from Fig. 3.5). For the simulation at the HCS bedform scale, $8 \times 8 \mathrm{~cm}$ grid blocks were assigned laminaset geopseudos in the arrangement shown in Fig. 5.1b. An example ECLIPSE input file for bedform scale simulation is included in Appendix VIII.

Figure 6.1a: Two-dimensional HCS bedform model showing internal arrangement of laminaset styles: ripple, high contrast and low contrast.

Figure 6.1b: Two-dimensional gridblock representation of HCS bedform model shown in Fig. 6.1a, embedded in similar bedforms.

The modelled HCS bedform geometry (length, 4.8 m ; height, 0.72 m ; aspect ratio 0.15) is larger than the laminaset geometry measured at outcrop $(2.5,0.2,0.08 \mathrm{~m})$. In this study, a need for orthogonal grids and cubic blocks presented great limitations on the possible modelled bedform geometries. The discretised bounding surfaces in the model are a coarse simplification of the curvilinear surfaces found in nature. Further work and improved modelling techniques for the representation of such surfaces is needed before the full sensitivity to bed geometry can be explored. Providing the next scale of homogenisation or pseudoisation is significantly above the largest dimensions discussed above (4.8 m horizontally and 0.72 m vertically) this simplification is not thought to be too critical.

The HCS bedform is considered to be relatively isotropic in plan view (Harms et al., 1975; Sun, 1990). Generated by dominantly oscillatory currents, the circular shape of hummocks and swales reflects the lack of a strong unidirectional current. This simplified 2-D section is, therefore, appropriate for orthogonal directions in the simulator. This greatly simplifies the bedform modelling as a full 3-D model is not required. This simplification would not be appropriate for a more directional bedform (e.g., trough cross-bedding).

6.4 Geopseudos for Bedset Elements

The bedform grid block arrangement shown in Fig. 6.1b is stacked in a regular pattern to represent the bedset elements (i.e., regular arrangement of beds or bedforms), for simulation at the metre-scale. The bedform dimensions in this model approximate those suggested by the core and outcrop data described above. An example ECLIPSE input file (HCS2D010.DATA) is given in Appendix X. Other geometries were evaluated (by altering the grid block size while maintaining the arrangement of subfacies) but the model appears reasonably insensitive to small changes in geometry. The effect of the bedform structure, when aggregated (Fig. 6.2), is to effectively layer the reservoir (relative to a
uniform medium). The bedset pseudos (Fig. 6.3) reflect this anisotropy and give the appropriate two-phase permeabilities for flow parallel with and normal to the bedding direction. The anisotropy arises from 1) the bedform geometry and 2) the two-phase flow properties for the laminaset elements.

Figure 6.2: Anisotropic flow performance in Rannoch Formation HCS bedform model

Figure 6.3: Bed-normal (vertical) and bed-parallel (horizontal) pseudo relative permeability and capillary pressure curves for the Rannoch Formation HCS bedsets.

Arithmetic or harmonic averages and the corresponding single rock curves (i.e., ignoring the effects of the lamination, but maintaining the geometry) do not show a similar behaviour for two-phase flow through the model (Fig. 6.4). At 2.5 pore volumes injected, recovery is underestimated by 3% in the horizontal direction and overestimated by 10% in the vertical direction. Water breakthrough in the horizontal flood direction is slightly earlier in the simplified models.

Figure 6.4: Comparison of recovery performance for the geopseudo (i.e., with laminaset pseudos) HCS bedform model with uniform models using arithmetic average (horizontal waterflood) or harmonic average (vertical) and single rock capillary pressure curve.

To generate pseudos for SCS, we looked at two variants of the above HCS model without the rippled subfacies. In the "modified HCS" case, the rippled subfacies was replaced by high contrast lamination (Fig. 6.5). A second variant, the "eroded bedform" case, was generated by reducing the size of the bedforms by "eroding" part of the high contrast lamination. The performance of these two subfacies and bedform arrangements is contrasted in Fig. 6.5.

SCS 1: Modified
HCS bedform

SCS 2: Eroded bedform

Figure 6.5: Flow through SCS stacked bedforms; modified HCS bedform and eroded SCS bedform.

Figure 6.6: Flow performance for modified HCS and eroded bedform models of amalgamated SCS.

Recovery versus pore volume injected show similar performance for each case (and also to the HCS model, Fig. 6.3). Horizontal recovery is slightly accelerated in the eroded bedform model. Water cut performance is greatly accelerated in the eroded bedform model and this is attributable to the reduced tortuosity over the modified HCS bedform (Fig. 6.6) and represented by a higher pseudo absolute permeability (i.e., the arithmetic average in ECLIPSE's PSEUDO option). The differences in flow perfomance are captured in the SCS geopseudos (Fig. 6.7). These are similar to the HCS geopseudo (Fig. 6.3) and suggest an average HCS/SCS geopseudo could be adopted for these facies. Bedform geopseudo properties are listed in Appendix IX.

Figure 6.7: Geopseudos for modified HCS, and eroded bedform, models for amalgamated SCS bedforms.

A third representation of SCS, where only the low contrast lamination is preserved, can be envisaged. This would require the appropriate subfacies geopseudo (low mica contrast lamination, Fig. 5.10) to be pseudoised (for numerical effects only) at the bedform scale. This latter geopseudo is significantly different (isotropic) when compared with other SCS cases (anisotropic). With these three SCS geopseudos, the flow performance across the transition from HCS to amalgamated SCS can be correctly represented in the cross-sectional well model.

6.5 Discussion of Bed Scale Simulations

In the above bedform model, many assumptions and simplifications have had to be made, due to the lack of Rannoch outcrop, differences between average shoreface laminaset and Rannoch assumed bedform geometries, model bedform dimensions, the requirement for orthogonal grid blocks, and the very regular stacking pattern resulting in a very simplified geological model. This variability could be captured by further stochastic simulations, and assigning variable geopseudos to a regular grid block framework. These pseudos could represent subtle variation in bedform geometry or laminaset patterns. In outcrop, stratal elements show variability (albeit only in the range of metres) and lengths and thicknesses that tend to be log-normally distributed. The simplistic models studied above tend to show limited sensitivity in the derived geopseudos to significant changes in laminaset arrangement. This is encouraging, because more realistic geological models will be difficult to simulate. Further work, however is needed to fully understand the flow sensitivity to bedform geometry.

The bounding surfaces have effectively been ignored in the above bedform models. The permeability reduction associated with these features in the Rannoch Formation was found to be insignificant (Chapter 4). In other formations, however, this may not be the case. Correct representation of these features, however, in relatively coarse models will require further study.

The regular bedform patterns observed in the permeability profiles in certain Rannoch intervals (Fig. 4.11b) suggest that more tabular beds may develop in certain Rannoch intervals. Tabular beds are a feature of the Kennilworth shorface unit (Brenchley et al., 1992) and may also be present in the Rannoch. Tabular beds will further emphasise the layered nature of the Rannoch Formation indicated by the stacked bedform model presented above.

CHAPTER 7

CROSS-SECTIONAL SIMULATION STUDY OF THE RANNOCH

The objective of this chapter is to apply the geopseudos for the HCS, SCS and WB bedforms in a field scale cross-sectional model. The upscaling approach that is presented in this study involves numerical simulation at additional smaller scales. This is potentially time consuming and, therefore, engineers need to know the impact of the small scale geology in the field scale models. This understanding will allow field simulation practitioners to assess the relative importance of the small scale petrophysics to waterflood field performance.

The objective in this chapter is to apply the upscaling approach discussed previously in this work - the geopseudo method - to the large scale modelling of waterflooding in the Rannoch in the three fields. The petrophysical data discussed in previous chapters comes from the Thistle and Statfjord Fields. In this section the effective properties are applied in those fields and another where the Rannoch is depositionaly the same but has petrophysical (poroperm) differences. In this way, the transportability of the geopseudo method can be appraised.

The geopseudo properties generated in the previous chapter have been generated for a specific suite of input parameters:
> - an absolute permeability and related range of capillary curves
> - an assumed wettability
> - a single grid block dimension

For the pseudo properties to be transported for a different range of conditions, careful consideration to each of these parameters must be given. Petrophysical differences, most
importantly differences in the level and contrast of lamina permeabilities, will result in different capillary effects. In this study, these effects have not been systematically determined for the various laminaset and bedform geometries. This work will need to be done in any further field-specific studies. Whilst wettability differences may exist between fields, this work assumes these to be constant in the studied fields in the lack of any data to suggest otherwise. The fields studied require different sized grid blocks in the cross-sectional models, because of significant size differences between fields. These, numerical, differences have been accounted for in this work.

The cross-sectional well models aim to show how the use of geologically-realistic relative permeability curves can give significantly different water cut and recovery predictions over commonly used rock curves. Relative permeability curves are the measure of the two-phase flow properties of rock and are therefore logically dependent on geological structure. This structure needs to be captured, either by numerical simulation following the method presented here, or by careful experimental work. The selection of the correct relative permeability curve is a crucial factor in building a geologically-realistic reservoir simulation model.

This study attempts to show, however, that deterministic modelling at the natural scale lengths present in sediments (geopseudo method) gives a more geologically-realistic solution to the overall field performance. The construction of a more geologically appropriate simulation model from such an approach does, of course, require additional levels of data and simulation calculation. These additional data come from (a) the detailed reservoir description provided by the probe permeameter and (b) ancillary knowledge of the sedimentary architecture. The predictions of such a model should, therefore, be treated with more confidence by both geoscientists and engineers alike.

7.1 Variability of the Rannoch in North Sea Fields

The Rannoch Formation is an important oil bearing reservoir unit in many North Sea fields. In this study, three fields across the basin where the Rannoch is a major producing interval have been studied, namely, Cormorant, Thistle and Statfjord, the locations of which are shown in Fig. 7.1.

Figure 7.1: Location map of North Sea Rannoch-producing fields discussed in this chapter

There is a regional improvement in Rannoch reservoir quality from Cormorant in the west to Statfjord in the east as indicated by the poroperm differences shown in Fig. 7.2. This improvement arises as a result of reduced compaction due to shallower burial and increased overpressuring towards the axis of the basin. The depositional setting of the Rannoch is thought to be reasonably consistent in the three fields. The Rannoch shoreface is a regionally mappable, continuous unit (Mitchener et al., 1992) overlain by
the Etive barrier system. The Broom Formation which underlies the Rannoch, however, is part of a different depositional system (Mitchener et al., 1992) and shows a dramatic thining from west to east.

7.2 Cross-Sectional Well Modelling in Thistle Field (Operator: BP Exploration)

To examine the waterflooding at the interwell (megascopic; Haldorsen, 1986) scale, a 2D cross sectional model based on a "typical producer" well in Thistle Field (Bayat and Tehrani, 1985) was constructed. Production data from Thistle A33 were modelled in a simple producer-injector configuration (Figs. 7.3 and 7.4).

Figure 7.3: Sketch map of the Thistle Field showing locations of wells and modelled cross section ($a-a^{\prime}$) which extends 585 m from well A33 towards A31. Scale only approximate.

This arrangement had also been selected for a cross-sectional well model in an internal study by the field operator. All the main reservoir, numerical and scheduling data (e.g., grid, formation petrophysical properties and completions) in the operator's study have
been replicated in this study. Only the relative permeability and capillary pressure curves were changed, the rock curves being substituted with the bedform geopseudos in our work. The traditional modelling approach of the operator follows standard industry practice for the Rannoch Formation (Thomas and Bibby, 1991); this principally involves altering the transmissibility multipliers between gridblocks to match the watercut performance.

The ECLIPSE input file for the geopseudo model (A33GEOP2.DATA) is included in Appendix VIII. A $48 \times 1 \times 42$ grid model (2016 cells) was built with a Rannoch block size of 12.2 m (40 feet) in the x-direction and 1.5 m (5 feet) in the z -direction (Fig. 7.4). The grid block size is significantly larger than the dimensions of the stratal elements discussed in the previous chapter. "Core-derived" permeability values were assigned as follows (Table 7.1):

Layer	Unit	Permeability (mD)
1	Upper Etive	1500
2	Lower Etive	3000
$3-12$	Upper Rannoch	270
$13-22$	Mid Rannoch	200
$23-32$	Mid Rannoch	50

Table 7.1: Thistle model layer permeabilities. Layers 1 \& 2 are 10.7m (35 feet) in the \mathbf{z}-direction.

Figure 7.4: Thistle Field cross-sectional well model.

Traditional engineering practice is to employ rock relative permeabilities at this scale since such a grid is usually considered as being sufficiently "fine". It is likely, however, given the size of the gridblocks used relative to the geology, that some form of pseudo curves should be used. Also, such coarse models, are usually insensitive to capillary pressure; changing Pc may alter the in-place oil saturations, but will not impact flow. Ringrose et al., (1991) have shown that 5 feet is considerably above the scale length at which Pc impacts flow (Fig. 5.1). Therefore, models that use rock relative permeabilities and (relatively) large grid blocks are inappropriate to the length scales at which some significant heterogeneities occur in the Rannoch reservoir.

In the Thistle Field, the Etive Formation overlying the Rannoch is thought to be largely watered-out in the central part of the field due to significant production. This is consistent with observations in other fields (e.g., Dunlin, Braithwaite et al., 1989). A residual oil saturation of 25% was used for all layers and the model initialised, therefore, with the Etive and top 10 feet of the Rannoch flooded (i.e., $\mathrm{Sw}=75 \%$ for layers $1-4$). Injection in all layers (by voidage replacement) controlled by production through the lower 75\% of the Rannoch (layers 13-42) was modelled.

The performance of the two modelling approaches - traditional and geopseudo - is compared in Fig. 7.5. With the reduced transmissibility data, the model is unable to match the field production rate. However, by removing the imposed transmissibility multipliers and including the appropriate bedform geopseudos, whilst making no other changes, improved matches to production and water cuts were achieved.

In the geopseudo model, the permeabilities in the top 3 m of the Rannoch were reduced from 270 to 150 mD , recognising the inadequate sampling by core plugs and reduced probe measurements. This was the case in well Thistle A31 (Fig. 4.11c), however, the same critical interval in Thistle A33 had been "preserved" for special core analysis and no routine core analysis carried out.

Figure 7.5: Comparisons of model water cuts and production rates. Differences at 250 days are due to a scale treatment which was not explicitly modelled.

A comparison was also made with the rock relative permeability curves, correctly scaled for numerical effects (Fig. 7.6) but without the geologically-induced anisotropy. The water-cut match of the uniform scaled-up model is also bettered by the geopseudo model (Fig. 7.7).

Figure 7.6: Numerically scaled kro rock curves suitable for a 8 cm square grid cell and for horizontally and vertical directions in a rectangular ($4.8 \times 1.6 \mathrm{~m}$) grid block.

Figure 7.7: Comparison of water cut performance for correctly scaled-up rock curves.

Whilst the geopseudo model is seen to be an improvement, in that water cut and production rates can be more easily matched with the geological description included, there is still room for improvement in the early (up to 250 days) water cut and rate
behaviour. The distribution of water saturations predicted by the geopseudo model can be seen in Fig. 7.8.

Figure 7.8: Thistle Field cross sectional model saturation distributions; top, after 290 days; lower, after 1472 days.

In this model, the oil displaced from the Rannoch into the Etive resaturates the latter with time in the region of the producing well. This is not thought to happen in reality as the oil moves updip away from the producing well location. This trapping of oil in the Etive leads to spurious reduced water cuts late in the model life. The geopseudo model also suggests that the Rannoch will be relatively well drained, compared with the model where transmissibility was reduced. This will significantly impact plans for future infill drilling. The geopseudo model suggests that the Rannoch is being drained through the Etive.

7.3 Transportability of Geopseudos

For the Rannoch geopseudos generated in this study to be widely useful, some degree of transportability between fields within the same depositional unit needs to be demonstrated. This is also important for the broader application of the geopseudo method. The sedimentary structures at the small scale (i.e., HCS, SCS, WB) have been recognised in the Rannoch from several fields. The original geological laminasets measured in the Rannoch HCS and SCS (Fig. 4.10) were taken from Statfjord Field core. That they were found to be useful in the Thistle Field is initially encouraging. In the following sections, we examine the performance of geopseudos in the Statfjord and Cormorant Fields.

The flow parameters of the three Rannoch bedforms (i.e., geopseudo relative permeability) are characteristic of a geological structure for a certain scale of simulator grid block. They not only incorporate the effect of the small scale sedimentary structure and the viscous/capillary/gravity force balance, but also the effects of numerical dispersion. Absolute permeability, porosity and capillary pressure will vary as a function of the mean pore throat size since they are sensitive to compaction, diagenesis, etc. Providing variations in the pore sizes can be quantified, it should be possible to transport the Rannoch geopseudos from field to field allowing for changes in grid block scale. Regional compaction trends are present in the Rannoch Fields (Fig. 7.2) and the
performance of the geopseudos in matching field data in the Statfjord and Cormorant Fields is evaluated below.

7.3.1 Statfjord Field (Operator: Statoil)

The Statfjord Field (Kirk, 1980; Buza and Unneberg, 1987; Roberts et al., 1987) lies 18 km south-east of the Thistle Field and straddles the UK/Norway median line (Fig. 7.1). The north-westerly flank of the NE-SW tilted fault block is structurally simple as shown in Fig. 7.9. This flank of the field, provides an ideal area for examining the component of the waterflood performance which is primarily depositionally controlled. In this area of the field, the movement of the waterflood front between down dip water injector and up dip oil producer has been monitored by observation wells located in the area between them (Fig. 7.8).

Figure 7.9: Simplified sketch map of the Statfjord Field. Scale approximate. Location of studied well (B9) shown and line of section $b-b$ '.

These observation wells are the water injection wells to the underlying Statfjord Formation (Triassic), which can be periodically used for monitoring water saturations in the Rannoch-Etive section by cased hole electric logs. The western flank of Statfjord, therefore, provides an excellent opportunity for the testing of models of the Etive/Rannoch displacement mechanism.

Figure 7.10: Simplified Statfjord cross-section ($b-b$ ' in Fig. 7.9) showing geometry of wells on the w. flank

The 2-D cross-sectional model based on the section in Fig. 7.10 is shown in Fig. 7.11. The model of the western flank of Statfjord Field has $60 \times 20 \times 20$ cells in the x, y and z directions. Rannoch grid blocks are $4.6 \times 47 \mathrm{~m}(15 \times 155 f t)$ and are therefore much larger than the Thistle model grid blocks. The pseudos used in this model, therefore, have to be scaled to account for numerical effects.

The petrophysical properties assigned to the model layers are shown in Table 7.2. Note that (a) the differences in water- and oil-leg values follow the operator's model and represent reduced quality of the aquifer and (b) the plug data in Fig. 7.2 comes from water injection well drilled and cored in the aquifer.

The pseudo capillary pressure and relative permeability for the various bed types (HCS, SCS and WB) have to be determined for the larger scale grid blocks (Fig. 7.12). The anisotropy is enhanced as the scale of grid block increases. This is consistent with the
observed scale dependency of $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ (Fig. 4.18). It is noticeable that the permeabilities within the field are significantly higher than those for which the geopseudos were determined. It is expected, therefore, that the Swc will be too high in the Statfjord oil zone. Obviously the input rock Pc curves can be changed, however, in this initial study we wish to compare the performance of the same geopseudos, accounting only for grid block scale changes. The input file for the Statfjord Field simulations (STAT001.DATA) can be found in Appendix X.

Layer	Unit	Oil column		Water column	
		Por. (\%)	Perm. (mD)	Por. (\%)	Perm. (mD)
1	Etive	28	2654	24	454
2,3	Etive	31	6766	26	831
4,5,6	Etive	30	4548	26	736
7	Rannoch	28	590	27	419
8	Rannoch	30	1551	27	685
9,10,11	Rannoch	32	2446	27	384
12	Rannoch	33	3330	28	659
13-17	Rannoch	30	1551	27	685
18	Rannoch	28	1259	23	106
19, 20	Rannoch	22	36	21	25

Table 7.2: Statford model layer permeabilities. (Refer to Fig. 7.11)

Figure 7.11: Statfjord cross-sectional well model. (Refer to Fig. 7.10 for location of section).

Figure 7.12: Bedset geopseudos for large ($4.6 \times 47 \mathrm{~m}, 15 \times 155 \mathrm{ft}$) grid blocks of Rannoch bedsets: a) Wavy bedded (WB); b) swaley cross stratification (SCS); and c) hummocky cross stratification (HCS). The pseudo capillary pressure curves for HCS and SCS suggest anisotropic capillary pressure curves. This is not nescessarily physical but a possible function of pseudo block aspect ratio. Pseudo capillary pressure curves require additional work but at this scale the effects of Pc in the model are negligible.

The model was controlled by production total liquid rate. Water injection rates were available for the down dip well but as these exceeded the production rate and if matched would, therefore, lead to an unrealistic overpressuring of the reservoir, the injection rate was set to voidage replacement. Water cut at the production well following breakthrough was compared (Fig. 7.13).

Figure 7.13: Statfjord Field model water cut performance

In this model the water cut rises faster than the field data, following breakthrough. The model saturation profiles at the location of the observation well have been matched with a series of time-lapse GST (gamma spectroscopy) logs (Fig. 7.14). The GST is able to determine, by radioactive methods, the water saturation behind casing.

As expected the connate water saturations (S_{wc}) measured by the open hole logs are overestimated by the model saturations because of the (Thistle) Pc curves used in the Etive and Rannoch sections. The higher permeability of the Rannoch oil column in Statfjord Field would be associated with Pc curves with lower S_{wc}.

Figure 7.14: Time-lapse saturation logs in the Rannoch Formation, compared with modelled saturations (refer to Fig. 7.11 for location of observation well.

Bearing in mind these differences in original $S_{w c}$, we can concentrate on the changes in water stauration that occur with time in the field data and the model. At 638 days, the saturation changes in model and field data are limited to the lower part of the Rannoch. At 1004 days, however, the Etive has watered-out. This match between model and field data is to be expected, as the breakthrough time at the well has been matched (Fig. 7.13) by altering the model y dimensions. If the breakthrough time has been matched, the passage of the water front through the Etive has also been determined by the selected model size. In other words, this match says nothing about the quality of the model.

The Rannoch in the model at 638 days shows greater increase in Sw than seen in field data in the upper part. In the lower part of the Rannoch, however, the model shows an appropriate reduction in Sw at 638 days. The field data support the model that water is running along the base of the Rannoch. This is to be expected in the Statfjord Field
running along the base of the Rannoch. This is to be expected in the Statfjord Field where the good quality Rannoch Formation allows gravity to play a part in sweeping the Rannoch.

At 1004 days, the Etive has been flushed and the the model suggests the Rannoch would have also been flushed. The data suggest that, whilst the water saturation has increased, $S_{\text {or }}$ has not been reached. This disparity is a function of the initial conditions selected for this model.

At 1522 days both Rannoch and Etive are at S_{or}, with the model pseudo $\mathrm{S}_{\text {or }}$ matching the field data, including the oil trapped in the WB facies below the Rannoch/Etive boundary. The WB zone is not completed in either producer or injector wells. Production from this unit is, therefore, limited to vertical flooding as water moves across the Rannoch\Etive boundary. The high permeability contrasts seen in the WB facies are expected to trap oil within the laminae. These Statfjord data suggest that lamina-trapping of oil by capillary forces can occur at the field-scale. Because the WB unit here is thin, however, the trapped oil in this facies is a relatively insignificant percentage in the field.

Both model and field data suggest that the Rannoch oil is displaced from the base upwards and that the flood front passes though the Etive and Rannoch in fairly close succession. In the Rannoch, however, the small scale capillary forces, accurately represented in the upscaled geopseudo model, delay the under-running of the water as can be seen in Fig. 7.15a (c.f. Fig. 7.15b).

Figure 7.15a: Water Saturation in the Statfjord model at 882 days: geopseudo model.

Figure 7.15b: Water Saturation in the Statfjord model at 882 days: rock curve model.

7.3.2 Cormorant Field (Operator: Shell Exploration and Prooduction)

The Cormorant Field (Budding and Inglin, 1981; Bunn and Yaxley, 1986; Bentley and Barry, 1991; Scott, 1992) lies 35km southwest of the Thistle Field (Fig. 7.1). A crosssectional model in the northern fault block of the Cormorant Field (line c-c' in Fig. 7.16) was constructed to investigate the geopseudo scale-up procedure in this field (Fig 7.17). Rock properties were taken from well N4 and formation dip (14) from the area down flank to the north-west of N4.

Figure 7.16: Sketch map of the northern Cormorant Field showing location of modelled section ($c-c^{\prime}$) in Fault Block III. Scale approximate. (Adapted from Styles and Valenti, 1990)

Permeabilities in the Cormorant are significantly lower than those in Thistle and published corrections for the effects of connate water and overburden pressure have to be
taken into account (Styles and Valenti, 1990). These corrections are significant (e.g., 100 mD reduces to 38 mD), however, no such corrections were considered for the Thistle core plug data on which the Thistle model was based. The 17-layer model corrected permeabilities are shown in Table 7.3.

Figure 7.17: Cormorant Field cross-sectional model showing arrangement of blocks, layers and wells. (For location of section refer to Fig. 7.16).

Layer	Unit	Permeability (mD)	Porosity (\%)
1	Etive	921	24.3
2	Etive	1388	25.4
3	Etive	2382	26.4
4	Etive	762	25.8
$7-6$	Rannoch	97	23.1
$9-10$	Rannoch	51	22.0
$11-12$	Rannoch	54	22.6
$13-14$	Rannoch	17	18.5
15	Broom	Broom	209

Table 7.3: Cormorant cross sectional model layer petrophysical parameters. Average plug permeabilities have been corrected for fluids and overburden (Styles and Valenti, 1990). (Refer to Fig. 7.17 for layer thicknesses)

The lower Brent Group model consisted of $75 \times 10 \times 17$ (x, y, z directions) blocks. Rannoch grid block dimensions were $12.2 \times 152 \times 1.5 \mathrm{~m}(40 \times 500 \times 5$ feet). The \times and z dimensions were the same as used in the Thistle model. The y dimension (152 m) was adjusted in the model to match water breakthrough. This is an unavoidable limitation of cross-sectional modelling where the effective lateral volume between wells is not known.

Although full field 3-D modelling would have to be used to match this parameter correctly, altering the $\Delta \mathrm{y}$ within realistic limits is one way to build a cross-sectional model of the correct volume. Average core plug porosities for each layer were also used (Table 7.3). Water breakthrough in cross-sectional modelling is not considered a diagnostic parameter for judging model results unless used in conjunction with $\Delta \mathrm{y}$.

In the model (CORM001.DATA in Appendix X), the production well was completed in the upper Etive (layers 1 and 2) together with the middle Rannoch (layers 7 to 11). Water injection was to all layers. The model was controlled by liquid rate (total rate based on nearby well N17) at the producer and voidage replacement at the injector (Fig. 7.18).

The water cut performance is compared, as with previous models, for the geopseudo and rock curves (Fig. 7.19). In this model the differences due to different relative permeability curves are less marked. Both models suggest that the Rannoch is being swept. In the Cormorant Field, the WB facies seen in Fault Block I in the southern part of the field (Fig. 15a in Scott, 1992) may not be developed in Fault Block III to the north (D. Schwartz, personal communication). The modelling in Cormorant Field is less conclusive as there is little data available to confirm the sweep of the Rannoch.

Figure 7.18: Total fluid injected; field data and model control input.

Figure 7.19: Water cut performance of rock curve model and geopseudo model after breakthrough.

Percentages of the total production entering the well bore in the model (4% from the Rannoch), compare reasonably with production log data. The well (N17) was completed and perforated on $2 / 4 / 82$. On $12 / 6 / 82$, no flow was detected from the Rannoch. On $9 / 11 / 86,2 \%$ of the total well flow was coming from the Rannoch. The well is also completed in the Lower Ness (the unit overlying the Etive) from which 11-12\% of the fluid was being produced. The Ness production is not accounted for in our model but is not thought to be a significant factor.

There is a body of opinion that considers that no water is being injected into the Rannoch. The model was run with injection into Etive only to investigate this possibility, however, the model showed only a slight response to the water cut (rising to 60% before flattening out).

Comparing the water saturation distributions at 639 days (breakthrough at 1300 days) it is clear that there is additional water overide when the Rannoch geopseudos are employed (Fig. 7.20). These simulation results suggest the Rannoch oil is being produced
indirectly through the Etive Formation. Although the water cut rises faster in the geopseudo model, both models appear to underestimate the observed water cut increase.

Figure 7.20a: Cross-section through Cormorant simulation model at 639 days; geopseudo model.

Figure 7.20b: Cross section through Cormorant simulation model at 639 days; rock curve model.

7.4 Discussion of Cross-Sectional Model Results.

The aim of the cross-sectional modelling exercise has been to attempt to evaluate the significance of the lamination on the field performance of the Rannoch Formation. In principle, a well correlated shoreface sequence containing pervasive lamination and historical production data should have been the ideal place to consider the problem. The Rannoch production, however, is complicated by the presence of the highly permeable overlying Etive. It is difficult in the fields to determine exactly what is being produced from the Rannoch in the various studied fields. In Statfjord the model is supported by excellent production (GST) logs which confirm the production mechanism from the Rannoch. In this field there is also evidence of lamina trapped oil in the WB facies. The remainder of the Rannoch (SCS and HCS) are being produced by "horizontal" flood in a "horizontally" layered reservoir. Good ultimate sweep of Rannoch oil can be expected.

The same model appears to work in the Thistle Field. The water cut and production can be matched by building in the lamination in the form of geologically-realistic relative permeability curves. The waterflood sweep through the Rannoch appears to be backed up by recent infill drilling.

In Cormorant, it is less clear whether the same model for the Rannoch production (lateral, delayed waterflood displacing oil into the Etive) is appropriate. The greatly reduced reservoir quality of the Rannoch suggests little water is being directly injected into the unit. The models suggest, however, that the Rannoch is being swept. Further work in Cormorant is obviously needed. Whether the WB facies is present in Block III is a significant starting point for such work.

In this study, the objective has not been to match the field performance on a well by well basis. That is beyond the scope of this study, limited as it is by available data and to cross-sectional models. It is felt, however, that the attempt to view the modelling of the Rannoch with a common geoengineering approach has been instructive. Insights into the general production characteristics of the Rannoch production across the basin have been
gained. As far as we are aware, this is the first study of the Rannoch to consider comparisons between fields operated by different companies. The study has approached the problem with a consistent geological model and engineering approach.

During the study, the potential for the geopseudo method for the scale-up of small scale geological heterogeneities has been demonstrated. Also, the transportability of geopseudos for particular sedimentary structures has been investigated. The prospects for the success of the geopseudo method look encouraging, however, more work on the transportability is clearly needed.

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

In this chapter, the conclusions are drawn under each of the main areas of study that have been undertaken during this work. In each section, the areas that need additional work are also highlighted.

8.1. The Use of the Probe Permeameter in Laminated Reservoirs

The major data collection and interpretation phase of this study concentrated on the acquisition and interpretation of probe permeameter data from two Rannoch Formation wells. The data were collected by Christian Halvorsen, while the interpretation and comparisons with other data were carried out in this research project. The sample requirements and programme for the Thistle well were determined following the interpretation of the initial Statfjord study.

The main conclusions are as follows:

- The probe permeameter device is an excellent development for the measurement of the petrophysical properties of laminae. The small volume of investigation is often limited to a single lamina. Used in conjunction with an automated positioning device, the probe is capable of measuring detailed grids from which permeability maps of various laminated facies can be made.
- In the Rannoch Formation, adjacent laminae with up to two orders of magnitude difference in permeability were seen $(2-200 \mathrm{mD}$ and $16-1300 \mathrm{mD})$.
- Measurement of lamina properties by core plugs is often inappropriate because of the relatively large sample volume.
- Permeability in laminae that are thicker than the probe aperture tend to be isotropic.
- The probe is unable to effectively resolve the properties of laminae that are less than the aperture diameter.
- The effective depth of investigation of the probe approximates to two aperture diameters.
- A relationship for porosity from probe permeability measurements has been derived for the Rannoch Formation.
- The variability of permeability is closely related to the primary depositional fabric in the Rannoch Formation.
- Anisotropy in vertical and horizontal plug permeability measurements is largely due to lamination rather than grain fabric.
- Permeability correlation lengths are closely related to the length scales of stratal elements. There are a hierarchy of correlation lengths in a sedimentary sequence. Careful sampling schemes (domain length and sample spacing) are required to measure these correlation lengths.
- The appropriate number of samples to estimate the arithmetic average permeability to within $\pm 20 \%$ tolerance is a simple function of the coefficient of variation $\left[(10 \mathrm{Cv})^{2}\right]$. This simple rule of thumb (extended from the original work of Hurst and Rosvoll, 1989, by the adoption here of a more realistic tolerance) holds for permeability distributions that are either normal or skewed. Rannoch permeability distributions are generally root- to log-normal.
- Probe permeabilities measured on slabbed Rannoch core material (above 100 mD) appear to be reduced due to surface damage or ageing. Probe measurements,
in this study, appear to be relatively unaffected by either the imbibed resin or residual (dry) fluids.
- Laminaset bounding surfaces in the Rannoch appear to be relatively free of permeability impairment.
- Published analytical solutions and empirically derived relationships give consistent calibration curves for the probe permeameter if careful procedures are followed.

Areas in which the probe methodolgy needs further investigation or care in usage are relatively limited, the main concern being the accurate measurement of thin low permeability laminae.

In general, the probe permeameter has as a result of recent studies, including this one, become an accepted measurement device. The advantages discussed in this report are largely self-evident. That there will potentially be differences between probe and plug measurements is now widely accepted and understood. The conclusions of this report, however, emphasise that those differences should be systematically examined and understood where possible. Accepted as bona fide measurements of permeability, new scale-up procedures for the comparison of probe measurements with plug, electric log, well test and simulator grid block values are needed.

8.2. The Geopseudo Methodology and Implications for Petrophysics

Sedimentary rocks are commonly made up of a hierarchy of stratal elements. The probe data in the Rannoch Formation show that the permeability variability is very closely correlated with primary depositional structure. This relationship can be exploited in the scale-up. The hierarchy of stratal elements is visible in the nested correlation structure of the probe permeability data as seen in the variograms. Homogenisation should ideally occur at scales above the correlation length. To capture
the appropriate physics which may be more sensitive to one length scale than another (e.g., capillary pressure effects) the pseudoisation of properties at various length scales is appropriate. A scale-up procedure based on the pseudoisation of the properties of representative laminasets at the fine scale, followed by pseudoisation of the laminaset groupings in representative bed elements has been developed to exploit the geological knowledge. This procedure has been termed the geopseudo method.

The geopseudo method has implications for petrophysical measurements. A volume compatable porosity and capillary pressure device needs to be developed to determine the properties of representative laminae. For numerical simulation, instead of saturating the available core with permeability measurements, recognition of the representative elements can lead to a more selective sampling programme. If the subject reservoir is strongly laminated, carefully selected laminated blocks can give more representative SCAL results. Understanding the geometry and stacking of the stratal elements in the reservoir can also provide a significant basis for the description of the inter-well region. Measurements of unrepresentative elements, as can happen with core plugs, will lead to "noisy" data and confuse the interpretation.

8.3. Rannoch Formation Average Reservoir Properties and the Location of Remaining Oil

Core plugs are adequate for the porosity description of the Rannoch. They are also sufficient for the description of absolute horizontal permeability over most of the interval. There are, however, thin and very variable intervals of facies that are significant to the formation flow characteristics that are not adequately sampled by core plugs. Furthermore, the $\mathrm{k}_{\mathrm{v}} / \mathrm{k}_{\mathrm{h}}$ ratio from adjacent horizontal and vertical core plugs are a volume-specific measurement. The appropriate k_{v} / k_{h} for large grid blocks cannot be determined as a simple average of the core plug data.

The permeability description by core plugs in the Rannoch is supplemented by probe permeameter data. These data provide an improved sampling of the variable wavy bedded facies from which appropriate average absolute horizontal permeabilities can be determined. The patterns revealed by the probe permeameter allow the selection of representative laminasets. The appropriate average relative permeabilities and capillary pressures can be determined by numerical simulation of these elements. The averages of the dynamic two-phase properties are appropriately determined by pseudoisation.

Numerical models containing the small scale geology suggests that the primary flooding mechanism for the Rannoch is by bed-parallel flow. The expected residual oil over most of the Rannoch will be low. Trapping of oil, however, is likely to occur in the laminae within the wavy bedded facies. The volumetric significance of this, however, is low. The progress of the waterflood in the Rannoch is slowed (relative to the overlying Etive) by the absolute permeability differences and the strong capillary effects. These capillary effects suggest that there will be a lateral transition zone in advance of the flood front. The petrophysical description of the sediments below the Rannoch/Etive boundary show that the boundary is more complicated than a single tight zone. The interval requires a more comprehensive petrophysical analysis than has been traditionally available.

NOMENCLATURE

a	Probe aperture radius (cm)
A	Core plug area (sq.cm.)
Cv	Coefficient of variation
d_{i}	Probe internal diameter (cm)
d_{0}	Probe external diameter (cm)
ECLIPSE	Black oil numerical simulation package
FGA	Fine grid A : Low contrast lamination
FGB	Fine grid B: Ripple lamination
FGC	Fine grid C: High contrast lamination
G	Goggin's geometrical factor
GR	Gamma Ray Log (API)
GST	Gamma spectroscopy tool
h	Lag distance
HCS	Hummocky cross stratification
k	Permeability (mD)
$\overline{\mathrm{k}}_{\mathrm{ar}}$	Arithmetic average permeability (mD)
$\overline{\mathrm{k}}_{\text {geom }}$	Geometric average permeability (mD)
k_{h}	Horizontal permeability (mD)
$\overline{\mathrm{k}}_{\text {har }}$	Harmonic average permeability (mD)
$\mathrm{k}_{\text {ro }}$	Relative permeability to oil (fraction)
$\mathrm{k}_{\text {rw }}$	Relative permeability to water (fraction)
k_{v}	Vertical permeability (mD)
k_{v} / k_{h}	Vertical to horizontal permeability ratio
$\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}$	Permeability in x, y, z, directions
L	Core plug length (cm)
LP1	Large probe $1\left(\mathrm{~d}_{\mathrm{i}}=0.59 \mathrm{~cm}, \mathrm{~d}_{0}=10.5 \mathrm{~cm}\right)$
MHWL	Mean high water level
MLWL	Mean low water level
OOIP	Original oil-in-place
p	Transformation exponent ($-1 \leq \mathrm{p} \leq 1$)
Pc	Capillary pressure (atm)
Pct	Threshold capillary pressure
Po	Oil phase pressure
Pw	Water phase pressure
P_{I}	Injection pressure (atm)
Po	Outlet pressure (atm)
PSEUDO	Option within the ECLIPSE program

PV, pv	Pore volumes throughput (total system)
Q	Flow rate ($\mathrm{ml} / \mathrm{min}$)
RFT	Repeat formation tester
SCS	Swaley cross stratification
S_{n}	Normalised saturation ($\mathrm{S}_{\mathrm{n}}=1-\mathrm{S}_{\mathrm{wc}}-\mathrm{S}_{\text {or }}$)
$S_{\text {nwr }}$	Non-wetting residual saturation (fraction)
S_{0}	Oil saturation (fraction)
$\mathrm{S}_{\text {or }}$	Residual oil saturation (fraction)
SP1	Small probe $1\left(d_{i}=0.36 \mathrm{~cm}, \mathrm{~d}_{0}=0.79 \mathrm{~cm}\right)$
SP2	Small probe $2\left(\mathrm{~d}_{\mathrm{i}}=0.34 \mathrm{~cm}, \mathrm{~d}_{0}=1.02 \mathrm{~cm}\right.$)
S_{w}	Water saturation (fraction)
$S_{\text {wirr }}$	Irreduceable water saturation (fraction)
$S_{\text {wc }}$	Connate water saturation (fraction)
TVT	True vertical thickness
WB	Wavy bedded lamination
$\mathrm{X}, \mathrm{y}, \mathrm{z}$	Orthogonal coordinate axes (x flow direction, y transverse, z vertical)

Greek letters

$\Delta \mathrm{t}$	Sonic Log $(\mu \mathrm{s} / \mathrm{ft})$
ϕ	Porosity $(\%)$
$\bar{\phi}_{\mathrm{ar}}$	Arithmetic average porosity (\%)
μ	Viscosity (cp)

REFERENCES

Amyx, J. W., D. M. Bass Jr. and R. L. Whiting, 1960, Petroleum Reservoir Engineering, McGraw-Hill, New York, 610p.

API., 1960, Recommended practice for core analysis procedure, American Petroleum Institute, Report 40, Dallas, Texas.

Allen, J. R. L., 1970, Physical Processes of Sedimentation, Unwin University Books, London, 272p.
Allen, J. R. L., 1985, Principles of Physical Sedimentology, George Allen and Unwin, London, 248p.
Allen, P. A., 1989, Hummocky cross-stratification is not produced under progressive gravity waves, Nature, 313, p. 562-564.

Allen, P. A., and J. R. Underhill, 1989, Swaley cross-stratification produced by unidirectional flows, Bencliff Grit (U. Jurassic) Dorset, U.K., Jour. Geol_Soc.Lond., 146, p. 241-252.

Anderson, W. G., 1987, Wettability Literature Survey - Part 4: Effects of wettability on capillary pressure. Lournal of Petroleum Technology p. 1283-1300.

Archer, J. S., and C. G. Wall, 1986, Petroleum Engineering:Principles and Practice, Graham and Trotman, Newcastle, 362p.

Ashley, G. M., 1990, Classification of large-scale subaqueous bedforms: a new look at an old problem, Jour. Sed. Pet. 60, p. 160-172.

Bayat, M. G., and D. H. Tehrani, 1985, The Thistle Field - Analysis of its past performance and optimisation of its future development. Presented at Offshore Europe 85 Conference, Aberdeen, UK.

Bentley, M. R., and J. J. Barry, 1991, Representation of a fault sealing in a reservoir simulation: Cormorant Block IV, UK North Sea, SPE 22667, presented at 66th Ann. Tech. Conf. \& Exhib., Dallas, Texas, October 6-9h.

Berthois, L., 1962, Etude du comportement hydraulic du mica, Sedimentology 1, p. 40-49.
Braithwaite, C. I. M., J. D. Marshall and T. C. Holland, 1989, Improving recovery from the Dunlin Field, U.K. Northern North Sea, SPE 19878, presented at 64th Ann. Tech. Conf. \& Exhib., San Antonio, Texas, Oct. 8th-11th.

Brenchley, PJ., 1989, Storm Sedimentation, Geology Today, p. 133-137.
Brenchley, P.J., S. S. Flint and S. G. Stromberg, 1992, Quantitative facies discrimination and the application of sequence stratigraphy to bed length modelling af shallow marine heterolithic facies, in Subsurface reservoir characterisation from outcrop observation, M. Montadert and R. Eschard (eds.), Editions Technip (in press).

Brooks, R. H., and A. T. Carey, 1964, Hydraulic properties of porous media, Hydrol Paper 3 Civil Engineering Department, Colorado State University, Fort Collins.

Brown, S., P. C. Richards and A. R. Thomson, 1987, Patterns in the deposition of the Brent Group (Middle Jurassic), U.K. North Sea, in J. Brooks and K. Glennie (eds.), Detroleum Geology of Northwest Europe, Graham and Troman, London.

Brown, S., and P. C. Richards, 1989, Facies and development of the Middle Jurassic Brent Delta near the northern limit of its progradation, U.K. North Sea, in Whateley, M. K. G., and K. T. Pickering, (eds.), Deltas: Sites and Traps for Fossil Euels, Geol. Soc. Spec. Publ. No 41, p. 253-267.

Budding, M. C., and H. F. Inglin, 1981, A reservoir geological model of the Brent Sands in Southern Cormorant, in L. V. Illing and G. D. Hobson (eds.), Petroleum Geology of the Continental Shelf of N. W Europe, Inst. of Petroleum, London.

Bunn, G. F., and L. M. Yaxley, 1986, Design.Implementation, and Interpretation of a "Three-Dimensional Well Test" in the Cormorant Field North Sea., SPE 15858, presented at the SPE European Petroleum Conference, London, 20-22 October.

Buza, J. W., and A. Unneberg, 1987, Geological and Reservoir Engineering aspects of the Statfjord Field, in J.Kleppe et. al. (eds), North Sea Oil and Gas Reservoirs, Graham and Trotman, London.

Cadman, M., 1984, Non-destructive permeability measurement, Unpubl. M. Eng. Thesis, Heriot-Watt University, Edinburgh.

Campbell, C. V., 1967, Lamina, laminaset, bed and bedset. Sedimentology, 8, p. 7-26.
Cheel, R. J., 1991, Grain fabric in hummocky cross-stratified storm beds: genetic implications. Journal of Sedimentary Petrology, 61, p. 102-110.

Clelland, W., 1984, Measurement and analysis of small scale permeability distributions in sandstones, Unpubl. Phd thesis, Heriot-Watt Univ., Edinburgh.

Corbett, P. W. M., and J. L. Jensen, 1992a, Variation of reservoir statistics according to sample spacing and measurement type for some intervals in the Lower Brent Group, Log Analyst 33, p. 22-41.

Corbett, P. W. M., and J. L. Jensen, 1992b, Estimating the mean permeability: How many measurements do you need?, First Break, 10, p. 89-94.

Corey, A.T., and C. H. Rathjens, 1956, Effect of stratification on relative permeability, Pet. Trans., AIME, 207, p. 358-360.

Craig, F.F., 1971, The Reservoir Engineering Aspects of Waterfooding, SPE Monograph No. 3.
Dake, L., 1982, Application of repeat formation tester in vertical and horizontal pulse testing in the Middle Jurassic Brent Sands, EUROPEC, London, 25-28th October.

Daltaban, T. S., J. J. M. Lewis and J. S. Archer, 1989, Field minipermeameter measurements - their collection and interpretation, Proc. 5th European Symp. on Improved Oil Rec., Budapest, 25-27th April.

Davies, J.C., 1973, Statistics and data analysis in geology, John Wiley and Sons, New York, 550 p.
Daws, J. A., and D. J. Prosser, 1992, Scales of permeability heterogeneity within the Brent Group, Journal of Petroleum Geology, 15(4), p. 397-418.

Dott, R. H. and J. Bourgeois, 1982, Hummocky stratification - significance of its variable bedding sequences, Bulletin Geological Society of_America, 93, p. 663-680.

Dreyer, T., A. Scheie and O. Walderhaug, 1990, Minipermeameter-based study of permeability trends in channel sand bodies, AAPG Bull. 74, p. 359-374.

Duke, W. L., 1985, Hummocky cross-stratification, tropical hurricanes and intense winter storms, Sedimentology 32, p. 167-194.

Duke, W. L., 1987, Reply: Hummocky cross-stratification, tropical hurricanes and intense winter storms, Sedimentology, 34, p. 344-359.

Duke, W. L., R. C. W. Arnott and R. J. Cheel, 1991, Shelf sandstones and hummocky-cross stratification: New insights on a stormy debate. Geology, 19, p. 625-628.

Dykstra, H. and R. L. Parsons, 1950, The prediction of oil recovery by waterflood, in Secondary Recovery in the U.S.A. Am. Pet. Inst.

ECL, 1988, Eclipse reference manual, Version 88/09, Exploration Consultants Limited, Henley-onThames.

Eijpe, R., and K. J. Weber, 1971, Minipermeameter for consolidated rock and unconsolidated sand, American Association of Petroleum Geologists Bulletin 55, p. 307-309.

Ezeudembah, A.S., and P. M. Dranchuk, 1982, Flow mechanism of Forcheimer's cubic equation in highvelocity radial gas flow through porous media, SPE 10979, presented at 57th Ann. Tech. Conf. \& Exhib., New Orleans, Louisiana, 26-29th September.

Firoozabadi, A., and D. L. Katz, 1979, An analysis of high-velocity gas flow through porous media, Journal of Petroleum Technology p. 211-216.

Goggin, D.J., 1988, Geologically-sensible modelling of the spatial distribution of permeability in eolian deposits: Page Sandstone (Jurassic), Northem Arizona, Unpubl. Phd thesis, University of Texas, Austin, Texas.

Goggin, D. J., M. A. Chandler, G. Kocurek, and L. W. Lake, 1988, Patterns of permeability in eolian deposits: Page Sandstone (Jurassic), NE Arizona, SPEEE, June.

Goggin, D. J., R. L. Thrasher and L. W. Lake, 1988, A theoretical and experimental analysis of minipermeameter response including gas slippage and high velocity flow effects, In-situ, 12, p. 79-116.

Goggin, D.J., 1991, Minipermeametry. Is it worth the effort?. Presented at Petroleum Science and Technology Institute Advances in Minipermeametry Conference, June 27th.

Gibbons, K., C. Halvorsen and E. Siring, 1991, Vertical and horizontal permeability variation within a sandstone reservoir based on minipermeameter data, Presented at Petroleum Science and Technology Institute Advances in Minipermeamery Conference, June 27th.

Graff, W. J. E. van de, and P. J. Ealey, 1989, Geological modeling for simulation studies, American Association of Petroleum Geologists Bulletin, 73, p. 1436-1444.

Grant, I., J. D. Marshall, P. Dietvorst, and J. Hordijk, 1990, Improved reservoir management by integrated study: Cormorant Field, Block 1, SPE 20891, presented at Europec 90, The Hague, Netherlands, 22-24th October.

Graue, E., W. Helland-Hansen, J. Johnsen, L. Lomo, A. Nottvedt, K. Ronning, A. Ryseth and R. Steel, 1987, Advance and retreat of the Brent Delta system, Norwegian North Sea, in J. Brooks and K. Glennie, (eds.), Petroleum Geology of Northwest Europe, Graham and Trotman, London.

Haldorsen, H. H., 1986, Simulator parameter assignment and the problem of scale in reservoir engineering, in L. W. Lake and H. B. Carroll, (eds.); Reservoir Characterization, Academic Press, Orlando.

Halvorsen, C. 1991, Probe permeametry applied to a highly laminated sandstone reservoir, Presented at Petroleum Science and Technology Institute Advances in Minipermeametry Conference, June 27th.

Halvorsen, C., and A. Hurst, 1990, Principles, practice and applications of laboratory minipermeametry, in P.F. Worthington (ed.), Advances in Core Evaluation Accuracy and Prediction. Gordon and Breach Science Publishers, London, p. 521-549.

Harms, J. C., J. B. Southard, D. R. Spearing and R. G. Walker, 1975, Depositional environments as interpreted from primary sedimentary structures and stratification sequences, SEPM short course no. 2. Dallas, Texas.

Harris, N. B., 1992, Burial diagenesis of Brent Sandstones: A study of Statfjord, Hutton and Lyell Fields, in A. C. Morton, R. S. Hazeldine, M. R. Giles and S. Brown (eds.), Geology of the Brent Group, Geol. Soc. Spec. Publ., 61, p. 289-327.

Hartkamp-Bakker, C. A., 1991, Capillary oil entrapment in crossbedded sedimentary structures of fluvial sandstone reservoirs, SPE 22761, 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, Tx, October 6-9th.

Hearn, C. L., 1971, Simulation of stratified waterflooding by pseudo relative permeability curves, Journal of Petroleum Technology, July, p. 805-813.

Hoimyr, O, A. Kleppe and J. P. Nystuen, 1993, Effects of heterogeneities in a braided stream channel sandbody on the simulation of oil recovery: A case study from the Lower Jurassic Statfjord Formation, Snorre Field, North Sea, from M. Ashton (ed.) Advances in Reservoir Geology, Geol. Soc. Special Publ., 69, p. 105-134.

Honarpour, M., L. Koederitz, and A. H. Harvey, 1986, Relative Permeability of Petroleum Reservoirs, CRC Press, Florida, 143p.

Hunter, R. E., and H. E. Clifton, 1982, Cyclic deposits and hummocky cross-stratification of probable storm origin in Upper Cretaceous rocks of Cape Sebastian Area, Southwestern Oregon, Lournal_of Sedimentary Petrology, 52, p. 127-143.

Hurst, A., and K. Rosvoll, 1989, Permeability variations in sandstones and their relationship to sedimentary structures, NIPERJDOE 2nd International Reservoir Characterisation Tech. Conf., June 2528th, Dallas.

Jacks, H. H., O. J. E. Smith and C. C. Mattax, 1973, The modelling of a three-dimensional reservoir with a two dimensional simulator - The use of dynamic pseudo functions, Society of Petroleum Engineers Journal, June, p. 175-185.

Jarvis, M., P. W. M. Corbett and J. J. M. Lewis, 1992, Operator Manual for the Heriot-Watu Laboratory Minipermeameter, Unpubl. Internal Report.

Jensen, J. L., 1991, Use of the geometric average for effective permeability estimation, Mathematical Geology, 23, p. 833-840.

Jensen, J. L., D. V. Hinkley and L. W. Lake, 1987, A statistical study of reservoir permeability: Distributions, correlations and averages, SPEFE, December.

Johnson, N. L., and S. Kotz, 1970, Continuous univariate distributions - 1, MacMillan Publ. Co., New York, 300p.

Journal, A. G. and C. J. Huijbregts, 1978, Minine Geostatistics, Academic Press, London, 600p.
Kirk, R. H., 1980, Statfjord Field - A North Sea Giant, in M. T. Halbouty (ed.), Giant. Oil and Gas Fields of the Decade 1968-1978, AAPG Memoir 30, Tulsa, Oklahoma.

Kittridge, M. G., L. W. Lake, F. J. Lucia and G. E. Fogg, 1990, Outcrop/Subsurface Comparisons of heterogeneity in the San Andres Formation, SPEFE, September.

Kortekaas, T. F. M., 1985, Water-oil displacement characteristics in cross-bedded reservoir zones. Sociely of Petroleum Engineers Journal, December, p. 917-926.

Kossack, C. A., J. O. Aasen and S. T. Opdal, 1990, Scaling heterogeneities with pseudofunctions, SPEFE, September, p. 226-232.

Kreisa, R, D., 1981, Storm generated sedimentary structures in subtidal marine facies with examples from Middle and Upper Ordovician of Southwestern Virginia, Joumal of Sedimentary Petrology, 51, p. 823-848.

Krumbein, W. C., and G. D. Monk, 1942, Permeability as a function of the size parameters of unconsolidated sand, Petroleum Technology, AIME Tech. Publ., 1492 (5), p. 1-11.

Klein, G. de V., and K. M. Marsaglia, 1987, Discussion: Hummocky cross-stratification, tropical hurricanes and intense winter storms, Sedimentology, 34, p. 333-338.

Kyte, J. R., and D. W. Berry, 1975, New pseudofunctions to control numerical dispersion, Society of Petroleum Engineers Joumal., p. 269-276.

Lake, L. W., 1989a, Preface to Reservoir Characterisation-1, SPE Reprint Series No.27, Society of Petroleum Engineers, Richardson, Texas, 272p.

Lake, L. W., 1989b, Enhanced Oil_Recovery, Prentice Hall, New Jersey, 550p.
Lake, L.W., 1992, What we've learned about permeability from all those outcrop studies, abstract presented at the EAPG workshop Characterisation and modelling of lateral heterogeneity in reservoirs, Paris, 30th May.

Lake, L. W., E. Kasap and M. Shook, 1990, Pseudofunctions - The key to practical use of reservoir description, in A. T. Buller, E. Berg, O. Hjelmeland, J. Kleppe, O. Torsaeter and J. O. Aasen (eds.), North Sea Oil and Gas Reservoirs II, Norwegian Institute of Technology, Graham and Troman, London.

Lasseter, T. J., J. R. Waggoner and L. W. Lake, 1986, Reservoir heterogeneities and their influence on ultimate recovery, in L. W. Lake and H. B. J. Carroll (eds) Reservoir Characterisation. Academic Press, Orlando, Florida.

Lemouzy, P., 1992, Upscaling and pseudoisation, abstract presented at the EAPG workshop Characterisation and modelling of lateral heterogeneity in reservoirs, Paris, 30th May.

Leverett, M. C., 1941, Capillary behaviour in porous solids. Trans. AlME, 142, p. 152-169.
Lewis, J. J. M., B. Lowden and A. Hurst, 1990, Permeability distribution and measurement of reservoirscale sedimentary heterogeneities in subsurface exposures of a shallow marine sand-body, Fieltrip A11 Guide, 13th IAS Congress, Nottingham.

Lowry, P., and T. Jacobsen, 1990, Sedimentological and reservoir characteristics of a fluvial-dominated delta-front sequence, Ferron Sandstone Member (Turonian), East Central Utah, (abstract), Advances in Reservoir Geology '90 Conf., Geol. Soc., London.

Macdonald, A. M. (ed.), 1977, Chambers Twentieth Century Dictionary, Chambers, Edinburgh, 1652p.
Martin, J. H., and P. F. Evans, 1988, Reservoir modelling of marginal aeolian/sabkha sequences, Southern North Sea (U.K. Sector), SPE 18155, presented at 63rd Ann. Tech. Conf. \& Exhib., Houston, Texas, 2-5th October.

Mitchener, B. C., D. A. Lawrence, M. A. Partington, M. B. J. Bowman and J. Gluyas, 1992, Brent Group: sequence stratigraphy and regional implications in A. C. Morton, R. S. Hazeldine, M. R. Giles and S. Brown (eds.), Geology of the Brent Group, Geol. Soc. Spec. Publ., 61, p. 45-80.

Muggeridge, A. H., 1991, Generation of effective relative permeabilities from detailed simulation of flow in heterogeneous porous media, in Lake, L. W., H. B. J. Carroll and T. C. W. Wesson (eds.), Reseryoir characterisation II, Academic Press, Orlando, Florida.

Nottvedt, A., and R. D. Kriesa, 1987, Model for the combined flow origin of hummocky cross stratification, Geology, 15, p. 357-361.

Noman, R., and J. S. Archer, 1987, The effect of pore structure on non-Darcy gas flow in some low permeability reservoir rocks, SPE/DOE 16400, presented at SPE/DOE Low Permeability Reservoirs Symposium, Denver, Colorado, 18-19h May.

Pettijohn, F. J., P. E. Potter and R. Siever, 1972, Sand and Sandstone, Springer-Verlag, New York, 553p.
Prosser, D. J., and R. Maskall, 1993, Small scale permeability variation within aeolian sandstone: a case study using core cut sub-parallel to slipface bedding, the Auk Field, UKCNS, in C. P. North and D. J. Prosser (eds.), The Geological Society, London, (in press).

Reynolds, A. D., 1992, Storm, wave and tide-dominated sedimentation in the Dinantian Middle Limestone Group, Northumbrian Basin, Broc. Yorks_Geol_Soc, 49, p. 135-148.

Richards, P.C., and S. Brown, 1986, Shoreface storm deposits in the Rannoch Formation (Middle Jurassic), Northwest Hutton oil field. Scottish Joumal of Geology, 22, p. 367-75.

Richards, P. C., S. Brown, J. M. Dean and R. Anderton, 1988, A new palaeogeographic reconstruction for the Middle Jurassic of the Northem North Sea, Jour Geol Soc. Lond., 146, p. 883-886.

Ringrose, P. S., K. S. Sorbie, P. W. M. Corbett and J. L. Jensen, 1992, Immiscible flow behaviour in laminated and cross-bedded sandstones, Jour. Petroleum Science and Engineering 9(2), in press.

Roberts, J. D., A. S. Mathieson and J. M. Hampson, 1987, Statfjord, in A. M. Spenser et. al. (eds.) Geology of the Norwegian Oil and Gas Fields, Graham and Trotman, London, p. 319-340.

Robertson, G. M. and C. A. McPhee, 1990, High resolution probe permeability: An aid to reservoir description, paper presented at EURCAS, 21st-23rd May, London.

Robertson, R. W., and B. H. Caudle, 1971, Permeability continuity of laminae in the Calvin Sandstone. Joumal of Petroleum Technology p. 661-70.

Scotchman, I. C., Johnes, L. H., and Millar, R. S., 1989, Clay diagenesis and oil migration in Brent Sandstones of NW Hutton Field, UK North Sea, Clay minerals, 24, p. 339-374.

Scott, E. S., 1992, The palaeoenvironments and dynamics of the Rannoch-Etive nearshore and coastal succession, Brent Group, Northern North Sea, in A. C. Morton, R. S. Hazeldine, M. R. Giles and S. Brown (eds.), Geology of the Brent Group. Geol. Soc. Spec. Publ., 61, p. 129-147.

Size, W.B., 1987, Use of representative samples and sampling plans in describing geologic variability and trends, in Use and abuse of statistical methods in the earth sciences, by W.B.Size (ed.), Oxford University Press, 169p.

Southard, J. B., J. M. Lambie, D. C. Frederico, H. T. Pile and C. R. Weidman, 1990, Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow, and the origin of hummocky crossstratification, Loumal of Sedimentary Petrology 60, p. 1-17.

Stone, H. L., 1991, Rigorous black oil pseudo functions, SPE paper 21207 prepared for the 11th SPE Symposium on Reservoir Simulation, Anaheim, California, February 17-20th.

Stoneley, R., and Selley, R. C., 1991, A field guide to the Petroleum Geology of the Wessex Basin, Imperial College, London, 49p.

Styles, J. H. Jr., and N. S. Valenti, 1990, Investigating completion strategies - Cormorant Field, U.K. North Sea, SPEEE, March, p. 23-30.

Sun, S.Q., 1990, Discussion on swaley cross-stratification produced by unidirectional flows, Bencliff Grit (Upper Jurassic), Dorset, U.K., Jour. Geol.Soc. Lond, 147, p. 396-400.

Sutherland, W. J., C. Halvorsen, A. Hurst, C. A. McPhee, G. Robertson, P. R. Whatter and P. F. Worthington, 1991, Recommended practice for probe permeametry, paper presented at Minipermeametry in Reservoir Studies Conference, Edinburgh, 27th June.

Swift, D. J. P., and D. Nummendal, 1987, Discussion: Hummocky cross-stratification, tropical hurricanes and intense winter storms, Sedimentology, v.34, p. 338-344.

Thomas, J. M. D., and R. Bibby, 1991, The depletion of the Rannoch-Etive sand unit in Brent Sand reservoirs in the North Sea. Proceedings of the Third International Reservoir Technical Conference, sponsored by U.S. Department of Energy and National Institute for Petroleum and Energy Research, Paper 3RC-28. 39p.

Timmerman, E. H., 1982, Practical Reseryoir Engineering, Pennwell Books, Tulsa, Oklahoma, 365p.
Van Wagoner, J. C., R. M. Mitchum, K. M. Campion and V. D. Rahmanian, 1990, Siliclastic_sequence stratigraphy in Well Logs, Cores and Outcrops. AAPG Methods in Exploration Series, No. 7, American Association of Petroleum Geologists, Tulsa, Oklahoma, 55p.

Veen, F. R. van, 1975, Geology of the Leman Gas Field, in A. W. Woodland (ed.), Petroleum and the continental shelf of North-west Europe, Appl. Sci. Publ., Barking, Essex.

Walker, R. G., W. L. Duke and D. A. Leckie, 1983, Hummocky cross-stratification: significance of its variable bedding sequences: discussion and a reply, Bull. Geol. Soc.Am. 94, p. 1245-1251.

Walker, R. G., 1985, Ancient examples of tidal sand bodies formed in open shallow seas, in R. W. Tillman, D. J. P. Swift and R. G. Walker (eds.), Shelf sands and sandstone reservoirs. SEPM Short Course Notes 13.

Wardlaw, N. C., and J. P. Cassan, 1978, Estimation of recovery efficiency by visual observation of pore systems in reservoir rocks, Bull. Canadian Petroleum Geology, 24, p. 572-585.

Weber, K. J., 1986, How heterogeneity affects oil recovery, in L. W. Lake and H. B. Carroll (eds.), Reseryoir Characterization Academic Press, Orlando.

Weber, K. J., R. Eijpe, D. Leijnse and C. Moens, 1972, Permeability distribution in a Holocene distributary channel fill near Leerdam (The Netherlands), Geologie en Miinhouw 51, p. 53-62.

Winterbottom, F. A., 1990, Numerical modelling of a minipermeameter, Unpubl. M. Eng. Thesis, HeriotWatt University, Edinburgh.

Yokokawa, M. and F. Masuda, 1991, Grain fabric of hummocky cross-stratification, Joumal of Geological Society of Japan, 97, p. 909-916.

APPENDIX I

STATISTICAL METHODS

In this section, we review the statistical methods used in reservioir characterisation that are encountered in the main text. Reservoir characterisation, in the definition of Lake (1989a), "seeks to define quantitatively the input data needed to undertake predictions of flow through permeable media". Thus the obvious need for statistics in the summary petrophysical properties and understanding the spatial description of the reservoir for numerical simulation.

As the basis of any discussion of statistics, some terminology needs to be clearly understood. The reservoir unit for which the geologist or engineer is required to infer (or estimate or guess) values can be considered a population. This population may be the entire reservoir (e.g., the Brent reservoir in the North Sea), a subdivision of the Brent (e.g., the Etive, Rannoch) or even a sedimentological entity within the reservoir (e.g., a bedform or lamina type). In each case, the estimate of the population parameter (e.g., mean) by the process of statistical inference will be different.

The geologist usually estimates the population parameter by an appropriate descriptive statistic (e.g., arithmetic average) from a sample. The sample can be a small set of measurements (e.g., core plugs) taken from the reservoir or population of interest. The confidence with which the sample statistic can be taken as an estimate of the population parameter can be quantified.

In the petroleum industry, the samples that are available are generally very small and not necessarily representative. It is common to infer the parameters for an entire reservoir (order $10^{8}-10^{10} \mathrm{~m}^{3}$) from a few cores ($10-10^{2} \mathrm{~m}^{3}$) from which limited samples are taken $\left(10^{-2}-10^{-3} \mathrm{~m}^{3}\right)$. The wells that are cored are often those drilled in "unrepresentative" field areas. Commonly, only the exploration and appraisal wells
(under non-optimum conditions of interval, recovery or mud chemistry) and the first few development wells are cored. These wells are generally located in the crestal areas of the field which, possibly because of variable diagenesis in the hydrocarbon column, are often not representative of the reservoir population as a whole. Cores are rarely taken in the water-legs beneath hydrocarbon accumulations, but aquifer parameter estimation can be as important as parameters for the reservoir and the diagenesis is often different for aquifers.

It is important to recognise that the estimates of the core population parameters (i.e., average horizontal permeability or porosity) should be based on sufficient samples taken from that core. If the core properties are poorly estimated, one can only expect the reservoir properties to be poorly estimated. Geologists and engineers should at least provide good estimates of core populations. The more variable a parameter is, the more samples are required to estimate it - permeability is commonly very variable and therefore most difficult to estimate.

I.1. Measures of Central Tendency

The most commonly used descriptive statistics that are determined from a sample are the measures of central tendency. By 'central tendency' we mean the tendency of the observations (measurements) in a sample to centre around a particular value rather than spread themselves across the range. When required to produce a set of summary numbers that describe our available set of variables, the average is the most easily determined.

The various measures of central tendency are defined and the relative merits of the measures for reservoir characterisation are considered. In this text, mean is the population parameter and average the sample statistic (used as an estimator of the population mean).

APPENDIX I: Statistical methods

I. 1.1. The Arithmetic Average

The arithmetic average of N data is obtained by adding the quantities and dividing by the number of data in the sample. This is commonly expressed mathematically as:

$$
\overline{\mathrm{k}}_{\mathrm{ar}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{k}_{\mathrm{i}}
$$

where k represents permeability.

The arithmetic mean is equally sensitive to all values. The practice of core analysis contractors to optimise the sampling of the "sands" can tend to produced unrepresentative biassed (i.e, systematically erroneous), high values for the arithmetic average.

I. 1. 2. The Geometric Average

The geometric average is determined as the Nth root of the product of N data and is usually written as:

$$
\bar{k}_{\text {geom }}=\left(\prod_{i=1}^{N} \mathrm{k}_{\mathrm{i}}\right)^{1 / \mathrm{N}}
$$

The geometric average of permeability can also be considered as the exponential of the arithmetic average of the natural log of permeability. This is easier to compute, as the product term in the above expression rapidily exceeds the capacity of most computers. It can be written in this form as:

$$
\bar{k}_{\text {geom }}=\exp \left[\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \log _{\mathrm{e}}\left(\mathrm{k}_{\mathrm{i}}\right)\right]
$$

APPENDIX I: Statistical methods

The geometric average is indeterminate in the presence of zero data values and this can cause problems for a sandstone matrix containing shales.

I. 1. 3. The Harmonic Average

The harmonic average for N permeability data is given by:

$$
\bar{k}_{\mathrm{har}}=\mathrm{N}\left(\sum_{\mathrm{i}=1}^{\mathrm{N}} \frac{1}{\mathrm{k}_{\mathrm{i}}}\right)^{-1}
$$

Like the geometric average, the harmonic average is also indeterminate in the presence of zero values.

The inverse of permeability $\left(\mathbf{k}^{-1}\right)$ can be considered as resistance to flow. The harmonic average is therefore the permeability that corresponds to the arithmetic average resistance to flow. It follows that the harmonic mean is sensitive to low values (i.e., large values of \mathbf{k}^{-1}). We have also seen that low permeability, fine grained material commonly occurs in much thinner layers (e.g., micaceous or carbonaceous laminae) than high permeability, coarse grained material (e.g., channel fill sandstones). As a result, even the harmonic average tends to produce an overestimate of vertical permeability.

I. 1. 4. Differences between Measures of Central Tendency

For a "perfectly" normal distribution all the above measures of central tendency will overlie (Fig. I-1). Differences become increasingly marked as the distributions become more skewed. In this latter situation which measure should be used? Skewed distributions (Fig. 4.15) are commonplace in permeability data and estimating a single average measure may not be appropriate.

Figure I.1: Distibutions of measures of central tendency.
Differences in the arithmetic ($\overline{\mathbf{k}}_{\text {ar }}$), geometric ($\overline{\mathbf{k}}_{\mathrm{geom}}$), and harmonic ($\overline{\mathbf{k}}_{\text {har }}$) averages are a function of the sample heterogeneity, and are commonly observed in permeability datasets. The differences are such that always:

$$
\overline{\mathrm{k}}_{\text {har }} \leq \overline{\mathrm{k}}_{\mathrm{geom}} \leq \overline{\mathrm{k}}_{\mathrm{ar}}
$$

The differences can be exploited for permeability as each average is appropriate for different flow conditions (refer to Archer and Wall, 1986):

$\overline{\mathrm{k}}_{\mathrm{ar}}$	bed parallel, single phase flow (i.e., horizontal flow in a horizontally layered, bounded system)
$\overline{\mathrm{k}}_{\text {har }}$	bed series, single phase flow (i.e., vertical flow in a horizontally layered, bounded system)
$\overline{\mathrm{k}}_{\text {geom }}$	single phase flow in a random, 2-D field

The use of the various averages to estimate mean permeability is appropriate only for the specific flow conditions described. Often the averages are used as (poor) estimators under the wrong flow conditions (e.g., two phase flow, wrong dimensions, wrong boundary conditions, etc.), so extreme care is needed here to

APPENDIX I: Statistical methods

select the appropriate average. If the medium is homogeneous, the various averages will be very close in value.

1.2. Measures of Variability

In the previous section we reviewed measures of central tendency. The second class of descriptive statistics that can be used to describe a sample are measures of variability or dispersion. These are commonly used in other areas of data analysis but tend, traditionally, to be overlooked in petroleum engineering (particularly by geologists). As we will see in this and subsequent sections, the measures of variability of permeability can:

-define the level of heterogeneity

-determine the number of samples required
-indicate likely recovery process
-suggest likely flow performance

Because of these reasons, we feel that measures of variability can be equally (if not more) useful than averages. Every estimate of central tendency (of permeability) should be accompanied by a measure of variability.

I.2.1. The Standard Deviation

In statistics, a deviation is a distance from the mean. The mean deviation is thus the average deviation for a sample. The standard deviation (or root mean square difference if the assumed mean in the determination of the latter is the true mean) is given as the positive square root of variance:

$$
s=\left(\sum_{i=1}^{N} \frac{\left(k_{i}-\bar{k}\right)^{2}}{N}\right)^{0.5}
$$

or

$$
\mathrm{s}=\left(\sum_{i=1}^{N} \frac{\mathrm{k}_{i}^{2}}{\mathrm{~N}}-\bar{k}^{2}\right)^{0.5}
$$

Standard deviation has the units of measurement (e.g., mD in the case of permeability).

The lower the standard deviation the less the dispersion or spread of a distribution about the mean. 68% of all the observations in a normal distribution lie within one standard deviation (SD) either side of the mean (± 2 SD and \pm 3SD include 95% and 99.7% of the observations, respectively).

I. 2. 2. The Coefficient of Variation

The standard deviation often tends to increase as the mean increases. An S.D. of 80 mD is a high dispersion for a mean of 100 mD , but a low dispersion if the mean is 1000 mD . A more useful (in reservoir characterisation) absolute measure of dispersion is given by the coefficient of variation, or normalised standard deviation:

$$
\mathrm{Cv}=\text { S.D. } / \overline{\mathrm{k}}_{\mathrm{ar}}
$$

For small samples ($\mathrm{N}<10$), the standard deviation needs to be multiplied by a correction factor (Johnson and Kotz, p. 63, 1970):

APPENDIX I: Statistical methods

$$
\left[1+\frac{1}{4(\mathrm{~N}-1)}\right]
$$

The coefficient of variation is becoming more widely encountered in reservoir description, particularly in probe permeameter studies (Fig. I-2).

Figure 1.2: Coefficient of variation for a range of geological materials. Sources of data for this plot are shown (1) Goggin et al., 1988; (2) Dreyer et al., 1990; (3) Lewis et al., 1990; (4) Kittridge et al., 1991; (5) Jacobsen et al., 1991; (6) Rosvoll, pers.comm.

The Cv has been used to quantify various levels of heterogeneity, widespread use of which will undoubtedly lead to better communication of heterogeneity levels:

$0.0<\mathrm{Cv}<0.5$	Homogeneous
$0.5<\mathrm{Cv}<1.0$	Heterogeneous
$1.0<\mathrm{Cv}$	Very heterogeneous

APPENDIX I: Statistical methods

The comparison of formation by variability and consistent definition of heterogeneity is recommended in reservoir characterisation. Normal distributions have $\mathrm{Cv}<0.5$ (Size, 1987); for $\mathrm{Cv}>0.5$ the distributions become increasingly skewed. Even under the latter conditions, the Cv appears to be a useful statistic. The y -axis on Fig. I-2, a list of geological nomenclature generally increasing in scale, can be deconvolved into combinations of stratal elements at various scales. The further systematic understanding of the hiearchy of stratal elements, their length scales and variability is reserved for future study.

1. 2. 3. Dykstra-Parsons Coefficient

A further measure of variability, developed by the oil industry, recognises that permeability is often \log normally distributed. For permeability that is log-normally distributed, the Dykstra-Parsons coefficient is defined (Dykstra and Parsons, 1950) as:

$$
\mathrm{V}_{\mathrm{DP}}=1-\frac{\mathrm{k}_{\sigma}}{\mathrm{k}_{0.5}}
$$

where $\mathrm{k}_{\boldsymbol{\sigma}}$ is the permeability one standard deviation below the median permeability ($\mathbf{k}_{0.5}$) for a distribution of the logarithm (usually base 10) of permeability. These parameters are best determined by plotting a probability plot for $\log (k)$ and reading off the 50 and 16th percentiles. This graphical procedure for the determination of $V_{D P}$ (for which probability paper is required) is illustrated in Fig. I-3.
$V_{D P}$ is useful because of correlations with waterflood performance (Dykstra and Parsons, 1950) and EOR and common occurence in the petroleum engineering literature.

APPENDIX I: Statistical methods

Figure I-3: Graphical solution of the Dykstra-Parsons coefficient (after Craig, 1971)

The Rannoch Formation in the Statfjord well has $\mathrm{V}_{\mathrm{DP}}=0.54(\mathrm{Cv}=0.7)$ from core plugs. The Rannoch in Thistle, however, because of the carbonate nodules, has $V_{D P}$ $=0.72-0.996(\mathrm{Cv}=1.26-1.48)$. Neither measure of variability gives any measure of spatial variation.

I. 3. Distributions

A distribution is a graphical representation of a set of frequencies (observed distribution) or probabilities (theoretical distribution). Frequencies are presented on a bar chart (histogram) in which the width of the bars are proportional to the class interval and the height of the bars is proportional to the frequency it represents (Fig. I-4).

APPENDIX I: Statistical methods

Figure I-4: Simple histograms

The class interval is the interval between boundaries selected to subdivide the range into a number of (usually equal) "windows". Points falling at the boundaries are systematically included in the class interval below or above.

Probability is a measure of the relative frequency of occurrence of an event. Probability (P) is a number between 0 and 1 . Probability 0 means impossibility, 1 is certainty. Values can be derived from a theoretical distribution or by observation.

For a discrete distribution, probability is defined as:

$$
\frac{\text { number of required outcomes }}{\text { total number of possible outcomes }}
$$

Thus the probability of picking a spade from a pack of cards is $\frac{13}{52}$.

For a continuous variable, the probability is the relevant area under the graph of its prob-ability density function (pdf). The total area under the graph is 1 , i.e., a random variable is certain to lie within the range of its pdf. The pdf's for the variables in the sample hist-ograms above can be derived as the sample size approaches infinity and the class interval approaches zero (Fig. I-5).

Figure I-5: Probability distribution functions underlying the sample histograms

If there are sufficient observations in the sample, the sample histogram can be thought of as an estimate (or approximation) to the underlying variable pdf. For this reason, sample histograms are often referred to as pdf's (strictly, pdf is a population parameter).

The function that gives the cumulative probability or cumulative frequency (i.e., the frequency with which a varible has a value less than or equal to a particular value) of the random variable is known as the cumulative distribution function (cdf) (Fig. I-6).

Figure I.6: Cumulative distribution functions associated with the above pdf's

Cdf's are the form of distributions that are commonly used as the input to Monte Carlo simulation. Random numbers between 0 and 1 are used to derive a number of realisations of the variable cdf (e.g., for porosity, volume, shale length, channel width, etc.). The pdf of the random variable will, with enough realisations, assume the sample pdf. This procedure is the basis for stochastic (random) simulation.

There are major benefits in identifying the form of underlying pdf:
-the pdf is a statistical function that defines the extreme values and the probability of their occurrence.
-non-normal distributions can be transformed to normality if the underlying distribution is known. Parametric methods are appropriate and regression is enhanced for normally distributed variables.
-parametric (i.e., sensitive to the underlying distribution) statistical tests are more powerful. Procedures where we don't know the form of the pdf are called nonparametric.

Distibutions that are not symmetrical are known as skewed. Consider the two pdf's in Fig. I-5, the one on the left is symmetrical whereas the one on the right is positively skewed (i.e., tail - queue in French - to the positive side of the mode). There are a set of power (p) transformations for $1>\mathrm{p}>-1$ which will transform skewed distributions to normality (Jensen, 1987). For $\mathrm{p}=1$ the distribution is already normal, for $p=0.5$, root normal and for $p=0, \log$ normal. These three distributions are common for permeability within reservoir rocks. The test for normality is a straight line on probability paper (plotting $\mathbf{k}, \mathbf{k}^{0.5}$ and $\log (\mathbf{k})$ respectively). While software can be developed to do this for the whole range of p values to determine the straightest line and p to 3 significant figures, recognising that permeability is normal, root normal or log normal is sufficient in most cases.

How far the points can deviate from a straight line will depend on the number of data. For $10-15$ points, the allowable variation can be large. For $100-200$ points the variation about the line should be small. For these reasons a lot of data are required to distinguish between normal and \log normal for $\mathrm{Cv}<0.5$. With increasing skewness, the curvature on probability plots is more apparent and straight lines for the p-transformed variable easier to determine (Fig. I-7).

Figure I-7: Skewness as it appears in normal probability plots.

I. 4. Sample Sufficiency

The issue of sample sufficiency is not usually covered in basic statistical texts or even considered in petroleum engineering. Core plugs, for example, are taken every foot, regardless - because that's the way it has always been done! In fairness to the core contractors, geologists and engineers, this has, historically, been the practical (in terms of cost, core preservation, etc.) sample limit. With the development of probe permeameters, however, we are able to reconsider sample sufficiency and, because probe measurements are relatively cheap and non-destructive, ensure that sufficient samples for our requirements are obtained. This is one of the key advancements with the development of this device.

It is important to realise that the sample requirements for descriptive statistics (i.e., estimating population parameters within specified tolerances) varies with the paramater estimated. For example, the arithmetic average can be much less data hungry than the harmonic average or pdf. Also, we will see that the sample requirements for other statistics measures that depend on spatial position may be quite different.

How do we determine the number or spacing of sufficient samples? A useful concept is the N -zero $\left(\mathrm{N}_{0}\right)$ method proposed by Hurst and Rosvoll (1990). The central limit theorem states that, if independent samples of size \mathbf{n} are drawn from a parent population with mean μ and standard deviation σ, then the distribution of their means will be approximately normal (regardless of the population pdf) with mean μ and standard deviation σ / \sqrt{n}. From this, the probability that the sample mean ($\overline{\mathbf{k}}_{\imath}$) of N observations lies within a certain range of the population mean (μ) can be determined for a given confidence interval. For a 95% confidence level (i.e., only a maximum of five times in 100 will the population mean lie outside that range) the range is given by $\pm t \cdot S E$, where the standard error (SE) is given by S.D. $/ \sqrt{\mathrm{N}}$. (The greater the sample number, N , the more confident we can be about estimates of the mean).

Standard error (SE) is the standard deviation of the sample mean, drawn from a parent population, and is a measure of the difference between sample and population means. Student's t is a measure of the difference between estimated mean, for a single sample, and the population mean, normalised by the SE. For normal distributions the t value varies with size of sample and confidence level, and these values are well known (standard t tables in any basic statistics text). The above can be expressed, mathematically, as:

$$
\operatorname{Prob}\left(\bar{k}_{t}=\mu \pm t \cdot \frac{S D}{\sqrt{N_{t}}}\right)=95 \%
$$

For a sample such that $\overline{\mathrm{k}}_{0} \pm \mathrm{P} \%$ tolerance satisfies the predetermined confidence interval, or:

$$
\operatorname{Prob}\left(\bar{k}_{0}=\mu \pm \frac{P \cdot \bar{k}_{0}}{100}\right)=95 \%
$$

So when this condition is satisfied, $\mathrm{N}_{\mathbf{t}}=\mathrm{N}_{0}$, and:

$$
\frac{\mathrm{P} \cdot \overline{\mathrm{~K}}_{0}}{100}=\mathrm{t} \cdot \frac{\mathrm{SD}}{\mathrm{~N}_{0}} .
$$

Rearranging this gives an expression for the optimum number of specimens, N_{0} :

$$
\mathrm{N}_{0}=\left(\frac{\mathrm{t} \cdot \mathrm{SD} \cdot 100}{\mathrm{P} \cdot \overline{\mathrm{k}}_{0}}\right)^{2}
$$

Now, for $\mathrm{N}>30, \mathrm{t}=2$ and with a 20% tolerance (i.e., the sample mean will be within $\pm 20 \%$ of the parent mean, which is considered to be an acceptable limitation), the expression reduces to:

$$
\begin{gathered}
\mathrm{N}_{0}=\left(\frac{2 \cdot \mathrm{Cv} \cdot 100}{20}\right)^{2} \quad \text { where } \mathrm{Cv}=\mathrm{S} . \mathrm{D} . / \overline{\mathrm{k}}_{0} \\
\mathrm{~N}_{0}=(10 \cdot \mathrm{Cv})^{2}
\end{gathered}
$$

This rule of thumb is a very simple way of determining sample sufficiency. Although derived for the estimate of the arithmetic mean from uncorrelated samples by normal theory, we have found it useful in designing sample programs in a range of core and outcrop studies. Having determined the optimum number of samples, the domain length (D) will determine the optimum sample spacing $\left(D_{0}\right)$ as:

$$
D_{0}=D / N_{0}
$$

An initial sample of 25 measurements, evenly spaced over the domain, which can be a lamina, bedform, formation, outcrop, etc is recommended. If the Cv , determined from this sample, is less than 0.5 , sufficient samples have been collected. If more are required, infilling the original with 1,2 or n samples, will give 50,75 or $25 n$ samples. In this way, sufficient samples can be collected.

The appropriate level of sampling therefore varies as the variability differs. Because formations contain facies of differing variability, some facies will be adequately sampled with lft core plugs, but some thin, highly variable and, possibly, significant facies can be under-sampled. This happens in the Rannoch Formation (Fig. 4.11c) where the critical facies at the Rannoch/Etive boundary in some wells is only 10 ft thick with $\mathbf{C v}=1$. Over 100 samples, therefore, are needed in such an interval and

APPENDIX I: Statistical methods

10 core plugs are obviously insufficient. The core plugs are, however, sufficient over the remainder of the Rannoch.

I. 5. Linear Regression

Linear regression is a statistical technique that is commonly used to explore relationships between two variables. It is most commonly used in reservoir characterisation in the area of petrophysics, where parameters measured in core are related to electric log readings. Linear regression in petrophysics is used for:
-tool calibration (e.g., probe permeameter)

- log calibration (e.g., matrix determination from intercept)
-electric log - core parameter predictors (e.g., density-permeability)

Linear regression is so called because the regression parameters (a, b, c, etc.) are applied as a linear function, i.e.:

$$
y=a+b x+c x^{2}+d x^{3}+\ldots \ldots m x^{n}
$$

Obviously, such an expression (unless the $\mathbf{x}^{\mathbf{2}}$ term and higher powers are zero) is not necessarily a straight line. In the above equation y is known as the response and x the predictor.

Linear regression is generally used to relate measurements (e.g., probe permeameter flow rates or \log densities) to known data (e.g., in both cases, core plug permeabilities) which may themselves be measurements. Both measurements are likely to contain errors giving rise to a scatter when y (ordinate) is plotted against x (absissa) (Fig. I-8). Additionally the relationship between response and predictor may not be a good one.

Figure I-8: Two variables that show a positive correlation.

A linear model would be fitted to this data by a least squares procedure, to give a relationship of the form:

$$
\hat{y}_{\mathrm{i}}=\mathrm{a} \cdot \mathrm{x}_{\mathrm{i}}+\mathrm{b}
$$

where a is the slope and b, the intercept, of the fitted linear model. The best fit is defined by minimising the sum of squares of the residuals $\left(d=\hat{y}_{i}-y_{i}\right)$ (Fig. I-9, also refer to Montgomery and Peck, 1982). Confidence intervals for the slope can be calculated (Jensen, 1991) and help identify outliers. Significance tests of slope and intercept are also available (Montgomery and Peck, 1982).

Figure I-9: Method of least squares for y on x regression

APPENDIX I: Statistical methods

The regression line determined will always pass through the means of the data (\bar{x}, \bar{y}), the point known as the centroid. The coefficient of determination ($\mathrm{R}^{\mathbf{2}}$) can be determined to see what proportion of variability in y is explained by the model. It is defined by:

$$
\mathrm{R}^{2}=1-\frac{\mathrm{SS}_{\mathrm{e}}}{\mathrm{~S}_{\mathrm{yy}}}
$$

where:

$$
\begin{aligned}
& S S_{\text {reg }}=\text { regression sum of squares }=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& S_{y y}=\text { total sum of squares in } y=\sum\left(y_{i}-\bar{y}\right)^{2} \\
& S S_{e}=\text { residual sum of squares }=\sum\left(\hat{y}_{i}-y\right)^{2}
\end{aligned}
$$

and

$$
S_{y y}=S S_{\text {reg }}+S S_{e}
$$

Note that the magnitude of $\mathbf{R}^{\mathbf{2}}$ increases with the steepness of the cloud of points, and R^{2} neither measures the slope of the regression line nor the appropriateness of the model (Jensen, 1991). \mathbf{R}^{2} only determines the proportion of variability in \mathbf{y} explained by the model. Also, R^{2} should only be used with care to compare different models.

Sometimes it is appropriate to determine a zero-intercept model (has been used for probe permeameter calibration, Appendix II). The model is:

$$
\hat{y}_{i}=a \cdot x_{i}
$$

The least squares estimate of the slope is:

$$
\hat{\mathrm{a}}=\frac{\sum\left(y_{i} \cdot x_{i}\right)}{\sum \mathrm{x}_{\mathrm{i}}^{2}}
$$

with

$$
\mathrm{R}^{2}=1 \cdot \frac{\sum\left(\hat{\mathrm{y}}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right)^{2}}{\sum \mathrm{y}_{\mathrm{i}}{ }^{2}}
$$

APPENDIX I: Statistical methods

Note, the no-intercept $\mathrm{R}^{\mathbf{2}}$ (which has the sum of squares about the origin in the denom-inator) and with-intercept model \mathbf{R}^{2} (sum of squares about mean in the denominator) are not comparable.

The residuals between the observed values (y_{i}) and the predicted responses (\hat{y}_{i}) should always be plotted for a regression to see the quality of the model. Each of the regressions in Fig. I-10 would give similar $\mathrm{R}^{\mathbf{2}}$ values but clearly the right one is a poor model.

Figure I-10: Residuals demonstrate the quality of the regression model

I. 6. Spatial Correlation

In reservoir engineering, two autocorrelation functions, the correlogram and the semivariogram, are commonly encountered (Fig. I-11). The former tends to be used to measure the degree of similarity between neighbouring grid blocks in a numerical simulation and the latter to examine the spatial behaviour of permeability in outcrop or core studies. The latter is also used in a mapping procedure known as kriging which has been adopted from the mining industry and has been used (with some success) in the petroleum industry.

APPENDIX I: Statistical methods

Figure 1-11: Characteristic shapes of autocorrelation funcions in the presence of correlation.

The autocorrelation function (ρ) is given by:

$$
\rho(\mathrm{h})=\frac{1}{(\mathrm{~N}-\mathrm{h}) \cdot(\mathrm{SD})^{2}} \sum[(\mathrm{k}(\mathrm{x})-\overline{\mathrm{k}})(\mathrm{k}(\mathrm{x}+\mathrm{h})-\overline{\mathrm{k}})]
$$

where $k(x)$ and $k(x+h)$ are the permeabilities of any two points seperated by lag h and N is the number of pairs of points. As h tends to zero the correlation function tends to unity. A plot of the function against lag is the correlogram.

For comparison, the semivariogram function (γ, referred hereafter as the variogram) is given by:

$$
\gamma(h)=\frac{1}{2 N} \sum[k(x)-k(x+h)]^{2}
$$

at a lag distance h. As h approaches zero the variogram (i.e., variance) approaches zero. Note that the variogram doesn't require an estimate of the mean and is, therefore, more precise than the correlogram.

APPENDIX I: Statistical methods

IDEAL SEMIVARIOGRAM

Figure I-12: Variogram terminology. (From Journal and Huijbregts, 1978).

The variogram has some additional features (Fig. I-12). At some separation (the range) the variogram often approaches the variance of the domain (the sill) and the correlation between points at this separation is zero. If the variogram at the closest separation is away from the origin, a nugget is said to exist, often indicative of measurement inaccuracy. If the variogram at the closest separation approaches the sill, the data are said to be uncorrelated (Fig. I-13, right). On a correlogram, uncorrelated data show the correlation function at or near zero from the shortest separation.

Figure 1-13: Characteristic shapes of autocorrelation functions for random samples

APPENDIX I: Statistical methods

It is important to determine the correlation in a data set, as correlation effectively reduces the amount of information carried by each observation. This can result in additional samples being required. There is a paradox here, because we have seen earlier that N_{0} samples (derived for uncorrelated samples) can give appropriate estimates of mean properties, even though permeability measurements can be seen to be correlated. Although the reason for this paradox is not clear at the present time, it can be demonstrated that correlation in sedimentary rocks exists at several scales. These scales are marked by significant decreases of the variogram at some positive lag distance (holes).

The semivariogram can sometimes reveal "average" periodicities that are represented by a significant reduction in variance at some lag separation greater than the range. Two example variograms from the Rannoch (Fig. I-14) in two different wells show a periodicity at $1.2-1.4 \mathrm{~m}(4-4.5 \mathrm{ft})$. This periodicity is similar to that clearly seen in other minipermeameter intervals and is thought to be related to the (hummocky crossstratified) bedform thickness. This periodicity in sediment can impact fluid flow (Chapters 5,6) and that the holes, therefore, might be used as a diagnostic tool. The significance and value of the detailed semivariogram structure in geology and reservoir engineering requires further study.

APPENDIX I: Statistical Methods

Figure I-14: Periodicity in sedimentary rocks and their variograms

This decrease in variance at certain separations reflects increased correlation and corresponds to the "wavelength" of a lamina or bedform. In this situation, where adjacent measurements come from different laminae (or may be separated by several laminae, each marking a geological event) it is difficult to see how they can be "correlated" despite the shape of the variogram!

Figure I-15: Multiple correlation scales in sedimentary rocks, as shown by the variograms

It can also be seen in Fig. I-15 that each of these scales requires a tailor-made sampling plan, which may require more than N_{0} samples. The presence of multiple correlation lengths in sediments, calls for homogenisation at various scales (i.e, the geopseudo method). Homogenisation should take place at scales above the correlation length (Lemouzy, 1992).

I. 7. Statistical Testing

Statistical tests are useful for the comparison of data sets (Davies, 1973). It is often useful to compare the distribution parameters to see whether samples are drawn from the same population. The confidence with which such distinctions can be made depends on the number of data within each sample. Small differences (e.g., in the means) may be significant if the samples contain large numbers of data. If the samples contain few data the small differences may not be statistically different.

In most statistical tests a hypothesis is proposed (the null hypothesis). The null hypothesis may be that the means of two samples are the same. The statistical test can confirm this (within a given confidence interval) or not. If the null hypothesis is rejected it only says that we cannot be confident that the means are not the same rejection of the null hypothesis cannot prove the means are different. Statistical methods are tools for data exploration and not formulations of scientific laws.

I. 7. 1. The t-Test

The t-test is used to test the equality of means. The null hypothesis is:

$$
H_{0}: \mu_{1}=\mu_{2}
$$

versus the alternative,

APPENDIX I: Statistical Methods

$$
H_{1}: \mu_{1} \neq \mu_{2}
$$

The test statistic is determined as:

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{s_{p} \sqrt{\left(1 / n_{1}+1 / n_{2}\right)}}
$$

where the pooled estimate of polulation standard deviation $\left(s_{p}\right)$ is given by:

$$
\mathrm{s}_{\mathrm{p}}^{2}=\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}^{2}}{n_{1}+n_{2}-2}
$$

If the t value exceeds the value for the appropriate confidence level and degrees of freedom (given by $v=n_{1}+n_{2}-2$) the null hypothesis can be rejected (the means are not the same). If the t value is less than the critical value there is no evidence that the samples are from populations having different means.

The t-test is most efficient for the normal distribution. It is appropriate, therefore, to transform the sample data using the power transformation and carrying out the test on the transformed data

I. 7. 2. The F-Test

The equality of the variances can be tested by the F-test (Davies, 1973). The t-test uses a null hypothesis of equal means whereas the F-test uses a null hypothesis of equal variances. The F-test and \mathbf{t}-test are therefore both needed for the comparison of distributions. The F-value is calculated by:

$$
\mathrm{F}=\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}}
$$

where $s_{1}{ }^{2}$ is the larger variance and $s_{2}{ }^{\mathbf{2}}$ is the smaller. The null hypothesis is now,

APPENDIX I: Statistical Methods

$$
H_{0}: s_{1}^{2}=s_{2}^{2}
$$

and the alternative,

$$
H_{1}: s_{1}^{2} \neq s_{2}^{2}
$$

If the calculated F -value is less than critical value given in statistical tables for a given level of significance (usually 5% or 95% confidence) we would have no evidence for concluding the variances are different. In this study, the t-test and F-test are used to compare measurements of stratal elements from different outcrops (Appendix VII).

APPENDIX II

PROBE PERMEAMETER CALIBRATION

The steady-state probe permeameter measures a stable injection rate of nitrogen at a given pressure. To determine permeability the rate needs to be calibrated for the specific injection pressure. A fixed injection rate limits the operating range of the instrument. In the initial Statfjord study measurements were taken at three injection pressures: 10,90 and 400 mbar . Each of two probes required calibration at these injection pressures. A series of measurements on homogeneous plugs (from a reference collection) were taken as the basis for these empirical calibrations (Halvorsen and Hurst, 1990). These empirical calibrations are discussed and compared with a published analytical model (Goggin, 1988). These empirical calibrations appear to work well over a single order of magnitude permeability variation.

In the Thistle study, a more sophisticated probe operating method was employed. The operating pressure was allowed to vary so that the injection rate settled within the "linear" regime (i.e., at rates above the region of slippage and below the region of nonlinear effects). The optimum injection rate of between 10 and $500 \mathrm{ml} / \mathrm{min}$ was selected (C. Halvorsen, personal communication). In this case, a Statoil calibration curve, in which the effects of pressure changes were accounted for, provides a single $k \cdot Q / P$ relationship. This seems a pragmatic solution to the practical problems associated with core permeabilities varying over two or more orders of magnitude. The method is very amenable to automated control.

The published analytical solution (Goggin, 1988) has been noted by several authors to give similar results to the empirical calibration curves (Halvorsen and Hurst, 1990: Robertson and McPhee, 1990), however, care must be taken to ensure that the tip geometry is carefully measured for the relevant application pressure.

APPENDIX II: Probe permeameter calibration

At the present time, the recommended calibration procedure is by measurement of homogeneous plugs of known permeability (Sutherland et al., 1990). This study would confirm that careful calibration and care in the determination of permeability are timeconsuming but unavoidable practices. The depth rationalisation and permeability determination for the Statfjord pilot study took several months.

I.1 Empirical Calibration

A number of regression models (Appendix I) were considered for the calibration of the Statfjord probe data using measurements for constant injection pressure on homogeneous plugs (Appendix X.1.a). A free regression linear model, a linear model fixed at the origin (no intercept), a power law and a quadratic model were all considered. The linear no intercept model was considered to give the most appropriate fit (Fig. II-1).

Figure II-1a: Empirically-derived calibration curves for the large probe (LP1).

There were no significant deviations from a linear relationship to suggest that the linear Q:k Darcy relationship did not hold. There were also no significant intercepts on the free regression lines. The calibration lines were used to derive the permeability data listed in Appendix X.

Figure II-1b: Empirically-derived calibration curves for small probe (SP1).

Further analysis suggested that a regression model derived from a line of unit slope on a \log-log plot would give a linear relationship with a more uniform error model. The conversion factors derived from the two empirical methods are compared in Table II-1. Differences between the two approaches are less than 15%. Conversion factors derived
from these empirical methods are compared in the following section with the analytical solution.

Probe	Pressure	Factor	Factor	Percent.
	(mbar)	(lin-lin)	(log-log)	Difference
LP1	10	18.9	18.7	+1
	90	2.65	2.36	+12
SP1	10	32.7	33.5	-2
	90	5.17	4.53	+14
	400	0.85	0.77	+10

Table II-1: Empirically-derived conversion factors for probe flow rates to permeabilities.

The linear relationships seen in Fig. II-1 will not hold in regions where gas slippage or inertial effects become significant. Gas slippage effects occur in low permeability media because, unlike fluids, gases are not constrained by a zero velocity layer at the pore wall. The amount of slippage is determined by the mean free path of the molecules and is greatest at low pressures. Thus flow rates, and hence air permeabilities, measured at low pressure in low permeability rock will be higher than those measured at higher gas pressures or those obtained with liquids. The Statoil probe permeameter operates at lower pressures (<1 bar) than is usual in the Hassler cell plug apparatus (>1 bar). On a plot of probe permeameter flow rate versus Hassler cell permeability, the data would plot below a straight line through the origin at low rates particularly for low pressures (e.g. 10 mbar) if significant slippage effects were present. This does not appear to be the case in Fig II-1. If slippage effects are identified the appropriate Klinkenberg correction for liquid permeability at the operating pressure
must be employed. By operating outside the region of slippage, the gas permeabilities should be close to liquid permeabilities.

At increasing flow rates, non-laminar, non-Darcy flow may become important. These non-laminar effects are a result of the complex geometry of the pore network (in addition to "true turbulence" that will occur in smooth straight pipes at high flow rates) in reservoir rocks and a function of porosity, permeability, pore shape, pore connectivity, pore roughness and heterogeneity (Noman and Archer, 1987). Inertial effects can be apparent prior to the onset of true, eddying, turbulent flow (Firoozabadi and Katz, 1979; Ezeudembah and Dranchuk, 1982) and are most likely to occur at high velocities and/or small pore radii. The effect of non-laminar flow is seen as a reduced flow rate, compared to that expected for laminar flow, for a given pressure and permeability. A series of measurements taken at increasing pressures on the same homogeneous plug should demonstrate where non-laminar flow effects become a significant factor.

In considering high velocity effects and calibration, it is important to bear in mind the velocity of the injected gas. At $550 \mathrm{ml} / \mathrm{min}$, the velocity of injected gas at the probe/rock interface is approximately 35 to $90 \mathrm{~cm} / \mathrm{s}$ for the large and small probes respectively. Data from the department's core analysis manual suggests the velocities in a Hassler cell plug are often lower ($20 \mathrm{cc} / \mathrm{s}$ is equivalent to an injection rate of 4 cm / s into a 1 " plug). Non-laminar flow is then potentially more likely to be encountered with the probe permeameter. Calibration curves derived from real plugs have high velocity flow effects "built-in", at least over the range of measured flow rates. Providing the nature of the pores (porosity, tortuosity, etc.) in the rock under investigation is similar to the calibration plugs, reasonable determination of permeability can be expected.

In the Thistle study, the greater quantity of sampled core meant that the selection of specific injection pressures would not be practical. Instead, the device was programmed to select a variable injection pressure that ensured a reasonable flow rate

APPENDIX II: Probe permeameter calibration
$(10-500 \mathrm{ml} / \mathrm{min})$. This operating mode required a different calibration curve. A relationship was derived for the probe (SP2) from calibration data (Appendix X.2.a) on a plot of normalised permeability against flow rate (Fig. II-2). In this way, the effects of varying pressure could be incorporated. This method is similar to a procedure used in the department where k is plotted against Q / P (Jarvis et al., 1992).

Figure II-2: Empirically-derived calibration curves for small probe (SP1). After Christian Halvorsen (personal communication).

In these data, there is non-linearity for flow rates below $10 \mathrm{ml} / \mathrm{min}$ and above $500 \mathrm{ml} / \mathrm{min}$ suggesting that flow rates within this range follow the linear Darcy relationship. The curve shown was used to determine the permeabilities in the Thistle study.

II.2. Analytical calibration

The analytical solution proposed by Goggin (1988), which has been derived from the Darcy equation, has also been used to calculate permeability from the flow rates, pressures and tip geometries. In the formulation:

APPENDIX II: Probe permeameter calibration

$$
k=\frac{2 Q \mu P_{I}}{a G\left(P_{I}^{2}-P_{O}^{2}\right)}
$$

k is the permeability $\left(\mathrm{m}^{2}\right), \mathrm{Q}$ is the flow rate $\left(\mathrm{m}^{3} / \mathrm{s}\right), \mu$ is the nitrogen viscosity $(\mathrm{Pa} s), \mathrm{P}_{\mathrm{I}}$ is the injection pressure $(\mathrm{Pa}), \mathrm{P}_{\mathrm{O}}$ is the atmospheric pressure (Pa), a is the internal tipseal radius (m) and \mathbf{G} is the geometrical factor appropriate for the tip and sample dimensions (Goggin, 1988). P_{I} in the numerator occurs in this formulation as the reference pressure for the rate measurement (Halvorsen and Hurst, 1990). This equation can be solved for the probe tips and injection pressures used in the Statfjord study. The correct seal size for the appropriate application pressure (0.5 atm) was determined by measuring the imprint made by the ink-covered seal under that application pressure (Halvorsen, personal communication). Details of geometry and geometrical factor (from Fig. 5, Goggin, 1988) are as follows:

$$
\begin{aligned}
& \mathrm{LP} 1: \mathrm{d}_{\mathrm{I}}=0.59 \mathrm{~cm}, \mathrm{~d}_{\mathrm{O}}=1.05 \mathrm{~cm}, \mathrm{G}=5.25 \\
& \mathrm{SP} 1: \mathrm{d}_{\mathrm{I}}=0.36 \mathrm{~cm}, \mathrm{~d}_{\mathrm{O}}=0.79 \mathrm{~cm}, G=4.95
\end{aligned}
$$

The Goggin (1988) analytical solution simplifies to $\mathbf{k}=F . \mathrm{Q}$ (where the conversion factor, $F=\frac{2 \mu \mathrm{P}_{\mathrm{I}}}{\mathrm{aG}\left(\mathrm{P}_{\mathrm{I}}^{2}-\mathrm{P}_{\mathrm{O}}^{2}\right)}$) for comparison with the factors derived by regression (Table II-2). In this simplification of Goggin's model, the injection pressure has been assumed constant and non-linear corrections ignored.

In general, the empirical and analytical conversion factors are in close agreement for the lower pressure rating, but diverge at higher pressures. This suggests that some nonlinear effects may be present in the data acquired at higher pressure. The steeper slope seen in the calibration data can, therefore, be explained by non-laminar effects that are not accounted for the above simplification of Goggin's model.

APPENDIX II: Probe permeameter calibration

Probe	Pressure	Regression	Regression	Goggin	\%age Diff. (lin-lin)	\%age Diff.
	(mbar)	$F(\operatorname{lin}-\operatorname{lin})$	$F(\log -\log)$	F		
LP1	10	18.9	18.7	18.7	+1	0
	90	2.65	2.36	2.00	+33	+18
SP1	10	32.7	33.5	32.6	$<+1$	+3
	90	5.17	4.53	3.48	+49	+30
	400	0.85	0.77	0.68	+17	+13

Table II-2: Comparison of empirical and calculated conversion factors.

A maximum 50% difference between the empirically- (linear-linear regression) and theoretically-derived probe permeameter permeabilities may not be significant when order of magnitude variations are being measured. The closer agreement between the log-log regression and theoretically-derived coefficients (maximum difference 30\%) supports the use of this approach, and, for this data set, would result in lower probe permeabilities and increased differences with the core plug data. Calibration is not responsible for the differences between probe and plug discussed in Chapter 4 (Section 4.3).

APPENDIX III

THE PROBE VOLUME OF INVESTIGATION

The volume of investigation of the probe is a subject of much interest to all involved in the interpretation of probe data. Numerical studies show this to be limited to a few aperture diameters (Goggin, 1988). The limited volume of investigation appears to conflict with the experimental observation of "bubbles" exiting a (water saturated) block a large distance (several centimetres) from the injection point. In this study, numerical simulations (using ECLIPSE) black oil simulator were carried out to investigate the volume of investigation further. In particular, the effects of a no permeability boundary (i.e., resin) a short distance from the tip were an initial concern.

III.1. ECLIPSE Model Study

Two previous computer model studies have considered the depth of investigation of the probe permeameter under various boundary conditions and tip geometries (Goggin, 1988; Daltaban and Lewis, 1989). This present study was initiated to see whether an "industry standard" simulation package could be used to model the probe permeameter and, in particular, to evaluate the depth of investigation and the effects of an impermeable boundary layer a short distance into the rock beneath the probe (i.e., under the appropriate boundary conditions for the data acquisition in this study). The core slab on which our probe permeameter measurements were taken had previously been resinated to preserve the core and only ca. $0.75-1.0 \mathrm{~cm}$ of the slab remained unimpregnated. It was observed that the impregnation was significantly greater in the coarse grained, high permeablity Etive material. Impregnation into the fine grained Rannoch was generally 2 mm or less.

APPENDIX III: The probe volume of investigation

III.1.1 Model Construction and Operation

A two-dimensional, radial model was constructed using ECLIPSE (ECL, 1988). For the purpose of this study, a single phase fluid and an homogeneous, isotropic medium were considered sufficient to model the effects of a zero-permeability layer at a nonzero distance below the injection surface.

Grid dimensions were varied during the development of the model and an intermediate, simplified grid construction is shown in Fig. III-1. The ECLIPSE input file can be referred to in Appendix VIII. The final model (which included additional cells to model the probe) has 294 blocks. Gas injection into an inner boundary cell, with adjacent radial cells set to zero porosity and zero permeability, was used to simulate the permeameter probe. The injected flow was thus constrained to enter the "core" and escape to the "atmosphere" from the "core" surface outside the area of the tip seal. The "atmosphere" was drained by a "producer" at distance from the "core" and the volume injected balanced with the volume produced to simulate steady state conditions.

To ensure the injection pressure was uniform over the injected surface, the injection cell was further subdivided into 5 cells with radii chosen to normalise the flux, using the curve published by Goggin et al. (1988, their Fig. 4). High transmissibility from the injected cell to the top layer of the "core" ensured that the pressure drop from injector to the "core" (at the core surface) was minimal.

Operation of the model was controlled by varying injection rates and "core" permeabilities and monitoring the resulting pressure in the injection cell.

III.1.2 Model Results

A series of model runs using the injection rate and permeability data for the large probe (LP1) were used to validate the model. For the flow rates and corresponding permeabilities measured, the model was used to predict the injection pressure. The

APPENDIX III: The probe volume of investigation

ECLIPSE model pressures were then matched against the probe permeameter operating pressures (10 and 90mbar gauge) and values calculated from the Darcy equation (Fig. II-2). In the ECLIPSE model, the rates measured at atmospheric pressure were corrected to the operating pressure $\left(\mathrm{P}_{\mathrm{O}} \mathrm{Q}_{\mathrm{O}}=\mathrm{P}_{\mathrm{I}} \mathrm{Q}_{\mathrm{I}}\right)$.

Figure III-1: Schematic illustration of the ECLIPSE probe permeameter model grid.

Figure III-2: ECLIPSE probe permeameter model pressure match

The pressure match shows:

1. As expected, a close match was obtained between the ECLIPSE model and "Darcy" equation of Goggin (1988). This was expected since the ECLIPSE model is also a formulation of the Darcy equation.
2. A good match was obtained between measured and simulated data at 10 mbar , again supporting the observation that those data were acquired under linear, Darcy flow conditions (Appendix II, p. vi).
3. A poorer match was obtained with the measured data at 90 mbar , with the modelled pressures tending to be lower than those measured. In fact it is the flow rates that are varied in the operation of the probe permeameter, so the model would predict a higher flow rate for the 90 mbar operating pressure. This, coupled with the observation that the mismatch tends to increase with permeability, suggests that nonlinear, high velocity effects are present in the calibration data.

The validation study concluded that the ECLIPSE model was a good representation of the linear flow regime and could be used to examine the effects of core resination and
pobe depth of investigation. The main purpose of this modelling exercise was to examine the effects of a zero-permeability layer, within the "core", a short distance from the probe tip. This was accomplished by progressively setting the lowest grid blocks in the "core" to zero permeability. The respective change in injection pressure at each step was recorded. The results are presented both in terms of absolute distance (Fig. III.3a) and dimensionless distance (Fig. III.3b). It is apparent from these figures that at 0.75 cm (i.e., a dimensionless thickness normalised to the inner probe radius of 2.5 and 4.2 for SP1 and LP1 respectively) the effects of a zero permeability layer are minimal ($<5 \%$) for both probes. It is also apparent that the effective depth of investigation is a function of the inner probe radius, with the larger probe having a deeper investigation. These model results predict that there should be minimal effects caused by the resin and, if apparent at all, should be seen as a relatively lower permeability by the larger probe in comparison to the small probe, as a result of the former's deeper investigation.

Figure III-3a: Modelled probe permeameter response to an impermeable boundary at an absolute distance from the probe tip

APPENDIX III: The probe volume of investigation

Figure III-3b: Modelled probe permeameter response to an impermeable boundary at a dimensionless distance from the probe tip.

These model results also suggest that the effective depth of investigation, in an homogeneous system, is somewhat less than the four-times inner probe radius quoted by Goggin et al. (1988). The pressure disturbance around the probe permeameter is illustrated in Fig. III-4 and the effective radius of the high pressure gradient can be seen to approximate the outer seal radius.

Figure III-4: Pressure disturbance around the probe permeameter tip.

APPENDIX III: The probe volume of investigation

The pressure contours (at an interval of 5mbar above atmospheric) are approximately 5% of the " $90 \mathrm{mbar"}$ injection pressure. If the injection pressure is increased ten-fold, the same absolute pressure rise (5 mbar) will occur deeper into the "core", but the percentage pressure change (and thus percentage flows through the plug) will remain unchanged. Thus the depth of investigation in a homogeneous system will not change with increasing injection pressure. This is again a manifestation of the linearity of Darcy's law. Figure III-4 illustrates the limited depth of investigation of the probe permeameter.

The modelling work presented here and the development of this study (Winterbottom, 1990) conclude that the effective (or significant) volume of investigation is a small factor (two times) of the internal aperture diameter. The bubbles exiting the core at some distance from the injection point, that were discussed at the start of this appendix, represent a small volume of the nitrogen injected. The minimum pressure drop as the gas exits the core will not be registered by the probe. The majority of the gas vents to the atmosphere in the immediate region of the tip seal.

APPENDIX IV

CAPILLARY PRESSURE

The measurement of capillary pressure in reservoir rocks is one of the few direct measurements of the system that contains the reservoir fluids (i.e., the pores and pore throats). It is very rare, however, that systematic capillary pressure characterisation of a reservoir is carried out. There is a widely held belief in the engineering community (various practicing reservoir engineers, personal communication) that capillary pressure is not significant to the quantification of reservoir fluid flow in waterflooding of unfractured reservoirs.

Historically, therefore, because capillary pressure measurements are expensive and time consuming to make, only a few samples are measured. In this study, only one of the fields described (Thistle) had a reasonable range of capillary pressure curves for the Rannoch Formation. These were drainage curves (see the following section), imbibition curves were even rarer, however, three were available from Cormorant Field. Interestingly, drainage capillary pressure curves are also a primary tool of the sedimentologist, however, the data acquired by the different disciplines are rarely integrated.

In this section, the capillary pressure data for the Rannoch Formation are interpreted in the light of a wider appreciation of a fundamental geological control. All the data discussed in this section are for core plugs. Whilst these are assumed to be from homogeneous plugs (following the industry convention), no systematic analysis or measurement of sub-core plug capillary pressure heterogeneity was possible because of the lack of a suitable device.

APPENDIX IV: Capillary pressure

IV. 1 Definition of Drainage and Imbibition Capillary Pressure Curves

The displacement of an occupying fluid in a pore space by a second (immiscible) fluid will be controlled by the relative wettabilities of the two fluids to the rock. The pressure required to displace the wetting fluid in the largest pores is equivalent to the threshold capillary pressure. A plot of saturation versus the pressure required to displace fluid from ever decreasing pore sizes is known as a capillary pressure (Pc) curve (Fig. IV-1). If this curve describes a decrease in wetting phase saturation it is known as a drainage curve.

Figure IV-1: A capillary pressure curve. This curve represents the injection pressure required for a non-wetting phase (e.g., oil) to invade a 100% waterbearing interval (e.g., as a reservoir fills with oil over geological time) which is water-wet. The inset shows how the shape of the capillary pressure curve depends on the distribution of pore sizes.

The pressure required to displace the wetting phase (i.e., the liquid phase that for reasons of fluid or rock chemistry is preferentially attracted to the rock surface) increases as the pore and pore throat sizes decrease. The Pc curve in a rock with a uniform pore

APPENDIX IV: Capillary pressure

distribution shows a sharp bend in the region of the threshold pressure for the respective pore thoat size. A range of pores and, hence, pore throats and threshold pressures in a rock gives rise to a more gentle curve. This curve is typically measured in the laboratory by air displacing brine or mercury displacing air. The Rannoch Formation, like most reservoirs is not uniquely water-wet, but generally thought to be moderately water wet (K. Sorbie, personal communication). A series of drainage Pc curves for a range of reservoir rocks is shown in Fig. IV-2.

Sandstone cores		
Curve	Total letter porosity	Permeability to air,
	$\%$	md
a	17	285
b	12	8
c	19	13
d	14	3
e	32	30
f	20	1
g	12	0.5
h	11	0.3
i	28	2
f	25	0.4
h	15	0.3
l	25	0.1

Figure IV-2: Capillary pressure curves for typical reservoir rock types (from Timmerman, 1982).

These curves show a range of curve forms; the higher permeability rocks tend to be better sorted than the low permeability rocks. These curves are not from a single reservoir,

APPENDIX IV: Capillary pressure
however, a similar range of curves can be expected from a single heterogeneous reservoir.

As the measurement process is reversed, the wetting phase is imbibed, however some of the displacing fluid remains trapped in individual, small pores and the capillary pressure curve displays hysteresis (Fig. IV-3). The residual oil trapped in the pores is a measure of the microcopic sweep efficiency.

Wetting phase saturation (Sw)

Figure IV-3: Capillary pressure hysteresis. After a displacing fluid has entered the pores it is not possible to completely flush the invading fluid out. A residual saturation $\left(\mathrm{Snw}_{\mathrm{r}}\right)$ will remain trapped in the smaller pores.

As the original water filling the reservoir is displaced by migrating oil, drainage of the water phase is said to occur. In this situation, the water is known as the wetting phase and remains as a coating of the grain surfaces. The reversal of this process, as water displaces oil (e.g., during a waterflood) is considered an imbibition process, because water saturation increases. Oil, in this situation, is the non-wetting phase and is located in the centre of the pores.

IV.2. Capillary Pressure Distribution in Reservoirs

In a reservoir containing oil and water, the buoyancy of the oil gives rise to a pressure difference between the oil and water phases (Fig. IV-4). This pressure, at equilibrium conditions, is equal to the capillary pressure (Pc). The saturation can also be plotted against depth (i.e., a function of Pc and the density difference between the liquids). Reservoir rock close to the oil-water contact that is not at connate (i.e., immoveable) water saturation is considered to be in a transition zone ($1-\mathrm{S}_{\mathrm{nwr}}<\mathrm{Sw}<\mathrm{Sw}_{\mathrm{irr}}$). In poor quality reservoirs, this transition zone can be of a significant thickness, whereas, in a very good quality reservoir, little or no transition zone is seen. In reservoirs, several interbedded rock types, with different pore distributions and different Pc curves, can give rise to a more variable saturation profile in the transition zone (Fig. IV-4). The scale of these electric log saturations is considerably larger than the core plug measurements and therefore represent some average of the latter.

Figure IV-4: Static water saturation distribution in a homogeneous reservoir. Pressure gradients shown.

Figure IV-5: Static water saturation distribution in a layered reservoir, where the capillary pressures of the interbedded reservoir rocks varies.

In reservoir simulators, the initial hydrocarbon saturations and, hence, hydrocarbons-inplace, are determined from the height above the hydrocarbon-water contact. Choosing the correct "average" capillary pressures can, therefore, have a major impact on the determination of hydrocarbon volume in place.

IV.3. Rannoch Formation Drainage Capillary Pressure Curves

A set of drainage capillary pressure was obtained for the Rannoch Formation in the Thistle Field. These data had been measured in the laboratory using an air-brine system. The data were converted to field conditions using the Leverett J-curve procedure described in Archer and Wall (1986), with $\sigma \cos \theta=72 \mathrm{dyne} / \mathrm{cm}$ in the lab and 26 in the field. These data (Fig. IV-6) show a range of Pc curves, for the $187-0.97 \mathrm{mD}$ plugs measured, describing a systematic variation in pore throat geometry.

The Leverett J-function can also be used to scale a Pc curve for a measured k / ϕ to another k / ϕ. However, the form of the J-curves generated from the above data show differences,

APPENDIX IV: Capillary pressure

suggesting the simple capillary bundle modelled by the Leveret J -function is too simple for the Rannoch Formation (Fig. IV-7).

Figure IV-6: Laboratory drainage Pc measurements for a series of Rannoch

Formation (Thistle Field) core plugs, transformed to field units using the Leverett J-curve. Figures in key are permeabilities (mD).

Figure IV-7: J-curves generated from the Rannoch laboratory data shown in
Figure IV-6.

APPENDIX IV: Capillary pressure

As a result of this, a family of curves generated from one of these J-curves does not fully represent the lab data (Fig. IV-8).

Figure IV-8: Families of drainage capillary curves generated from a) 150 mD and b) 59 mD Rannoch core plugs (refer to Fig. IV-6).

The J-curve models show that the J-curve does not, in the simplest form (Archer and Wall, 1986), account for systematic variations in connate water saturation. The clustering of Pc curves, however, for permeabilities above 100 mD suggests that capillary contrasts in relatively high permeable rocks are not severe.

APPENDIX IV: Capillary pressure

From the probe permeameter and core plug data in the Rannoch Formation, a relationship between k and ϕ has been determined $(\phi(\%)=12.698+2.11 \ln (\mathrm{k}(\mathrm{mD}))$, refer to Fig. 5.2). This relationship can be used to reduce the number of variables in the Leveret J function (i.e., the $[\mathrm{k} / \phi]^{0.5}$ term) and to generate a more systematic suite of capillary curves (Fig. IV-9).

Figure IV-9: Systematic Pc curves for $1-750 \mathrm{mD}$ generated using a J-function.

The lab data shown in Figure IV-6 show a systematic variation in connate water (S_{wc}). A relationship between permeability and connate water has been determined ($\mathrm{S}_{\mathrm{wc}}=0.6$ $0.165 \log (\mathrm{mD})$, Fig IV-10) which is consistent with other published examples (Fig. IV11).

This relationship has been used to generate a set of curves for appropriate permeabilities for use in the Rannoch simulation studies (Fig. IV-12). The drainage curves have been truncated at a residual oil $\left(\mathrm{S}_{\mathrm{or}}\right)$ of 25%, the implications of which will be discussed later. There is further potential for parameterising the J-curve function for the Rannoch and combining with the ϕ / k and $\mathrm{S}_{\mathrm{wc}} / \mathrm{k}$ relationships to develop an improved set of Pc curves. This work is beyond the scope of the current study and has been reserved for future work following the acquisition of additional Rannoch data sets.

APPENDIX IV: Capillary pressure

Figure IV-10: Connate water - permeability relationship for the Rannoch Formation, Thistle Field.

Figure IV-11: Connate water - permeability relationships for various formations. (After Amyx et al., 1960). Dashed line is relationship shown in IV-10.

Figure IV-12: Capillary pressure curves generated for the Rannoch Formation using the Leverett J-function, connate water, permeability and porosity permeability realtionships determined from analysis of available petrophysical data.

Imbibition curves are required for the numerical modelling of a waterflood (i.e, an imbibition process in the Rannoch Formation) so we need to further consider imbibition Pc data.

IV. 4. Rannoch Formation Imbibition Pc Curves

Imbibition of the wetting phase occurs as the capillary pressure is reduced to zero (Anderson, 1987). Imbibition data, however, are difficult to obtain for the Rannoch Formation. Few operators appear to spend the time and effort to acquire useable imbibition Pc data. Nevertheless, drainage/imbibition data for three Rannoch samples in the Cormorant Field were provided by the operator (Fig. IV-13). The drainage curves are compatible for the similar reservoir quality rock described in the above drainage data from Thistle Field, indicating transportability of capillary curves within the Rannoch

Formation (Fig. IV-14). In Fig. IV-14 the drainage curves measured for the Rannoch at 133 mD in two fields is very similar.

Figure IV-13: Rannoch drainage/imbibition capillary pressure curves from Cormorant Field

Further work is needed to show how variable, in terms of Pc, rock of the same permeability is in the same reservoir unit. With the data currently to hand, a single suite of capillary curves for the Rannoch Formation seems appropriate.

Figure IV-14: Comparison of Cormorant Field drainage capillary pressures with those from Thistle Field in the Rannoch Formation.

The imbibition curves show a trend of reduced connate water with increasing permeability, as was seen in the corresponding drainage data (Fig. IV-15), the latter also showing a trend consistent with the Thistle data.

Each of the imbibition curves in Fig. IV-15 converge to a similar non-wetting saturation at zero Pc. Forced imbibition data for these samples are not available. These data indicate that, for the range of permeabilities seen (which is very limited, $133-489 \mathrm{mD}$, given the full range of Rannoch Pc curves in Fig: IV-6), a constant $S_{\text {or }}$ can be expected. It is not likely that this is the case (Anderson, 1987) and suggests that the data reflect strongly water wet (Fayers, personal communication) laboratory conditions. A need for a more systematic study of spontaneous and forced imbibition for a wider range of permeabilities is needed to resolve this issue. A relationship for $S_{\text {or }}$ with $S_{w c}$ (Lake 1989b, p. 53) needs to be determined for the Rannoch Formation.

Figure IV-15: Comparison of drainage and imbibition capillary curves for Cormorant Field Rannoch Formation.

The situation under study here (i.e., waterfloods of laminated sediments) is the trapped non-continuous, oil phase remaining in the relatively high permeability laminae as the Pc in the low permeability laminae goes to zero (oil-phase largely disconnected). This capillary-trapped oil, by the laminae, is thought to be more significant in some stongly laminated than the capillary-trapped oil in individual dead-end pores.

The "correct" Pc curves (i.e., those within the appropriate Sw at zero Pc on the imbibition cycle) for use in the waterflood simulations cannot be determined from the available experimental data. The truncated drainage curves, however, are thought to represent the correct trapping mechanism at the lamina scale. Simulated waterfloods in the laminated sediments were therefore conducted using a suite of curves generated from

APPENDIX IV: Capillary pressure

the above imbibition data from the J-curve scaling procedure and a constant $\mathrm{S}_{\text {or }}$ (Figs. IV-16). The pseudos resulting from these simulations showed less capillary trapping and less anisotropy in the high mica lamination than was observed with the truncated drainage curves (Fig. IV-17). The physical trapping of oil in laminae has been experimentally observed (Robertson and Caudle, 1971) and the truncated drainage curve results are considered to be representative simulation of the phenomena, although additional careful experimental work (e.g., laboratory waterflooding of laminated sediments, forced imbibition measurements) is clearly needed. The "correct" curves are thought to lie between these extremes as the available experimental data suggests that the lamina trapping phenomena occurs in real rocks.

The geopseudo methodology provides an elegant method for averaging Pc curves, providing a volume-weighted isotropic effective Pc. It seems unlikely that experimental measurement of Pc across and along lamination would provide such isotropic data as the numerical results suggest. The systematic measurement of Pc, however, in laminated sediments with a variety of boundary conditions remains a major undertaking for further sudy.

Figure IV-16: Family of J-curved derived imbibition capillary pressure curves for a range of Rannoch permeabilities.

APPENDIX IV: Capillary pressure

Figure IV-17: Performance and pseudos for high-mica lamination (fine grid A,
Fig. 4.8, middle) using truncated drainage and scaled imbibition Pc curves.
(Refer to Chapter 5 for details of the method of generation of these data).

APPENDIX V

RELATIVE PERMEABILITY

Two-phase flow occurs in petroleum reservoirs when two, immiscible, fluids are moving together through the pore space. The ease with which each phase moves through the rock will depend on the saturation of each phase and its distribution within the pores. The latter is controlled by the wettability. If a reservoir is water-wet there will be a continuous water film on the surface of the grains. In oil wet reservoirs the water is concentrated in the centre of the pores. The relative permeability to oil (in the presence of water) and water (in the presence of oil) are examined in the moderately water-wet conditions encountered within the Rannoch Formation.

V.1. Relative Permeability and Wettability

Relative permeability is the fraction of absolute permeability (as measured by a single phase) resulting from more than a single fluid occupying the pore space. Water and oil sharing the same pores inhibit each others flow. The relative permeability curves for wetting and non-wetting phases are plotted against wetting phase saturation (Fig. V-1).

In a water wet reservoir at connate water saturation $\left(\mathrm{S}_{\mathrm{wc}}\right)$, the relative permeability of oil (e.g., 0.8) is usually less than it would be if only oil were occupying the pore spaces (i.e., 1.0). This is due to the effective pore throat size being reduced by the water film on the grain surfaces. At $S_{w c}$ the water is immobile. As the water saturation increases, the relative permeability to oil decreases and, to water, increases. The relative permeability to water becomes higher than that to oil. At residual oil saturation (S_{or}), the permeability to oil becomes zero but, because the oil remains in the centre of the
pores (Fig. V-2, Fig. 5.12), the relative permeability to water is significantly reduced from the absolute permeability.

Figure V-1: Relative permeability curves: kr (nw) is the non-wetting (oil) phase relative permeability curve, $\mathrm{kr}(\mathrm{w})$, the wetting (water) phase curve.

In a water-wet rock, the presence of residual oil in the centre of the larger pores reduces the relative permeability to water when compared to an oil-wet rock (Fig. V-2).

Figure V-2: Water displacing oil from a pore during a waterflood and the appropriate relative permeability curves for a) strongly water-wet rock and b) strongly oil-wet rock (from Anderson, 1990).

APPENDIX V: Relative permeability

The relative permeability curves map the changes in permeability of each phase as the fractional saturation of each phase changes. This change in saturation occurs as the interface between the water and the oil moves through the reservoir.

V.2. Relative Permeability and Lamination

Early laboratory work showed how stratification affected the relative permeability of gas and oil (Corey and Rathjens, 1956). At the time, however, it was not possible to predict how the stratification (i.e., lamination) would affect over-all performance of an oil field because of the limited reservoir description available at the time. Thirty years later, these experiments remain the only notable published study of the affect of lamination on relative permeability (Hornapour et al., 1986). The affects on the large scale reservoir remain to be investigated. No effective description, however, of the lamination within reservoirs has been available until the development of the probe permeameter. This study investigates the field scale effects of lamination for the first time.

V.3. Numerically Generated Relative Permeability Curves

There are many laboratory issues to be taken into account in the measurement of relative permeability, primarily:

- the sample representivity,
- the correct preservation/restoration of the in-situ wettability,
- the measurement of bulk saturations during the flooding experiment.

Most relative permeability experiments are carried out on whole core samples that are judged to be homogeneous. Strongly laminated samples are avoided. The inevitable

APPENDIX V: Relative permeability
presence of weak lamination within whole core samples, however, will affect the relative permeability experiment. For these reasons, it is unlikely that a single experiment will suffice to characterise the reservoir. The cost and selection of average relative permeability curves from many experiments means that few samples are ever investigated.

For these reasons the industry tends to use numerical approximations for what are considered to be the appropriate wettability conditions. Corey and Rathjens (1956) parameterised the relative permeability curves in a number of experiments and their relationships are commonly used (Muggeridge, 1991). The Corey-Rathjens exponents are commonly used to generate the so called "rock" curves for simulation studies (Thomas and Bibby, 1991). In this study, the following relative permeability relationships were used (refer to Fig. 5.4):

$$
k_{r w}=0.45\left(S w^{2}\right), k_{r o}=(1-S w)^{3}
$$

These are considered appropriate for a moderately water wet reservoir. The wettability of the Rannoch, however, has not been specifically investigated during this study.

APPENDIX VI

PSEUDOISATION

The term pseudo is defined in the dictionary as meaning false, sham as an adjective or pretender as a noun (Macdonald, 1977). Pseudo properties in petroleum engineering are false properties that used in numerical simulation to simulate average properties. Not necessarily physically correct or meaningful in themselves, pseudo properties are, nevertheless, used to simulate the effective properties of volumes of reservoir material that are not directly measureable.

The permeabilities, relative permeabilities and capillary pressures for relative large volumes of reservoir rock (e.g., 10 m vertically by 100 m horizontally) are not directly measureable. These parameters are, however, fundamental to the understanding and modelling of a two-phase (e.g., waterflood) process. The way in which these properties are traditionally derived is by assembling a finer scale model of units for which measurements (e.g., core plugs) are available. From the fine models, the effective relative permeabilities for a larger block can be derived by analytical methods or by numerical simulation of the refined grid (Fig. VI-1).

FINE GRID

PROPERTY

COARSE GRID

Figure VI-1: Sketch illustrating the determination of effective properties for a large block from the simulation of many smaller blocks. The effective property of the block on the right is determined from pseudoisation of the fine grid properties on the left.

Simple statistical averages can be used for certain properties, boundary conditions and flow processes. For example, the arithmetic average is the appropriate estimator for average permeability for single-phase, layer parallel flow. For more complex geometries and processes, fine scale numerical simulation is the only option. Effective properties of large grid blocks determined from fine scale simulations are known as pseudos and pseudoisation is the process whereby they are calculated.

The effectiveness of pseudos are usually tested by the back-substitution of the large grid block (with pseudos) for the refined grid (with rock properties) in the numerical experiment. Pseudos should reproduce the flows from the fine grid model for the coarse grid model. Large grid blocks and their pseudos properties together pretend to be fine grid block models and rock data. Pseudos are, therefore, the appropriate average dynamic properties (i.e., they can vary with time or saturation) for large grid blocks of specific dimensions and under specific physical assumptions. Pseudos for a specified block dimension and process may be incorrect for significantly different sized blocks and different processes.

Because laboratory measurements are carried out on finite blocks (e.g., core plugs and whole-core samples) which can include heterogeneities, the resulting laboratory measurements are effectively pseudos. Whether they are representative pseudos for that specific volume within the reservoir is another issue.

Pseudos are commonly used in petroleum engineering in numerical simulation to reduce the number of grid blocks. Early analytical (Hearn, 1971) and dynamic (Jacks et al., 1973; Kyte and Berry, 1975; Stone, 1991) methods for generating pseudos were developed for this reason. Cross-sectional models could be used to generate one dimensional grid block pseudos and enabled 3-D field simulations to be reduced to a 2D areal model.

VI.1. Pseudo Relative Permeability and Capillary Pressure

Relative permeability relationships can be measured on core samples. In reservoir simulations at the field scale, gridblocks are significantly larger than the samples so scale-up and averaging of relative permeability is required. Pseudoisation is the process by which the scale-up of relative permeabilities is most commonly achieved.

Hearn's (1971) method considers the vertical section to comprise several uniform layers which can be differing in permeability and non-communicating. In such reservoirs, the vertical sweep is primarily controlled by permeability variation. In each layer a pistonlike displacement takes place. The pseudo relative permeability is determined by a simple porosity/thickness weighted average saturations and thickness weighted permeabilities. Such analytical methods have rather limited application to stratified reservoirs with non-communicating layers.

Dynamic pseudos are produced by numerical simulation by a number of methods (e.g., Jacks et al., 1973; Kyte and Berry, 1975; Stone, 1991). The Kyte and Berry procedure (Kyte and Berry, 1975), for example, follows a number of steps:

- Calculate pseudo absolute permeability as the harmonic average of stack permeabilities (arithmetic average) between coarse grid block centres.
- Calculate pseudo water saturation as pore volume weighted average of cross sectional blocks (i.e., fine grid).
- Calculate pseudo flow rates for water and oil as the total flow across the coarse block boundaries.

[^0]- Calculate the pseudo relative permeabilities using the Darcy equation, pseudo flow rates, pseudo phase pressures and pseudo absolute permeability.
- Calculate the pseudo capillary pressure as the difference between the pseudo phase pressures.

In one of the examples that Kyte and Berry discuss (their Case 2 in Kyte and Berry, 1975), the pseudo capillary pressure curves are negative over part of the saturation range (i.e., unphysical for a typical wetting:non-wetting system) to account for different pressures in different layers of the cross-sectional model.

Stone's (1991) method, for comparison, follows a similar procedure but uses total flow rate weighted average of the fine grid fractional flows to determine coarse grid phase flows. Transmissibility weighted averages of the phase pressures are then used to determine pseudo capillary pressure curves. This method has a stated advantage when poor vertical permeability prevents vertical equilibrium (an assumption of the Kyte and Berry method).

The ECLIPSE black oil simulation code that has been extensively used in this study incorporates a modified Kyte and Berry method in the determination of the pseudo relative permeability and capillary pressure (ECLIPSE option PSEUDO, ECL, 1988). The pseudo absolute permeability is calculated as the arithmetic average of the fine grid permeabilities. In a vertically layered reservoir (i.e., if flowing across a series of beds as in the vertical floods of the laminasets - Chapter 5) the harmonic average of the layers gives a more appropriate, single (moveable) phase permeability. ECLIPSE, however, uses the arithmetic average and captures the effect of the layers in the pseudo relative permeability curve. As the $\mathbf{k k}_{\mathbf{r}}$ product appears in the two-phase flow equations the net effect is the same. Providing the large grid block flows like the fine scale grid block and produces the same effect, the pseudoisation can be considered the most appropriate procedure for determining effective properties. The boundary conditions for the numerical simulation of the fine grid need to be the same as for the coarse grid.

This can be difficult to achieve when the coarse grid is close to the system size (i.e., when the number of grid blocks available is similar to the number of blocks required for the detailed description of the coarse grid). In this case, realistic boundary conditions (i.e., coarse grid blocks surrounded by other coarse grid blocks) can be difficult to represent. Other methods of pseudoisation (tensors) may be required in these cases.

The numerical simulator, ECLIPSE, does not use directional capillary pressure curves and the pseudo capillary pressure curves are the same in each direction. The appropriate pseudo Pc curve and the degree of anisotropy in Pc is an issue that needs further study. The pseudo Pc curves that are generated by ECLIPSE and presented in this study are pore voulme weighted. The correct scale-up and pseudoisation of Pc is an important issue as it controls the average in-place hydrocarbon saturations and, therefore, estimates of oil-in-place.

Whilst further work on the pseudoisation of relative permeability and capillary pressure to take account of the geological structure is needed, the technique lends itself well to the variety of geology encountered. Pseudoisation allows the dynamic effects of forces to be built in. Carefully constructed pseudos provide the appropriate combined rock and fluid flow properties at any required scale.

APPENDIX VII

AN OUTCROP STUDY FOR STRATAL ELEMENT GEOMETRIES

In this geoengineering study of the Rannoch Formation, the geometry of the stratal elements was an important consideration in the scale-up procedure. The laminaset, bed and bedset geometries in the Rannoch Formation are not readily determined in core because of the limited sample available. An outcrop study of a reservoir analogue was, therefore, required. Unfortunately, the Rannoch Formation or equivalent shoreface deposits within the Middle Jurassic do not outcrop. Other shoreface sequences, however, including the Oxfordian Bencliff Grit on the Dorset Coast and the Kennilworth Member of the Cretaceous Blackhawk Formation in Utah, have been proposed as Rannoch analogues (Allen and Underhill, 1989; Scott, 1992).

In this study, looking at the stratal elements as the basic building blocks of reservoirs, it is the similarity of these small scale stratal elements (i.e., laminae, laminasets and beds) that is important. The form of these stratal elements is largely controlled by grain size and current processes and is less sensitive to subtle characteristics of the environmental or sequence stratigraphic setting. The appropriateness of the Bencliff Grit and the Kennilworth Member as analogues for Rannoch stratal elements, therefore, depends on a detailed comparison of the available geometrical data from cores and outcrop.

VII. 1 Stratal Element Terminology

Recent developments in sequence stratigraphic concepts (Campbell, 1967; van Wagoner, 1990) have provided the formal terminology for the sequence of hierarchical stratal elements (Fig. 2.2). The small scale sedimentary structures, of a

APPENDIX VII: An outcrop study for stratal element geometries

primary depositional origin, can now be identified as lamina, laminaset, bed or bedset members of the hierarchy. Stratal elements are bounded by surfaces defined by:

- changes in texture,
- stratal terminations, and
- paraconformities marked by burrow horizons.

The surfaces that bound laminasets (i.e., relatively conformable succession of genetically related laminae) are defined here as laminaset bounding surfaces. These surfaces define the geometries of beds and are the subject of this study. It has not been possible to distinguish consistently between laminaset and bed bounding surfaces, so all surfaces defined by the criteria listed above are initially considered to be laminaset bounding surfaces.

VII. 2. Background to the Studied Outcrop Sections

The Upper Jurassic Bencliff Grit (Osmington Mills, Dorset Coast) is a relatively limited, two-dimensional, outcrop of fine grained sandstone. Sandwiched betweeen ooid grainstones and open marine clays, the 4 m-thick section (Fig. VII-1) is interpreted as being shallow marine with an estuarine influence (Allen and Underhill, 1989). Amalgamated lenticular beds within the Bencliff Grit have been interpreted as HCS (Sun, 1990). From a series of photomosaics, the lenticular beds have been mapped throughout this sequence and their geometries measured for comparison with the Rannoch Formation and the Kennilworth Member.

Figure VII-1: Sedimentary \log from the Bencliff Grit section at Osmington. (From Allen and Underhill, 1989).

The Upper Cretaceous Blackhawk Formation (Book Cliffs, Utah) provides an extensive outcrop of prograding shoreface sequences (van Wagoner, 1990; O'Byrne and Flint, 1992). From a detailed study of shorefaces, which included these outcrops, Brenchley, Flint and Stromberg (Brenchley et al., 1992) have developed a model for the facies sequence in a storm-influenced parasequence (Fig. VII-2). In a "definitive" shoreface section of the Kennilworth Member in Woodside Canyon, detailed maps of HCS bedforms from photomosaics were made by Simon Stromberg. Data from these maps were provided for comparison with the Rannoch Formation and Bencliff Grit data.

APPENDIX VII: An outcrop study for stratal element geometries

Figure VII-2: A model facies succession in a storm-influenced parasequence. (From Brenchley et al., 1992)

VII.3. Quantification of Laminaset Geometry

In quantifying the geometry of laminasets, we have considered those features that are recognisable in core. When presented with a narrow, approximately 10 cm -wide, section of a formation, slabbed in an inconsistent and indeterminate orientation, the quantitative data that can be detected are limited to (Fig. VII-3a):

APPENDIX VII: An outcrop study for stratal element geometries

- Depth location of bed bounding surface;
- Apparent truncation angle as described by discordant lamination on the slabbed surface;
- Qualitative convexity of bed bounding surface over the width of the core;
- Nature of the overlying laminae to the bounding surface (whether concordant or discordant).

Where recognised, the depth location of the bounding surface was measured ($\pm 5 \mathrm{~cm}$) along the central axis of the core. Apparent set thicknesses were determined from the separation between the locations of consecutive set boundaries (Fig. VII-3b).

Figure VII-3: Definition sketch for laminaset bounding surface features measured in this study of a) core slabs and b) outcrop faces.

Bed bounding surfaces could not be recognised where no angularity occurred between laminae (although this is likely to occur). Exceptions to this can be seen when bounding surfaces can be clearly identified on other core faces. As a result, the average thickness of "beds" measured in core is likely to be larger than measured at outcrop. Apparent truncation angles were measured (to within 1°) and the concavity/convexity of surfaces recorded. Lengths and thicknesses (i.e., bed aspect ratios) were measured at outcrop and defined as the maximum vertical and horizontal distances with respect to the depositional horizon.

VII. 4 Data Aquisition

Laminaset bounding surface data was collected from two cored wells in the Rannoch Formation and from two outcrops: the Bencliff Grit on the Dorset Coast and the Kennilworth Member in Utah. Collection of such data in core and outcop requires different techniques and is subject to different level of detail.

VII.4.1 Rannoch Formation

Two wells were available for this study from the Rannoch Formation in two North Sea producing fields. Both wells were deviated from the vertical; Well A (Thistle A31) at 22° and Well B (Statfjord 33/12-B9) at 580. In neither well had the core been orientated, nor was any consistant slabbing orientation followed. Features measured in the two wells were generally low angle, planar, concordant laminaset bounding surfaces (Fig. VII-4a) or concave-up, discordant surfaces (Fig. VII-4b). The character of the bed bounding surfaces was very similar in the two wells, the concave-up surfaces, however, being much rarer (Fig. VII-5).

Figure VII-4: Examples of Rannoch Formation laminaset bounding surfaces as seen in slabbed core.

Figure VII-5: Bounding surface type and lamina relationships for low-angle cross lamination in Rannoch wells A (left) and B (right).

The location of the laminaset bounding surfaces in each of the two wells, the average thickness for the bed overlying the bounding surface and the angle of truncation below the bounding surface are shown for the two wells at comparable (vertical) depth scales. Subtle trends, of decreasing set thickness and increasing truncation angle up through the Rannoch Formation can be discerned in these data (Fig. VII-6).

The average (deviation corrected) laminaset thickness of 0.24 and 0.19 m for wells A and B, respectively, is considered reasonably comparable. The differences between truncation angles (7.4 and 12.1°) appear, at first sight, to be more significant. The differences and similarities are discussed further below.

Figure VII-6: Bed thickness and truncation angle vs. depth for the Rannoch wells A (left) and B (right).

VII.4.2 Bencliff Grit

The Bencliff Grit outcrop studied occurs on the Dorset Coast to the east of Osmington. The section (4m maximum thickness) is exposed over a distance of approximately 140 m before dipping below beach level. Although not a producing reservoir, the section is characterised by active oil seepage (Stoneley and Selley, 1991). The Bencliff Grit has a more contentious origin than the Kennilwoth but, most recently, is thought to be of a storm-influenced estuarine origin (Allen and Underhill, 1989). In a pilot study, an initial small representative selection of beds was sampled (number, $\mathrm{N}=12$; average length, $\mathrm{L}=3.8 \mathrm{~m}$; average thickness, $\mathrm{T}=$ 0.37 m and aspect ratio, $\mathrm{R}=\mathrm{L} / \mathrm{T}=12.3$) before a more complete mapping from

APPENDIX VII: An outcrop study for stratal element geometries

photomosaics (Fig. VII-7) was completed ($\mathrm{N}=224$; $\mathrm{L}=4.1 ; \mathrm{T}=0.34$ and $\mathrm{R}=12.9$) in a similar fashion to those in the Kennilworth. The pilot sample and the mapping of the entire section produced similar results supporting the representivity of the pilot bed selection.

It appears that, within the upper unit recognised by Allen and Underhill, the aspect ratio (R) increases towards to top (Fig. VII-8). The base of the unit is characterised by thicker beds. What is also apparent on the the photomosaics is the grouping of some of these beds in larger, sigmoidal features, representing a bed element (Fig. VII-9, 10). These latter features indicate downlapping laminae to the base and these are the unidirectional features noted by Allen and Underhill (1989, Underhill, personal communication). The dominant lenticular laminasets, on the other hand, do appear to be similar to the Kennilworth HCS, and their 3-D geometry has been well described by Sun (1990) from the large exposed nodules on the beach.

Figure VII-7: Laminaset elements in the Bencliff Grit at Osmington. (Scale
bars are 1metre).

Figure VII-8: Example of HCS laminaset elements in the Bencliff outcrop. Scale bar $=1 \mathrm{~m}$. Refer to Fig. VII- 7 for location.

Figure VII-9: Variation of bed length, thickness and aspect ratio with depth through the Bencliff Grit outcrop. Units refer to those defined by Allen and Underhill (1989), refer to Fig. VII-1.

Figure VII-10: Example of larger scale bed elements in the Bencliff outcrop showing downlapping lamination overlying the basal scour. Scale as Fig. VII-
11. Refer to Fig. VII-7 for location.

Figure VII-11: Antiformal lamination over undulating bank or erosional scour in a larger scale scale element. Scale bar $=1 \mathrm{~m}$. Refer to Fig. VII- 7 for location.

VII.4.3 Kennilworth Member

HCS has been mapped by Simon Stromberg (Fig. VII-12) in a well exposed shoreface section in the Kennilworth Member (Blackhawk Formation) in Woodside Canyon (Utah). To quantify the geometry of the bed bounding surfaces, measurements were made along a series of transects. Data collection followed methods described above. In addition to these data, the length of the HCS bed that underlies and overlies the bounding surface was also recorded.

Figure VII-12: Example of HCS laminaset elements in the Kennilworth outcrop. Tape measure in the foreground $=1 \mathrm{~m}$. (Photograph courtesy of S . Stromberg)

The bed bounding surfaces are predominantly planar concordant (Fig. VII-13), consistent with the Rannoch Formation observations. This conflicts with the observations of Scott (1992), also from the Blackhawk, where laminae were seen to generally downlap. The dip of bounding surfaces was recorded (average 5.8°). Assuming a dominant concordant fill, the truncation angles were determined from the dip of successive bounding surfaces $\left(9.6^{\circ}\right)$.

RELATIONSHIP OF OVERLYING LAMINAE TO BOUNDING SURFACE

Figure VII-13: Laminaset bounding surface types and lamina relationships for HCS in Kennilworth Member outcrop at Woodside.

VII.5. Statistical Laminaset Data Comparison

In this section, the data are compared and discussed using statistical analyses. The dip and truncation angle comparisons are useful in establishing the geological similarities between outcrops and between the wells and possible outcrop analogues.

We can compare dip data from the outcrops (Table VII-1). Mean bedform dips range from 5.8° (Kennilworth) to 8.6° (Bencliff) with the maximum dips of 24° (Kennilworth) to 32° (Bencliff). From these data it is appropriate to consider these sediments as low angle cross lamination.

	Bencliff (pilot)		Kennilworth		Rannoch	
					Well A	Well B
Angle	Truncation	Dip	Truncation	Dip	Truncation	Truncation
Number	103	102	69	85	83	94
Min.	1	0	1	0	0	3
Max.	39	32	30	24	45	45
Mean	13.4	8.6	9.6	5.8	7.2	12.1
Variance	53.4	34.0	44.3	33.4	48.7	72.6
Coeff. var.	0.55	0.68	0.69	1.00	0.97	.70

Table VII-1: Comparison of Truncation and Dip Angles for Rannoch, Kennilworth and Bencliff Grit.

Mean truncation angles range from 7.2° (Rannoch Well A) to 13.4° (Bencliff). Maximum truncation angles of 45° were seen in the two Rannoch wells. This is greater than the angle of repose for fine quartz sand, 32-430 depending on packing (Allen 1985, p.36), as the angle is measured relative to a plane that may be dipping (up to 32°) in the opposite sense. Maximum dips of $30-39^{\circ}$ in the outcrops are comparable with expected angle of repose. The steep dips in HCS sediments have been interpreted as evidence of very rapid cut and fill of unconsolidated sediment (Hunter and Clifton, 1982; Reynolds, 1992).

The distributions of dip and truncation angles are positively skewed. Square-root transformed distributions are also positively skewed, however, log-normal transformations tend to be slightly negatively skewed. This suggests that a lognormal distribution for these data can be used as an approximation of a gaussian transformation. We have, therefore, used parametric statistical tests (those which assume normal distributions) on the natural logarithms of the dip and truncation angle data to test the statistical significance of the observed differences (Appendix I). The F-test (Davies, 1973) is used to test the equality of variances. The low values for the ratio of \ln (dip) and \ln (truncation) variances for the samples (shown below the diagonals in Tables VII-2 and VII-3) show no evidence that the samples are drawn from different populations. Having passed the F-test, it is appropriate to compare the equality of the means by the t -test (Davies, 1973). There is no evidence that the mean dip samples come from populations having different means (Table VII-2).

F-value/t-value	Bencliff (Pilot)	Kennilworth
Bencliff (Pilot)	XXX	$1.00(1.96)$
Kennilworth	$1.28(1.39)$	XXX

Table VII-2: Significance values (F-values, below diagonal; t-values, above diagonal) for the natural log of dip angle (assuming dip log-normally distributed). Significance value at the 95% confidence interval shown in parenthesis, significant values shown with*.

The statistical inference from the truncation data is less clear (Table VII-3). The mean of the Kennilworth data lies between the mean truncation angle seen in the two Rannoch wells. There is no statistical evidence, however, that the population means are the same.

F-value/t-value	Bencliff (Pilot)	Kennilworth	Rannoch Well A	Rannoch Well B
Bencliff (Pilot)	XXX	$5.09^{*}(1.96)$	$9.55^{*}(1.96)$	$2.23^{*}(1.96)$
Kennilworth	$1.38(1.39)$	XXX	$3.01^{*}(1.96)$	$3.13^{*}(1.96)$
Rannoch Well A	$1.23(1.39)$	$1.12(1.39)$	XXX	$7.21^{*}(1.96)$
Rannoch Well B	$1.04(1.39)$	$1.32(1.39)$	$1.18(1.39)$	XXX

Table VII-3: Significance values (F-values, below diagonal; t-values, above diagonal) for the natural \log of truncation angle (log-normally distributed). Significance value at the 95% confidence interval shown in parenthesis, significant values shown with*.

Bed geometries, required for use in the reservoir model, were compared by apparant thickness and length, the latter for the outcrop studies alone. Mean lengths ranged from 2.3 m (Kennilworth) to 4.1 m (Bencliff) (Table VII-4). Mean thicknesses ranged from 0.18 m (Rannoch well B) to 0.34 m (Bencliff). Beds in the Bencliff tend to be bigger (longer and thicker) than those observed in the Kennilworth.

metres	Bencliff (Pilot)		Bencliff (Photo.)		Ben. (Pr.) T	Kennil.		Rannoch		
						A	B			
	L	T			L	T	L	T	T	T
Number	12	12	224	224		88	64	64	81	97
Min.	1	0.1	0.4	0.04	0.05	0.3	0.03	0.01	0.05	
Max.	8.9	1.0	16.5	0.9	0.7	6	0.8	1.4	2.35	
Mean	3.83	0.37	4.05	0.34	0.28	2.29	0.24	0.24	0.18	
Variance	5.23	0.08	6.14	0.03	0.03	2.24	0.03	0.067	0.04	
Coeff. var.	0.60	0.77	0.61	0.48	0.59	0.65	0.66	1.09	1.03	

Table VII-4: Comparison of laminaset geometries (apparent thickness, T, maximumum thickness, T, and length, L in metres) for Rannoch (wells A and B), Kennilworth and Bencliff Grit.

Comparing the statistical tests for the bed length, the pilot study and photomosaic study are indistinguishable. There are, however, statistically significant differences between the mean lengths of Kennilworth and Bencliff (Table VII-5).

F-value/t-	Bencliff (Pilot)	Bencliff (Photo)	Kennilworth
Ben. (Pilot)	XXX	$0.50(1.96)$	$3.30^{*}(1.96)$
Ben. (Photo)	$1.11(2.4)$	XXX	$9.88^{*}(1.96)$
Kennilworth	$1.36(1.99)$	$1.50^{*}(1.39)$	XXX

Table VII-5: Significance values (F-values, below diagonal; t-values, above diagonal) for the natural log of length (assuming dip log-normally distributed). Significance value at the 95% confidence interval shown in parenthesis, significant values shown with*.

Thickness data were also collected at Bencliff along a series of randomly chosen profiles to simulate the data collection in the Rannoch cores and to be consistent with the Kennilworth data (i.e., apparent thickness) (Table VII-4).

	Bencliff	Bencl.	Bencl.	Kennil-	Ran. A	Ran. B
	(Pilot)	(Photo)	(Prof.)	worth		
Ben. (Pilot)	$\mathbf{X X X}$	$0.44_{(1.96)}$	$1.54^{(1.96)}$	$2.23^{*}(1.96)$	$1.77_{(1.96)}$	$3.27^{*}(1.96)$
Ben.(Photo)	$1.74(1.75)$	XXX	$5.80^{*}(1.96)$	$7.91^{*}(1.96)$	$7.32^{*}(1.96)$	$14.9^{*}(1.96)$
Ben.(Prof.)	$1.30(1.90)$	$1.33_{(1.39)}$	XXX	$1.94(1.96)$	$2.01^{*}(1.96)$	$6.4^{*}(1.96)$
Kennilworth	$1.14(1.92)$	$1.53^{*}(1.39)$	$1.15(1.39)$	XXX	$1.05(1.96)$	$4.05^{*}(1.96)$
Rannoch A	$2.84^{*}(1.92)$	$4.94^{*}(1.25)$	$3.70^{*}(1.25)$	$3.23^{*}(1.25)$	XXX	$0.05(1.96)$
Rannoch B	$1.50(1.92)$	$2.61^{*}(1.25)$	$1.95^{*}(1.25)$	$1.71^{*}(1.25)$	$1.90^{*}(1.25)$	$\mathbf{X X X}$

Table VII-6: Significance values (F-values, below diagonal; t-values, above diagonal) for the natural log of thickness (log-normally distributed). Significance value at the 95% confidence interval shown in parenthesis, significant values shown with*.

APPENDIX VII: An outcrop study for stratal element geometries

The means of the Bencliff profiles and the Kennilworth data are statistically indistinguishable, however, with the larger Bencliff sample there is evidence that the population means are different (Table VII-6). The statistical analysis appear to suggest that large samples are needed to distinguish populations of significantly different geometry. Despite the statistical analysis, the differences discussed here may not be geologically significant but there are no similar quantitative studies with which to judge.

The aspect ratios in both outcrops show a scatter about the average ratios (Fig. VII14). The thickest beds are seen in the two Rannoch wells (1.4-2.4m), possibly reflecting the problems associated with recognising bed boundaries in cores with concordant, low angle lamination. As far as an analogue for the Rannoch stratal geometries, these data sets suggest that the Kennilworth beds are most appropriate of the two sections studied.

Figure VII-14: Length-thickness relationships for HCS laminasets in the Kennilworth Member (left) and the Bencliff Grit (right).

APPENDIX VII: An outcrop study for stratal element geometries

VII. 6. Lenticular shoreface laminaset geometries for engineering studies

From this study, an "average" geometry can be determined for the lenticular beds observed in shoreface sandbodies, by averaging the above data:

Bed Length	2.5 m
Bed Height	0.2 m
Dip angle	5.8°
Truncation angle	9.6°

These beds will have a circular plan view. For deterministic reservoir models, a stacking of units with these dimensions would be an appropriate first approximation. A more sophisticated stochastic model would employ the observed variability. At the present time, the flow sensitivity to bed geometry is not well established and is the subject of ongoing research. Whether the observed statistical differences prove to be of either geological or engineering significance, requires additional systematic data collection following the methods presented here and additional numerical simulation. New techniques for reservoir simulation also need to be developed to cope with the non-orthogonal elements and the flow characteristics of laminaset bounding surfaces (the latter apparantly not significant in the flow modelling of the Rannoch, Fig. 4.4). The modelling techniques available to this study did not allow the data collected here to be fully simulated.

As well as providing the basic data for use in this engineering study, this field work illustrates the potential for quantitative geology in the comparison of sedimentary structures. Quantitative techniques are amenable to statistical analysis and appropriate for the selection of reservoir analogues. Despite the relatively large number of laminasets and laminaset boundaries measured in this study, the sample set is rather small given the many storm-dominated shorefaces not measured. It is hoped that the

APPENDIX VII: An outcrop study for stratal element geometries
work presented here will stimulate the collection and comparison of data from a wide range of analogues. In this way, the true variability of lenticular beds in shoreface sediments can be determined. It is felt, however, that some conclusions from these data are appropriate and these are summarised as follows:

- Systematic determination of stratal element thicknesses and lamina truncation angles in core can be used quantitatively in the selection of suitable reservoir analogue in low angle cross-laminated shoreface sediments.
- Of the outcrops studied, the Kennilworth is the most appropriate laminaset analogue for the North Sea Rannoch Formation, supporting the storm-influenced shoreface origin for the latter.
- The "average" geometry of Rannoch laminaset elements is estimated to be length 2.5 m and thickness 0.2 m .
- Average dip of bed bounding surfaces in the most appropriate Rannoch analogue is 5.8°.
- The geometries of beds studied are consistent with the defined scale of HCS laminasets.
- Relationships between laminaset length and laminaset height are poor.
- Laminaset dips, thicknesses and lengths are approximately log-normally distributed.
- Steep scours (up to $\mathbf{3 2}^{\circ}$) can occur in these low-angle cross-laminated sediments, although their occurence is rare.

VIII. 1 2-D Radial Probe Permeameter Model (MINIKMOD3C.DATA)

-- Model 3c 294 active blocks

- One injector, one producer
-- $\quad 5$ Cells over inner injection radius
.- Injection in outer cell only
-- Cell radii determined from Goggin's normalised flux
.- (refer to ECL, 1988)
--
RUNSPEC
2-D Probe model (LP1) R=3.8 $\mathrm{cm} z=7.6 \mathrm{~cm}$
= NDIVIR NDIVITHETA NDIVZ QRDIAL NUMRES QNNCON
$\begin{array}{llll}21 & 1 & 14\end{array}$
$=\underset{\mathrm{F}}{\mathrm{OIL}} \underset{\mathrm{F}}{\text { WATER }} \underset{\mathrm{T}}{\text { GAS }}$,
= UNIT CONVENTION
'LAB' $/$
$=$ NRPVT
1 /
= NSSFUN
$=$ NDRXVD
$\stackrel{1}{-}$
= NTVIP
$=\underset{2}{\text { NWMAXZ }} \underset{1}{\text { NCWMAX }}$ NGMAXZ $\underset{1}{\text { NWGMAX }}$
$=$ QIMCOL
$=$ MXMFLO
/
= MXSFLO
= NANAQU
1
$=$ DAY MONTH YEAR
1 'JAN' 1990 /
= QSOLVE

GRID
INRAD
$0.01 /$
-- plUG RADIUS 3.8CM LENGTH 7.6CM

- LARGE PROBE . 295 . 23 CM SMALL PROBE .18 . 215 CM

DRV
0.191750 .050150 .020650 .008850 .236

5*0.046 5*0.055 $0.10 .20 .40 .81 .5 \quad 2000 \quad$ ।
-•
DTHETAV
360 /
DZ
21 *20
21 *10
21 *0.001
21 *0.05
$21 * 0.1$
21 *0.15
21 *0.2
21 *0.4
$21 * 0.8$

APPENDIX VIII: ECLIPSE Input Files

```
    21 *1.0
    21*1.4
    42*1.85
    21*200 /
NNC
    5,1,2 1,1,3 515263 /
    5,1,2 2,1,3 515224 / To connect injection cell 5,1,2
    5,1,2 3,1,3 515122 / to cells within inner radius
    5,1,2 4,1,3 514885 /
    l
.- R1 R2 THETA1 THETA2 Z1 Z2
BOX
PORO
    10*0.01 /
PERMR
    10*0.0 /
PERMZ
    5*0.0 /
BOX
5 5 1 1 1 1 % 2 2 l
    0.99 /
PERMR
    100000 /
PERMZ
    100000 /
BOX
MORO 1 4 1 1 1 1 2 2 l
    4*0.01 /
PERMR
    4*0.0 /
PERMZ
    4*0.0 /
BOX
```



```
    5*0.01 /
PERMR
    5*0.0 /
PERMZ
    5*0.0 /
BOX
PORO
    22*0.999 /
PERMR
    22*100000
PERMZ
    22*100000
BOX
1 20 1 1 1 lllllll
PORO
    220*0.18 /
PERMR
    220*96 /
PERMZ
    220*96 /
BOX
```

APPENDIX VIII: ECLIPSE Input Files

```
21 21 1 1 1 % 1 % 3 13 /
    11*0.999 /
PERMR
    11*100000 /
PERMZ
    11*100000 /
BOX
MORO 1 21 1 1 1 1 % 1 % 14 14 l
    21*0.999 /
PERMR
    21*100000 /
PERMZ
    21*100000 /
BOX
    1 21 1
    1 1 1
TOPS
    21*0.0 /
MOLTIPLY
    'PERMR' 1 1 1 20 1 1 1 % 8
    'PERMZ' 1
        'PORO' 1
        /
ENDBOX
OLDTRAN
-- RPTGRID
-- 6*1 3*0 101 /
--
EDIT
-- R1 R2 THETA1 THETA2 Z1 Z2
```



```
TRANZ
5*0 /
PROPS
O- OIL WAT GAS
0.7 1.0 0.9672 /
-- P COMPRESSIBILITY
```

APPENDIX VIII: ECLIPSE Input Files

```
ROCK
#-_P\ P
            1.0 0.99971 1.727E-2
            2.0}00.99970 1.728\textrm{E}-
--
SOLUTION
-. DATUM Pi@DATUM
EQUIL
            10.0 1.01325 /
--
    10011
SUMMARY
WBHF
    'PROD' `INJ' /
-
    '[NJ' /
WGGIR
    ‘[NJ` /
-
WGPR
        'PROD' 'INJ' I
BPR
    21 1 1/ PROD
    1 12/ INJ
    113/
    2 1 3/
    3 1 3/
    4131
    5 1 3/
    l
RPTSMRY
    1/
RUUNSUM
SCHEDULE
RPTSCHED
    100100201 10*0 /
.- WELL WELL LOCATION BHP PREF.
.- NAME GROUP I J DATUM PHASE
--
\begin{tabular}{llrllll} 
'PROD' & 'G' & 21 & 1 & 10.0 & 'GAS' & / \\
'INJ' & ' \(\mathrm{G}^{\prime}\) & 1 & 1 & 10.0 & 'GAS' & /
\end{tabular}
    l
.- WELL LOCATION INTERVAL STATUS WELL
-- NAME I J K1 K2 OORS ID
COMPDAT
    'PROD' 21 1 1 1 1 'OPEN' 2* 0.25 /
```

APPENDIX VIII: ECLIPSE Input Files

```
    'INJ' 5 1 2 2 2 'OPEN' 2* 0.015 /
    -. WELL STATUS CONTROL TARG ORUP LIMIT
-- NAME MODE RATE
WCONPROD
    `PROD' 'OPEN' 'BHP' 5* 1.01325 /
    l
.- WELL FLUID STATUS CONIROL TARG ORUP LIMIT
-- NAME TYPE MODE RATE
WCONINJ
    'INJ' 'GAS' 'OPEN' 'RATE' 23940 3* /
    /
--
TSTEP
    3*0.0001 /
--
END
```


VIII. 2 Subfacies Scale; Fine Grid A (EXFGA003.DATA)

--
.- LAMINATED SAND SIMULATION
.-. BASED ON STATFJORD PROBE PERMEAMETER DATA
--
.- FINE GRID A HORIZONTAL DIRECTION
-- (extended model)
-- (With entrance and exit blocks >4 times sample block length.
.- With identical sample block as buffer before and after subject block
--
--

```
RUNSPEC
RANNOCH LAMINATION SIMULATION
= NDIVIX NDIVIY NDIVIZ
    194 1 41/
= OIL. WAT GAS
    T T F/
= UNIT CONVENTION
    LAB' }
= NRPVT
    1/
= NSSFUN NTSFUN
    35 5/
= NDRXVD
    l
= NTFIP
    5/
= NWMAXZ NCWMAX NGMAXZ NWGMAX
    2 42 1 2 /
= QIMCOL
= MXMFLO
    /
= MXSFLO
    I
= NANAQU
    l
= DAY MONTH YEAR
    1. 'JAN' 1990 /
= QSOLVE NSTACK
    T 25 /
```

--

GRID

```
EQUALS
```

DX'	300	1	1	11	141	
DX'	1	2	193	1	141	
DX'	300	194	194	11	141	
Y'	5	1	194	11	141	1
DZ'	0.2	1	194	11	141	
TOPS	30000	1	194	11	11	

1
EQUALS
$\begin{array}{llllll} \\ \text { 'PORO' } & 0.15 & 11 & 11 & 141 & \text { /Injection block } \\ \text { 'PERMX' } & 1500 & \text { / } & & \end{array}$

APPENDIX VIII: ECLIPSE Input Files


```
\begin{tabular}{|c|c|c|c|c|}
\hline 'PORO' 0.15 & 2193 & 11 & 3232 & /Lamina \\
\hline 'PERMX' & 14 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 3333 & / Lamina \\
\hline 'PERMX' & 31 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 3434 & /Lamina \\
\hline 'PERMX' & 49 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 3535 & /Lamina \\
\hline 'PERMX' & 45 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 3636 & / Lamina \\
\hline 'PERMX' & 20 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 1 & 3737 & / Lamina \\
\hline 'PERMX' & 33 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 3838 & /Lamina \\
\hline 'PERMX' & 46 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 1 & 3939 & / Lamina \\
\hline 'PERMX' & 33 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 4040 & / Lamina \\
\hline 'PERMX' & 31 & 1 & & \\
\hline 'PORO' 0.15 & 2193 & 11 & 4141 & / Lamina \\
\hline 'PERMX' & 24 & 1 & & \\
\hline
\end{tabular}
                                    'PORO' 0.15 194 194 1 1 1 1 41 /Production block
                                    'PERMX' 1500 /
l
COPY
    'PERMX' 'PERMY' 1 194 1 1 1 41 /
    'PERMX' 'PERMZ' /
l
ENDBOX
PSEUDOS
--
PROPS
-- OIL WAT GAS
DENSITY
            0.81 1.0 0.08 /
-- P Bo Vis
PVDO
    65.0}1.18
    476.0}1.
    l
-- (DATA FROM THISTLE A31 DST INTERPRETATION PARAMETERS)
-P Bw Cw Vis Viscosibility
PVTW
    412.0 1.02 3.0D-06 0.88
--
-P Cr
ROCK
    412.0 5.0D-06 /
-
-_****************************************************
-- ROCK CURVES
-_****************************************************
-- So Kro
-- 15mD
SOF2
\begin{tabular}{ll}
0.25 & 0.00 \\
0.3 & 0.005 \\
0.4 & 0.064 \\
0.5 & 0.143
\end{tabular}
```

APPENDIX VIII: ECLIPSE Input Files

APPENDIX VIII: ECLIPSE Input Files


```
REGIONS
-- SUBJECT BLOCK REGION 3
FIPNUM
```

$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$
$1 * 1$	$64^{* 2}$	$64 * 3$	$64^{* 4}$	$1 * 5$
$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$

$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 164 * 264306$
$1 * 164 * 24 * 3$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
1*1 64*2
64*3 64*4 1*5
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
1* 1 64*2
$64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
1*1. $64{ }^{*} 2$
$64 * 3$ 64*4 1*5
$64 * 3 \quad 64 * 4 \quad 1 * 5$

$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$
$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$

1* 1 64*2
$64 * 3 \quad 64 * 4 \quad 1 * 5$
$64 * 3 \quad 64 * 4 \quad 1 * 5$
$64 * 3 \quad 64 * 4 \quad 1 * 5$
$64 * 2$
$64 * 2$
1* 1 64*2
$64 * 3 \quad 64 * 4 \quad 1 * 5$

$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$
$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$

$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5$
1*1 $\mathbf{6 4 * 2}$
$64 * 3 \quad 64 * 4 \quad 1 * 5$

$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$
$1 * 1$	$64 * 2$	$64 * 3$	$64 * 4$	$1 * 5$

$1 * 1 \quad 64 * 2 \quad 64 * 3 \quad 64 * 4 \quad 1 * 5 \quad /$

SATNUM

1*4 192*1 1*4
1*4 192*2 1*4
1*4 192*3 1*4
$1 * 4192 * 3 \quad 1 * 4$
1*4 192*3 1*4
1*4 192*3 1*4
1*4 192*2 1*4
1*4 192*2 1*4
1*4 192*1 1*4
1*4 192*1 1*4
1*4 192*1 1*4

APPENDIX VIII: ECLIPSE Input Files

> 1*4 192*1 1*4
> 1*4 192*1 1*4
> 1*4 192*2 ${ }^{1 * 4}$
> 1*4 192*2 1*4
> $1^{*} 4192 * 31^{* 4}$
> 1*4 192*2 1*4
> 1*4 192*2 1*4
> $1^{*} 4{ }^{192 * 1} 1^{* 4}$
> $1^{*} 4{ }^{192 * 5} 1^{*} 4$
> $1^{* *} 4{ }^{192 *} 1^{1 * 4}$
> 1*4 192*1 1*4
> 1*4 192*1 1*4
> $1^{*} 4$ 192*1 1*4
> $1^{*} 4192^{*} 1 \quad 1 * 4$
> 1*4 192*1 1*4
> $1^{* *} 4 \mathbf{1 9 2}^{* 1} 1$ 1*4
> $1^{* *} 4{ }^{192 * 1} 1$ 1*4
> 1*4 192*1 1*4
> $1^{*} 4{ }^{192 * 5} \mathbf{1}^{* 4}$
> 1*4 192*1 1*4
> 1*4 192*1 1*4
> 1*4 192*1 1*4
> $1^{* *}$ 192*2 ${ }^{1 * 4}$
> 1*4 192*2 ${ }^{1 * 4}$
> 1*4 192*1 1*4
> 1*4 192*1 1*4
> $1^{*} 4192^{* 2} 1^{*} 4$

> 1*4 192*1 1*4
> 1*4 192*1 1*4

SOLUTION
.- DATUM Pi@DATUM WOC Pc@WOC GOC Pc@GOC
EQUIL
$3000431340004 \quad 0 \quad 27000 \quad 0 \quad 2 * 01$
-- \quad Pb Sob Swb Pob@Datum
RPTSOL
101 12*011/

SUMMARY

WWCT
'PROD'
1

FOIP
FWIP
ROIP
31
RWIP
31
RWFT
23
34
1

APPENDIX VIII: ECLIPSE Input Files

```
ROFT
    23
    34
l
--
RPTSMRY
1/
--
RUNSUM
SCHEDULE
RPTSCHED
1010002216*01001
.- WELL WELL LOCATION BHP PREF.
.. NAME GROUP I J DATUM PHASE
WELSPECS
    'PROD' 'G' 194 1 30004 'OIL' /
    'NJ' 'G' 1 1 1 30004 'WAT /
.- WELL LOCATION INTERVAL STATUS WELL
.- NAME I J K1 K2 OorS D
COMPDAT
    'PROD' 194 1 1 41 'OPEN' 2* 1.5 /
        'INJ' 1 1 1 41 'OPEN' 2* 1.5 /
            l
```

-- WELL STATUS CONTROL TARGETRATES or UPPER LIMITS
-- NAME MODE OIL WAT GAS LIQRV BHP(atm)
WCONPROD
'PROD' 'OPEN' 'BHP' 5* 313.0 /
1
-. WELL FLUID STATUS CONTROL RATE BHPTAR
-- NAME TYPE MODE cchr (atm)
WCONINJ
'NJ' 'WAT' 'OPEN' 'RATE' 6 3* 500 /
TUNING
1
201251201
$-$

- DAYS
TSTEP
1246920303050100250500 /
END

```
VIII. }3\mathrm{ Facies Scale; HCS Bedform (HCS2D010.DATA)
.. HCS2D010.DATA
--
-. HCS/SCS SIMULATION
-
.- BASED ON STATFJORD MINIPERMEAMETER DATA
-
-- FINE GRIDS:
- B - HETEROLITHIC
-- A - HIGH CONTRAST LAMINATED
-- c- LOW CONTRAST LAMNATED
-- (With extra entrance and exit blocks >4times sample block length
.- With identical sample block as buffer before and after subject block
- see Kossack, Aasen and Opdal, 1990)
--
RUNSPEC
RANNOCH LAMINATION SIMULATION
= NDIVIX NDIVIY NDIVIZ
    184 1 30/
= OIL WAT GAS
    T T F/
= UNIT CONVENTION
    LAB' /
= NRPVT
    1/
= NSSFUN NTSFUN QDIRKR QREVKR
    35 8 T T l
= NDRXVD NTEQUL
    /
= NTFIP
    5I
= NWMAXZ NCWMAX NGMAXZ NWGMAX
    2 30 1 2/
= QIMCOL
    I
= MXMFLO
    /
= MXSFLO
    /
= NANAQU
    l
= DAY MONTH YEAR
    1 'JAN' 1990 /
= QSOLVE NSTACK
    T 50/
```

--

GRID

```
EQUALS
```


1
PERMX

APPENDIX VIII: ECLIPSE Input Files

```
.. INJECTION BLOCKS
    1500 500
-- BUFFER SUBJECT BLOCK BUFFER
24*292 12*4.7 24*292 24*292 12*4.7 24*292 24*292 12*4.7 24*292
-. PRODUCTION BLOCKS
            500 1500
-- ditto for subsequent layers
    1500500
18*292 24*42 18*292 18*292 24*42 18*292 18*292 24*42 18*292
            5 0 0
            1500 1500 500
12*292 36*42 12*292 12*292 36*42 12*292 12*292 36*42 12*292
            500
            1500 1500500
18*292 24*42 18*292 18*292 24*42 18*292 18*292 24*42 18*292
            500
            1500 1500 500
            180*292
            500
            15001500500
6*4.7 48*292 6*4.7
            500
            1500 1500500
12*42 36*292 12*42
            500
            1500 1500 500
18*42 24*292 18*42
            500
            15001500500
12*42 36*292 12*42
            500
            15001500 500
180*292
    500
-- 1500 1500 500
24*292 12*4.7 24*292
                            24*292 12*4.7 24*292 24*292 12*4.7 24*292
            500
            1500 1500500
18*292 24*42 18*292
                    18*292 24*42 18*292 18*292 24*42 18*292
            500
            15001500 500
12*292 36*42 12*292 12*292 36*42 12*292 12*292 36*42 12*292
            500
            1500 1500 500
18*292 24*42 18*292 18*292 24*42 18*292 18*292 24*42 18*292
            500
            15001500 500
            180*292
            500
            1500 1500 500
6*4.7 48*292 6*4.7 6*4.7 48*292 6*4.7 6*4.7 48*292 6*4.7
            500
            1500 1500500
12*42 36*292 12*42
                12*42 36*292 12*42 12*42 36*292 12*42
            500
            1500 1500500
18*42 24*292 18*42 18*42 24*292 18*42 18*42 24*292 18*42
            500
            1500 1500500
12*42 36*292 12*42
            500
            15001500 500
```


APPENDIX VIII: ECLIPSE Input Files

```
    180*292
    500
    1500 1500 500
24*292 12*4.7 24*292 24*292 12*4.7 24*292 24*292 12*4.7 24*292
    500
    1500 1500500
18*292 24*42 18*292 18*292 24*42 18*292 18*292 24*42 18*292
    500
    1500 1500500
12*292 36*42 12*292 12*292 36*42 12*292 12*292 36*42 12*292
            500
            1500 1500 500
18*292 24*42 18*292 18*292 24*42 18*292 18*292 24*42 18*292
            500
            15001500 500
            180*292
            500
            1500 1500 500
6*4.7 48*292 6*4.7 6*4.7 48*292 6*4.7 6*4.7 48*292 6*4.7
                500
            1500 1500 500
12*42 36*292 12*42 12*42 36*292 12*42 12*42 36*292 12*42
                500
            1500 1500500
18*42 24*292 18*42 18*42 24*292 18*42 18*42 24*292 18*42
                500
            1500 1500 500
12*42 36*292 12*42 12*42 36*292 12*42 12*42 36*292 12*42
        500
    15001500 500
    180*292
        500 1500
    l
-
EQUALS
    'PORO' 0.15 1 184 1 1 1 1 30 /
    l
COPY
    'PERMX' 'PERMY' 1 18411 1 30 /
    'PERMX' 'PERMZ' /
l
ENDBOX
PSEUDOS
```

--
PROPS
OIL WAT GAS
DENSITY
$0.81 \quad 1.0 \quad 0.08$ /
-- $\quad P$ Bo Vis
PVDO
$\begin{array}{lll}65.0 & 1.187 & 0.88\end{array}$
$476.0 \quad 1.1 \quad 1.1$
1
-. (DATA FROM THISTLE A31 DST INTERPRETATION PARAMETERS)

- $\quad \mathbf{P}$ Bw Cw Vis Viscosibility
PVTW
$\begin{array}{lllll}412.0 & 1.02 & 3.0 \mathrm{D}-06 & 0.88 & 0.0 /\end{array}$

APPENDIX VIII: ECLIPSE Input Files


```
    0.430593 0.046092 -- Generated point
    0.465080 0.071618 -- Generated point
    0.479659 0.082510 -- Generated point
    0.508721 0.107421 -- Generated point
    0.586236 0.427022 -- Generated point
    0.648131 0.708908 -- Generated point
    0.679025 0.799998 -- Upper end point
l
-- LOW CONTRAST LAMINATION (Fine grid C) 292mD KROX,Y
*0.250000 0.000000-- Lower end point
    0.311442 0.008028 -- Generated point
    0.383459 0.028204 -- Generated point
    0.511960 0.105553 -- Generated point
    0.578874 0.221427 -- Generated point
    0.618287 0.327397 -- Generated point
    0.647260 0.395714 -- Generated point
    0.696341 0.524623 -- Generated point
    0.748311 0.676054 -- Generated point
    0.779523 0.764485 -. Generated point
    0.797308 0.781502 -- Generated point
    0.812444 0.799979 -- Generated point
    0.814697 0.799979 -. Upper end point
l
-- ditto KROZ
0.250000 0.000000-- Lower end point
    0.299639 0.003949 .. Generated point
    0.327358 0.010520 -. Generated point
    0.398226 0.030120 -- Generated point
    0.491454 0.084667 -. Generated point
    0.556015 0.138640 -- Generated point
    0.594750 0.241173 -- Generated point
    0.633068 0.357365 -. Generated point
    0.650185 0.396573 -- Generated point
    0.683616 0.479555 -- Generated point
    0.748701 0.642662 -- Generated point
    0.795331 0.748251 -- Generated point
    0.814706 0.799997 -- Upper end point
l
        ROCK CURVE 500mD KROX,Y,Z
            0.25 0.0
            0.3 0.004
            0.4 0.030
            0.5 0.086
            0.550 0.114
            0.58 0.202
            0.61 0.283
            0.64 0.365
            0.67 0.446
            0.7 0.528
            0.73 0.61
            0.76 0.691
            0.79 0.773
            0.82 0.8
l
        ROCK CURVE 1500mD KROX,Y,Z
            0.25 0.0
            0.36 0.016
            0.575 0.112
            0.8 0.8
l
```

APPENDIX VIII: ECLIPSE Input Files

APPENDIX VIII: ECLIPSE Input Files

0.630377	0.296075	0.167572
$0 .-$ Generated point		
0.646181	0.329088	0.162292
0.749997	0.439998	0.123804
	-- Uenerated point	

1
-- LOW CONTRAST LAMINATION (Fine grid C) 292 mD
KRWX,Y
--

0.185303	0.000000	1.837008 -- Lower end point
0.187556	0.000000	1.758514 -- Generated point
0.202692	0.003185	1.244507 -- Generated point
0.220477	0.008621	$0.774414-$ - Generated point
0.251689	0.028687	0.503510 -- Generated point
0.303659	0.063696	0.268951 -- Generated point
0.352740	0.093620	0.182709 -- Generated point
0.381713	0.109343	0.161652 -- Generated point
0.421127	0.134643	0.126038 -- Generated point
0.488040	0.167099	0.100983 -- Generated point
0.616541	0.243676	0.081512 -- Generated point
0.688558	0.333735	0.080597 -- Generated point
0.750013	0.439994	0.067998 -- Upper end point

1
-- ditto
KRWZ
-

APPENDIX VIII: ECLIPSE Input Files

FIPNUM

2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	$2 * 5$
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	$60^{*} 4$	2*5
2*1	60*2	60*3	$60^{* 4}$	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	$60 * 4$	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	$60 * 4$	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	60*4	2*5
2*1	60*2	60*3	$60 * 4$	2*5
2*1	$60 * 2$	60*3	$60 * 4$	2*5
2*1	60*2	60*3	$60^{*} 4$	2*5

1
.- SATURATION REGIONS IDENTIFIED BY PERMEABILITY (mD)
-. $1=4.7 \mathrm{H} \quad 2=4.7 \mathrm{~V} \quad 3=42 \mathrm{H} \quad 4=42 \mathrm{~V} \quad 5=292 \mathrm{H} \quad 6=292 \mathrm{~V} \quad 7=1500 \mathrm{H} \& \mathrm{~V} \quad 8=500 \mathrm{H} \& \mathrm{~V}$
-.
SATNUM

```
8 7
24*5 12*1 24*5 24*5 12*1 24*5 24*5 12*1 24*5
7
8
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
78
7
12*5 36*3 12*5 12*5 36*3 12*5 12*5 36*3 12*5
78
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
78
7
180*5
78
7
6*1 48*5 6*1 6*1 48*5 6*1 6*1 48*5 6*1
78
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
78
7
18*3 24*5 18*3 18*3 24*5 18*3 18*3 24*5 18*3
```

APPENDIX VIII: ECLIPSE Input Files

```
78
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
78
7
180*5
78
```

7
24*5 12*1 24*5 24*5 12*1 24*5 24*5 12*1 24*5
788
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
788
7
12*5 36*3 12*5 12*5 36*3 12*5 12*5 36*3 12*5
788
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
788
7
180*5
788
7
6*1 48*5 6*1 6*148*5 6*1 6*148*5 6*1
788
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
788
7
18*3 $24 * 518 * 318 * 324 * 518 * 318 * 324 * 518 * 3$
788
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
788
7
180*5
788
7
$24^{*} 512 * 124 * 5 \quad 24 * 512 * 124 * 5 \quad 24 * 512 * 124 * 5$
788
7
$18 * 524 * 318 * 5 \quad 18 * 524 * 318 * 5 \quad 18 * 524 * 318 * 5$
788
7
12*5 36*3 12*5 12*5 36*3 12*5 12*5 36*3 12*5
788
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
788
7
180*5
788
7
6*148*5 6*1 6*1 48*5 6*1 6*148*5 6*1
788
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
788
7
$18 * 324 * 518 * 318 * 324 * 518 * 318 * 324 * 518 * 3$
788

APPENDIX VIII: ECLIPSE Input Files

```
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
78
7
180*5
7
/
KRNUMX
87
24*5 12*1 24*5 24*5 12*1 24*5 24*5 12*1 24*5
78
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
78
7
12*5 36*3 12*5 12*5 36*3 12*5 12*5 36*3 12*5
78
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
78
7
180*5
78
7
6*1 48*5 6*1 6*1 48*5 6*1 6*1 48*5 6*1
78
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
78
7
18*3 24*5 18*3 18*3 24*5 18*3 18*3 24*5 18*3
78
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
78
7
180*5
78
7
24*5 12*1 24*5 24*5 12*1 24*5 24*5 12*1 24*5
78
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
78
7
12*5 36*3 12*5 12*5 36*3 12*5 12*5 36*3 12*5
78
7
18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
78
7
180*5
78
7
6*1 48*5 6*1 6*1 48*5 6*1 6*148*5 6*1
78
7
12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
78
7
18*3 24*5 18*3 18*3 24*5 18*3 18*3 24*5 18*3
```

APPENDIX VIII: ECLIPSE Input Files

```
    78
    7
    12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
    78
    7
    180*5
    78
    7
        24*5 12*1 24*5 24*5 12*1 24*5 24*5 12*1 24*5
        78
        7
        18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
        78
            7
            12*5 36*3 12*5 12*5 36*3 12*5 12*5 36*3 12*5
            78
            7
            18*5 24*3 18*5 18*5 24*3 18*5 18*5 24*3 18*5
            78
            7
            180*5
            78
            7
            6*1 48*5 6*1 6*1 48*5 6*1 6*1 48*5 6*1
            78
            7
            12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
            788
            7
            18*3 24*5 18*3 18*3 24*5 18*3 18*3 24*5 18*3
            78
            7
            12*3 36*5 12*3 12*3 36*5 12*3 12*3 36*5 12*3
            788
            7
            180*5
                    7
/
KRNUMZ
87
24*6 12*2 24*6 24*6 12*2 24*6 24*6 12*2 24*6
78
7
18*6 24*4 18*6 18*6 24*4 18*6 18*6 24*4 18*6
78
7
12*6 36*4 12*6 12*6 36*4 12*6 12*6 36*4 12*6
78
7
18*6 24*4 18*6 18*6 24*4 18*6 18*6 24*4 18*6
78
7
180*6
78
7
6*2 48*6 6*2 6*2 48*6 6*2 6*2 48*6 6*2
78
7
12*4 36*6 12*4 12*4 36*6 12*4 12*4 36*6 12*4
78
7
```


APPENDIX VIII: ECLIPSE Input Files

```
18*4 24*6 18*4 18*4 24*6 18*4 18*4 24*6 18*4
78
7
12*4 36*6 12*4 12*4 36*6 12*4 12*4 36*6 12*4
78
7
180*6
78
7
24*6 12*2 24** 24*6 12*2 24*6 24*6 12*2 24*6
78
7
18*6 24*4 18*6 18*6 24*4 18*6 18*6 24*4 18*6
78
7
12*6 36*4 12*6 12*6 36*4 12*6 12*6 36*4 12*6
78
7
18*6 24*4 18*6 18*6 24*4 18*6 18*6 24*4 18*6
78
7
180*6
78
7
6*248*6 6*2 6*2 48*6 6*2 6*2 48*6 6*2
78
7
12*4 36*6 12*4 12*4 36*6 12*4 12*4 36*6 12*4
78
7
18*4 24*6 18*4 18*4 24*6 18*4 18*4 24*6 18*4
78
7
12*4 36*6 12*4 12*4 36*6 12*4 12*4 36*6 12*4
78
7
180*6
78
7
24*6 12*2 24*6 24*6 12*2 24*6 24*6 12*2 24*6
78
7
18*6 24*4 18*6 18*6 24*4 18*6 18*6 24*4 18*6
78
7
12*6 36*4 12*6 12*6 36*4 12*6 12*6 36*4 12*6
78
7
18*6 24*4 18*6 18*6 24*4 18*6 18*6 24*4 18*6
78
7
180*6
78
7
6*2 48*6 6*2 6*2 48*6 6*2 6*2 48*6 6*2
78
7
12*4 36*6 12*4 12*4 36*6 12*4 12*4 36*6 12*4
78
7
18*4 24*6 18*4 18*4 24*6 18*4 18*4 24*6 18*4
```


APPENDIX VIII: ECLIPSE Input Files

788

7
12*4 36*6 12*4 12*4 36*6 12*4 12*4 36*6 12*4
788
7
180*6
78
1
--
SOLUTION
-. DATUM Pi@DATUM WOC Pc@WOC GOC Pc@GOC
EQUIL
$\begin{array}{lllllll}304 & 313 & 10304 & 0 & 0 & 0 & 2 *\end{array}$
.- Pb Sob Swb Pob@Datum
RPTSOL
$\begin{array}{llll}1 & 0 & 1 & 12 *\end{array} 1 /$
SUMMARY
-.
WWCT
'PROD'
1
FOIP
FWIP
ROIP
31
RWIP
31
--
RWFT
23
34
1
ROFT
23
34
1
--
RPTSMRY
$1 /$
RUNSUM
SCHEDULE
RPTSCHED
$1010002216^{*} 01001$
.- WELL WELL LOCATION BHP PREF.
-- NAME GROUP I J DATUM PHASE
WELSPECS
'PROD' 'G' 18411304 'OIL' /
'INJ' 'G' 11304 'WAT 1

APPENDIX VIII: ECLIPSE Input Files

```
.- WELL LOCATION INTERVAL STATUS
WELL
-- NAME I J K1 K2 OorS D
COMPDAT
    'PROD' 184 1 1 30 'OPEN' 2* 3.0 /
        'INJ' 1 1 1 30 'OPEN' 2* 3.0/
        |
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'OPEN' 'BHP' 5* 311.9 /
        l
--
--****************************************************************
-- MODEL CONTROLLED BY INJECTION RATE ( }=24\textrm{m}/\mathrm{ day)
..****************************************************************
.- WELL FLUID STATUS CONTROL RATE BHPTAR
-- NAME TYPE MODE cc/hr (atm)
WCONINJ
    'INJ' 'WAT' 'OPEN' 'RATE' 180 3* 500 /
        |
-
TUNING
l
l
20150125/
-- DAYS
TSTEP
    1246920303050100250500 7*1000 /
```

--
END

APPENDIX VIII: ECLIPSE Input Files

VIII. 4 Formation Scale; Thistle Field (A33GEOP2.DATA)

-- THISTLE FIELD SIMULATION
-- BASED ON A331C.DATA (BP MODEL)
--

-- WITH FACIES GEOPSEUDOS

-
--
RUNSPEC
THISTLE A33 SIMULATION
= NDIVIX NDIVIY NDIVIZ
48142 /
= OIL WAT GAS
T T F/
= UNIT CONVENTION
'FIELD' $/$
= NRPVT
$1 /$
= NSSFUN NTSFUN QDIRKR
$35 \quad 7 \quad$ T 1
= NDRXVD
1
$=$ NTFIP
21
= NWMAXZ NCWMAX NGMAXZ NWGMAX
$24212 /$
$=$ QIMCOL
1
= MXMFLO
1
= MXSFLO
1
$=$ NANAQU
1
= DAY MONTH YEAR
1 'JAN' 1990 /
= QSOLVE NSTACK
T 25 /
--

```
GRID
EQUALS
\begin{tabular}{|c|c|c|c|c|}
\hline DX' & 40 & 148 & 11 & 142 / \\
\hline DY' & 2000 & 148 & 11 & 1421 \\
\hline DZ' & 35 & 148 & 11 & 121 \\
\hline DZ' & 5 & 148 & 11 & 3421 \\
\hline TOPS & 9000 & 148 & 1 & 11 \\
\hline
\end{tabular}
l
EQUALS
    'PORO' 0.25 148 11 1 1 1 /ETIVE
    'PERMX' 1500 /
    NTG' 1.0 /
l
EQUALS
    'PORO' 0.28 148 11 2 2 /ETIVE
        'PERMX' 3000 /
        'NTG' 1.0 /
```

1

APPENDIX VIII: ECLIPSE Input Files

```
_-*************************************************************
.- WAVY BEDDED FACIES (LAYERS 3 & 4) PERMEABILITY REDUCED
_-***************************************************************
EQUALS
    'PORO' 0.23 148 11 1 3 4/RANNOCH
    'PERMX' 150 l
    NTG' 1.0 /
I
EQUALS
    'PORO' 0.23 1 48 1 1 5 5 12 /RANNOCH
    'PERMX' 270 /
    NTG' 1.0 /
|
EQUALS
        'PORO' 0.22 148 111 13 22 /RANNOCH
        'PERMX' 200 /
    NTG' 0.8 /
l
EQUALS
        'PORO' 0.22 148 11 1 23 32 /RANNOCH
        'PERMX' 50 /
        NTG' 0.9 /
l
EQUALS
    'PORO' 0.18 148 14 1 33 42 /RANNOCH
    'PERMX' 20 l
l
COPY
        'PERMX' 'PERMY' 14811 1 1 42 /
        'PERMX' PERMZ' /
l
.-*******************************************************************
-- PERM AND TRANSMISSABILITY MULTIPLIERS DISABLED
_.*************************************&******************************
.. PERM MULTIPLIER TO MATCH A33 PI
.- (FROM BP MODEL)
*-
--MULTIPLY
_- 'PERMX' 1.25 1 48 1 1 1 42 /
-- 'PERMZ 1.25 /
--/
--
EDIT
.- TRANSMISSABILITY MULTIPLIER TO MATCH EARLY WATER CUT BEHAVIOUR
.- (FROM BP CROSS-SECTIONAL MODEL)
.-TRANX
.- 96*1.0 1920*0.06 /
--TRANZ
-- 96*1.0 1920*0.006 /
-
PROPS
- OLl WAT GAS
DENSITY
    53.0
.- P Bo Vis
PVDO
    959.0}101.18
```


APPENDIX VIII: ECLIPSE Input Files

```
        7000.0}1.1.1.
    l
.- (DATA FROM A31 DST INTERPRETATION PARAMETERS)
-- P Bw Cw Vis Viscosibility
PVTW
    6060.0
--
# P Cr
ROCK
    6060.0 5.0D-06 /
_-**************************************************
(REL.PERM. AND CAP.PRESS. GEOPSEUDOS)
```



```
SOF2
..- WAVY BEDDED GEOPSEUDO X,Y
-- So Kro
    0.250000 0.000000 -- Lower end point
    0.332957 0.012786 -. Generated point
    0.387468 0.029031 -- Generated point
    0.501143 0.095281 -- Generated point
    0.591481 0.275656 -- Generated point
    0.663656 0.373504 -. Generated point
    0.703076 0.556966 -- Generated point
    0.749369 0.693772 -- Generated point
    0.803574 0.888859 -- Generated point
    0.817758 0.986956 -- Upper end point
/
-- ditto Z
0.250000 0.000000 -- Lower end point
    0.601541 0.001743 -- Generated point
    0.616147 0.013926 -- Generated point
    0.646199 0.106492 -- Generated point
    0.690970 0.188545 -- Generated point
    0.725616 0.264941 -- Generated point
    0.762166 0.516398 -. Generated point
    0.790764 0.672023 -- Generated point
    0.800958 0.715714-- Generated point
    0.808200 0.733293 -- Generated point
    0.814481 0.768330 -. Generated point
    0.817395 0.800002 -- Upper end point
l
.- SCS GEOPSEUDO X,Y
*-0.249985 0.000000 -- Lower end point
    0.291101 0.008696 -- Generated point
    0.299401 0.011532 -- Generated point
    0.311386 0.016067 -- Generated point
    0.332722 0.025567 -- Generated point
    0.375119 0.050044 -- Generated point
    0.514721 0.316330 -- Generated point
    0.703423 0.722668 -- Generated point
    0.751478 0.781592 -. Generated point
    0.771826 0.782944 -- Generated point
    0.778083 0.783141 -- Generated point
    0.780777 0.799984 -- Upper end point
I
-- ditto Z
--
```


APPENDIX VIII: ECLIPSE Input Files

.. ROCK CURVE 1500 mD
$0.25 \quad 0.0$
$0.35 \quad 0.004$
$0.46 \quad 0.030$
0.530 .086
$0.58 \quad 0.114$
$0.61 \quad 0.202$
$0.64 \quad 0.283$
$0.67 \quad 0.365$
0.730 .446
$0.76 \quad 0.528$
$0.79 \quad 0.61$
$0.82 \quad 0.691$
$0.85 \quad 0.773$
$0.9 \quad 0.8$
1
-- Sw Krw Pc
SWFN

APPENDIX VIII: ECLIPSE Input Files

```
.. HCS GEOPSEUDO X,Y
-0.242927 0.000000 34.310970
    0.249162 0.000223 28.374683
    0.295791 0.003360 12.702032
    0.478730 0.069170 2.542026
    0.639052 0.229303 1.602437
    0.676887 0.279646 1.540552
    0.695352 0.311219 1.514540
    0.706150 0.331185 1.494804
    0.713375 0.346178 1.480005
    0.750012 0.437091 1.413491
l
-- ditto Z
--
    0.245371 0.000000 34.141262
    0.247366 0.000000 30.536541
    0.251893 0.000000 27.760406
    0.267390 0.001884 20.002945
    0.286370 0.006026 14.745336
    0.312690 0.018123 9.780584
    0.348622 0.036151 6.180594
    0.391868 0.054426 4.137291
    0.461253 0.082635 2.923240
    0.525322 0.105130 2.418682
    0.561033 0.120739 2.200270
    0.588675 0.133876 2.046448
    0.612307 0.145473 1.924000
    0.750000 0.435907 1.451024
l
-- ROCK CURVE 1500md
        0.10
        0.13 0.006 12.0
        0.16 0.025 8.0
        0.19 0.044 5.5
        0.22. 0.063 4.0
        0.25 0.082 3.1
        0.28
        0.31
        0.34 0.139 1.8
        0.37 0.159 1.4
        0.42
        0.5 0.231 1.2
        0.6 0.354 1.1
        0.75 0.44 1
/
--
REGIONS
FIPNUM
-- ETIVE RANNOCH
    96*1 1920*2 /
-
SATNUM
-- ETIVE WB SCS HCS
        96*7 96*1 240*3 1584*5 /
KRNUMX
        96*7 96*1 240*3 1584*5 /
KRNUMZ
        96*7 96*2 240*4 1584*6 /
```


APPENDIX VIII: ECLIPSE Input Files

```
SOLUTION
SWAT
    192*0.75 1824*0.20 /
PRESSURE
        2016*4600 /
*
-- DATUM Pi@DATUM WOC Pc@WOC GOC Pc@GOC
--EQUIL
-- 9200 4600 9332 0 8500 0/
-- Pb Sob Swb Pob@Datum
RPTSOL
    1 0 1 12*0 1/
SUMMARY
ROFT
    1 1
l
RWFT
    1 /
/
WBHP
'PROD' 'NJ'/
WWCT
    'PROD'
l
FOIP
FWIP
FOPR
FWPR
FWIR
FOPT
FWPT
FPR
-
RPTSMRY
1/
RUNSUM
SCHEDULE
RPTSCHED
1010002216*01001
.- WELL WELL LOCATION BHP PREF.
-- NAME GROUP I J DATUM PHASE
WELSPECS
    'PROD' 'G' 48 1 9200 'OL' /
```

APPENDIX VIII: ECLIPSE Input Files

```
    'INJ' 'G' 1 1 9200 'WAT /
- WELL LOCATION INTERVAL STATUS
                WELL
-- NAME I J K1 K2 OorS ID
COMPDAT
    'PROD' 48 1 13 42 'OPEN' 2* 0.66667/
    'INJ' 1 1 1 42 'OPEN' 2* 0.66667 /
        /
.- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'OPEN' 'LRAT' 3* 9604 1*1500.0 /
        /
-- WELL FLUID STATUS CONTROL BHP TAR
-- NAME TYPE MODE
WCONINJ
    'INJ' 'WAT' 'OPEN' 'RESV' 1* 0.0 1.0 'FVDG' /
        l
__***************************************************************************
-- PRODUCTION WELL BHP INCREASED TO 1500psi IN LINE WITH BP TARGET
```



```
-- DAYS
TSTEP
    192031/
--
- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OLL WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'OPEN' LRAT' 3* 7508 [*1500.0 /
        l
-
-- DAYS
TSTEP
    30 30 /
-*-
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
*- NAME MODE OIL WAT GAS LIQ RV BHP
WCONPROD
    'PROD' 'OPEN' LRAT' 3* 3694 1* 1500.0 /
        l
-
-- DAYS
TSTEP
    505069 /
--
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'OPEN' LRAT' 3* 1746 1*1500.0 /
        /
*-
--
-- DAYS
TSTEP
6 1 ~ / ~
```

APPENDIX VIII: ECLIPSE Input Files
-
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS -- NAME MODE OLL WAT GAS LIQ RV BHP
WCONPROD
'PROD' 'OPEN' LRAT' 3* 2197 1*1500.0 / 1
--
.- DAYS
TSTEP
79 /
\cdots
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-. NAME MODE OLL WAT GAS LIQ RV BHP
WCONPROD
'PROD' 'OPEN' 'LRAT' 3* 4315 1* 1500.0 / 1
--
--
-- DAYS
TSTEP
59 /
--.
.- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
.. NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
'PROD' 'OPEN' LRAT' 3* 7404 1*1500.0 /
1
--
.- DAYS
TSTEP
571

... WELL STATUS CONTROL TARGET RATES or UPPER LIMITS -. NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
'PROD' 'OPEN' LRAT' $3^{*} 6384$ 1* 1500.0 /
1
--

- DAYS

TSTEP
39150150 /
…
-. WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OLL WAT GAS LIQRV BHP
WCONPROD
'PROD' 'OPEN' 'LRAT' 3* 10027 1* 1500.0 /
1
--
-- DAYS
TSTEP
183 /

-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS

APPENDIX VIII: ECLIPSE Input Files

```
    NAME MODE Oll WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'OPEN' LRAT' 3* 8807 1* 1500.0 /
        l
-
-- DAYS
TSTEP
    188 /
--
- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OLL WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'SHUT' LRAT' 3* 0 1*1500.0 /
        l
--
-- DAYS
TSTEP
68 /
--
.- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
    'PROD' 'OPEN' 'LRAT' 3* 4413 1*1500.0 /
        l
--
-. DAYS
TSTEP
    148 200 /
---
--
END
```


VIII. 5 Formation Scale; Statfjord Field (STAT001.DATA)

.- STATFJORD FIELD SIMULATION

- WEST FLANK 3-D CROSS-SECTIONAL MODEL
--
--
-

--

RUNSPEC
STATFJORD SIMULATION
= NDIVIX NDIVIY NDIVIZ $60 \quad 20 \quad 20$ /
= OIL WAT GAS
T T F /
= UNIT CONVENTION
'FIELD' /
= NRPVT
$1 /$
= NSSFUN NTSFUN QDIRKR
357 T /
= NDRXVD
1
$=$ NTFIP
21
$=$ NWMAXZ NCWMAX NGMAXZ NWGMAX
$2 \quad 20 \quad 1$ /
$=$ QIMCOL
1
= MXMFLO
1
$=$ MXSFLO
1
= NANAQU
I
$=$ DAY MONTH YEAR
1 'JAN' 1990 /
= QSOLVE NSTACK
T 25 /
-
GRID
EQUALS

DX'	155	60	120	120
DY'	125	160	120	120
DZ'	15	160	120	120

--

.-

'TOPS'	8701.5	11	120	1	
'TOPS'	8684	22	120	11	1
'TOPS'	8666.5	33	120	11	
'TOPS'	8649	44	120	11	1
'TOPS'	8631.5	55	120	11	1
'TOPS'	8614	66	120	11	1
'TOPS'	8596.5	77	120	11	,
'TOPS'	8579	88	120	11	1
'TOPS'	8561.5	99	120	11	1
'TOPS'	8544	1010	120	11	1
'TOPS'	8526.5	1111	120	11	1
'TOPS'	8509	1212	120	11	1

APPENDIX VIII: ECLIPSE Input Files

TOPS'	8491.5	1313	120	1	
'TOPS'	8474	$14 \quad 14$	120		
'TOPS'	8456.5	1515	120	1	
'TOPS'	8439	1616	120	1	
TOPS'	8421.5	1717	120	11	
'TOPS'	8404	1818	120	1	
'TOPS'	8386.5	1919	120	11	
'TOPS'	8369	$20 \quad 20$	120	11	
'TOPS'	8351.5	2121	120	,	
'TOPS'	8334	2222	120	11	
'TOPS'	8316.5	2323	120	11	
'TOPS'	8299	2424	120	11	
'TOPS'	8281.5	$25 \quad 25$	120	11	
'TOPS'	8264	2626	120	1	
'TOPS'	8246.5	2727	120	11	
'TOPS'	8229	2828	120	11	
'TOPS'	8211.5	2929	120	11	I
'TOPS'	8194	3030	120	11	
'TOPS'	8176.5	3131	120	11	
'TOPS'	8159	3232	120	11	,
'TOPS'	8141.5	3333	120	11	
'TOPS'	8124	3434	120	11	
'TOPS'	8106.5	3535	120		
'TOPS'	8089	3636	120	11	
'TOPS'	8071.5	3737	120		
'TOPS'	8054	3838	120	11	
'TOPS'	8036.5	3939	120	11	
'TOPS'	8019	4040	120		
'TOPS'	8001.5	4141	120	1	
'TOPS'	7984	4242	120	11	
'TOPS'	7966.5	4343	120		
'TOPS'	7949	4444	120	1	
'TOPS'	7931.5	4545	120		
'TOPS'	7914	4646	120		
'TOPS'	7896.5	4747	120	1	
'TOPS'	7879	4848	120		
'TOPS'	7861.5	4949	120		
'TOPS'	7844	5050	120	11	
'TOPS'	7826.5	5151	120	1	
'TOPS'	7809	5252	120	11	
'TOPS'	7791.5	5353	120	11	
'TOPS'	7774	5454	120	1	
'TOPS'	7756.5	5555	120	11	
'TOPS'	7739	5656	120	11	
'TOPS'	7721.5	5757	120	1	
'TOPS'	7704	5858	120	1	
'TOPS'	7686.5	5959	120	11	
TOPS'	7669	6060	120	11	

-. ETIVE LAYERS
--
EQUALS

APPENDIX VIII: ECLIPSE Input Files

APPENDIX VIII: ECLIPSE Input Files

		$\begin{aligned} & 1960 \\ & 2446 \\ & 1 \end{aligned}$	1^{20}			RANNOCH 3 OLL		
--	'PORO' 0.27	119	120	10		/ RANNOCH 4 WATER		
	'PERMX'	384						
	NTG' 1.0	1						
--	'PORO' 0.32	2060	120	10	10	/ RANNOCH 4 OIL		
	'PERMX'	2446	1					
	'NTG' 1.0	1						
--	'PORO' 0.27	119	120	11	11	/ RANNOCH 5 WATER		
	'PERMX'	384						
	'NTG' 1.0	1						
--	'PORO' 0.32	2060	120	11		/ RANNOCH 5 OIL		
	'PERMX'	2446						
	NTG' 1.0	1						
--	'PORO' 0.28	120	120	12		/ RANNOCH 6 WATER		
	PERMX ${ }^{1}$	659						
	NTG' 1.0	1						
--	'PORO' 0.33	2160	120	12		/ RANNOCH 60 OL		
	'PERMX'	3330	1					
	NTG' 1.0	1						
	'PORO' 0.27	120	120	13		/ RANNOCH 7 WATER		
	'PERMX'	685	1					
	NTG' 1.0	1						
	'PORO' 0.30	2160	120	13		/ RANNOCH 7 OIL		
	'PERMX'	1551						
	NTG' 1.0	1						
-	'PORO' 0.27	121	120	14		/ RANNOCH 8 WATER		
	'PERMX'	685	1					
	'NTG' 1.0	1						
.-	'PORO' 0.30	2260	120	14		/ RANNOCH 8 OLL		
	'PERMX'	1551						
	NTG' 1.0	1						
--	'PORO' 0.27	121	120	15		/ RANNOCH 9 WATER		
	'PERMX'	685						
	'NTG' 1.0	1						
-	'PORO' 0.30	2260	120	15	15 /RANNOCH 9 OLL			
	PERMX	1551						
	'NTG' 1.0	1						
-	'PORO' 0.27	122	120	16	16	/ RANNOCH 10 WATER		
	'PERMX'	685						
	'NTG' 1.0	1						
-	'PORO' 0.30	2360	120	16	16	/ RANNOCH 10 OIL		
	'PERMX'	1551						
	'NTG' 1.0	1						
--	'PORO' 0.27	122	120	1717 /RANNOCH 11 WATER				
	'PERMX'	685						

APPENDIX VIII: ECLIPSE Input Files

```
    'NTG' 0.25 /
    'PORO' 0.30 23 60 1 20 17 17 /RANNOCH 11 OIL
        'PERMX' 1551 /
        'NTG' 0.25 /
        'PORO' 0.23 123 120 18 18 /RANNOCH 12 WATER
        'PERMX' 106 l
        NTG' 0.25 /
        'PORO' 0.28 24 60 1 20 18 18 /RANNOCH 12 OIL
        'PERMX' 1259 /
        'NTG' 0.25 /
        'PORO' 0.21 123 120 19 19 /RANNOCH 13 WATER
        'PERMX' 25 /
        NTG' 0.25 /
        'PORO' 0.22 24 60 120 19 19 /RANNOCH 13 OIL
        'PERMX' 36
        'NTG' 0.25 /
        'PORO' 0.21 124 120 20 20 /RANNOCH 14 WATER
        'PERMX' 25 /
        NTG' 0.25 /
        'PORO' 0.22 25 60 1 20 20 20 /RANNOCH 14 OIL
        'PERMX' }3
        'NTG' 0.25 /
/
COPY
            'PERMX' 'PERMY' 1 60 1 20 1 20 /
        'PERMX' 'PERMZ' /
/
--
PROPS
            OIL WAT GAS
DENSITY
            53.0 63.0 0.08 /
-- P Bo Vis
PVDO
        959.0
        7000.0}1.11.
    /
- (DATA FROM A31 DST INTERPRETATION PARAMETERS)
- P Bw Cw Vis Viscosibility
PVTW
    6060.0 1.02 3.0D-06 0.88 0.0/
--
- P Cr
ROCK
    6060.0 5.0D-06 /
```



```
-- (REL.PERM. AND CAP.PRESS. GEOPSEUDOS)
```



```
SOF2
```

--

APPENDIX VIII: ECLIPSE Input Files

WA	WAVY BEDDED GEOPSEUDO
-- So	Kro
0.250000	000.00000 -- Lower end point
0.332957	570.012786 -- Generated point
0.387468	$580.029031-$ Generated point
0.501143	430.095281 -. Generated point
0.591481	(0.275656 -- Generated point
0.663656	$560.373504-$ - Generated point
0.703076	760.556966 -- Generated point
0.749369	$690.693772-$ - Generated point
0.803574	740.888859 -- Generated point
0.817758	580.986956 -- Upper end point
1	
--	ditto Z
0.250000	$000.000000-$ Lower end point
0.601541	410.001743 -- Generated point
0.616147	470.013926 -- Generated point
0.646199	990.106492 -- Generated point
0.690970	70 0.188545-- Generated point
0.725616	160.264941 -- Generated point
0.762166	66 0.516398-- Generated point
0.790764	64 0.672023 -. Generated point
0.800958	58 0.715714 -. Generated point
0.808200	$000.733293-$ Generated point
0.814481	$810.768330--$ Generated point
0.817395	350.800002 -- Upper end point
1	
SC	SCS GEOPSEUDO X,Y
SC	
0.249985	$850.000000-$ Lower end point
0.291101	1010.008696 -- Generated point
0.299401	$010.011532-$ - Generated point
0.311386	086 0.016067-- Generated point
0.332722	722 . 0.025567 -- Generated point
0.375119	190.050044 -- Generated point
0.514721	21 0.316330-- Generated point
0.703423	423 0.722668 -. Generated point
0.751478	4780.781592 -- Generated point
0.771826	326 0.782944 -- Generated point
0.778083	0830.783141 -- Generated point
0.780777	0.799984 -- Upper end point
7	
--	ditto \mathbf{Z}
0.250000	0.00000 -- Lower end point
0.531093	0.051628 -- Generated point
0.572827	827 0.066315-- Generated point
0.648960	960 0.088682-- Generated point
0.685041	041 0.124961 -- Generated point
0.711230	230 0.216053 -- Generated point
0.729548	548 0.363551 -- Generated point
0.747085	0850.457992 -. Generated point
0.766559	559 0.509208 -- Generated point
0.777202	$2020.535628-$ Generated point
0.778470	470 0.800001 -- Upper end point
/	
--	
HC	HCS GEOPSEUDO X,Y
-- 0.249983	983 0.000000-- Lower end point

APPENDIX VIII: ECLIPSE Input Files

```
    0.286625 0.008376 -- Generated point
    0.293850 0.011116 -- Generated point
    0.304648 0.015592 -- Generated point
    0.323113 0.024696 -- Generated point
    0.360948 0.048618 -- Generated point
    0.521270 0.422794 -- Generated point
    0.704209 0.744517 -- Generated point
    0.750837 0.763881 -- Generated point
    0.757073 0.799983 -- Upper end point
|
-- ditto Z
--
    0.250000 0.000000 -- Lower end point
    0.387693 0.008625 -- Generated point
    0.411325 0.010700 -- Generated point
    0.438967 0.013638 -- Generated point
    0.474678 0.018596 -. Generated point
    0.538747 0.028044 -- Generated point
    0.608132 0.043055 -- Generated point
    0.651378 0.061517 -- Generated point
    0.687310 0.174610 -. Generated point
    0.713630 0.319381 -- Generated point
    0.732610 0.373898 -- Generated point
    0.748107 0.410305 -- Generated point
    0.752627 0.415168 -- Generated point
    0.754629 0.799993 -- Upper end point
/
-- ROCK CURVE 1500mD
--
            0.25 0.0
            0.35 0.004
            0.46 0.030
            0.53 0.086
            0.58 0.114
            0.61 0.202
            0.64 0.283
            0.67 0.365
            0.73 0.446
            0.76 0.528
            0.79 0.61
            0.82 0.691
            0.85 0.773
            0.9 0.8
l
.- Sw Krw Pc
SWFN
\begin{tabular}{lcc}
\hline- & \multicolumn{1}{c}{ WAVY BEDDED GEOPSEUDO } \\
\hline- & & \(\mathbf{X}, \mathbf{Y}\) \\
\hline- & \\
0.182242 & 0.000000 & 28.486124 \\
0.186541 & 0.000873 & 25.296415 \\
0.194172 & 0.002840 & 21.442125 \\
0.203680 & 0.005290 & 16.891787 \\
0.214801 & 0.008062 & 11.971890 \\
0.250631 & 0.030110 & 7.498693 \\
0.296924 & 0.057581 & 4.430153 \\
0.336344 & 0.084313 & 3.098137 \\
0.408519 & 0.124124 & 2.128510 \\
0.498857 & 0.188109 & 1.399721 \\
0.612532 & 0.253604 & 1.236918 \\
0.667043 & 0.332530 & 1.164717 \\
0.749999 & 0.440001 & 1.046340
\end{tabular}
```


APPENDIX VIII: ECLIPSE Input Files

1			
--	ditto	Z	
0.182605	0.000000	28.486610	
0.185519	0.000608	25.989788	
0.191800	0.003361	22.802387	
0.199042	0.006517	19.183100	
0.209236	0.011317	14.400449	
0.237834	0.033631	8.939224	
0.274384	0.062657	5.595311	
0.309030	0.088021	3.905418	
0.353801	0.121952	2.828157	
0.383853	0.148372	2.445591	
0.398459	0.162765	2.291312	
0.750000	0.439996	1.046355	
1			

-- S	SCS GEOPSEU	DO	X,Y
0.219223	0.000000	32.225315	
0.220608	0.000000	29.680822	
0.221917	0.000000	29.333700	
0.228174	0.000003	26.525280	
0.248522	0.000892	18.979488	
0.296577	0.013652	9.086331	
0.485279	0.109329^{\prime}	2.082320	
0.624881	0.245073	1.485384	
0.667278	0.297837	1.425292	
0.688614	0.332036	1.393901	
0.700599	0.352828	1.375957	
0.708899	0.367741	1.365200	
0.750014	0.440000	1.204337	
1			
--	ditto	Z	
0.221530	0.000000	32.125484	
0.222786	0.000000	29.660643	
0.233441	0.000691	23.156693	
0.252915	0.005295	15.916327	
0.270452	0.013923	12.467029	
0.288770	0.024031	8.911875	
0.314959	0.034716	6.423225	
0.351040	0.051745	4.451668	
0.427173	0.076623	2.785994	
0.468907	0.094763	2.256335	
0.750000	0.439025	1.237330	
1			
--			
--	HCS GEOPS	EUDO	X,Y
0.242927			
0.242927 0.249162	0.000000 0.000223	$\begin{aligned} & 34.310970 \\ & 78374683 \end{aligned}$	
0.295791	0.003360	12.702032	
0.478730	0.069170	2.542026	
0.639052	0.229303	1.602437	
0.676887	0.279646	1.540552	
0.695352	0.311219	1.514540	
0.706150	0.331185	1.494804	
0.713375	0.346178	1.480005	
0.750012	0.437091	1.413491	
1			
--	ditto	\mathbf{Z}	
--			

APPENDIX VIII: ECLIPSE Input Files

REGIONS
FIPNUM
-- ETIVE RANNOCH
7200*1 16800*2 /
--
SATNUM
-- ETIVE HCS 7200*7 16800*5 /
KRNUMX 7200*7 16800*5 |
KRNUMZ
7200*7 16800*6 /
--

SOLUTION

--
.- DATUM Pi@DATUM WOC Pc@WOC GOC Pc@GOC
EQUIL
$8100 \quad 4767 \quad 8473 \quad 0 \quad 7500 \quad 0 /$
--
-- Pb Sob Swb Pob@Datum
RPTSOL

$$
101 \text { 12*0 } 11
$$

SUMMARY

FPR
WBHP

APPENDIX VIII: ECLIPSE Input Files

```
'PROD' 'INJ' /
WWCT
    'PROD'
l
FOIP
FWIP
F-
FWPR
FFWIR
FOPT
FWPT
RPTSMRY
1/
RUNSUM
SCHEDULE
RPTSCHED
1010002216*01001
-- WELL WELL LOCATION BHP PREF.
-- NAME GROUP I J DATUM PHASE
WELSPECS
        'PROD' 'G' }521188100 'OIL'' / 
        'NJ' 'G' 
    WELL LOCATION INTERVAL STATUS WELL
-- NAME I J K1 K2 OorS ID
COMPDAT
        'PROD' 52 10 8 20 'OPEN' 2* 0.66667 /
        'NN' 6 10 12 18 'OPEN' 2* 0.66667 /
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OIL WAT GAS LIQRV BHP
WCONPROD
        'PROD' 'OPEN' LRAT' 3* 30000 1* 1500.0 /
        l
.- WELL FLUID STATUS CONTROL BHP TAR
-- NAME TYPE MODE
WCONINJ
        'INJ' 'WAT' 'OPEN' 'RESV' 1*0.0 1.0 'FVDG' /
.- DAYS
TSTEP
    19203030100200300500 800 /
```

END

VIII. 6 Formation Scale; Cormorant Field (CORM001.DATA)

-

-- CORMORANT FIELD SIMULATION
.. WEST FLANK 3-D CROSS-SECTIONAL MODEL
--
RUNSPEC
CORMORANT SIMULATION
= NDIVIX NDIVIY NDIVIZ

$$
\begin{array}{lll}
75 & 10 & 17
\end{array}
$$

=OIL WAT GAS
TTEI
= UNIT CONVENTION 'FIELD' 1
= NRPVT
$1 /$
= NSSFUN NTSFUN QDIRKR
$35 \quad 7 \quad \mathrm{~T} /$
$=$ NDRXVD
1
$=$ NTFIP
61
= NWMAXZ NCWMAX NGMAXZ NWGMAX
$2 \quad 17 \quad 1 \quad 21$
= QIMCOL
1
= MXMFLO
I
= MXSFLO
1
= NANAQU
1
= DAY MONTH YEAR
1 'JAN' 1993 /
= QSOLVE NSTACK
T 251
--
GRD
EQUALS

DX'	40	175	110	1171
DY'	40	175	110	117 /
DZ'	30	175	110	121
DZ'	15	175	110	341
DZ'	10	175	110	5141
DZ'	15	175	110	1517 /

APPENDIX VIII: ECLIPSE Input Files

```
    'TOPS' 8550 71 75 1 10 1 1 1 /
l
-- ETIVE LAYERS
E-
    'PORO' 0.243 175 110 1 1 /ETIVE 1
        'PERMX' 1435 /
        'NTG' 1.0 /
        'PORO' 0.254 175 1 10 2 2 /ETIVE 2
        'PERMX' 1901 /
        'NTG' 1.0 /
        'PORO' 0.264 1 75 1 10 3 3 /ETIVE 3
        'PERMX' 2702 /
        'NTG' 1.0 /
        'PORO' 0.258 175 1 10 4 4 /ETIVE 4
        'PERMX' 1254 /
        'NTG' 1.0 /
            -- RANNOCH LAYERS
            --
        'PORO' 0.231 175 1 10 5 6 /RANNOCH 1,2
        'PERMX' 235 /
        'NTG' 1.0 /
        'PORO' 0.22 175 110 7 8 /RANNOCH 3,4
        'PERMX' 1.0 133 /
        'PORO' 0.226 1 75 1 10 9 10 /RANNOCH 5,6
        'PERMX' 140 /
        NTG' 1.0 /
        'PORO' 0.185 175 110 11 12 /RANNOCH 7,8
        'PERMX' 47.4 /
        NTG' 1.0 /
        'PORO' 0.226 1 75 1 10 13 14 /RANNOCH 9,10
        'PERMX' 122 /
        'NTG' 1.0 /
    -- BROOM LAYERS
    *- 'PORO' 0.238 1 75 1 10 15 15 /BROOM 1
        'PERMX' 458 /
        'NTG' 1.0 /
        'PORO' 0.288 175 110 16 16 /BROOM 2
        'PERMX' 1040 /
        'NTG' 1.0 /
        'PORO' 0.262 175 110 17 17 /BROOM 3
        'PERMX' 511 /
        NTG' 1.0
l
--
COPY
            'PERMX' 'PERMY' 1 75 1 10 1 17 /
            'PERMX' 'PERMZ' /
```


APPENDIX VIII: ECLIPSE Input Files

1

```
PROPS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{- OIL} & WAT & GAS \\
\hline & & \\
\hline 36.0 & 63.0 & 0.08 \\
\hline \multicolumn{3}{|l|}{-- \(\quad \mathbf{P}\) Bo Vis} \\
\hline PVDO & & \\
\hline 1050.0 & 1.19 & 1.00 \\
\hline 5500.0 & 1.15 & 1.25 \\
\hline
\end{tabular}
    |
.- (DATA FROM A31 DST INTERPRETATION PARAMETERS)
.- P Bw Cw Vis Viscosibility
PVTW
```



```
--
-- P Cr
ROCK
    6060.0 5.0D-06 /
```



```
-- (REL.PERM. AND CAP.PRESS. GEOPSEUDOS)
```



```
SOF2
```

```
. WAVY BEDDED GEOPSEUDO
```

. WAVY BEDDED GEOPSEUDO
X,Y
X,Y
.-
-- So Kro
0.250000 0.000000 -- Lower end point
0.332957 0.012786 -- Generated point
0.387468 0.029031 -- Generated point
0.501143 0.095281 -- Generated point
0.591481 0.275656 -- Generated point
0.663656 0.373504 -- Generated point
0.703076 0.556966 -- Generated point
0.749369 0.693772 -- Generated point
0.803574 0.888859 -- Generated point
0.817758 0.986956 - Upper end point
l
.. ditto Z
"0.250000 0.000000 -- Lower end point
0.601541 0.001743 - Generated point
0.616147 0.013926 -- Generated point
0.646199 0.106492 -- Generated point
0.690970 0.188545 -. Generated point
0.725616 0.264941 -. Generated point
0.762166 0.516398 -- Generated point
0.790764 0.672023 -- Generated point
0.800958 0.715714 -- Generated point
0.808200 0.733293 -- Generated point
0.814481 0.768330 -- Generated point
0.817395 0.800002 - Upper end point
l
.- SCS GEOPSEUDO X,Y
.-
0.249985 0.000000 - Lower end point
0.291101 0.008696 -. Generated point
0.299401 0.011532 -- Generated point
0.311386 0.016067 -- Generated point
0.332722 0.025567 -- Generated point

```

APPENDIX VIII: ECLIPSE Input Files


\section*{APPENDIX VIII: ECLIPSE Input Files}
```

 0.73 0.446
 0.76 0.528
 0.79 0.61
 0.82 0.691
 0.85 0.773
 0.9 0.8
 /
.- Sw Krw Pc
SWFN
--

0.182242	0.000000	28.486124
0.186541	0.000873	25.296415
0.194172	0.002840	21.442125
0.203680	0.005290	16.891787
0.214801	0.008062	11.971890
0.250631	0.030110	7.498693
0.296924	0.057581	4.430153
0.336344	0.084313	3.098137
0.408519	0.124124	2.128510
0.498857	0.188109	1.399721
0.612532	0.253604	1.236918
0.667043	0.332530	1.164717
0.749999	0.440001	1.046340

l

ditto Z

0.182605	0.000000	28.486610
0.185519	0.000608	25.989788
0.191800	0.003361	22.802387
0.199042	0.006517	19.183100
0.209236	0.011317	14.400449
0.237834	0.033631	8.939224
0.274384	0.062657	5.595311
0.309030	0.088021	3.905418
0.353801	0.121952	2.828157
0.383853	0.148372	2.445591
0.398459	0.162765	2.291312
0.750000	0.439996	1.046355

l
.-. SCS GEOPSEUDO X,Y
-

0.219223	0.000000	32.225315
0.220608	0.000000	29.680822
0.221917	0.000000	29.333700
0.228174	0.000003	26.525280
0.248522	0.000892	18.979488
0.296577	0.013652	9.086331
0.485279	0.109329	2.082320
0.624881	0.245073	1.485384
0.667278	0.297837	1.425292
0.688614	0.332036	1.393901
0.700599	0.352828	1.375957
0.708899	0.367741	1.365200
0.750014	0.440000	1.204337

l
-- ditto Z
0.221530 0.000000 32.125484
0.222786 0.000000 29.660643

```

APPENDIX VIII: ECLIPSE Input Files
```

0.233441	0.000691	23.156693
0.252915	0.005295	15.9636327
0.270452	0.013923	12.467029
0.288770	0.024031	8.911875
0.314959	0.034716	6.423225
0.351040	0.051745	4.451668
0.427173	0.076623	2.785994
0.468907	0.094763	2.256335
0.750000	0.439025	1.237330

l
-- HCS GEOPSEUDO
X,Y
-
0.242927 0.000000 34.310970
0.249162 0.000223 28.374683
0.295791 0.003360 12.702032
0.478730 0.069170 2.542026
0.639052 0.229303 1.602437
0.676887 0.279646 1.540552
0.695352 0.311219 1.514540
0.706150 0.331185 1.494804
0.713375 0.346178 1.480005
0.750012 0.437091 1.413491
l
.. dito Z
0.245371 0.000000 34.141262
0.247366 0.000000 30.536541
0.251893 0.000000 27.760406
0.267390 0.001884 20.002945
0.286370 0.006026 14.745336
0.312690 0.018123 9.780584
0.348622 0.036151 6.180594
0.391868 0.054426 4.137291
0.461253 0.082635 2.923240
0.525322 0.105130 2.418682
0.561033 - 0.120739 2.200270
0.588675 0.133876
0.612307 0.145473 1.924000
0.750000 0.435907 1.451024
l
ROCK CURVE 1500md

0.10	0.0	27.0
0.13	0.006	12.0
0.16	0.025	8.0
0.19	0.044	5.5
0.22	0.063	4.0
0.25	0.082	3.1
0.28	0.101	2.6
0.31	0.120	2.2
0.34	0.139	1.8
0.37	0.159	1.4
0.42	0.183	1.35
0.5	0.231	1.2
0.6	0.354	1.1
0.75	0.44	1

l
--
REGIONS
EQUALS
'FIPNUM' 11 1 74 1 10 1 4 /

```

APPENDIX VIII: ECLIPSE Input Files
```

'FIPNUM' 275 75 1 10 1 4 /
'FIPNUM' 3 1 74 1 10 5 14 1
FIPNUM' 4 75 75 1 10 5 14/
FIPNUM' 5 1 74 11015 17 /
'FIPNUM' 6 75 75 1 10 15 17 /
l
SATNUM
.- ETIVE WB HCS BROOM
3000*7 750*1 6750*5 2250*7 /
KRNUMX
3000*7 750*1 6750*5 2250*7 /
KRNUMZ
3000*7 750*2 6750*6 2250*7 /
-

```
SOLUTION
-
.. DATUM Pi@DATUM WOC Pc@WOC GOC Pc@GOC
EQUIL
    \(8690 \quad 4824 \quad 9200 \quad 0 \quad 7500 \quad 01\)
.- Pb Sob Swb Pob@Datum
RPTSOL
    101 12*01/
SUMMARY
FPR
WBHP
'PROD' 'INJ' /
WWCT
    'PROD'
    1
FOIP
FWIP
FOPR
FWPR
FWIR
ROFT
    121
    341
1
RPTSMRY
    \(1 /\)
--
RUNSUM
SCHEDULE
RPTSCHED
    \(1010002216 * 01001\)

\section*{APPENDIX VIII: ECLIPSE Input Files}
```

.- WELL WELL LOCATION BHP PREF.
.- NAME GROUP I J DATUM PHASE
WELSPECS
'PROD' 'G' 75 1 8100 'OIL' /
'INJ' 'G' 1 1 9200 'WAT' /
I
.- WELL LOCATION INTERVAL STATUS
WELL
-- NAME I J K1 K2 O orS DD
COMPDAT
'PROD' 75 5 1 2 'OPEN' 2* 0.66667 /
'PROD' 75 5 5 7 11 'OPEN' 2* 0.66667 /
'INJ' 1 1 5 1 17 'OPEN' 2* 0.66667 /
l
-- WELL STATUS CONTROL TARGET RATES or UPPER LIMITS
-- NAME MODE OLL WAT GAS LIQRV BHP
WCONPROD
'PROD' 'OPEN' 'BHP' 5* 3440.0 l
l
-- WELL FLUID STATUS CONTROL BHP TAR
.. NAME TYPE MODE
WCONINJ
'INJ' 'WAT' 'OPEN' 'RESV' 1* 0.0 1.0'FVDG' 10000 /
I
.- DAYS
TSTEP
1235101031 18*62 /

```
END

APPENDIX IX: Rock Curves and Geopseudos
IX. 1 Rock Relative Permeability and Capillary Pressure Curves
\begin{tabular}{lll}
-- & So & Kro \\
- & & \\
& 0.25 & 0.0 \\
& 0.30 & 0.0008 \\
& 0.33 & 0.0082 \\
& 0.35 & 0.0250 \\
& 0.37 & 0.0622 \\
& 0.39 & 0.1345 \\
& 0.4 & 0.1898 \\
& 0.41 & 0.2621 \\
& 0.43 & 0.4724 \\
& 0.44 & 0.6190 \\
& 0.45 & 0.8
\end{tabular}

1
\begin{tabular}{ll}
0.25 & 0.00 \\
0.3 & 0.005 \\
0.4 & 0.064 \\
0.5 & 0.143 \\
0.514 & 0.154 \\
0.528 & 0.37 \\
0.542 & 0.424 \\
0.556 & 0.478 \\
0.57 & 0.532 \\
0.584 & 0.585 \\
0.598 & 0.639 \\
0.612 & 0.693 \\
0.626 & 0.746 \\
0.64 & 0.800
\end{tabular}

1
\begin{tabular}{ll}
0.25 & 0.0 \\
0.3 & 0.004 \\
0.4 & 0.044 \\
0.5 & 0.11 \\
0.522 & 0.124 \\
0.544 & 0.24 \\
0.566 & 0.310 \\
0.588 & 0.38 \\
0.61 & 0.45 \\
0.632 & 0.52 \\
0.654 & 0.59 \\
0.676 & 0.66 \\
0.698 & 0.73 \\
0.72 & 0.8
\end{tabular}

1
\begin{tabular}{ll}
0.25 & 0.0 \\
0.30 & 0.004 \\
0.4 & 0.03 \\
0.5 & 0.086 \\
0.53 & 0.103 \\
0.56 & 0.147 \\
0.59 & 0.229 \\
0.62 & 0.311 \\
0.65 & 0.392 \\
0.68 & 0.474 \\
0.71 & 0.555 \\
0.74 & 0.637 \\
0.77 & 0.718 \\
0.8 & 0.8
\end{tabular}

\section*{APPENDIX IX: Rock Curves and Geopseudos}
\begin{tabular}{|c|c|c|c|}
\hline & 0.25 & 0.0 & 300 mD \\
\hline & 0.3 & 0.004 & 300m \\
\hline & 0.4 & 0.030 & \\
\hline & 0.5 & 0.086 & \\
\hline & 0.550 & 0.114 & \\
\hline & 0.58 & 0.202 & \\
\hline & 0.61 & 0.283 & \\
\hline & 0.64 & 0.365 & \\
\hline & 0.67 & 0.446 & \\
\hline & 0.7 & 0.528 & . \\
\hline & 0.73 & 0.61 & \\
\hline & 0.76 & 0.691 & \\
\hline & 0.79 & 0.773 & \\
\hline & 0.82 & 0.8 & \\
\hline \multirow[t]{15}{*}{/} & -- & & 750/500mD \\
\hline & 0.25 & 0.0 & \\
\hline & 0.333 & 0.004 & \\
\hline & 0.43 & 0.030 & . \\
\hline & 0.53 & 0.086 & \\
\hline & 0.58 & 0.114 & \\
\hline & 0.61 & 0.202 & \\
\hline & 0.64 & 0.283 & \\
\hline & 0.67 & 0.365 & \\
\hline & 0.70 & 0.446 & \\
\hline & 0.73 & 0.528 & \\
\hline & 0.76 & 0.61 & \\
\hline & 0.79 & 0.691 & \\
\hline & 0.81 & 0.773 & \\
\hline & 0.85 & 0.8 & \\
\hline \multirow[t]{15}{*}{1} & -- & & 1500 mD \\
\hline & 0.25 & 0.0 & \\
\hline & 0.35 & 0.004 & \\
\hline & 0.46 & 0.030 & \\
\hline & 0.53 & 0.086 & \\
\hline & 0.58 & 0.114 & \\
\hline & 0.61 & 0.202 & \\
\hline & 0.64 & 0.283 & \\
\hline & 0.67 & 0.365 & \\
\hline & 0.73 & 0.446 & \\
\hline & 0.76 & 0.528 & \\
\hline & 0.79 & 0.61 & \\
\hline & 0.82 & 0.691 & \\
\hline & 0.85 & 0.773 & \\
\hline & 0.9 & 0.8 & \\
\hline \multicolumn{4}{|l|}{1 ,} \\
\hline -- & Sw & Krw & PC \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SWEN 3mD}} \\
\hline & & & 3 mD \\
\hline & 0.55 & 0.0 & 2.72 \\
\hline & 0.57 & 0.0036 & 1.84 \\
\hline & 0.6 & 0.0225 & 1.16 \\
\hline & 0.65 & 0.09 & 0.82 \\
\hline & 0.7 & 0.2025 & 0.48 \\
\hline & 0.75 & 0.36 & 0.34 \\
\hline & 1 & & \\
\hline \multicolumn{4}{|l|}{-- 15 mD} \\
\hline & 0.36 & 0.0 & 3.741 \\
\hline & 0.374 & 0.012 & 1.769 \\
\hline & 0.388 & 0.025 & 1.361 \\
\hline & 0.402 & 0.037 & 1.190 \\
\hline & 0.416 & 0.05 & 0.952 \\
\hline & 0.430 & 0.062 & 0.85 \\
\hline & 0.444 & 0.075 & 0.748 \\
\hline & 0.458 & 0.087 & 0.68 \\
\hline & & & \\
\hline
\end{tabular}

APPENDIX IX: Rock Curves and Geopseudos
\begin{tabular}{ll}
0.472 & 0.1 \\
0.486 & 0.124 \\
0.5 & 0.133 \\
0.6 & 0.201 \\
0.7 & 0.318 \\
0.75 & 0.44
\end{tabular}
0.544
0.476
0.408
0.204
0.17
0.156
/
\(\begin{array}{ll}0.28 & 0.0 \\ 0.302 & 0.016 \\ 0.324 & 0.033 \\ 0.346 & 0.049 \\ 0.368 & 0.065 \\ 0.39 & 0.081 \\ 0.412 & 0.098 \\ 0.434 & 0.114 \\ 0.456 & 0.13 \\ 0.478 & 0.15 \\ 0.5 & 0.162 \\ 0.6 & 0.218 \\ 0.7 & 0.339 \\ 0.75 & 0.44\end{array}\)
/
-
\begin{tabular}{ll}
0.2 & 0.0 \\
0.23 & 0.019 \\
0.26 & 0.038 \\
0.29 & 0.057 \\
0.32 & 0.076 \\
0.35 & 0.095 \\
0.38 & 0.114 \\
0.41 & 0.133 \\
0.44 & 0.152 \\
0.47 & 0.168 \\
0.5 & 0.183 \\
0.6 & 0.231 \\
0.7 & 0.354 \\
0.75 & 0.44
\end{tabular}
1.837
0.816
0.544
0.374
0.272
0.211
0.177
0.15
0.122
0.095
0.092
0.082
0.075
0.068

50 mD

150 mD

300 mD
\begin{tabular}{ll}
0.18 & 0.0 \\
0.21 & 0.006 \\
0.24 & 0.025 \\
0.27 & 0.044 \\
0.30 & 0.063 \\
0.33 & 0.082 \\
0.36 & 0.101 \\
0.39 & 0.120 \\
0.42 & 0.139 \\
0.45 & 0.159 \\
0.5 & 0.183 \\
0.6 & 0.231 \\
0.7 & 0.354 \\
0.75 & 0.44
\end{tabular}
1.837
0.816
0.544
0.374
0.272
0.211
0.177
0.15
0.122
0.095
0.092
0.082
0.075
0.068

500/750mD
\begin{tabular}{ll}
0.15 & 0.0 \\
0.18 & 0.006 \\
0.21 & 0.025 \\
0.24 & 0.044 \\
0.27 & 0.063 \\
0.30 & 0.082 \\
0.33 & 0.101 \\
0.36 & 0.120 \\
0.39 & 0.139 \\
0.41 & 0.159
\end{tabular}
1.837
0.816
0.544
0.374
0.272
0.211
0.177
0.15
\(0.39 \quad 0.139\)
0.122
0.095

APPENDIX IX: Rock Curves and Geopseudos
\begin{tabular}{lll}
0.47 & 0.183 & 0.092 \\
0.55 & 0.231 & 0.082 \\
0.65 & 0.354 & 0.075 \\
0.75 & 0.44 & 0.068 \\
& & \multicolumn{1}{l}{1500 mD} \\
0.10 & 0.0 & 1.837 \\
0.13 & 0.006 & 0.816 \\
0.16 & 0.025 & 0.544 \\
0.19 & 0.044 & 0.374 \\
0.22 & 0.063 & 0.272 \\
0.25 & 0.082 & 0.211 \\
0.28 & 0.101 & 0.177 \\
0.31 & 0.120 & 0.15 \\
0.34 & 0.139 & 0.122 \\
0.37 & 0.159 & 0.095 \\
0.42 & 0.183 & 0.092 \\
0.5 & 0.231 & 0.082 \\
0.6 & 0.354 & 0.075 \\
0.75 & 0.44 & 0.068
\end{tabular}

\section*{APPENDIX IX: Rock Curves and Geopseudos}

\section*{IX. 2 Geopseudo Relative Permeability and Capillary Pressure Curves}
IX..2.1 Ripple, high contrast, low contrast, wavy bedded -8 x 8cm
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{HORIZONTAL} & \multicolumn{6}{|c|}{VERTICAL} \\
\hline & Sw & So & krw & kro & Pc (atm) & Pc(psi) & Sw & So & krw & kro & Pcatam) & \(\mathrm{Pc}(\mathrm{psi})\) \\
\hline RIPPLE LAMINATION & 0.5276 & 0.4724 & 0.0000 & 0.8000 & 2.8234 & 41.4928 & 0.5310 & 0.4690 & 0.0000 & 0.8000 & 2.8050 & 41.2228 \\
\hline \multirow[t]{12}{*}{Ar.Av. \(=4.7 \mathrm{mD}\)} & 0.5315 & 0.4685 & 0.0003 & & 2.5587 & 37.6028 & 0.5348 & 0.4652 & 0.0038 & 0.1191 & 2.5658 & 37.7072 \\
\hline & 0.5400 & 0.4600 & 0.0010 & 0.6755 & 2.1988 & 32.3133 & 0.6677 & 0.3323 & 0.1326 & 00084 & 0.5943 & 8.7338 \\
\hline & 0.6199 & 0.3801 & 0.0605 & 0.0838 & 0.8506 & 12.5011 & 0.6846 & 0.3154 & 0.1579 & 0.0036 & 0.5078 & 7.4619 \\
\hline & 0.6473 & 0.3527 & 0.1157 & 0.0145 & 0.6638 & 9.7554 & 0.6923 & 0.3077 & 0.1767 & 00020 & 0.4700 & 6.9071 \\
\hline & 0.6575 & 0.3425 & 0.1345 & 0.0090 & 0.5929 & 8.7127 & 0.6975 & 0.3025 & 0.1910 & 00013 & 0.4464 & 6.5604 \\
\hline & 0.6659 & 0.3341 & 0.1509 & 0.0053 & 0.5356 & 7.8709 & 0.7048 & 0.2952 & 0.2103 & 0.0007 & 0.4214 & 6.1936 \\
\hline & 0.6728 & 0.3272 & 0.1657 & 0.0025 & 0.4921 & 7.2323 & 0.7117 & 0.2883 & 0.2247 & 0.0005 & 0.4019 & 5.9056 \\
\hline & 0.6782 & 0.3218 & 0.1764 & 0.0016 & 0.4691 & 6.8941 & 0.7159 & 0.2841 & 0.2318 & 0.0004 & 0.3905 & 5.7384 \\
\hline & 0.6821 & 0.3179 & 0.1845 & 0.0013 & 0.4567 & 6.7116 & 0.7500 & 0.2500 & 0.3676 & 0.0000 & 0.3214 & 4.7236 \\
\hline & 0.6871 & 0.3129 & 0.1957 & 0.0011 & 0.4421 & 6.4977 & & & & & & \\
\hline & 0.6957 & 0.3043 & 0.2151 & 0.0008 & 0.4171 & 6.1294 & & & & & & \\
\hline & 0.7500 & 0.2500 & 0.3691 & \[
0.0000
\] & \[
0.3182
\] & \[
4.6756
\] & & & & & & \\
\hline \multirow[t]{13}{*}{HIGH CONTRAST LAMINATION Ar. \(A v=42 \mathrm{mD}\)} & 0.3303 & 0.6697 & 0.0000 & 0.8000 & 3.2103 & 47.1789 & 0.3302 & 0.6698 & 0.0000 & 0.8000 & 3.2330 & 47.5126 \\
\hline & 0.3368 & 0.6632 & 0.0024 & 0.7905 & 2.4005 & 35.2771 & 0.3359 & 0.6641 & 0.0040 & & \[
2.4858
\] & \[
36.5309
\] \\
\hline & 0.3453 & 0.6547 & 0.0058 & 0.7755 & 1.7556 & 25.8009 & 0.3607 & \[
0.6393
\] & 0.0216 & 0.6054 & 1.2750 & 18.7368 \\
\hline & 0.3628 & 0.6372 & 0.0135 & 0.7402 & 1.2549 & 18.4417 & 0.4195 & 0.5805 & 0.0829 & 0.0505 & 0.6219 & 9.1397 \\
\hline & 0.3894 & 0.6106 & 0.0281 & 0.6793 & 0.8681 & 127576 & 0.4437 & 0.5563 & 0.1159 & 0.0121 & 0.4654 & 6.8398 \\
\hline & 0.4432 & 0.5568 & 0.0675 & 0.5059 & 0.4683 & 6.8820 & 0.4525 & 0.5475 & 0.1239 & 0.0057 & 0.4245 & 6.2389 \\
\hline & 0.5073 & 0.4927 & 0.1138 & 0.3199 & 0.2843 & 4.1776 & 0.4610 & 0.5390 & 0.1307 & 0.0043 & 0.3956 & 5.8137 \\
\hline & 0.5493 & 0.4507 & 0.1427 & 0.2133 & 0.2226 & 3.2717 & 0.4722 & 0.5278 & 0.1396 & 0.0028 & 0.3636 & 5.3441 \\
\hline & 0.6078 & 0.3922 & 0.1910 & 0.1272 & 0.1888 & 27752 & 0.4812 & 0.5188 & 0.1467 & 0.0017 & 0.3406 & 5.0060 \\
\hline & 0.6581 & 0.3419 & 0.2485 & 0.0628 & 0.1611 & 23675 & 0.4860 & 0.5140 & 0.1507 & 0.0012 & 0.3296 & 4.8432 \\
\hline & 0.7031 & 0.2969 & 0.3089 & 0.0286 & 0.1458 & 2.1433 & 0.4901 & 0.5100 & 0.1541 & 0.0007 & 0.3196 & 4.6965 \\
\hline & 0.7205 & 0.2795 & 0.3463 & 0.0104 & 0.1421 & 20881 & 0.4937 & 0.5063 & 0.1571 & 0.0003 & 0.3112 & 4.5741 \\
\hline & 0.7500 & 0.2500 & 0.4361 & 0.0000 & 0.1328 & 1.9514 & 0.7500 & 0.2500 & 0.4361 & 0.0000 & 0.1328 & 1.9513 \\
\hline \multirow[t]{25}{*}{LOW CONTRAST LAMINATION
\[
\text { Ar.Av. }=292 \mathrm{mD}
\]} & 0.1853 & 0.8147 & 0.0000 & 0.8000 & 1.8370 & 26.9966 & 0.1853 & 0.8147 & 0.0000 & 0.8000 & 1.8370 & 26.9964 \\
\hline & 0.1876 & 0.8124 & & 0.8061 & & & 0.2047 & 0.7953 & 0.0048 & 0.7483 & 1.1775 & 17.3039 \\
\hline & 0.1890 & 0.8110 & 0.0000 & & 1.7020 & 25.0129 & 0.2513 & 0.7487 & 0.0317 & 0.6427 & 0.5098 & 7.4919 \\
\hline & 0.2019 & 0.7981 & 0.0025 & & 1.2700 & 18.6641 & 0.3164 & 0.6836 & 0.0722 & 0.4796 & 0.2496 & 3.6677 \\
\hline & 0.2027 & 0.7973 & & 0.7815 & & & 0.3498 & 0.6502 & 0.0949 & 0.3966 & 0.1946 & 28595 \\
\hline & 0.2183 & 0.7817 & 0.0069 & & 0.8220 & 12.0804 & 0.3669 & 0.6331 & 0.1045 & 0.3574 & 0.1754 & 25783 \\
\hline & 0.2205 & 0.7795 & & 0.7645 & & & 0.4053 & 0.5948 & 0.1297 & 0.2412 & 0.1407 & 20680 \\
\hline & 0.2407 & 0.7593 & 0.0184 & & 0.5849 & 8.5952 & 0.4440 & 0.5560 & 0.1546 & 0.1386 & 0.1052 & 1.5464 \\
\hline & 0.2517 & 0.7483 & & 0.6761 & & & 0.5085 & 0.4915 & 0.1834 & 0.0847 & 0.0912 & 1.3396 \\
\hline & 0.2671 & 0.7329 & 0.0365 & & 0.4171 & 6.1294 & 0.6018 & 0.3982 & 0.2326 & 0.0301 & 0.0819 & 1.2037 \\
\hline & 0.3037 & 0.6963 & & 0.5246 & & & 0.6726 & 0.3274 & 0.3268 & 0.0105 & 0.0769 & 1.1297 \\
\hline & 0.3153 & 0.6847 & 0.0678 & & 0.2515 & 3.6955 & 0.7004 & 0.2996 & 0.3605 & 0.0039 & 0.0747 & 1.0974 \\
\hline & 0.3527 & 0.6473 & & 0.3957 & & & 0.7500 & 0.2500 & 0.4400 & 0.0000 & 0.0680 & 0.9993 \\
\hline & 0.3630 & 0.6370 & 0.0984 & & 0.1914 & 28133 & & & & & & \\
\hline & 0.3817 & 0.6183 & & 0.3274 & & & & & & & & \\
\hline & 0.3957 & 0.6043 & 0.1188 & & 0.1588 & 2.3330 & & & & & & \\
\hline & 0.4211 & 0.5789 & & 0.2214 & & & & & & & & \\
\hline & 0.4352 & 0.5648 & 0.1435 & & 0.1188 & 1.7464 & & & & & & \\
\hline & 0.4880 & 0.5120 & & 0.1056 & & & & & & & & \\
\hline & 0.5205 & 0.4795 & 0.1841 & & 0.0872 & 1.2818 & & & & & & \\
\hline & 0.6165 & 0.3835 & & 0.0282 & & & & & & & & \\
\hline & 0.6356 & 0.3644 & 0.2620 & & 0.0794 & 1.1665 & & & & & & \\
\hline & 0.6886 & 0.3114 & & 0.0080 & & & & & & & & \\
\hline & \[
0.6967
\] & \[
0.3033
\] & \[
0.3460
\] & & \[
0.0815
\] & \[
1.1984
\] & & & & & & \\
\hline & 0.7500 & 0.2500 & 0.4400 & 0.0000 & \[
0.0680
\] & \[
0.9993
\] & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & 0.1822 & 0.8178 & 0.0000 & 0.9870 & 1.9384 & 28.4860 & 0.1826 & 0.8174 & 0.0000 & 0.8000 & 1.9384 & 28.4865 \\
\hline \multirow[t]{12}{*}{\[
A r, A v .=508 \mathrm{mD}
\]} & 0.1865 & 0.8135 & 0.0009 & & 1.7213 & 25.2963 & 0.1855 & 0.8145 & 0.0006 & 0.7333 & 1.7685 & 25.9897 \\
\hline & 0.1942 & 0.8058 & 0.0028 & 0.8889 & 1.4590 & 21.4421 & 0.1918 & 0.8082 & 0.0034 & 0.7183 & 1.5516 & 22.8023 \\
\hline & 0.2037 & 0.7963 & 0.0053 & & 1.1494 & 16.8917 & 0.1990 & 0.8010 & 0.0065 & 0.7157 & 1.3053 & 19.1830 \\
\hline & 0.2148 & 0.7852 & 0.0081 & & 0.8146 & 11.9718 & 0.2092 & 0.7908 & 0.0113 & 0.6720 & 0.9799 & 14.4004 \\
\hline & 0.2506 & 0.7494 & 0.0301 & 0.6938 & 0.5103 & 7.4987 & 0.2378 & 0.7622 & 0.0336 & 05164 & 0.6083 & 8.9392 \\
\hline & 0.2969 & 0.7031 & 0.0576 & 0.5570 & 0.3015 & 4.4301 & 0.2744 & 0.7256 & 0.0627 & 0.2649 & 0.3887 & 5.5953 \\
\hline & 0.3363 & 0.6637 & 0.0843 & 0.3735 & 0.2108 & 3.0981 & 0.3090 & 0.6910 & 0.0880 & 0.1885 & 0.2657 & 3.9054 \\
\hline & 0.4085 & 0.5915 & 0.1241 & 0.2757 & 0.1448 & 21285 & 0.3538 & 0.6462 & 0.1220 & - 1065 & 0.1924 & 28281 \\
\hline & 0.4989 & 0.5011 & 0.1881 & 0.0953 & 0.0952 & 1.3997 & 0.3839 & 0.6161 & 0.1484 & 0.0139 & 0.1664 & 2.4456 \\
\hline & 0.6125 & 0.3875 & 0.2536 & 0.0290 & 0.0842 & 1.2369 & 0.3985 & 0.6015 & 0.1628 & 00017 & 0.1559 & 2.2913 \\
\hline & 0.6670 & 0.3330 & 0.3325 & 0.0128 & 0.0793 & 1.1647 & 0.7500 & 0.2500 & 0.4400 & 00000 & 0.0712 & 1.0464 \\
\hline & 0.7500 & 0.2500 & 0.4400 & 00000 & 0.0712 & 1.0463 & & & & & & \\
\hline
\end{tabular}
IX..2.2 HCS, SCS - \(1.5 \times 12 \mathrm{~m}\) ( \(5 \times 40 \mathrm{ft}\) )

HORIZONTAL
VERTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Sw & So & krw & kro & Pc (atm) & \(\mathrm{Pc}(\mathrm{psi})\) & Sw & So & krw & kro & \(\mathrm{Pc}(\mathrm{atm})\) & \(\mathrm{Pc}(\mathrm{psi})\) \\
\hline \multirow[t]{11}{*}{HUMMOCKY CROSS-STRAT.
\[
\mathrm{Ar} \cdot \mathrm{Av} \cdot=210 \mathrm{mD}
\]} & 0.2374 & 0.7626 & 0.0000 & 0.8000 & 2.2764 & 33.4537 & 0.2445 & 0.7555 & 0.0000 & 0.8000 & 2.0779 & 30.5364 \\
\hline & 0.2435 & 0.7565 & 0.0001 & 0.7727 & 1.9042 & 27.9834 & 0.2454 & 0.7546 & 0.0000 & & 2.0779 & 30.5364 \\
\hline & 0.2907 & 0.7093 & 0.0035 & 0.7533 & 0.8454 & 12.4235 & 0.2464 & 0.7536 & 0.0000 & 0.4235 & 1.9648 & 28.8748 \\
\hline & 0.4686 & 0.5314 & 0.0690 & 0.4362 & 0.1728 & 2.5398 & 0.2603 & 0.7397 & 0.0010 & 0.4057 & 1.4788 & 21.7318 \\
\hline & 0.6356 & 0.3644 & 0.2339 & 0.0499 & 0.1071 & 1.5733 & 0.2811 & 0.7189 & 0.0037 & 0.3497 & 0.9834 & 14.4515 \\
\hline & 0.6748 & 0.3252 & 0.2862 & 0.0261 & 0.1026 & 1.5083 & 0.3105 & 0.6895 & 0.0195 & 0.2062 & 0.6198 & 9.1087 \\
\hline & 0.6944 & 0.3056 & 0.3189 & 0.0165 & 0.1006 & 1.4782 & 0.3499 & 0.6501 & 0.0360 & 0.0683 & 0.3954 & 5.8106 \\
\hline & 0.7055 & 0.2945 & 0.3387 & 0.0117 & 0.0995 & 1.4621 & 0.3998 & 0.6002 & 0.0539 & 0.0461 & 0.2586 & 3.8009 \\
\hline & 0.7130 & 0.2870 & 0.3530 & 0.0088 & 0.0984 & 1.4459 & 0.4828 & 0.5172 & 0.0854 & 0.0293 & 0.1714 & 25182 \\
\hline & 0.7500 & 0.2500 & 0.4371 & 0.0000 & 0.0939 & 1.3799 & 0.5471 & 0.4529 & 0.1088 & 0.0192 & 0.1420 & 2.0873 \\
\hline & & & & & & & 0.7500 & 0.2500 & 0.4359 & 0.0000 & 0.0987 & 1.4510 \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
SWALEY CROSS STRAT. \\
Ar.Av. \(=\mathbf{2 0 2 m D}\)
\end{tabular}} & 0.2192 & 0.7808 & 0.0000 & 0.8000 & 2.1928 & 32.2252 & 0.2215 & 0.7785 & 0.0000 & 0.8000 & 2.1860 & 32.1254 \\
\hline & 0.2206 & 0.7794 & 0.0000 & & 2.0197 & 29.6807 & 0.2228 & 0.7772 & 0.0000 & 0.5356 & 2.0183 & 29.6605 \\
\hline & 0.2219 & 0.7781 & 0.0000 & 0.7831 & 1.9960 & 29.3336 & 0.2334 & 0.7666 & 0.0007 & 0.5092 & 1.5757 & 23.1566 \\
\hline & 0.2282 & 0.7718 & 0.0000 & 0.7829 & 1.8049 & 26.5252 & 0.2529 & 0.7471 & 0.0053 & 0.4580 & 1.0830 & 15.9163 \\
\hline & 0.2485 & 0.7515 & 0.0009 & 0.7816 & 1.2915 & 18.9794 & 0.2705 & 0.7295 & 0.0139 & 0.3636 & 0.8483 & 12.4670 \\
\hline & 0.2966 & 0.7034 & 0.0137 & 0.7227 & 0.6183 & 9.0863 & 0.2888 & 0.7112 & 0.0240 & 0.2161 & 0.6064 & 8.9118 \\
\hline & 0.4853 & 0.5147 & 0.1093 & 0.3163 & 0.1417 & 2.0823 & 0.3150 & 0.6850 & 0.0347 & 0.1250 & 0.4371 & 6.4232 \\
\hline & 0.6249 & 0.3751 & 0.2451 & 0.0500 & 0.1011 & 1.4854 & 0.3510 & 0.6490 & 0.0517 & 0.0887 & 0.3029 & 4.4517 \\
\hline & 0.6673 & 0.3327 & 0.2978 & 0.0256 & 0.0970 & 1.4253 & 0.4272 & 0.5728 & 0.0766 & 0.0663 & 0.1896 & 2.7860 \\
\hline & 0.6886 & 0.3114 & 0.3320 & 0.0161 & 0.0948 & 1.3939 & 0.4689 & 0.5311 & 0.0948 & 0.0516 & 0.1535 & 22563 \\
\hline & 0.7006 & 0.2994 & 0.3528 & 0.0115 & 0.0936 & 1.3760 & 0.7500 & 0.2500 & 0.4390 & 0.0000 & 0.0842 & 1.2373 \\
\hline & 0.7089 & 0.2911 & 0.3677 & 0.0087 & 0.0929 & 1.3652 & & & & & & \\
\hline & 0.7500 & 0.2500 & 0.4400 & 0.0000 & 0.0820 & 1.2043 & & & & & & \\
\hline
\end{tabular}

APPENDIX X: Probe permeameter data sets
X. 1. Statfjord
X. 1. a Statfjord Study Calibration Data

\section*{SMALL PROBE (SP1)}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{PERMEABILITY} & \multicolumn{3}{|c|}{FLOW RATE} \\
\hline & (10 mbar) & (90 mbar) & (400 mbar) \\
\hline (mD) & (ml/min) & (ml/min) & \((\mathrm{ml} / \mathrm{min}\) ) \\
\hline 5.9 & & & 9.4 \\
\hline 10.6 & & & 14.4 \\
\hline 34.2 & & 7.6 & \\
\hline 50 & & 10.4 & \\
\hline 53 & & & 67.1 \\
\hline 96 & & 24.6 & 116 \\
\hline 118 & & 33.2 & 164 \\
\hline 221 & & 58.6 & 240 \\
\hline 228 & & 60.7 & \\
\hline 265 & & 66.2 & \\
\hline 368 & & 67.8 & \\
\hline 904 & & 165 & \\
\hline 1015 & & 230 & \\
\hline 1205 & 36.8 & 266 & \\
\hline 1232 & 35.4 & 249 & \\
\hline 2020 & 61.6 & 378 & \\
\hline 2070 & 60.4 & & \\
\hline 2100 & 58.6 & 362 & \\
\hline 3320 & 95 & & \\
\hline 3950 & 131 & & \\
\hline 4250 & 129 & & \\
\hline
\end{tabular}

\section*{LARGE PROBE (LP 1)}
5.9
3.3
19.1 8.6
32.3 13.6
\(53 \ldots 22.2\)
96 39.9
118 58.2
221 . 101
228 101
265 121
\(368 \quad 22.8 \cdots 128\)
\(904 \quad 46.9 \quad 305\)
\(1015 \quad 52.5\) 389
\(1232 \quad 68.1 \quad 470\)
\(2020 \quad 95.4\)
\(3320 \quad 177\)
\(3950 \quad 225\)
\(4250 \quad 213\)

\section*{APPENDIX X: Probe permeameter data sets}

\section*{X. 1. b 33/12-B9 - Detailed Grids A-H}



APPENDIX X: Probe permeamete: data sets



APPENDIX X: Probe permeameter data sets


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{MINIPERMEAMETER PERMEABILITIES (mD)} \\
\hline & & \[
380
\] & ORE 4 & & \multicolumn{7}{|c|}{Fine grid "G*} \\
\hline Profile No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline Fine grid oftset (m) & 0.000 & 0.002 & 0.004 & 0.006 & 0.008 & 0.010 & 0.012 & 0.014 & 0.016 & 0.018 & 0.020 \\
\hline coarse grid oftset (m) & 0.007 & 0.009 & 0.011 & 0.013 & 0.015 & 0.017 & 0.019 & 0.021 & 0.023 & 0.025 & 0.027 \\
\hline \multicolumn{12}{|l|}{Core Depth (mMD)} \\
\hline 3809.052 & 179 & 190 & 187 & 180 & 190 & 175 & 148 & 152 & 161 & 177 & 180 \\
\hline 3809.054 & 189 & 214 & 227 & 179 & 153 & 180 & 179 & 153 & 154 & 176 & 189 \\
\hline 3809.056 & 193 & 212 & 214 & 185 & 154 & 175 & 192 & 140 & 134 & 149 & 175 \\
\hline 3809.058 & 193 & 206 & 176 & 174 & 163 & 160 & 154 & 144 & 136 & 128 & 125 \\
\hline 3809.060 & 199 & 209 & 186 & 168 & 176 & 148 & 134 & 148 & 155 & 150 & 136 \\
\hline 3809.062 & 218 & 217 & 208 & 198 & 165 & 169 & 147 & 145 & 177 & 173 & 132 \\
\hline 3809.064 & 210 & 202 & 212 & 172 & 150 & 166 & 167 & 155 & 165 & 166 & 139 \\
\hline 3809.066 & 275 & 226 & 203 & 150 & 150 & 161 & 179 & 202 & 173 & 150 & 145 \\
\hline 3809.068 & 247 & 219 & 202 & 212 & 206 & 187 & 184 & 205 & 175 & 136 & 126 \\
\hline 3809.070 & 216 & 339 & 254 & 226 & 199 & 185 & 178 & 188 & 168 & 163 & 145 \\
\hline 3809.072 & 240 & 338 & 346 & 216 & 186 & 190 & 185 & 166 & 187 & 192 & 155 \\
\hline 3809.074 & 245 & 232 & 238 & 299 & 220 & 192 & 179 & 186 & 188 & 193 & 160 \\
\hline 3809.076 & 232 & 217 & 242 & 286 & 244 & 248 & 187 & 193 & 181 & 187 & 162 \\
\hline 3809.078 & 221 & 242 & 290 & 211 & 245 & 294 & 222 & 192 & 188 & 197 & 186 \\
\hline 3809.080 & 213 & 243 & 244 & 187 & 182 & 221 & 244 & 218 & 209 & 214 & 180 \\
\hline 3809.082 & 190 & 206 & 237 & 217 & 205 & 210 & 240 & 253 & 221 & 207 & 187 \\
\hline 3809.084 & 216 & 212 & 224 & 252 & 246 & 199 & 218 & 300 & 247 & 216 & 190 \\
\hline 3809.086 & 190 & 240 & 206 & 229 & 249 & 209 & 218 & 245 & 225 & 231 & 199 \\
\hline 3809.088 & 232 & 221 & 197 & 190 & 232 & 237 & 233 & 208 & 206 & 240 & 229 \\
\hline 3809.000 & 313 & 206 & 197 & 213 & 191 & 218 & 216 & 209 & 223 & 236 & 289 \\
\hline 3809.092 & 340 & 240 & 174 & 202 & 195 & 172 & 192 & 208 & 211 & 202 & 231 \\
\hline 3809.094 & 308 & 314 & 242 & 244 & 204 & 198 & 193 & 224 & 230 & 223 & 209 \\
\hline 3809.096 & 237 & 239 & 240 & 288 & 192 & 208 & 212 & 219 & 210 & 235 & 201 \\
\hline 3809.098 & 240 & 212 & 224 & 223 & 202 & 213 & 209 & 216 & 193 & 210 & 196 \\
\hline 3809.100 & 285 & 203 & 216 & 280 & 313 & 308 & 211 & 220 & 166 & 175 & 185 \\
\hline
\end{tabular}

MINIPERMEAMETER PERMEABIUTIES (mD)
\begin{tabular}{|c|}
\hline CORE 4 \\
\(3808.582-.632 \mathrm{~m}\)
\end{tabular}\(\quad\) Fine grid "H"
\(\begin{array}{llllllllllll}\text { Profile } & \text { No. } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 11\end{array}\)
\(\begin{array}{llllllllllll}\text { Fine grid oftset }(\mathrm{m}) & 0.000 & 0.002 & 0.004 & 0.006 & 0.008 & 0.010 & 0.012 & 0.014 & 0.016 & 0.018 & 0.020\end{array}\) \(\begin{array}{llllllllllll}\text { coarse grid offset }(\mathrm{m}) & 0.042 & 0.044 & 0.046 & 0.048 & 0.050 & 0.052 & 0.054 & 0.056 & 0.058 & 0.060 & 0.062\end{array}\)

Core Depth (mMD)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 448 & 475 & 458 & 477 & 520 & 562 & 569 & 636 & 599 & 542 & 554 \\
\hline 469 & 484 & 517 & 482 & 482 & 559 & 572 & 601 & 588 & 601 & 604 \\
\hline 442 & 454 & 451 & 476 & 474 & 520 & 573 & 545 & 515 & 585 & 612 \\
\hline 404 & 445 & 462 & 509 & 539 & 570 & 583 & 571 & 621 & 579 & 605 \\
\hline 502 & 529 & 518 & 558 & 633 & 596 & 590 & 609 & 624 & 601 & 706 \\
\hline 609 & 598 & 595 & 630 & 707 & 632 & 646 & 658 & 620 & 718 & 781 \\
\hline 570 & 651 & 614 & 629 & 687 & 627 & 599 & 621 & 664 & 731 & 694 \\
\hline 546 & 573 & 546 & 512 & 549 & 532 & 530 & 571 & 548 & 541 & 571 \\
\hline 496 & 453 & 465 & 487 & 516 & 502 & 627 & 596 & 492 & 483 & 504 \\
\hline 479 & 542 & 538 & 505 & 548 & 625 & 693 & 679 & 630 & 666 & 606 \\
\hline 536 & 624 & 575 & 597 & 634 & 562 & 673 & 672 & 662 & 675 & 652 \\
\hline 578 & 574 & 554 & 557 & 561 & 551 & 576 & 507 & 477 & 511 & 555 \\
\hline 602 & 628 & 591 & 550 & 573 & 603 & 596 & 593 & 555 & 558 & 618 \\
\hline 679 & 593 & 578 & 542 & 583 & 581 & 543 & 566 & 541 & 541 & 581 \\
\hline 458 & 367 & 365 & 368 & 385 & 391 & 367 & 352 & 340 & 361 & 378 \\
\hline 247 & 238 & 197 & 181 & 213 & 216 & 221 & 206 & 216 & 224 & 219 \\
\hline 175 & 189 & 192 & 190 & 197 & 183 & 186 & 194 & 204 & 186 & 197 \\
\hline 164 & 178 & 186 & 194 & 197 & 178 & 194 & 202 & 196 & 190 & 237 \\
\hline 171 & 173 & 175 & 174 & 193 & 170 & 179 & 210 & 204 & 259 & 248 \\
\hline 154 & 159 & 157 & 181 & 185 & 176 & 150 & 199 & 214 & 225 & 291 \\
\hline 160 & 150 & 140 & 170 & 186 & 172 & 167 & 175 & 188 & 203 & 244 \\
\hline 161 & 153 & 142 & 161 & 181 & 163 & 183 & 170 & 182 & 210 & 242 \\
\hline 138 & 150 & 132 & 132 & 143 & 180 & 180 & 177 & 201 & 212 & 220 \\
\hline 127 & 117 & 120 & 141 & 129 & 134 & 162 & 176 & 185 & 190 & 205 \\
\hline 126 & 136 & 139 & 141 & 146 & 144 & 153 & 156 & 158 & 163 & 191 \\
\hline 110 & 130 & 141 & 145 & 146 & 138 & 150 & 153 & 153 & 160 & 189 \\
\hline
\end{tabular}

\section*{X. 1. c 33/12-B9 - Coarse Grids - Cores 4, 5}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{minipermeameter Permeabilites (md)} & \multicolumn{5}{|r|}{Minipermeameter Permeabulties (ma)} \\
\hline & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { CORE 4 } \\
3808.526-3809.456 \mathrm{~m}
\end{gathered}
\]} & \multirow{3}{*}{0.08} & \multirow[b]{2}{*}{Profile oftset (m)} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { CORE 4 } \\
3809.514 .3810 .404 \mathrm{~m}
\end{gathered}
\]} & \multirow[b]{2}{*}{0.06} \\
\hline Profile ottset (m) & 0.00 & \multirow[t]{2}{*}{0.02} & \multirow[t]{2}{*}{0.06} & & & 0.00 & \multirow[t]{2}{*}{0.02} & \multirow[t]{2}{*}{0.04} & \\
\hline \multirow[t]{2}{*}{Core Depth \((m)\)
3808.526} & & & & & \multirow[t]{2}{*}{Core Depth (m)
3809.52} & \multirow[t]{2}{*}{} & & & \multirow[t]{2}{*}{} \\
\hline & 585 & 499 & 424 & 404 & & & & 105 & \\
\hline 3808.536 & 401 & 419 & 330 & 319 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{170} & & \multirow[t]{2}{*}{} & 158 \\
\hline 3808.546 & 522 & 458 & 360 & 388 & & & & & 154 \\
\hline 3808.556 & 550 & 523 & 485 & 653 & \[
\begin{aligned}
& 3809.54 \\
& 3809.55
\end{aligned}
\] & & & & 72 \\
\hline 3808.566 & 659 & 507 & 428 & 496 & 3809.56 & & & & 209 \\
\hline 3808.576 & 664 & 573 & 445 & 491 & 3809.57 & & & & 198 \\
\hline 3808.586 & 678 & 522 & 394 & 545 & 3809.58 & & & & 171 \\
\hline 3808.596 & 691 & 533 & 479 & 505 & 3809.59 & & & & 161 \\
\hline 3808.606 & 799 & 795 & 730 & 510 & 3809.60 & & & & 292 \\
\hline 3808.616 & 198 & 159 & 165 & 227 & 3809.61 & & & & \\
\hline 3808.626 & 169 & 135 & 125 & 190 & 3809.62 & & & & \\
\hline 3808.636 & 172 & 149 & 133 & 170 & 3809.63 & 207 & 162 & 149 & 118 \\
\hline 3808.646 & 185 & 154 & 160 & 201 & 3809.64 & 133 & 175 & 148 & 167 \\
\hline 3808.656 & 205 & 174 & 183 & 209 & 3809.65 & 248 & 230 & 210 & 167 \\
\hline 3808.666 & & & & & 3809.66 & 202 & 215 & 163 & 213 \\
\hline 3808.676 & & & & & 3809.67 & 293 & 223 & 138 & 192 \\
\hline 3808.686 & & & & & 3809.68 & 194 & 202 & 166 & 150 \\
\hline 3808.696 & & & & & 3809.69 & 227 & 160 & 141 & 163 \\
\hline 3808.706 & & & & & 3809.70 & 206 & 239 & 171 & 210 \\
\hline 3808.716 & & & & 168 & 3809.71 & 147 & 187 & 147 & 146 \\
\hline 3808.726 & & & & 164 & 3809.72 & 297 & 163 & 248 & 235 \\
\hline 3808.736 & & & 153 & 181 & 3809.73 & 275 & 277 & 218 & 103 \\
\hline 3808.746 & & & 194 & 187 & 3809.74 & 228 & 215 & 150 & 188 \\
\hline 3808.756 & & & & & 3809.75 & 293 & 200 & 149 & 152 \\
\hline 3808.766 & & & & & 3809.76 & 216 & 259 & 228 & 231 \\
\hline 3808.776 & & & & & 3809.77 & 235 & 242 & 237 & 251 \\
\hline 3808.786 & 269 & & & & 3809.78 & 173 & 282 & 318 & 314 \\
\hline 3808.796 & 194 & 198 & 159 & 187 & 3809.79 & & & & \\
\hline 3808.806 & 199 & 173 & 176 & 158 & 3800.80 & & & & \\
\hline 3808.816 & 196 & 188 & 167 & 179 & 3809.81 & & & & \\
\hline 3808.826 & 181 & 176 & 158 & 175 & 3800.82 & & & 102 & 147 \\
\hline 3808.836 & 195 & 165 & 166 & 171 & 3809.83 & & & 290 & \\
\hline 3808.846 & 200 & 170 & 131 & 175 & 3809.84 & & & & 182 \\
\hline 3808.856 & 207 & 162 & 160 & 165 & 3809.85 & & & & 171 \\
\hline 3808.866 & 206 & 183 & 131 & 186 & 3809.86 & & & & 214 \\
\hline 3808.876 & 196 & 181 & 133 & 172 & 3809.87 & & & & \\
\hline 3808.886 & 216 & 151 & 131 & 195 & 3800.88 & & 191 & & \\
\hline 3808.896 & 193 & 162 & 133 & 213 & 3809.89 & & 151 & & \\
\hline 3808.906 & 178 & 185 & 208 & 218 & 3809.90 & & & & \\
\hline 3808.916 & 181 & 195 & & 255 & 3809.91 & & & & \\
\hline 3808.926 & & & & & 3809.92 & & & & \\
\hline 3808.936 & & & & & 3809.93 & & & & \\
\hline 3808.946 & 182 & & & & 3809.94 & & & 249 & \\
\hline 3808.956 & 275 & & & & 3800.05 & & & 328 & \\
\hline \({ }^{3808.966}\) & 164 & 191 & 182 & & 3809.96 & 239 & 171 & 323 & 369 \\
\hline 3808.976 & 183 & 156 & 217 & & 3809.97 & 183 & 256 & 349 & 395 \\
\hline 3808.986 & 240 & 171 & 220 & 306 & 3809.98 & & & & \\
\hline 3808.096 & 280 & 289 & & & 3809.99 & & & & \\
\hline 3809.006 & & & & & 3810.00 & & & & \\
\hline 3809.016 & & & & & 3810.01 & & & & \\
\hline 3809.026 & 203 & 233 & 188 & 169 & 3810.02 & 213 & 200 & 169 & 165 \\
\hline 3809.036 & 245 & 209 & 169 & 192 & 3810.03 & 228 & 225 & 173 & 165 \\
\hline 3809.046 & 303 & 206 & 182 & 190 & 3810.04 & 216 & 153 & 168 & 165 \\
\hline 3809.056 & 337 & 205 & 178 & 163 & 3810.05 & 252 & 199 & 178 & 208 \\
\hline 3809.066 & 313 & 257 & 153 & 171 & 3810.06 & 199 & 173 & 167 & 214 \\
\hline 3809.076 & 379 & 262 & 133 & 184 & 3810.07 & 170 & 143 & 126 & 184 \\
\hline 3809.086 & 338 & 240 & 222 & 177 & 3810.08 & 176 & 127 & 126 & 181 \\
\hline 3809.096 & 211 & 261 & 234 & 191 & 3810.08 & 168 & 149 & 164 & 177 \\
\hline 3809.106 & 288 & 287 & 199 & 229 & 3810.10 & 144 & 171 & 163 & \\
\hline 3809.116 & 396 & 226 & 266 & 277 & 3810.11 & 172 & 216 & 204 & 225 \\
\hline 3809.126 & 333 & 232 & 233 & 244 & 3810.12 & & & & \\
\hline 3809.136 & 292 & 241 & 202 & 303 & 3810.13 & & & & \\
\hline 3809.146 & 299 & 246 & 276 & 347 & 3810.14 & & & & \\
\hline 3809.156 & 311 & 290 & 264 & 344 & 3810.15 & & & & \\
\hline 3809.166 & 363 & 375 & 479 & 467 & 3810.16 & & 386 & & \\
\hline 3809.176 & 453 & & & 581 & 3810.17 & 398 & & & \\
\hline 3809.186 & & & & & 3810.18 & 288 & & & \\
\hline 3800.106 & & & & & 3810.19 & & & & \\
\hline 3809.206 & 447 & & & & 3810.20 & & & & \\
\hline 3809.216 & & & & & 3810.21 & & & & \\
\hline 3800.226 & & & & & 3810.22 & & & & \\
\hline 3809.236 & & & 278 & & 3810.23 & 326 & 199 & 207 & 245 \\
\hline 3809.246 & & & & & 3810.24 & 363 & 183 & 208 & 236 \\
\hline 3809.256 & & & & & 3810.25 & 348 & 227 & 193 & 109 \\
\hline 3809.266 & 233 & 155 & 120 & 187 & 3810.26 & 384 & 217 & 123 & 203 \\
\hline 3809.276 & 197 & 195 & 181 & 191 & 3810.27 & 291 & 115 & 118 & 215 \\
\hline 3809.286 & 223 & 184 & 129 & 201 & 3810.28 & 258 & 116 & 171 & 237 \\
\hline 3809.296 & 219 & 204 & 188 & 215 & 3810.29 & 236 & 244 & 323 & 218 \\
\hline 3809.306 & 287 & 196 & 107 & 91 & 3810.30 & 337 & 313 & 325 & 187 \\
\hline 3809.316 & 129 & 93 & 86 & 110 & 3810.31 & 368 & 284 & 166 & 209 \\
\hline 3809.326 & 153 & 117 & 81 & 98 & 3810.32 & 392 & 219 & 207 & 211 \\
\hline 3809.336 & 121 & 115 & 102 & 155 & 3810.33 & 240 & 191 & 243 & 178 \\
\hline 3809.346 & 188 & 236 & 191 & 201 & 3810.34 & 237 & 250 & 152 & 245 \\
\hline 3809.356 & 278 & 208 & 126 & 150 & 3810.35 & 346 & 203 & 166 & 166 \\
\hline 3809.366 & 194 & 124 & 115 & 121 & 3810.36 & 259 & 162 & 157 & 218 \\
\hline 3809.376 & 195 & 131 & 118 & 121 & 3810.37 & 215 & 183 & 162 & 195 \\
\hline 3809.386 & 144 & 111 & 130 & 179 & 3810.38 & 230 & 160 & 200 & 201 \\
\hline 3809.396 & 239 & 122 & 103 & 153 & 3810.39 & 240 & 218 & 231 & 170 \\
\hline 3809.406
3809.416 & 205 & \(\frac{166}{182}\) & 195
173 & \(\frac{194}{123}\) & 3810.40 & & 258 & 255 & 255 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{MINIPERMEAMETER PERMEABLITIES (mC)} & \multicolumn{5}{|c|}{minipermenmeter Permeabilties (ma)} \\
\hline & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { CORE 4 } \\
3810.565-3811.465 \mathrm{~m}
\end{gathered}
\]} & \multirow[b]{2}{*}{0.06} & \multirow[b]{2}{*}{Protile ottset (m) Core Depth(m)} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { CORE } 4 \\
3811.528-3812.428 \mathrm{~m} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{0.06} \\
\hline Protile oftsot (m) & 0.00 & 0.02 & \multirow[t]{2}{*}{0.04} & & & 0.00 & 0.02 & 0.04 & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 3810.565 \\
& 3810.575
\end{aligned}
\]} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & & & Core 311.528 & 191 & 162 & 148 & 117 \\
\hline & & & & 164 & 3811.538 & 160 & 117 & 98 & 05 \\
\hline & & & & 159 & 3811.548
3811.548 & 214 & 188 & 145 & 146 \\
\hline \multirow[t]{2}{*}{3810.585
3810.595
3810.505} & 166 & & & 226 & 3811.558 & 268 & 272 & 157 & 165 \\
\hline & & & & & 3811.568 & 284 & 233 & 171 & 171 \\
\hline 3810.605
3810.615 & & & & & 3811.578 & 150 & 145 & 107 & 116 \\
\hline \multirow[t]{2}{*}{3810.615
3810.625
3810.635} & 123 & 109 & 118 & & 3811.588 & 217 & 154 & 180 & 179 \\
\hline & 196 & \[
128
\] & 125 & 160 & 3811.598
3818 & 149 & 142 & 123 & 151 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3810.635 \\
& 3810.645
\end{aligned}
\]} & 192 & 117 & 121 & \(\frac{120}{125}\) & 3811.608 & 177 & 166 & 159 & 191 \\
\hline & 196 & \(\frac{154}{215}\) & 110 & 126 & 3811.618 & 215 & 227 & 273 & 239 \\
\hline 3810.655 & 260 & 215 & 179 & 213 & 3811.628 & 105 & 123 & 147 & 170 \\
\hline \multirow[t]{2}{*}{3810.665} & 269 & 197 & 167 & 222 & \begin{tabular}{l}
3811.638 \\
\hline 88188
\end{tabular} & 170 & 235 & 281 & 387 \\
\hline & 215 & 156 & 127 & 192 & 3811.638
3811.648 & & & & 216 \\
\hline 3810.675 3810.685 & 237 & 171 & 128 & 198 & 3811.658 & & & & \\
\hline 3810.695 & 204 & 169 & 172 & 209 & 3811.658
3811.668 & & & 195 & 108 \\
\hline \multirow[t]{2}{*}{\[
3810.705
\]
\[
3810.715
\]} & 222 & 172 & 188 & 218 & 3881.668
3811.678 & & 173 & 207 & 287 \\
\hline & 197 & 130 & 165 & 192 & 3811.688 & 347 & 384 & 333 & 292 \\
\hline 3810.715
3810.725 & 205 & \[
\frac{152}{173}
\] & 157 & 185 & 3811.608 & 272 & 301 & & \\
\hline 3810.735 & 204 & \(\frac{173}{210}\) & 160 & 198 & 3811.708 & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3810.745 \\
& 3810.755
\end{aligned}
\]} & 196 & 210 & \(\frac{195}{178}\) & \begin{tabular}{l}
192 \\
204 \\
\hline
\end{tabular} & 3811.718 & 173 & 148 & 173 & 135 \\
\hline & 196 & 175 & 178 & 204 & 3811.728 & 250 & & & 170 \\
\hline \begin{tabular}{l}
3810.755 \\
3810.765 \\
\hline 810.775
\end{tabular} & 258 & 215 & 229 & 327 & 3811.738
3811.748 & 258 & & & 273 \\
\hline \begin{tabular}{l}
3810.775 \\
3810.785 \\
\hline 810.7505
\end{tabular} & & & & & 3811.758 & 236 & & & 302 \\
\hline \multirow[t]{2}{*}{} & & & & 254 & 3811.768 & 238 & 285 & 266 & 784 \\
\hline & 292 & & 222 & 214 & 38811.778 & 104 & 208 & 202 & \\
\hline 3810.805
3810.815 & 239 & 233 & 209 & 222 & \({ }^{3811.788}\) & & & & \\
\hline 3880.815
3810.825 & 216 & 244 & 208 & 167 & 3811.798 & & 110 & & \\
\hline \multirow[t]{2}{*}{3810.835
3810.845} & & & 276 & 196 & 38811.808 & 173 & 166 & 126 & 158 \\
\hline & & & & 189 & 3811.818 & 204 & 103 & 112 & 149 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3810.855 \\
& 3810.865
\end{aligned}
\]} & & & & 328 & 3811.828 & 235 & 154 & 126 & 195 \\
\hline & & & & & 3811.838 & 321 & 158 & 107 & 187 \\
\hline \multirow[t]{2}{*}{\[
3810.875
\]} & & & & & 3811.848 & 256 & 210 & 156 & 205 \\
\hline & 226 & 195 & 140 & 2831 & 3811.858 & 216 & 235 & 123 & 111 \\
\hline 3810.885
3810.895 & 326 & 340 & 2237 & 341 & 3811.868 & 172 & 158 & 121 & 103 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3810.905 \\
& 3810.915
\end{aligned}
\]} & 313 & 288 & \(\frac{227}{186}\) & 283 & 3811.878 & 164 & 101 & 100 & 183 \\
\hline & 330 & 269 & 186 & 284 & 3811.888 & 173 & 121 & 115 & 168 \\
\hline 3810.925
3810.935
3810.935 & 326 & 237 & \(\underline{157}\) & 264 & 3811.808 & 123 & 173 & 230 & 161 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
3810.935 \\
3810.945
\end{array}
\]} & 212 & & 211 & 344 & 3811.008 & & & & \\
\hline & 401 & 281 & 260 & 344 & 3811.918 & & & & \\
\hline 3810.945
3810.955 & \(\frac{282}{163}\) & 253 & 260 & 433 & 3811.028 & & & 163 & \\
\hline \multirow[t]{2}{*}{3810.965 3810.975} & 163 & 255 & & 437 & 3811.938 & & & & \\
\hline & & & & & 3811.948 & & 151 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3810.985 \\
& 3810.995
\end{aligned}
\]} & & & 600 & & 3811.058 & & 460 & 365 & \\
\hline & 397 & 359 & 491 & 527 & 3811.968 & 377 & 401 & & \\
\hline 3810.995
3811.005 & & & & & 3811.878 & 279 & 292 & & \\
\hline 3811.015 & & & & & 3811.988 & 482 & 572 & & \\
\hline \multirow[t]{2}{*}{3811.025
3811.035} & & & & & 3811.098 & & & & \\
\hline & & & & & 3812.008 & & & & \\
\hline 3811.045 & & & & & 3812.018 & 238 & 153 & 170 & 185 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.055 \\
& 3811.065
\end{aligned}
\]} & & & & & 3812.028 & 284 & 200 & 206 & 194 \\
\hline & & & & & 3812.038 & 252 & 197 & 189 & 193 \\
\hline 3811.075 & & & & & 3812.048 & 211 & 175 & 220 & 189 \\
\hline \multirow[t]{2}{*}{3811.085
3811.095} & & & & & 3812.058 & 201 & 08 & 97 & 84 \\
\hline & 300 & 330 & & & 3812.068 & 190 & 115 & 120 & 04 \\
\hline 38811.095
3811.105 & 168 & 283 & 193 & \(\frac{281}{322}\) & 3812.078 & 155 & 110 & 101 & 89 \\
\hline \multirow[t]{2}{*}{3811.115 3811.125} & & 403 & & 322 & 3812.088 & 210 & 164 & 153 & 148 \\
\hline & & & & 402 & 3812.098 & 183 & 204 & 175 & 146 \\
\hline 3811.125
3811.135 & & & & 406 & 3812.108 & 167 & 188 & 160 & 153 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.145 \\
& 3811.155
\end{aligned}
\]} & & & & & 3812.118 & 120 & 207 & 202 & 197 \\
\hline & & & & & 3812.128 & 114 & 115 & 142 & 118 \\
\hline 3811.165

3811.175 & & & 190 & 242 & 3812.138 & 84 & 122 & 167 & 118 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.175 \\
& 3811.185
\end{aligned}
\]} & & 191 & 309 & 284 & 3812.148 & 87 & 115 & 116 & 163 \\
\hline & 264 & 220 & 383 & 277 & 3812.158 & 109 & 146 & 165 & 156 \\
\hline 3811.105 & 255 & 200 & & 385 & 3812.168 & 109 & 115 & 124 & 125 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.205 \\
& 3811.215
\end{aligned}
\]} & 354 & 282 & 311 & 314 & 3812.178 & 181 & 126 & 155 & 208 \\
\hline & 314 & 220 & 252 & 322 & 3812.188 & 137 & 122 & 226 & 211 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
3811.225 \\
3811.235
\end{tabular}} & 347 & 257 & 409 & & 3812.198 & 20 & 54 & 77 & 94 \\
\hline & 531 & 319 & 356
357 & 480 & 3812.208 & 26 & 29 & 41 & 48 \\
\hline 3811.235
3811.245 & 529 & 414 & 357 & 350 & 3812.218 & & 14 & 18 & 40 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.255 \\
& 3811.265
\end{aligned}
\]} & 428 & 363 & 413 & 358 & 3812.228 & & & & \\
\hline & 467 & 320 & 460 & 339 & 3812.238 & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.275 \\
& 3811.285
\end{aligned}
\]} & 408 & 297 & 281 & 284 & 3812.248 & & & & \\
\hline & 317 & 349 & 288 & 86 & 3812.258 & & & & \\
\hline \multirow[t]{2}{*}{\[
3811.295
\]} & 315 & 117 & 76 & 73 & 3812.268 & & & & \\
\hline & 117 & 85 & 83
191 & & 3812.278 & & & & \\
\hline 3811.305
3811.315 & 96 & 90 & 191 & \(\frac{101}{117}\) & 3812.288 & & & & \\
\hline \multirow[t]{2}{*}{3811.325 3811.335} & 160 & 411 & \(\frac{111}{96}\) & 117 & 3812.298 & & & & \\
\hline & 123 & 114 & 96
103 & 114 & 3812.308 & 193 & 229 & & \\
\hline 3811.345 & 155 & 90 & 103 & 105 & 3812.318 & 243 & 195 & 270 & 224 \\
\hline 3811.355 & 112 & 103 & 103 & 100 & 3812.328 & 360 & 263 & 221 & 156 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3811.365 \\
& 3811.375
\end{aligned}
\]} & 122 & 112 & 94 & 126 & 3812.338 & 323 & 218 & 218 & 207 \\
\hline & 105 & 94 & 165 & & 3812.348 & 305 & 233 & 242 & 201 \\
\hline 3811.375
3811.385 & & & 195 & 171 & 3812.358 & 234 & 166 & 176 & 210 \\
\hline 3811.385
3811.395 & & & & & 3812.368 & 420 & 304 & 311 & 266 \\
\hline \multirow[t]{2}{*}{3811.405 3811.415} & & & & & 3812.378 & 205 & 250 & 226 & 189 \\
\hline & & & & & 3812.388 & 258 & 220 & 222 & 277 \\
\hline 3811.425 & & & & & 3812.398 & 319 & 231 & 226 & 289 \\
\hline 3811.435 & & & & & 3812.408 & 244 & 167 & 188 & 217 \\
\hline 3811.445 & 183 & & & 124 & 3812.418 & 263 & 171 & 175 & 206 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
3811.455 \\
3811.465
\end{tabular}} & 266 & & & 165 & 3812.428 & 109 & 180 & 144 & 181 \\
\hline & 281 & & & 172 & 3812.438 & 138 & 175 & 192 & 196 \\
\hline & & & & & 3812.448
3812.458 & 84 & \begin{tabular}{l}
178 \\
\hline 95
\end{tabular} & \(\frac{195}{96}\) & 119 \\
\hline
\end{tabular}

APPENDIX X: Probe permeameter data sets


APPENDIX X: Probe permeameter data sets
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{MINIPERMEAMETER PERMEABMUTES (mor)} & \multicolumn{5}{|c|}{MINIPERMEAMETER PERMEABUUTIES (ma)} \\
\hline \multirow[b]{2}{*}{Profile ottret (m)} & \multicolumn{3}{|l|}{CORE 5
\(3837.025 \cdot 3837.935 \mathrm{~m}\)} & \multirow[b]{2}{*}{0.06} & \multirow[b]{2}{*}{Profile ottset (m)} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { COAE 5 } \\
3838.017 .3838947 \mathrm{~m} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{0.06} \\
\hline & 0.00 & 0.02 & 0.04 & & & 0.00 & 0.02 & 0.04 & \\
\hline \multirow[t]{2}{*}{Core Dopth(m)
3837.025} & & & & & Core Depth(m)
3838.017 & 370 & 350 & 235 & \\
\hline & & & & & 3838.027 & 526 & 433 & 272 & 246 \\
\hline 3837.035 & & & & & 3838.037 & 422 & 393 & 333 & 356 \\
\hline \[
\begin{array}{r}
3837.045 \\
3837.055
\end{array}
\] & & & & & 3838.047 & 290 & 205 & 177 & 195 \\
\hline 3837.065 & 19 & 11 & 8 & & 3838.057 & 485 & 395 & 307 & 355 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
3837.075 \\
3837.085
\end{array}
\]} & 62 & 62 & 60 & 46 & 3838.067 & 296 & 241 & 225 & 259 \\
\hline & 42 & 30 & 40 & 40 & 3838.077 & 374 & 363 & 404 & 422 \\
\hline 3837.005 & 162 & 175 & 174 & 152 & 3838.087
3838097 & 252 & 217 & 174 & 195 \\
\hline 3837.105 & 70 & 110 & 160 & 143 & 3838.097
3838.107 & 252 & 110 & 96 & 99 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
3837.115 \\
3837.125
\end{tabular}} & 27 & 31 & 27 & 27 & 3838.107
3838.117 & 198 & 163 & 184 & 175 \\
\hline & 15 & 11 & 25 & 46 & 38388.127 & 290 & 271 & 271 & 277 \\
\hline \[
\begin{array}{r}
3837.125 \\
3837.135
\end{array}
\] & 96 & 87 & 81 & 77 & 38388.137 & 361 & 370 & 351 & 319 \\
\hline 3837.135
3837.145 & 64 & 63 & 65 & 72 & 3838.147
3838.147 & 36 & & 498 & 544 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
3837.155 \\
3837.165
\end{tabular}} & 162 & 166 & 152 & 111 & 3838.157 & & & & \\
\hline & 279 & 313 & 338 & 260 & 3838.167 & & & & \\
\hline 3837.165
3837.175 & 80 & 144 & 154 & 108 & & 285 & 259 & & \\
\hline \multirow[t]{2}{*}{3837.185
3837.195} & 13 & 11 & 4 & 7 & 3838.187
3838.187 & 380 & 374 & & \\
\hline & 24 & 24 & 25 & 14 & 38388.197
3838 & 489 & 493 & & \\
\hline 3837.205 & 5 & 5 & 6 & 8 &  & & & & \\
\hline 3837.215 & 11 & 16 & 19 & 14 & 3838.217 & 407 & 378 & 257 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
3837.225 \\
\hline 837235
\end{tabular}} & 43 & 35 & 18 & 13 & 3838.227 & 295 & 233 & 180 & 148 \\
\hline & 51 & 43 & 36 & 34 & 3838.237 & 394 & 296 & 280 & 247 \\
\hline \[
3837.235
\]
\[
3837.245
\] & 80 & 63 & 53 & 48 & 383888.247
38389 & 317 & 241 & 281 & 264 \\
\hline 3837.255 & 56 & 48 & 52 & 55 & 38388.257
38388 & 360 & 300 & 281 & 226 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3837.265 \\
& 3837275
\end{aligned}
\]} & & 218 & 183 & 143 & 3838.267 & 378 & 303 & 286 & 217 \\
\hline & & & & 215 & 3838.277 & 345 & 321 & 286 & 235 \\
\hline 3837.275
3837.285 & 152 & 175 & 217 & & 3838.287 & 424 & 375 & 329 & 231 \\
\hline \multirow[t]{2}{*}{3837.305
3837.315} & & & & & 3838.297 & 449 & 337 & 246 & 270 \\
\hline & & & & & 3838.307 & 358 & 310 & 346 & 350 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3837.325 \\
& 3837.335
\end{aligned}
\]} & & & & & 3838.317 & 408 & 280 & 475 & 405 \\
\hline & 116 & 107 & 93 & 58 & 3838.327
3838.337 & \(\frac{276}{}\) & 401 & 451 & 398 \\
\hline 3837.335
\(\mathbf{3 8 3 7} .345\) & 25 & 10 & 19 & 34 & 3838.347 & 167 & 283 & 233 & 260 \\
\hline 3837.355
3837
383755 & 108 & 32 & 25 & 49 & 3838.357 & 3 & 2 & 5 & 81 \\
\hline 3837.365
3837.375 & 52 & 36 & 36 & 57 & 3838.367 & & & 3 & 2 \\
\hline 3837.375
3837.385 & 120 & 105 & 72 & 67 & 3838.377 & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3837.305 \\
& 3837.405
\end{aligned}
\]} & 114 & 156 & 115 & 107 & 3838.387 & 14 & 33 & 14 & 5 \\
\hline & 119 & 138 & 103 & 77 & 3838.397 & 3 & 4 & 16 & 10 \\
\hline 3837.405
3837.415 & 104 & 116 & 94 & 68 & 3838.407
3838.417 & \(\frac{2}{5}\) & 5 & 5 & 4 \\
\hline 3837.425 & 84 & 47 & 40 & 52 & 3838.417
3838.427 & & & & 5 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
3837.435 \\
3837.445
\end{array}
\]} & 103 & 86 & 97 & 83 & 3838.427
3838.437 & & & & \\
\hline & 117 & 104 & 78 & 80 & 3838.437 & & & & \\
\hline 3837.455 & 140 & 118 & 07 & 92 & 3838.447 & & & & \\
\hline 3837.465 & 40 & 39 & 37 & 54 & 3838.457
3838.467 & & & & \\
\hline \multirow[t]{2}{*}{3837.475 3837.485} & 36 & 30 & 43 & 44 & 3838.467
3838.477 & 42 & 59 & & \\
\hline & 118 & 84 & 46 & 32 & 3838.487
3838.487 & 12 & 11 & 15 & 17 \\
\hline 3837.485
3837.405 & 90 & 175 & 121 & 81 & 3838.497 & 46 & 43 & 33 & 34 \\
\hline 3837.505
3837515 & 62 & 60 & 43 & 72 & 3838.507 & 86 & 72 & 64 & 54 \\
\hline \[
\begin{aligned}
& 3837.515 \\
& 3837.525
\end{aligned}
\] & 147 & 116 & 114 & 54 & 3838.517 & 82 & 73 & 65 & 64 \\
\hline \begin{tabular}{l}
3837.525 \\
3837.535 \\
\hline 3037.545
\end{tabular} & \begin{tabular}{l}
558 \\
\hline 72
\end{tabular} & 77 & 117 & 67 & 3838.537 & 18 & 17 & 15 & 14 \\
\hline 3837.545
3837555 & 72 & 77 & 88 & 107 & 3838.547 & 67 & 65 & 58 & 43 \\
\hline \multirow[t]{2}{*}{3837.555
3837.565} & & & 6. & 76 & 3838.557 & 11 & 10 & 14 & 14 \\
\hline & & & & & 3838.567 & 13 & 14 & 13 & 10 \\
\hline  & & & & & 3838.577 & 9 & 13 & 10 & 10 \\
\hline \[
\begin{aligned}
& 3837.585 \\
& 3837.505
\end{aligned}
\] & 104 & & & & 3838.587 & 39 & 42 & 43 & 34 \\
\hline \multirow[t]{2}{*}{3837.505
3837.605} & & & & & 3838.597 & 38 & 37 & 45 & 35 \\
\hline & & & & & 3838.607 & 9 & 3 & 3 & 3 \\
\hline 3837.605
3837.615 & & & & & 3838.617 & 2 & 2 & 3 & 3 \\
\hline 3837.625
3837.635 & & 260 & 176 & 122 & 3838.627 & 10 & 10 & 9 & 8 \\
\hline 3837.645 & 231 & 242 & 231 & 162 & 3838.637 & 3 & 3 & 2 & 3 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 3837.655 \\
& 3837.665
\end{aligned}
\]} & 297 & 355 & 329 & 280 & 3838.647 & 6 & 6 & 5 & 5 \\
\hline & 425 & 495 & 430 & 313 & 3838.657


3838.657 & 28 & 32 & 21 & 16 \\
\hline 3837.665
3837.675 & 395 & 432 & 363 & 348 & 3838.667
3838.677 & 19 & 17 & 23 & 23 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
3837.685 \\
3837.695
\end{array}
\]} & 481 & 488 & 409 & 328 & 3838.687 & 38 & 35 & 26 & 32 \\
\hline & 320 & 278 & 202 & 229 & 3838.607 & 20 & 19 & 17 & 19 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
3837.705 \\
3837.715
\end{array}
\]} & 409 & 344 & 347 & 360 & 3838.707 & 34 & 28 & 25 & 22 \\
\hline & 399 & 365 & 348 & 392 & 3838.717 & 27 & 24 & 24 & 28 \\
\hline 3837.725

3837 & 347 & 287 & & & 3836.727 & 30 & 27 & 28 & 31 \\
\hline \[
\begin{aligned}
& 3837.735 \\
& 3837.745
\end{aligned}
\] & \(\frac{540}{310}\) & 492 & 249 & 424 & 3838.737 & & & & \\
\hline 3837.755 & 310 & 256 & 278 & 332 & 3838.747 & 106 & 90 & 74 & 65 \\
\hline \multirow[t]{2}{*}{3837.765
3837.775} & 416 & 387 & 303 & 386 & 3838.757
3838.767 & & 20 & 25 & 23 \\
\hline & 509 & 525 & 461 & 478 & 38388.777 & & & & \\
\hline \begin{tabular}{l}
3837.775 \\
3837.785 \\
\hline 837
\end{tabular} & 379 & 397 & 353 & 422 & 3838.787 & 10 & 9 & 8 & 7 \\
\hline 3837.795 & 451 & 401 & 405 & 476 & 3838.797 & 36 & 29 & 16 & 13 \\
\hline \multirow[t]{2}{*}{3837.805 3837.815} & 350 & 342 & 366 & 475 & 3838.807 & , & 4 & 19 & 36 \\
\hline & 356 & 454 & 386 & 571 & 3838.817 & 9 & 7 & 7 & 7 \\
\hline & 370 & 592 & 547 & 679 & 3838.827 & 14 & 15 & 12 & 8 \\
\hline 3837.825
3837.835 & & & & & 3838.837 & 25 & 17 & 14 & 11 \\
\hline 3837.845 & 434 & & 478 & & 3838.847 & 13 & 13 & 15 & 33 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
3837.855 \\
3837.865
\end{array}
\]} & 367 & & & & 3838.857 & 26 & 24 & 26 & 28 \\
\hline & 557 & 513 & & & 3838.867 & 12 & 13 & 13 & 12 \\
\hline 3837.865
3837.875 & 583 & 394 & & & 3838.877 & 13 & 12 & 10 & 9 \\
\hline & 480 & 321 & & & 3838.887 & 26 & 28 & 28 & 27 \\
\hline 3837.885
3837.895

3837.905 & & & & & 3838.897 & 11 & 11 & 10 & 12 \\
\hline 3837.005 & & & & & 3838.907 & 49 & 42 & 36 & 33 \\
\hline \multirow[t]{2}{*}{3837.915 3837.025} & & & & & 3838.917 & 17 & 14 & 18 & 19 \\
\hline & & & & & 3838.927 & 51 & 42 & 43 & 57 \\
\hline \multirow[t]{2}{*}{3837.935} & 10 & 365 & & & 3838.937 & 20 & 19 & 21 & 32 \\
\hline & & & & & 3838.947 & 53 & 47 & 46 & 42 \\
\hline
\end{tabular}

APPENDIX X: Probe permeameter data sets

\section*{X. 1. Thistle}

\section*{X. 2. a Thistle study calibration data}
\(\left.\begin{array}{ccc}\begin{array}{c}\text { Hassler cell } \\ \text { permeability } \\ \text { (md) }\end{array} & \begin{array}{c}\text { Minipermeameter } \\ \text { injection } \\ \text { pressure } \\ \text { (mbar) }\end{array} & \begin{array}{c}\text { Minipermeameter } \\ \text { flow }\end{array} \\ \text { rate (cc/min) }\end{array}\right\}\)

APPENDIX X: Probe permeameter data sets

\section*{X. 2. b Thistle A31 - Blocks}

\section*{A.1.2 Profile}
\begin{tabular}{ccc} 
Spacing (cm) & \begin{tabular}{c} 
Vertical Profile \\
Perm. \\
0.00
\end{tabular} & 17 \\
0.20 & 31 & S.D. (mD) \\
0.40 & 192 & 15 \\
0.60 & 304 & 89 \\
0.80 & 228 & 38 \\
1.00 & 204 & 78 \\
1.20 & 327 & 92 \\
1.40 & 682 & 151 \\
1.60 & 800 & 34 \\
1.80 & 654 & 52 \\
2.00 & 449 & 81 \\
2.20 & 200 & 105 \\
2.40 & 132 & 21 \\
2.60 & 92 & 5 \\
2.80 & 115 & 33 \\
3.00 & 440 & 60 \\
3.20 & 636 & 74 \\
3.40 & 619 & 73 \\
3.60 & 480 & 34 \\
3.80 & 501 & 28 \\
4.00 & 448 & 48 \\
4.20 & 394 & 10 \\
4.40 & 346 & 40 \\
4.60 & 211 & 66 \\
4.80 & 166 & 30 \\
5.00 & 263 & 16 \\
5.20 & 357 & 12 \\
5.40 & 446 & 17 \\
5.60 & 850 & 50 \\
5.80 & 1260 & 132 \\
6.00 & 1233 & 21 \\
6.20 & 1185 & 108 \\
6.40 & 1161 & 57 \\
6.60 & 1116 & 40 \\
6.80 & 969 & 68 \\
7.00 & 1018 & 144 \\
7.20 & 867 & 96 \\
7.40 & 650 & 59 \\
7.00 & 591 & 194 \\
7.80 & 748 & 126 \\
8.00 & 820 & 37 \\
8.20 & 923 & 74 \\
8.40 & 850 & 63 \\
8.60 & 479 & 116 \\
8.80 & 245 & 84 \\
9.00 & 189 & 18 \\
9.20 & 155 & 24 \\
9.40 & 566 & 96 \\
9.60 & 698 & 10 \\
9.80 & 647 & 178 \\
10.00 & 691 & 19 \\
10.20 & 804 & 60 \\
10.40 & 675 & 138 \\
& & \\
& & \\
\hline
\end{tabular}

APPENDIX X: Probe permeameter data sets
\begin{tabular}{ccc}
10.60 & 456 & 92 \\
10.80 & 691 & 19 \\
& \begin{tabular}{c} 
Horizontal \\
profile
\end{tabular} & \\
& 508 & 75 \\
3.50 & 498 & 66 \\
4.00 & 313 & 61 \\
4.50 & 251 & 44 \\
5.00 & 737 & 166 \\
5.50 & &
\end{tabular}

\section*{B.1.2 Profile}
\begin{tabular}{cc}
\multicolumn{2}{c}{ Vertical Profile } \\
Spacing (cm) & Perm. (mD) \\
0.00 & 87 \\
0.50 & 102 \\
1.00 & 99 \\
1.50 & 109 \\
2.00 & 89 \\
2.50 & 93 \\
3.00 & 88 \\
3.50 & 71 \\
4.00 & 104 \\
4.50 & 94 \\
5.00 & 62 \\
5.50 & 102 \\
6.00 & 118 \\
6.50 & 108 \\
7.00 & 98 \\
7.50 & 96 \\
8.00 & 114 \\
8.50 & 112 \\
9.00 & 68 \\
9.50 & 67 \\
10.00 & 75
\end{tabular}
B.1.3 Profile
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Vertical Profile \\
Perm. \\
Spacing \\
\((\mathrm{cm})\)
\end{tabular} & S.D. (mD) \\
0.00 & 46 & 1.0 \\
0.20 & 39 & 6.9 \\
0.40 & 32 & 1.4 \\
0.60 & 32 & 3.8 \\
0.80 & 16 & 0.4 \\
1.00 & 12 & 0.2 \\
1.20 & 9 & 0.3 \\
1.40 & 11 & 0.4 \\
1.60 & 13 & 1.2 \\
1.80 & 11 & 0.2 \\
2.00 & 11 & 0.1 \\
2.20 & 16 & 0.6 \\
2.40 & 27 & 2.2 \\
2.60 & 28 & 3.4 \\
2.80 & 14 & 0.3 \\
3.00 & 13 & 0.5 \\
3.20 & 17 & 0.3
\end{tabular}

APPENDIX X: Probe permeameter data sets
\begin{tabular}{lcc}
3.40 & 19 & 0.9 \\
3.60 & 16 & 1.3 \\
3.80 & 28 & 3.2 \\
4.00 & 51 & 4.5 \\
4.20 & 47 & 2.0 \\
4.40 & 28 & 1.3 \\
4.60 & 24 & 3.2 \\
4.80 & 35 & 0.8 \\
5.00 & 28 & 1.3 \\
5.20 & 26 & 0.9 \\
5.40 & 22 & 1.5 \\
5.60 & 20 & 0.8 \\
5.80 & 25 & 0.9 \\
6.00 & 25 & 0.3 \\
& & \\
& Horizontal & \\
3.50 & 16 & 1.1 \\
4.00 & 48 & 4.2 \\
4.50 & 21 & 3.0
\end{tabular}
X. 2. c Thistle A31-0.5cm spacing data


COLUMN B
10096.06-10123.95ft
Cor. Dpth(m) Depth(tt) Permima
Cor.Dpth(m) Depth(ft) Perm \(\begin{array}{ll}3077.280 & 10096.06 \\ 3077.285 & 10096.08 \\ 3077.290 & 10096.10 \\ 3077.295 & 10096.11\end{array}\) \(\begin{array}{ll}3077.295 & 10096.11 \\ 3077.300 & 10096.13\end{array}\) \(3077.305 \quad 10096.15\) \(3077.310 \quad 10096.1\) \(\begin{array}{ll}3077.335 & 10096.24 \\ 3077.340 & 10096.26\end{array}\) 3077.340
3077.345 \(\begin{array}{ll}3077.345 & 1009 \\ 3077.350 & 10\end{array}\)
\(3077.355 \quad 10096.29\)
\(\begin{array}{ll}3077.360 & 10096.31\end{array}\) 3077.365
3077.370

3
\[
\mid
\]


\(\begin{array}{lr}3077.410 & 10096.49 \\ 3077\end{array}\)
3077.415
3077420
3077.425
3077.430
3077.435
3077.435
\(3077.440 \quad 100\)
3077.445100
\(\begin{array}{ll}3077.450 \\ 3077.455 & 100\end{array}\)
\(\begin{array}{ll}3077.455 & 100 \\ 3077.475 & 100\end{array}\)
\(3077.480 \quad 10\)
\(\begin{array}{ll}3077.485 & 10 \\ 3077.490 & 10\end{array}\)
\(3077.495 \quad 10\)
3077.500
3077.505 3077.510 \(\begin{array}{ll}3077.515 & 10 \\ 3077.520 & 10\end{array}\) 3077.525
3077.530 3077.535 3077.540
3077.545 3077.54
3077.5 3077.55
3077.5 \(3077.565 \quad 100\) \(\begin{array}{ll}3077.630 & 100 \\ 3077.640 & 100\end{array}\) 3077.6 30 30777.6
3077. 3077.665
3077.670 3077.695 3077.700
3077.705 3077.705
3077.710 \(\begin{array}{ll}3077.715 & 100 \\ 3077.720 & 100\end{array}\) 3077.725 3077.730 3077.740 \(3077.745-10097.57\) \(\begin{array}{ll}3077.745 & 10097.59 \\ 3077750 & 10007.51\end{array}\) \(3077.755 \quad 10097.61\) 3077.755
3077.760 3077.785 \(3077.770 \quad 10097.67\) 3077.775 \(\begin{array}{lll}3077.780 & 10097.70\end{array}\) \(\begin{array}{ll}3077.785 & 10097.72 \\ 3077.790 & 10097.74\end{array}\) \(\begin{array}{lll}3077.790 \\ 3077.795 & 100\end{array}\) \(3077.800 \quad 10097.77\) \(\begin{array}{ll}3077.840 & 10097.90 \\ 3077.845 & 10097.02\end{array}\) \(\begin{array}{ll}3077.845 & 10097.92 \\ 3077.850 & 10097.03\end{array}\) \(\begin{array}{ll}3077.850 & 10097.93 \\ 3077.855 & 10097.05\end{array}\) \(3077.880 \quad 100\) \(3077.885 \quad 10098.05\) \(3077.890 \quad 10098.06\) 3077.895
3077.900 \(3077.905 \quad 10098.11\) \(\begin{array}{ll}3077.910 & 10098.13 \\ 3077.915 & 10098.15\end{array}\) \(\begin{array}{ll}3077.915 & 10098.15 \\ 3077.920 & 10098.16\end{array}\) \(\begin{array}{ll}3077.920 & 10098.16 \\ 3077.925 & 10098.18\end{array}\) \(\begin{array}{ll}3077.930 & 10098.20 \\ 3077.935 & 10098.21\end{array}\) \(3077.940 \quad 10098.23\) \(3077.945 \quad 10098.25\)

\section*{COLUMN C}
10124.08-10150.34ft

Cor Dpth(m) Depth(ft) Perm(md 81.6 \(\quad \begin{array}{rr}\text { Cor Dpth(m) } & \text { Depin(rt) } \\ 3085.820 & 10124.08\end{array}\) \(\begin{array}{ll}3085.820 & 10124.08 \\ 3085.825 & 10124.10 \\ 3085.830 & 10124.11\end{array}\) 3085
308
3085 \(\begin{array}{ll}3085.835 & 10124.13 \\ 3085.840 & 10124.15 \\ 3085.845 & 10124.16\end{array}\) \(3085.845 \quad 10124.16\) \(\begin{array}{ll}3085.850 & 10124 \\ 3085.870 & 10124\end{array}\) 3085
3085
3085 3085
3085 3085.885
3085.890 3085.895
3085.900

3085
3085


10.
98.4
19.1
19.1

-

\(\omega \omega\)
\[
\sqrt[3]{3}
\]
xvi
\begin{tabular}{|c|c|c|c|c|}
\hline 3063.250 & 10050.03 & 4.6 & 3077.950 & 10098.26 \\
\hline 3063.255 & 10050.05 & 6.8 & 3077.955 & 10098.28 \\
\hline 3063.260 & 10050.07 & 4.9 & 3077.960 & 10098.29 \\
\hline 3063.265 & 10050.08 & 5.4 & 3077.965 & 10098.31 \\
\hline 3063.270 & 10050.10 & 2.3 & 3077.970 & 10098.33 \\
\hline 3063.275 & 10050.12 & 4.0 & 3077.975 & 10098.34 \\
\hline 3063.290 & 10050.16 & 2.4 & 3077.980 & 10098.36 \\
\hline 3063.300 & 10050.20 & 2.2 & 3077.985 & 10098.38 \\
\hline 3063.345 & 10050.34 & 73.3 & 3077.990 & 10098.39 \\
\hline 3063.350 & 10050.36 & 99.2 & 3077.995 & 10098.41 \\
\hline 3063.355 & 10050.38 & 478.6 & 3078.000 & 10098.43 \\
\hline 3063.360 & 10050.39 & 281.2 & 3078.005 & 10098.44 \\
\hline 3063.365 & 10050.41 & 320.4 & 3078.010 & 10098.46 \\
\hline 3063.370 & 10050.43 & 362.3 & 3078.015 & 10098.47 \\
\hline 3063.375 & 10050.44 & 248.7 & 3078.020 & 10098.49 \\
\hline 3063.380 & 10050.46 & 230.8 & 3078.025 & 10098.51 \\
\hline 3063.385 & 10050.48 & 82.0 & 3078.030 & 10098.52 \\
\hline 3063.390 & 10050.49 & 15.4 & 3078.035 & 10098.54 \\
\hline 3063.395 & 10050.51 & 22.5 & 3078.040 & 10098.56 \\
\hline 3063.400 & 10050.53 & 71.6 & 3078.060 & 10098.62 \\
\hline 3063.405 & 10050.54 & 59.5 & 3078.065 & 10098.64 \\
\hline 3063.410 & 10050.56 & 46.5 & 3078.070 & 10098.66 \\
\hline 3063.415 & 10050.57 & 6.0 & 3078.075 & 10098.67 \\
\hline 3063.420 & 10050.59 & 161.1 & 3078.080 & 10098.69 \\
\hline 3063.425 & 10050.61 & 389.3 & 3078.085 & 10098.70 \\
\hline 3063.430 & 10050.62 & 26.3 & 3078.090 & 10098.72 \\
\hline 3063.435 & 10050.64 & 18.3 & 3078.095 & 10098.74 \\
\hline 3063.440 & 10050.66 & 74.4 & 3078.100 & 10098.75 \\
\hline 3063.445 & 10050.67 & 2.7 & 3078.105 & 10098.77 \\
\hline 3063.450 & 10050.69 & 326.7 & 3078.110 & 10098.79 \\
\hline 3063.455 & 10050.71 & 180.5 & 3078.115 & 10098.80 \\
\hline 3063.460 & 10050.72 & 192.9 & 3078.120 & 10098.82 \\
\hline 3063.465 & 10050.74 & 342.9 & 3078.125 & 10098.84 \\
\hline 3063.470 & 10050.75 & 149.0 & 3078.130 & 10098.85 \\
\hline 3063.475 & 10050.77 & 227.5 & 3078.135 & 10098.87 \\
\hline 3063.480 & 10050.79 & 6.1 & 3078.140 & 10098.88 \\
\hline 3063.485 & 10050.80 & 27.0 & 3078.145 & 10098.90 \\
\hline 3063.490 & 10050.82 & 90.1 & 3078. 150 & 10098.92 \\
\hline 3063.495 & 10050.84 & 207.9 & 3078. 155 & 10098.93 \\
\hline 3063.500 & 10050.85 & 108.3 & 3078.160 & 10098.95 \\
\hline 3063.510 & 10050.89 & 2.0 & 3078.215 & 10099.13 \\
\hline 3063.675 & 10051.43 & 16.2 & 3078.220 & 10099.15 \\
\hline 3063.680 & 10051.44 & 82.0 & 3078.225 & 10099.16 \\
\hline 3063.685 & 10051.46 & 150.6 & 3078.230 & 10099.18 \\
\hline 3063.690 & 10051.48 & 266.9 & 3078.235 & 10099.20 \\
\hline 3063.695 & 10051.49 & 308.3 & 3078.240 & 10099.21 \\
\hline 3063.700 & 10051.51 & 114.2 & 3078.245 & 10099.23 \\
\hline 3063.705 & 10051.53 & 168.3 & 3078.250 & 10099.25 \\
\hline 3063.710 & 10051.54 & 180.5 & 3078.255 & 10099.26 \\
\hline 3063.715 & 10051.56 & 209.2 & 3078.260 & 10099.28 \\
\hline 3063.720 & 10051.58 & 103.4 & 3078.265 & 10099.29 \\
\hline 3063.725 & 10051.59 & 19.6 & 3078.270 & 10099.31 \\
\hline 3063.730 & 10051.61 & 158.7 & 3078.275 & 10099.33 \\
\hline 3063.735 & 10051.62 & 279.1 & 3078.280 & 10099.34 \\
\hline 3063.740 & 10051.64 & 442.9 & 3078.305 & 10099.43 \\
\hline 3063.745 & 10051.66 & 494.1 & 3078.310 & 10099.44 \\
\hline 3063.750 & 10051.67 & 730.5 & 3078.315 & 10099.46 \\
\hline 3063.755 & 10051.69 & 434.0 & 3078.320 & 10099.48 \\
\hline 3063.760 & 10051.71 & 1013.8 & 3078.325 & 10099.49 \\
\hline 3063.765 & 10051.72 & 289.8 & 3078.330 & 10099.51 \\
\hline 3063.770 & 10051.74 & 551.2 & 3078.335 & 10009.52 \\
\hline 3063.775 & 10051.76 & 75.2 & 3078.340 & 10099.54 \\
\hline 3063.785 & 10051.79 & 15.8 & 3078.345 & 10099.56 \\
\hline 3063.790 & 10051.80 & 7.1 & 3078.350 & 10098.57 \\
\hline 3063.795 & 10051.82 & 13.1 & 3078.355 & 10099.59 \\
\hline 3063.800 & 10051.84 & 66.7 & 3078.360 & 10099.61 \\
\hline 3063.805 & 10051.85 & 121.2 & 3078.365 & 10099.62 \\
\hline 3063.810 & 10051.87 & 166.1 & 3078.370 & 10099.64 \\
\hline 3063.815 & 10051.89 & 41.2 & 3078.375 & 10099.66 \\
\hline 3063.820 & 10051.90 & 101.8 & 3078.380 & 10099.67 \\
\hline 3063.825 & 10051.92 & 26.2 & 3078.385 & 10099.69 \\
\hline 3063.830 & 10051.94 & 151.2 & 3078.390 & 10099.71 \\
\hline 3063.835 & 10051.95 & 201.8 & 3078.395 & 10099.72 \\
\hline 3063.840 & 10051.97 & 208.1 & 3078.400 & 10099.74 \\
\hline 3063.845 & 10051.90 & 232.2 & 3078.405 & 10099.75 \\
\hline 3063.850 & 10052.00 & 236.2 & 3078.575 & 10100.31 \\
\hline 3063.855 & 10052.02 & 307.1 & 3078.580 & 10100.33 \\
\hline 3063.875 & 10052.08 & 63.9 & 3078.585 & 10100.34 \\
\hline 3063.880 & 10052.10 & 98.9 & 3078.590 & 10100.36 \\
\hline 3063.885 & 10052.12 & 70.3 & 3078.595 & 10100.38 \\
\hline 3063.890 & 10052.13 & 72.3 & 3078.600 & 10100.39 \\
\hline 3063.895 & 10052.15 & 95.7 & 3078.605 & 10100.41 \\
\hline 3063.900 & 10052.17 & 489.6 & 3078.610 & 10100.43 \\
\hline 3063.905 & 10052.18 & 526.4 & 3078.615 & 10100.44 \\
\hline 3063.910 & 10052.20 & 51.2 & 3078.620 & 10100.46 \\
\hline 3063.915 & 10052.21 & 72.3 & 3078.625 & 10100.48 \\
\hline 3063.920 & 10052.23 & 53.8 & 3078.630 & 10100.49 \\
\hline 3063.925 & 10052.25 & 174.1 & 3078.635 & 10100.51 \\
\hline 3063.930 & 10052.26 & 69.5 & 3078.640 & 10100.53 \\
\hline 3063.935 & 10052.28 & 104.4 & 3078.645 & 10100.54 \\
\hline 3063.940 & 10052.30 & 157.1 & 3078.650 & 10100.56 \\
\hline 3063.945 & 10052.31 & 183.5 & 3078.655 & 10100.57 \\
\hline 3063.950 & 10052.33 & 368.4 & 3078.660 & 10100.59 \\
\hline 3063.970 & 10052.40 & 22.8 & 3078.665 & 10100.61 \\
\hline 3063.975 & 10052.41 & 528.1 & 3078.685 & 10100.67 \\
\hline 3063.980 & 10052.43 & 604.3 & 3078.690 & 10100.69 \\
\hline 3063.985 & 10052.44 & 86.7 & 3078.695 & 10100.71 \\
\hline 3063.990 & 10052.46 & 71.1 & 3078.700 & 10100.72 \\
\hline 3063.905 & 10052.48 & 93.3 & 3078.705 & 10100.74 \\
\hline 3064.000 & 10052.49 & 61.8 & 3078.710 & 10100.75 \\
\hline 3064.005 & 10052.51 & 11.4 & 3078.715 & 10100.77 \\
\hline 3064.010 & 10052.53 & 155.6 & 3078.720 & 10100.79 \\
\hline 3064.015 & 10052.54 & 138.8 & 3078.725 & 10100.80 \\
\hline
\end{tabular}




\section*{APPENDIX X: Probe permeameter data sets}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3064.020 & 10052.56 & 151.7 & 3078.730 & 10100.82 & 45.0 & 3086.990 & 10127.92 & 4.3 & 3095.380 & 10155.45 & 14.8 \\
\hline 3064.025 & 10052.58 & 281.7 & 3078.735 & 10100.84 & 48.6 & 3086.995 & 10127.94 & 12.7 & 3095.385 & 10155.46 & 8.9 \\
\hline 3064.030 & 10052.59 & 94.5 & 3078.740 & 10100.85 & 116.2 & 3087.000 & 10127.95 & 6.5 & 3095.390 & 10155.48 & 10.8 \\
\hline 3064.035 & 10052.61 & 250.3 & 3078.745 & 10100.87 & 124.7 & 3087.005 & 10127.97 & 3.1 & 3095.395 & 10155.50 & 16.4 \\
\hline 3064.040 & 10052.62 & 430.0 & 3078.750 & 10100.89 & 91.8 & 3087.010 & 10127.99 & 2.6 & 3095.400 & 10155.51 & 31 \\
\hline 3064.045 & 10052.64 & 334.9 & 3078.755 & 10100.90 & 87.3 & 3087.015 & 10128.00 & 2.3 & 3095.405 & 10155.53 & 13.8 \\
\hline 3064.055 & 10052.67 & 175.0 & 3078.760 & 10100.92 & 70.9 & 3087.020 & 10128.02 & 3.0 & 3095.410 & 10155.54 & 20.8 \\
\hline 3064.060 & 10052.69 & 227.7 & 3078.765 & 10100.94 & 85.4 & 3087.030 & 10128.05 & 3.3 & 3095.415 & 10155.5 & 31.3 \\
\hline 3064.065 & 10052.71 & 207.3 & 3078.770 & 10100.95 & 94.9 & 3087.035 & 10128.07 & 3.0 & 3095.420 & 10155.58 & 20.8 \\
\hline 3064.070 & 10052.72 & 151.1 & 3078.775 & 10100.97 & 92.7 & 3087.040 & 10128.08 & 6.4 & 3095.425 & 10155.59 & 12.7 \\
\hline 3064.075 & 10052.74 & 150.0 & 3078.780 & 10100.98 & 70.1 & 3087.045 & 10128.10 & 2.0 & 3095.430 & 10155.61 & 14.0 \\
\hline 3064.080 & 10052.76 & 281.3 & 3078.800 & 10101.05 & 88.5 & 3087.070 & 10128.18 & 3.4 & 3095.435 & 10155.63 & 22.0 \\
\hline 3064.085 & 10052.77 & 42.4 & 3078.805 & 10101.07 & 138.3 & 3087.075 & 10128.20 & 5.4 & 95.4 & 10155.64 & 18. \\
\hline 3064.090 & 10052.79 & 179.3 & 3078.820 & 10101.12 & 78.3 & 3087.080 & 10128.22 & 6.5 & 3095.445
3095.450 & 10155.66
10155.68 & 28 \\
\hline 3064.095 & 10052.81 & 85.8 & 3078.825 & 10101.13 & 66.7 & 3087.085 & 10128.23 & 13.2 & 3095.450
3095.455 & 10155.68
10155.69 & 28.5
32.0 \\
\hline 3064.100 & 10052.82 & 310.2 & 3078.830 & 10101.15 & 38.0 & 3087.090 & 10128.25 & 5.8 & 3095.460 & 10155.71 & 32.0 \\
\hline 3064.105 & 10052.84 & 125.3 & 3078.835 & 10101.17 & 28.7 & 3087.095 & 10128.26 & 6.1 & 3095.465 & 10155.73 & 41.5 \\
\hline 3064.110 & 10052.85 & 33.5 & 3078.840 & 10101.18 & 71.3 & 3087.100 & 10128.28
10128.30 & 6.8
5.5 & 30955.470 & 10155.74 & 9.5 \\
\hline 3064.115 & 10052.87 & 41.4 & 3078.845 & 10101.20 & 61.8 & 3087.105
3087.110 & 10128.31
10128.3 & 5.5
13.7 & 3095.475 & 10155.76 & 33.0 \\
\hline 3064.120 & 10052.89 & 72.9 & 3078.850
3078.855 & 10101.21
10101 & 69.4
103.8 & 3087.110
3087.115 & 10128.33 & 57.0 & 3095.480 & 10155.77 & 15.2 \\
\hline 3064.125
3064.130 & 10052.90
10052.92 & 76.5
22.6 & 3078.855
3078.860 & 10101.23 & 103.8
97.9 & 3087.120 & 10128.35 & 10.8 & 3095.485 & 10155.79 & 13.2 \\
\hline 3064.135 & 10052.94 & 197.1 & 3078.865 & 10101.26 & 95.9 & 3087.125 & 10128.36 & 14.0 & 3095.49 & 10155.81 & 33.8 \\
\hline 3064.140 & 10052.95 & 3.0 & 3078.870 & 10101.28 & 90.2 & 3087.130 & 10128.38 & 11.5 & 3095.49 & 10155.82 & 18.3 \\
\hline 3064.145 & 10052.97 & 115.5 & 3078.875 & 10101.30 & 133.3 & 3087.135 & 10128.40 & 11.6 & . 5 & 10155.84 & 20.3 \\
\hline 3064.150 & 10052.99 & 264.3 & 3078.880 & 10101.31 & 111.9 & 3087.140 & 10128.41 & 3.4 & 3095.505 & 10155.86 & 14 \\
\hline 3064.155 & 10053.00 & 339.9 & 3078.885 & 10101.33 & 81.8 & 3087.145 & 10128 & 7.8 & 3095.510
3095515 & 10155.87 & 20.0 \\
\hline 3064.160 & 10053.02 & 357.3 & 3078.890 & 10101.35 & 69.1 & . 150 & 10128.45 & 17.5 & 3095.515
3095.520 & 10155.89 & \\
\hline 3064.165 & 10053.04 & 187.1 & 3078.895 & 10101.36 & 63.2 & 3087.155 & 10128.46 & 27.0
165 & 3005.52 & 10155.91
10155.92 & 13.5
18.0
15. \\
\hline 3064.170 & 10053.05 & 164.6 & 3078.900 & 10101.38 & 71.8 & 3087.160 & 10128.48 & 6.5 & 3095.525
3095.555 & 10155.92
10156.02 & 18.0
13.7 \\
\hline 3064.175 & 10053.07 & 236.0 & 3078.905 & 10101.39 & 40.4 & 3087.165 & 10128 & 8.0 & 3095.555
3095.560 & 10156.04

1 & 18.3 \\
\hline 3064.180 & 10053.08 & 163.4 & 3078.910 & 10101.41 & 5 & \begin{tabular}{l}
3087.170 \\
3087 \\
\hline
\end{tabular} & 10128.51
10128.53 & 8.9
7.4 & 3095.565 & 10156.05 & 43. \\
\hline 3064.195 & 10053.13 & 248.4 & 3078.925 & 10101.46 & 64.9 & 3087.185 & 10128.56 & 9.5 & 3095.575 & 10156.08 & 67.5 \\
\hline 3064.215 & 10053.20 & 499.1 & 3078.930 & 10101.48 & 95.8 & 3087.190 & 10128.58 & 9.8 & 3095.580 & 10156.10 & 46.8 \\
\hline 3064.220 & 10053.22 & 124.5 & 3078.935 & 10101.49 & 47.0 & 3087.195 & 10128.59 & 11.6 & 95. 585 & 0156.12 & 37.2 \\
\hline 3064.225 & 10053.23 & 4.9 & 3078.940 & 10101.51 & 85.8 & 3087.200 & 10128.61 & 9.7 & 95.5 & 10156 & 0 \\
\hline 3064.230 & 10053.25 & 98.7 & 3078.945 & 10101.53 & 105.1 & 3087.230 & 10128.71 & 19.0 & 3095.595 & 156.15 & 35.9 \\
\hline 3064.235 & 10053.26 & 304.9 & 3078.950 & 10101.54 & 112.1 & 3087.235 & 10128.72 & 23.3 & 3095.600 & 10156.17 & 30.1 \\
\hline 3064.240 & 10053.28 & 158.9 & 3078.955 & 10101.56 & 133.4 & 3087.240 & 10128.74 & 20.8 & 3095.605 & 10156.18 & \\
\hline 3064.245 & 10053.30 & 200.9 & 3078.960 & 10101.58 & 83.0 & 3087.245 & 10128.76 & 22.6 & 3095.610 & 10156.22
1015 & 29.7 \\
\hline 3064.250 & 10053.31 & 701.7 & 3078.965 & 10101.59 & 127.1 & 3087.250 & 10128.77 & 32.1 & 3095.615 & 10156.22 & 29.7
39.1 \\
\hline 3064.255 & 10053.33 & 223.1 & 3078.970 & 10101.61 & 85.0 & 3087.255 & 10128.79 & 39.0 & 3095.620
3095.625 & 10156.23
10156.25 & 41.2 \\
\hline 3064.260 & 10053.35 & 145.3 & 3078.975 & 10101.62 & 129.0 & 3087.260 & 10128.81 & 13.7
27.3 & 3095.625
3095.630 & 10156.27 & 18.4 \\
\hline 3064.265
3064.270 & 10053.36 & 61.8 & 3078.980
3078.985 & 10101.64
10101.66 & 105.1 & 3087.265 & 10128.82
1012884 & \begin{tabular}{l}
13.7 \\
13 \\
\hline 1
\end{tabular} & 3095.635 & 10156.28 & 19.2 \\
\hline 3064.275 & 10053.40 & 47.9 & 3078.990 & 10101.67 & 101.9 & 3087.440 & 10129.40 & 33.4 & 3095.640 & 10156.30 & 21.8 \\
\hline 3064.300 & 10053.48 & 214.8 & 3078.995 & 10101.69 & 63.9 & 3087.445 & 10129.41 & 27.6 & 3095.645 & 10156.32 & 19.7 \\
\hline 3064.305 & 10053.49 & 457.5 & 3079.000 & 10101.71 & 156.8 & 3087.450 & 10129.43 & 81.8 & 3095.650 & 10156.33 & 6.9 \\
\hline 3064.310 & 10053.51 & 270.6 & 3079.005 & 10101.72 & 99.0 & 3087.455 & 10129.45 & 21.4 & 3095.655 & 10156.35 & . 9 \\
\hline 3064.315 & 10053.53 & 91.7 & 3079.010 & 10101.74 & 127.7 & 3087.460 & 10129.46 & 25.9 & 3095.660 & 10156.37 & 1 \\
\hline 3064.320 & 10053.54 & 334.5 & 3079.015 & 10101.76 & 110.0 & 3087.465 & 10129.48 & 24.0 & 3095.665 & 10156.38 & 1 \\
\hline 3064.325 & 10053.56 & 105.9 & 3079.020 & 10101.77 & 76.4 & 3087.470 & 10129.50 & 26.7 & 3095.670 & 10156.40 & \\
\hline 3064.330 & 10053.58 & 590.6 & 3079.025 & 10101.79 & 59.9 & 3087.475 & 10129.51 & 10.0 & 3095.685 & 10156.45 & \\
\hline 3064.335 & 10053.50 & 654.2 & 3079.030 & 10101.80 & 57.2 & 3087.480 & 10129.53 & 4.9 & 3095.690 & 10156.46 & 26.2 \\
\hline 3064.340 & 10053.61 & 355.8 & 3079.055 & 10101.89 & 195.4 & 3087.485 & 10129.54 & 4.7 & 3095.695 & 10156.48 & 38.8 \\
\hline 3064.345 & 10053.63 & 387.8 & 3079.060 & 10101.90 & 163.8 & 3087.490 & 10129.56 & 8.0 & 3095.700 & 10156.50 & 33.9 \\
\hline 3064.350 & 10053.64 & 431.0 & 3079.065 & 10101.92 & 130.0 & 3087.495 & 10129.58 & 13.3 & 3095.705 & 10156.51 & 8 9 \\
\hline 3064.355 & 10053.66 & 230.1 & 3079.110 & 10102.07 & 313.7 & 3087.500 & 10129.59 & 13.6 & 3095.710 & 10156.53 & 26.5 \\
\hline 3064.360 & 10053.67 & 258.5 & 3079.115 & 10102.08 & 452.1 & 3087.505 & 10129.61 & 13.8 & 3095.715 & 10156.55 & 23.9 \\
\hline 3064.365 & 10053.69 & 429.8 & 3079.120 & 10102.10 & 290.6 & 3087.510 & 10129.63 & 15.1 & 3095.720 & 10156.56 & 26. \\
\hline 3064.370 & 10053.71 & 435.0 & 3079.125 & 10102.12 & 519.3 & 3087.515 & 10129.64 & 3.6 & 3095.725 & 10156.58 & 24.5 \\
\hline 3064.375 & 10053.72 & 279.6 & 3079.130 & 10102.13 & 325.2 & 3087.520 & 10129.66 & 4.5 & 3095.730 & 10156.59 & 28.4 \\
\hline 3064.380 & 10053.74 & 652.3 & 3079.135 & 10102.15 & 274.5 & 3087.525 & 10129.68 & 8.3 & 3095.735 & 10156.61 & 20.0 \\
\hline 3064.385 & 10053.76 & 509.2 & 3079.140 & 10102.17 & 276.4 & 3087.530 & 10129.69 & 12.0 & 3095.740 & 10156.63 & 23.8 \\
\hline 3064.390 & 10053.77 & 497.7 & 3079.145 & 10102.18 & 269.4 & 3087.535 & 10129.71 & 5.7 & 3095.745 & 10156.64 & 47.8 \\
\hline 3064.395 & 10053.79 & 300.3 & 3079.150 & 10102.20 & 183.3 & 3087.540 & 10129.72 & 9.6 & 3095.750 & 10156.66 & 0.3 \\
\hline 3064.400 & 10053.81 & 298.7 & 3079.155 & 10102.21 & 279.0 & 3087.545 & 10129.74 & 7.7 & 995.755 & 10156.68 & 26.4 \\
\hline 3064.405 & 10053.82 & 336.1 & 3079.160 & 10102.23 & 177.6 & 3087.550 & 10129.76 & 7.8 & 3095.760 & 10156.69 & 50.8 \\
\hline 3064.410 & 10053.84 & 572.0 & 3079.165 & 10102.25 & 133.1 & 3087.555 & 10129.77 & 13.1 & 3095.765 & 10156.71 & 67.7 \\
\hline 3064.430 & 10053.90 & 8.5 & 3079.170 & 10102.26 & 144.9 & 3087.560 & 10129.79 & 14.3 & 3095.770 & 10156.73 & \\
\hline 3064.435 & 10053.92 & 94.9 & 3079.175 & 10102.28 & 254.0 & 3087.565 & 10129.81 & 45.6 & 3095.775 & 156.74 & 35.9 \\
\hline 3064.480 & 10054.07 & 246.2 & 3079.195 & 10102.35 & 27.7 & 3087.570 & 10129.82 & 8.8 & 3095.780 & 10156.76 & 18.5 \\
\hline 3064.485 & 10054.08 & 192.1 & 3079.200 & 10102.36 & 43.1 & 3087.575 & 10129.84 & 9.7 & 3095.785 & 10156.78 & 26.7 \\
\hline 3064.480 & 10054.10 & 43.1 & 3079.205 & 10102.38 & 36.5 & 3087.580 & 10129.86 & 14.0 & 3095.790 & 10156.79 & 18.7 \\
\hline 3064.495 & 10054.12 & 71.0 & 3079.210 & 10102.40 & 112.8 & 3087.585 & 10129.87 & 5.6 & 3095.795 & 10156.81 & 16.1 \\
\hline 3064.500 & 10054.13 & 503.4 & 3079.215 & 10102.41 & 43.5 & 3087.590 & 10129.88 & 18.5 & 3095.800 & 10156.82 & 44.0 \\
\hline 3064.505 & 10054.15 & 512.9 & 3079.220 & 10102.43 & 52.3 & 3087.595 & 10129.91 & \({ }^{8.8}\) & 3095.825 & 10156.91 & 63.0 \\
\hline 3064.510 & 10054.17 & 448.6 & 3079.225 & 10102.44 & 17.3 & 3087.600 & 10129.92 & 15.3 & 3095.830 & 10156.92
10157.30 & \\
\hline 3064.515 & 10054.18 & 322.7 & 3079.230 & 10102.46 & 49.7 & 3087.645 & 10130.07 & 27.1 & 3095.945 & 10157.30
10157.32 & 29.4
13.3 \\
\hline 3064.520 & 10054.20 & 129.1 & 3079.235 & 10102.48 & 30.9 & 3087.650 & 10130.09 & 39.0 & 3095.050 & 10157.32
10157.33 & \\
\hline 3064.525 & 10054.22 & 128.4 & 3079.240 & 10102.49 & 55.5 & 3087.655 & 10130.10 & 113.9 & 3095.955
3095 & 10157.33
10157 & \\
\hline 3064.530 & 10054.23 & 58.4 & 3079.245 & 10102.51 & 36.9 & 3087.660 & 10130.12 & 136.3 & \({ }^{30955.065}\) & 10157.37 & 24.3
14.0 \\
\hline 3064.535 & 10054.25 & 66.2 & 3079.250 & 10102.53 & 52.2 & 3087.665 & 10130.13 & 21.4
19.6 & & & \\
\hline 3064.540 & 10054.27 & 47.5 & 3079.255 & 10102.54 & 38.1
27.7 & 3087.670
3087.675 & 10130.15
10130.17 & 10.6
26.3 & 3095.970
3095.975 & 10157.38
10157.40 & 15.4
32.7 \\
\hline 3064.545 & 10054.28 & 72.3 & 3079.260 & 10102.56 & 27.7 & 3087.675
3087.680 & 10130.17
10130.18 & 26.3
23.2 & 3095.980 & 10157.42 & 15.7
82.9 \\
\hline 3064.550 & 10054.30 & 81.7 & 3079.265 & 10102.58 & 37.5 & 3087.680
3087.695 & 10130.23 & & 3095.985 & 10157.43 & \\
\hline 3064.575 & 10054.38 & 17.3 & 3079.270 & 10102.59 & 41.9 & 3087.695
3087.700 & 10130.23
10130.25 & 28.7
30.0 & 3095.900 & 10157.45 & 9.4
4.3 \\
\hline 3064.580 & 10054.40 & 61.6 & 3079.275 & 10102.61 & 39.2 & 3087.700
3087 & 10130.25
10130.27 & 30.0
30.2 & 3095.905 & 10157.46 & 4.3
8.5 \\
\hline 3064.585 & 10054.41 & 7.8 & 3079.280 & 10102.62 & 48.0 & 3087.705
3087.710 & 10130.27
10130.28 & 30.2
35.8 & 3096.000 & 10157.48 & \\
\hline 3064.590 & 10054.43 & 23.4 & 3079.285 & 10102.64 & 49.2 & 3087.710
3087.715 & 10130.30 & 30.3 & 3096.005 & 10157.50 & 2.8
6.8 \\
\hline 3064.595 & 10054.45 & 79.4 & 3079.290 & 10102.66 & 33.3 & 3087.715
3087.720 & 10130.32 & & 3096.010 & 10157.51 & 6.8
3.1 \\
\hline 3064.600 & 10054.46 & 11.2 & 3079.295 & 10102.67 & 84.7 & 3087.720
3087.725 & 10130.32
10130.33 & 30.8
26.6 & 3096.030 & 10157.58 & 3.1
24.6 \\
\hline 3064.605 & 10054.48 & 31.6 & 3079.300 & 10102.69 & 43.8 & 3087.725
3087.730 & 10130.33
10130.35 & 26.6
25.6 & 3096.035 & 10157.60 & 24.6
7.1 \\
\hline 3064.610 & 10054.50 & 30.0 & 3079.305 & 10102.71 & 49.6 & 3087.730
3087.735 & \({ }_{10130.36}\) & 41.1 & 3096.040 & 10157.61 & 7.1
6.9 \\
\hline 3064.615 & 10054.51 & 36.1 & 3079.310 & 10102.72 & 33.2 & 3087.735
3087.740 & 10130.38 & 31.9 & 3096.045 & 10157.63 & 6.9
7.4 \\
\hline 3064.620 & 10054.53 & 91.3 & 3079.315 & 10102.74 & 35.2 & 3087.740
3087.745 & 10130.40 & 27.3 & 3096.050 & 10157.64 & \(\begin{array}{r}7.4 \\ 17.7 \\ \hline\end{array}\) \\
\hline 3064.625 & 10054.54 & 84.8 & 3079.320 & 10102.76 & 36.7 & & & 31.1 & 3096.055 & 10157.66 & 17.7
20.3 \\
\hline 3064.630 & 10054.56 & 52.2 & 3079.325 & 10102.77 & 45.6 & 3087.750
3087.755 & 10130.41
10130.43 & 35.2 & 3006.075 & 10157.73 & 17.7
7.8 \\
\hline 3064.635 & 10054.58 & 111.2 & 3079.330 & 10102.79 & 37.3 & 3087.755
3087.760 & 10130.45 & 35.7 & 3096.080 & 10157.74 & 7.8
7.2 \\
\hline 3064.640
3064.645 & 10054.59
10054.61 & 39.1 & 3079.335
3079.365 & 10102.81
10102.90 & 64.2
35.6 & 3087.760
3087.765 & 10130.46 & 44.6 & 3096.085 & 10157.76 & 12.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 3064.650 & 10054.63 & 100.1 & 3079.370 & 10102.92 \\
\hline 3064.655 & 10054.64 & 164.7 & 3079.375 & 10102.94 \\
\hline 3064.660 & 10054.66 & 73.2 & 3079.380 & 10102.95 \\
\hline 3064.665 & 10054.68 & 68.1 & 3079.385 & 10102.97 \\
\hline 3064.670 & 10054.69 & 222.7 & 3079.390 & 10102.99 \\
\hline 3064.675 & 10054.71 & 500.9 & 3079.395 & 10103.00 \\
\hline 3064.680 & 10054.72 & 128.5 & 3079.400 & 10103.02 \\
\hline 3064.685 & 10054.74 & 15.6 & 3079.405 & 10103.04 \\
\hline 3064.690 & 10054.76 & 4.2 & 3079.410 & 10103.05 \\
\hline 3064.695 & 10054.77 & 13.5 & 3079.415 & 10103.07 \\
\hline 3064.700 & 10054.79 & 155.0 & 3079.420 & 10103.08 \\
\hline 3064.705 & 10054.81 & 243.9 & 3079.425 & 10103.10 \\
\hline 3064.710 & 10054.82 & 162.0 & 3079.430 & 10103.12 \\
\hline 3064.715 & 10054.84 & 203.0 & 3079.435 & 10103.13 \\
\hline 3064.720 & 10054.86 & 509.6 & 3079.440 & 10103.15 \\
\hline 3064.725 & 10054.87 & 286.7 & 3079.445 & 10103.17 \\
\hline 3064.730 & 10054.89 & 511.2 & 3079.450 & 10103.18 \\
\hline 3064.735 & 10054.91 & 766.3 & 3079.455 & 10103.20 \\
\hline 3064.755 & 10054.97 & 63.0 & 3079.460 & 10103.22 \\
\hline 3064.760 & 10054.98 & 221.4 & 3079.465 & 10103.23 \\
\hline 3064.765 & 10055.00 & 274.9 & 3079.470 & 10103.25 \\
\hline 3064.770 & 10055.02 & 191.7 & 3079.475 & 10103.26 \\
\hline 3064.775 & 10055.04 & 31.6 & 3079.480 & 10103.28 \\
\hline 3064.780 & 10055.05 & 42.2 & 3079.485 & 10103.30 \\
\hline 3064.785 & 10055.07 & 120.7 & 3079.490 & 10103.31 \\
\hline 3064.790 & 10055.09 & 173.9 & 3079.495 & 10103.33 \\
\hline 3064.795 & 10055.10 & 132.7 & 3079.500 & 10103.35 \\
\hline 3064.800 & 10055.12 & 202.0 & 3079505 & 10103.36 \\
\hline 3064.805 & 10055.13 & 246.4 & 3079.510 & 10103.38 \\
\hline 3064.810 & 10055.15 & 79.0 & 3079.515 & 10103.40 \\
\hline 3064.815 & 10055.17 & 176.9 & 3079.520 & 10103.41 \\
\hline 3064.850 & 10055.28 & 107.5 & 3079.525 & 10103.43 \\
\hline 3064.855 & 10055.30 & 226.9 & 3079.530 & 10103.45 \\
\hline 3064.860 & 10055.32 & 149.1 & 3079.535 & 10103.46 \\
\hline 3064.865 & 10055.33 & 31.0 & 3079.540 & 10103.48 \\
\hline 3064.870 & 10055.35 & 94.5 & 3079.545 & 10103.49 \\
\hline 3064.875 & 10055.36 & 113.3 & 3079.550 & 10103.51 \\
\hline 3064.880 & 10055.38 & 160.8 & 3079.555 & 10103.53 \\
\hline 3064.885 & 10055.40 & 213.0 & 3079.560 & 10103.54 \\
\hline 3064.890 & 10055.41 & 98.8 & 3079.565 & 10103.56 \\
\hline 3064.895 & 10055.43 & 216.4 & 3079.570 & 10103.58 \\
\hline 3064.900 & 10055.45 & 111.4 & 3079.575 & 10103.59 \\
\hline 3064.905 & 10055.46 & 122.8 & 3079.580 & 10103.61 \\
\hline 3064.910 & 10055.48 & 214.4 & 3079.585 & 10103.63 \\
\hline 3064.915 & 10055.50 & 260.3 & 3079.590 & 10103.64 \\
\hline 3064.920 & 10055.51 & 607.5 & 3079.595 & 10103.66 \\
\hline 3064.925 & 10055.53 & 91.4 & 3079.600 & 10103.67 \\
\hline 3064.930 & 10055.54 & 29.2 & 3079.605 & 10103.69 \\
\hline 3064.935 & 10055.56 & 43.6 & 3079.610 & 10103.71 \\
\hline 3064.940 & 10055.58 & 25.0 & 3079.615 & 10103.72 \\
\hline 3064.945 & 10055.59 & 41.3 & 3079.620 & 10103.74 \\
\hline 3064.950 & 10055.61 & 19.8 & 3079.625 & 10103.76 \\
\hline 3064.955 & 10055.63 & 40.7 & 3079.630 & 10103.77 \\
\hline 3064.060 & 10055.64 & 153.6 & 3079.635 & 10103.79 \\
\hline 3064.965 & 10055.66 & 84.3 & 3079.640 & 10103.81 \\
\hline 3064.970 & 10055.68 & 156.2 & 3079.645 & 10103.82 \\
\hline 3064.975 & 10055.69 & 74.5 & 3079.650 & 10103.84 \\
\hline 3064.980 & 10055.71 & 106.4 & 3079.655 & 10103.86 \\
\hline 3064.985 & 10055.73 & 56.6 & 3079.660 & 10103.87 \\
\hline 3064.990 & 10055.74 & 37.4 & 3079.665 & 10103.89 \\
\hline 3064.995 & 10055.76 & 54.3 & 3079.670 & 10103.90 \\
\hline 3065.000 & 10055.77 & 36.3 & 3079.675 & 10103.92 \\
\hline 3065.025 & 10055.86 & 4.1 & 3079.680 & 10103.94 \\
\hline 3065.030 & 10055.87 & 56.5 & 3079.685 & 10103.95 \\
\hline 3065.035 & 10055.89 & 144.2 & 3079.690 & 10103.97 \\
\hline 3065.040 & 10055.91 & 66.5 & 3079.695 & 10103.99 \\
\hline 3065.045 & 10055.92 & 61.7 & 3079.710 & 10104.04 \\
\hline 3065.050 & 10055.94 & 15.6 & 3079.715 & 10104.05 \\
\hline 3065.055 & 10055.96 & 16.3 & 3079.720 & 10104.07 \\
\hline 3065.060 & 10055.97 & 48.4 & 3079.725 & 10104.08 \\
\hline 3065.065 & 10055.98 & 83.8 & 3079.730 & 10104.10 \\
\hline 3065.070 & 10056.00 & 280.0 & 3079.735 & 10104.12 \\
\hline 3065.075 & 10056.02 & 122.9 & 3079.740 & 10104.13 \\
\hline 3065.080 & 10058.04 & 191.3 & 3079.745 & 10104.15 \\
\hline 3065.085 & 10056.05 & 1261.0 & 3079.750 & 10104.17 \\
\hline 3065.090 & 10056.07 & 980.9 & 3079.755 & 10104.18 \\
\hline 3065.095 & 10056.09 & 430.5 & 3079.760 & 10104.20 \\
\hline 3065.100 & 10056.10 & 207.8 & 3079.765 & 10104.22 \\
\hline 3065. 105 & 10056.12 & 96.1 & 3079.770 & 10104.23 \\
\hline 3065.110 & 10056.14 & 159.6 & 3079.775 & 10104.25 \\
\hline 3065.115 & 10056.15 & 132.0 & 3079.780 & 10104.27 \\
\hline 3065.120 & 10056.17 & 21.6 & 3079.785 & 10104.28 \\
\hline 3065.125 & 10056.18 & 62.1 & 3079.790 & 10104.30 \\
\hline 3065.130 & 10056.20 & 136.8 & 3079.795 & 10104.31 \\
\hline 3065.135 & 10056.22 & 283.2 & 3079.800 & 10104.33 \\
\hline 3065.140 & 10056.23 & 176.4 & 3079.805 & 10104.35 \\
\hline 3065.145 & 10056.25 & 541.9 & 3079.810 & 10104.36 \\
\hline 3065.165 & 10056.32 & 435.1 & 3079.815 & 10104.38 \\
\hline 3065.170 & 10056.33 & 337.9 & 3079.820 & 10104.40 \\
\hline 3065.175 & 10056.35 & 354.4 & 3079.825 & 10104.41 \\
\hline 3065.180 & 10056.37 & 37.1 & 3079.830 & 10104.43 \\
\hline 3065.185 & 10056.38 & 135.3 & 3079.835 & 10104.45 \\
\hline 3065.190 & 10056.40 & 195.2 & 3079.840 & 10104.46 \\
\hline 3065.195 & 10056.41 & 336.9 & 3079.845 & 10104.48 \\
\hline 3065.200 & 10056.43 & 244.9 & 3079.850 & 10104.50 \\
\hline 3065.205 & 10056.45 & 76.5 & 3079.855 & 10104.51 \\
\hline 3065.210 & 10056.46 & 158.6 & 3079.860 & 10104.53 \\
\hline 3065.215 & 10056.48 & 391.3 & 3079.865 & 10104.54 \\
\hline 3065.220 & 10056.50 & 156.1 & 3079.870 & 10104.56 \\
\hline 3065.225 & 10056.51 & 87.4 & 3079.885 & 10104.61 \\
\hline 3065.230 & 10056.53 & 229.4 & 3079.890 & 10104.63 \\
\hline 3065.235 & 10056.55 & 110.5 & 3079.895 & 10104.64 \\
\hline 3065.240 & 10056.56 & 56.9 & 3079.900 & 10104.66 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline 3065.245 & 10056.58 & 157.5 & 3079.905 & 10104.68 \\
\hline 3065.250 & 10056.59 & 66.3 & 3079.910 & 10104.69 \\
\hline 3065.255 & 10056.61 & 115.2 & 3079.915 & 10104.71 \\
\hline 3065.280 & 10056.69 & 18.0 & 3079.920 & 10104.72 \\
\hline 3065.285 & 10056.71 & 19.8 & 3079.925 & 10104.74 \\
\hline 3065.290 & 10056.73 & 24.4 & 3079.930 & 10104.76 \\
\hline 3065.295 & 10056.74 & 65.8 & 3079.935 & 10104.77 \\
\hline 3065.300 & 10056.76 & 28.1 & 3079.940 & 10104.79 \\
\hline 3065.305 & 10056.78 & 37.3 & 3079.945 & 10104.81 \\
\hline 3065.310 & 10056.79 & 25.4 & 3079.950 & 10104.82 \\
\hline 3065.315 & 10056.81 & 22.7 & 3079.955 & 10104.84 \\
\hline 3065.320 & 10056.82 & 85.1 & 3079.960 & 10104.86 \\
\hline 3065.325 & 10056.84 & 16.3 & 3079.965 & 10104.87 \\
\hline 3065.330 & 10056.86 & 68.1 & 3079.970 & 10104.89 \\
\hline 3065.335 & 10056.87 & 90.6 & 3079.975 & 10104.91 \\
\hline 3065.340 & 10056.89 & 56.0 & 3079.980 & 10104.92 \\
\hline 3065.345 & 10056.91 & 16.7 & 3079.985 & 10104.94 \\
\hline 3065.425 & 10057.17 & 10.5 & 3080.330 & 10106.07 \\
\hline 3065.430 & 10057.19 & 164.5 & 3080.335 & 10106.09 \\
\hline 3065.435 & 10057.20 & 41.5 & 3080.340 & 10106.10 \\
\hline 3065.440 & 10057.22 & 111.2 & 3080.345 & 10106.12 \\
\hline 3065.445 & 10057.23 & 79.2 & 3080.350 & 10106.14 \\
\hline 3065.450 & 10057.25 & 75.0 & 3080.355 & 10106.15 \\
\hline 3065.455 & 10057.27 & 204.5 & 3080.360 & 10106.17 \\
\hline 3065.460 & 10057.28 & 102.2 & 3080.365 & 10106.18 \\
\hline 3065.465 & 10057.30 & 275.1 & 3080.370 & 10106.20 \\
\hline 3065.470 & 10057.32 & 348.5 & 3080.375 & 10106.22 \\
\hline 3065.475 & 10057.33 & 328.8 & 3080.380 & 10106.23 \\
\hline 3065.480 & 10057.35 & 437.2 & 3080.385 & 10106.25 \\
\hline 3065.485 & 10057.37 & 230.2 & 3080.390 & 10106.27 \\
\hline 3065.490 & 10057.38 & 217.9 & 3080.395 & 10106.28 \\
\hline 3065.495 & 10057.40 & 299.5 & 3080.415 & 10106.35 \\
\hline 3065.500 & 10057.42 & 180.0 & 3080.420 & 10106.37 \\
\hline 3065.505 & 10057.43 & 190.0 & 3080.425 & 10106.38 \\
\hline 3065.510 & 10057.45 & 286.2 & 3080.430 & 10106.40 \\
\hline 3065.515 & 10057.46 & 227.3 & 3080.435 & 10106.41 \\
\hline 3065.520 & 10057.48 & 90.5 & 3080.440 & 10106.43 \\
\hline 3065.525 & 10057.50 & 363.8 & 3080.445 & 10106.45 \\
\hline 3065.530 & 10057.51 & 399.8 & 3080.450 & 10106.46 \\
\hline 3065.535 & 10057.53 & 133.1 & 3080.455 & 10106.48 \\
\hline 3065.540 & 10057.55 & 217.9 & 3080.460 & 10106.50 \\
\hline 3065.545 & 10057.56 & 206.3 & 3080.465 & 10106.51 \\
\hline 3065.550 & 10057.58 & 174.6 & 3080.470 & 10106.53 \\
\hline 3065.555 & 10057.60 & 65.8 & 3080.475 & 10106.55 \\
\hline 3065.560 & 10057.61 & 86.0 & 3080.480 & 10106.56 \\
\hline 3065.565 & 10057.63 & 63.2 & 3080.485 & 10106.58 \\
\hline 3065.570 & 10057.64 & 122.2 & 3080.490 & 10106.59 \\
\hline 3065.575 & 10057.66 & 162.1 & 3080.495 & 10106.61 \\
\hline 3065.580 & 10057.68 & 237.9 & 3080.500 & 10106.63 \\
\hline 3065.585 & 10057.69 & 216.5 & 3080.505 & 10106.64 \\
\hline 3065.590 & 10057.71 & 432.0 & 3080.510 & 10106.66 \\
\hline 3065.595 & 10057.73 & 430.9 & 3080.515 & 10106.68 \\
\hline 3065.600 & 10057.74 & 386.3 & 3080.520 & 10106.69 \\
\hline 3065.605 & 10057.76 & 155.2 & 3080.525 & 10106.71 \\
\hline 3065.610 & 10057.78 & 36.7 & 3080.530 & 10106.73 \\
\hline 3065.620 & 10057.81 & 62.8 & 3080.535 & 10106.74 \\
\hline 3065.625 & 10057.83 & 46.0 & 3080.540 & 10106.76 \\
\hline 3065.630 & 10057.84 & 191.6 & 3080.555 & 10106.81 \\
\hline 3065.635 & 10057.86 & 192.9 & 3080.560 & 10106.82 \\
\hline 3065.640 & 10057.87 & 156.7 & 3080.565 & 10106.84 \\
\hline 3065.645 & 10057.80 & 64.5 & 3080.570 & 10106.86 \\
\hline 3065.650 & 10057.91 & 46.3 & 3080. 575 & 10106.87 \\
\hline 3065.655 & 10057.92 & 157.3 & 3080.580 & 10106.89 \\
\hline 3065.680 & 10057.94 & 170.8 & 3080.585 & 10106.91 \\
\hline 3065.665 & 10057.96 & 42.9 & 3080.590 & 10106.92 \\
\hline 3065.670 & 10057.97 & 52.4 & 3080.595 & 10106.94 \\
\hline 3065.675 & 10057.98 & 63.1 & 3080.600 & 10106.96 \\
\hline 3065.680 & 10058.01 & 217.1 & 3080.605 & 10106.97 \\
\hline 3065.685 & 10058.02 & 30.9 & 3080.610 & 10106.90 \\
\hline 3065.690 & 10058.04 & 11.6 & 3080.615 & 10107.00 \\
\hline 3065.695 & 10058.05 & 432.4 & 3080.620 & 10107.02 \\
\hline 3065.700 & 10058.07 & 625.2 & 3080.625 & 10107.04 \\
\hline 3065.705 & 10058.09 & 434.1 & 3080.630 & 10107.05 \\
\hline 3065.710 & 10058.10 & 323.2 & 3080.635 & 10107.07 \\
\hline 3065.715 & 10058.12 & 197.3 & 3080.640 & 10107.09 \\
\hline 3065.735 & 10058.19 & 57.8 & 3080.645 & 10107.10 \\
\hline 3065.740 & 10058.20 & 25.4 & 3080.650 & 10107.12 \\
\hline 3065.745 & 10058.22 & 31.3 & 3080.655 & 10107.14 \\
\hline 3065.750 & 10058.24 & 58.3 & 3080.660 & 10107.15 \\
\hline 3065.755 & 10058.25 & 43.0 & 3080.665 & 10107.17 \\
\hline 3065.760 & 10058.27 & 121.5 & 3080.670 & 10107.19 \\
\hline 3065.765 & 10058.28 & 111.3 & 3080.675 & 10107.20 \\
\hline 3065.770 & 10058.30 & 33.5 & 3080.680 & 10107.22 \\
\hline 3065.775 & 10058.32 & 158.8 & 3080.700 & 10107.28 \\
\hline 3065.780 & 10058.33 & 70.7 & 3080.705 & 10107.30 \\
\hline 3065.785 & 10058.35 & 35.1 & 3080.710 & 10107.32 \\
\hline 3065.790 & 10058.37 & 38.4 & 3080.715 & 10107.33 \\
\hline 3065.795 & 10058.38 & 85.8 & 3080.720 & 10107.35 \\
\hline 3065.800 & 10058.40 & 94.0 & 3080.725 & 10107.37 \\
\hline 3065.805 & 10058.42 & 132.0 & 3080.730 & 10107.38 \\
\hline 3065.810 & 10058.43 & 87.1 & 3080.735 & 10107.40 \\
\hline 3065.815 & 10058.45 & 48.1 & 3080.740 & 10107.42 \\
\hline 3065.820 & 10058.46 & 63.5 & 3080.745 & 10107.43 \\
\hline 3065.825 & 10058.48 & 75.8 & 3080.750 & 10107.45 \\
\hline 3065.830 & 10058.50 & 9.1 & 3080.755 & 10107.46 \\
\hline 3065.840 & 10058.53 & 13.9 & 3080.760 & 10107.48 \\
\hline 3065.845 & 10058.55 & 3.3 & 3080.765 & 10107.50 \\
\hline 3065.850 & 10058.56 & 6.7 & з080.775 & 10107.53 \\
\hline 3065.870 & 10058.63 & 7.9 & 3080.780 & 10107.55 \\
\hline 3065.875 & 10058.65 & 10.1 & 3080.785 & 10107.56 \\
\hline 3065.880 & 10058.66 & 24.9 & 3080.790 & 10107.58 \\
\hline 3065.885
3065.890 & \[
\begin{aligned}
& 10058.68 \\
& 10058.60
\end{aligned}
\] & 88.6
84.7 & 3080.795
3080.800 & 10107.60
10107.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 49.6 & 3088.330 & 10132.32 \\
\hline 31.7 & 3088.335 & 10132.33 \\
\hline 41.5 & 3088.340 & 10132.35 \\
\hline 26.8 & 3088.345 & 10132.37 \\
\hline 36.8 & 3088.365 & 10132.43 \\
\hline 46.9 & 3088.370 & 10132.45 \\
\hline 47.7 & 3088.375 & 10132.46 \\
\hline 46.4 & 3088.380 & 10132.48 \\
\hline 42.5 & 3088.385 & 10132.50 \\
\hline 37.0 & 3088.390 & 10132.51 \\
\hline 47.3 & 3088.395 & 10132.53 \\
\hline 50.8 & 3088.400 & 10132.55 \\
\hline 91.7 & 3088.405 & 10132.56 \\
\hline 39.8 & 3088.410 & 10132.58 \\
\hline 45.6 & 3088.415 & 10132.60 \\
\hline 38.7 & 3088.420 & 10132.61 \\
\hline 76.2 & 3088.425 & 10132.63 \\
\hline 63.0 & 3088.430 & 10132.64 \\
\hline 64.3 & 3088.435 & 10132.66 \\
\hline 116.5 & 3088.440 & 10132.68 \\
\hline 102.6 & 3088.445 & 10132.69 \\
\hline 126.2 & 3088.450 & 10132.71 \\
\hline 141.6 & 3088.455 & 10132.73 \\
\hline 126.5 & 3088.460 & 10132.74 \\
\hline 91.6 & 3088.465 & 10132.76 \\
\hline 103.9 & 3088.470 & 10132.78 \\
\hline 101.7 & 3088.475 & 10132.79 \\
\hline 117.1 & 3088.480 & 10132.81 \\
\hline 92.5 & 3088.485 & 10132.83 \\
\hline 70.3 & 3088.490 & 10132.84 \\
\hline 125.4 & 3088.495 & 10132.86 \\
\hline 76.6 & 3088.560 & 10133.07 \\
\hline 104.8 & 3088.565 & 10133.09 \\
\hline 123.5 & 3088.570 & 10133.10 \\
\hline 60.6 & 3088.575 & 10133.12 \\
\hline 103.9 & 3088.580 & 10133.14 \\
\hline 86.7 & 3088.585 & 10133.15 \\
\hline 84.9 & 3088.590 & 10133.17 \\
\hline 161.6 & 3088.595 & 10133.19 \\
\hline 124.3 & 3088.600 & 10133.20 \\
\hline 64.0 & 3088.605 & 10133.22 \\
\hline 55.3 & 3088.610 & 10133.24 \\
\hline 72.3 & 3088.615 & 10133.25 \\
\hline 97.2 & 3088.620 & 10133.27 \\
\hline 26.2 & 3088.625 & 10133.28 \\
\hline 71.8 & 3088.630 & 10133.30 \\
\hline 104.0 & 3088.635 & 10133.32 \\
\hline 113.7 & 3088.640 & 10133.33 \\
\hline 86.9 & 3088.645 & 10133.35 \\
\hline 100.5 & 3088.650 & 10133.37 \\
\hline 60.5 & 3088.655 & 10133.38 \\
\hline 77.5 & 3088.660 & 10133.40 \\
\hline 105.1 & 3088.665 & 10133.42 \\
\hline 45.2 & 3088.670 & 10133.43 \\
\hline 92.4 & 3088.675 & 10133.45 \\
\hline 116.0 & 3088.680 & 10133.46 \\
\hline 83.6 & 3088.685 & 10133.48 \\
\hline 86.3 & 3088.690 & 10133.50 \\
\hline 102.0 & 3088.695 & 10133.51 \\
\hline 77.5 & 3088.700 & 10133.53 \\
\hline 46.7 & 3088.705 & 10133.55 \\
\hline 68.9 & 3088.710 & 10133.56 \\
\hline 67.4 & 3088.715 & 10133.58 \\
\hline 80.6 & 3088.720 & 10133.60 \\
\hline 69.3 & 3088.725 & 10133.61 \\
\hline 78.6 & 3088.730 & 10133.63 \\
\hline 43.2 & 3088.735 & 10133.65 \\
\hline 105.5 & 3088.740 & 10133.66 \\
\hline 84.5 & 3088.745 & 10133.68 \\
\hline 11.3 & 3088.750 & 10133.60 \\
\hline 28.5 & 3088.755 & 10133.71 \\
\hline 15.7 & 3088.785 & 10133.81 \\
\hline 78.1 & 3088.790 & 10133.83 \\
\hline 59.4 & 3088.795 & 10133.84 \\
\hline 72.3 & 3088.800 & 10133.86 \\
\hline 36.0 & 3088.805 & 10133.87 \\
\hline 30.3 & 3088.810 & 10133.89 \\
\hline 21.1 & 3088.815 & 10133.91 \\
\hline 31.9 & 3088.820 & 10133.92 \\
\hline 31.4 & 3088.825 & 10133.94 \\
\hline 23.7 & 3088.830 & 10133.96 \\
\hline 23.1 & 3088.835 & 10133.97 \\
\hline 16.8 & 3088.840 & 10133.98 \\
\hline 31.7 & 3088.845 & 10134.01 \\
\hline 42.6 & 3088.850 & 10134.02 \\
\hline 15.7 & 3088.855 & 10134.04 \\
\hline 24.4 & 3088.860 & 10134.06 \\
\hline 20.8 & 3088.865 & 10134.07 \\
\hline 16.4 & 3088.870 & 10134.09 \\
\hline 16.4 & 3088.875 & 10134.10 \\
\hline 19.4 & 3088.880 & 10134.12 \\
\hline 24.4 & 3088.885 & 10134.14 \\
\hline 33.2 & 3088.800 & 10134.15 \\
\hline 42.0 & 3088.895 & 10134.17 \\
\hline 56.5 & 3088.915 & 10134.24 \\
\hline 41.5 & 3088.920 & 10134.25 \\
\hline 39.7 & 3088.925 & 10134.27 \\
\hline 34.3 & 3088.930 & 10134.29 \\
\hline 14.2 & 3088.935 & 10134.30 \\
\hline 20.0 & 3088.940 & 10134.32 \\
\hline 38.8 & 3088.945 & 10134.33 \\
\hline 14.2 & 3088.950
3088.960 & 10134.35
10134.38 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 3097.100 & 10161.09 \\
\hline 3097.125 & 10161.17 \\
\hline 3097.150 & 10161.25 \\
\hline 3087.170 & 10161.32 \\
\hline 3097.210 & 10161.45 \\
\hline 3097.245 & 10161.57 \\
\hline 3097.250 & 10161.58 \\
\hline 3097.275 & 10161.66 \\
\hline 3097.360 & 10161.94 \\
\hline 3097.450 & 10162.24 \\
\hline 3097.460 & 10162.27 \\
\hline 3097.480 & 10162.34 \\
\hline 3097.505 & 10162.42 \\
\hline 3097.510 & 10162.43 \\
\hline 3097.515 & 10162.45 \\
\hline 3097.520 & 10162.47 \\
\hline 3097.525 & 10162.48 \\
\hline 3097.530 & 10162.50 \\
\hline 3097.535 & 10162.52 \\
\hline 3097.540 & 10162.53 \\
\hline 3097.545 & 10162.55 \\
\hline 3097.550 & 10162.57 \\
\hline 3097.555 & 10162.58 \\
\hline 3097.565 & 10162.62 \\
\hline 3097.585 & 10162.68 \\
\hline 3097.590 & 10162.70 \\
\hline 3097.595 & 10162.71 \\
\hline 3097.600 & 10162.73 \\
\hline 3097.605 & 10162.75 \\
\hline 3097.610 & 10162.76 \\
\hline 3097.615 & 10162.78 \\
\hline 3097.620 & 10162.80 \\
\hline 3097.625 & 10162.81 \\
\hline 3097.645 & 10162.88 \\
\hline 3097.650 & 10162.89 \\
\hline 3097.655 & 10162.91 \\
\hline 3097.660 & 10162.93 \\
\hline 3099.530 & 10169.06 \\
\hline 3099.535 & 10169.08 \\
\hline 3099.540 & 10169.09 \\
\hline 3099.545 & 10169.11 \\
\hline 3099.555 & 10169.14 \\
\hline 3099.570 & 10169.19 \\
\hline 3099.585 & 10169.24 \\
\hline 3099.610 & 10169.32 \\
\hline 3099.615 & 10169.34 \\
\hline 3099.620 & 10169.36 \\
\hline 3099.625 & 10169.37 \\
\hline 3099.630 & 10169.30 \\
\hline 3099.635 & 10169.41 \\
\hline 3099.640 & 10189.42 \\
\hline 3099.705 & 10169.64 \\
\hline 3099.715 & 10169.67 \\
\hline 3099.720 & 10169.69 \\
\hline 3099.725 & 10169.70 \\
\hline 3099.730 & 10169.72 \\
\hline 3099.735 & 10169.73 \\
\hline 3099.740 & 10169.75 \\
\hline 3099.745 & 10169.77 \\
\hline 3099.750 & 10169.78 \\
\hline 3099.755 & 10169.80 \\
\hline 3098.780 & 10169.88 \\
\hline 3099.815 & 10170.00 \\
\hline 3099.825 & 10170.03 \\
\hline 3099.875 & 10170.10 \\
\hline 3099.880 & 10170.21 \\
\hline 3099.895 & 10170.26 \\
\hline 3099.910 & 10170.31 \\
\hline 3099.920 & 10170.34 \\
\hline 3099.930 & 10170.37 \\
\hline 3099.940 & 10170.41 \\
\hline 3099.980 & 10170.54 \\
\hline 3099.995 & 10170.50 \\
\hline 3100.000 & 10170.60 \\
\hline 3100.005 & 10170.62 \\
\hline 3100.020 & 10170.67 \\
\hline 3100.025 & 10170.60 \\
\hline 3100.050 & 10170.77 \\
\hline 3100.055 & 10170.78 \\
\hline 3100.060 & 10170 80 \\
\hline 3100.065 & 10170.82 \\
\hline 3100.070 & 10170.83 \\
\hline 3100.075 & 10170.85 \\
\hline 3100.080 & 10170.87 \\
\hline 3100.085 & 10170.88 \\
\hline 3100.090 & 10170.90 \\
\hline 3100.095 & 10170.92 \\
\hline 3100.100 & 10170.93 \\
\hline 3100.105 & 10170.95 \\
\hline 3100.120 & 10171.00 \\
\hline 3100.125 & 10171.01 \\
\hline 3100.135 & 10171.05 \\
\hline 3100.140 & 10171.06 \\
\hline 3100.145 & 10171.08 \\
\hline 3100.160 & 10171.13 \\
\hline 3100.235 & 10171.37 \\
\hline 3100.240 & 10171.39 \\
\hline 3100.270 & 10171.49 \\
\hline 3100.280 & 10171.52 \\
\hline 3100.285 & 10171.54 \\
\hline 3100.290 & 10171.56 \\
\hline 3100.295 & 10171.57 \\
\hline
\end{tabular}

\footnotetext{

}
\begin{tabular}{|c|c|c|c|c|}
\hline 3065.895 & 10058.71 & 118.5 & 3080.805 & 10107.63 \\
\hline 3065.900 & 10058.73 & 111.4 & 3080.810 & 10107.64 \\
\hline 3065.905 & 10058.74 & 88.2 & 3080.815 & 10107.66 \\
\hline 3065.910 & 10058.76 & 233.3 & 3080.835 & 10107.73 \\
\hline 3065.915 & 10058.78 & 170.6 & 3080.840 & 10107.74 \\
\hline 3065.920 & 10058.79 & 182.8 & 3080.845 & 10107.76 \\
\hline 3065.925 & 10058.81 & 95.0 & 3080.850 & 10107.78 \\
\hline 3065.930 & 10058.83 & 148.6 & 3080.855 & 10107.79 \\
\hline 3065.935 & 10058.84 & 39.3 & 3080.860 & 10107.81 \\
\hline 3065.940 & 10058.86 & 77.0 & 3080.865 & 10107.83 \\
\hline 3065.945 & 10058.87 & 72.1 & 3080.870 & 10107.84 \\
\hline 3065.950 & 10058.89 & 25.1 & 3080.875 & 10107.86 \\
\hline 3065.955 & 10058.91 & 40.2 & 3080.880 & 1010787 \\
\hline 3065.960 & 10058.92 & 75.4 & 3080.885 & 10107.89 \\
\hline 3065.965 & 10058.94 & 33.0 & 3080.890 & 10107.91 \\
\hline 3065.970 & 10058.96 & 81.3 & 3080.895 & 10107.92 \\
\hline 3065.975 & 10058.97 & 54.8 & 3080.900 & 10107.94 \\
\hline 3065.980 & 10058.99 & 28.0 & 3080.905 & 10107.96 \\
\hline 3065.985 & 10059.01 & 31.8 & 3080.910 & 10107.97 \\
\hline 3065.990 & 10059.02 & 37.6 & 3080.915 & 10107.99 \\
\hline 3065.995 & 10059.04 & 10.2 & 3080.920 & 10108.01 \\
\hline 3066.015 & 10059.10 & 73.8 & 3080.925 & 10108.02 \\
\hline 3066.020 & 10059.12 & 34.9 & 3080.930 & 10108.04 \\
\hline 3066.025 & 10059.14 & 71.2 & 3080.935 & 10108.05 \\
\hline 3066.030 & 10059.15 & 79.0 & 3080.955 & 10108. 12 \\
\hline 3066.035 & 10059.17 & 84.2 & 3080.960 & 10108.14 \\
\hline 3066.040 & 10059.19 & 91.1 & 3080.965 & 10108.15 \\
\hline 3066.045 & 10059.20 & 67.9 & 3080.970 & 10108.17 \\
\hline 3066.050 & 10059.22 & 171.0 & 3080.975 & 10108.19 \\
\hline 3066.055 & 10059.24 & 33.6 & 3080.980 & 10108.20 \\
\hline 3066.060 & 10059.25 & 78.1 & 3080.985 & 10108.22 \\
\hline 3066.065 & 10059.27 & 77.0 & 3080.990 & 10108.24 \\
\hline 3066.070 & 10059.29 & 99.9 & 3080.995 & 10108.25 \\
\hline 3066.075 & 10059.30 & 81.9 & 3081.000 & 10108.27 \\
\hline 3066.080 & 10059.32 & 93.5 & 3081.005 & 10108.28 \\
\hline 3066.085 & 10059.33 & 60.2 & 3081.010 & 10108.30 \\
\hline 3066.090 & 10059.35 & 116.4 & 3081.015 & 10108.32 \\
\hline 3066.095 & 10059.37 & 43.1 & 3081.020 & 10108.33 \\
\hline 3066.100 & 10059.38 & 42.1 & 3081.025 & 10108.35 \\
\hline 3066.105 & 10059.40 & 54.8 & 3081.030 & 10108.37 \\
\hline 3066.110 & 10059.42 & 39.4 & 3081.035 & 10108.38 \\
\hline 3066.115 & 10059.43 & 43.9 & 3081.040 & 10108.40 \\
\hline 3066.120 & 10059.45 & 44.2 & 3081.045 & 10108.42 \\
\hline 3066.125 & 10059.47 & 47.1 & 3081.050 & 10108.43 \\
\hline 3066.130 & 10059.48 & 73.2 & 3081.055 & 10108.45 \\
\hline 3066.135 & 10059.50 & 81.3 & 3081.060 & 10108.46 \\
\hline 3066.140 & 10059.51 & 38.8 & 3081.065 & 10108.48 \\
\hline 3066.145 & 10059.53 & 68.4 & 3081.070 & 10108.50 \\
\hline 3066.150 & 10059.55 & 6.8 & 3081.075 & 10108.51 \\
\hline 3066.155 & 10059.56 & 25.5 & 3081.080 & 10108.53 \\
\hline 3066.180 & 10059.65 & 98.7 & 3081.085 & 10108.55 \\
\hline 3066.185 & 10059.66 & 98.0 & 3081.090 & 10108.56 \\
\hline 3066.190 & 10059.68 & 69.4 & 3081.095 & 10108.58 \\
\hline 3066.195 & 10059.70 & 68.2 & 3081.100 & 10108.60 \\
\hline 3066.200 & 10059.71 & 81.8 & 3081.105 & 10108.61 \\
\hline 3066.205 & 10059.73 & 69.8 & 3081.110 & 10108.63 \\
\hline 3066.315 & 10060.09 & 2.4 & 3081.115 & 10108.65 \\
\hline 3066.320 & 10060.11 & 3.1 & 3081.120 & 10108.66 \\
\hline 3066.325 & 10060.12 & 3.5 & 3081.125 & 10108.68 \\
\hline 3066.330 & 10060.14 & 4.2 & 3081.130 & 10108.69 \\
\hline 3066.335 & 10060.15 & 4.4 & 3081.135 & 10108.71 \\
\hline 3066.340 & 10060.17 & 4.6 & 3081.140 & 10108.73 \\
\hline 3066.345 & 10060.19 & 4.7 & 3081.145 & 10108.74 \\
\hline 3066.365 & 10060.25 & 81.2 & 3081.150 & 10108.76 \\
\hline 3066.370 & 10060.27 & 127.3 & 3081.155 & 10108.78 \\
\hline 3066.375 & 10060.29 & 108.1 & 3081.160 & 10108.79 \\
\hline 3066.380 & 10060.30 & 45.7 & 3081.180 & 10108.86 \\
\hline 3066.385 & 10060.32 & 138.9 & 3081.185 & 10108.87 \\
\hline 3066.390 & 10060.33 & 140.8 & 3081.190 & 10108.89 \\
\hline 3066.395 & 10060.35 & 67.5 & 3081.195 & 10108.91 \\
\hline 3066.400 & 10060.37 & 77.9 & 3081.200 & 10108.92 \\
\hline 3066.405 & 10060.38 & 142.2 & 3081.245 & 10109.07 \\
\hline 3066.410 & 10060.40 & 84.2 & 3081.250 & 10109.09 \\
\hline 3066.415 & 10060.42 & 23 & 3081.255 & 10109.10 \\
\hline 3066.420 & 10060.43 & 60.8 & 3081.260 & 10109.12 \\
\hline 3066.425 & 10060.45 & 62.3 & 3081.265 & 10109.14 \\
\hline 3066.430 & 10060.47 & 102.1 & 3081.270 & 10109.15 \\
\hline 3066.435 & 10060.48 & 104.5 & 3081.275 & 10109.17 \\
\hline 3066.440 & 10060.50 & 121.1 & 3081.295 & 10109.24 \\
\hline 3066.445 & 10060.52 & 54.3 & 3081.300 & 10109.25 \\
\hline 3066.450 & 10060.53 & 132.5 & 3081.305 & 10109.27 \\
\hline 3066.455 & 10060.55 & 184.7 & 3081.310 & 10109.29 \\
\hline 3066.460 & 10060.56 & 117.8 & 3081.315 & 10109.30 \\
\hline 3066465 & 10060.58 & 134.8 & 3081.320 & 10109.32 \\
\hline 3066.470 & 10060.60 & 110.7 & 3081.325 & 10109.33 \\
\hline 3066.475 & 10060.61 & 132.1 & 3081.330 & 10109.35 \\
\hline 3066.480 & 10060.63 & 189.1 & 3081.335 & 10109.37 \\
\hline 3066.485 & 10060.65 & 137 & 3081.340 & 10109.38 \\
\hline 3066.500 & 10060.70 & 37.4 & 3081.345 & 10109.40 \\
\hline 3066.505 & 10060.71 & 24.6 & 3081.350 & 10109.42 \\
\hline 3066.510 & 10060.73 & 26.4 & 3081.355 & 10109.43 \\
\hline 3066.515 & 10060.75 & 30.5 & 3081.360 & 10109.45 \\
\hline 3066.520 & 10060.76 & 74.8 & 3081.365 & 10109.47 \\
\hline 3066.525 & 10060.78 & 59.8 & 3081.370 & 10109.48 \\
\hline 3066.530 & 10060.79 & 103.6 & 3081.375 & 10109.50 \\
\hline 3066.535 & 10060.81 & 128.1 & 3081.380 & 10109.51 \\
\hline 3066.540 & 10060.83 & 104.1 & 3081.385 & 10109.53 \\
\hline 3066.545 & 10060.84 & 155.4 & 3081.390 & 10109.55 \\
\hline 3066.550 & 10060.86 & 126.2 & 3081.395 & 10109.56 \\
\hline 3066.555 & 10060.88 & 142.1 & 3081.400 & 10109.58 \\
\hline 3066.560 & 10060.89 & 212.6 & 3081.405 & 10109.60 \\
\hline 3066.565 & 10060.91 & 135.3 & 3081.410 & 10100.61 \\
\hline 3066.570 & 10060.93 & 121.7 & 3081.415 & 10109.63 \\
\hline
\end{tabular}
\begin{tabular}{r|rr}
9.6 & 3088.965 & 10134.40 \\
13.5 & 3088.970 & 10134.42
\end{tabular}
\(\square\)
\(\square\)


\[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30 \\
& 30
\end{aligned}
\] \(3088.995 \quad 10134.50\) \(\begin{array}{ll}3089.010 & 10134.55 \\ 3089.015 & 10134.56\end{array}\) \(3089.020 \quad 10134.58\) \(\begin{array}{ll}3089.025 & 10134.60 \\ 3089.030 & 10134.61\end{array}\) \(\begin{array}{ll}3089.035 & 10134.63 \\ 3089.040 & 10134.65\end{array}\) \(\begin{array}{ll}3089.045 & 10134.66 \\ 3089.050 & 10134.68\end{array}\) \(\begin{array}{ll}3089.050 & 10134.68 \\ 3089.055 & 10134.70 \\ 3089.060 & 10134.71\end{array}\) \(\begin{array}{ll}3089.060 & 10134.71 \\ 3089.065 & 10134.73\end{array}\) \(\begin{array}{ll}3089.070 & 10134.74 \\ 3089.075 & 10134.76\end{array}\) \(\begin{array}{ll}3089.080 & 10134.78 \\ 3089.085 & 10134.79\end{array}\) \(\begin{array}{ll}3089.090 & 10134.81 \\ 3089.095 & 10134.83\end{array}\) \(\begin{array}{ll}3089.005 & 10134.83 \\ 3089.100 & 10134.84 \\ 3089.105 & 10134.86\end{array}\) \(\begin{array}{ll}3089.105 & 10134.86 \\ 3089.110 & 10134.88 \\ 3089.115 & 10134.89\end{array}\) \(\begin{array}{ll}3089.115 & 10134.89 \\ 3089.120 & 10134.91\end{array}\) \(\begin{array}{ll}3089.125 & 10134.92 \\ 3089.130 & 10134.94\end{array}\) \(\begin{array}{ll}3089.135 & 10134.96\end{array}\) \(\begin{array}{ll}3089.140 & 10134.97 \\ 3089.145 & 10134.99\end{array}\) \(3089.150 \quad 10135.01\) \(\begin{array}{ll}3089.155 & 10135.02 \\ 3089.160 & 10135.04\end{array}\) \(\begin{array}{ll}3089.165 & 10135.06 \\ 3089.170 & 10135.07\end{array}\) \(\begin{array}{ll}3089.170 & 10135.07 \\ 3089.190 & 10135.14\end{array}\) \(\begin{array}{ll}3089.190 & 10135.14 \\ 3089.195 & 10135.15\end{array}\) \(\begin{array}{ll}3089.200 & 10135.17 \\ 3089.205 & 10135.19\end{array}\) \(\begin{array}{ll}3089.205 & 10135.19 \\ 3089.210 & 10135.20\end{array}\) \(3089.215 \quad 10135.22\) \(\begin{array}{ll}3089.220 & 10135.24 \\ 3089.225 & 10135.25\end{array}\) \(3089.230 \quad 10135.27\) \(3089.235 \quad 10135.29\) \(\begin{array}{ll}3089.240 & 10135.30 \\ 3089.245 & 10135.32\end{array}\) \(\begin{array}{ll}3089.245 & 10135.32 \\ 3089.250 & 10135.33\end{array}\) \(\begin{array}{ll}3089.250 & 10135.33 \\ 3089.255 & 10135.35\end{array}\) \(\begin{array}{ll}3089.260 & 10135.37 \\ 3089.265 & 10135.38\end{array}\) \(\begin{array}{ll}3089.265 & 10135.38 \\ 3089.270 & 10135.40\end{array}\) \(\begin{array}{ll}3089.270 & 10135.40 \\ 3089.275 & 10135.42\end{array}\) \(\begin{array}{ll}3089.275 & 10135.42 \\ 3089.280 & 10135.43\end{array}\) \(3089.285 \quad 10135.45\) \(\begin{array}{ll}3089.290 & 10135.47 \\ 3089.295 & 10135.48\end{array}\) \(\begin{array}{ll}3089.295 & 10135.48 \\ 3089.300 & 10135.50\end{array}\) \(\begin{array}{ll}3089.300 & 10135.50 \\ 3089.305 & 10135.52\end{array}\) \(\begin{array}{ll}3089.305 & 10135.52 \\ 3089.310 & 10135.53\end{array}\) \(3089.315 \quad 10135.55\) \(\begin{array}{ll}3089.320 & 10135.56 \\ 3089.325 & 10135.58\end{array}\) \(3089.330 \quad 10135.60\) \(3089.335 \quad 10135.61\) \(\begin{array}{ll}3089.340 & 10135.63 \\ 3089.345 & 10135.65\end{array}\) \(\begin{array}{ll}3089.345 & 10135.65 \\ 3089.350 & 10135.66\end{array}\) \(\begin{array}{ll}3089.355 & 10135.68 \\ 3089.360 & 10135.70\end{array}\) \(\begin{array}{ll}3089.365 & 10135.71 \\ 3089.370 & 10135.73\end{array}\) \(\begin{array}{ll}3089.370 & 10135.73 \\ 3089.395 & 10135.81\end{array}\) \(\begin{array}{ll}3089.395 & 10135.81 \\ 3089.400 & 10135.83\end{array}\) \(\begin{array}{ll}3089.405 & 10135.84 \\ 3089.410 & 10135.86\end{array}\) \(\begin{array}{ll}3089.410 & 10135.86 \\ 3089.415 & 10135.88\end{array}\) \(\begin{array}{ll}3089.415 & 10135.88 \\ 3089.420 & 10135.89\end{array}\) \(3089.425 \quad 10135.91\) \(\begin{array}{ll}3089.430 & 10135.93 \\ 3080.435 & 10135.94\end{array}\) \(3089.440 \quad 10135.96\) \(\begin{array}{ll}3089.475 & 10136.07 \\ 3089.480 & 10136.09\end{array}\) \(\begin{array}{ll}3088.505 & 10136.17\end{array}\) \(\begin{array}{ll}3089.510 & 10136.19 \\ 3089.515 & 10136.20\end{array}\) \(\begin{array}{ll}3089.515 & 10136.20 \\ 3089.520 & 10136.22\end{array}\) \(\begin{array}{ll}3089.520 & 10136.22 \\ 3089.525 & 10136.24\end{array}\) \(\begin{array}{ll}3089.525 & 10136.24 \\ 3089.530 & 10136.25\end{array}\) \(3089.535 \quad 10136.27\) \(\begin{array}{ll}3089.540 & 10136.29 \\ 3089.545 & 10136.30\end{array}\) \(\begin{array}{ll}3089.545 & 10136.30 \\ 3089.550 & 10136.32\end{array}\) \(\begin{array}{ll}3089.555 & 10136.34 \\ 3089.560 & 10136.35\end{array}\) \(\begin{array}{ll}3089.560 & 10136.35 \\ 3089.565 & 10136.37\end{array}\) \(\begin{array}{ll}3089.570 & 10136.38\end{array}\)

\(3080.805 \quad 10107.63\)
118.5
 233.3
170.6
182.8 ,

\begin{tabular}{|c|c|}
\hline 3100.305 & 10171.60 \\
\hline 3100.310 & 10171.62 \\
\hline 3100.315 & 10171.64 \\
\hline 3100.320 & 10171.65 \\
\hline 3100.325 & 10171.67 \\
\hline 3100.330 & 10171.69 \\
\hline 3100.335 & 10171.70 \\
\hline 3100.340 & 10171.72 \\
\hline 3100.345 & 10171.74 \\
\hline 3100.350 & 10171.75 \\
\hline 3100.355 & 10171.77 \\
\hline 3100.360 & 10171.79 \\
\hline 3100.365 & 10171.80 \\
\hline 3100.370 & 10171.82 \\
\hline 3100.445 & 10172.06 \\
\hline 3100.450 & 10172.08 \\
\hline 3100.455 & 10172.10 \\
\hline 3100.460 & 10172.11 \\
\hline 3100.465 & 10172.13 \\
\hline 3100.475 & 10172.16 \\
\hline 3100.485 & 10172.20 \\
\hline 3100.490 & 10172.21 \\
\hline 3100.495 & 10172.23 \\
\hline 3100.500 & 10172.24 \\
\hline 3100.515 & 10172.29 \\
\hline 3100.520 & 10172.31 \\
\hline 3100.525 & 10172.33 \\
\hline 3100.535 & 10172.36 \\
\hline 3100.560 & 10172.44 \\
\hline 3100.565 & 10172.46 \\
\hline 3100.570 & 10172.47 \\
\hline 3100.575 & 10172.49 \\
\hline 3100.580 & 10172.51 \\
\hline 3100.585 & 10172.52 \\
\hline 3100.590 & 10172.54 \\
\hline 3100.595 & 10172.56 \\
\hline 3100.600 & 10172.57 \\
\hline 3100.605 & 10172.59 \\
\hline 3100.610 & 10172.61 \\
\hline 3100.615 & 10172.62 \\
\hline 3100.620 & 10172.64 \\
\hline 3100.625 & 10172.65 \\
\hline 3100.630 & 10172.67 \\
\hline 3100.635 & 10172.69 \\
\hline 3100.640 & 10172.70 \\
\hline 3100.645 & 10172.72 \\
\hline 3100.650 & 10172.74 \\
\hline 3100.655 & 10172.75 \\
\hline 3100.680 & 10172.83 \\
\hline 3100.685 & 10172.85 \\
\hline 3100.690 & 10172.87 \\
\hline 3100.695 & 10172.88 \\
\hline 3100.700 & 10172.90 \\
\hline 3100.705 & 10172.92 \\
\hline 3100.710 & 10172.93 \\
\hline 3100.715 & 10172.95 \\
\hline 3100.720 & 10172.97 \\
\hline 3100.725 & 10172.98 \\
\hline 3100.730 & 10173.00 \\
\hline 3100.735 & 10173.02 \\
\hline 3100.740 & 10173.03 \\
\hline 3100.745 & 10173.05 \\
\hline 3100.750 & 10173.06 \\
\hline 3100.755 & 10173.08 \\
\hline 3100.760 & 10173.10 \\
\hline 3100.765 & 10173.11 \\
\hline 3100.985 & 10173.84 \\
\hline 3100.990 & 10173.85 \\
\hline 3100.995 & 10173.87 \\
\hline 3101.000 & 10173.88 \\
\hline 3101.005 & 10173.90 \\
\hline 3101.015 & 10173.93 \\
\hline 3101.020 & 10173.95 \\
\hline 3101.025 & 10173.97 \\
\hline 3101.030 & 10173.98 \\
\hline 3101.035 & 10174.00 \\
\hline 3101040 & 10174.02 \\
\hline 3101.045 & 10174.03 \\
\hline 3101.050 & 10174.05 \\
\hline 3101.055 & 10174.07 \\
\hline 3101.060 & 10174.08 \\
\hline 01.065 & 10174.10 \\
\hline
\end{tabular}

\footnotetext{

}

\section*{APPENDIX X: Probe permeameter data sets}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 3066.575 & 10060.94 & 132 & 3081.420 & 10109.65 & 13.7 & 3089.575 & 10136.40 & 30.7 \\
\hline 3066.580 & 10060.96 & 110.7 & 3081.425 & 10109.66 & 29.6 & 3089.580 & 10136.42 & 40.0 \\
\hline 3066.585 & 10060.97 & 162.5 & 3081.430 & 10109.68 & 33.6 & 3089.585 & 10136.43 & 62.0 \\
\hline 3066.590 & 10060.99 & 98.8 & 3081.435 & 10109.70 & 24.7 & 3089.590 & 10136.45 & 67.9 \\
\hline 3066.595 & 10061.01 & 126.1 & 3081.440 & 10109.71 & 45.1 & 3089.595 & 10136.47 & 39.4 \\
\hline 3066.600 & 10061.02 & 102.9 & 3081.445 & 10109.73 & 12.7 & 3089.600 & 10136.48 & 42.2 \\
\hline 3066.605 & 10061.04 & 109.3 & 3081.450 & 10109.74 & 23.4 & 3089.605 & 10136.50 & 37.0 \\
\hline 3066.610 & 10061.06 & 21.4 & 3081.455 & 10109.76 & 34.1 & 3089.610 & 10136.52 & 42.2 \\
\hline 3066.615 & 10061.07 & 60.4 & 3081.460 & 10109.78 & 39.4 & 3089.615 & 10136.53 & 28.3 \\
\hline 3066.620 & 10061.09 & 39.1 & 3081.465 & 10109.79 & 32.7 & 3089.620 & 10136.55 & 42.3 \\
\hline 3066.625 & 10061.11 & 41.1 & 3081.485 & 10109.86 & 28.9 & 3089.625 & 10136.57 & 32.9 \\
\hline 3066.630 & 10061.12 & 33.7 & 3081.490 & 10109.88 & 37.9 & 3089.630 & 10136.58 & 69.5 \\
\hline 3066.635 & 10061.14 & 33.7 & 3081.495 & 10109.89 & 18.0 & 3089.635 & 10136.60 & 36.8 \\
\hline 3066.640 & 10061.16 & 61.2 & 3081.500 & 10109.91 & 29.2 & 3089.640 & 10136.61 & 64.0 \\
\hline 3066.645 & 10061.17 & 55 & 3081.505 & 10109.92 & 46.0 & 3089.665 & 10136.70 & 42.4 \\
\hline 3066.650 & 10061.19 & 111.6 & 3081.510 & 10109.94 & 12.0 & 3089.670 & 10136.71 & 19.3 \\
\hline 3066.655 & 10061.20 & 79.8 & 3081.515 & 10109.96 & 25.6 & 3089.675 & 10136.73 & 6.9 \\
\hline 3066.660 & 10061.22 & 76.2 & 3081.520 & 10109.97 & 31.2 & 3089.680 & 10136.75 & 21.9 \\
\hline 3066.680 & 10061.29 & 106.4 & 3081.525 & 10109.98 & 19.5 & 3089.685 & 10136.76 & 24.8 \\
\hline 3066.685 & 10061.30 & 150 & 3081.530 & 10110.01 & 43.0 & 3089.690 & 10136.78 & 13.4 \\
\hline 3066.690 & 10061.32 & 248.6 & 3081.535 & 10110.02 & 36.6 & 3089.695 & 10136.79 & 45.2 \\
\hline 3066.695 & 10061.34 & 213.8 & 3081.540 & 10110.04 & 26.9 & 3089.700 & 10136.81 & 18.1 \\
\hline 3066.700 & 10061.35 & 132.5 & 3081.545 & 10110.06 & 25.6 & 3089.705 & 10136.83 & 30.1 \\
\hline 3066.705 & 10061.37 & 224.3 & 3081.575 & 10110.15 & 20.2 & 3089.710 & 10136.84 & 43.1 \\
\hline 3066.710 & 10061.38 & 236.8 & 3081.580 & 10110.17 & 13.9 & 3089.715 & 10136.86 & 26.0 \\
\hline 3066.715 & 10061.40 & 140.2 & 3081.585 & 10110.19 & 11.3 & 3089.720 & 10136.88 & 16.3 \\
\hline 3066.720 & 10061.42 & 180 & 3081.590 & 10110.20 & 13.4 & 3089.725 & 10136.89 & 38.4 \\
\hline 3066.725 & 10061.43 & 216 & 3081.595 & 10110.22 & 17.4 & 3089.730 & 10136.91 & 24.7 \\
\hline 3066.730 & 10061.45 & 284 & 3081.600 & 10110.24 & 9.9 & 3089.735 & 10136.93 & 29.2 \\
\hline 3066.735 & 10061.47 & 265.7 & 3081.605 & 10110.25 & 9.9 & 3089.740 & 10136.94 & 46.2 \\
\hline 3066.740 & 10061.48 & 300.5 & 3081.610 & 10110.27 & 9.5 & 3089.745 & 10136.96 & 95.0 \\
\hline 3066.745 & 10061.50 & 227.5 & 3081.615 & 10110.29 & 7.0 & 3089.750 & 10136.98 & 21.9 \\
\hline 3066.750 & 10061.52 & 262.9 & 3081.620 & 10110.30 & 7.0 & 3089.770 & 10137.04 & 36.4 \\
\hline 3066.755 & 10061.53 & 302.1 & 3081.625 & 10110.32 & 8.1 & 3089.775 & 10137.06 & 35.8 \\
\hline 3066.760 & 10061.55 & 201.6 & 3081.630 & 10110.33 & 5.6 & 3089.780 & 10137.07 & 25.6 \\
\hline 3066.765 & 10061.57 & 329.9 & 3081.635 & 10110.35 & 4.7 & 3089.785 & 10137.09 & 40.5 \\
\hline 3066.770 & 10061.58 & 314.3 & 3081.640 & 10110.37 & 4.4 & 3089.790 & 10137.11 & 25.5 \\
\hline 3066.775 & 10061.60 & 249 & 3081.645 & 10110.38 & 4.1 & 3089.795 & 10137.12 & 34.6 \\
\hline 3066.780 & 10061.61 & 204.6 & 3081.650 & 10110.40 & 3.2 & 3089.800 & 10137.14 & 44.7 \\
\hline 3066.785 & 10061.63 & 134.7 & 3081.655 & 10110.42 & 2.2 & 3089.805 & 10137.16 & 28.7 \\
\hline 3066.790 & 10061.65 & 165.1 & 3081.670 & 10110.47 & 3.8 & 3089.810 & 10137.17 & 42.6 \\
\hline 3066.795 & 10061.66 & 151.1 & 3081.675 & 10110.48 & 4.0 & 3089.815 & 10137.19 & 32.9 \\
\hline 3066.800 & 10061.68 & 246.3 & 3081.680 & 10110.50 & 4.0 & 3089.820 & 10137.21 & 31.6 \\
\hline 3066.805 & 10061.70 & 316.9 & 3081.690 & 10110.53 & 3.7 & 3089.825 & 10137.22 & 32.3 \\
\hline 3066.810 & 10061.71 & 212.3 & 3081.700 & 10110.56 & 2.1 & 3089.830 & 10137.24 & 28.4 \\
\hline 3066.815 & 10061.73 & 181.4 & 3081.705 & 10110.58 & 2.7 & 3089.835 & 10137.25 & 67.8 \\
\hline 3066.820 & 10061.75 & 282.6 & 3081.710 & 10110.60 & 3.6 & 3089.840 & 10137.27 & 06.0 \\
\hline 3066.825 & 10061.76 & 273.4 & 3081.715 & 10110.61 & 5.6 & 3089.845 & 10137.29 & 67.5 \\
\hline 3066.830 & 10061.78 & 228.1 & 3081.735 & 10110.68 & 6.3 & 3089.850 & 10137.30 & 47.1 \\
\hline 3066.835 & 10061.79 & 340.6 & 3081.740 & 10110.70 & 8.2 & 3089.855 & 1013732 & 67.8 \\
\hline 3066.840 & 10061.81 & 206.3 & 3081.745 & 10110.71 & 11.0 & 3089.860 & 10137.34 & 80.5 \\
\hline 3066.845 & 10061.83 & 360 & 3081.750 & 10110.73 & 9.1 & 3089.865 & 10137.35 & 34.5 \\
\hline 3066.850 & 10061.84 & 178.2 & 3081.765 & 10110.78 & 10.2 & 3089.870 & 10137.37 & 50.7 \\
\hline 3066.860 & 10061.88 & 116.5 & 3081.770 & 10110.79 & 8.1 & 3089.875 & 10137.39 & 78.5 \\
\hline 3066.865 & 10061.89 & 201.1 & 3081.775 & 10110.81 & 13.8 & 3089.880 & 10137.40 & 74.3 \\
\hline 3066.870 & 10061.91 & 173.4 & 3081.780 & 10110.83 & 14.5 & 3089.885 & 10137.42 & 107.5 \\
\hline 3066.875 & 10061.93 & 60.1 & 3081.785 & 10110.84 & 22.3 & 3089.890 & 10137.43 & 66.7 \\
\hline 3066.880 & 10061.94 & 114.3 & 3081.790 & 10110.86 & 13.3 & 3089.895 & 10137.45 & 103.0 \\
\hline 3066.885 & 10061.96 & 253.9 & 3081.795 & 10110.88 & 24.2 & 3089.900 & 10137.47 & 32.2 \\
\hline 3066.890 & 10061.98 & 231.2 & 3081.800 & 10110.89 & 37.3 & 3089.905 & 10137.48 & 60.0 \\
\hline 3066.895 & 10061.99 & 82.2 & 3081.805 & 10110.91 & 43.6 & 3089.910 & 10137.50 & 43.0 \\
\hline 3066.900 & 10062.01 & 262.3 & 3081.810 & 10110.93 & 47.8 & 3089.030 & 10137.57 & 100.6 \\
\hline 3066.905 & 10062.02 & 159.7 & 3081.815 & 10110.94 & 43.7 & 3089.935 & 10137.58 & 68.1 \\
\hline 3066.910 & 10062.04 & 122.8 & 3081.820 & 10110.96 & 27.6 & 3089.940 & 10137.60 & 90.5 \\
\hline 3066.915 & 10062.06 & 91.9 & 3081.825 & 10110.97 & 35.3 & 3089.945 & 10137.62 & 89.5 \\
\hline 3066.920 & 10062.07 & 98.4 & 3081.830 & 10110.99 & 29.7 & 3089.950 & 10137.63 & 80.4 \\
\hline 3066.925 & 10062.09 & 40.9 & 3081.835 & 10111.01 & 35.5 & 3089.955 & 10137.65 & 75.0 \\
\hline 3066.930 & 10062.11 & 160.3 & 3081.840 & 10111.02 & 39.3 & 3089.960 & 10137.66 & 59.2 \\
\hline 3066.945 & 10062.16 & 159.1 & 3081.845 & 10111.04 & 40.7 & 3089.965 & 10137.68 & 95.0 \\
\hline 3066.950 & 10062.17 & 129.4 & 3081.850 & 10111.06 & 37.6 & 3089.970 & 10137.70 & 76.1 \\
\hline 3066.955 & 10062.19 & 162.1 & 3081.855 & 10111.07 & 33.2 & 3089.975 & 10137.71 & 85.5 \\
\hline 3066.960 & 10062.21 & 197.7 &  & 10111.09 & 26.6 & 3089.980
3089 & 10137.73
10137.75 & 70.2
141.3 \\
\hline 3066.965 & 10062.22 & 201 & 3081.865 & 10111.11 & 41.9 & 3089.085 & 10137.75 & 141.3 \\
\hline 3066.970 & 10062.24 & 108.4 & 3081.870 & 10111.12 & 39.8 & 3089.990 & 10137.76 & 75.2 \\
\hline 3066.975 & 10062.25 & 233.9 & 3081.875 & 10111.14 & 16.2 & 3089.995 & 10137.78 & 90.4 \\
\hline 3066.980 & 10062.27 & 125.2 & 3081.880 & 10111.16 & 43.6 & 3090.000 & 10137.80 & 51.9 \\
\hline 3066.985 & 10062.29 & 171.3 & 3081.885 & 10111.17 & 21.9 & 3000.005 & 10137.81 & 52.8
76.6 \\
\hline 3066.990 & 10062.30 & 163.1 & 3081.880 & 10111.19 & 25.5 & & & 76.6
75 \\
\hline 3066.995 & 10062.32 & 122.6 & 3081.895 & 10111.20 & 24.9 & 3090.015 & \begin{tabular}{l}
10137.84 \\
1013786 \\
\hline 1015788
\end{tabular} & 75.5
9.6 \\
\hline 3067.000
3067 & 10062.34
10062.35 & 84.3
146.4 & 3081.900
3081.905 & 10111.22
10111.24 & 66.7
38.2 & 3090.020
3090 & \begin{tabular}{l}
10137.86 \\
10137.88 \\
\\
\hline 1837.8
\end{tabular} & 92.6
105.2 \\
\hline 3067.005
3067.010 & 10062.35
10062.37 & 146.4
95.1 & 3081.905
3081.010 & 10111.24
10111.25 & 38.2
59.1 & 3090.025
3090.030 & 10137.89
1013788 & 159.8
1598 \\
\hline 3067.015 & 10062.39 & 177.7 & 3081.915 & 10111.27 & 44.7 & 3090.050 & 10137.96 & 143.7 \\
\hline 3067.020 & 10062.40 & 132.4 & 3081.950 & 10111.38 & 24.5 & 3090.055 & 10137.98 & 111.3 \\
\hline 3067.025 & 10062.42 & 41.6 & 3081.955 & 10111.40 & 24.5 & 3090.060 & 10137.99 & 128.4 \\
\hline 3067.030 & 10062.43 & 104.4 & 3081.960 & 10111.42 & 23.7 & 3090.065 & & \begin{tabular}{|c}
72.8 \\
128.7
\end{tabular} \\
\hline 3067.035 & 10062.45 & 191.7 & 3081.965 & 10111.43 & 27.2 & 3090.070 & 10138.03 & 128.7 \\
\hline 3067.040 & 10062.47 & 186.5 & 3081.970 & 10111.45 & 25.3 & 3090.075 & 10138.04
10138.06 & 38.6
28 \\
\hline 3067.045 & 10062.48 & 157.8 & 3081.975 & 10111.47 & 23.3 & 3090.080 & 10138.06 & 22.3 \\
\hline 3067.050 & 10062.50 & 163.3 & 3081.980 & 10111.48 & 22.3 & 3090.085 & 10138.07 & 84.5 \\
\hline 3067.055 & 10062.52 & 291.7 & 3081.985 & 10111.50 & 30.7 & 3090.090
3090.095 & & \\
\hline 3067.060 & 10062.53 & 214.8 & 3081.990 & 10111.52 & 22.1 & 3090.095
3090.100 & 10138.11
10138.12 & 53.0
12.2 \\
\hline 3067.065 & 10062.55 & 146.6 & 3081.995 & 10111.53 & 27.9 & 3090.100
3090.105 & 10138.12
10138.14 & \begin{tabular}{l}
12.2 \\
13.3 \\
\hline 1
\end{tabular} \\
\hline 3067.070
3067.075 & 10062.57 & 242 & 3082.000 & 10111.55
10111.57 & 28.3
27.5 & 3090.105
3090.110 & 10138.14
10138.16 & 13.3
38.3 \\
\hline 3067.080 & 10062.58
10062.60 & \begin{tabular}{|r|}
130.9 \\
137 \\
\hline
\end{tabular} & 3082.005
3082.010 & 10111.58 & 27.5
19.2 & 3090.115 & 10138.17 & 36.2 \\
\hline 3067.085 & 10062.62 & 201 & 3082.015 & 10111.60 & 28.1 & 3090.120 & 10138.19 & 49.2 \\
\hline 3067.090 & 10062.63 & 93.9 & 3082.020 & 10111.61 & 29.6 & 3090.125 & 10138.21 & 2.4 \\
\hline 3067.095 & 10062.65 & 150.1 & 3082.025 & 10111.63 & 18.4 & 3090.130 & 10138.22 & 2.2 \\
\hline 3067.100 & 10062.66 & 157.7 & 3082.030 & 10111.65 & 34.1 & \begin{tabular}{l}
3090.135 \\
3090 \\
\hline
\end{tabular} & 10138.24
10138.25 & \\
\hline 3067.105 & 10062.68 & 132.4 & 3082.035 & 10111.66
1011168 & 25.0 & 3090.140
3090 & 10138.25
10138.30 & 3.3
5.3 \\
\hline 3067.110
3067.115 & 10062.70
10062.71 & 67.7
126.4 & 3082.040
3082.045 & 10111.68
10111.70 & 29.1
31.4 & 3090.155
3090.165 & 101388.30
10138.34 & 5.3
3.4 \\
\hline
\end{tabular}

\section*{APPENDIX X: Probe permeameter data sets}

\begin{tabular}{|c|c|c|}
\hline 3067.670 & 10064.53 & 134.8 \\
\hline 3067.675 & 10064.55 & 64.1 \\
\hline 3067.680 & 10064.57 & 51.5 \\
\hline 3067.685 & 10064.58 & 42.0 \\
\hline 3067.690 & 10064.60 & 87.1 \\
\hline 3067.695 & 10064.62 & 114 \\
\hline 3067.700 & 10064.63 & 66. \\
\hline 3067.705 & 10064.65 & 47.4 \\
\hline 3067.710 & 10064.67 & 90.6 \\
\hline 3067.715 & 10064.68 & 134.8 \\
\hline 3067.720 & 10064.70 & 50.3 \\
\hline 3067.725 & 10064.71 & 52.1 \\
\hline 3067.730 & 10064.73 & 123.9 \\
\hline 3067.735 & 10064.75 & 203.3 \\
\hline 3067.740 & 10064.76 & 124.6 \\
\hline 3067.745 & 10064.78 & 132.7 \\
\hline 3067.750 & 10064.80 & 127.8 \\
\hline 3067.755 & 10064.81 & 117.9 \\
\hline 3067.760 & 10064.83 & 71.9 \\
\hline 3067.765 & 10064.85 & 3.3 \\
\hline 3067.770 & 10064.86 & 125.2 \\
\hline 3067.775 & 10064.88 & 77.3 \\
\hline 3067.780 & 10064.90 & 126.0 \\
\hline 3067.785 & 10064.91 & 134.1 \\
\hline 3067.790 & 10064.93 & 274.9 \\
\hline 3067.795 & 10064.94 & 251.7 \\
\hline 3067.800 & 10064.96 & 5.0 \\
\hline 3067.815 & 10065.01 & 195.6 \\
\hline 3067.820 & 10065.03 & 252.7 \\
\hline 3067.825 & 10065.04 & 246.9 \\
\hline 3067.830 & 10065.06 & 122.8 \\
\hline 3067.835 & 10065.08 & 133.0 \\
\hline 3067.840 & 10065.09 & 199.9 \\
\hline 3067.845 & 10065.11 & 125.2 \\
\hline 3067.850 & 10065.12 & 191.2 \\
\hline 3067.855 & 10065.14 & 157.4 \\
\hline 3067.860 & 10065.16 & 139.4 \\
\hline 3067.865 & 10065.17 & 131.9 \\
\hline 3067.870 & 10065.19 & 182.6 \\
\hline 3067.875 & 10065.21 & 167.3 \\
\hline 3067.880 & 10065.22 & 263.4 \\
\hline 3067.900 & 10065.29 & 224.4 \\
\hline 3067.905 & 10065.31 & 137.3 \\
\hline 3067.910 & 10065.32 & 170.3 \\
\hline 3067.915 & 10065.34 & 142.8 \\
\hline 3067.920 & 10065.35 & 127.0 \\
\hline 3067.925 & 10065.37 & 107.9 \\
\hline 3067.930 & 10065.39 & 191.2 \\
\hline 3067.935 & 10065.40 & 143.3 \\
\hline 3067.940 & 10065.42 & 147.9 \\
\hline 3067.945 & 10065.44 & 196.3 \\
\hline 3067.950 & 10065.45 & 158.4 \\
\hline 3067.955 & 10065.47 & 47.6 \\
\hline 3067.960 & 10065.49 & 103.3 \\
\hline 3067.965 & 10065.50 & 87.6 \\
\hline 3067.970 & 10065.52 & 240.9 \\
\hline 3067.975 & 10065.54 & 141.5 \\
\hline 3067.980 & 10065.55 & 134.8 \\
\hline 3067.985 & 10065.57 & 129.8 \\
\hline 3067.990 & 10065.58 & 33.3 \\
\hline 3067.995 & 10065.60 & 67.9 \\
\hline 3068.000 & 10065.62 & 74.4 \\
\hline 3068.005 & 10065.63 & 89.4 \\
\hline 3068.010 & 10065.65 & 139.9 \\
\hline 3068.015 & 10065.67 & 78.0 \\
\hline 3068.020 & 10065.68 & 63.0 \\
\hline 3068.025 & 10065.70 & 63.9 \\
\hline 3068.030 & 10065.72 & 86.5 \\
\hline 3068.035 & 10065.73 & 90.1 \\
\hline 3068.040 & 10065.75 & 91.9 \\
\hline 3068.065 & 10065.83 & 173.5 \\
\hline 3068.070 & 10065.85 & 203.3 \\
\hline 3068.075 & 10065.86 & 89.3 \\
\hline 3068.080 & 10065.88 & 87.9 \\
\hline 3068.085 & 10065.90 & 120.5 \\
\hline 3068.090 & 10065.91 & 64.7 \\
\hline 3068.095 & 10065.93 & 134.4 \\
\hline 3068.100 & 10065.95 & 132.8 \\
\hline 3068.135 & 10066.06 & 290.7 \\
\hline 3068.140 & 10066.08 & 433.6 \\
\hline 3068.145 & 10066.09 & 248.3 \\
\hline 3068.150 & 10066.11 & 323.9 \\
\hline 3068.155 & 10066.13 & 145.1 \\
\hline 3068. 160 & 10066.14 & 145.5 \\
\hline 3068. 165 & 10066.16 & 265.4 \\
\hline 3068.170 & 10066.17 & 343.4 \\
\hline 3068.175 & 10066.19 & 196.8 \\
\hline 3068.195 & 10066.26 & 265.3 \\
\hline 3068.200 & 10066.27 & 268.7 \\
\hline 3068 205 & 10066.29 & 348.7 \\
\hline 3068.210 & 10066.31 & 343.9 \\
\hline 3068.215 & 10066.32 & 210.2 \\
\hline 3068. 220 & 10066.34 & 217.6 \\
\hline 3068.225 & 10066.36 & 249.3 \\
\hline 3068.230 & 10066.37 & 265.7 \\
\hline 3068.235 & 10066.39 & 130.4 \\
\hline 3068.240 & 10066.40 & 216.0 \\
\hline 3068.265 & 10066.49 & 128.2 \\
\hline 3068.270 & 10066.50 & 200.0 \\
\hline 3068.275 & 10066.52 & 175.8 \\
\hline 3068.280 & 10066.54 & 101.5 \\
\hline 3068.285 & 10066.55 & 128.0 \\
\hline 3068.290 & 10066.57 & 132.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(3082.880 \quad 1\) & 10114.44 & 101.1 & 3090.800 & 10140 \\
\hline 3082.8851 & 10114.45 & 42.4 & 3090.830 1014 & 10140.52 \\
\hline 3082.890 1 & 10114.47 & 118.9 & 3090.8351 & 10140.54 \\
\hline 3082.895 | & 10114.49 & 97.0 & 3090.840 & 10140.55 \\
\hline 3082.900 1 & 10114.50 & 81.4 & 3090.845 & 10140.57 \\
\hline 3082.905 & 10114.52 & 85.0 & 3000.850 & 10140.58 \\
\hline 3082.910 & 10114.53 & 105.5 & 3090.855 & 10140.60 \\
\hline 3082.915 & 10114.55 & 58.9 & 3090.860 & 10140.62 \\
\hline 3082.920 & 10114.57 & 109.7 & 3090.865 & 10140 \\
\hline 3082.925 & 1011458 & 77.8 & 3090.870 & 10140.65 \\
\hline 3082.930 & 10114.60 & 98.6 & 3090.875 & 10140.67 \\
\hline 3082.935 & 10114.62 & 77.3 & 3090.880 & 10140.68 \\
\hline 3082.940 & 10114.63 & 87.9 & 3090.885 & 10140.70 \\
\hline 3082.945 & 10114.65 & 79.1 & 3090.890 & 10140.72 \\
\hline 3082.965 & 10114.71 & 12.4 & 3090.895 & 1014 \\
\hline 3082.970 & 10114.73 & 42.2 & 3090.900 & 10140.75 \\
\hline 3082.975 & 10114.75 & 24.2 & 3090.905 & 10140.76 \\
\hline 3082.980 & 10114.76 & 52.2 & 3090.910 & 10140.78 \\
\hline 3082.985 & 10114.78 & 45.8 & 3090.915 & 10140.80
10140.81
108081 \\
\hline 3082.990 & 10114.80 & 18.1 & 3090.920 & 10140.81 \\
\hline 3082.995 & 10114.81 & 42.9 & 3090.925 & 10140.83 \\
\hline 3083.000 & 10114.83 & 18.9 & 3090.930 & 10140.85 \\
\hline 3083.005 & 10114.85 & 55.6 & 3090.935 & 10140.86 \\
\hline 3083.010 & 10114.86 & 56.9 & 3090.940 & 10140.88 \\
\hline 3083.015 & 10114.88 & 75.3 & 3090.945 & 10140.90 \\
\hline \({ }^{3083.020}\) & 10114.90 & 52.6 & 3090.950 & 10140.91
10140.93 \\
\hline 3083.070 & 10115.06 & 67.6 & 3090.955 & 10140.93 \\
\hline \({ }^{3083.075}\) & 10115.08 & 67.6 & 3090.960 & 10140.95 \\
\hline 3083.080 & 10115.09 & 27.6 & 30 & 10140.96 \\
\hline \({ }^{3083.085}\) & 10115.11 & 22.3 & 3090.970 & 10140.98 \\
\hline 3083.090 & 10115.12 & 47.9 & 3090.975 & 10140.98 \\
\hline 3083.095 & 10115.14 & 25.4 & 3090.980 & 1 \\
\hline 3083.110 & 10115.19 & 85.2 & 3090.985 & 10141.03 \\
\hline 3083.115 & 10115.21 & 61.7 & 3090.990 & 10141.04 \\
\hline 3083.120 & 10115.22 & 134.8 & 3090.995 & 10141.06 \\
\hline 3083.125 & 10115.24 & 41.7 & 3091.000 & 10141.08 \\
\hline 3083.130 & 10115.26 & 23.5 & 3091.005 & 10141.09 \\
\hline 3083.135 & 10115.27 & 91.4 & 3091.010 & 10141.11 \\
\hline 3083.140 & 10115.29 & 40.4 & 3091.015 & 10141.13 \\
\hline 3083.145 & 10115.31 & 55.1 & 3091.020 & 10141.14 \\
\hline 3083.150 & 10115.32 & 61.2 & 3091.025 & 10141.16 \\
\hline 3083.155 & 10115.34 & 47.1 & 3091.030 & 10141.17 \\
\hline 3083.160 & 10115.35 & 24.2 & 3091.035 & 10141.19 \\
\hline 3083. 165 & 10115.37 & 60.1 & 3091.040 & 10141.21 \\
\hline 3083.170 & 10115.39 & 34.5 & 3091.045 & 10141.22 \\
\hline 3083.175 & 10115.40 & 16.8 & 3091.050 & 10141.24 \\
\hline 3083. 180 & 10115.42 & 47.0 & 3091.055 & 10141.26 \\
\hline 3083. 185 & 10115.44 & 86.1 & 3091.060 & 10141.27 \\
\hline 3083.190 & 10115.45 & 33.8 & 3091.065 & 10141.29 \\
\hline 3083. 195 & 10115.47 & 36.2 & 3091.070 & 10141.31 \\
\hline 3083.200 & 10115.49 & 61.2 & 3091.075 & 10141.32 \\
\hline 3083.205 & 10115.50 & 58.8 & 3091.080 & 10141.34 \\
\hline 3083.210 & 10115.52 & 31.5 & 3091.085 & 10141.36 \\
\hline 3083.215 & 10115.54 & 25.2 & 3091.090 & 10141.37 \\
\hline 3083.220 & 10115.55 & 29.6 & 3001.095 & 10141.39 \\
\hline 3083.225 & 10115.57 & 62.8 & 3091.100 & 10141.40 \\
\hline 3083.230 & 10115.58 & 26.0 & 3091.105 & 10141.42 \\
\hline 3083.235 & 10115.60 & 72.6 & 3091.110 & 10141.44 \\
\hline 3083.240 & 10115.62 & 89.4 & 3091.115 & 10141.45 \\
\hline 3083.245 & 10115.63 & 91.3 & 3091.120 & 10141.47 \\
\hline 3083.250 & 10115.65 & 47.8 & 3091.125 & 10141.49 \\
\hline 3083.265 & 10115.70 & 69.0 & 3091.130 & 10141.50 \\
\hline 3083.270 & 10115.72 & 108.0 & 3091.135 & 10141.52 \\
\hline 3083.275 & 10115.73 & 68.5 & 3091.140 & 10141.54 \\
\hline 3083.280 & 10115.75 & 28.0 & 3091.145 & 10141.55 \\
\hline 3083. 285 & 10115.76 & 61.6 & 3091.150 & 10141.57 \\
\hline 3083.290 & 10115.78 & 34.5 & 3091.155 & 10141.58 \\
\hline 3083.295 & 10115.80 & 61.6 & 3081.160 & 10141.60 \\
\hline 3083.300 & 10115.81 & 45.3 & 3091.165 & 10141.62 \\
\hline 3083. 305 & 10115.83 & 35.1 & 3091.170 & 10141.63 \\
\hline 3083.310 & 10115.85 & 21.9 & 3091.175 & 10141.65 \\
\hline 3083.315 & 10115.86 & 74.7 & 3091.180 & 10141.67 \\
\hline 3083.320 & 10115.88 & 27.9 & 3001.185 & 10141.68 \\
\hline 3083.325 & 10115.90 & 53.0 & 3091.190 & 10141.70 \\
\hline зов3.330 & 10115.91 & 90.6 & 3091.205 & 10141.75 \\
\hline 3083.335 & 10115.93 & 82.6 & 3081.210 & 10141.77 \\
\hline 3083.340 & 10115.95 & 38.4 & 3091.215 & 10141.78 \\
\hline 3083.345 & 10115.96 & 139.5 & 3091.220 & 10141.80 \\
\hline 3083.350 & 10115.98 & 73.2 & 3091.225 & 10141.81 \\
\hline 3083.355 & 10115.99 & 144.6 & 3091.230 & 10141.83 \\
\hline 3083.360 & 10116.01 & 173.8 & 3091.235 & 10141.85 \\
\hline 3083.365 & 10116.03 & 91.5 & 3091.240 & 10141.86 \\
\hline 3083.370 & 10116.04 & 34.8 & 3091.245 & 10141.88 \\
\hline 3083. 375 & 10116.06 & 76.7 & 3091.250 & 10141.90
10141.91 \\
\hline 3083.380 & 10116.08 & 109.8 & 3091.255
3091260 & 10141.91
10141.93 \\
\hline 3083.385 & 1011609 & 86.2 & 3091.260
3091265 & 10141.93
10141.95 \\
\hline 3083.405 & 10116.16 & 34.3 & 3091.265 & 10141.95
10142.06 \\
\hline 3083.410 & 10116.17 & 54.5 & 3081. 300 & 10142.06
10142.08 \\
\hline 3083.415 & 10116.19 & 10.0 & 3091.305 & 10142.08
10142.09 \\
\hline 3083.420 & 10116.21 & 9.2 & 3091.310
3091315 & 10142.09
10142.11 \\
\hline 3083.425 & 10116.22 & 15.6 & 3091.315
3091.330 & 10142.11
10142.16 \\
\hline 3083.430 & 10116.24 & 24.1 & 3091.330
3091.335 & 10142.18 \\
\hline 3083.435 & 10116.26 & 41.0 & 3091.335
3091.350 & - \begin{tabular}{l}
10142.18 \\
\hline 101422
\end{tabular} \\
\hline 3083.440 & 10116.27 & 73.3 & 3091.350
3091.365 & 10142.27
101 \\
\hline 3083.445 & 10116.29 & 107.4 & \({ }_{3}^{3091.370}\) & \\
\hline 3083.450 & 10116.31 & 164.5 & 3091.370 & \begin{tabular}{l}
10142.29 \\
\hline 10142.34 \\
\hline
\end{tabular} \\
\hline 3083.455 & 10116.32 & 183.2 & 3091.385
3091.395 & S 10142.37 \\
\hline 3083.460 & 1011634 & 42.3 & 3091.395
3091415 & (10142.44 \\
\hline 3083.465 & 1011636 & 75.1 & & 10142.49 \\
\hline 3083.470 & 10116.37 & 109.2 & 3091.435 & \\
\hline 3083.475 & 10116.39 & 150.6 & \({ }^{3091.445}\) & (10142.52 \\
\hline 3083.480
3083.485 & 10116.40
10116.42 & 39.3
37.6 & 3091.440
3091.445 & 10142.54 \\
\hline
\end{tabular}


\section*{APPENDIX X: Probe permeameter data sets}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 3068.295 & 10066.58 & 172.6 & 3083.490 & 10116.44 & 45.5 & 1.450 & 142.55 & 8.7 \\
\hline 3068.300 & 10066.60 & 149.0 & 3083.495 & 10116.45 & 98.8 & 3091.455 & 10142.57 & 29.7 \\
\hline 3068.305 & 10066.62 & 115.3 & 3083.500 & 10116.47 & 114.8 & 3091.460 & 10142.59 & . 5 \\
\hline 3068.310 & 10066.63 & 136.0 & 3083.505 & 10116.49 & 37.6 & 3091.465 & 10142.60 & 36.0 \\
\hline 3068.315 & 10066.65 & 153.3 & 3083.510 & 10116.50 & 7.5 & 3091.470 & 10142.62 & \({ }^{13.6}\) \\
\hline 3068.320 & 10066.67 & 148.4 & 3083.515 & 10116.52 & 9.2 & 3091.475 & 10142.63 & \(\begin{array}{r}8.7 \\ 33 \\ \hline 18\end{array}\) \\
\hline 3068.325 & 10066.68 & 160.7 & 3083.520 & 10116.54 & 31.1 & 3091.480 & 10142.65 & 33.7 \\
\hline 3068.330 & 10066.70 & 138.0 & 3083.535 & 10116.58 & 18.9 & 3091.485 & 10142.68 & \% \\
\hline 3068.335 & 10066.72 & 187.6 & 3083.540 & 10116.60 & 20.3 & 3091.495 & 10142.70 & 57.5 \\
\hline 3068.340 & 10066.73 & 166.3 & 3083.545 & 10116.62 & 91.1 & 3091.500 & 10142.72 & 7.7 \\
\hline 3068.345 & 10066.75 & 120.8 & 3083.550
3083555 & 10116.65 & 9.7 & 3091.505 & 10142.73 & 11.2 \\
\hline 3068.350 & 10066.77 & 131.5 & 3083.555
3083.560 & 10116.67 & 40.6 & 3091.520 & 10142.78 & 5.9 \\
\hline 3068.355 & 10066.78 & 144.5 & 3083.560
3083.565 & 10116.68 & 72.9 & 3091.525 & 10142.80 & 9.0 \\
\hline 3068.360 & 10066.80 & 159.2 & 3083.65
3083.570 & 10116.70 & 203.0 & 3091.530 & 10142.82 & 5.0 \\
\hline 3068.365 & 10066.81 & 162.2 & 3083.570
3083.575 & 10116.72 & 147.3 & 3091.535 & 10142.83 & 17.0 \\
\hline 3068.370 & 10066.83 & 169.8 & 3083.575
308358 & 10116.72
10116.73 & 64.7 & 3091.540 & 10142.85 & 23.1 \\
\hline \({ }^{3068.375}\) & 10066.85 & 37.0
3.1 & 3083.585 & 10116.75 & 39.4 & 3091.545 & 10142.86 & 71.6 \\
\hline 3068.380
3068.385 & 10066.86 & 110.7 & 3083.590 & 10116.77 & 69.6 & 3091.550 & 10142.88 & 33. \\
\hline 3068.390 & 10066.90 & 131.5 & 3083.595 & 10116.78 & 72.2 & 3091565 & 10142.93 & 37.1 \\
\hline 3068.395 & 10066.91 & 104.5 & 3083.600 & 10116.80 & 33.8 & 3091.570 & 10142.95 & \\
\hline 3068.400 & 10066.93 & 92.7 & \({ }^{3083.605}\) & 10116.81 & 57 & 3091.575 & 10142.06 & 28.4 \\
\hline 3068.405 & 10066.95 & 165.9 & 3083.610 & 10116. & 38.2 & \({ }^{3} 3091.585\) & 10143.00 & 34.7 \\
\hline 3068.410 & 10066.96 & 191.3 & 3083.615 & 10116.85
10116.86 & \begin{tabular}{|l}
178.8 \\
114.7
\end{tabular} & 3091.590 & 10143.01 & 54.1 \\
\hline 3068.415 & 10066.98 & 248.7 & 3083.620
3083.625 & \begin{tabular}{l}
10116.86 \\
10116.88 \\
\hline
\end{tabular} & \begin{tabular}{|c}
14.7 \\
86.8
\end{tabular} & 3091.595 & 10143.03 & 38.6 \\
\hline 3068.420 & 10067.00 & 147.4 & & 10116.88
10116.90 & 86.8
86.3 & 3091.600 & 10143.04 & 33.7 \\
\hline 3068.425 & 10067.01 & 245.5 & 3083.630
3083.635 & 10116.90
10116.91 & 86.3
27.5 & 3091.605 & 10143.06 & 55.6 \\
\hline 3068.430 & 10067.03 & 146.6 & 3083.635
3083.640 & 10116.91
10116.93 & 43.9 & 3091.610 & 10143.08 & 14.4 \\
\hline \begin{tabular}{l}
3068.435 \\
\hline
\end{tabular} & 10067.04 & 130.3 & 3083.640
3083.645 & 10116.95 & 127.9 & 3091.615 & 10143.09 & 29 \\
\hline 3068.440
3068.445 & 10067.06
10067.08 & 84.2
150.8 & 3083.650 & 10116.96 & 77.1 & 3091.620 & 10143.11 & 29 \\
\hline 3068.450 & 10067.09 & 237.5 & 3083.660 & 10117.00 & 59.4 & 3091.625 & 10143.13 & 68 \\
\hline 3068.455 & 10067.11 & 287.2 & 3083.665 & 10117.01 & 43.3 & 3091.630 & 10143.14 & 36.1 \\
\hline 3068.460 & 10067.13 & 124.6 & 3083.670 & 10117.03 & 73.6 & 3091.635 & 10143.16 & \\
\hline 3068.465 & 10067.14 & 198.2 & 3083.675 & 10117.04 & 109.7 & 3091.655 & 10143.23 & 53.0 \\
\hline 3068.470 & 10067.16 & 190.0 & 3083.680 & 10117.06 & 193.0 & 3091.660 & 10143.24
10143.26 & 74.8
24.6 \\
\hline 3068.475 & 10067.18 & 202.5 & 3083.685 & 10117.08 & 142.3 & 3091.665 & 10143.26
10143.27 & \\
\hline 3068.480 & 10067.19 & 235.4 & 3083.690 & 10117.09 & 109.3 & 3091.670
3091.675 & 10143.27
10143.29 & 37.9
31.9 \\
\hline 3068.500 & 10067.26 & 207.6 & 3083.695 & 10117.11 & 111.4 & 3091.675
3091.680 & 10143.29
10143.31 & 26.1 \\
\hline 3068.505 & 10067.27 & 234.5 & 3083.700 & 10117.13 & 192.9 & 3091.680
3091.685 & 10143.32 & 26.4
27.4 \\
\hline 3068.510
3068.515 & 10067.29
10067.31 & 286.5 & 3083.705
3083.710 & 10117.14
10117.16 & 229.5
94.2 & 3091.685
3091.690 & 10143.34 & 32.5 \\
\hline 3068.520 & 10067.32 & \begin{tabular}{l}
179.4 \\
\hline 176.
\end{tabular} & 3083.715 & 10117.18 & 119.6 & 3091.695 & 10143.36 & 13.1 \\
\hline 3068.525 & 10067.34 & 200.6 & 3083.720 & 10117.19 & 161.1 & 3091.700 & 10143.37 & 38.5 \\
\hline 3068.530 & 10067.36 & 204.9 & 3083.725 & 10117.21 & 192.1 & 3091.705 & 10143.39 & 74.8 \\
\hline 3068.535 & 10067.37 & 189.2 & 3083.730 & 10117.22 & 79.6 & 3091.710 & 10143.41 & 28.1 \\
\hline 3068.540 & 10067.39 & 99.0 & 3083.735 & 10117.24 & 186.8 & 3091.715 & 10143.42 & 43.7 \\
\hline 3068.545 & 10067.41 & 190.8 & 3083.740 & 10117.26 & 91.4 & 3091.720 & 10143.44 & 33.3 \\
\hline 3068.550 & 10067.42 & 154.7 & 3083.745 & 10117.27 & 78.3 & 3091.725 & 10143.46 & 22.5 \\
\hline 3068.555 & 10067.44 & 72.1 & 3083.750 & 10117.29 & 139.6 & 3091.730 & 10143.47 & 29.5 \\
\hline 3068.560 & 10067.45 & 153.8 & 3083.755 & 10117.31 & 193.4 & 3091.735 & 10143.49 & 71.2 \\
\hline 3068.565 & 10067.47 & 109.7 & 3083.760 & 10117.32 & 109.0 & 3091.740 & 10143.50 & 14.9 \\
\hline 3068.570 & 10067.49 & 182.5 & 3083.765 & 10117.34 & 79.8 & 3091.745 & 10143.52 & 3.2 \\
\hline 3068.575 & 10067.50 & 123.9 & 3083.770 & 10117.36 & 107.3 & 3091.750 & 10143.54 & 15.4 \\
\hline 3068.580 & 10067.52 & 187.0 & з083. 775 & 10117.37 & 116:0 & 3091.755 & 10143.55 & 80.4 \\
\hline 3068.585 & 10067.54 & 153.6 & 3083.780 & 10117.39 & 201.5 & 3091.760 & 10143.57 & 102.8 \\
\hline 3068.590 & 10067.55 & 196.9 & 3083.785 & 10117.41 & 180.5 & 3091.765 & 10143.59 & 41.7 \\
\hline 3068.595 & 10067.57 & 238.1 & 3083.790 & 10117.42 & 125.8 & 3091.770 & 10143.60 & 1 \\
\hline 3068.600 & 10067.59 & 155.5 & 3083.795 & 10117.44 & 232.0 & 3091.775 & 10143.62 & 116.9 \\
\hline 3068.605 & 10067.60 & 282.2 & 3083.800 & 10117.45 & 215.5 & 3091.780 & 10143.64 & 112.7 \\
\hline 3068.610 & 10067.62 & 227.9 & 3083.805 & 10117.47 & 100.9 & 3091.785 & 10143.65 & 64.6 \\
\hline 3068.615 & 10067.63 & 161.2 & 3083.810 & 10117.49 & 100.6 & 3091.805 & 10143.72 & 24.3 \\
\hline 3068.620 & 10067.65 & 139.7 & 3083.815 & 10117.50 & 263.6 & 3091.810 & 10143.73 & 68.1 \\
\hline 3068.625 & 10067.67 & 224.5 & 3083.820 & 10117.52 & 215.6 & 3091.815 & 10143.75 & 55.8 \\
\hline 3068.630 & 10067.68 & 135.8 & 3083.825 & 10117.54 & 159.8 & 3091.820 & 10143.77 & 27.8 \\
\hline 3068.635 & 10067.70 & 135.5 & з083.830 & 10117.55 & 238.3 & 3091.825 & 10143.78 & 43.2 \\
\hline 3068.640 & 10067.72 & 125.6 & 3083.835 & 10117.57 & 142.4 & 3091.830 & 10143.80 & 30.7 \\
\hline 3068.645 & 10067.73 & 233.0 & 3083.840 & 10117.59 & 291.4 & 3091.835 & 10143.82 & 67.8 \\
\hline 3068.650 & 10067.75 & 267.7 & 3083.845 & 10117.60 & 267.3 & 3091.840 & 10143.83 & 44.4 \\
\hline 3068.655 & 10067.77 & 159.9 & 3083.850 & 10117.62 & 144.2 & 3091.845 & 10143.85 & 14.1 \\
\hline 3068.660 & 10067.78 & 137.0 & 3083.855 & 10117.63 & 256.9 & 3091.850 & 10143.87 & 26.1 \\
\hline 3068.680 & 10067.85 & 118.3 & 3083.860 & 10117.65 & 90.2 & 3091.855 & 10143.88 & 41.7 \\
\hline 3068.685 & 10067.86 & 131.1 & 3083.880 & 10117.72 & 189.5 & 3091.860 & 10143.90 & 23.2 \\
\hline 3068.690 & 10067.88 & 170.0 & 3083.885 & 10117.73 & 171.9 & 3091.865 & 10143.91 & 89.3 \\
\hline 3068.695 & 10067.90 & 228.6 & 3083.890 & 10117.75 & 209.6 & 3091.870 & 10143.93 & \\
\hline 3068.700 & 10067.91 & 277.9 & 3083.895 & 10117.77
1011778 & 201.3
131.0 & 3091.875
3091.880 & & 25.0
16.6 \\
\hline 3068.705 & 10067.93 & 284.8 & 3083.900 & 10117.78 & 131.0 & 3091.880
3091.885 & 10143.96
10143.98 & 16.6
20.1 \\
\hline 3068.710 & 10067.95 & 243.5 & 3083.905
3083.910 & 10117.80
10117.82 & 79.6
166.7 & 3091.885
3091.890 & 10144.00 & 45.7 \\
\hline 3068.715 & 10067.96 & 299.7 & 3083.910
3083.915 & 10117.83 & 251.9 & 3091.895 & 10144.01 & 22.4 \\
\hline 3068.720
3068.725 & 10067.98
10068.00 & 160.2
139.2 & 3083.920 & 10117.85 & 160.4 & 3091.900 & 10144.03 & 78.5 \\
\hline 3068.730 & 10068.01 & 197.7 & 3083.925 & 10117.86 & 181.7 & 3091.905 & 10144.05 & 12.5 \\
\hline 3068.735 & 10068.03 & 219.3 & 3083.930 & 10117.88 & 121.6 & 3091.910 & 10144.06
10144.08 & 15.9 \\
\hline 3068.740 & 10068.04 & 155.0 & 3083.935 & 10117.90 & 178.9 & 3091.915
3091.920 & 10144.08 & 22.9
42.5 \\
\hline 3068.745 & 10068.06 & 162.0 & 3083.940 & 10117.91 & 119.0
612 & 3091.925 & 10144.11 & 39.8 \\
\hline 3068.750 & 10068.08 & 247.7 & 3083.990 & & 61.2
50.4 & 3091.930 & 10144.13 & 39.8
71.1 \\
\hline 3068.755 & 10068.09 & 243.2 & 3083.995
3084000 & 10118.09
10118.11 & 50.4
37.7 & 3091.935 & 10144.14 & 5.9 \\
\hline 3068.760 & 10068.11 & 299.2 & 3084.000
3084.005 & 10118.11
10118.13 & 18.6 & 3091.940 & 10144.16 & 15.9 \\
\hline 3068.765 & 10068.13 & 198.3 & 3084.005
3084.020 & 10118.13
10118.18 & 18.6
11.6 & 3091.980 & 10144.29 & 58.7 \\
\hline 3068.770 & 10068.14 & 215.4 & 3084.020
3084.025 & 10118.18
10118.19 & 115.0 & 3091.085 & 10144.31 & 59.5 \\
\hline 3068.775 & 10068.16 & 228.8 & & 10118.21 & 202.2 & 3091.990 & 10144.32 & 71.4 \\
\hline 3068.780 & 10068.18 & 149.8 & 3084.030
3084.035 & 10118.23 & 123.8 & 3091.905 & 10144.34 & 137.9 \\
\hline 3068.785 & 10068.19 & 253.7 & 3084.035
3084.040 & 10118.24 & 132.2 & 3092.000 & 10144.36 & 60.4 \\
\hline 3068.790
3068.795 & 10068.21
10068.23 & 99.4
228.5 & 3084.040
3084.045 & 10118.26 & 127.3 & 3092.005 & 10144.37 & 70.4 \\
\hline 3068.795
3069.050 & 10068.23
10069.06 & 228.5
22.5 & 3084.045
3084.050 & 10118.27 & 154.5 & 3092.010 & 10144.38 & 109.9
70.8 \\
\hline 3069.055 & 10069.08
10069 & 22.5
16.2 & 3084.055 & 10118.29 & 191.1 & 3092.015
3092.020 & \begin{tabular}{l}
10144.41 \\
\hline 10144.42
\end{tabular} & 70.6
119.1 \\
\hline 3069.060 & 10069.09 & 39.6 & 3084.060 & 10118.31 & 172.2 & 3092.020 & 10144.42
10144.44 & 119.1
1097 \\
\hline 3069.065 & 10069.11 & 18.7 & 3084.065 & 10118.32 & 136.0 & 3092.025
3092.030 & \begin{tabular}{ll}
10144.44 \\
\hline 10144.46
\end{tabular} & \(\begin{array}{r}109.7 \\ 92.8 \\ \hline 1\end{array}\) \\
\hline 3069.070 & 10069.13 & 35.9 & 3084.070 & 10118.34 & \(\begin{array}{r}69.9 \\ \hline 163\end{array}\) & 3092.035 & 10144.47 & 119.2 \\
\hline 3069.075 & 10069. 14 & 20.6 & 3084.075 & 10118.36 & & 3092.040 & 10144.49 & 146.1 \\
\hline 3069.080
3069.085 & 10069.16
10069.18 & 65.7 & 3084.080
3084.085 & 10118.37
10118.39 & 193.1 & 3092.045 & 10144.50 & 91.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3069.1151 & 10069.28 \\
\hline \(3069.120 \quad 1\) & 10069.29 \\
\hline \(3069.125 \quad 1\) & 10069.31 \\
\hline 3069.130 & 10069.32 \\
\hline 3069.135 & 10069.34 \\
\hline 3069.140 & 10069.36 \\
\hline 3069.145 & 10069.37 \\
\hline 3069.150 & 10069.39 \\
\hline 3069.155 & 10069.41 \\
\hline 3069.160 & 10069.42 \\
\hline 3069.165 & 10069.44 \\
\hline 3069.170 & 10069.46 \\
\hline 3069.175 & 10069.47 \\
\hline 3069.180 & 10069.49 \\
\hline 3069.185 & 10069.50 \\
\hline 3069.190 & 10069.52 \\
\hline 3069.195 & 10069.54 \\
\hline 3069.200 & 10069.55 \\
\hline 3069.205 & 10069.57 \\
\hline 3069.210 & 10069.59 \\
\hline 3069.215 & 10069.60 \\
\hline 3069.220 & 10069.62 \\
\hline 3069.225 & 10069.64 \\
\hline 3069.230 & 10069.65 \\
\hline 3069.235 & 10069.67 \\
\hline 3069.240 & 10069.69 \\
\hline 3069.245 & 10069.70 \\
\hline 3069.250 & 10069.72 \\
\hline 3069.255 & 10069.73 \\
\hline 3069.260 & 10069.75 \\
\hline 3069.265 & 10069.77 \\
\hline 3069.270 & 10069.78 \\
\hline 3069.275 & 10069.80 \\
\hline 3069.280 & 10069.82 \\
\hline 3069.285 & 10069.83 \\
\hline 3069.305 & 10069.90 \\
\hline 3069.310 & 10069.92 \\
\hline 3069.315 & 10069.93 \\
\hline 3069.320 & 10069.95 \\
\hline 3069.325 & 10069.96 \\
\hline 3069.330 & 10069.98 \\
\hline 3069.335 & 10070.00 \\
\hline 3069.340 & 10070.01 \\
\hline 3069.345 & 10070.03 \\
\hline 3069.350 & 10070.05 \\
\hline 3069.355 & 10070.06 \\
\hline 3069.360 & 10070.08 \\
\hline 3069.365 & 10070.10 \\
\hline 3069.370 & 10070.11 \\
\hline 3069.375 & 10070.13 \\
\hline 3069.380 & 10070.14 \\
\hline 3069.385 & 10070.16 \\
\hline 3069.390 & 10070.18 \\
\hline 3069.395 & 10070.19 \\
\hline 3069.400 & 10070.21 \\
\hline 3069.405 & 10070.23 \\
\hline 3069.410 & 10070.24 \\
\hline 3069.415 & 10070.26 \\
\hline 3069.420 & 10070.28 \\
\hline 3069.425 & 10070.29 \\
\hline 3060.430 & 10070.31 \\
\hline 3069.435 & 10070.33 \\
\hline 3069.440 & 10070.34 \\
\hline 3069.445 & 10070.36 \\
\hline 3069.450 & 10070.37 \\
\hline 3069.455 & 10070.39 \\
\hline 3069.460 & 10070.41 \\
\hline 3069.465 & 10070.42 \\
\hline 3069.470 & 10070.44 \\
\hline 3069.475 & 10070.46 \\
\hline 3069.480 & 10070.47 \\
\hline 3069.485 & 10070.49 \\
\hline 3069.490 & 10070.51 \\
\hline 3069.495 & 10070.52 \\
\hline 3069.500 & 10070.54 \\
\hline 3069.505 & 10070.55 \\
\hline 3069.510 & 10070.57 \\
\hline 3069.515 & 10070.59 \\
\hline 3069.520 & 10070.60 \\
\hline 3069.525 & 10070.62 \\
\hline 3069.530 & 10070.64 \\
\hline 3069.535 & 10070.65 \\
\hline 3069.540 & 10070.67 \\
\hline 3069.545 & 10070.69 \\
\hline 3069.550 & 10070.70 \\
\hline 3069.555 & 10070.72 \\
\hline 3069.560 & 10070.74 \\
\hline 3060.565 & 10070.75 \\
\hline 3069.570 & 10070.77 \\
\hline 3069.575 & 10070.78 \\
\hline 3069.580 & 10070.80 \\
\hline 3069.585 & 10070.82 \\
\hline 3069.590 & 10070.83 \\
\hline 3069.595 & 10070.85 \\
\hline 3069.620 & 10070.93 \\
\hline 3069.625 & 10070.95 \\
\hline 3069.630 & 10070.96 \\
\hline 3069.635 & 510070.98 \\
\hline 3069.640 & 10071.00 \\
\hline 3069.645 & 510071.01 \\
\hline 3069.650 & 10071.03 \\
\hline 3069.655 & 510071.05 \\
\hline 3069.660 & O 10071.06 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(3084.090 \quad 10\) & 10118.41 & 138.6 & 3092.05010 & 0144.52 & 123.5 \\
\hline \(3084.095 \quad 10\) & 10118.42 & 150.3 & 3092.05510 & 0144.54 & 30.1 \\
\hline \(3084.100 \quad 10\) & 10118.44 & 133.0 & 3092.06010 & 0144.55 & 26.3 \\
\hline 3084.10510 & 10118.46 & 37.4 & 3092.06510 & 0144.57 & 37.7 \\
\hline \(3084.110 \quad 10\) & 10118.47 & 69.9 & 3092.070 & 0144.50 & 72.9 \\
\hline 3084.11510 & 10118.49 & 169.7 & 3092.075 & 0144.60 & 99. \\
\hline \(3084.120 \quad 101\) & 10118.50 & 156.6 & 3092.080 & 10144.62 & 140.7 \\
\hline \(3084.125 \quad 101\) & 10118.52 & 112.7 & 3092.085 & 0144.64
0144.65 & 134.9
1072 \\
\hline \(3084.130 \quad 101\) & 10118.54 & \(\begin{array}{r}132.8 \\ 85 \\ \hline\end{array}\) & 3092.090
3092.095 & 10144.65
10144.67 & 133.1 \\
\hline 3084.135101 & 10118.55 & \(\begin{array}{r}85.7 \\ 228 \\ \hline 105\end{array}\) & 3092.100 & 10144.69 & 79.8 \\
\hline \begin{tabular}{l}
3084.140 \\
3084.145 \\
\hline
\end{tabular} & 10118.59 & 228.5
191.6 & 3092.105 & 10144.70 & 111.5 \\
\hline \(3084.150 \quad 101\) & 10118.60 & 156.7 & 3092.110 & 10144.72 & 76.5 \\
\hline 3084.155101 & 10118.62 & 86.9 & 3092.115 & 10144.73 & 94.3 \\
\hline \(3084.160 \quad 101\) & 10118.64 & 111.9 & 3092.120 & 10144.75 & \begin{tabular}{|c}
123. \\
43.9
\end{tabular} \\
\hline 3084.165101 & 10118.65 & 156.3 & 3092.125 & 10144.77 & 136.1 \\
\hline 3084.170 & 10118.67 & 167.9 & 3092.130
3092.135 & 10144.80 & 72.7 \\
\hline 3084.175 & 10118.68 & 277.8 & 3092.35
3092.140 & 10144.82 & 152.0 \\
\hline 3084.180 & 10118.70 & 145.8 & 3092.145 & 10144.83 & 72.7 \\
\hline 3084.185 & 10118.72 & 245.2 & 3092.150
3092.15 & 10144.85 & 120.7 \\
\hline 3084.190 & 10118.73 & 129.0 & 3092.155 & 10144.87 & 78.7 \\
\hline 3084.1951 & 10118.75 & 233.3 & 3092.160 & 10144.88 & 79.1 \\
\hline \begin{tabular}{l}
3084.200 \\
3084 \\
\hline
\end{tabular} & 10118.78
1018 & \(\begin{array}{r}156.4 \\ \hline 1\end{array}\) & 3092.215 & 10145.06 & 77.2 \\
\hline 3084.210 & 10118.80 & 170.5 & 3092.220 & 10145.08 & \\
\hline 3084.215 & 10118.82 & 217.6 & 3092.225 & 10145.10 & 173 \\
\hline 3084.235 & 10118.88 & 250.1 & 3092.230 & 10145.11 & \\
\hline 3084.240 & 10118.90 & 266.2 & 2.235 & 10145.13 & \\
\hline 3084.245 & 10118.91 & 173.8 & 3092.240 & 10145.14
10145.16 & 100.4 \\
\hline 3084.250 & 10118.93 & 34 & 3092.245
3092.250 & 10145.18 & 165.3 \\
\hline 3084.255 & 10118.95 & 356.1 & 3092.250
3092.255 & 10145.19 & 129.4 \\
\hline 3084.260 & 10118.96 & 394.6 & 3092.255
3092.260 & 10145.21 & 143.6 \\
\hline 3084.265 & 10118.98 & 211.6 & 3092.265 & 10145.23 & 200.5 \\
\hline 3084.270 & 10119.00 & 145.2
73.2 & 3092.265 & 10145.24 & 186.2 \\
\hline 3084.275 & 10119.01 & 122.5 & 3092.275 & 10145.26 & 119.0 \\
\hline 3084.280 & 10119.05 & 122.5
87.2 & 3092.280 & 10145.28 & 104.2 \\
\hline 3084290 & 10119.06 & 80.7 & 3092.285 & 10145.29 & 82.9 \\
\hline 3084.295 & 10119.08 & 23.2 & 3092.290 & 10145.31 & 170.0 \\
\hline 3084.300 & 10119.09 & 102.9 & 3092.295 & 10145.33 & 123 \\
\hline 3084.305 & 10119.11 & 110.6 & 3092.300 & 10145.34 & 117.7 \\
\hline 3084.310 & 10119.13 & 58.9 & 092.320 & 10145.41 & \\
\hline 3084.315 & 10119.14 & 58.6 & 3092.325 & 10145.42 & 154.4
154 \\
\hline 3084.320 & 10119.16 & 21.8 & 3092.330 & 10145.44 & 154.4
118.8 \\
\hline 3084.325 & 10119.18 & 123.0 & 3092.335 & 10145.46
10145.47 & 145.8 \\
\hline 3084.330 & 10119.19 & 72.7 & 3092.340 & 10145.49 & 143.4 \\
\hline 3084.350 & 10119.26 & 98.4 & 3092.345
3092350 & 10145.51 & \\
\hline 3084.355 & 10119.28 & 117.9 & 3092.350
3092.355 & 10145.52 & 173.0 \\
\hline 3084.360 & 10119.29 & 56.3 & 3092.355
3092.360 & 10145.54 & 106.6 \\
\hline 3084.365 & 10119.31 & 9.7 & 3092.360
3092.365 & 10145.55 & 153.6 \\
\hline 3084.370 & 10119.32 & \({ }^{36.1}\) & 3092.365
3092.370 & 10145.57 & 195.0 \\
\hline 3084.375 & 10119.34 & 69.6 & \({ }_{3092} 375\) & 10145.59 & 165.3 \\
\hline 3084.380 & 10119.36 & \begin{tabular}{l}
106.2 \\
\hline 185
\end{tabular} & 3092.380 & 10145.60 & 99.6 \\
\hline 3084.385 & 10119.37 & 118.5 & 3092.385 & 10145.62 & 97.2 \\
\hline 3084.390 & 10119.39 & 134.4 & 3092.385
3092.390 & 10145.64 & \\
\hline 3084.395 & 10119.41 & 84.5 & 3092.390
3092 & 10145.64
10145.70 & 125.1
208.3 \\
\hline 3084.400 & 10119.42 & 88.1 & 3092.410
3092.415 & 10145.70 & 208.3 \\
\hline 3084.405 & 10119.44 & 165.8 & 3092.415 & 10145.72 & 151.2 \\
\hline 3084.410 & 10119.46 & 26.2 & 3092.420 & 10145.74 & - \\
\hline 3084.415 & 10119.47 & 81.6 & 3092.425 & 10145.75 & 59.0 \\
\hline 3084.420 & 10110.49 & 77.0 & 3092.430 & 10145.77 & 85.8 \\
\hline 3084.425 & 10119.50 & 78.3 & 3092.435 & 10145.78 & 78.6 \\
\hline 3084.430 & 10119.52 & 66.2 & 3092.440 & 10145.80 & 19.1 \\
\hline 3084.435 & 10119.54 & 122.1 & 3092.445 & 10145.82 & 19.4 \\
\hline 3084.440 & 10119.55 & 115.1 & 3092.450 & 10145.83 & 25.8 \\
\hline 3084.445 & 10119.57 & 244.1 & 3092.455 & 10145.85 & 20.9 \\
\hline 3084.450 & 10119.59 & 162.4 & 3092.460 & 10145.87 & 15.6 \\
\hline 3084.455 & 10119.60 & 169.4 & 3092.465 & 10145.88 & 23.4 \\
\hline 3084.485 & 10119.70 & 67.9 & 3092.470 & 10145.90 & 56.8 \\
\hline 3084.490 & 10119.72 & 120.7 & 3092.475 & 10145.92 & 8.7 \\
\hline 3084.495 & 10119.73 & 31.2 & 3092.480 & 10145.93 & 14.5 \\
\hline 3084.500 & 10119.75 & 42.5 & 3092.485 & 10145.95 & 5.9 \\
\hline 3084.505 & 10119.77 & 113.9 & 3092.480 & 10145.96 & 19.5 \\
\hline 3084.510 & 10119.78 & 124.4 & 3092.495 & 10145.98 & 17.6 \\
\hline 3084.515 & 10119.80 & 104.2 & 3092.500 & 10146.00 & 28.8 \\
\hline 3084.520 & 10119.82 & 131.8 & 3092.505 & 10146.01 & 46.8 \\
\hline 3084.525 & 10119.83 & 118.4 & 3092.510 & 10146.03 & 72.0 \\
\hline 3084.530 & 10119.85 & 111.3 & 3092.530 & 10146.10 & 26.0 \\
\hline 3084.535 & 10119.87 & 152.0 & 3092.535 & 10146.11 & 20.9 \\
\hline 3084.540 & 10119.88 & 147.5 & 3002.540 & 10146.13 & 7.4 \\
\hline 3084.545 & 10119.90 & 100.6 & 3092.545 & 10146.15 & 28.1 \\
\hline 3084.550 & 10119.92 & 107.5 & 3092.550 & 10146.16 & 17.3 \\
\hline 3084.555 & 10119.93 & 101.1 & 3092.555 & 10146.18 & 25.6 \\
\hline 3084.560 & 10119.95 & 41.6 & \({ }^{3092} 5.560\) & 10146.18
10146.21 & \(\begin{array}{r}8.2 \\ 34.5 \\ \hline 1.5\end{array}\) \\
\hline 3084.565 & 10119.96 & 140.2 & 3092.565 & (10146.21 & \\
\hline 3084.570 & 10119.98 & 257.0 & 3092.570
3092575 & 10146.23
10146.24 & \begin{tabular}{l}
13.5 \\
59.2 \\
\hline 17
\end{tabular} \\
\hline 3084.575 & 10120.00 & 104.9 & 3092.575
3002.580 & - 10146.26 & 17.2 \\
\hline 3084.505 & [ 10120.06 & \begin{tabular}{l}
41.7 \\
11.5 \\
\hline
\end{tabular} & 3002.580
3092.585 & - 10146.28 & 16.2 \\
\hline 3084.600 & 10120.08 & 11.5 & 3092.585
3092.580 & 10146.29 & 23.5 \\
\hline 3084.605 & 10120.10 & 31.2 & 3028.550
3092.595 & 10146.31 & 37.5 \\
\hline 3084.610 & 10120.11 & 42.6 & 3092.600 & -10146.33 & 26.1 \\
\hline 3084.630 & - 10120.18 & 58.7
475 & 3082.600
3092.605 & 10146.34 & 170.7 \\
\hline 3084.635 & \(5 \quad 10120.19\) & 47.5
468 & 3022.605
3002.610 & 10146.36 & 45.7 \\
\hline 3084.640 & 10120.21 & 46.8
64.9 & 3022.661
3002.615 & (10146.37 & 38.2 \\
\hline 3084.645 & 5 10120.23 & 64.8
72.4 & 3022.6
3092.620 & -10146.39 & 27.7 \\
\hline 3084.650 & \(\begin{array}{ll} \\ 0 & 10120.24 \\ 5 & 10120.26\end{array}\) & 72.4
82.5 & 30292.625 & 510146.41 & 19.0 \\
\hline 3084.655
3084.660 & 5 \begin{tabular}{l}
10120.26 \\
\hline \\
\hline
\end{tabular} 10120.28 & 82.5
43.8 & 3002.630 & 10146.42 & 95.7 \\
\hline 3084.660
3084.665 & \(\begin{array}{ll}0 & 10120.28 \\ 5 & 10120.29\end{array}\) & 43.8
84.0 & 3092.635 & 5 10146.44 & 95.7 \\
\hline 3084.665
3084.670 & -10120.31 & 62.8 & 3092.640 & (10146.46 & \begin{tabular}{l}
42.4 \\
150 \\
\hline
\end{tabular} \\
\hline 3084.675 & 10120.33 & 103.1 & 3092.645 & 510146.47 & \\
\hline 3084.680
3084.685 & \begin{tabular}{ll} 
\\
\hline
\end{tabular} & 9.9
19.5 & 3092.650
3092.655 & (10146.51 & 19.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3069.665 & 10071.08 \\
\hline 3069.670 & 10071.10 \\
\hline 3069.675 & 10071.11 \\
\hline 3069.680 & 10071.13 \\
\hline 3069.685 & 10071.15 \\
\hline 3069.690 & 10071.16 \\
\hline 3069.695 & 10071.18 \\
\hline 3069.700 & 10071.19 \\
\hline 3069.705 & 10071.21 \\
\hline 3069.710 & 10071.23 \\
\hline 3069.715 & 10071.24 \\
\hline 3069.720 & 10071.26 \\
\hline 3069.725 & 10071.28 \\
\hline 3069.730 & 10071.29 \\
\hline 3069.735 & 10071.31 \\
\hline 3069.740 & 10071.33 \\
\hline 3069.745 & 10071.34 \\
\hline 3069.750 & 10071.36 \\
\hline 3069.755 & 10071.37 \\
\hline 3069.760 & 10071.39 \\
\hline 3069.765 & 10071.41 \\
\hline 3069.785 & 10071.47 \\
\hline 3069.790 & 10071.49 \\
\hline 3069.795 & 10071.51 \\
\hline 3069.800 & 10071.52 \\
\hline 3069.805 & 10071.54 \\
\hline 3069.810 & 10071.56 \\
\hline 3069.815 & 10071.57 \\
\hline 3069.820 & 10071.59 \\
\hline 3069.825 & 10071.60 \\
\hline 3069.830 & 10071.62 \\
\hline 3069.835 & 10071.64 \\
\hline 3069.840 & 10071.65 \\
\hline 3069.845 & 10071.67 \\
\hline 3069.850 & 10071.69 \\
\hline 3069.855 & 10071.70 \\
\hline 3069.860 & 10071.72 \\
\hline 3069.865 & 10071.74 \\
\hline 3069.870 & 10071.75 \\
\hline 3069.875 & 10071.77 \\
\hline 3069.880 & 10071.79 \\
\hline 3069.885 & 10071.80 \\
\hline 3069.890 & 10071.82 \\
\hline 3069.895 & 10071.83 \\
\hline 3069.900 & 10071.85 \\
\hline 3069.905 & 10071.87 \\
\hline 3069.910 & 10071.88 \\
\hline 3069.975 & 10072.10 \\
\hline 3069.980 & 10072.11 \\
\hline 3069.985 & 10072.13 \\
\hline 3069.990 & 10072.15 \\
\hline 3069.995 & 10072.16 \\
\hline 3070.000 & 10072.18 \\
\hline 3070.005 & 10072.20 \\
\hline 3070.010 & 10072.21 \\
\hline 3070.015 & 10072.23 \\
\hline 3070.020 & 10072.24 \\
\hline 3070.025 & 10072.26 \\
\hline 3070.030 & 10072.28 \\
\hline 3070.035 & 10072.29 \\
\hline 3070.040 & 10072.31 \\
\hline 3070.045 & 10072.33 \\
\hline 3070.070 & 10072.41 \\
\hline 3070.075 & 10072.42 \\
\hline 3070.080 & 10072.44 \\
\hline 3070.085 & 10072.46 \\
\hline 3070.090 & 10072.47 \\
\hline 3070.095 & 10072.49 \\
\hline 3070.100 & 10072.51 \\
\hline 3070.105 & 10072.52 \\
\hline 3070.110 & 10072.54 \\
\hline 3070.140 & 10072.64 \\
\hline 3070.145 & 10072.65 \\
\hline 3070.150 & 10072.67 \\
\hline 3070.155 & 10072.69 \\
\hline 3070.160 & 10072.70 \\
\hline 3070.165 & 10072.72 \\
\hline 3070.170 & 10072.74 \\
\hline 3070.175 & 10072.75 \\
\hline 3070.180 & 10072.77 \\
\hline 3070.185 & 10072.79 \\
\hline 3070.190 & 10072.80 \\
\hline 3070.195 & 10072.82 \\
\hline 3070.200 & 10072.83 \\
\hline 3070.205 & 10072.85 \\
\hline 3070.210 & 10072.87 \\
\hline 3070.215 & 10072.88 \\
\hline 3070.220 & 10072.90 \\
\hline 3070.225 & 10072.92 \\
\hline 3070.230 & 10072.93 \\
\hline 3070.235 & 10072.95 \\
\hline 3070.240 & 10072.97 \\
\hline 3070.245 & 10072.98 \\
\hline 3070.250 & 10073.00 \\
\hline 3070.255 & 10073.02 \\
\hline 3070.260 & 10073.03 \\
\hline 3070.265 & 10073.05 \\
\hline 3070.295 & 10073.15 \\
\hline 3070.300 & 10073.16 \\
\hline 3070.305 & 10073.18 \\
\hline 3070.310 & 10073.20 \\
\hline \[
\begin{aligned}
& 3070.315 \\
& 3070.320
\end{aligned}
\] & 10073.21
10073.23 \\
\hline
\end{tabular}





APPENDIX X: Probe permeameter data sets
\begin{tabular}{|c|c|c|}
\hline \(3070.920 \quad 1007\) & 10075.20 & 98.2 \\
\hline \(3070.925 \quad 100\) & 10075.21 & 47.2 \\
\hline \(3070.930 \quad 1007\) & 10075.23 & 53.4 \\
\hline 3070.935100 & 10075.25 & 41.9 \\
\hline \(3070.940 \quad 100\) & 10075.26 & 48.6 \\
\hline \(3070.945 \quad 100\) & 10075.28 & 52.4 \\
\hline 3070.9501 & 10075.30 & 32.7 \\
\hline \(3070.955 \quad 1\) & 10075.31 & 35.8 \\
\hline \(3070.960 \quad 1\) & 10075.33 & 46.7 \\
\hline 3070.9651 & 10075.34 & 67.3 \\
\hline \(3070.970 \quad 1\) & 10075.36 & 117.8 \\
\hline 3070.9751 & 10075.38 & 80.5 \\
\hline \(3070.980 \quad 1\) & 10075.39 & 85.3 \\
\hline 3070.9851 & 10075.41 & 60.3 \\
\hline \(3070.990 \quad 1\) & 10075.43 & 73.8 \\
\hline 3070.9951 & 10075.44 & 77.5 \\
\hline 3071.0001 & 10075.46 & 74.6 \\
\hline 3071.0051 & 10075.48 & 101.0 \\
\hline 3071.010 & 10075.49 & 127.2 \\
\hline 3071.015 & 10075.51 & 65.4 \\
\hline 3071.020 & 10075.53 & 74.7 \\
\hline 3071.050 & 10075.62 & 101.6 \\
\hline 3071.055 & 10075.64 & 71.8 \\
\hline 3071.060 & 10075.66 & 48.9 \\
\hline 3071.065 & 10075.67 & 45.6 \\
\hline 3071.070 & 10075.69 & 79.3 \\
\hline 3071.075 & 10075.71 & 121.0 \\
\hline 3071.080 & 10075.72 & 72.9 \\
\hline 3071.085 & 10075.74 & 51.5 \\
\hline 3071.090 & 10075.75 & 33.0 \\
\hline 3071.095 & 10075.77 & 42.1 \\
\hline 3071.100 & 10075.79 & 47.6 \\
\hline 3071.105 & 10075.80 & 39.8 \\
\hline 3071.110 & 10075.82 & 61.4 \\
\hline 3071.115 & 10075.84 & 38.2 \\
\hline 3071.120 & 10075.85 & 72.2 \\
\hline 3071.125 & 10075.87 & 49.8 \\
\hline 3071.130 & 10075.89 & 93.2 \\
\hline 3071.135 & 10075.90 & 71.5 \\
\hline 3071.140 & 10075.92 & 69.6 \\
\hline 3071.145 & 10075.94 & 50.5 \\
\hline 3071.150 & 10075.95 & 81.5 \\
\hline 3071.155 & 10075.97 & 80.5 \\
\hline 3071.160 & 10075.98 & 79.7 \\
\hline 3071.165 & 10076.00 & 65.3 \\
\hline 3071.170 & 10076.02 & 52.0 \\
\hline 3071.175 & 10076.03 & 73.3 \\
\hline 3071.235 & 10076.23 & 27.5 \\
\hline 3071.240 & 10076.25 & 22.3 \\
\hline 3071.245 & 10076.26 & 21.7 \\
\hline 3071.250 & 10076.28 & 46.0 \\
\hline 3071.275 & 10076.36 & 5.3 \\
\hline 3071.280 & 10076.38 & 7.3 \\
\hline 3071.285 & 10076.39 & 9.6 \\
\hline 3071.290 & 10076.41 & 29.5 \\
\hline 3071.295 & 10076.43 & 67.5 \\
\hline 3071.300 & 10076.44 & 65.4 \\
\hline 3071.305 & 10076.46 & 102.2 \\
\hline 3071.310 & 10076.48 & 24.4 \\
\hline 3071.315 & 10076.49 & 109.6 \\
\hline 3071.320 & 10076.51 & 96.7 \\
\hline 3071.325 & 10076.53 & 67.8 \\
\hline 3071.330 & 10076.54 & 24.7 \\
\hline 3071.335 & 10076.56 & 22.6 \\
\hline 3071.340 & 10076.58 & 28.2 \\
\hline 3071.380 & 10076.71 & 124.2 \\
\hline 3071.385 & 10076.72 & 92.5 \\
\hline 3071.390 & 10076.74 & 75.7 \\
\hline 3071.395 & 10076.76 & 58.7 \\
\hline 3071.400 & 10076.77 & 105.6 \\
\hline 3071.405 & 10076.79 & 88.4 \\
\hline 3071.410 & 10076.80 & 102.3 \\
\hline 3071.415 & 10076.82 & 152.0 \\
\hline 3071.625 & 10077.51 & 170.1 \\
\hline 3071.630 & 10077.53 & 90.6 \\
\hline 3071.635 & 10077.54 & 54.1 \\
\hline 3071.640 & 10077.56 & 138.7 \\
\hline 3071.645 & 10077.58 & 151.6 \\
\hline 3071.650 & 10077.59 & 100.9 \\
\hline 3071.655 & 10077.61 & 169.0 \\
\hline 3071.660 & 10077.62 & 278.2 \\
\hline 3071.665 & 10077.64 & 165.2 \\
\hline 3071.735 & 10077.87 & 328.9 \\
\hline 3071.740 & -10077.89 & 436.4 \\
\hline 3071.745 & 10077.90 & 173.2 \\
\hline 3071.750 & 10077.92 & 263.8 \\
\hline 3071.755 & 510077.94 & 154.4 \\
\hline 3071.760 & -10077.95 & 268.2 \\
\hline
\end{tabular}```


[^0]:    - Calculate dynamic pseudo phase pressures (at the coarse grid block centre) as the average pressures for a stack of fine blocks through the coarse grid block centre.

