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Abstract

This thesis examines the transmission of sound through lightweight parallel plates,

(plasterboard double wall partitions and timber floors). Statistical energy analysis was

used to assess the importance of individual transmission paths and to determine the

overall performance.

Several different theoretical models were developed, the choice depending on the

frequency range of interest and method of attachment of the plates, whether point or

line, to the structural frame. It was found that for a line connected double wall there was

very good agreement between the measured and predicted results, where the dominant

transmission path was through the frame and the cavity path was weak. The transition

frequency where the coupling changes from a line to a point connection is when the first

half wavelength is able to fit between the spacings of the nails.

For point connected double walls, where the transmission through the frame was weaker

than for line connection, the cavity path was dominant unless there was absorption

present. When the cavity was sufficiently deep, such that it behaved more like a room,

the agreement between the measured and predicted results was good. As the cavity depth

decreases the plates of the double wall are closer together and the agreement between

the measured and predicted results were not as good.

Detailed experiments were carried out to determine the transmission into the double wall

cavities and isolated cavities. It was found that the transmission into an isolated cavity

could be predicted well. However, for transmission into double wall cavities the existing

theories could not predict transmission accurately when the cavity depth was small.

Extensive parametric surveys were undertaken to analyse changes to the sound

transmission through these structures when the material or design parameters are altered.

The SEA models are able to identify the dominant mechanisms of transmission and will

be a useful design tool in the design of lightweight partitions and timber floors.



Chapter 1

Introduction

1.1	 General Introduction

This thesis examines sound transmission through lightweight parallel plates. Structures

to which this work is applicable include lightweight double leaf partitions and timber

floors. Using Statistical Energy Analysis (SEA) theoretical models are presented to

predict the sound transmission through such structures and the behaviour of the

individual components. Other structures to which this work is applicable include wing

sections of aeroplanes and the fuselage of helicopters.

For the purpose of this work the structures under study are specifically lightweight

plasterboard double walls and timber floors. In domestic construction it is often

important that the walls and floors possess a high sound insulation to prevent sound

being transmitted between dwellings and between rooms within dwellings as this can

represent a nuisance to the occupants. When party walls or floors are constructed they

must meet the stipulations of the Building Regulations [1,2] and the relevant British or

International Standards [3,4,5,6].

Lightweight parallel plate structures consist of two thin lightweight plates which are

coupled by a connecting structural frame resulting in cavities being formed between the

plates and frame. The principle material used for the structural frame in such

constructions is timber. This is a cheap, fast to construct and workable material

providing easy handling for the labourers on site.

In recent years the designs of timber floors and partition walls have become more

complex incorporating elaborate fixing connections and improved types of absorption,

1



made from a variety of different materials, for the purpose of achieving higher sound

insulation. As designers, architects and specifiers push for improved sound insulation

between and within dwellings, it is becoming increasingly important to determine the

principle transmission_paths through such designs and whats,omponents of the structure

could be improved.

There are numerous sound transmission paths which may take place in a double wall.

There is the interaction between the plates of a double wall or timber floor and the

cavity. The structural isolation which is lost due to the frame coupling the plates of a

double wall at points (such as screws and nails) or along a line (if glued) also will affect

the overall performance of the structure. Whilst some walls may be designed to have

very high sound insulation properties, as tested in a laboratory, when built in the field

(on site) the connection with other components of the building may cause flanking paths.

These are sound transmission paths which allow sound to pass from one room to

another, bypassing the wall, resulting in poor sound insulation but not at the fault of the

separating wall.

One method of determining the performance of such structures is to carry out extensive

experimental work and from the collection of empirical data decisions could be made

on how best to improve the design. However, this is a long, drawn out and not

particularly accurate process and may not identify the best areas for improvement,

particularly on how each component behaves in the overall performance of sound

insulation.

A second method is to try to predict the overall transmission by determining

mathematical equations based on empirical data. This approach has been widely used on

double wall structures, but does not identify the transmission mechanisms involved.

The best method is to predict the performance of the structures entirely based on

knowing the material properties of the components and using mathematical models

determine the contributions from the individual transmission paths and how they

collectively affect the overall performance. This method is adopted for this study and

uses the modelling technique of Statistical Energy Analysis (SEA).
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Statistical energy analysis (SEA) is a flexible approach to modelling the behaviour of

complex systems and it is able to overcome most of the failings of the classical theories.

When using SEA the system or structure is subdivided into its various components called

subsystems making it easier to model and more manageable.

The behaviour of double walls or timber floors is a complicated process to model. Using

SEA allows specific transmission mechanisms to be studied in addition to determining

the overall sound transmission through such structures.

To quote the words of A. Powell "the essentially random nature of the process can be

seized upon with great advantage, instead of it being a burden" [7].

1.2	 Aims of this thesis

This thesis aims to develop the work of Craik and Wilson [8,9,10] and others by

studying sound transmission through lightweight parallel plates. Firstly to develop

theoretical models to predict the acoustic performance of double leaf lightweight

partitions. Secondly to verify these theories with measurements made on real partition

systems and on particular components of the construction. Thirdly to identify the

dominant mechanisms of transmission through such structures.

The interaction of the various components of the double walls are analysed and in

particular the structural coupling which takes place at the frame. By expanding on the

work of Wilson all types of waves such as flexural, longitudinal and transverse are

included in a study of structure borne sound transmission for a line connection between

the plates of a double wall. The interaction of the lightweight plates and the frame when

the plates are connected by few point are also studied using mobility models. Attention

is also given to the effect of the cavities on the walls behaviour and their interaction

with the plates and rooms.

The approach of this study was to identify and examine each transmission mechanism

to produce and then verify, theoretical models to predict transmission. Where possible

existing theories were used. New theories were developed when existing theories were
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found to be inappropriate or non-existent. Numerous test lightweight walls were built

and experiments carried out to obtain measured data to compare with the predicted

results. By combining the transmission of each of the mechanisms in a statistical energy

analysis (SEA) framework, predicted data was obtained that included the effects of

individual transmission paths and their effect on the overall predicted sound

transmission.

Most of the following chapters deal with a specific subject area which is relevant to a

particular transmission path. Measured and predicted results are shown together with the

theoretical models where the test structures that the experiments were carried out on

were only analysing that specific transmission path.

1.3	 Outline of the thesis

Chapter 2 gives a review of the previous work on double walls and the application of

statistical energy analysis. The work of previous authors using the classical theories and

SEA is discussed. The basic theory is also contained in this chapter and is referred to

in later chapters. Only the principle equations for basic SEA are given which are specific

to their use for double walls. For further discussion on the use of and theory of SEA

works by Lyon [11,12] and Craik [13] provide indepth analysis.

Chapter 3 describes the measurement procedures, experimental facilities and test

structures that were used and built during the course of this work. Discussion on the

accuracy of the measurements is given along with data showing the 95% confidence

intervals of various tests.

Chapter 4 describes the transmission between parallel plates with point connection. A

review of the existing theory is given and the types of connection possible are described.

Theory is presented for the case where the plasterboard is attached to the frame at

discrete points. A parametric survey is carried out to study the effect on the structural

transmission path through the frame when the material parameters of the frame are

altered. Finally measured results are given from tests on specific structures built to study

only this transmission path so that comparison may be made with predicted data.
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Chapter 5 gives a detailed theoretical model that allows transmission between the plates,

where the coupling to the frame occurs along a line. A review is also carried out of

previous authors work in this area. Two principle models are presented where the frame

may be modelled as a beam or as a finite plate. Comparisons are shown of the predicted

results for these and other models for transmission for a line connection. A parametric

survey is carried out for the plate model where the material parameters of the frame are

altered.

Chapter 6 gives extensive comparison between measured and predicted data for line

connected parallel plates where certain plates were omitted and the frame depth was

altered. These tests were carried out on freely suspended plate structures to analyse the

line coupling transmission path only.

Chapter 7 examines the transmission into an isolated cavity and also for a double wall

cavity. No new theory is presented but existing theories are examined in detail.

Contributions from the various SEA transmission paths are compared to identify the

dominant mechanism. The effect of the cavity to the overall sound transmission through

point connected double walls is studied.

Chapter 8 brings together all the theories presented, from Chapter 2 to Chapter 7, into

an SEA framework so that comparisons can be made between predicted and measured

results for full scale double walls. Results are presented for single plate walls, ribbed

walls, point and line connected walls and filially results from a full scale timber floor.

The timber floor was constructed so that flanking transmission could also be examined

and the contribution from these paths is discussed and results presented.

Chapter 9 contains a summary of the conclusions and gives suggestions for further work.
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Chapter 2

Review of Previous Work on Double Walls

and the Application of Statistical Energy Analysis

2.1	 Introduction

This chapter describes the construction of double walls and the various sound

transmission paths that occur. A review of work done by previous authors on research

into sound transmission through double walls is presented. The use of statistical energy

analysis (SEA) by past authors as a method of predicting sound transmission through

these structures is also discussed. Following these reviews the framework for SEA

theory and how it may be applied to double wall structures is described.

2.2	 Double wall construction

Fig 2.1 shows a typical section through a double wall partition and the various SEA

sound transmission paths. Sound transmission can take place through the structural

frame, the cavity and the interaction of the structure with the source and receiving

rooms. The structure and sound transmission paths of a double wall partition are similar

to that of a basic timber floor.

Generally the material used for the partition plates is 12.5mm thick plasterboard which

has a density of approximately 800 kg/m' and a longitudinal wavespeed of 1700m/s.

These are connected by nails or screws to a structural timber frame. In the case of

partitions used in offices the structural frame is a steel or aluminium alloy channel. For

the purpose of this study, most of the test structures studied have involved timber

structural frames so that the theories presented could also be applied to domestic

timbers floors.
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The timber structural frame in a partition or a floor has a width of normally 40-55mm.

However, the depth of the frame may vary from 25mm, for a non load bearing

partition, up to 250rrun for a floor joist [2]. The spacing of these frame elements varies

from 400mm to 600mm depending on the load requirements and design specification.

The standard type of timber used in internal domestic partitions or joists in timber

floors is softwood timber [14]. Examples of softwood include, Norway spruce, Douglas

fir, Scots pine and Yellow pine. Timber as a material can be defined as a low density,

cellular and polymeric composite which does not conveniently fall into any one class

of material [15]. Due to its high strength and low cost it is an attractive material for the

construction industry.

The direction of grain and growth rings in timber results in an orthotropic material with

different material properties depending upon the plane under study. Fig 2.2 shows a

cross section through a wedge shaped segment of softwood tree. There are three planes

of study when using timber. These are the axial plane, which is the vertical growth

direction of the tree, the radial plane, the direction of the growth rings (radiating

outwards from the centre of the tree), and the tangential plane, which as the term

describes, is the tangential to the direction of the growth rings. Due to 90-95% of the

tree cells being aligned in the axial direction, or vertical axis, the remaining cells are

aligned in the radial and tangential axis and this also causes anisotropy in the timber

[15]. This was not initially thought to be important but subsequent calculations showed

that this orthotropicity can have a significant effect.

Fig 2.3 shows a typical cut section as would be used for joists and partition frames. The

term used for the structural frame in a partition is 'stud'. Fig 2.4 shows the direction

of loading and direction of sound propagation through the structural element. The

longitudinal wavespeed in the tangential direction, CL() is as much as two to four times

less than in the axial direction, Cuo. As a result of this the bending stiffness in the

various directions are different and should be accounted for when predicting the

structure borne sound transmission through the frame. Further discussion of this is

presented in Chapter 5.
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The spacing of nail or screw point connections also varies due to the difference in

mechanical coupling that occurs. Nails have a weaker mechanical coupling than screws

and therefore require to be positioned at closer spacings due to design load

requirements. Typical spacings for nails in a plasterboard partition are 150mm and for

screws 300mm [16,17]. Further discussion on the implications of this spacing and the

choice of nail or screw connections is discussed in Chapter 4.

2.3	 Review of previous work on double walls

This section outlines some of the principal theoretical work by previous authors for

sound transmission through double walls.

Beranek and Work [18] produced a theoretical model for the transmission of waves at

normal incidence to a double wall. The stimulus, in part , for Beranek and Work

producing this theory was experimental work by Nichols et al [19] who studied a series

of attenuating structures as part of a World War II program for "quieting noise in

aircraft". The double wall studied consisted of two impervious layers, an air space and

two acoustical blankets. They were able to obtain a ratio of pressures on any two

surfaces by solving the wave equation for the different sections of the wall using the

continuity of acoustic impedance at each interface. From this an expression could be

derived for the difference between the incident and transmitted sound pressure levels

on the wall. Equations for more simple structures could be derived from the general

case by setting some of the parameters equal to zero. Beranek and Work's theory had

the advantage of being theoretically exact and could be applied to various forms of

construction. The disadvantage being that they only provided a solution for normal

incidence.

London [20] found that the normal incidence theory was "totally inadequate" in

explaining the behaviour of a double wall as normal incidence overestimates the

performance of double walls. Real walls are subjected to diffuse sound fields and as a

result lower transmission loss is obtained. London obtained a solution for sound

transmission for random incidence. London considered the problem as a continuity

problem with forward and reverse travelling waves between the two plates and a
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forward wave beyond the second plate. This theory predicted that the improvement of

a double wall over a single wall could be small and sometimes even negative. This

behaviour of the double wall was explained by the effect known as Lower London

frequency or mass-spring-mass frequency.

At low frequencies the double wall behaves like a single wall with the same total mass.

The air in the cavity appeares to have no sound reduction effect. Instead it behaves as

if it had an infinite stiffness causing the two plates of the double wall to move as one.

The mass-spring-mass (MSM) frequency, fo, occurs where the cavity behaving like a

spring with a stiffness equal to that of the air, joining the two plates (masses) of the

wall, would have its first resonance. The transmission loss rises rapidly above this

frequency as the effect of the cavity influences the sound reduction. Further dips in the

transmission loss occur at higher frequencies where standing waves may be supported

in the cavity.

Using this random incidence theory London compared his predicted data with measured

data for double wall structures with varying widths of the cavity. For some of the

structures there was good agreement but for structures with narrow cavities and for high

frequency results the theory underestimated the walls performance. This may have been

due to the fact that he analysed all angles of incidence with equal weight. In addition

London introduced a resistance term R which assisted in aligning the theoretical values

of the transmission loss with the measured values. This was criticised by Mulholland

et al [21] and White and Powell [22], because no physical mechanism could be related

to R.

Mulholland, Parbrook and Cummings [21] calculated the transmission loss of an infinite

double wall using ray theory. The solution assumed that an obliquely incident wave

upon entering the cavity would under go repeated reflections between the two plates of

the double wall with sound being transmitted on each occasion. The wave was

attenuated with each reflection by introducing absorption in the cavity on the surface

of the two plates. Whilst their model did not predict any better the transmission loss

than Beranek and Work or London they claimed that at least it allowed examination of

the effects of absorbing surfaces. When predicted and measured data was compared for
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their model with absorption in the cavity they did find good agreement. However they

did not measure the absorption factor of the material in the cavity and chose at random

the value to give the best fit. The theory was modified later by Cummings and

Mulholland [23] by the introduction of absorption at the edges of the cavity to attenuate

the cavity waves which created a finite wall behaviour. They integrated the expression

over a limited angle of incidence and found good agreement with measured data without

the need to randomly select absorption values. But this theory was criticised by Sewell

[24], who did not agree on the use of ray theory in the cavity where the frequencies

under study had a much larger wavelength than the cavity depth. Mulholland continued

his research in this area with studies on experimental work with Utley [25] for trying

to identify an optimum spacing for the cavity between the two plates and with Hudson

[26] on real masonry cavity walls.

Sewell [24] produced a two dimensional solution for sound transmission through a finite

double wall based on wave theory. The wall was modelled as two simply supported

plates each set in their own infinite rigid baffle. For mathematical reasons the cavity

was assumed to be infinite and left open. The purpose being that once sound passed

between the baffles it was assumed it never returned. Sewell did not treat the

coincidence region between the plates and air. Solutions were provided for above and

below critical frequency, for both resonant and non-resonant transmission. By varying

the internal loss coefficient of the plates the transmission loss could vary significantly.

When comparing other authors measured results with his theory which shows an

impressive agreement Sewell noticeably omitted the value of the internal loss

coefficient he had used for his comparison. Good agreement between measured and

predicted results was obtained when the internal damping was chosen.

Sharp [27] produced three approximate expressions based on the sound field being

incident over a limited angle of incidence for predicting double wall performance. The

three expressions were dictated by the frequency boundaries of MSM and first cross

cavity resonance. The first expression was for frequencies below the MSM where the

double wall behaved as a single wall and the transmission loss increased at 6dB per

octave. The second expression was for frequencies between MSM and the first cross

cavity resonance where the transmission loss increases at 18dB per octave and was
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similar to Schiller's [28] expression. The third expression was used for frequencies

above the first cross cavity resonance where transmission through the double wall is

more dependant upon the individual double wall plates. The data provided by these

approximate theories compared well with experimental data until absorption was placed

in the cavity. The third expression had poor agreement at the higher frequencies.

The theories presented so far have dealt with infmite double walls, had unwarranted or

unmeasured factors inserted to assist in their agreement or have been solved for normal

incidence. They have at some time been building blocks in assisting the understanding

of sound transmission through double walls. One factor which perhaps is absent in most

of the above mentioned theories is the effect of structural coupling. Real double walls

are coupled by structural supports (as in lightweight partitions) or are tied together by

returning one of the plates (as in cavity walls).

Sharp [27] produced expressions based on impedance models for the effect that a

structural tie or line may have on the airborne performance of a cavity wall. However

these do not permit the structural coupling to be examined in detail and are for flexural

wave motion normally incident on the joint. Real walls will have inplane waves and

these may or may not form a contributory factor. Also as has been mentioned before

solving a solution for normal incidence does not reflect the behaviour of real walls.

Bhattacharya, Mulholland and Crocker [29] have examined structural coupling through

a double wall using a wave model and modelling the frame as a plate. This presupposes

that the frame is deep enough to support modal behaviour. Their research lacked an

indepth analysis of the parameters of the double wall and how any changes to these

properties might affect the overall sound transmission. Vinokur [30] also investigated

structural coupling via the foundation strip at the base of a double wall. Approximate

expressions were found for its contribution on airborne performance.

These authors and others are discussed in more detail in Chapter 5, Parallel Plates with

a Line Connection, for their contributions to the prediction of structural sound

transmission through double walls. Other authors such as Donato [31], Lin and

Garrelick [32], Gu and Wang [33] and Davy [34] have studied double walls and have

produced solutions which are specific to a particular transmission path or problem or
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are a modification to a previous suggested theory. Further discussion and a more in

depth analysis of some of the various theories mentioned above can be found in Fahy

[35].

The overall effect of varying any parameter or analysing all paths simultaneously is not

possible in the solutions presented so far. The finite nature of the cavity and its

interaction with the plates, for resonant transmission, or with the room, non resonant

transmission, cannot be grasped from the previous theories. Any changes to the

structure under study result in laborious calculations for the smallest of changes. The

quick approximate theories such as Sharp's are only useful when no structural coupling

is present. In the present and future real world of double walls the designers and

architects require a fast and reliable method of predicting the performance of double

walls without the need for laborious and for some difficult calculations.

In order to overcome some of the limitations of the classical theories statistical

approaches based mainly on SEA were adopted. The next section introduces SEA and

shows how it was used to study double walls.

2.4	 Statistical energy analysis and double walls

This section provides a brief description of Statistical energy analysis (SEA), the major

contributors to SEA for building structures and past work by previous authors on double

walls using SEA.

Brief outline of SEA

The general theory and background necessary to use SEA is described by Lyon [12] and

for applications of SEA to buildings by Craik [13]. Statistical energy analysis allows

the behaviour of complex systems to be modelled [12]. SEA is a technique that was

developed during the 1960's to allow complex structures to be modelled with relative

ease. Whilst the original ideas were spawned in the 1940's by Smith [36] the

momentum to use SEA due to its fast feedback and quick calculations came about

during the development of space vehicles and aircraft during the 60's. The general

principles of SEA can be applied to any type of structure and provides a means of
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representing and describing a structure in a simple manner.

In SEA a structure (system) is broken down into smaller more manageable sections

called subsystems. Each has its own identifiable energy which is assumed to be stored

in resonant modes. The subsystems are coupled to each other, whether structurally such

as a two plates connected along a line, or by a transmission path, such as two rooms

divided by a wall for a non resonant transmission path. The net power (energy) flows

through the system from subsystems of high modal energy to subsystems of low modal

energy. Some of the principle attractions of SEA are its ability to examine specific

transmission paths, change subsystem parameters without laborious calculations and see

their overall effect on the sound transmission through the entire system. Using this

technique can make it possible at an early stage in the design process of any structure

to identify the principle or dominant transmission paths. This allows attention to be

concentrated on these paths and can create further understanding of the mechanisms

involved. Also the effects of less important paths can be analysed individually, such as

flanking paths, which though minor may when summed with the other indirect paths

still play a contributory role.

Some of the first papers that described power flow through structures employing

statistical-mechanics and heat transfer may be found in Heckl [37], Lyon and Maidanik

[38] and Lyon and Eichler [39].

It is important to mention that though there are great benefits of using SEA this 

technique draws heavily on other disciplines from the classical theories for describing

the properties of the subsystems and the coupling that occurs between them. Also that

SEA is an analysis framework which is statistical, in that it is not an exact

understanding of a specific system [13]. It's aim is to understand the behaviour of a

wide variety of structures and to provide a mean response not a deterministic solution

as might be found using Finite ElementAnalysis.

SEA and building structures

Towards the end of the 1960's SEA started to be applied to building structures. As

mentioned previously SEA uses many of the classical theories to assist in predicting the
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performance of building structures. For structures such as walls and floors the energy

is assumed to be stored in the resonant bending modes. For rooms the energy is

assumed to be stored in the rooms resonant modes and the theory of room acoustics is

used to describe the properties of the subsystems.

To describe the radiation from structures, bending wave theory is used. Sewell [24],

Maidanik [40], and Leppington et al [41-43] have all studied radiation and these

theories can be incorporated into SEA to predict the coupling between walls and rooms.

Mass law theory can be used to describe the transmission between rooms for non

resonant transmission.

Structural coupling between elements in a structure may also need to be predicted. The

structural coupling is obtained from the transmission coefficients which can be derived

from wave models of structural joints. Theory provided by Cremer et a/[44], Kihlman

[45], Gibbs [46], Craik [9] and Langley [47] allow many of the joints found in building

structures to be examined.

Application of SEA to double walls

This section describes the application of SEA to double wall structures studied by

previous authors and Fig 2.5 shows some of the SEA models and transmission paths

investigated.

White and Powell [22] produced the first work on double walls using SEA. White and

Powell were critical of London [20] and other classical theorists for their assumptions.

Their paper was in turn criticised by Sewell [24] and Donato [31] for only concentrating

on resonant transmission and for an error in an assumption in their paper.

Crocker and Price [48] developed an SEA model for two rooms separated by a wall

which investigated resonant and non resonant transmission, shown in Fig 2.5a. This was

then extended in a second paper, Price and Crocker [49], for double walls, shown in

Fig 2.5b. The cavities were lined at their edges with absorption to reduce the effect of

the cavity resonant modes and this is not how real walls are constructed. Although the

theories presented in this paper have been criticised by Donato [31] and Brekke [50] for
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not taking into account any change to the cavity depth it was important in understanding

the basics and the usefulness of SEA in predicting resonant and non resonant

transmission through double walls. It also showed that a wide variety of elements of a

structure could be modelled as subsystems such as plates, rooms and cavities.

Bhattacharya [51] also investigated double walls in his thesis producing wave models

for the structural sound transmission, discussed in this study in chapter 5, and

developing theory for transmission into cavities. Bhattacharya also wrote a paper with

Price and Crocker [96] on double walls using SEA where they modelled the structural

ties as subsystems, shown in Fig 2.5c. It appears from their paper that the ties under

discussion are narrow tie beams and it may not be possible to model these ties as

subsystems due to the lack of resonant modes, as found by Wilson [8].

They also studied double walls connected by channel section panels (plates) but do not

make clear in SEA terms if these were modelled as subsystems. In the fmal figure,

figure 13, of their paper the authors show good agreement between the predicted

transmission loss between the double wall parallel plates coupled by channel sections

(plates) and the difference in the measured transmission loss for a wall with and without

channel sections. They account for the difference in the two walls as entirely due to the

channel coupling. The difference in behaviour of a double wall with and without

connecting plates can be due to a number of factors, not just the connecting channel

sections. When channel sections are present, coupling the parallel plates, the cavity is

split into a number of individual cavity subsystems and its modal properties are

changed. The coupling between the cavity and the adjacent plates is also affected due

to the smaller panel area bounded by the channels. From work presented later in this

study the panels would also be split into SEA subsystems, their size being dictated by

the connection spacing of the channels. This was not mentioned in their paper. It may

have been more prudent to have shown the overall predicted and measured transmission

loss for the line connected double wall, rather than subtracting one walls results from

another. In addition they used two values for the plate damping of 0.005 for frequencies

less than 800Hz and 0.02 for frequencies above 800Hz. This when calculated into dB

is a 6dB change which greatly assists the agreement but is never justified for its use.

17



V.

ROOM
	

PLATE
	

ROOM

(a) 3 subsystem model of two rooms separated
by a wall. (Crocker and Price)

ROOM
	

PLATE
	

)CAVITY
	

PLATE
	

ROOM

(b) 5 subsystem model of two rooms separated
by a double wall with no structural frame
(Price and Crocker)

V ;'

ROOM
	

PLATE
	

	)CAVITY	 PLATE
	

ROOM

TIES

(c) 6 subsystem model of two rooms separated
by a double wall with point connecting ties.
(Crocker, Bhattacharya and Price)
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Brekke [50] also investigated double walls using SEA and gave an empirical term for

the stiffness of the air in the cavity which he believed would account for the omission

of the cavity depth in Price and Crocker's theory. But this was only useful for

predicting airborne performance and not for when structural coupling was present.

Brekke also used SEA for triple walls consisting of three plates and two cavities.

Elmallawany [52] carried out a comparison of SEA and classical theories for sound

transmission through double walls. Generally it was found that the SEA model coped

adequately well when compared with the measured data. Previous authors had stated

concerns over the first cross cavity resonance and that the depth of the cavity was not

taken into account in Price and Crocker's SEA model [49]. However, Elmallawany

showed that even without structural coupling in the double wall, causing the cavity to

be a more dominant path, the reduction of sound transmission loss due the cavity

resonance of the air was not "remarkable" when compared with the computed SEA

results. Hence the fears of not including the depth in the SEA model and predicting this

resonance were unfounded.

Craik [9] carried out extensive experiments on real walls to compare with SEA models.

An expression was presented that allowed the coupling across the wall ties to be

included in an SEA model. The ties were not modelled as subsystems.

Ohta et al [53] also studied sound transmission through double walls using SEA. From

past work by previous authors it was found that there was a discrepancy at low

frequencies between the measured and predicted results. They assumed that this was due

to the omission of the non-resonant path from the source room through the double wall

to the receiving room, shown in Fig 2.5d. They included this path at low and mid

frequencies and found good comparison. Interestingly they did not show a comparison

between their revised SEA model results and the predicted results without this path.

From work carried out in this study it may be possible to include this path at low

frequencies below the MSM but thereafter this path is extremely weak and would not

alleviate the problems associated with the mid frequencies.

Craik and Wilson [10] produced an expression to account for the coupling across the
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cavity by the air between the two plates of a cavity wall which would include a term

for the cavity depth, shown in Fig 2.5e. This "airtie" expression was calculated by

replacing the wall tie stiffness term with the air stiffness term.

Further discussion of Wilson's work may also be found in Craik [13]. Wilson [8] also

studied structural sound transmission through double walls using wave models which

could then be inserted into SEA models. The walls under study were cavity walls as

found in the external walls of domestic construction. The transmission coefficient for

structural line connections between the cavity walls were calculated from the flexural

wave motion of the cavity wall plates. His work was used as a foundation for this study

to apply SEA models to lightweight parallel plates.

Sullivan [54] studied sound transmission through diaphragm walls using SEA for the

purpose of analysing the various transmission paths and material characteristics. The

cross-ribs of the diaphragm walls were at a depth which could support modal behaviour.

The SEA model is shown in Fig 2.5f. A flexural wave model and a full wave model

for the structural sound transmission path were compared. It was found that the energy

transmission was dominated by the cross-ribs and that the cavity path could be neglected

up to 1250Hz for the size of wall studied. Good agreement was found between the

measured and predicted data. Further discussion may be found on this research by

Sullivan and Gibbs [55] and Craik [13].

The above mentioned SEA theories have modelled either lightweight double walls or

masonry cavity walls/diaphragm walls. The theories for lightweight walls have either

ignored the structural path or avoided dividing the system down into further subsystems

or input terms to assist the agreement. The theories by Wilson and Sullivan have used

wave models to assist in predicting the structural sound transmission path for a line

connection but these were for heavy masonry constructions.

These theories have shown that SEA is the most promising approach to study double

walls. Due to the number of components and variables within a double wall SEA can

take account of these factors and any changes made to them. SEA is therefore adopted

in this work to study sound transmission through double walls.
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2.5	 Basic theory of statistical energy analysis

Before developing the SEA model the underlying principles are described so that the

process of development can be put in context. This section describes the basic theory

of statistical energy analysis (SEA) and how this is used in SEA system models with

regards to predicting sound transmission through lightweight double walls.

Lyon et al [12] describes SEA as a procedure for calculating the power flow and

storage of energy in a complex system. As mentioned in section 2.3 the system may be

broken down into subsystems. Power flows through a system from a subsystem of high

modal energy to a subsystem of low modal energy. The power into a subsystem, Win,

must equal the power out of a subsystem. Fig 2.6 shows a typical representation of a

subsystem. The power flowing between subsystems or energy lost due to coupling

between elements must be calculated. This is termed the coupling loss factor (CLF).

This is defined as the fraction of energy transmitted from subsystem i to subsystem j

per radian cycle, nu. The power flowing from subsystem i to subsystem j may be given

by [11],

Wij-Eicanv	 (2.1)

where Ei is the energy in subsystem i. In addition to the CLF there is also a dissipation

of power from each subsystem. This energy loss may be dissipated as heat within the

subsystem. This dissipated energy is termed the internal loss factor (ILF) and is defined

as the fraction of energy which is dissipated as heat within subsystem i per radian cycle,

n id . The power dissipated in subsystem i of Fig 2.6 may be given as [11],

Wid—Eicari	 (2.2)

The CLF's and the ILF of a particular subsystem i may be summed to give a

subsystems total loss factor TLF, 71i . The total power loss from subsystem i may be

given as,

(2.3)

where ni may be given by,
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(2.8)

(2.9)

n

lli— E iiiii-lid
	 (2.4)

i-loi-j

and is defined as the fraction of energy which is lost from the subsystem in one radian

cycle and is either dissipated within the subsystem or transmitted to other subsystems

Three subsystem SEA model

Fig 2.7 shows a three subsystem SEA model for two rooms separated by a wall as

described by Crocker and Price [48]. There are resonant transmission paths from source

room to wall, W12 , and wall to receiving room, W23 and a non resonant transmission

path source room to receiving room, W13 . In addition to coupling between the source

room and the wall there is also coupling between the wall back to the source room,

W21. Although the effect of this coupling may perhaps be small it is included in the

model for completeness. The same applies for the receiving room to the wall, W32 and

for the receiving room to the source room, W31 . These minor transmission paths were

not included in the Crocker and Price model. The power balance equation for

subsystems 1, 2 and 3 may be given as,

Win+ W31 + W21 - W12 + W13 + Wld
	 (2.5)

W12 + W32 - W21 + W23 + W2d
	 (2.6)

W13 + W23 - W31 + W32+ W34
	 (2.7)

The energy ratio for this model due to direct resonant transmission path can be given

by [13],

E1 112r13V3

E3 112123171

giving a level difference, D, as [13],

1213173D - 10log
11121123173
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SEA models with n subsystems

Real double wall structures contain far more than six subsystems and it is simpler to

write the power balance equations in a matrix form. For general systems with n

subsystems the power balance matrix may be written as,

111

112

n13

121

1 2

1 23

T131	 —

1 32

13

nni

—	 '1n2

—	 1In3

El

E2

E3 1=

-W1/6)

- Wica
(2.10)

•••	 •••	 •••	 •••	 •••

1 1n 1 2n 11 3n — lin E

This may be solved numerically (e.g. Gaussian elimination) to obtain the energy in each

subsystem for given loss factors and power inputs.

The equation for the level difference for any path can also be written from any number

of subsystems so that eqn (2.9) becomes,

For all SEA models the various elements of the structure such as plates, rooms, cavities

and frame all have their own expressions for modal density and energy. The following

section outlines the basic theory for these factors.

Subsystem energy and modal density

The energy in a room, E„ of volume V, is related to the mean square sound pressure,

p2 , through [11],

The energy in a structure, E„ is stored in both kinetic and potential energy. The total

energy can be obtained from twice the kinetic energy, as the potential and kinetic

energy are equal. This is related to the mean square velocity, v2 , on a structure of mass,

m, by,
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(2.13)

The modal density of a room, n r (modes/Hz), of volume V is given by [59],

	

47Ef2V iciS L	 (2.14)
c 3 	 2c 2 8c

where L is the total length of all the edges in the room and S is the total surface area

of the room.

Due to the cavity depth being small in comparison with the other two dimensions,

modal behaviour occurs in only two directions. Eqn(5.14) for rooms is for three

dimensions and cannot be used for two dimensional cavities. Price and Crocker [49]

suggested an expression for the modal density of a cavity, n c, below the first cross

cavity resonance fx,

where sc represents the cross sectional area of the cavity and the first cross cavity

resonance, fx , may be determined by,

where 1 is the depth of the cavity. Above the first cross cavity resonance eqn(2.14) may

be used for the modal density of a cavity. The modal density of bending modes on a

plate is given by Lyon [11] as,

where S, h and CL are the surface area, thickness and longitudinal wavespeed of the

plate respectively. The modal density of a beam may be given by,

where I is the length of the beam.
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Coupling loss factors

The coupling loss factors (CLF's) for double walls can be divided into two groups. The

first group involves the interaction between the structure and the air, such as plate to

room, plate to cavity, room to room and room to cavity. The second group involves the

coupling between the different structural elements such as plate to frame and plate to

plate for point and line connection.

The CLF for a plate to a room involves calculating the radiation efficiency, a, which

is defined as the power radiated by a structure compared to that of a piston with the

same area and the same velocity [13]. Calculating the radiation efficiency assists in

determining the power radiated by the plates of a double wall.

The classical method of determining the power radiated by a wall (plate) is,

- v2p ocoS a
	 (2.19)

The power radiated from a wall, 1, to a room, 2, in SEA notation is,

W12 El 6"112 P s8V
2

°1112
	 (2.20)

Equating equations 2.19 and 2.20 gives the CLF from a plate to a room as,

If part of the wall is radiating into a different subsystem, as may be found in double

wall structures, then the CLF should be reduced in proportion to the ratio of the area

radiating sound to the total area.

The radiation efficiency, a, from a finite plate may be calculated by several methods.

Wallace [56], Maidanik [40] and Leppington et al [41-43] amongst others have

proposed expressions for calculating a. For the purpose of this study a has been

calculated using Leppington et al [41]. The expression given by Wallace [56] is

extremely complex and excessive as it calculates a for each mode. Leppington et al [41]

produced similar expressions to Maidanik except that a correction was made for

frequencies below the critical frequency, fc , setting Maidanik's term 'g1 or g2' to zero
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and correcting the values at L. The critical frequency is the frequency at which the

wavespeed in the structure and wavespeed in the air are equal. This is given by,

Leppington et al [41] provide three expressions for the radiation efficiency, a, for

frequencies below, equal to and above critical frequency, (f <f, f = f>> fc ). The

following expressions are given for a simply supported panel (freely hinged at its

edges), which is placed in an infmite baffle and radiating into free space [41],

Uco
a -

2p, f,f

c4 .7t 2fign2s012_
1.L +11.

1/2 {in{	 1	 112_
(2.23)

a -[
co
.fr 41/2 [0.5-0.15-1 f-f

	
(2.24)

-

 [

f ]1/2
a 1--f 	 f>f

fc
(2.25)

where 11=--(fc l f ) 112 ,l and 4 are the plate dimensions (4 4), and U is the perimeter

length of the radiating area.

However, most real edges are not simply supported but are clamped and this increases

the radiation below fc [40],[42]. From experimental work by Heron [57] and later

theoretical work by Leppington et al [42] for most real edges the radiation efficiency

will be increased by 3dB or a multiplier of 2, where there is some clamping. Also most

walls and floors are not in the same plane as the baffle but are surrounded by other

walls and floors perpendicular to the radiating surface. This further increases the

radiation efficiency below L by a multiplier of 2, or 3dB [43]

The increased radiation for real edges and perpendicular baffles or other structures is

equivalent to a multiplier of 4 and a sharp transition at the critical frequency occurs.

To avoid this and enable a smooth transition for a Leppington et al[58] suggest a
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correction factor to be applied below the critical frequency, which is given as [13],

where m is the multiplier. Fig 2.9 provides a summary of the radiation from a plate

with different boundary conditions and the multiplier used below the critical frequency.

Equation (2.21) and the above expressions for radiation efficiency may also be used for

calculating the CLF from a plate to a cavity. Price and Crocker [49] amongst others

also suggested that the radiation efficiency should be doubled due to the effect of a

perpendicular baffle.

The CLF from a room, 1, to a plate, 2, may be calculated using the consistency

relationship [11] which is valid for all CLF's,

nirl	 n27121
	 (2.27)

where n is the subsystem modal density. Taking the first term for modal density of a

room from eqn(2.14) and the modal density of a plate, eqn(2.17), the CLF from a room

to a plate may be given as,

The CLF for transmission from a cavity to a plate may be found using the consistency

relationship but using the modal density for a cavity, where the frequencies of interest

are below f, and the modal density for a room, for frequencies above f. The CLF for

transmission from a cavity, 2, to a plate, 1, for frequencies below fx is given as,
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Clamped edge an inplane baffle (x 2)

Point: no significant radiation
Line: 2 clamped edges in an

inplane baffle (x 4)

2 clamped edges in an inplane baffle (x

E.
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Clampled edge in a right angled baffle (x 4)

Line: clamped edge in a right angled baffle (x 4)

c.	 Point: simply supported edge in a right angled baffle (x 2)

Clamped edge in a right angled baffle (x 4)

Point: simply supported edge in a right angled baffle (x 2)

Line: clamped edge in a right angled baffle (x 4)

Ribbed plate: no significant radiation Ribbed plate: rib may increase radiation

Figure 2.9 Radiation from a plate with different boundary conditions and the
multiplier used below the critical frequency.
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The room to room CLF for non resonant transmission or mass law coupling is related

to the transmission coefficient, Tn.. At all angles of incidence below fc the free bending

waves on the wall play no part in this mechanism of transmission for an airborne source

being incident on the wall. The structural subsystem or wall, is effectively bypassed and

the two rooms are coupled directly. Transmission associated with this motion is called

forced motion. The power transmitted is given by,

where S is the area of the wall through which the sound is passing and V is the volume

of the source room. Equating eqn(2.30) with eqn(2.1) the CLF between any rooms 1

and 2 may be given by,

This equation may also be used for calculating the CLF from a room to a cavity.

However, for calculating the CLF from a cavity to a room requires the modal density

of cavity for frequencies below fx . Taking the first term of eqn(2.14), the modal density

of a cavity, eqn(2.15), and using the consistency relationship, eqn(2.27), gives the CLF

from a cavity, 1, to a room, 2, as [13],

n12 
T 12	 (2.32)

The non resonant transmission coefficient used in this study is that given by Leppington

eta! [43],

P°C°
Tcfp .,(1 -12 /ff')

In
 [

2Tcf4 1+ 0.160+ U(lely)
co

+ 1 R2112 1)012+ 1y1n(112_ 1) + (42 + 1)012_ 1)21i(112+ 1)_41.12_8116h1(01
4116

(2.33)

where i = (fe If )h12 and U(/,,/y) is a function of shape and can be ignored for normal

shaped structures (where 0.1 < ly < 10).
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There are principally two types of CLF for structure borne sound transmission used in

this study. These are CLF's for point or line connection. The CLF for point connection

is calculated using mobility functions. The CLF between any two subsystems connected

by an infinitely stiff connection, can be given by [13],

where Nis the number of point connections, m1 is the mass of the source subsystem and

Y1 and 1'2 are the mobilities of the source and receiving subsystems respectively. This

can be used to calculate the CLF from plate to plate, plate to frame or frame to plate

in double wall structures where the frame is modelled as a beam. The mobility of a

plate excited by a point source at its centre, far from the edge is given by [44],

where p„ CI and h are the plate surface density, longitudinal wavespeed and thickness.

The point mobility of a beam excited far from an edge is given as [44],

1 
Irbealn- 2.67 pSXzryll +i)

(2.36)

where p, S, h and CI are density, cross sectional area, thickness and longitudinal

wavespeed of the beam respectively. Further discussion of point connections for parallel

plate structures is given in Chapter 4.

The CLF for line connected plate structures is related to the transmission coefficient,

T, where this is defined as,

t— Power transmitted	
(2.37)

Power incident

The power transmitted from plate 1 to plate 2 across a structural joint with length L12

is [11],
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giving the general expression for the CLF as,

where S1 is the surface area of the source plate, L 12 is the joint length and cg is the

group velocity. The group velocity is the speed at which energy is transported across

a plate and is the same as the phase velocity for longitudinal and transverse waves and

is twice the phase velocity, 2cB , for bending waves on thin plates, where CB is given by,

cB-11.8hcLf
	

(2.40)

Chapter 5 in this study discusses in more detail the structural coupling between parallel

plates for a line connection.

Total loss factors

The total loss factor (TLF) may be calculated from the sum of the coupling loss factors

plus the internal loss factor (ILF). For all subsystems the TLF is related to the

reverberation time T60 by,

For rooms it is difficult to separate the total loss factor from the internal loss factor and

measured data is usually used. In this study all the room TLF's were measured.

However, the T60 can be predicted from [59],

where S is the surface area of a given material present in the room, a is the absorption

coefficient of that material and V is the volume of the room. The TLF of a cavity can

be given by [49],
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where A is the surface area of the edges of the cavity. For structures where possible the

TLF has been calculated by summing the CLF's plus the ILF. Where these could not

be predicted as in the case of some of the chamber ceilings an approximation may be

used [13],

Relationshipbetween energy and sound pressure levels and acceleration levels

The measure of how much sound is present in a subsystem is the energy in that

subsystem. In classical acoustics the noise level in a room would be described by the

sound pressure (level), 4, and the vibration of a wall by the velocity (level), L, or

acceleration level La . Using energy can either be used in absolute units in Joules or can

be measured in dB. It is usual to use 10-12 J as the reference so that the energy level,

Le , is [13],

Le .- 101og (--)
10-12

(2.45)

The energy level in a room is then related to the sound pressure level, 4, by [13],

Le - Lp+101og (V)-25.4	 (2.46)

where V is the volume of the room (m2). The energy level in a wall may be realted to

the wall mass, m, and the velocity level or acceleration level given by [13],

L— Le-101og m	 (2.47)

or

L, Le-10 logm +20 logG)	 (2.48)

where Ly and La are the velocity and acceleration level of the wall in dB re 10 6 m/s and

10-6m/s2 respectively.
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2.6	 Conclusions

This chapter presented past work by previous authors on double walls. It was found that

existing classical theories could not cope with any changes to parameters of the

structure or analyse the contributions from specific paths. A review of SEA for double

walls was also discussed and its development by various authors in tackling the various

sound transmission paths. Some of these authors included the non-resonant path through

the entire structure over the complete frequency range. However, this path is extremely

weak at higher frequencies and is not important. Price and Crocker's work did not deal

with real walls and the paper written with Bhattacharya had a 6dB adjustment which

could not be justified other than to produce good agreement between the predicted and

measured data. The theory necessary to calculate the coupling loss factors for a general

model was discussed inluding the coupling loss factors specific to double walls. The

final section showed how the total loss factors of structures, rooms and cavities are

determined.

Further work is required to predict sound transmission through double walls using SEA

models where the application is to real walls incorporating structural frames and

cavities. In addition these models must be able to predict variations to the components

within the structure and analyse the contributions from the various transmission paths.
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Chapter 3

Experimental Facilities and Measurement Techniques

3.1	 Introduction

This chapters describes the measurement facilities, test structures and equipment used

in carrying out the measurements and determining the material properties. It also

describes the calibration of microphones and accelerometers and the accuracy of the

measured results. During the period of this research over forty different test structures

have been built and tested. This chapter also describes some of the principle test

structures and Table 3.1 lists all the test structures built.

3.2	 Measurement facilities and test structures

A large majority of the measurements performed in this work were made on lightweight

double leaf plasterboard partitions built in a transmission suite. The horizontal

transmission suite used for these partitions is shown in Fig 3.1. An example of one of

the test walls built is shown in Fig 3.2. The horizontal transmission suite consisted of

two rooms (chambers) that were structurally isolated from each other. Both rooms had

a common opening measuring 4.0x3.0m where the test walls were constructed. The

smaller of the two rooms measuring 6.8x4.0x3.0m was used as the source room for

airborne level difference measurements. When testing partition walls in the early period

of this work a concrete block wall was built into the source chamber reducing the length

of the room to 6m. The second room measuring 7.0x6.0x5.0m was used as the receiving

room for the above experiments.

The floors and ceilings of the chambers were made from 0.2m thick in-situ concrete

which had a measured longitudinal wavespeed of 3250m1s and a density of 2400Kg/m3.

The walls of the chambers were built from 0.22m thick brickwork with a measured
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Vertical transmission suite (common opening 3.2x3.6m)
150mm built-in timber floor structure (without absorption)

Horizontal transmission suite (common opening 3.0x4.0m)
150mm chipboard / plasterboard studwall (without absorption)
100mm line connected plasterboard studwall (with absorption)
100mm point connected plasterboard studwall (with absorption)
100mm point connected plasterboard studwall (without absorption)
50mm point connected plasterboard studwall (with absorption)
50mm point connected plasterboard studwall (without absorption)
50x5Omm frame ribbed plasterboard wall
18mm chipboard wall

Horizontal transmission suite (common opening 1. 7x1. 7m)
single leaf12.5mm plasterboard wall (perimeter frame only)
single leaf 12.5mm plasterboard wall (perimeter frame + 1 rib)
single leaf 12.5mm plasterboard wall (perimeter frame + 3 ribs)
double leaf 12.5nun plasterboard wall (perimeter frame only)
double leaf 12.5mm plasterboard wall (perimeter frame + 1 rib)
double leaf 12.5mm plasterboard wall (perimeter frame + 3 ribs)

Test cavity structure (1.9x0.96m with varying depth)
150mm floor cavity, 100mm floor cavity, 50mm floor cavity,
25mm floor cavity, 50mm floor cavity (with absorption),
25mm floor cavity (with absorption)

Freely suspended plasterboard plate double wall structures (with timber frame)
point connected two plate structure (frame 45x75mm)

line connected 'H' plate structure (1,2,3,4) 200,100 and 50mm depth frame
line connected plate structure (1,3,4) 200,100 and 50mm depth frame
line connected plate structure (1,2,4) 200,100 and 50nun depth frame
line connected plate structure (1,2,3) 200, 100 and 50mm depth frame
line connected plate structure (1,3) 200, 100 and 50mm depth frame
line connected plate structure (1,4) 200,100 and 50mm depth frame

Table 3.1 Structures tested for sound transmission through lightweight parallel
plates.
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Figure 3.1 Section and plan of horizontal transmission suite.
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Figure 3.2 Photograph showing one of the test partitions being constructed in the
common opening in the horizontal transmission suite.
(The wall shown is the 50mm insulated stud partition with the photograph
taken in the receiving room at the doors.)
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longitudinal wavespeed of 2130m/s and a density of 1685 Kg/m'. The walls and ceilings

were painted with a cement paint to seal the pores in the brick and concrete and reduce

absorption in the room.

The two chambers were structurally isolated from one another which assisted in

preventing flanking transmission from the structure of one room to the next. The larger

chamber, the receiving room, was built on springs and a 15mm gap between the walls

of the two chambers was filled with a mastic seal which maintained the isolation at the

perimeter of the common opening. However, the structures tested in the common

opening were built on one side of the opening as is shown in Fig 3.3. The plasterboard

double leaf lightweight partitions were mounted on a frame which was fixed to the

perimeter of the common opening in the receiving room. This meant that the structure

of the receiving chamber would still slightly affect the performance of the wall. Some

of these effects are discussed in more detail by Craik [13].

One of the other structures to which this research on lightweight parallel plates is

applicable is that of timber floors. Tests were carried out in a vertical transmission suite

where a timber floor was constructed between the rooms in a common opening as shown

in Fig 3.4. A variety of acoustic tests were carried out including airborne sound level

difference, structure borne sound level difference, airborne to structure and structure to

airborne.

The upper chamber was separated from the lower chamber by a common concrete ring

beam creating a common opening and which could support structures such as timber

joists to concrete floor slabs. The 50x150mm timber floor joists could have been

supported at either end by the concrete ring beam. However, it was thought that if the

joists could be supported on one end by a continuous wall, linking the upper and lower

chambers, then the effect of flanking transmission could also be included in this study.

Therefore a 250inm wide cavity wall was constructed, linking the upper and lower

chambers, to which the timber joists were built into the inner leaf, as shown in Fig 3.4

and Fig 3.5.
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Figure 3.3 Section through common opening where the test partition is
mounted on the recieving room side.
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The cavity wall was composed of a 100nun thick dense concrete block inner leaf

mortared and sealed to the floor, ceiling and surrounding walls at its edges. The outer

leaf of the cavity wall was also made up of 100mm dense concrete blocks but was

sealed at its edges by a continuous 100mm foam layer and elastic mastic seal. It was

only structurally connected to the inner leaf by a series of butterfly steel wall ties at

600x900mm spacings horizontally and vertically. The empty cavity formed between the

inner and outer leafs was 50mm deep. The dense concrete blocks had a measured

longitudinal wavespeed of 2020m1s and a density of 1836Kg/m 3 . The cavity wall was

painted with a cement compound paint to seal the pores in the concrete blocks and

reduce the absorption.

The opposite ends of the 50x150mm timber joists, which spanned 3.8m, were supported

on the concrete ring beam and had small timber wedges between them to maintain their

spacing. The majority of the seven timber joists were at 500mm centres which in turn

supported an 18mm thick chipboard floor and a 12.5mm thick plasterboard ceiling. The

0.6m wide tongue and groove chipboard floor panels were connected by screws at

300mm centres to the joists. The 1.2m wide plasterboard sheets were connected at

150mm centres by nails. Figs 3.6 and 3.7 show the chipboard and plasterboard layout.

The dimensions of the upper chamber were 4.0x4.0x2.7m and the lower chamber were

4.0x4.0x3.1m. The surrounding walls of the upper and lower chambers were primarily

made up of 0.22m thick brickwork and the ceiling and floors were 0.2m thick in-situ

concrete with similar material properties to those of the horizontal transmission suite

mentioned previously.

Due to the interaction that occurs between the test wall and chambers, the chamber

structures such as floor, walls and ceiling were included in the SEA models that were

used to compute the overall sound transmission. The breakdown of these structures into

SEA subsystems is discussed further in Chapter 8.

As will be discussed in later chapters, the structural sound transmission through the

supporting frame, whether a partition or floor, plays an important role in the overall

sound transmission through lightweight parallel plates. In the course of this work a major
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Figure 3.6 Plan of 18mm thick chipboard floor panels for the 150mm timber floor.

Figure 3.7 Plan of 12.5mm thick plasterboard ceiling panels.
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part of the research has been to develop prediction models for sound transmission

through point and line connected structures. Measurements were carried out on various

small parallel plate lightweight structures, freely suspended in an anechoic chamber. By

suspending these small sections of lightweight partition, the structural sound transmission

path through the frame could be analysed in more detail with no flanking or other

influences from surrounding structures if built into a transmission suite. Also by

measuring in an anechoic chamber any effects of reflections from surrounding surfaces

could be greatly reduced. Fig 3.8 shows a typical test structure in an anechoic chamber.

Chapter 6 explains in more detail the varieties of structures tested and gives the results

for the measured and predicted data.

The construction of lightweight partitions or timber floors requires a structural frame,

studs or joists, at regular spacings which couple the parallel plates. As a result of these

regular spacings and offset between the parallel plates, equal to the depth of the frame,

large voids or cavities are created. These cavities play a crucial role in the non-resonant

transmission path through these structures. Consequently tests were carried out on a

separate test structure to analyse sound transmission into cavities.

Figs 3.9 and 3.10 show the cavity test structure. It was constructed of dense concrete

blocks which formed the base and walls of the cavity which was mounted on one of the

test chamber floors. A plasterboard sheet was then laid inside the cavity structure to

provide a flush flat finish. A second plasterboard plate of slightly larger dimensions was

then placed on top of the cavity, supported at its edges on the concrete blocks and sealed

with mortar. Once the top plasterboard sheet was installed this sealed inside the cavity

a microphone, B&K type 4190, which was pre-calibrated. Using thin wires, which were

inserted through minute holes in the wall edges, the microphone could be moved around

within the cavity to obtain individual measurements for various locations within the

cavity to achieve a mean value. The holes were sealed before taking measurements.

This test cavity structure could have its depth varied by increasing or decreasing the

height of the perimeter walls. The depths varied from 25mm to 150mm and were tested

with and without absorption. The length and width of the cavity were 1.9mx0.96m as

shown in Fig 3.9.
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Figure 3.8 Photograph showing one of the freely suspended test structures in the
anechoic chamber.
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Figure 3.10 Photograph showing the cavity test structure. (The cavity shown is the
25mm non insulated cavity prior to the top plasterboard plate being
mounted. The circle in the left of centre is the built-in speaker.)
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(3.1)

3.3	 Measurement of density

The material used in the test structures for this study include timber, brick, concrete

(block and in-situ), aluminium and plasterboard. Determining the density of the materials

used in the test structures was found by measuring a sample volume, V, of the materials

and then weighing them on electronic scales to find the mass, m. By dividing the mass

by the known volume the density, p, could be determined, as given by,

In the case of the horizontal and vertical transmission suites these had previously been

constructed prior to this work. Hence, the design densities given by the architect

drawings were used. Although these may not give a completely reliable measure of

density of the material, the accuracy should be within 10% [8]. The design values of

density were used for the chamber walls, ceilings and floors which formed flanking

paths. However, these tended to be less important, so any error in the prediction from

these paths would be small.

3.4	 Measurement of longitudinal wavespeed

Young's modulus, E, of a material is required for many calculations and may be

computed from the longitudinal wavespeed, CL . The relationship between the density and

longitudinal wavespeed to determine the Young's modulus is given by [44],

E= p CL2
	

(3.2)

for a beam and for a plate may be given as [44],

E= p CL2(1 -1.1,2)

	
(3.3)

where i.t is Poisson's ratio and p is the density.

Fig 3.11 shows the method that was adopted in this work for measuring the longitudinal

wavespeed of plasterboard, for example. The simplest way to excite a longitudinal wave

on a structure is to strike it on an edge with a plastic headed hammer. Two

accelerometers, B&K type 4500, were mounted on their sides onto the test material at

50



a measured distance, each connected to a charge amp, B&K type 2635, and then fed into

a two channel oscilloscope. As the longitudinal wave passes the first and second

accelerometer the oscilloscope records when the waves pass and the time interval

between each. Then dividing the known distance by the time interval will determine CL.

As the edges of the test chamber walls were not exposed it was necessary to excite the

longitudinal waves indirectly. Fig 3.12 shows the method of determining the longitudinal

wavespeed if the edge of the test material is not exposed. A force transducer was

mounted on the tip of a plastic headed hammer to record when the waves were

generated. An accelerometer mounted on the side was used to detect the arrival of the

waves on the wall. The signal from both the hammer transducer and the mounted

accelerometer are stored on an oscilloscope to determine the transit time. If the distance

between the source hammer and receiving accelerometer is known then dividing this by

the transit time will determine CL.

The plasterboard double leaf partitions are supported by a structural timber or aluminium

frame. The sizes of a timber partition in depth ancL width  may vary from 25mm to

200mm. Due to these small dimension of the timber frame and timber's unique

orthotropic properties, which are discussed further in chapter 6, the standard method of

measuring the longitudinal wavespeed as shown in Fig 3.11 could not be used at all

times. The timber longitudinal wavespeed varies in three dimensions, axial, tangential

and radial, due to the direction of grain and plane under study. Only_the- axial direction

_may be measured using_the method shown in Fig 3.11. The timber frames tested were

generally varying in length, the axial direction from 1.2m to 3.6rnThe_tangential and

radial dimensions of the timber frames, which represented the depth and width were

generally much smaller as described above. The measurement of the longitudinal

wave speed in these two directions required the use of a Terratest, see Fig 3.13. This

provides a fast pulse source signal transmitted through a metal plate into the short

measured timber section and then received by a second metal plate. Both plates are

attached with beeswax. The source and transmitted signals are fed into a dual channel

oscilloscope which can determine the time interval. Dividing the known distance

between the plates by the time interval will allow the longitudinal wavespeed to be

determined.
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3.5	 Measurement of damping

The total loss factor, II, was required for subsystems such as rooms, cavities and plates

so that it could be inserted into the SEA models. Each type of subsystem required a

different technique for measuring the damping. The most common measure of damping

in building acoustics is the reverberation time, which is the time for the energy to decay

by 60dB once a steady state source has been stopped. The reverberation time, T, and the

total loss factor are related by,

ln(106) 2.2
	

(3.4)
2,7EfT fT

The reverberation time for a room was measured using a Nortronics Type 823 analyser,

a B&K speaker and a 1/2" B&K type 4190 microphone. The Nortronics generates noise

at third octaves which is cut off and then records the decay of sound pressure in the

room. It calculates the reverberation time from the first 30dB and first 15dB of usable

decay, normalised to 60dB range. Measurements were made between 501-Jz to 6300Hz

over at least 6 positions.

For cavities this method can also be used but due to the small volume of some of the

cavities tested the reverberation time was very short and the reverberation time fell

below the cut off filter of the Nortronics. An example of the difference in reverberation

time between a room and a cavity is shown in Fig 3.14.

To measure the cavity reverberation time a MLSSA, Maximum-Length Sequence System

Analyser, was used which could measure as low as 0.01 seconds and store the

reverberation time on a desk top computer. Both the microphone and speaker were pre-

calibrated and built into the cavity as shown in Fig 3.9. The results were averaged over

40 time samples for each position of the microphone and at least six positions were

recorded. Due to the small size of the speaker in the cavity its operative range at the low

frequencies was restricted and so the frequency range recorded was between 100Hz and

5000Hz.

However it must be stated that using the MLSSA technique may not always be possible.
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Figure 3.15 Measurement of structural damping
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It was found that when measuring the reverberation time on cavities with absorption

present the reverberation time was extremely short and sometimes fell below the cut off

filter for the MLSSA. These measurements are discussed in more detail in Chapter 7.

For structures, an accelerometer is used instead of a microphone to detect the decay. Due

to the short decay the equipment shown in Fig 3.15 was used, following a procedure

given by Craik [60]. The accelerometer was attached to the structure by beeswax and

using a single blow from a plastic-headed hammer to excite the subsystem the decay was

detected by the accelerometer. To avoid nearfield effects care was taken not to strike the

structure too close to the accelerometer. The signal from the accelerometer was fed into

a measuring amplifier and passed through a set of third octave filters. Taking the rms

value this was then converted into a logarithmic signal and fed to an oscilloscope. This

allows a straight line decay to be displayed, stored on the oscilloscope and calibrated in

dB along its vertical axis. The slope of the decay was measured and knowing the time

base on the oscilloscope, it was possible to determine the reverberation time for the

structure to find the total loss factor, TLF, using eqn(2.41).

Fig 3.16 shows the measured and predicted TLF for a plasterboard panel in a wall. As

can be seen there is good agreement. Where there was no absorption touching the plates

the predicted TLF of the plates was used for ease. But when absorption was present the

measured TLF was used.

This technique was also used to find the internal loss factor of the plate materials,

chipboard and plasterboard, used in this study. Fig 3.17 shows the measured and

predicted internal loss factor for freely suspended chipboard and plasterboard plates. The

measured ILF for both materials increases in value slightly at the higher frequencies due

to the critical frequency, where the critical frequency for chipboard is approximately

2000Hz and is 3150Hz for plasterboard. The internal loss factor for both materials was

generally quite constant and these could be inserted into the full SEA models, discussed

in later chapters, using the absolute units 0.01 for plasterboard and 0.018 for chipboard,

(100dB and 102.55dB re 10-12). Measurements were made at six positions between 50Hz

to 6300Hz on each test structure.
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Figure 3.16 Measured and predicted TLF for a plasterboard panel in the 150mm
double wall with no absorption.
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Figure 3.17 Measured and predicted internal loss factor for plates.
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3.6	 Calibration

Accelerometers

The measurements performed in this study were made using B&K Type 4369 and B&K

Type 4500 accelerometers with B&K Type 2635 charge amplifiers. To calibrate the

accelerometers a B&K Type 4294 vibration calibrator was used that produces an

acceleration of 10m/s2 at 159.2Hz to an accuracy of ±0.2dB.

Microphones

The airborne measurements were carried out using 1/2" B&K Type 4190 condenser

microphone connected to B&K Type 2639 pre amplifiers. These were calibrated before

and after each measurement using a B&K Type 4230 or B&K Type 4231 sound level

calibrator. These generate a sound pressure level of 93.8dB at 1 KHz for a 1/2"

microphone and calibrate to an accuracy of ±0.3dB.

3.7	 Level difference and phase measurements

The majority of the experiments carried out for this work were level difference

measurements. These type of measurements involved airborne level difference (the sound

pressure level between two rooms), structural level difference (the difference between

acceleration levels measured on two structures), room to structure and vice versa.

To undertake these tests two real time digital frequency analysers were used measuring

at third octaves. For the airborne level difference measurements a loudspeaker fed with

pink noise from the Nortronics Type 823 noise generator was used as the sound source.

For structural level differences a plastic-headed hammer or a B&K Type 4810 shaker

was used as the structure borne sound source on the structural source plate. Calibration

was carried out before and after each test and for structural measurements the charge

amplifiers and analysers were constantly checked to ensure that they were not overloaded

by the hammer blows. In the latter stages of the tests a B&K Type 2148 portable dual

channel frequency analyser was used, this being portable and lighter was easier to use

than the two older and larger single channel B&K Type 2131 real time analysers.
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The experimental set up for making third octave level difference measurements is shown

in Fig 3.18. The source and receiving signals were fed into the two real time analysers

(B&K Type 2131) connected via an IEEE bus cable to a desk top computer. This

allowed simultaneous measurements to be recorded for all third octave bands. At each

measurement position sixteen seconds of linear averaging was carried out and at the end

of the averaging time the computer automatically read and stored the data from both the

analysers. The computer calculated the mean, standard deviation and 95% confidence

interval for the level difference at each frequency. The microphone or accelerometer

positions were then changed and the procedure repeated until the 95% confidence

interval was less than ldB between 100Hz and 51(Hz. Generally the number of measured

positions for each subsystem whether a room, cavity or plate was approximately twenty.

Once a measurement was completed, the mean was recomputed to account for the effects

of background noise. If the measured level was within 8dB of background noise the data

was disallowed. This rarely happened during the tests for this work.

Narrowband measurements were also carried out for analysis of phase for mass-spring-

mass in the plasterboard double wall structures. These were made using a B&K Type

2032 FFT dual channel analyser over a frequency range of 20Hz to 1.6KHz. At each

position a linear average was taken of 400 time samples. Using two accelerometers

which each had a charge amplifier the signal was fed directly into a desk top computer

via an IEEE bus and stored.

3.8	 Accuracy of measurements

When carrying out any experiments it is important to guage the accuracy of the data

recorded. Some experiments on the partitions involved minor changes to the

construction, such as changing the number of fixing nails, depth of the frame and

placing absorption in the cavities. These construction alterations may only slightly affect

the measured data results. Therefore in this work a high degree of accuracy was adopted.

This would try to ensure that any changes measured were due to the change in

construction and not statistical variations arising from the measurement procedure.
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Figure 3.18 Schematic of experimental set up for 1/3 octave level difference measurements
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(3.6)

(3.7)

Throughout this research when measurements were carried out the standard deviation,

sd, and 95% confidence interval were calculated as an on going process as each

position's data was recorded.

To determine the accuracy it is necessary to know the distribution of the data. Craik

[13], examined this problem and concluded that the 95% confidence interval and

standard deviation for structural and airborne data, when in dB, could be assumed to

follow a normal distribution. The following section describes the expressions for

determining accuracy that were used.

The mean was calculated by converting the measured data from dB into absolute units.

The mean was then calculated and converted back into dB. For a single variable

measurement, x, the mean, m, of a set of, n, measurements is given by [61],

m Ex
	

(3.5)

When calculating the standard deviation, sd, and the 95% confidence interval it is not

necessary to convert the measured data into absolute units, as these can be obtained

directly from dB values [13]. The standard deviation is given by [61],

Ex 2 (Ex)2

n-1

and the 95% confidence interval is obtained using [61],

sd(dB)	
95%CC	 X if vp.975

tv,0.975 is the value taken from the students t-distribution for a 95% confidence interval

for a measurement with v degrees of freedom, where v is equal to n-1.

Figs 3.19 and 3.20 show the typical 95% confidence intervals for the third octave band

measurements carried out for airborne level difference and structural level difference for

the partition test structures.
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Figure 3.19 95% confidence interval for the airborne level difference for various
structures tested.
Point connected partitions (Cl) 150mm wall, (0) 100mm wall,
(A) line connected wall, (*) ribbed wall.

Figure 3.20 95% confidence interval for the structural level difference for various
structures tested
Point connected partitions (0) 150mm wall, (0) 100mm wall,
(A) line connected wall, (*) ribbed wall.
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Figure 3.21 95% confidence interval for the airborne level difference for the
cavity test structure with varying depth.
(0) 150mm, (0) 100mm, (A) 50mm, (*) 25nun.
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Figure 3.22 95% confidence interval for the structural level difference for various
freely suspended line connected 'H' type structures with 100mm depth frame.
(0) 4 plates, 1 to 3, (0) 3 plates 1 to 3, (A) 1 to 2, (*) 2 plates 1 to 3.
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Over most of the frequency range the 95% confidence interval was less than ldB for the

airborne data and 1.5dB for the structural data. At the low frequencies there are

exceptions to this but generally these were less than 2.5dB. Figs 3.21 and 3.22 show the

typical 95% confidence intervals for the 1/3 octave band measurements carried out for

airborne level difference to the cavity and suspended plate structures.

The 95% confidence interval results shown are for level difference results only. The total

loss factor results for both cavities and plates must also take into account variation from

the mean and this is discussed in more detail in Chapter 7 and Chapter 8.

3.9	 Conclusions

This chapter has described the test facilities and the principle test structures built inside

them. The test structures were designed and constructed so that structural flanking could

either be controlled and investigated where required, reduced to a minimum or omitted

completely. By reducing or omitting the flanking transmission this helped to increase the

dominance of the direct transmission paths through the test structures.

The techniques used to perform the airborne and structural measurements on the test

structures were described. Through consistent monitoring and sustaining of the 95%

confidence interval to be less than ± 1 dB any changes to the construction of the test

structures could be observed.

Methods were described of how the subsystem parameters such as damping and

longitudinal wavespeed were measured and the varying techniques adopted for the

orthotropic nature and size of the partition timber frames.
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Chapter 4

Transmission Between Parallel Plates with Point

Connection

4.1	 Introduction

This chapter describes the transmission between parallel plates for different forms of

point connection. The coupling between such plates may vary depending upon the type

of construction. Different types of parallel plate construction can be found in domestic

housing as shown in Figure 4.1. Previous work by Wilson [8] covered transmission

between parallel plates for cavity walls where the thickness of the plates, made of

brickwork or concrete blocicwork, was greater than the depth of the cavity. However

another common area where lightweight parallel plates can be found, made from

plasterboard and chipboard, is in internal partitions and timber floors.

This chapter will describe the different forms of lightweight parallel plate construction,

the methods of modelling the point connection and how the coupling is affected by

varying the parameters within the structure. Overall sound transmission through point

connected double walls, including all transmission paths, will be discussed later in

Chapter 8. This chapter discusses only the structural sound transmission path for point

connected plates. As will be shown in later chapters the transmission of the structure

borne sound through either point or line connected parallel plates is a primary sound

transmission path in buildings and thus the thrust of this thesis is concentrated in this

area.
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a) Cavity wall (plan view)

	— chipboard flooring

timber joists

— plasterboard

b) Timber floor (cross section view)

c) Internal partitions with timber or
metal frames (plan view)

Figure 4.1 Types of parallel plates in housing
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4.2	 Types of parallel plates in housing

Different types of parallel plate structures exist in housing which can be of heavy or

lightweight construction and are shown in Figure 4.1. The research carried out by

Wilson [8] on point connection in cavity walls was for structures as shown in (a). This

thesis will concentrate on lightweight parallel plate structures as shown in (b) and (c).

The basic timber floor section shown in (b) is normally made up of a series of timber

joists acting as the supporting frame connected by nails or screws to chipboard panels

for the floor and plasterboard sheets for the ceiling. The internal partition (c) is formed

from one or more layers of plasterboard sheet on either side of a timber stud frame also

connected by screws or nails.

The average spacing of the timber joists or studs is about 450mm, depending on the span

and loading. The nails or screws connecting the floor or partition panels (plates) to the

frames are spaced randomly between 100 to 600mm centres. The spacing of these point

connections is a principle factor in deciding whether the panels (plates) are point or line

connected. Also in structures such as these the nails or screws are spaced randomly

along the length of the frame and may or may not be immediately opposite each other

on either side of the frame connecting the plates as shown in Figure 4.2.

Therefore this section describes the effect of the spacing of the nails or screws with

regards to structure borne sound transmission.

4.3	 Review of existing theory

Several authors have examined the problem of plates coupled by points and the types

of structures studied are shown in Figure 4.3

Cremer, Heck' and Ungar [44] covered the basic theory relating to point acting sound

bridges, (a), by using impedances of the components of the structure. From this the

power transmitted from one plate to another could be found. They also studied low and

high frequency models, structural parameters of the bridge between the two plates and

elastic interlayers.
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plates (plasterboard/chipboard)

nail or screw
point connection -->

frame (timber studs/joists)

a) Typical method of connection for lightweight
parallel plates

b)Plates coupled by offset point connection

c) Plates coupled by immediate opposite point connection

Figure 4.2 Location of point connections for plate coupling
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a) Point acting sound bridges
(Cremer)

e) Point connected plates
(Bosmans and Vermeir)

c) Point connection of stud walls
(Sharp)

b) Plates connected by a tie beam
(Bhattacharya)

d) Cavity walls connected by wall ties
(Craik),(Wilson)

Figure 4.3 Types of point connected plate structures studied by previous authors
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Bhattacharya et al [29] modelled two large plates connected by a tie beam,(b). The

majority of the research was in calculating the transmission coefficients between parallel

plates coupled by a tie plate. This theory was then adapted to model parallel plates

connected by a narrow tie beam. The plate to plate CLF was multiplied by the ratio of

the tie width and the plate width along the junction length. This CLF could then be

denoted as a plate to tie beam, and using reciprocity, tie beam to plate could also be

found. They modelled the tie beam as a subsystem. However, it may not be possible to

model these as a subsystem due to the lack of resonant modes. No parametric study was

undertaken to see what effect varying the number of ties or varying its properties would

have on the coupling.

Sharp [27] also looked at parallel plate structures and in particular stud partitions, (c).

He developed an "approximate" method of calculating the overall transmission loss for

point connected plates by modification of the mass law. The method of point connection

used in the experiments was to mount small timber 'dabs' between plates and frame to

ensure point and not line connection. However, this method is very approximate and the

extra terms inserted into the equations for transmission loss are not clarified.

Craik [13] used electrical analogues to assist in the determination of point connection

CLF's for plates in cavity walls connected by wall ties, (d). Due to the spacing of the

ties in cavity walls each tie could be considered independent in its effect in transmission

across the cavity. The CLF could be calculated for one tie and the total coupling due to

all ties found by simply multiplying by the total number of ties. Also by including the

mobility of the tie, (the inverse of impedance), it was possible to find the transmission

across the cavity, separating the parallel plates, for different types of cavity ties. Craik

also found experimentally and theoretically that the smaller the cross sectional area of

the tie the lower the CLF between the two plates.

Wilson [8] carried out substantial measurements on cavity walls varying the number of

ties using different designs of wall ties. Using the theory previously researched by Craik

[9] an indepth analysis was undertaken resulting in full SEA models for cavity walls

with point connections and showing the importance of the transmission path across the

ties.
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Lyon et al [12] and Manning [62] studied vibrational energy flow between point

connected structures in the context of SEA. Both authors derived expressions for the

coupling loss factor for point connected systems using a mobility function formulation.

Lyon et al studied two different approaches for point connected structures, the wave

approach and the modal approach. Structures studied include multi dimensional

subsystems, multiple subsystems at a connection and multi degrees of freedom at a

connection. Bosmans and Vermeir [63] more recently have also calculated the

transmission between periodically coupled plates. This advanced model, based on the

wave approach for elastically coupled semi-infinite plates, calculated the transmission

for two plates coupled at a corner, at 90 0 to one another, and two inline plates (e). They

found that to model a point connected plate junction at low frequencies by use of a

continuous line junction was not always a good approximation. In addition, observations

regarding the importance of the spacing and number of point connections agreed with

work carried out in the early part of research for this thesis [64].

The work of Cremer et al, Lyon et al, Craik and Wilson has particular relevance to the

study presented in this chapter due to their study of coupling using impedance models.

However, none of these authors have carried out a parametric study of the structure and

only Craik and Wilson have studied real walls and these were cavity walls, with no

connecting frame.

4.4	 Theory for coupling of parallel plates at points

In the work by Craik and Wilson [10] coupling loss factors were derived using mobility

functions for point connection between two leaves of a cavity wall due to the presence

of wall ties. A variety of wall ties were studied with varying degrees of stiffness. In the

context of this work the points of connection are formed by screws or nails which are

considerably smaller and stiffer than wall ties and are regarded as being infinitely stiff

and extremely short in length. Results will be shown later in this chapter to support this

assumption. The spacing of the wall ties in cavity walls is quite even over the surface

area of the wall, but in lightweight partitions or timber floors the points of connection

are concentrated in a specific axial direction where the frame is connected to the plates.
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A primary concern when calculating the sound transmission for such structures is when

is the connection a point or a line. The spacing of the nails or screws may vary due to

the designs and thus the points of contact coupling the plates to the frame may be closer

together or further apart. In addition as frequency increases so the plate bending

wavelength decreases and thus the frequency range under study is important in terms of

whether the structure is line or point connected.

Figure 4.4 shows the boundaries for point and line connection with varying bending

wavelength and constant nail spacing. At low frequencies where the bending wavelength

is large in comparison with the spacing between the points of connection coupling

between the plates may be modelled as a line connection. At higher frequencies where

the bending wavelength is small in comparison to the connection spacing the coupling

between the plates can be modelled by considering them as independent points. The

transition is taken in this work to be where the spacing is (?412) which agrees with

experimental data and the predicted frequency when this occurs may be given by,

fp 	 (2s) 2

where h, CL and s are the plate thickness, longitudinal wavespeed and spacing of the

point connections. The addition of more point connections will change the transition

frequencyf where the first half bending wavelength is equal to the spacing between the

fixture points, as shown in Figure 4.5. As the spacing distance s and the first half

bending wavelength are halved the transition frequency 4, where the structure changes

from being modelled as a line to a point, increases by a factor of 4.

The following section describes the theory of point connection for a timber stud partition

with offset or opposite point connections.

Offset point connection

The structure consists of two plates connected to a timber frame by nails and screws and

is shown in Figure 4.6. Figure 4.6 also shows the electrical analogue (c) for this

structure and the SEA model (d) for the two plates coupled to a beam with offset point

connection. In this structure the nails or screws are regarded as offset and not

(4.1)
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Figure 4.4 Modelling point and line connection with fixed nail spacing and variation
in frequency.
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Figure 4.5	 Variation of the transition frequency with increasing point connections.
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analogue, (d) SEA model.
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(4.3)

(4.4)

immediately opposite each other and therefore act independently. The mobilities of the

two plates and frame are Y1, Y3 and Y2.

The CLF between two subsystems connected by an infinitely stiff connection, can be

given by,

N Re(Y2)

1112 

wmilYi+Y2I2

where N is the number of point connections, m1 is the mass of the source subsystem and

Y1 and Y2 are the mobilities of the source and receiving subsystems respectively. This

can be used to calculate the coupling from a plate to plate, plate to beam or beam to

plate. The mobility of a plate at its centre is given by [44],

Y	 1 
P 2.3ppLh

and the mobility of a beam is [44],

1
2.67 p S‘/CLItil I +i)

where p is the beam density, S is the beam's cross sectional area, CL is the longitudinal

wavespeed and h is the beam depth. Some previous authors have taken the mobility of

a plate at its edge which is given by [44],

	

8Y	 . 5
Y	 P

P(edge) 23

but for the purpose of the structures studied in this work Equation 4.3 is used.

Immediately opposite point connections

In some cases the structure may be constructed so that the point connections may be

immediately opposite each other.

Such a structure is shown in Figure 4.7, including the electrical circuit analogue (c), and

the SEA model (d). In this structure coupling can occur between the source plate and

beam, and also directly from the source plate to the receiving plate. Thus the CLF is

(4.2)

(4.5)
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Figure 4.7 Immediatly opposite point connections (a) plan, (b) section, (c) electrical
circuit analogue, (d) SEA model.
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(4.6)

(4.7)

VOYe 
	

(4.8)

Yl+Ye

affected by the mobility of the beam Y2 and the mobility of the receiving plate Y3 and

together their mobilities can be represented by Y. Thus the total mobility of the

receiving plate and beam, Ye, is given by,

111
Ye Y Y2	 3

The velocity at the connection point, v1 is given by,

V1 	 Ye 

V0 Y1 + Ye

The power transmitted to subsystem (3), plate, or subsystem (2), beam, may be written

as,

W13 Re(ly3(1';'))= Re( l [v 	 r e	 0Y e  1 * _
Re

Y3 Y1 + Ye 171 +Ye)	 ( Y3

Equating Equation 4.8 and the standard equation for power transmitted between two

subsystems given by,

Wi3 =Ei ri
	 (4.9)

the coupling loss factor between the source plate and the receiving plate for N number

of point connections is given as,

-  N  Re( 1 )  11C12111 3
 M 1 6)	 Y3 )	 Yel2

(4.10)
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4.5	 Parametric study of point connected plates

This section describes the predicted changes to the structure borne sound transmission

by varying the construction and material parameters for two lightweight parallel plates

connected by point connection to a beam (frame).

The SEA model of the system was shown previously in Figure 4.6 and the structure

studied is shown in Figure 4.8. There are three subsystems involved, the source plate,

the beam and receiving plate. There are four coupling loss factors 1 12, 123 and the

reciprocal 121 and 132• Each of the subsystems also has an internal loss factor rid.

Typical values of the principle material properties of the subsystems are shown in Table

4.1.

Whilst there may be only three subsystems in this SEA model there are a number of

parameters which may vary depending on the materials used and the construction. These

include:-

the number of point connections

- the value of the tie stiffness

the material properties of the beam

- and whether the point connections are offset or opposite.

This section describes each of these parameters using a theoretical SEA model for point

connected plates. The subsequent section, section 4.6, compares measured and predicted

results for a similar type of structure.

Varying the number of point connections

Using Equation 4.2 it is possible to calculate the change to the coupling loss factor as

the number of point connections is varied. Figure 4.9 shows the coupling loss factor

from plate to beam and beam to plate with varying number of point connections. It is

noticeable that the beam to plate CLF is higher than the plate to beam CLF across the

frequency range. This is due to the low impedance of the plate in comparison to the

impedance of the beam. The high value for the CLF from the beam to the plate suggests

that there is equipartition of modal energy.
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Figure 4.8	 Schematic of structure with point connection

Subsystem Dimensions (m) Material properties

Plate	 1

Frame 2

Plate	 3

Lx Ly L, p (kg/m
3

 ) Ea (t4/m2) E r (N/tri) R 'Il i (1LF)

1.2 1.2 0.0125 793 2.31x10
9

- 0.2 0.01

0.05 1.2 0.1 475 8.21x10
9

1.51x108 0.3 0.015

1.2 1.2 0.0125 793 2.31x10
9

- 0.2 0.01

Table 4.1 Material properties of plasterboard plates and timber frame for point connected
test structure.
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Figure 4.9 Predicted coupling loss factor for plate to beam and beam to plate
with varying number of point connections.
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(4.11)

2 (4.12)
Y + Y +—

(I)
1	 2

Equipartition is where both subsystems have the same modal energy and there is no net

power flow between them. As a result, at the low frequencies where the coupling is very

strong, the predicted level difference would be unchanged by any increase in the

coupling. This is shown in Fig 4.10. As can be seen the level difference at the low

frequencies is tending to zero for all number of point connections.

The effect of varying the number of point connections on either side of the frame

(beam) connecting the plates can be seen in Figure 4.10, which shows the predicted

acceleration level difference between the source and receiving plates. As the frequency

increases so the level difference becomes greater and as more point connections are

added the level difference becomes smaller with increased coupling.

Varying the stiffness of the ties

There are two methods of point fixture from the plates to the beam either using nails or

screws. Generally these two forms of fixture are made of steel or steel alloy which are

small in length, about 40mm, and with diameter of several millimetres. Due to their size

and separation distance between plate and beam, which is no more than 2mm they can

be regarded as being infinitely stiff and extremely short. If the worst case limit was

evaluated for a tie of length 2mm and a diameter of lmm then the tie stiffness, k„ would

be 8.25x107N/m2 computed from [8],

where E, S and L are the Young's modulus, cross sectional area and length of the ties

respectively, where the value of E for steel is 2.1x10" N/m2 . Using this value for k, it

is possible to calculate the effect of tie stiffness on the CLF given by [8],

N Re (Y2)

Figure 4.11 shows the acceleration level difference between two point connected plates

where the value of k, is varied from lx10 1 N/m2 to 5x107N/m2 . As can be seen in Figure
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Figure 4.10 Predicted acceleration level difference between the source and
receiving plates with varying number of point connections on
each plate.
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Figure 4.11 Predicted acceleration level difference between two point connected
plates with varying stiffness values.
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4.11 the tie stiffness lower limit only slightly affects the transmission at very high

frequencies, however this is out with the frequency range of importance in sound

transmission in buildings, which is 63Hz to 51(Hz. Therefore it is reasonable to assume

for this work that the point connections can be regarded as infinitely stiff.

Varying the properties of the beam

The key properties of the beam which can affect the transmission between the two plates

are the beam depth, width, density, and Young's modulus. The plate damping may also

be a variable factor but for this work the measured values were always used and are

shown in Table 4.1.

The depth of a timber stud partition can vary from 50mm to 200nun. Figures 4.12 and

4.13 show the predicted acceleration level difference for two point connected plates

where the depth or width of the beam is varied.

As the parameters are increased so the impedance of the beam becomes greater and the

coupling loss factor decreases resulting in weaker transmission. Noticeably as these

values increase by the same increment the marginal weakening in coupling decreases

each time.

Figures 4.14 and 4.15 show the change in level difference as the density and Young's

modulus are changed. Increasing these parameters increases the acceleration level

difference. At the low frequencies any change in the parameters has a small effect to the

acceleration level difference than at the high frequencies.

Comparison of predicted results for offset and opposite point connections

As previously discussed the point connections in lightweight parallel plates may be

directly opposite or offset. The two theories presented in section 4.4 are compared in

Figure 4.16. As expected the opposite point connection theory shows stronger coupling

between the parallel plates and a lower acceleration level difference than the predicted

offset results. However, the increase in coupling from offset to opposite point connection

at 500Hz is only 0.8dB, which is an insignificant increase in transmission.
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Figure 4.13 Predicted acceleration level difference for two point connected
plates with varying width.
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Figure 4.14 Predicted acceleration level difference for two point connected
plates with varying beam density.
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Figure 4.15 Predicted acceleration level difference for two point connected
plates with varying beam Young modulus.
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4.6 Comparison of measured and predicted results for point coupled plates

This section compares measured and predicted results for the test structure shown in

Figure 4.17. using the previous theory for offset point connected plates. Chapter 8

describes the measured and predicted results for point connected full scale double walls.

The test structure was suspended in an anechoic chamber to reduce sound being radiated

from any surrounding surfaces. The SEA model of the test structure is similar to that

shown in Figure 4.6 using offset point connections. Structure borne excitation was by

an acoustic hammer on the source plate (subsystem 1) and the acceleration level

difference was measured between the two plates (subsystems 1 and 3). The points of

fixture connecting the plates to the beam were 30mm steel screws and the subsystem

material properties are shown in Table 4.2.

Comparison of offset and opposite point coupling

Measurements were carried out on the test structure shown in Figure 4.17, to compare

offset and opposite point connections, using 8 screws coupling each plate to the beam.

The measured and predicted results for these two methods of coupling are shown in

Figure 4.18 and the material properties in Table 4.2.

In the frequency range 200Hz to 500Hz there is a slight difference in the measured

results. This may be due to several factors including the cut of the grain in the timber,

the presence of knots and flaws in the beam where the point connections are attached,

and the orthotropic properties of the wood. There is generally good agreement between

the measured and predicted results. As was shown in Fig 4.16 there is very little

difference between the predicted offset and opposite point connection transmission loss

and the measured results shown in Fig 4.18 support this.

Number of point connections

A test was carried out by varying the number of point connections on the test structure

shown in Figure 4.17 for 3,7 and 15 screws coupling each plate to the beam. As more

screws are added along a finite length so the spacing between each point will decrease.
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Figure 4.17	 Schematic of test structure with point connection

Subsystem Dimensions (m) Material properties

Plate	 1

Frame 2

Plate	 3

Lx Ly Lx p (kg/m3 ) Ea (N/m2) E r (N/n?) 1.1. 11. (ILF)

1.17 2.4 0.009 801 2.31x10
9

- 0.2 0.01

0.045 2.4 0.075 475 8.21x10
9

1.51x108 0.3 0.015

1.17 2.4 0.0125 793 2.31x10
9

- 0.2 0.01

Table 4.2 Material properties of plasterboard plates and timber frame for point connected
test structure.
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Figure 4.18 Comparison of measured and predicted acceleration level difference
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Figure 4.19 shows the measured results of varying the number of screws attaching the

plates to the beam. As the number of screws increase so the coupling and transmission

increases resulting in a reduced level difference between the plates.

A comparison of the measured and predicted acceleration level difference is shown in

Figure 4.20. For a 2.4m length junction with 3 screws equally positioned at 600mm

centres the first half bending wavelength would fit between the points at a frequency of

28Hz. This is out with the frequency range of interest. However, if the distance between

the point connections was halved by adding more screws, (to 7), the first half bending

wavelength would fit between the fixture points at 112Hz and for 15 screws to 448Hz.

At frequencies below fp the junction behaves as a line connection, and above this

frequency it behaves as a series of points. The total loss factor of the plates was

calculated by measuring the internal loss factor of the plates and adding the coupling

loss factors. Figure 4.20 shows good agreement between the measured and predicted

results.

4.7	 Discussion

The construction of internal partitions and timber floors in the U.K. are subject to the

Building Regulations[1,2] and the British Standards. In the design of such structures

factors to be considered include strength and stability, load and span, fire resistance and

fire protection, handling requirements, service penetrations and sound insulation. The

spacing of point connection fixtures is stipulated in the British Standards [16,17]

primarily for strength and stability factors but no mention is made of the effect to sound

insulation.

The spacings distances, for nails conforming to BS 1202 [65] and screws conforming

to BS 1210 [66], in such structures are specified as 'maximum' spacings. BS 5234 Code

of Practice for 'Dry lining partitioning using gypsum plasterboard' [16] specifies that

the maximum distance for nails should be 150mm and for screws 300mm. The primary

reason for the nails being closer together is because the nails have a weaker mechanical

coupling to the frame than the screws.
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For a nail spacing of 150trun or a screw spacing of 300mm in a standard plasterboard

partition the first half bending wavelength will fit between the points of contact at

425Hz and 106Hz respectively. Subsequently using nails rather than screws in drywall

partitions will increase the transition frequency f and thus the behaviour of the

connection will be similar to a line over a larger frequency range. This can only result

in stronger sound transmission through the structural path and overall increase sound

transmission to the receiving room and reduce the sound insulation properties of the

wall. Although the screws specified in BS 1210 will be of a slightly increased diameter

than nails, as has been shown in the parametric study of tie stiffness this increase will

not affect the acceleration level difference between two plates. Hence the use of screws

at larger spacings would be a more preferable option for reducing sound transmission.

In the case of timber floors BS 8103 [67] specifies smaller spacing of nails than screws.

The spacing of nails and screws for plywood flooring to the joists is 150mm and 300mm

respectively. For plasterboard ceilings fastened to the underside of the joists the nail

spacing should be a maximum of 150mm and 230min for screws. The closer spacing of

the nails for 22mm thick plywood boards with a longitudinal wavespeed of 2134m/s will

result in a transition frequency between line and point connection at approximately

720Hz in comparison to 180Hz for screw fixings. Thus the behaviour of the connection

will be similar to a line for an even greater frequency range for nail fixings.

Although regulations clearly specify the fixing spacing unfortunately the difference

between what is specified and what is constructed on site can be quite large.

4.8	 Conclusions

The predicted results using the offset point theory has shown to give good agreement

with the measured results. The measured results suggest the transition frequency fp,

where connection behaviour changes from a line to a point, can be approximated to 4/2.

Increasing the depth or width of the frame will result in weaker sound transmission

through the frame. Due to design restrictions it may be easier to increase the width of

the frame to reduce sound transmission in the structural paths than to increase the depth

and reduce the overall dimensions of the rooms by increasing the thickness of the walls.

96



The point connections which couple the plates to the frame may be regarded as infinitely

stiff and infinitely short. The use of offset or opposite point connections in a partition

appears to make very little difference to the structural sound transmission path across a

timber frame. A suggestion of further work in this area would be to carry out tests on

offset or opposite point connections using an isotropic material such as steel.

Increasing the number of point connections can increase the sound transmission by 3dB

per doubling of connections. Also changing the spacing of the fixings will result in the

structure behaving similar to a line connection for a greater frequency range which can

only reduce the overall sound insulation of the structure.

97



Chapter 5

Transmission Between Parallel Plates

with Line Connection

5.1	 Introduction

This chapter examines the transmission that occurs in another important group of joints

in parallel plate structures, that of line connected parallel plates. These structures are

formed from two parallel plates coupled by a frame or bridging element which can allow

the transmission of structure borne sound between the two plates. In buildings these are

found where there is a continuous line connection perpendicular to two plates, of which

the fixing may be by glue or screws/nails such as in stud partitions and timber floors.

Although the fixings may be by screws or nails, as mentioned previously in chapter 4,

if the bending wavelengths of the plates are larger than the spacing of the points then

it may be assumed that a line connection is formed.

Other structures to which this work is applicable include aerospace and flight vehicles,

both fixed wing and rotary wing. The close spacing of rivets in such structures, which

may be spaced from 1 Omm to 30mm, results in a 'weld' like line connection coupling

the plates.

In the case of partitions, as shown in Fig 5.1, the lightweight parallel plate structure

presents a variety of interesting structure configurations to be studied. Apart from the

'H' shape structure, there are the jambs where the partitions connect to doors and

windows and coupling to masonry walls. For these types of structures some of the plates

may be omitted and this must be accounted for when considering the development of

any theory.
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Figure 5.1 Different structure configurations for lightweight parallel plates
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The frame in plasterboard partitions is generally the principle structural support and as

such it can create an eccentric mass attached to the plates. The fact that the frame studs

must be attached at regular centres of 400 to 600mm results in a periodic structure with

multiple plates and ribs (frames).

This chapter is divided into three sections. The first section reviews existing work

carried out by previous authors which is relevant to parallel plate structures with a line

connection.

Section two describes two theoretical models to predict line connection between parallel

plates. Both models use wave theory and analyse bending, longitudinal and transverse

wave motion for random incidence. The first model assumes the frame connecting

element to be a beam and the second model assumes the frame to be a finite plate. A

third model is also briefly presented in section two which involves modelling the frame

as an SEA subsystem and divides the 'H' structure into two 'T' junctions.

Section three compares the various theoretical models discussed in section two and

presents a parametric study where the frame is modelled as a finite plate.

Detailed measured and predicted results for standard 'H' joint structures are shown in

chapter 6, when the effects of omitting various plates and changing the finite distance

between the parallel plates are also discussed.

5.2	 Review of Existing Theory

The prediction of structure borne sound transmission for line connected semi-infinite

plate structures has been studied by numerous authors. Whilst some authors have

concentrated on complex cross junctions and the behaviour of bending and longitudinal

wave motion and the application of such studies to other structures, very few authors

have studied structure borne sound transmission between parallel plates (double walls).

This section is divided into two parts, past work relating to the basic theory and past

work which is specific to double walls.
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Previous work by past authors on line connection

The following section describes the principal work by previous authors regarding general

wave model studies. Although these works are not specifically on double walls the

theory and findings are relevant to this study and are given due mention.

Cremer, Heckl and Ungar [44] were the principle authors in the advancing of studies for

line connected semi-infinite plate structures and investigated bending and longitudinal

wave transmission. The structures studied included inline plates and 'L' junctions as

shown Figs 5.2 to 5.5. The effects of blocking masses, eccentric ribs or masses were also

studied. Ungar [68] described in detail the transmission of flexural waves through a

reinforcing beam attached to plates as would be found in flight vehicle structures and

the importance of the beam's torsional and flexural properties. Both Cremer's early work

[69] and Ungar's work investigated infinite and semi-infinite plate/beam systems

showing the effect of the coincidence phenomena, which causes an unattenuated

propagation of plane bending waves when impinging at certain angles on the beam. In

the case of Heckl's work [70] this was extended to consider finite plate/beam systems

and in more detail, random incidence.

Cremer, in chapter 5 of Cremer et al [44], describes the importance of the coupling

between bending and longitudinal waves with regard to eccentric and non-eccentric

blocking masses. From previous work by Muller [71], and electrical circuit analogues

by Wigge [72] equations were given for the transmission and attenuation of longitudinal

waves particularly for "longitudinal periodic systems" where a beam has periodic

changes in the cross section. The theory presented for the attenuation of bending waves

was found to be in good agreement with measured data after the first blocking mass.

However the acceleration levels measured and predicted after subsequent blocking

masses did not compare as well and it was found that the flanking paths, consisting of

secondary longitudinal waves which in turn convert into tertiary bending waves,

dominate the acceleration levels produced after these subsequent masses.

In the case of two dimensional configurations such as plates the agreement between the

idealised one dimensional beam analysis results and measured results was much worse

due to the waves impinging at the junction at oblique angles. Cremer et al [44] also
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Figure 5.2 Bending wave incident at a joint between two inline plates showing the
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therefore described in detail the important effects of oblique incidence (random

incidence) for a plate with a reinforcing beam.

Zabarov [73] investigated the transmission of sound through a double wall joined at its

edges. Using a wave model approach expressions were given for the transmission of

flexural waves from one plate to the other. It was found that when the panels have a

larger flexural stiffness than the ribbing the bending waves play a principle role in the

transmission of sound through the ribbing. If however the ribbing has a higher flexural

stiffness than the plates then the transmission of sound cannot be accounted for without

due allowance for longitudinal wave motion in the panels. Furthermore Zabarov suggests

any steps taken to enhance the sound proofing of such walls should be aimed at reducing

flexural and longitudinal wave motion in the panels. However, Zabarov did not

investigate these assumptions further and his work was only on flexural waves.

Mead [74] carried out detailed analysis of wave propagation and attenuation in periodic

systems(structures). One of the types of structure studied, which is used in aeroplane

tailplanes and fins, is the rib-skin structure. Mead found that waves can propagate

through periodic systems only in particular frequency zones. The bounding frequencies

for these zones are obtained in terms of the natural frequencies of the elements of the

system, particularly when these systems are symmetrical. The system wave motions were

studied which were developed into a matrix form to study the reflection of waves from

boundaries.

Budrin and Nikiforou [75] considered normal incidence transmission at cross joints

where wave transformation takes place, when an incident bending wave excites

transmitted and reflected longitudinal waves and vice versa. Kihlman [45] investigated

cross joints to include solutions for random incidence which required the inclusion of

transverse waves. This work was significant in proving the importance of inplane waves

(longitudinal and transverse) in structure borne sound transmission. Although Zabarov

had stated that longitudinal waves were important in the study of structure borne sound,

he did not provide theory to back this statement. Kihlman however did provide theory

to support this argument. Kihlman [76] then presented further results to confirm that for

certain plate configurations the inclusion of longitudinal and transverse waves was
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essential. Gibbs and Gilford [77] used SEA to compare predictions of the wave models

by Cremer and Kihlman with measurements on 1/4 scale cross and tee junctions of finite

concrete plates, as shown in Fig 5.6. Craven and Gibbs [78] presented a "new approach"

inspired by the progress in computing facilities at that time to provide solutions,

involving bending and inplane waves at random incidence on a cross joint, for several

plates of unequal thickness and composition. This approach to investigating various

parameters of the structure is carried out in this work and results are shown in Chapter

6.

Craik expanded the application of these works by investigating structure borne sound

transmission through an entire building, composed of multiple plates and multiple

junctions. This work was then further enhanced by Craik and Thanacanamootoo [79] by

the inclusion of longitudinal and transverse waves, to compare with the previous works

experimental data. They found for walls and floors close to the source plate (i.e. within

four structural joints), the inclusion of inplane waves was not significant. However, at

greater distances a significant part of the bending wave energy was due to energy carried

by inplane waves and transferring to bending waves at plate junctions. They also found

that equi-partition of energy occurred between longitudinal and transverse waves and

therefore they could be modelled as a single 'inplane wave' subsystem in an SEA model.

The importance of inplane waves found by Craik et al and Craven and Gibbs gives

further cause for their inclusion in this particular work.

Fig 5.7 shows the reflected and transmitted inplane waves for plates 1 and 3 at a cross

joint which was studied by authors such as Kihlman [45], Craven and Gibbs [78] and

Craik and Thanacanamootoo [79].

Recently more complicated structures outside the building envelope has included

research by Langley and Heron [47] on multi-plate and random angle junctions. Here

the plates are attached at various angles to a central beam element by a line connection.

Bosmans and Vermeir [63] studied transmission between periodically coupled plates.

Using an advanced wave approach they found that at low frequencies, despite the

bending wavelength being considerably larger than the point spacing, that a continuous
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Figure 5.6 'T' and cross joint structures studied by Kihlman, Craven and Gibbs
and Craik.

106



'Direction of reflected
'longitudinal wave.

Direction of
reflected transvers wave

Plate 1

1

Incident longitudinal wave.

/
/

/
/ Plate 4

/
/

/

Direction of transmitted
longit inal wave

Direction of transmit ed
transverse wave

1	 Plate 3

1

1
/

/

	

/	 /
0

/

	

I	 /
I Plate 2 /

	

I	 /

	

I	 /
/

	

I	 /
1/
1/

Figure 5.7 In plane waves on plates 1 and 3 for a cross joint due to an incident
longitudinal wave.

107



line junction does not always represent a good approximation. This finding is not

accepted by the work carried out in this study and results are shown in Chapter 6 to

support this. Different approaches have been studied by previous authors where the

mobilities of the various elements of the structure have been incorporated into an

electrical analogue [80], [81], [82], and [83]. These provide a fast and straightforward

technique which can yield reliable results for some structures. But as this chapter deals

specifically with wave models and these works have been described in detail by many

previous authors they are not covered in more detail here.

Previous work on line connection specific to double walls

Fig 5.8 shows the types of parallel plate structures studied by previous authors.

Bhattacharya, Mulholland and Crocker [29] examined transmission through double

panels connected with a tie plate. The research carried out by these authors and in

particular Bhattacharya [51] whose thesis much of the above mentioned paper is written

from, was and is to date one of the most comprehensive studies undertaken on double

walls and the transmission of sound through structural junctions connecting parallel

plates. The structure consisted of two parallel plates connected by a tie plate. The two

connection points where the tie plate connected to the top and bottom parallel plates by

a finite distance, the tie plate's length, divided the structure into two junctions I and II.

Using a wave model approach firstly for a normal incident bending wave at junction I

solutions were produced for the secondary flexural and longitudinal waves on the tie

plate. Of these two waves the longitudinal wave was found to dominate the generation

of tertiary bending waves on the bottom parallel plate. As the secondary bending wave

on the tie plate was found to produce a tertiary longitudinal wave of small amplitude in

the bottom parallel plate. As the secondary longitudinal wave on the tie plate transports

energy at a faster rate and reconverts to a tertiary bending wave on the second parallel

plate this results in the radiation of noise of which its contribution is appreciable.

Secondly the wave model approach was expanded to account for random incidence at

the junctions and full inclusion of longitudinal and transverse shear waves. Due to the

complexity of the random incidence model only a detailed analysis was carried out for

normal incidence. However the authors stated that the extent of the inplane waves

influence would be dependant upon the physical parameters of the plates.
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Chapter 5 Transmission between parallel plates with line connection
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Figure 5.8 Types of parallel plate structures studied by previous authors
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Lin and Garrelick [32] examined transmission through two infinite parallel plates with

multiple tie plates at periodic spacings. Comparing sound transmission paths through the

cavity and structurally through the tie plates, they found the structural path was dominant

when the structural wavelength of the bending waves on the plates was a multiple of the

bridge spacing. However, this finding was based on a comparison of two graphs. When

structural bridges are inserted into the cavity between the parallel plates the behaviour

of the plates, cavity and frame are changed. The plates are divided into smaller plates

and this was not included in their study.

Sharp [27] produced an expression, based on impedances, for transmission through rigid

line connections between the leaves of a double wall. Using this expression and an

'approximate' expression for the transmission of sound through a structurally isolated

wall, it was possible to predict the wall's airborne performance. Gu and Wang [33]

modified Sharp's expression to account for resilient line connections. However both

these theories are impedance models and are limited to transmission of bending waves

which are normally incident on the joint. However, real walls have waves at all angle

of incidence and therefore a random incident solution is required.

Wilson [8] investigated sound transmission for line connection in cavity walls. Using

simple bending wave transmission, which then provided solutions in the form of

coupling loss factors, excellent agreement was found between the measured and

predicted results. The connecting line bridge between the cavity wall plates was assumed

to be inertialess, as shown in Fig 5.9 and 5.10. Furthermore theoretical and measured

results were shown for line connected parallel plates where plates were omitted and plate

material properties were dissimilar. Sullivan and Gibbs [55] also examined the

transmission of energy in cavity walls, between the leaves of diaphram walls. A flexural

and full wave model were compared. Whilst resonances were predicted in the cross ribs

they were not found in measurements. The number of cross ribs dominated the

transmission of energy between the leaves. SEA models were compared with field

measurements and good agreement was found. Variation to the material or geometry

altered the transmission loss by no more than 2dB.
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Discussion

Most of the previous works directly relevant to parallel plates have studied flexural wave

motion with only Bhattacharya et al [29] and Sullivan and Gibbs [55] detailing the

theory for inplane wave motion. Bhattacharya studied partition walls but the transmission

as a result of incident inplane waves was not included and no detailed analysis, such as

a parametric study, was undertaken on the finite frame element.

In the study of cavity walls, by Wilson [8], the plate thickness was twice the line bridge

depth, but in lightweight parallel plates the line bridge depth may be as much as twenty

times the plate thickness. The studies by Sullivan [54] which covered similar materials

as that of Wilson, brick and concrete, but with a wider cavity found little change to the

transmission loss by varying the material or geometry. Both in Wilson's and Sullivan's

work the material of the cross rib was inertialess, but in lightweight partitions this cannot

be assumed.

This following section attempts to build on these works by the inclusion of inplane

waves for lightweight parallel plate structures including incident longitudinal and

transverse waves. In addition, two different theoretical models are presented where the

frame is modelled as a beam and as a finite plate. The finite nature of the connecting

plate (frame) and that the frame material in real partitions is dissimilar to the plates, is

analysed through a parametric study of the plate model presented in section 5.4 of this

work.

The good comparison between the measured and predicted results in Wilson's work was

a stimulus for the advancement of this thesis to then investigate lightweight parallel

plates where the connecting line bridge cannot be assumed to be inertialess.
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5.3	 Theory for parallel plates connected along a line

This section describes the theoretical models for sound transmission through lightweight

parallel plates. Principally two models are presented. The first models the frame as a

beam with mass and inertia and the second model assumes the frame to be a finite plate.

5.3.1 Background wave theory

The properties of waves on plates and beams can be found by considering the action of

moments and forces on an element of the beam or plate. The interaction of the moments

and forces leads to an equation known as the wave equation from which acoustical

properties, such as wavespeed, can be found. A full derivation of the wave equation may

be found in Cremer et al [44]. The equation of motion for bending waves on any thin

plate may be written as [44],

B .	 a2y	
(5.1)

at

where p s is the surface density, y is the flexural displacement and B is the bending

stiffness given by [44],

Bj-- 	

12(1-14)

E h?
	

(5.2)

where E is Young's Modulus, h is the thickness and ji is the Poisson ratio.

Fig 5.11 shows a source bending wave incident at an angle 0, (relative to the normal),

at a plate edge parallel to they-axis, which is travelling in a positive x and y direction,

and which may be written as [44],

Yo - TBoe  
-ikBocosoBore -agosinegge hat

	
(5.3)

where TB0 represents the incident wave amplitude. All secondary waves produced by this

primary wave will have the same spacial dependence in the y direction and the same

time dependence. For simplicity the terms relating to y and t are not included hereafter.
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11/4

(5.5)

(5.7)

a2y	 a2y
+ p,

ax 2 J3y2
(5.8)M =-B

As a result of an incident bending wave at the plate edge a reflected bending wave with

amplitude TB! and a nearfield wave with amplitude Tn , both travelling in the negative x-

direction will occur. The amplitude of the nearfield wave decays rapidly with distance

and hence only occurs in the "nearfield" of the joint. Hence the total displacement on

plate 1, y i , may be given as [44],

Y 1 =	 ÷Tnle 

knix
BT -ikBoc°se	 1136.3c + B1e
	 cosOlux
	

(5.4)

where kB is the bending wavenumber given by [44],

kB=w 1/2 Ps

In eqn(5.4) the (-) sign represents a wave travelling in a positive direction and the (+)

sign is for a wave travelling in a negative direction. The nearfield wavenumber, kip has

similar sign convention for direction of propagation and is given by [44],

k.=\1kB2(1+sin20)
	

(5.6)

At a plate edge the slope or angular displacement may be given by [44],

The bending moment acting on the plate edge due to a wave may be given by [44],

The forces at a plate edge are composed of a shear force and a force that resists twisting

at the boundary and may be given by [44],

I y .	 a3y.

Fi=B1—ax:+(2 [Li) axayj2

(5.9)
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These equations are used when computing the amplitude of the reflected waves. As

described in section 5.2, previous authors have shown that inplane waves can play an

important role in structure borne sound transmission. The term inplane waves includes

longitudinal and transverse wave motion.

Unlike bending waves whose particle motion is perpendicular to the direction of wave

propagation, the particle motion for inplane waves is in the same plane. For longitudinal

waves the particle motion is in the same direction as the direction of wave propagation

and for transverse waves the particle motion is perpendicular to the direction of wave

propagation but in the same plane, as shown in Fig 5.12.

The equations of motion for inplane waves are [47],

[ a2 Ei+Ii. a2c)+  Ej  ( a2 Ei+  (32;)

(1_ 14) ax 2 	axay 2(1+ tip ay 2 axay	 ap u
(5.10)

	 (a2; +11.821+  
0-E

Ei  ( a2(1, a2Eil p a2 0

(1-) ay 2 	axay 2pi) ax 2 axay  
(5.11)

A full derivation of the inplane equations of motion may be found in Ashton and

Whitney [84]. There are two principle equations which are used to describe the inplane

forces in the x and y directions and may be given as [47],

Eh.Fxr .1 +11. (5.12)
2

1
ax	 ay

and

Fy,-
EA laE,+ac,) (5.13)

2(1+	 aY 	 ax'
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Fig 5.13 shows a plate with an incident longitudinal wave in the x-direction which may

be given as [85],

ik- Locos() u,x
e

-ilcupin0 Loy
e
 i„,E —T cos° eLO LO	 LO

(5.14)

The displacement for an incident transverse wave in the x-direction may be given by

[85],

E To = Twcos (0 m + )e -ikiiPs6T(P'e -ikwsineige
2

(5.15)

where the 7c12 terms occur due to the particle motion of transverse waves being

perpendicular to the direction of wave propagation. The longitudinal and transverse

wavenumbers kL and kr may be given by [47],

k2— 	
2)p

k, —	
42_  22(1 + p 

E
(5.16a,b)

For inplane waves the displacement in the x-direction, E, consists of components of

reflected longitudinal and transverse waves together with components of the incident

wave which may be given as,

T cos° e -ikuPsf6x + TTocos(0Th + 1-/ )e -ikmcGs°ThixLO	 LO
— 2

ikucosOLlx
+Tucose Lie	 +TT/cos(6 T1 + a 

)e ikrIcas°Tix

2

(5.17)

where the incident transverse component, Tro, is omitted for an incident bending or

longitudinal wave and similarly the incident longitudinal component, Tu, is omitted for

an incident bending or transverse wave. Similarly the total displacement in the y-

direction,	 for plate 1 may be given by,

-ikocos0	 71	 kroCOSe Tar
C = Twsinewe	 wx+ TThsin(0 713 + —)e

2
ikucoseux

+Tusin°Lie	 +Trisin(OTI÷TC )e ikricciserix2 

(5.18)
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ko sin°o kisinef (5.19)

kr-kL

For an incident transverse wave the incident longitudinal component, 11,0, would be set

to zero and for an incident bending or longitudinal wave the transverse incident

component, TT0, would be set to zero.

The angles of transmission of any wave on any plate, 0, with wavenumber ki is related

to the angle of incidence of the incident wave 0 0 (with wavenumber Ice) through Snell's

Law giving,

The relationship between IcL and kr may be determined from eqns(5.14a,b) given by,

(5.20)

5.3.2 Modelling the frame as a beam

The frame element in plasterboard partitions is not normally made of the same material

as the plates. The most common material used for the structural frame of partitions is

softwood timber. In partitions constructed for offices the frame material is a mild steel

alloy. The standard term in construction for the structural frame in partitions is 'stud'.

This section details the theory where the frame is modelled as a beam and Fig 5.14

shows the coordinate system. This allows the material properties of the frame, such as

density, longitudinal wavespeed and bending stiffness to be included. Eqn( 5.4) described

the total flexural displacement on plate 1 for an incident bending wave at a joint. In

addition to the reflected wave on plate 1, the incident wave also generates three pairs

of transmitted travelling and nearfield waves on the remaining three plates. As a result

the flexural displacement on these three plates may be written as [44],

p B2c4261 inx 	 -k.2x
Y2 = - B2-	 n2—

T B3e ikBP3se'r-FT e k'dxY3 n3

Y 4 - TB4e -ikB4ajseB4x+ T -154x

(5.21a,b,c)
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The boundary conditions for parallel plates connected by a beam may be given as,

(i) Continuity of displacement across the joint,

(ii) Preservation of right angles between the plates and the frame,

(iii) Sum of the bending moments about the y-axis is zero,

(iv) Sum of the forces in the x, y and z directions is zero.

Due to the structure being able to support bending, longitudinal and transverse waves

the following equations as determined within the boundary conditions and are written

in full, including terms for incident bending, longitudinal or transverse waves, which are

enclosed in square brackets ([]). This allows all incident waves to be considered. If there

is an incident bending wave, for example, then all terms with I'm and T be

omitted or set to zero.

At the junction, x = 0, the flexural displacement of all four plates must be equal and are

given as,

(5.22a,b,c)
Y1-Y2 Y1 - Y3 Yi-Y4

and these may be written as,

Tia+Tni—TB2—Tn2=[—T]

TBI+TnI—TB3—Tn3=[—TBO]

TBi+Tni—TB4—Tm=[—TB0]

(5.23)

(5.24)

(5.25)

To simplify the number of terms in the equations presented all the waves are written in

terms of angles between 0 to n/2. Also the reflected angles on plate 1 are given in

relation to the incident wave angle as the angles are equal, relative to the normal. As

shown in Fig 5.13 an incident longitudinal wave, TucosO LI , arriving at the plate edge

relative to the normal at 30 0 , Ou , will result in a reflected longitudinal wave at 1500

which may be written in terms of the incident wave as -TucosO LI . Equations (5.17) and

(5.18) expressed the inplane displacement in the x and y-directions on plate 1 and these
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(5.30)

(5.31)

may be simplified to give,

E I -Twcos073 -TucosOL7 -T77sine ri - Tiosine T1
	 (5.26)

(1=710sineu+ Tusine Li- Tvcos0 77 + Twcosen	 (5.27)

From the simplified assumption that there is no displacement at the joint the continuity

of displacement requires that the inplane displacement in the x-direction is given as,

(5.28a,b,c)1 =E2 E3=E1-41d

which may be written as,

-Tmcosem -Ti2cosf37,7 +T7.2sine 7.2 -[- Twcoseu]-Tnsin8 Ti

[7. 717Sin° T 1]

(5.29)

Tusine Tnsinn +713cos0L3+T73sin073+(ikBicosOBITBl +knIT )d
=[idkBicose BI T Bo]
=[- TwcosOu]
=[Tivsin0

— TL3COS 0/2 — T7.3sin0 T3 - Tucos0 L4 + Tus1n0 T4=0

The inplane displacement in the y-direction is given as,

C i =(2 C i =C3 (1=(4
	 (5.32a,b,c)

and may be written as,

Tusin073 - T7.7cos0 712sin0L2 — TT2COSO 7.2 = [ -Twsineu]	 (5.33)
=[-T7ocos07v]

Tusineu - T77cos0 Tusin0L3 + T T3COS 0 T3 = E — Twsin0LA
=[-TivcosOTA

Tusin° Tricos0 TsinOu-T74cos0 7.4 =[- T 	1]

=[- TWcosO TIJ

(5.34)

(5.35)

The preservation of angles for plates 1, 2, 3 and 4 is given by,
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(5.36a,b,c)41-42 41-43 41 1 4),

and may be written as,

ikBicos0B/ TBI +kni Tni +ikB2cose B2TB2 +kn2Tn2- UkBiCOSOBiTB0]

ikilicosOBITBi +knlTnl- ikB3coseB3TB3-keT.3=UkincosOinTB6J

ikBicose BiTin +knITnl +ikB4coseB4TB4+kn4Tn4= [ikBiCOSO BiTB0]

(5.37)

(5.38)

(5.39)

It is assumed that the plates (1, 2, 3, and 4) meet at the centre of the beam and that

therefore the width of the beam, b, can be ignored. If this assumption was not made then

shear forces acting on either side of the beam width would have to be included as was

the case in Steel's work [86] on beam and plate junctions. But in this work the beam is

assumed to be thin. Using the notation shown in Fig 5.14 the sum of the moments is

given as

M
1 
-M

2 
+M

3 
-M

4 
-F —

d 
+Fx2 —

d
 +Fx3—

d
-Fx4—

d
=M

0

 xl 2	 2	 2	 2
(5.40)

The symbol 0 is used to denote terms relating to the beam (frame). The right hand side

term M° is the resistance of the beam and is given by [44],

Ga24:11m0=_6.12e4,_ 	
1 ay2

where G is the torsional stiffness given by,

E  (b3d)
G-

2(1+) 3

and e is the rotary inertia given by,

e-( 12+d2) bdpi
12

(5.41)

(5.42)

(5.43)

where b, d, E, ix and pi are the width, depth, Young's modulus, Poisson ratio and

density per unit length of the beam respectively. Using eqns(5.8) and (5.12) to determine

the plate moments and inplane forces eqn(5.40) may be written as,
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TBI(Bik1 (cos201+ g 1sin20 /)+ ikincos0 1 (6)2e- GkB21si1120))B2

- Tni(B1(1C21-pikB21sin201)+1cn1((.)2e-GkB2/sin20d)

(B2kB22(cos202 + p2sin202)) + Tn2(B2(k22 - p.2kB22sin202))-TB2

+TB3(B3kB23(cos203 + p. 3sin203)) - Tn3(B3(lca-p3kB23sin203))

(cos04+-TB4(134kB4	 22	 asin2e4))+TaB4likuE1h 1 )	 2
- TLl	 (cos 0 / +	 sin20i1)-

2	 2	 T T1 d
1 -	 2

iknElhl

ycn24_ p.4k2B4sin204))

(cos isin0 1 (1 -
1 _ p21'

+Tr,
d ilcuE2h2 (cos202+ .. sin20 \ 7,	 d(

•	 F42	 2/ - A 72 (cos02sin02(1 - p.2))ikr2E2h2 )
— 2

+

L
l iki3E3h3 )(cos2 3113 , 	

2
1 - 112

2
1 - 11 3

2

d
0 +	 • 2 31.13Sill 0) + TT3 „

I'

1_14

 ikT3E3h3
(5.44)

-(COSO3Si1103(1	 p.3))
2

1- p.3

d
-T- Tv --I

ikuE4h4
(cos204 + LI,	

1	 T	 d
. asin2e4/ + - T4 2

ikT4E4h4 (cos04sin04(1-1.L4))
,	 2
1- 114

1 _ 1124

= [- TB0(Bikin(cos20 1 + pisin201)+ikincos01(6)2e-GkB2isin201))]

diikuEihi (j	 2
= T L0 	  cos 0 1 + visin201)

2 1 _ g

dliknElizi
- -T70 	  (cose1sin01(1- [LI))

2	 1 _ ii

)

21

The sum of the forces in the x y and z-direction can be given by,

Fa -Fa+ F73-Fz4=F: (5.45)

(5.46)Fx1-Fx2+Fx3-Fx4=Fx°

Fy1 -Fy2 +Fy3 -Fy4 =Fy°
(5.47)

The forces F.°, F.° and Fy ° are the total resisting x, y and z-direction forces of the

beam and are composed of an inertia term and a term relating to bending or

compressional stiffness as [44],

125



r0.	 84Y1r -B	 (.13 pZ	 Z 4
(5.48)

a%
Fx0 -Bx— (02 piEb

ay 4

(5.49)

a2( 1
Fy -ES— Gr

7
p,C 1

ay 2	 -

(5.50)

The first term results from the bending or compression stiffness, where B, is the bending

stiffness of the beam (Ebd3/12), b is the beam displacement at its centre expressed in

terms of the displacement in plate 1 as ( 1 + 4)d12), B„ is the bending stiffness of the

beam (Edb3I12) and S is the cross sectional area of the beam. The second terms relate

to the beam's inertia force in the x, y and z-direction. Taking eqns(5.9), (5.45) and

(5.48) the forces in the z-direction may be written as,

-TB0(iBkB31cosel(cos201+(2-11/)sin201)+6)2p1-BikB4isin46/)

+Tni(Blk,a(ki _kB21sin200 + 6)2 p Blkilisin401)

+712(iB2kB2cos02(cos202+(2- 11 2) sin202)) - T.2(B2k.2(k.22 - kB22sin202))

- TB3(iB3kB3cos0 3(COS20 3 + (2- 11. 3) sin203))+7(B31(.3(k„32 -kB23sin203))

+ TB4(iB4kB4cos0 4(COS20 4 + (2- ii 4)sin204- T4(B4k.4(k4-kB24sin204))

= [- TB0(iB ikBi cosqcos20 1 + (2 - pl)sin20 - 6)2 p 1 + B iklsin40

(5.51)

The sum of the forces in the x-direction using eqns(5.12), (5.46) and (5.49) may be

written as,
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[  ikzE2h2 (
),COS 

2 
0+ SM• 2 0) + T

iI  ik721E2h	 •
2 1122- L2 2	 2 

2 )(COS02S11102(1 - [12))

(cos203 + p 3sin203)+ T T3i

j

(cos204 + p4sin204)+ T T

+T
B1 (—ikB1

d 
cos0 (6)2pi-B1 kB1	 1

4 sin04))+ n/T (—
d

kn1 (6)2 p -B k4 sin40 ))2	 1 	 1	 1 B12

T1,111  
ik1 „El I, 21h ,

" ( 0S20 +11 sin20 1)+cos0 1 (-(02 p i+Bik4 sin40 )

+TTI

-Evi 21h /  )
(cosO isin0 / (1- 11 1))+sin0 / (- w 2 pi+13/kB47sin40/)

2	 1- p2

+
 13(

1k3E3h3)

1-1132

- Tu
f ikE

4	h4
21- g4

ik73E3h3)

1 - 113
2 

(cos03sin03(1 -

ik

1 - 1-14

T4E 4h4 )(cos()4sine4(12
(5.52)

ikLiElhl

1-1121

=IT 1 ikThEl j
1
2 (cos° isin0 1 (1 - F' 1)) +sin° (- 6) 2 p1+B1kB4/sin401
1-11 

The sum of the forces in the y-direction may be found from equating eqns(5.13), (5.47)

and (5.50) to give,

(cos20 1 +p, 1sin20 )+cos0 (-c)2 p 1 +B1 kB14 sin40

\

= T d
1
.
k cos0 (6.) 2 p -B 4 m40. 4B 2 B1	 1	 1 1k B1s

El
4

T
T- 

-T4( + 11 1) )

	

2(1	
(2ikucosO isin0 1 )+sin0 1 (6)2 p 1-SEkusin01))

Eihi 

 hi ik72(sin201 - cos20 i) + cos° / (- 6) 2 p 1 + SEkTisin01))
2(1+ p 1) )

- TL2(  
E,

-
h 
2 (2ikucos02sin02))+ T4  " )

	2(1+11 2)	 2(1+112)

EA,

- T73(  - - (2i1cL3cos03sin03))- T7. 3(  - -
	2(1+11 3)	 2(1+ v3)

EA1EA, 

EA

	

1	

)

EAh
- T, 	 - 4 (2ikucos04sin04))+ T4

114
- '

	

--\ 2(1 +11 4)	 2(1+

h,  j

(

Eihi 

2(1+ pi)
)(2ikucosO isin0d+sin0 i (- 6) 2 p i+SEkLisin01)

IT 1  Eihi

2(1 + p. i)
ekr/(sin2e i -JD	 cos201)+cos01(-6)2pi+SEkTisined

ik7.2(sin20 2 -COS202)

ik73(sin203 -cos203)

ikr4(sin264-cos204)

(5.53)
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The sixteen principle equations,

(5.23)	 (5.24)	 (5.25)	 (5.29)

(5.30)	 (5.31)	 (5.33)	 (5.34)

(5.35)	 (5.37)	 (5.38)	 (5.39)

(5.44)	 (5.51)	 (5.52)	 (5.53)

can be written in a matrix format and numerically solved, (e.g. Gaussian elimination),

to determine the amplitude of the bending, longitudinal, transverse and nearfield waves

on the four plates, given as,

TB1,
	 TB2,	 TB3,	 T134,

TL1,
	

TL2,
	 TL3,	 714,

Tr2,	 TD,	 Tr4,

To,	 To,	 Tn4,

Section 5.3.5 describes how the transmission coefficients and resultant coupling loss

factors may be calculated for SEA applications.

5.3.3 Modelling the frame as a plate

An alternative method of modelling the junction is to model the frame as a plate. When

the beam is substantial so that d is large but b is still small then the frame will bend

along its depth so that ch is no longer equal to 4)3 . This could be included in the beam

model by a specific fix to the appropriate equations, (see section 5.6 Discussion), but it

is more properly incorporated into the model by modelling the element as a finite length

plate.

Bhattacharya [51] and Sullivan [54] used a similar technique of modelling the

connecting element as a plate.. The plate configuration used is shown in Fig 5.15. Where

the connecting plate, plate 5, couples the parallel plates two junctions are formed, I and

II. Junction I is where plates 1, 2 and 5 are coupled and junction II is where plates 3,

4 and 5 are coupled. The requirements of continuity and equilibrium must be satisfied

at both ends of the plate. Due to the finite nature of the connecting plate, plate 5, there

will be waves travelling in both a positive and a negative direction. The bending

displacement on plate 5 can be given by,
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15TB5+e-ikasci3selsz +Te+e-kez+TB5-e ikBswseB54-d)+Tn5-e k„s{z-d)

	
(5.54)

where subscript (+) refers to the amplitude of waves travelling from junction I to

junction II, subscript (-) refers to the waves travelling from junction II to junction I and

d is the depth of the frame and is a positive integer. Similarly the inplane displacement

on plate 5 is described by,

and

E5	
To+coselje-ikscosksz ,„

73"6	 61)

	

7;+Sills 0 Theo	 075ik -ikiscos(0:z

—715_coseoe iicisc°s°0(z-d)
— T5 -	 75

C5	 Trc sin° e -ikice'seL5z +T75 cos() 75 e -ik73C°Ser5Z+ 

+T sine e ikisccIse4l-1-d)L5-	 L5	 -T cos() ikmws°75(z-d)
75_ 	 75...

(5.55)

(5.56)

JUNCTION I

The boundary conditions for junction I are similar to that described where the frame is

modelled as a beam. But in the case of modelling the frame as a finite plate they must

apply to both junctions, I and II. The boundary conditions are the continuity of

displacement and slope and equilibrium of the moments and forces in the x, y and z

directions. At junction I where (x=0, y=0 and z=0), the displacement in the z-direction

is given by,

Y 1 2
	

Y1 = -E5
	 (5.57a,b)

and these may be written as,

T B7 + T ni - T B7 - Tn7 [- T Bo]	 (5.58)

TBI  + T 1 +715+cose L5- T75+sinOT5 - To_coseis - TT5 _sinO T5 = [- TN]	 (5.59)

The displacement in the x-direction may be given by,
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(5.60a,b)-Y5

which may be written as,

-TucosOL/ -Tnsin077 - TucosOL2+TT2sin07.2-[-TLocosO1]

-[TTosin077]

-TuSille - TTisinn- TB5+ - T n5 +- TB5_- cos°LlLI

=[Trosinen]

(5.61)

(5.62)

The inplane displacement in the y-direction is given as,

12 el (5	(5.63a,b)

and may be written as,

-Tncos077 -TL2Sin0L2-TT2cos07.2-[-TwsTusine	 (5.64)
-[-TTocos0To]

TLISin° T 1cos0h-Tis+sin0 L5- TT5.cos0 T5 - T 	T5 -[- T LoSin°Li]
-[-TTocos0771

(5.65)

The preservation of angles for plates 1, 2 and 5 is given by,

4)142 41-45
	 (5.66a,b)

and may be written as,

ikincos0B/ TB, knI T + ikB2COS OB2 T +kn2Tn2B2	 [ikBICOSO BiTB0]	 (5.67)n1

ikBICOSO BI T + kn,Tni i-ikB5cose B5TB5+ +kn5Tn5+ -ikB5C0SO B5T B5 _ -kn57'n _-[ik BICOSO BI T Bo]

(5.68)

The sum of the moments is given as
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Al1-M2-M5-0
	

(5.69)

Using eqn(5.8) to determine the plate moments eqn(5.69) may be written as,

2	 2	 ., s
TBi (BikBi (cos2

 0 1 + g 1sin20/)- T„,(Bi(K 1-1-L ikBisin
2
 ui)

2
— TB2(B2kB2(COS

2
 02 + p2sin202))+7 2(B2(k 2 - p2kB22sin202))

- TB5 ,, (B 5k B2 5(cos2 0 5 +p 5sin205))+ T,. 4(B 	 p5kB25sin205))

- TB5_(B5425(cos205 +p 5sin205))+Tn5_(B5(k„52 -p5kB25sin205))

= [- TaBikzu (cos20 1 + p1sin201))]

(5.70)

The sum of the forces in the z-direction can be given by,

Fe-Fa+F x5=0
	

(5.71)

and this may be written as,

-TBAiBkB3Icosei(cos201+(2-pdsin20/))+7;ii(Biki(ki-kB2/sin201))

+712(iB2kB32cos02(cos202+(2-p2)sin202))-TnOzkn2(kn22-kB22sin2e2))

+TL5+ ikL5E5h5 (cos20 +	 ' 2

	

2	
5 p. 5sm 05) — T 

ikT5E5h5
r5, 	  (sin05cos05(1-p,5))

(5.72)

	

1-11 5	1- [125

	

(ik Ech	 ik E h,
+Tiff_  15 — 5 )(COS205 +11 5Si11205)+ TT5_ 2.5 5 ' (cos05sin05(1-p5))

	

1- p, 25	1-p.25

= {- TB0(iBik/cos0 1 (cos20 1 + (2- p,i)sin201))1

The sum of the forces in the x-direction is given as,

Fe-F2-F=0
	 (5.73)

and this may be written as,
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ik E h
TL1	 cos

2
 0/+ 11 isi112€9+ TT1 Tl 

12 1 (cose isin0 1 (1 - p. I))
1 _ 1121 1-p./

_Tu ikL2E2h2 i
(COS202+112sin202)+Tn

ik
12	

E
2
h
2 (cose2sin02(1-p2))

1-11 22'	 1-v22

- TB5+ (iB5kB35COS05(cos205 +(2-11 5)sin205))+Te,(k5(kn_52 -(2- 11,5)kB25sin205))
(5.74)

+TB5_0B5kB35cos05(cos205 +(2-11 5)sin205))- Tr1 (1‘,15(kn52 - (2 - 115)kB25sin205))

- -110( 
ikuEihi 

(cos
2
01+ Iiisin2031)

2
1 - [Li\

*kT1E1	 h 1
(COS00 1 (1- Il i))= T7.0

n

The sum of the forces in the y-direction may be given by,

Fy1 _F 2-F 5 =0
	

(5.75)

and may be written as,

1_ 14

-7. ( 	 1 1 
Ll 20 + ) 

)(2ikucoseisined- T77Ili

-T,.. E2h2 j... 2(1+ p.2) (2ikacose2sin02)+T7.2

E h )

	

Eihi
)ik7./(sin201 -cos2 01)

- - + 2(1+115)
TL5 ( E5h5 )(2i1cL5cose5sin05) + TT5+

Eh5 

+71( 2(1+1.1.5) (2ik
L5cos05sin05)+ T7.5_

2(1+11d

2(1+112)

E2h2  ]
ikr2(Sit1202-COS202)

(

(

E5h5 

2(1+115) )ik
75(sin205 - cos%)

E5h

+ 1

5

1 5)2(1 

	
)ikT5(sin205-cos205)

(5.76)

[	 1  E,h,
= -T,„ 	 " )(2ik„coseisin01)1

— 2(1+11 1)	 —
\

[	 Eihi

+ )2(1	

)
T	 ikii(sin261-cos201)
"	 pi
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JUNCTION II

The boundary conditions for junction II are similar to that described where the frame is

modelled as a beam. At junction II where (x=0, jr=-0 and z=d), the displacement in the

z-direction is given by,

Y3-Y4	 Y3--5

and these may be written as,

TB3+ T n3 - T B4- Tn4-0

(5.77a,b)

(5.78)

TB3 + 7:0 +715+cosOL5 -TT5+sinOT5 - 715_cosOL5-T75_sin07.5=0 (5.79)

The dislacement in the x-direction may be given by,

3-Y5

which may be written as,

- 713cos0 L3- TThsin0 7.3 -Tbicosem + TT? in° T4-°

(5.80a,b)

(5.81)

-TL3sin0L3 -TnsinTh -TB5+ -	 T B5 -	 _ =0 (5.82)

The inplane displacement in the y-direction is given as,

(3 = (4	 (3=(5 (5.83a,b)

and may be written as,

71.3sin0L3 - TT3cos07,3 - Ttisin0L4- TT4cos07,4=0
	

(5.84)

Tz3sin0- TT3COS 0 T3 - 715 + sin0L5 - T75 +cos0 75 -715_sin0 + TT5 cos° 75-0 (5.85)

The preservation of angles for plates 3, 4 and 5 is given by,
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43 —44 4)3 .. 4)5
	 (5.86a,b)

and may be written as,

ikB3cos0B3TB3+kn37;0+ikB4cos0B4TB4+kn4Tn4=°
	

(5.87)

(5.88)
ikB3cos0B3 T B3 + kn3 T n3 + ikB5COS OB5T B5+ + kn5 T,6, — ikB5cos0B5T135 _ —kn5Tn5 _ 0

The sum of the moments is given as

M3-M4+M5-13
	

(5.89)

Using eqn(5.8) to determine the plate moments eqn(5.89) may be written as,

TB303kB23(COS203 [1,+ 3Sill2 0 3) — Tn3 03 Rn23 — 1.1. 3kB23Sill2 03)

—7' B4(B 4kB24(cos204+114sin264))+7,1404(kn24-1-t4kLsi11204))
2	 2	 2.2

+T B5+ (B5kB5(cos 05 +11 5sin205))- Tn5 +0 5(kn5 — p. 5kB5sin 05))
2	 2

+TB5_(B5kB5(COS 05 + 1.1 5sin205)) — Tn	 n(B5(k 25 — II 5425sin205))

=0

The sum of the forces in the z-direction can be given by,

Fz3-F,4-F.5=0

and this may be written as,

- TB3(iBkB33cos03(cos203 + (2- p 3)sin20 3)) + 7;03k,e(kn32 -kB23sin20 3))

+TB4(iB444cos04(cos204 + (2- 1J.4)sin204))-Tn4(B4kn4(kn24-424sin204))

	

(ik„E
5 	'
h,	 ik E,h,) .

(cos205 +p5sin205)+Tr5+  75 ' ' (S11105COS 0 5 (1 — [15))

	1- p.25 	1-g
[  ikT5E5h5 )

-T 
(ikL5E5h5)

(COS
2
05 + lisSi11205) Tn_ 	 (cos05sin05(1-p.5))

	

2	 2

	

1 -u 	 1-115
=0

The sum of the forces in the x-direction is given as,

(5.90)

(5.91)

(5.92)
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(5.93)

and this may be written as,

ikL3E3h3)
(COS

2

03 + p. 3sin203)+ Tr3
1- v32

ik L4E4h4 , 2
	  (COS 04 + 11 4sin204) + TT
/	 2
I -114

ikT3E3h3)(COS63%03(1 -'1,1))2
1-113

ikT4E4h4)(COSe4Nille4(1 
44))1 114

2
(5.94)

+TB5+ (iB5kB35cos05(cos205 + (2- vs)sin205))- Tn5+ (kn5(k52 (2, vs)kB2.5iii205))

-TB5_0B5kB35cos05(cos205 +(2- vs)sin205))+ Tn5_(k.5(kn52 -(2. 45)425siwoo)

The sum of the forces in the y-direction may be given by,

Fy3 -Fy4+F
y5

=0
	

(5.95)

and may be written as,

E3h3
-T

'I

+113) )(2ik3cos03sin03)- T7.3 2(E13:1313) ikT3(sin�03-cos203)

-Ttif 
2(1+ 

h4

v)4

)
(2ikucos0 4sin0 4)+ TT 2(

E
1

4
+

4
4) 

)

ikT4(sin2e4-cos20)

i

	

	
" ikr5(Sin205-008205)

E5h5  )
(2ikL

+715+ 2(1+ v5)
5cos05sin05) TT5+ 

2 (E:+121: 5) 

E5/z5
-TL5_( 2(1÷115)	 (2k5cos05sin05) T

(  E5h5

2(1 + 115) 

j
ikT5(sin20 5 - cos20 5)

=0

(5.96)

When modelling the frame as a plate, plate 5, due to waves travelling in a positive and

negative direction on the plate, eight wave amplitudes must be determined and these are,

TB5+ , Tri5+ , Tu+, Tr5+ , T85_, Too Tu. and Tr5_. These eight waves are in addition to the

sixteen waves at junction I and II on plates 1, 2, 3 and 4 discussed in section 5.3.2. Thus

twenty-four wave amplitudes must be determined requiring twenty-four equations to

solve in a matrix format. The twenty-four equations are,
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147
trans

T
12

Inc.

(5.97)

W
12B 

2ITB212 P s2 6)3C0SO
B2

k B2

(5.98)

eqns (5.58) (5.59) (5.61) (5.62) (5.64) (5.65)

(5.67) (5.68) (5.70) (5.72) (5.74) (5.76)

(5.78) (5.79) (5.81) (5.82) (5.84) (5.85)

(5.87) (5.88) (5.90) (5.92) (5.94) (5.96)

5.3.4 Modelling the plate as an SEA subsystem

When the size of the frame depth, d, is small then the phase relationship between the

waves on the plate must be included. However, if d is very large then the phase will

be less important and the plate could be modelled as an SEA plate subsystem, as shown

in Fig 5.16.

This model neglects the phase of the waves as they pass from junction I to junction II

but would still include the magnitude. The two junctions I and II are then modelled as

independent 'T' junctions. This model would be expected to be the same as a finite plate

model at high frequencies where d is large compared to the wavelength.

5.3.5 Determination of the transmission coefficient and coupling loss factor

Once the amplitudes of the various waves, detailed in section 5.3.2 and 5.3.3, have been

calculated the next stage is to determine the transmission coefficient, t ij , from the source

plate, i, to the receiving plates,]. The transmission coefficient between any two plates

1 and 2, T 12, is defined as the ratio of the power transmitted across the joint to plate 2

to the incident power on the joint from plate 1. This may be given by,

The power transmitted to plate 2, W12, for a bending, longitudinal or transverse wave

may be given by,
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Figure 5.16 Structure configuration and SEA model for parallel plates and frame.
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(5.101)

T2212cos07.2t(0) P s2I 
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(5.103)
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ITL212 p

s2 CO 3COSOL2

12,	 L
Al2

(5.99)

From the standard equations [11] for the incident power for a bending, longitudinal or

transverse wave at the joint the transmission coefficient, T 12 , may be given. Considering

an incident wave of unit amplitude, the transmission coefficient can be evaluated for any

incident wave being transmitted to a bending wave on plate 2 by

or for any wave being transmitted to a longitudinal wave on plate 2 by

71212C0S0L2t (0) _  Ps2I 

k
L2

8

(5.102)

and for any incident wave being transmitted to a transverse wave on plate 2 by

Where 8 is given for an incident bending, longitudinal or transverse wave on plate 1 by,

8 _  
2pslcos0B1

B
kB1

p icoseu
8 L- s

ku

p icos02,/
8 T- s

kTi

In SEA the sound field is assumed to be diffuse making it necessary to determine the

angular average transmission coefficient, Tay, in order to predict transmission. This is

obtained by solving the equations for specific angles of incidence to obtain, T(0), and
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then numerically averaging these using [44],

= .1 1- T(0) cose d(0)
	 (5.105)

The transmission coefficient may then be used to determine the coupling loss factor [13]

as given by,

where S is the surface area of the source plate and L is the common boundary length of

the joint. Once the coupling loss factors for the joint are known they can be used as part

of an SEA model to predict transmission through the system of interest.

5.4	 Comparison of theoretical models

This section compares the various theoretical models discussed in section 5.4. Fig 5.17

shows the standard 'H' structure for parallel plates connected by a frame and Table 5.1

gives the material properties. Studies of the transmission loss between the parallel plates

for various types of wave motion are presented including a study of the transmission

coefficient as a function of the angle of incident at various frequencies.

In some of the following graph figures there are small fluctuations for the predicted

transmission loss and the curves are not always smooth. This is due to the level of

computational accuracy. The time required to compute the various line models depends

upon the accuracy required. The smooth curves which are presented were computed over

a large period of time and to a high level of accuracy involving thousands of incident

angles at narrow frequency bands. In some cases this was not always required as the

increased computational time did not alter the transmission loss significantly. Hence

some figures have small fluctuations in the transmission loss curve due to a smaller

period of computation.
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Plate 3 Plate 4

z

Plate 1	 Plate 2

Frame

Figure 5.17 Plate configuration for a standard 'H' structure with frame

Dimensions
p (kg/m3) E (N/m2) li rii (ILF)

Lx Ly Lz
Plate 1,2
3 and 4 ' 2 .0 2.0 0.013 800 1.966e9 0.2 0.01

Frame 0.05 2.0 0.25 450 9.113e 9 0.3 0.015

Table 5.1	 Material property values for plasterboard plates and timber beam.
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Fig 5.18 shows the predicted transmission loss from plate 1 to plates 2, 3 and 4, for

transmitted bending, longitudinal and transverse wave motion, due to a source bending

wave on plate 1 when modelling the frame as a beam. As may be seen in Fig 5.18 the

transmission loss values for plates 2, 3 and 4 are very similar. This is because for an

incident bending wave no account is taken for the offset, between the top and bottom

plates, and also all transmission to the receiving plates must pass through the beam and

are equally affected. It might be expected that the transmission from plate 1 to plate 2

would be stronger than the transmission to the offset plates, but the theory given in

eqn(5.22a,b,c) requires that the bending displacement on all four plates is the same.

Furthermore in no other equation describing the flexural wave motion is the offset

mentioned. However, the theory for inplane displacement on plates 3 and 4, due to an

incident longitudinal wave on plate 1 given by eqns(5.28b,c), does require that the offset

is taken into account and this will be shown later.

Fig 5.19 shows the predicted transmission loss from plate 1 to plates 2, 3 and 4 for an

incident bending wave on plate 1 when the frame is modelled as a plate. At the high

frequencies (above 2000Hz) the inplane transmission loss to plates 3 and 4 is of a

similar value to the bending to bending transmission loss. Also the flexural transmission

loss to plates 2, 3 and 4 is similar up to 8000Hz. The inplane transmission on plates 2,

3 and 4 increases rapidly (about 2000Hz) due to flexural wave motion in the frame and

at 8000Hz significant wave transferal occurs at the frame increasing the transmission by

up to 8dB. These relate approximately to X B/2 and X, flexural conditions. Above

8000Hz the flexural transmission loss is weaker on plates 3 and 4 when compared to

plate 2 as the wave motion on the offset plates is dependent upon the inplane wave

motion on the frame (plate 5) at these frequencies.

The importance of transferring from one wave type to another is shown in Fig 5.20

which shows the predicted longitudinal transmission loss from plate 1 to plates 2, 3 and

4 for an incident longitudinal wave on plate 1 when modelling the frame as plate. As

a result of an incident longitudinal wave on plate 1 this may transfer into a bending

wave on plate 5 (the frame) and then transfer into longitudinal wave motion on plate 3

and 4. Therefore when the angle of incidence is capable of transfering a longitudinal

wave on plate 1 into a bending wave on plate 5 the transmission loss will increase to
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Figure 5.18 Predicted transmission loss from plate 1 to 2, 3 and 4, for transmitted
bending, longitudinal and transverse waves, due to a source bending
wave on plate 1 when modelling the frame as a beam.
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Figure 5.19 Predicted transmission loss from plate 1 to 2,3 and 4, for transmitted
bending, longitudinal and transverse waves, due to a source bending
wave on plate 1 when modelling the frame as a plate.
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plates 3 and 4 and decrease on plate 2 for longitudinal wave motion. Fig 5.20 shows

these conditions quite clearly by the increase in transmission resulting in reduced

transmission loss for plates 3 and 4 and increasing transmission loss for plate 2 at

2000Hz and 8000Hz. Fig 5.21 shows a similar study to that shown in Fig 5.20 but when

modelling the frame as a beam. The lack of wave motion predicted when modelling the

frame as a beam is evident by the absence of wave transferal in Fig 5.21 when compared

to Fig 5.20. However an important aspect of the predicted results for longitudinal

transmission shown in Fig 5.21 is the difference in the values between plates 2 to 3 and

4. As mentioned previously the inplane displacement for the beam model does take

account of the offset between plates 2 and 3 and 4 for an incident longitudinal wave on

plate 1. Hence the transmission is stronger to plate 2 than to plates 3 and 4 due to the

offset.

Fig 5.22 shows the normal and random incidence transmission paths across the frame

when modelled as a plate, (only plates 1 to 4 are shown for clarity). Fig 5.23 shows a

comparison between random incidence and normal incidence calculated transmission loss

for two plates offset by the frame. As expected, the normal incidence transmission is

increased (more pronounced) where the wavelength equals or is a multiple of the frame

depth. Fig 5.24 and 5.25 show the predicted transmission loss from plate 1 to plates 2,

3 and 4 for an incident transverse wave on plate 1 where the frame is modelled as a

plate and a beam. The predicted results for plates 3 and 4 are identical over the majority

of the frequency range using the beam theory and are almost identical in the plate

model. Due to the offset between the plates, which is accounted for in the theory, this

results in weaker transmission to plates 3 and 4.

Fig 5.26 shows the transmission loss as a function of angle of incidence for an 'H' plate

structure when modelling the frame as a plate. Transmission to all three plates is

increased when sin0 equals 0.132 or 0 equals 7.5 0 (relative to the normal). Interestingly

the transmission loss for plate 2 in Fig 5.26 shows a strong reflection taking place at the

junction between plate 1 and plate 2 due to the sudden increase in transmission loss

when sin0 equals 0.3. This is where there is high reflection at the joint back to plate 1.

145



Plate model

1-4

1-3	 • • . \
• • \

• •	 •	 •
• *--""

1-2

III -11111111111.11i	 I	 i	 i	 I	 i	 i	 I	 i	 i	 I	 i	 i	 I 

40

35

30

25

20

15

10

5

0
16 31.5 63	 125 250 500 1000 2000 4000 8000 16000

Frequency Hz

Figure 5.20 Predicted longitudinal transmission loss from plate 1 to 2, 3 and 4
for an incident longitudinal wave on plate 1 when the frame is a plate
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Figure 5.21 Predicted longitudinal transmission loss from plate 1 to 2, 3 and 4

for an incident longitudinal wave on plate 1 when modelling the frame
as a beam.
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Figure 5.22	 Normal and random incidence transmission paths from plate 1 to
plate 4 in an 'H' plate structure where the frame is a plate.
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Figure 5.23 Predicted transmission loss from plate 1 to plate 4 for an incident

longitudinal wave on plate 1 and longitudinal wave motion on plate 4
comparing normal and random incidence. ( 	 ) norm. (- - -) random.
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Figure 5.24 Predicted transmission loss for an incident transverse wave on plate

1 and resultant transverse wave motion on plates 2, 3 and 4.where

the frame is modelled as a plate. (	 ) plate 1 to 2, (...) plate 1 to 3,
(- - -) plate 1 to 4
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Figure 5.25 Predicted transmission loss for an incident transverse wave on plate 1

and resultant transverse wave motion on plates 2, 3 and 4 where

the frame is a beam. (	 ) plate 1 to 2, (...) plate 1 to 3,

(- - -) plate 1 to 4
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Figure 5.26 Transmission loss as a function of angle of incidence for an 'H'
plate structure modelling the frame as a plate at 500Hz.
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Figure 5.27 Transmission loss as a function of angle of incidence from plate 1
to plate 4 for various frequencies when the frame is modelled as a
plate.



Fig 5.27 shows the transmission loss as a function of angle of incidence from plate 1 to

plate 4 for an 'H' plate structure calculated for various frequencies when the frame is

modelled as a plate. It can be seen that as the frequency increases so the angle where

maximum transmission occurs also increases.

Fig 5.28 shows the predicted transmission loss from plate 1 to plate 4 for a standard 'H'

structure where the plate thickness of plates 3 and 4 is varied by a factor of 4, 2, 1, 1/2

and 1/4. For an incident bending wave on plate 1 the transmission loss is calculated for

the resultant bending, longitudinal and transverse wave motion on plate 4. For transfer

to longitudinal and transverse wave motion on plate 4, as the plate thickness increases

so the transmission loss increases. However, due to the redistribution of energy for the

various types of waves and the bending stiffness increases at a faster rate than the

inplane stiffness, the bending to bending has an opposite effect for the frequency range

studied. As the plate thickness increases so the transmission loss decreases and increased

transmission results.

Fig 5.29 shows the predicted acceleration level difference from plate 1 to plates 2, 3 and

4 for an incident bending wave on plate 1 and resultant bending wave motion on the

receiving plates comparing the plate, beam and SEA prediction models. The plate model

is similar to the beam model at low frequencies where there are no resonant conditions

in the frame due to the frame depth being smaller than the wavelength. At the higher

frequencies the SEA model, which models the frame as a plate, is similar to the plate

model when there are resonant conditions in the frame. At these higher frequencies the

frame depth is large in comparison to the wavelength and thus is able to support full

wave motion.
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Figure 5.28 Predicted transmission loss from plate 1 to plate 4 for an incident
bending wave on plate 1 and resultant bending, longitudinal and
transverse waves on plate 4, for varying thickness of plates 3 and 4.
Plates 1 and 2, 13mm thick. Plates 3 and 4, (....) 52mm, (- - ) 26mm,
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Figure 5.29 Predicted acceleration level difference from plate 1 to plates 2, 3
and 4, comparing plate, beam and SEA models.
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5.5	 Parametric survey of the frame using the plate model

Due to the number of material properties of the frame, which if altered may change the

transmission loss, the following section is a parametric study of varying such parameters.

As will be shown in Chapter 6, which compares the measured and predicted acceleration

level differences between plates 1 to 2, 3 and 4, modelling the frame as a plate gives the

best comparison with the measured results. Consequently this section describes the

possible changes to the transmission loss for parallel plate structures when the frame is

modelled as a plate. The following frame parameters are studied:-

• Depth or offset (d),

• Thickness (h),

• Density (p),

• Longitudinal wavespeed (CO,

• and Poisson ratio 04

The parametric study presented is for transmission loss (dB) plotted against a frequency

range of 100Hz to 10KHz. The structure is that of a full "H" structure as detailed in

section 5.5 and the materials used are those as found in a standard plasterboard partition.

The transmission loss, given by (10 log 1/T), was calculated for an incident bending

wave on plate 1 and the resultant bending wave motion on plate 4. As shown in Fig 5.18

the bending transmission loss to plates 2, 3 and 4 are similar, and thus any changes to

the frame parameters will affect all three plates. This study analyses each parameter in

turn with the basic plate having the following parameter values;

d=0.25m b=0.05m p=450kg/m 3 CL=4500m/s [1=0.2 ILF=0.015

Each of the above parameter values is varied by a multiple of 4, 2, 1, 1/2, and 1/4. All

parameter values studied which represent the basic plate or frame are shown in each

figure by the following symbol (El).

Fig 5.30 and Fig 5.31 show the effect to transmission loss when varying the values of

the frame depth and thickness. From eqn(4.1), which can be used to calculate the
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frequencies where the first wavelength may fit into the frame depth, any increase to the

plate thickness has the opposite effect to varying the plate depth which is related to the

wavelength term in the denominator. Thus in Fig 5.30 as the plate depth increases, by

a factor of 2, so the offset between the parallel plates is increased and the transmission

loss to plate 4 will be increased by 3dB. However, wave motion will be able to be

supported within the frame at a lower frequency and this is shown at points a, b and c

in Fig 5.30.

Varying the frame thickness has the opposite effect as shown in Fig 5.31. As the plate

thickness increases, similar to varying the plate depth, the transmission loss increases,

however the wave motion is supported in the frame at higher frequencies. Thus

increasing both variables, depth and thickness, will increase the transmission loss, but

will have the opposite effect for the frequency where the frame may support flexural

wave motion.

Fig 5.32 shows the effect to transmission loss when varying the frame density. For every

doubling of the frame density the transmission loss increases by 2-3dB in the mid

frequency range shown.

Another influential parameter is the longitudinal wavespeed which is shown in Fig 5.33.

As will be shown in the next chapter this has an important role when predicting structure

borne sound transmission through timber frames in partitions. As the longitudinal

wavespeed decreases so the wavelength required to fit within the frame depth occurs at

a lower frequency. This is shown in Fig 5.33 at the points labelled a, b, c and d. The

higher the longitudinal wavespeed the higher the Young's modulus and the higher the

bending stiffness. As the frame increases in stiffness so the transmission loss increases.

Fig 5.34 shows the effect to transmission loss by varying the Poisson ratio. The Poisson

ratio is defined as the ratio between the relative lateral contraction to the relative

longitudinal extension. In order for the volume to remain constant the lower limit of

Poisson ratio is 0 and the upper limit is 0.5 [15] and thus only four values of Poisson

ratio are shown. As the Poisson ratio approaches 0.5 the material is more soft. Thus

typical values for other materials such as steel may be 0.2 and for soft rubber 0.48 [15].
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frame density.

	

' I,	 i	 I	 i	 j	 I	 i	 i	 I	 i	 i	 I 

125
	

250	 500 •	 1000	 2000	 4000	 8000

Frequency Hz

Figure 5.33 Predicted transmission loss from plate 1 to plate 4 with varying
frame longitudinal wavespeed.



Fig 5.34 shows that any change to the value of the Poisson ratio for the frame has no

real effect on the transmission loss.

5.6	 Discussion

The models presented in section 5.3.2 can provide detailed analysis of wave behaviour

on the plates. Terms have been included for incident flexural and inplane waves. When

the frame is modelled as a finite plate this can include the transmitted and reflected

waves between the two junctions. The plate model is similar to the beam model at the

low frequencies when the wavelength under study is larger than the frame depth. At the

higher ferquencies the plate model is similar to the SEA model, where the junctions are

modelled as two 'tee' joints. If the frequency range of interest results in a wavelength

which is larger and smaller than the frame depth then the plate model is capable of

predicting over the entire frequency range of interest. If the wavelength is constantly

larger than the frame depth then the more simplified beam model is sufficient.

The plate model is capable of predicting any changes to the material properties of the

frame. It has been shown that if the frame width or depth is varied this can have a

considerable effect on the transmission loss. This is important for the design of structures

within the area of floors and walls where sizes of the joists or studs are stipulated in the

Building Regulations [1,2] primarily for structural reasons. The joists and studs could

be designed such that they still met the structural requirements but also they could be

sized to reduce the structure borne sound transmission through the walls and floors.

Revising the beam model

In section 5.3.2 the theory was presented for modelling the frame as a beam. Similar to

the plate model and SEA model the boundary conditions required that the displacement

at the joint was continuous, the slopes or (angular displacement) were equal on all four

or five plates and that the sum of the moments and forces in the x, y and z-direction

were equal to zero. As has already been discussed there is no account for the offset

between the top and bottom plates within the beam model for flexural wave motion.

During the course of this work it was found that the slope boundary condition may play

a significant role in changing the calculation for flexural wave motion between the
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Figure 5.35 Slope boundary conditions for the beam model and revised beam model
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parallel plates. Fig 5.35 shows that the slopes between the top and bottom parallel plates

may not always be equal and that the beam cross section may bend about the x-axis.

Hence the slope boundary conditions are affected and results in changes to the other

equations where the slope terms are used. The slope terms appeared in the beam model

equations for the moments, displacement in the x-direction and forces in the x-direction.

The following outlines the new boundary conditions and changes to the respective

equations. Thus the boundary conditions are as follows:-

(i) Continuity of displacement across the joint,

(ii) Slope of plate 1 is not equal to the slope of plates 3 and 4,

(iii) Sum of the bending moment about the y-axis is zero,

(iv) Sum of the forces in the x, y and z-direction are zero.

Changes to the slope

From Fig 5.35 the slope of plate 1 equals the slope of plate 2, but no longer equals that

of plates 3 and 4. The slope on plate 3 equals plate 4. Equation (5.36a) remains the same

and is given by,

11)1 = (1)2

	 (5.107)

The slope on plates 3 and 4 is as a result of the moments on plates 1 and 2 and the

beams resistance to bending Dy [44]. Both plates 1 and 2 rotate by an angle as given by

eqn(5.7) and plates 3 and 4 rotate with respect to plates 1 and 2 by [44],

Thus the equation for the slope on plate 3 and 4, which replaces eqn(5.36b,c), is given

as,
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where Dy is given by,

Fig 5.36 shows the relationship between the Young's modulus and the various bending

stiffnesses of the beam when the frame is timber. Chapter 2 discussed the longitudinal

wavespeed properties of timber in the radial, tangential and axial directions.

Changes to the displacement in the x-direction

In eqn(5.28b) the slope of plate 1 was used to determine the displacement in the x-

direction for plates 3 and 4. As the slope of plate 1 and plate 3 are no longer equal,

using eqn(5.108) the inplane displacement for plates 3 and 4 may be written as,

E 3 = E4=E1+[(1)1 2
431d-	

2D
E l i4) 1 +  (All-Mdid

Y

Changes to the total resisting moment in the beam

The twisting and torsional moments in the beam also use the slope term which must be

altered due to the change in the boundary conditions. The slope of the beam at its centre

is required and is given as,

4)1+4)3	 M1-M2
4)°-	 1+

2	 - 2Dy
(5.112)

Thus eqn(5.41) for the total resisting moment in the beam may be given by,

mo__,,,2e[4.1-1-(1)31 G a2 14)1+4)3i

2	 ay2 2
(5.113)
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Changes to the forces in the x-direction

As a result of the changes to the displacement in the x-direction the displacement of the

beam at its centre is also affected. The total resisting force in the x-direction for the

beam was given by eqn(5.49). This is now written as,

Fx°- -6)2 p i l 1 +( (1)143 1 d1+B.,	 11-4-(4)1÷4)31d1
k 2 )2j	 ay 4 1.	2 )2]

(5.114)

Figs 5.37 to 5.39 show comparisons between the plate, beam and revised beam models.

The revised beam model described above should only alter the flexural wave motion

between the top and bottom plates. Fig 5.37 shows the predicted transmission loss for

the various models for an incident longitudinal wave on plate 1 and the resultant inplane

wave motion on plate 4 for a standard 'H' structure. As expected the inplane wave

motion on plate 4 is unaffected by the changes to the slope boundary conditions and the

beam and revised beam model are identical.

Fig 5.38 and Fig 5.39 show the predicted transmission loss from plate 1 to plates 2 and

4 for flexural wave motion, comparing the beam, plate and revised beam models. Fig

5.38 shows increased transmission to plate 2 for the revised beam model when compared

with the beam model. Fig 5.39 shows that the transmission to the offset plates, plates

3 and 4, are identical. When comparing the transmission to plate 2 and 4 for the revised

beam model the change in the slope boundary conditions has accounted for the stronger

transmission to the inplane plate, plate 2, and is similar in transmission loss to the plate

model.

The above revised theory relies heavily on the frame parameter D. In the next chapter,

chapter 6, the orthotropic nature of timber and the parameter, Dy may be significant in

determining structure borne sound transmission. However, the use of this theory is

dependant upon the fact that the slopes should be dissimilar between the top and bottom

plates and if this is not the case then this theory should not be used.
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5.7	 Conclusions

This chapter has described the various theories for structure borne sound transmission

between parallel plates for a line connection. All theories presented are wave models and

detail the bending, longitudinal, transverse and nearfield wave motion. It is also possible

to omit any number of plates using these theories. The importance of including inplane

wave motion and the transfer from one wave type to another has been shown in the

predicted transmission loss between the top and bottom plates.

As the transmission to plates 3 and 4 is similar, for clarity only the transmission to plate

4 has been shown in the figures presented. Interestingly the incident angle at the junction

with the frame and plate 1 is within a small range of angles over the frequency range.

The beam model and plate model are similar at the low frequencies, and the plate and

SEA models are similar at the high frequencies. The case of which model to choose is

dependant upon the structure under study and the frequency range of interest. If the

frame depth is small in comparison with the wavelength, at low frequencies, then the

beam model appears to suffice. However if the frame depth is large in comparison with

the wavelength, at higher frequencies, then the SEA or plate model should be used. In

the case where the entire frequency range is under study and the frame offset or depth

is smaller and larger than the wavelength, as found with internal partitions, then the plate

model should be used. It has been shown also that changes to the frame material

properties may significantly affect the transmission loss between the top and bottom

plates.
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Chapter 6

Comparison of Measured and Predicted Results

for Parallel Plates with a Line Connection

6.1	 Introduction

The previous chapter, chapter 5, described the theory for structure borne sound

transmission for parallel plates with a line connection. This chapter will compare the

measured and predicted results for such structures.

The standard material used for the frame in internal partitions and beams in floors for

domestic construction is wood. Due to the orthotropic nature of wood and its unique and

complex structure, careful consideration must be given to the material parameters

inserted into any of the theoretical models described in chapter 5. This chapter will

describe the effects these have on the structure borne sound transmission between

parallel plates.

As shown in the previous chapter, Fig 5.1, some parallel plate structures have plates

omitted from the standard 'H' plate structure. This may be due to connections to other

walls or jambs with windows or doors. Also as this work is also related to aerospace and

flight vehicle structures there may be any number of plates omitted and therefore all

possible structures should be examined. This chapter will show the measured and

predicted results for the standard 'H' structure and where any combination of plates are

omitted from the standard structure. The parametric study covered in chapter 5 also

showed that variations to the frames material parameters may affect the resultant

transmission loss between parallel plates. The most common parameter to be regularly

altered in partitions and timber floors is the frame depth. The sizes varying from 250mm

to 50mm. For this reason this chapter will also show the measured and predicted results

for varying the frame depth for a combination of structures involving parallel plates.
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6.2	 Comparison of line connection models

The tangential material properties for the timber frame, discussed in Chapter 2, are used

in the revised beam, plate and SEA theoretical models presented in chapter 5. Due to

the orthotropic nature of wood the value of the longitudinal wavespeed, Cu t), in the

tangential direction may be a factor of two to four times less than in the axial direction,

CL(a) [15]. The consequences to the theory described in chapter 5 are significant. The

Young's modulus and resultant bending stiffness are dictated by the longitudinal

wavespeed. The Young's modulus is effected not by a factor of two to four but by a

factor of four to sixteen, as shown by eqns.(3.2 and 3.3). In addition, any changes to the

longitudinal wavespeed will also affect the frequency where the modes occur within the

frame.

To compare the theoretical models with results from real structures a series of tests were

carried out on suspended line connected parallel plate structures. All the structures

studied in this chapter were freely suspended in an anechoic chamber to reduce the

interference from reflections from surrounding surfaces. All the measured data recorded

was for flexural wave motion only. Due to interference from flexural wave motion on

the plates causing bending rotation to the accelerometers [87] it is difficult to measure

true inplane motion. Table 6.1 shows the material properties of a standard 'H' type

parallel plate structure connected by a 200x45mm timber frame, similar to that shown

in Fig 6.1. The damping and longitudinal wavespeed of the plasterboard plates were

measured as detailed in chapter 3 and the predicted total loss factors of the plates used

to determine the predicted acceleration levels shown in the following figures were

calculated by summing the coupling loss factors and internal loss factors.

Fig 6.1 shows a typical 'H' structure where plates 1, 2, 3 and 4 are 12.5mm thick

plasterboard sheets with dimensions 1.2x1.2m. The inline plates , plates 1 and 2 and

plates 3 and 4, are formed from a 2.4x1 .2m plasterboard sheets divided by a line of

multiple screws at 60mm centres. The structures were excited with a structural source

which was an acoustic hammer as detailed in chapter 3.
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A

1.2m

multiple screws

at close spacing

Figure 6.1 Freely suspended 'H' structure for line connection tests.

Subsystem Dimensions (m) Material properties

Plates
1,2,3,4

Frame 5

La Ly Lz p (kg/m
3

) Ea (N/m2) E t (N/rri) Ix 1 i (ILF)

1.2 1.2 0.0125 ' 806 2.3x109 0.2 0.01

0.045 1.2 0.2 450 8.752x1e 1.15x109 0.3 0.015

Table 6.1 Material properties of a line connected test structure with a 200x45mm frame.
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Fig 6.2 shows the predicted and measured acceleration level difference from plate 1 to

plate 3 for the structure given in Table 6.1. Two predicted acceleration level difference

results are shown in Fig 6.2. Both predicted results are calculated by using the plate

model described in chapter 5. The theory to determine the predicted acceleration level

difference is given in chapter 2. The predicted results shown are calculated using the

measured axial and tangential longitudinal wavespeed of the timber frame. As can be

seen in Fig 6.2 using the tangential longitudinal wavespeed (Cue-4635mA) for the plate

model theory gives good agreement with the measured results. The predicted acceleration

level difference using the axial longitudinal wavespeed (C 40=4501m/s) has good

agreement at the low frequencies. However, the first half wavelength on the test

structure frame occurs after 1000Hz and the plate model using CL(t) predicts this well.

Using the higher value of axial longitudinal wavespeed, C a), results in the predicted

flexural modes taking place at higher frequencies, as may be calculated from eqn(4.1).

This is shown in Fig 6.2 above 8K1-lz by a decrease in the predicted plate model

acceleration level difference using Cvo.

Fig 6.3 shows a comparison of the various theoretical models described in chapter 5 with

measured acceleration level difference from plate 1 to plate 3, for the structure detailed

in Table 6.1. The predicted acceleration level difference results are shown for the plate,

beam, SEA and revised beam models. The SEA predicted results shown in Fig 6.3 are

calculated using the tangential longitudinal wavespeed due to the frame being modelled

as a plate. The beam model and revised beam model are slightly different at the higher

frequencies as the beam model is calculated with CL(a) and the revised beam model with

Cia• In the theory presented for the beam model in section 5.4.3 the beam's moments

and forces are calculated using the axial beam parameters and in particular Bx and B.
The beam's moments and forces in the revised beam model described in section 5.7 are

determined by the slope terms given by eqn(5.112). One parameter of the beam which

appears in all of the revised equations, eqns.(5.108 - 5.114), is the parameter D. If the

same principle is applied for calculating Dy then the timber's tangential longitudinal

wavespeed must be used to determine the tangential Young's modulus, which is

perpendicular to the direction of bending, as shown in Fig 5.36. Fig 6.3 shows that from

the various prediction models presented the plate model using C L(t) has the best

comparison with the measured data. The beam and plate models are similar at the low
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Figure 6.2 Comparison of measured and predicted acceleration level difference
from plate 1 to 3 for a standard 'H' structure showing the effect of
using the axial and tangential longitudinal wavespeed in the plate
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Figure 6.3 Comparison of predicted and measured acceleration level difference
from plate 1 to 3 showing the relationship between various theoretical
models. (	 ) measured,	 plate model using CL(a) , ( - - -)
plate model using Cut) , (0) SEA model using CL(0 , 1— ) beam model
using CL(a) , (....) beam model using CL(0.
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frequencies, where the wavelength is greater than the depth of the frame plate, and

compare well with measured data. However as the frequency increases the wavelength

becomes shorter and when flexural wavelengths are able to be supported within the

frame the plate model predicts these well.

6.3	 Varying the depth or the number of plates

Varying the depth

One of the principle parameters that varies from structure to structure is the depth

parameter or offset between the parallel plates. This section describes the measured and

predicted acceleration level difference for a standard 'H' structure with varying depth

of 200, 100 and 50mm. Results for plates 1 to 2, 1 to 3 and 1 to 4 are shown. Figs 6.5-

6.7 show the predicted and measured results for the standard 'H' structure, II*, shown

in Fig 6.4, where the symbol (*) refers to the various depths tested. Table 6.2 shows the

material properties of the plates and the frame for the structure tested. Description of the

apparatus used and methods of testing is given in Chapter 3. The plate model is a more

accurate form of the SEA model and hence the SEA model is omitted from the graphs

for clarity. For this reason only the beam and plate models are compared with measured

data.

Fig 6.5 shows the measured and predicted acceleration level difference from plate 1 to

the inline plate, plate 2. As the depth parameter increases so both the beam and plate

model predict less transmission to plate 2. However, the measured results appear to show

that as the depth increases there is very little change to the acceleration level difference

and also there is increasingly poor agreement between the measured and predicted data.

Figs 6.10 and 6.11 show the acceleration level difference from plate 1 to the offset

plates 3 and 4. As the depth increases by a factor of two so the measured and predicted

level difference increases by 3dB. There is generally good agreement between the

measured and plate predicted results over the frequency range. The beam and plate

predicted results diverge at lower frequencies as the plate depth increases.

Although the beam model works well at low frequencies the plate model works well

throughout the frequency range of interest. It appears that even on small depth beams
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multiple screws
at close spacing

Timber frame

1	 1	 2
Timber frame

3 Ir

A

2

=7.1	 3 

C*

(*) - refers to depth of timber beam 50,100 or 200mm

Figure 6.4 Various structure configurations tested from the standard 'H' structure
where plates are omitted.

Subsystem Dimensions (m) Material properties

Lx Ly Lz p (kg/m3 ) Ea (N/m2) E t (N/M) g. 11 i (ILF)

Plates
1,2,3,4 1.2 1.2 0.0125 806 2.3x109 0.2 0.01

Frame 5 0.045 1.2 0.2 450 9.1x10 9 5.69x10 8 0.3 0.015
0.1 419 8.21x10

9
1.51x10 8 " II

" " 0.05 421 8.21x109 1.51x10 8 " II

Table 6.2 Material properties of line connected test structures with frames of varying depth.
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such as 50mm the beam model is still not as accurate in the prediction of the

acceleration level difference as the plate model.

Omitting Various Plates from the Standard 'H' Section

This section shows the measured and predicted acceleration level difference for the

various combinations of structure possible from the standard 'H' section. These

structures are shown in Fig 6.4 and the material properties are shown in Table 6.2. For

simplicity the structures have been labelled A (plates 1,3 and 4), B (plates 1,2 and 4),

C* (plates 1 and 3), D (plates 1,2 and 3) and Z* plates 1 and 4.

In addition the effects of varying the depth for all the above named structures was

undertaken. For simplicity not all the structures tested with varying depth are shown in

this chapter and only structures C* and Z* are presented with varying depth.

Fig 6.8 shows the measured and predicted acceleration level difference from plate 1 to

plates 3 and 4 when plate 2 is omitted. Generally the agreement between the measured

and plate predicted results are good. However, Fig 6.9 and 6.10 show test structures B

and D which include plate 2 and omit plate 3 or 4. As found with the 11* structure

shown in Fig 6.5, which also included results for plate 2, the predicted theory

consistently under estimates the strength of transmission to plate 2, particularly with

increasing frame depth. The increased measured transmission to plate 2 results in a

difference between the measured and predicted plate model acceleration level difference

of 3-5dB over the frequency range of interest.

Fig 6.11 and Fig 6.12 show the measured and predicted acceleration level difference for

the structures C* and Z*. Fig 6.11 shows excellent agreement between the measured and

predicted plate model results for plates 1 to 3. The agreement is not as good for plates

1 to 4 shown in Fig 6.12.

The measured and predicted results for these test structures show reasonable agreement

over the frequency range. The plate model is the most detailed and thus the most

accurate. For some of the results the agreement is excellent. The plate model is able to

take account of any number of plates being omitted.
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Figure 6.8 Measured and 'predicted acceleration level difference from plate 1
to plates 3 and 4 with a 200x45mm frame and omitting plate 2.
(	 ), measured, (_._.) beam model, ( - - - ) plate model.
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Figure 6.9 Measured and predicted acceleration level difference from plate 1
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(	 ), measured,	 beam model, ( - - - ) plate model.
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Figure 6.10 Measured and predicted acceleration level difference from plate 1
to plates 2 and 3 with a 200x45mm frame and omitting plate 4.
(	 ), measured,	 beam model, ( - - - ) plate model.
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Also as the depth parameter is increased so the level difference from plate 1 to the offset

plates 3 and 4 increases. This is well predicted by the plate model. The plasterboard

plates that were used for the test structures had very few modes at the low frequencies.

As SEA requires several modes per frequency band to obtain a mean average the

agreement at the lower frequencies between the measured and predicted results is not as

good. In hindsight, it may have been better to use larger plates or another material.

However, the results are significant to assume that the models are working well. The

beam model works well at the low frequencies up to the frequency where the first half

wavelength fits into the depth of the frame. The plate model works well over all the

frequencies and is able to predict when the first half wavelength fits into the frame.

6.4	 Replacing the timber stud with a metal stud

In the construction of modern internal partitions for offices the primary material now

used for the frame is a metal channel. Although this thesis concentrates more specifically

on the application of the theoretical models for internal partitions in houses it was

thought appropriate to carry out structure borne sound measurements on a metal channel

partition. This would hopefully support the credibility of these models and the wide

range of applications to which the theory may be applied.

An 'H' type structure was built, as shown in Fig 6.13, using plasterboard sheets for the

plates with material properties as given in Table 6.3. The metal channel was 1.2m long

with a depth, or offset between the plates, of 70mm and a thickness of lmm. Most metal

channels used for internal office partitions are open channels. This means that they are

not closed on all sides. The open channel used for the frame which was a "C" shape

aluminium metal channel with a density of 357 1kg/m 3 and a longitudinal wavespeed of

5070m/s.

The small metal flanges of the channel shown in Fig 6.13, which are perpendicular to

the plates, are not included in the model for simplicity. Fig 6.14 shows the measured and

predicted acceleration level difference for transmission from plate 1 to plates 2, 3 and

4. Generally there is good agreement between the measured and predicted results. Above

2500Hz the 60mm spacing of the screws, connecting the plates to the frame, makes it
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Figure 6.13 Plate configuration with metal channel.

Subsystem Dimensions (m) Material properties

Plates
1,2,3,4

Frame 5

Lx Ly Lz p (kg/m3 ) E	 (N/m2) II TI. (ILF)

1.2 1.2 0.0125 806 2.3x10 9 0.2 0.01

0.001 1.2 0.07 3571 9.179x10
10

0.2 0.015

Table 6.3 Material properties of a line connected test structure with a metal channel.
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possible for the plate flexural wavelengths to fit between the screws and may be

modelled as point connected plates, as described in chapter 4. The point connection

model results are also shown in Fig 6.14 for transmission to plates 3 and 4 and there is

generally good agreement.

As previously discussed, the revised beam model was not calculated for the timber frame

structures because no evidence could be found that the slopes were different or that the

timber frame was bending about the x-axis. The value of the bending stiffness Dy for the

timber frames was for a 100mm offset typically 49,810 N/m 2. However, in the case of

the metal channel being only 1 mm thick and has a much lower value of Dy, typically

190 N/m2. The metal channel was far more flexible than the timber frame and for this

reason the revised beam model was calculated along with the plate model to compare

with the measured data.

These results show that the plate model again is able to predict the transmission quite

accurately across the frame. It is pleasing to note how well the point connection model

predicts the transmission to plates 3 and 4. Once again the prediction for transmission

to plate 2 is underestimating the strength of coupling.

6.5	 Discussion

As shown from the measured and predicted results from Fig 6.5 to Fig 6.14 the strength

in transmission from plate 1 to the inline plate, plate 2, is consistently under predicted.

The measured acceleration level difference is much lower than the predicted acceleration

level difference over the frequency range. On analysis of the results, for plates 1 to 2,

from the test structures H, B and D and discovering the large discrepancy between the

predicted and measured results it was thought that there may be two reasons for this

error.

Firstly, that the behaviour of the plates directly at the junction was possibly dissimilar

to that given by the boundary conditions. The boundary conditions for both the plate and

beam model assume that the flexural displacement at the joint on plates 2, 3 and 4 will

be similar until the frame can support flexural wave motion.
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Secondly, that the fault may lie in the structure itself. Plates 1 and 2 are formed by the

division of a large plate, 2.4x1 .2m, into two smaller plates, 1.2x1.2m, by the line of

screws connecting the frame to the plates. As there is a continuous plate, there may be

prevention of moments or forces being transmitted which would act at the plate edge.

These two assumptions were examined further and measurements were carried out on

the test structures. The first assumption, that perhaps the behaviour at the junction of the

plates did not conform with the boundary conditions, was investigated by taking

measurements of the acceleration level of the four plates directly at the junction with the

frame. The structure tested is similar to that shown in Fig 6.1. The plasterboard plates

are 1.2x1.2x0.0125m with a density of 806kg/m 3 and a longitudinal wavespeed of

1702m1s. The timber frame is 1.2x0.045x0.2m with a density of 451 kg/m3 and a CL(a)

of 4448m1s and a Cut) of 1675m1s.

Fig 6.15 shows the measured acceleration level difference for the plates 1 to 2, 1 to 3

and 1 to 4 when placing the accelerometers at the junction of the frame and plates. As

can be seen the acceleration level difference from plates 1 to 2, 3 and 4 is similar up to

1600Hz. At 2000Hz modes may be supported in the frame and the value for plates 3 and

4 diverge from plate 2. As this shows the level difference for the plates with respect to

plate 1 it can be seen that the acceleration on plate 1 is not equal to that on the other

plates. If all four plates were equal then there would be no level difference. This may

be due to the accelerometers not being placed at the beams centre and shear forces may

be acting on either side of frame's width. These results however are not conclusive.

The second assumption that the continuous plate may cause increased transmission from

plate 1 to plate 2 was also investigated. Tests were carried out on two test structures

involving two plates, plates -1 and 2, connected by a timber frame but plates 3 and 4

were omitted. Both structures are shown in Fig 6.16. The first structure incorporated a

12.5mm plasterboard sheet of dimensions 2.4x1.2m connected to a timber frame by two

lines of screws at 60mm centres. This divided the 2.4x1.2m plate into two 1.2x1.2m

plates. For the second test structure the plasterboard plate and timber beam were

decoupled and the 2.4x1 .2m plasterboard plate was cut in half to form two separate

plates, 1.2x1.2m each. These two plates were then individually recoupled to the timber
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and 4 when the accelerometers are placed at the junction.
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frame by a line of screws each, at centres of 60nun. The reason for using a much thicker

frame, shown in Fig 6.16, is to prevent the plasterboard sheets from breaking off from

the frame if the contact area between plate and frame had been smaller. By decoupling

plates 1 and 2 from each other, splitting the continuous plate, then the plates would both

have real edges for the respective moments and forces.

Fig 6.17 shows the measured acceleration level difference from plates 1 to 2 for both

the continuous and separate plate structures. There is only a significant difference in the

measured results between the two structures at the higher frequencies above 2000Hz.

This large difference at these frequencies is due to the spacing of the screw connections.

For a spacing of 60nun the first half wavelength that fits between the screws will occur

at approximately 2500Hz. At this frequency the structure is assumed to be no longer

connected by a line connection but at specific points where the screws contact with the

frame. Thus the structure at and above this frequency may be assumed to be point

connected and effectively by being point connected there is an increase in acceleration

level difference of up to 11dB.

The fact that there is practically no difference in the measured results between the two

structures below 2000Hz suggests that the structure borne transmission is unrestricted

by the continuous plate and is therefore being modelled correctly. However, this still

does not solve the anomaly of why there is such strong coupling to plate 2 in the

structures discussed in sections 6.3 and 6.4.

From Fig 6.17 the acceleration level difference between the continuous and separate

plates is approximately 11dB at the frequencies where the structures are point connected,

as shown in Fig 6.18. This means that the continuous plate has increased transmission

between plate 1 to plate 2 of 11dB between the points of contact when compared to the

separate plates. During the process of the tests carried out for section 3 a test was carried

out to measure the acceleration level at the screws and between the screws. Although of

a similar size and construction this was a different test structure to the continuous plate.

Fig 6.19 shows the position of the accelerometers on the structure, on the screws(A) and

between the screws(B), and it also shows the acceleration level difference between

positions (A) and (B). The screws were at 60mm centres and similar to the above
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structure that decoupled the plates there is a significant acceleration level difference at

2000Hz and above. The measured difference in acceleration level between positions (A)

and (B), as shown in Fig 6.19, should be the same as the measured difference in

acceleration level shown in Fig 6.18. The transmitted energy lost when the plates are

decoupled should be the same as that only going through the screw connections. As can

be seen this is the case and this reaffirms the credibility and repeatability of the tests

carried out.

6.6	 Conclusions

This chapter has shown that the plate model is capable of predicting the acceleration

level difference reasonably well between parallel plates. However, in the case of

transmission from plate 1 to plate 2 all the models under predict the transmission and

this is an area which requires further work.

The beam model and revised beam models work well at low frequencies before a

wavelength is able fit within the frame depth. The metal channels tested proved that

when there is a very flexible frame with a low value of Dy then the revised beam model

works well. However, in the case of predicting the structure borne sound transmission

between parallel plates over the entire frequency range, if the offset is small or large

between the plates then the plate model theory copes well when compared with

measured data. The plate model was adequate in predicting the change to transmission

as result of increasing depth and omitting plates.
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Chapter 7

Sound Transmission into Cavities

7.1	 Introduction

This chapter describes the different types of cavity construction found in double walls

and timber floors and reviews previous author's work in this area. Measured and

predicted results are shown for transmission into double wall cavities. As part of this

study tests were carried out on sound transmission into an isolated cavity test structure

with one flexible plate in addition to tests on double wall cavities with two flexible

plates.

This thesis is primarily concerned with the structural coupling that occurs in double

walls. However for completeness, the radiation into cavities and adjacent rooms from

double walls was also studied. Hence, this chapter aims to investigate the accuracy of

existing SEA theories for predicting sound transmission into cavities.

7.2	 Cavities in double wall construction

Fig 7.1 shows a variety of cavity constructions for basic lightweight partitions and

timber floors with and without absorption. The cavity depth can vary from 25mm to

250mm depending upon the construction design. The cavity is bounded on all sides and

closed. The plasterboard plates and timber studs of the frame in lightweight partitions

result in structural elements forming perpendicular junctions at the cavity's perimeter.

In timber floors the cavity is formed between the flooring, ceiling and timber joists. In

domestic construction the partition frame is composed of timber and in office lightweight

partitions metal channels are used.
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Absorption can be present in cavities for three reasons. Firstly as an acoustic absorber

to increase the damping of the cavity and assist in reducing the transmission through the

cavity. Secondly, as insulation to reduce heat loss within the construction and thirdly as

fire protection. Materials such as "Rockwool" insulation can increase the fire resistance

of structural components and reduce the passage of smoke and fire through voids such

as cavities. Some insulation products for thermal and fire use can also be used for

acoustic absorption due to their high damping and absorption characteristics.

The structure of partitions and timber floors in today's construction industry are

becoming more complex in design. However, for the purpose of this study, to develop

SEA models for predicting sound transmission into and through such structures, the

cavity and double wall structures studied are basic in design. This reduces the number

of variables and assists in understanding the acoustic behaviour of the structures to then

develop theoretical prediction models.

7.3	 Review of past work on cavities

The section briefly mentions the authors who have studied sound transmission into

cavities. The cavities studied had one dimension much smaller than the acoustical

wavelengths possible under the frequency range of interest, thus creating a two

dimensional acoustic void. Most of the authors have studied this transmission for a

cavity where there is an airborne source in a room and finite flexible plate divides the

room from the cavity, as shown in Fig 7.2. There are two important sound transmission

paths into a cavity which are incorporated in an SEA model, the non-resonant path room

to cavity and the resonant path plate to cavity. Some authors have chosen to study one

path and others both paths.

Dowell and Voss [88] and Pretlove [89] provide similar 'exact' solutions using wave

motion to describe the transmission from the plate to the cavity. Bhattacharya [51]

studied double walls as described in Chapter 2. As part of this work he studied

transmission into a cavity backed panel (plate) using a wave analysis. Guy [90] also

studied this problem and like Bhattacharya produced a complex wave analysis solution

which is not easily applicable to SEA techniques. Both solutions by these authors are for
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general sound transmission into cavities. They do not differentiate between resonant and

non-resonant transmission paths which would be useful for an SEA model. Cummings

[91] has carried out substantial work on ducts, which are cavities with infinite length,

four flexible plates and have attenuation with distance. The solutions provided are to

calculate the "break-in" and "break-out" of the duct and these theories like those

described above cannot be readily applied to SEA techniques.

Price and Crocker [49] provided an SEA solution to determine the transmission into a

cavity in a double wall. The solutions were criticised, as described in Chapter 2, for not

taking into account the cavity depth. However, some authors such as Elmallawany [52],

have shown this not to be an important parameter provided the damping of the cavity

is known.

The work of Price and Crocker has been cited by many authors to describe sound

transmission through double walls using SEA. Interestingly none of the authors

mentioned in Chapter 2 for their work on double walls have presented measurements of

the transmission loss into the cavity and only Guy [90], described above, showed

measured and predicted results together. The absence of these results in the double wall

research may have been due to the transmission path through the cavity being weak or

the presence of line structural coupling, connecting the plates of the double walls by a

structural frame. The line connection between the plates can be strong and as such it

may obscure the transmission path through the cavity. Several authors who have studied

double walls have found that in their test structures the cavity path was very weak for

most of the frequency range, such as Lin and Garrelick [32], Wilson [8] and Sullivan

[54].

However, not all walls are line connected, some may be point connected and thus the

structural path is not as strong. If the structural path is weaker the cavity may have a

more important role. This chapter presents measured and predicted results for

transmission into an isolated cavity test structure and also for cavities in double walls.

Both types of structure were tested with varying depths. The SEA model provided by

Price and Crocker was used to calculate the predicted airborne level difference.
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7.4	 Test structures

The two types of cavity test structure used in this study are shown in Fig 7.3 and 7.4.

Fig 7.3 shows the point connected double wall structures, consisting of plasterboard

sheets supported on a timber frame forming cavities between the plates and the frame.

The 150mm double wall was composed of chipboard and plasterboard plates and was

built to assist in understanding the sound transmission into timber floor or double wall

cavities. The isolated cavity test structure shown in Fig 7.4 was composed of a sheet of

12.5mm plasterboard placed over a cavity formed from brick and concrete. This special

test cavity would allow the study of sound transmission into a cavity independent of the

rest of the wall. The cavities for both test structures were fully sealed.

The 12.5mm thick plasterboard plates in the double wall structures were 1.2x2.4m in

dimension and each sheet covered three cavities with point connection to the frame at

300mm centres. The total area of each side of the double wall was 12m 2. The 12.5nun

thick plasterboard plates in the single cavity test structure was 1.9x0.96m in dimension

and sealed at the edges by mortar.

The depth of the cavities were varied from 25mm-150mm to analyse sound transmission

into cavities as would be found in real walls or floors. Absorption was sometimes placed

in the cavities and consisted of "Rockwool" fibreglass insulation. Further discussion of

the test structures and the experiment techniques to measure the airborne level difference

can be found in Chapter 3.

7.5	 Theory and SEA models

Fig 7.5 shows the SEA models for both test structures. The equations for coupling loss

factors (CLF's) for resonant transmission between room, plate and cavity and non

resonant transmission between room and cavity are discussed in Chapter 2. The non

resonant transmission coefficient was computed from theory given by Leppington et al

[43] and the radiation efficiency required for resonant transmission was calculated using

Leppington et al [41], as described in Chapter 2.
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The multiplier factor discussed in Chapter 2 is also used here. The plasterboard plates

for the isolated cavity test structure were sealed along the length of their edges by

mortar and were assumed to be clamped resulting in a multiplier of two. The plates were

also radiating into_a-quarter_space-due_to_the right angle baffles and this also resulted in

a multiplier of two_ Thus the total multiplier for the radiation from the plates to the

cavity was a multiplier of four.

In the case of double walls, the plates covered more than the cavity under test and were

point connected and assumed to be simply supported. However the plates were radiating

into a quarter space and a multiplier of 2 was given. In addition, as the plates were only

continuous and connected by points on two edges it was assumed that account should

be given to the remaining plate edges and thus a total multiplier of 3 was given.

The internal loss factor (ILF) of the plasterboard plates was measured as described in

Chapter 3 and an approximate value of 0.01 was used. The total loss factor of the

plasterboard plate was calculated form summing the CLF's and ILF. When absorption

was present in the cavities and in contact with the plates the TLF of the plates were

measured as described in Chapter 3. The total loss factor of the room was calculated

from the measured reverberation time using eqn(2.40).

7.6	 Measuring the total loss factor of the cavities

In order to calculate the energy level difference between the source room and cavities

the cavity total loss factor was required. This was calculated from eqn(2.40) where the

reverberation time, T60 , was measured. The method used to measure the cavity T60 , was

the standard decay method, using MLSSA as described in Chapter 3. Fig 7.6 shows the

reverberation time for a 1001nm deep double wall cavity with and without absorption.

For the case with absorption, the cavity was partly filled with two layers of 25mm thick

"Rockwool" fibreglass quilt. The quilt was suspended in such a way that it did not touch

the plasterboard sheets that formed the sides of the cavity. It can be seen that the

reverberation time is much shorter with absorption present and is close to the limit of

the third octave band filter, which is also shown.
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In hindsight, the standard decay method was not the best option available to measure the

damping of the cavity. Another option which may have been used was the power

injection method. Fig 7.7 shows a comparison between the standard MLSSA decay

method and the power injection method.

The power injection method measures the reverberation time by an indirect process

involving two separate measurements. The first measurement involves leaving the cavity

open and not fixing the flexible plate, as shown in Fig 7.8a. The speaker, which is built

into the cavity, produces a source pink noise spectrum driven by a noise generator, in

this case a Nortronics. The sound pressure level in the room is measured, LA, and if the

reverberation time for the room has been measured, T1 and the volume of the room is

known, V1 , then using the following equation the sound power level, Lwi , in the room

may be calculated,

Lw1 = Lp 1 +10 logT„ -14
	

(7.1)

This test process is repeated but the cavity is closed with the finite plate, as shown in

Fig 7.8b, and the sound pressure level in the cavity, Lp3 , is measured. From the previous

test the power output, Lw i , is known and if the volume of the room is known, V3 , then

the reverberation time of the cavity, 7'3 , may be solved from the following equation,

V3
Lwi Lp3 +10 log-- -14

' 3

The agreement shown in Fig 7.7 is good over the frequency range. At the outset of this

particular work from the two methods the standard decay method was adopted for

measuring the reverberation time of cavities. As the cavity volume decreased so did the

reverberation time and when absorption was present the decay time was even shorter.

By using the decay method to measure the reverberation time this was restricted by the

limit of the 1/3 octave band filter (the limit being caused by filter ringing).

Unfortunately, this was not discovered until late on in the tests. The measured decay

time for cavities without absorption appears to have been unaffected. However, when

absorption was present the decay time was affected by the filtering process. Whilst in

(7.2)
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hindsight the power injection method may have been a better option there is no

guarantee that this would be the correct method due to the acoustic power being altered

by the very close obstruction caused by the plasterboard plate.

7.7	 Transmission into an isolated cavity

This section describes the measured and predicted airborne level difference for

transmission into an isolated special test cavity, as described earlier. This made it

possible to study transmission into the cavity independent of the rest of the wall. The

following section describes similar experiments but for transmission into a double wall

cavity. Testing was restricted to measuring airborne level difference into the cavity as

there were problems generating a uniform sound field in the cavity (to measure

transmission from the cavity to the room) and uniform excitation of the panel (to

measure radiation). Any source in the cavity, in this case a small built-in speaker, must

be acoustically close to the plate resulting in non uniform excitation of the plasterboard.

Four cavities were tested, 25, 50, 100 and 150mm deep and transmission was through

a 12.5mm sheet of plasterboard (critical frequency 2980Hz) for each case except the

25mm cavity where the thickness was 9mm resulting in a higher critical frequency

(4274Hz).

Fig 7.9 shows the measured and predicted airborne level difference for transmission into

the test cavity structure for various depths without absorption. The agreement is good

over the frequency range. The reduction in level difference at 2500-3150Hz is due to the

critical frequency of the plasterboard. The predicted results used the Price and Crocker

[49] SEA model and equations for the CLF's. The reverberation time was measured for

each cavity to determine the TLF. The sound pressure level was measured both in the

room and the cavity at a sufficient number of positions to give a 95% confidence

interval of the level difference of less than ± 2dB up to 125Hz and less than ± 1 dB at

higher frequencies.

One of the attractions of using SEA is its ability to analyse individual transmission

mechanisms and paths. An analysis of the relative contributions of resonant and non
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resonant transmission is shown for the 100mm cavity in Fig 7.9. As would be expected

the transmission is dominated by non-resonant transmission below the critical frequency

and the resonant path is over 5dB less important than the non-resonant path. A feature

of the results is that the level difference is negative at low frequencies (it is louder inside

than outside). This is due to the two dimensional nature of the cavity and is less

significant as the depth increases.

7.8	 Transmission into a double wall cavity

Similar tests were carried out to give transmission from a room into the cavity of a

double wall. Tests were only carried out for transmission into the cavity in double wall

structures where there was no added absorption, since the reverberation time could not

be measured accurately with absorption present. Measurements were made to the same

level of accuracy as the separate test cavity and the total loss factor for the cavity was

calculated from the reverberation time using the decay method. The cavities were all 3

x 0.35m, (stud spacing of 0.4m centres), and were 50, 100 and 150mm deep so as to

give some comparisons with Fig 7.9. The coupling from the room to the plate involves

the total area of the plate, but the coupling between the plate and cavity must only

involve the area of the plate directly radiating into the cavity. The total area of the wall

was 12m2 and the plate area radiating into the cavity was 1.05m2.

The measured and predicted airborne level differences are shown in Fig 7.10. There is

reasonable agreement between the measured and predicted results for the 150mm double

wall cavity, but as the cavity depth decreases so the difference increases. The agreement

is not as good as when compared with the results shown in Fig 7.9. The predicted

airborne level difference for the 50mm cavity has no data from 80-160Hz and this was

due to the predicted TLF fractionally exceeding the measured TLF and the software used

ignores this data.

In the double wall the ratio of cavity perimeter length to area (6.7:1.05) is greater than

for the test cavity structure (5.72:1.82) so that the resonant transmission is relatively

more important in the double wall. This is shown in Fig 7.10 for the 100mm double

wall cavity. When compared with the transmission paths into the 100mm cavity in Fig
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7.9 the resonant path is stronger.

The other difference between the results of Fig 7.9 and 7.10 is the property of the back

plate. A final test of transmission into a cavity was carried out using a 75mm deep

cavity that was part of a double wall. This was specially constructed so that the back

panel could be removed whilst leaving the panel through which sound transmitted

unchanged. Two cases were measured and the results are also shown in Fig 7.11. The

first case is where the back panel was a flexible sheet of plasterboard and in the second

case the back panel was rigid 102mm thick brick wall. The predicted results are different

due to the different damping of the cavity. It can be seen that there is better agreement

between the measured and predicted results when the back plate is rigid particularly in

the frequency region 200-1000Hz.

7.9	 Discussion

The agreement between the predicted and measured results for transmission into the

isolated test cavity structure is good. When absorption is placed in the cavity the

reverberation time would be best measured by the power injection method. The filter

limit of the equipment restricted the range of test structures possible when absorption

was present.

The agreement for similar transmission into a double wall cavity is not as good. This

may be due to the presence of the flexible back plate. The tests on the wall where the

back plate was replaceable suggest that the flexible plate was influencing the sound

transmission into the cavity but it is not clear what mechanism of transmission is causing

this effect. The change in cavity damping due to the different back plates was as much

as 5dB shown by the difference in the predicted results.

As shown in Fig 7.1 there are several designs of double wall and timber floor cavities

which incorporate absorption. The inability to accurately measure the damping of the

cavity with absorption present suggests that more work should be carried out in this area

so that all types of construction may be modelled.
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7.10	 Conclusions

This chapter has shown that the method presented by Price and Crocker is adequate for

predicting sound transmission into a cavity. For double wall cavities the theoretical

model requires further work. As the cavity depth decreases the difference in the

measured and predicted airborne level difference increases. The presence of the flexible

plate may be affecting the transmission into double walls.

The SEA model is able to analyse the effect of different transmission mechanisms. The

transmission into a cavity is dominated by the non-resonant transmission. For double

wall cavities the increased ratio of the perimeter length to surface area of the panels

radiating into the cavity increases the resonant transmission path. At low frequencies up

to 125Hz the transmission is a negative value. However, as will be shown in the

following chapter the double walls behave as single subsystems at these frequencies and

the transmission into the cavities is not important at these frequencies.

This work has dealt with real double walls incorporating finite plates and cavities,

coupling from rooms to cavities and radiation from plates to cavities. Past authors who

have suggested that this area can be predicted have proposed complex theories which are

not adequate for real walls. SEA can be used as a design tool when predicting sound

transmission into cavities but further work is required to investigate the transmission and

behaviour of narrow cavities in real double walls.
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Chapter 8

Sound Transmission Through Real Walls

8.1	 Introduction

This chapter compares measured and predicted data from SEA theoretical models for a

variety of real walls and for a full scale timber floor. The results for real walls include

single plate walls, ribbed walls and double walls with point and line connection. In

addition to the overall airborne level difference results from the source room to the

receiving room, data is also presented for the acceleration level of the various structural

elements of the walls as a result of an airborne source and also for structure borne sound

sources.

8.2	 SEA theoretical models

This chapter also describes the SEA models for the various structures bringing together

the theory presented in the previous chapters for airborne and structural coupling. The

basic equations for coupling between plate and rooms were described in Chapter 2. The

radiation efficiency which was used to determine the SEA resonant transmission, for

plate to room and plate to cavity, was calculated using Leppington et al [41]. The non-

resonant transmission coefficient used in the SEA models, for transmission paths such

as room to room and room to cavity, was calculated using Leppington et al [43] as

described in Chapter 2. All the test walls were mounted on a timber support frame and

were assumed to be clamped to the frame and the radiation efficiency was increased by

a factor of 2 as discussed in Chapter 2.
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The total loss factors (TLF's) of the walls, rooms and cavities were measured for all test

structures. Due to the good agreement between the measured and predicted TLF for the

double walls discussed in Chapter 3 and for simplicity the predicted TLF for the plates

was used in the SEA models. However, where there was absorption present in the double

walls the measured TLF was used as the predicted theory could not account for the

increase in damping due to absorption touching the plates. The internal loss factor (ILF)

of the plasterboard and chipboard plate materials, used in the following constructions,

was measured as discussed in Chapter 3 and values of 0.01 and 0.018 were given

respectively.

The theories included in these models involve point coupling which was discussed in

Chapter 4, line coupling discussed in Chapter 5 and transmission into the double wall

cavities which was discussed in Chapter 7. Some of the figures in this chapter have units

which are normalised. For example if the acceleration level of a plate or structural

element is normalised for an airborne source, this would be calculated by subtracting the

source sound pressure level, (acceleration level - sound pressure level (source)).

Sometimes the acceleration level is normalised for a structural source. This is calculated

by subtracting the acceleration level of the source plate from the plate under test. This

assists in analysing the particular plate under test independent of the source level.

8.3	 Single plate and ribbed plate walls

SEA model and test structures for single walls

Fig 8.1 shows a single leaf wall made of 18nun thick chipboard plates connected by

tongue and groove (T&G) joints bonded and sealed with adhesive. These large plate

structures may be found in timber floors. The chipboard wall was constructed between

two test chambers so that it could be studied in isolation from the other components

found in a timber floor, such as joists and cavities. The total chipboard wall area was

12m2 and had an external perimeter length of 14m. Fig 8.1 also shows the material

properties for this single wall construction. The SEA model for the chipboard wall

dividing two rooms is shown in Fig 8.2 and is similar to the Crocker and Price SEA

model [48] but also includes the weaker reciprocal transmission paths for completeness.
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Using a B&K shaker type 4810 as a structural source exciting the wall, tests were

carried out to look at the effect, if any, of the T&G joints on the structure borne sound

transmission across the chipboard wall. Also if the joints were dividing the 12m2

chipboard wall into smaller plates it was of interest to see if this might affect the

radiation of the plate and its perimeter length.

Measurements were made near the source and also at three positions equidistant from

the source. However, the three receiving positions were separated from the source plate

by 1, 2 and 3 T&G joints. By measuring at equal distances the effect of attenuation with

distance could be ignored and hopefully only the effect of the joints could be analysed.

Fig 8.3 shows the normalised acceleration level difference between the source and

receiving positions, where the source level was measured sufficiently far away from the

shaker to avoid nearfield and non-linear effects. The acceleration level difference of the

three positions are very similar with a difference of +/- 1.5dB for most of the frequency

range. This suggests that the T&G joints may be attenuating the acceleration level across

the plate but not significantly.

Fig 8.4 shows the measured and predicted acceleration level for the chipboard wall

normalised for an airborne source and there is good agreement. The prediction model

was calculated using the perimeter length of the total wall, 14m, and modelling the

multiple panels as one large plate of 12m2.

Fig 8.5 shows the measured and predicted airborne level difference between the source

and receiving rooms through the chipboard wall. The agreement between the measured

and predicted results is good and the dip at approximately 2000Hz is due to the critical

frequency of the chipboard.

Fig 8.6 shows the individual SEA transmission paths, the non-resonant path (room-

room), and the resonant path (room-chipboard-room). As can be seen the non-resonant

path is the dominant path up to the critical frequency, after which only the resonant path

is present. The SEA prediction model works well over the frequency range and the wall

is behaving as one large plate subsystem.
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SEA model and ribbed wall test structures

Fig 8.7 shows the plan and elevation of a ribbed plasterboard wall. The total wall area

was 12m2 and was made of 12.5mm thick plasterboard connected by nails at 600mm

centres to nine 50x5Omm softwood ribs equally spaced at 400mm intervals. The wall

was composed of three plasterboard sheets of 1.2x2.4m dimension and the remaining

areas were cut from other sheets to fit the void. This caused some plasterboard sheets

to be connected continuously across a rib and for others to be butt-jointed at the same

rib, as shown in Fig 8.7. The spacing of the nails connecting the plasterboard to the ribs

resulted in a change from line to point connection at 28Hz. This effect was discussed

in Chapter 4. Consequently the wall was assumed to be point connected to the ribs for

the entire frequency range of interest, 63-4000Hz.

The SEA model for the ribbed wall is shown in Fig 8.8 and the theory used to describe

the point connection between two subsystems, plate and beam, was discussed in Chapter

4. The plasterboard ribbed wall was mounted on a 50x5Omm softwood frame attached

to the receiving room chamber wall at the common opening and was assumed to be

clamped and a radiation multiplier of two was used. Fig 8.8 shows the layout of the

plasterboard panels and their connection to the ribs. The plasterboard plate was assumed

to be one subsystem of 12m 2 area with a perimeter length of the source side (plain side -

no ribs) of 27m to account for the plasterboard sheets edges and the ribbed side was

assumed to have a perimeter length of 68m to take account of the ribs, (9x3x2), as there

are two sides to the ribs. The radiation efficiency was increased by a factor of two due

to the right angled baffles on the ribbed side of the wall, (i.e. the presence of the ribs).

The plate edges were point connected to the ribs and assumed to be simply supported.

These effects were discussed in Chapter 2, Fig 2.9.

All structural level difference measurements presented in this section for the ribbed walls

and for the following section on double walls used an acoustic hammer as the structural

source.

Due to some of the plasterboard plates meeting at the same rib, as shown in Fig 8.7,

tests were carried out to determine the transmission of sound across the ribs between the

adjacent plates. Fig 8.9 shows the measured acceleration level difference between two
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plates joined to the same rib. Prediction models for both point and line connection for

this joint were carried out and are also shown in Fig 8.9. Using eqn(4.1) the transition

frequency from line to point connection would occur at 106Hz. As can be seen there is

more transmission than expected for a point connection and the measured results are

closer to the line predicted results. The increased transmission may be due to the fact

that the plates were butt-jointed and also connected by a thin mastic seal and therefore

the coupling was not only through the nails and the rib. This supported the assumption

that the plasterboard plates could be treated as one subsystem.

Fig 8.10 shows the measured and predicted acceleration level difference between the

plasterboard plate and a rib. The prediction model assumed that the plate was 12m2 in

area and was point connected to the rib. The agreement between the measured and

predicted data is very good and supports the assumption that the plate was acting as one

subsystem connected by points to multiple ribs.

Fig 8.11 shows the measured and predicted acceleration level of the plasterboard plate,

normalised for an airborne source, and there is good agreement. The increase in

acceleration level at 3150Hz is due to the critical frequency of the plate.

The measured and predicted airborne level difference through the ribbed plasterboard

wall is shown in Fig 8.12. The agreement is very good and the assumptions that were

made regarding the plate edges and perimeter length appear to be justified.

However, in order to test that the assumptions were justified further tests were carried

out to examine in more detail the effect of the ribs. A smaller ribbed wall was built

which would reduce the effect of multiple plasterboard panels connected to multiple ribs.

Fig 8.13 shows a small 12.5inm thick plasterboard wall which was connected to

45x75mm timber frame and mounted in a 1.7x1.7m opening between two room test

chambers. From this construction three different types of wall could be tested of which

the first wall had only a perimeter frame, the second wall had a single rib connected to

its centre by nails at 600mm centres and the third wall had three ribs connected to the

plasterboard plate. The walls were excited by an airborne source and the SEA prediction

model was similar to that shown in Fig 8.8.
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Fig 8.14 shows the measured acceleration levels of the three types of wall. It is

noticeable that at the higher frequencies as more ribs are attached the acceleration level

decreases slightly. This may be due to the presence of the ribs increasing the damping

of the plate. Fig 8.15 shows similar good agreement between measured and predicted

acceleration level of the wall as was found on the large 12m 2 ribbed wall.

Fig 8.16 shows the measured airborne level difference for the three types of wall. As

more ribs are attached the perimeter length on the receiving room side of the wall is

increased, resulting in increased transmission between 500Hz and the critical frequency

of the plasterboard due to increased radiation from the edge modes. Fig 8.17 shows the

measured and predicted airborne level difference through a ribbed wall, wall type 3, and

good agreement is found.

In order to measure the effect of the ribs on the radiation of a panel a test was carried

out where the wall was excited by an airborne sound from each side independently and

the acceleration level of the wall was measured as shown in Fig 8.18. On the plain side

the perimeter was 6.8m and the radiation was given a factor of four to account for

clamping to the frame and connection to right angled baffles. On the ribbed side the

perimeter length was increased by 10.2m (3 ribs each 1.7m long) increased by two as

there are two sides to the rib. The attachment of the ribs results in right angled baffles

on the ribbed side and the radiation efficiency is multiplied by a factor of 2. This gives

a predicted difference of 2.4dB in the radiation efficiency and hence plate response. At

low frequencies where the acoustic wavelength is large compared to the dimensions of

the ribs the response of the plate is the same for both cases as the acoustic wave does

not "see" the rib. However, at high frequencies (from 500Hz) there is a difference in the

plate response which is approximately the same as that estimated from the difference in

perimeter length.

8.4	 Double walls with point and line connection

Fig 8.19 shows the point connected double walls that were constructed to compare

experimental data with the SEA predicted data. As was discussed in Chapter 3 the

double walls were constructed on the receiving room side of the common opening. Five
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separate lightweight partition walls were constructed and consisted of a 150mm double

wall composed of 18mm thick chipboard and 12.5mm plasterboard, 100nun double wall

made of plasterboard with and without absorption and a 50mm double wall again

composed of plasterboard with and without absorption. For the walls with absorption the

50mm double wall had 2 layers of 25inm "Rockwool" fibreglass packed hard-in touching

both sides of the wall. The 100mm double wall also had two layers of the same

absorption material but suspended and not touching either side of the wall. The material

properties of these walls may be found in Chapter 7, Fig 7.3.

Low frequency SEA model for double walls

To model these double walls several different SEA models may be required depending

on the details of construction and the frequency range of interest. At low frequencies all

partitions behave as single leaf walls. Fig 8.20 shows the SEA model for low

frequencies for a double wall. The wall is orthotropic in that the bending stiffness is

different in the two directions. The wall is stiffer when bent across the timber frame or

studs than it is when bent along the studs.

To model the double wall at low frequencies when it is a single wall subsystem it is

necessary to know its thickness, its mass and its stiffness. The thickness is the distance

between the outer edges of the linings, Q, shown in Fig 8.21 and the mass is the sum

of the two plates and studs. The stiffness can be obtained using the theory for beams

made from two materials [92]. Using the notation shown in Fig 8.21, the combined

stiffness of a single stud and plates fixed to it can be given by,

Et .11 3 W 	 [Ow	 }B '	 +2E —+whd2
12	 '''' 12

where Ef is the Young's modulus of the frame (stud) and Ep is the Young's modulus of

the plates, given by eqn(3.2 and 3.3). The bending stiffness for 1 m of the wall can be

obtained by multiplying this by the number of joints per metre. Due to the frame

spanning in one direction the wall is orthotropic and the other bending stiffness about

the axis running parallel to the joists is calculated from the double wall plates and there

separation distance, as given by [92],

(8.1)
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For a 150x5Omm timber frame with 12.5mm plasterboard the bending stiffness using

eqn(8.1) and (8.2) is 658,530Nm and 517,500Nm respectively. Thus including the joists

in calculating the bending stiffness results in a small increase, but does not significantly

effect the sound transmission. The bending stiffness for the wall, in the SEA low

frequency models, was calculated using eqn(8.1).

The basic SEA theory for the resonant coupling between this large plate and the source

and receiving rooms and the non-resonant coupling between the rooms may be found in

Chapter 2.

At higher frequencies the two plates of the double wall do not move with the same

velocity and phase and so must be modelled as two separate subsystems coupled by a

cavity (which is also a subsystem). If there is no structural coupling then the SEA model

is basically two single leaf models placed side by side. This is the SEA model that was

used by Price and Crocker [49] and was discussed in Chapter 2.

The transition between a single leaf, low frequency model, and a high frequency model

is usually well defined and a good transition frequency is the mass-spring-mass

resonance, fo, of the two leaves of the wall and the air inside given by [44],

1[K KII2
ju- In psi + p52

where ps is the surface density of each leaf, K is the stiffness/m2 of the air (1.4 x 105/d)

[44] , and d is the cavity depth.

At the low frequencies the two plates of a double wall have the same velocity or

acceleration level and thus have zero velocity or acceleration level difference. The two

plates are connected by a soft spring (air) and as the first plate deflects this causes the

air to compress and move the second plate [93], hence the term mass-spring-mass

(8.2)

(8.3)
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(MSM). After this frequency the coupling by the air is weak and the two plates move

independently. Further discussion on the mass-spring-mass frequency for double walls

may be found in Goesele [94], Beranek and Ver [93] and Craik [13].

Phase measurements were carried out on the 100mm and 50nun double walls with

absorption using two accelerometers placed directly opposite each other which can be

used to determine experimentally the mass-spring-mass frequency. The phase was

measured rather than the amplitude as there is a lack of definition of the MSM when

measuring the amplitude. Fig 8.22 shows the position of the accelerometers. Three

different parts of the double wall were measured. Firstly on the plasterboard plates over

the cavities, (A), secondly on the point connections, nails, coupling the plasterboard

plates to the frame, (B) and thirdly between the nails on the plasterboard plates directly

over the frame, (C). If as assumed the walls are point connected at the frequency area

of interest then positions (A) and (C) would be similar in their phase response and the

nails would appear to be unaffected.

Fig 8.23 shows the phase relationship between the two plates of the 100nun double wall

with absorption for the various positions. Using eqn(8.3) the predicted mass-spring-mass

is 82Hz. As can be seen both positions (A) and (C) show f0 to be about 80Hz where the

phase difference is random. Positions (B) shows practically no change in phase. This

would be expected due to the strong coupling of the nails being attached to the frame.

The 50mm and 100mm double walls with absorption are now compared, as shown in

Fig 8.24. The predicted fo for the 50mm wall using eqn(8.3) is 119Hz and when this is

compared with the measured results for the mass-spring-mass frequency there is found

to be good agreement. The measured and predicted sound reduction index for double

walls at low frequencies is shown later in this section with the predicted high frequency

results.

High frequency SEA model for point connected double walls

As discussed previously at high frequencies the plates have a random phase and behave

as separate plates. The single subsystem wall which was used at low frequencies is now

broken down into further subsystems, the two plates, the cavities and the frame or studs
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as shown in Fig 8.25. If the plasterboard is attached at points, where the spacing of the

points is such that it is larger than the A.13/2, then the wall may be modelled as point

connected. This was discussed in Chapter 4 where the point mobility method was used

to determine the coupling between the plates and the frame.

Coupling between the rooms and the cavities and the plates and the cavities also occurs

as shown in Fig 8.25. The radiation efficiency was multiplied by a factor of 2 for

coupling from the plate to the cavity due to the right angle baffles. The edge of the

plates coupled to the perimeter frame were assumed to be clamped and the radiation

efficiency was increased by a factor of 4,(2 for clamping and 2 for right angle baffles).

Fig 2.9 in Chapter 2 discussed the radiation multiplier in more detail. The transmission

from the room into the double wall cavities was discussed in Chapter 7.

As the two plates of the double wall are separate subsystems then the front plate closest

to the source room will have a higher acceleration level than the back plate. The

acceleration level of the back plate will depend upon the coupling through the frame and

the cavity. Fig 8.26 shows the measured and predicted acceleration levels of the front

and back plates of the various point connected double walls normalised for an airborne

sound source. Good agreement is found between the measured and predicted results and

as expected the acceleration level on the front plate is higher than the back plate due to

being nearer the source.

Fig 8.27 shows the measured and predicted acceleration level difference between the two

plates and in addition the contributions of the SEA transmission paths, plate-stud-plate

and plate-cavity-plate, are also shown. The dominant transmission path is through the

stud. Only at the critical frequency is the cavity path more dominant.

Fig 8.28 shows the measured results for the acceleration level of the front plate for the

50mm double wall with absorption and a nail spacing of approximately 150mm. The

accelerometer was placed on the front plate of the double wall at three positions (A), (B)

and (C), similar to those described in Fig 8.22. As discussed in Chapter 4, part of the

behaviour of the plate is dependant upon the nail spacing. At low frequencies the nail

spacing is shorter than the wavelength capable of fitting between the point connections
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and is assumed to be effectively a line connection. It is assumed that the nails, positions

(B), and the area of plate between the nails over the frame, (C) would be similar and

this is the case when measured, shown in Fig 8.28. As the frequency increases so the

behaviour of the double wall plates change to a point connection. It can be seen that the

plate behaviour at position (B) equals that of the plates, (A), at 500Hz. Using eqn(4.1)

in Chapter 4 the predicted frequency where the double wall plates behave as a point

connection is approx. 500Hz. It is noticeable that there is not a sudden change from line

to point connection as the frequency increases.

Fig 8.29 shows the measured and predicted acceleration level difference between the two

plates of a 150mm double wall due to a structural source. The excellent agreement

shown in this figure is similar to the level difference between the two plates for an

airborne source shown in Fig 8.27.

Fig 8.30 shows the measured and predicted sound reduction index (SRI) for the 50, 100

and 150mm double walls without absorption. The predicted low frequency results are

also shown. At the low frequencies where the double walls behave as one large plate

there is reasonable agreement between the measured data and the single subsystem

theory and there is a clear increase in SRI at the transition from single to double wall

behaviour. At higher frequencies the wall is modelled as a series of interconnected

subsystems. Fig 8.30 shows that there is good agreement between the measured and

predicted results at high frequencies but there is an increasing error as the frequency

decreases and as the cavity depth decreases. The error in the overall transmission is

approximately double the error of transmission into the cavity, as was shown in Chapter

7, Fig 7.10. This would be expected where the cavity is an important transmission path.

Fig 8.31 shows the predicted energy level difference for the contributions of the various

SEA transmission paths for a 50mm double wall with no absorption. The most dominant

transmission path over most of the frequency range is through the frame. As has been

shown in the previous figures the structural path is well predicted. However, the second

most important path is the non-resonant path through the cavity. The importance of the

non-resonant transmission associated with the cavity is also shown by the 8dB difference

at the lower frequencies between the purely resonant path, room-plate-cavity-plate-room
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(0), and the resonant and non-resonant path, room-plate-cavity-room (*).

The doubling of the error associated with the cavity can be seen when comparing Fig

8.30 and 7.10. The error in the theory for transmission into the cavity is also similar to

the error for transmission out of the cavity, thus giving a doubling effect. The error

shown in Fig 8.30 is reduced as the cavity depth increases and so the agreement between

the measured and predicted results is best for the 150inm double wall, as was found for

the same double wall cavity in Fig 7.10. This is consistent with the results of Craik,

Nightingale and Steel [95] who obtained good agreement between measurement and the

theory for transmission through a double wall with a 300mm thick cavity with no

structural coupling.

If the error in transmission is due to transmission through the cavity then it would be

expected that adding absorption would decrease the contribution of the cavity paths and

therefore increase the importance of structural coupling which, as was shown in Fig

8.27, can be well predicted. The results for transmission through a 100nun double wall

with added absorption can be seen in Fig 8.32. The absorption was suspended is such

a way that it did not touch the plasterboard plates. This decreased the importance of the

cavity paths and, as can be seen, there is much better agreement with the theory.

Although there is some uncertainty about the cavity damping after the addition of the

cavity absorption, the damping is sufficient to make the cavity path less important and

reduce the error between the measured and predicted results.

The change to the sound reduction index as the number of nails is increased can be seen

in Fig 8.33 and Fig 8.34. In Fig 8.33 the double wall consisted of a 50mm cavity with

added absorption. The number of nails on both sides of the wall was set at 600mm

centres (5 over a 3m length). The number of nails was then doubled (11 nails in a 3m

length at approximately 300mm centres) and then doubled again (21 nails in a 3m length

at approximately 150mm centres). When the nails are at 600mm centres the predicted

dominant transmission path is still through the frame but the non-resonant cavity path

at low frequencies is almost as equally important. Doubling the number of nails

increases the structural coupling but the transmission through the cavity is still important.

Doubling the number of nails again means that from 160-400Hz the connection behaves
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like a line connection and above 400Hz like a series of independent points, as was also

shown in Fig 8.28. This increased coupling results in a decrease in the SRI of the wall.

It is expected that the effect of adding the additional nails would be more apparent after

the first increase if the absorption had not been touching the plates and the frame and

hence increased the damping of the plates.

This last statement is supported by the results shown in Fig 8.34. The wall shown is the

100mm double wall with 50mm suspended absorption. Many nails were added first to

one side and then the other. The systematic decrease in the SRI can be seen each time

additional nails are added to the wall. Absorption is present in the cavity similar to Fig

8.33 but is suspended and not touching the plates, which results in a more pronounced

increase in transmission due to an increase in the structural coupling, without absorption

touching both plates and frame.

High frequency SEA model for line connected double walls

If the plasterboard sheets are bonded to the frame or the nail spacing is small such that

the wavelength of the plate is unable to fit between them, as discussed in Chapter 4, then

the coupling may be modelled as a line connection. When this is the case the coupling

between the plates can be characterised by the structural transmission coefficient,

discussed in Chapter 5. Fig 8.35 shows the SEA model and transmission paths for a line

connected double wall. The two plates of the wall are effectively divided into subpanels

dictated by the line connection of the plates to the frame. The perimeter length of the

overall plates is therefore increased and the subpanels are assumed to be clamped, as

discussed in Chapter 2.

Fig 8.36 shows the measured acceleration level of a front subpanel of a 100mm line

connected double wall normalised for an airborne source. In addition, measured results

are also shown in Fig 8.36 when the accelerometer is positioned on the nails and

between the nails, as detailed in Fig 8.37. The nail spacing is 100nun which results in

the first half bending wavelength fitting between the nails at 1000Hz. The first full

wavelength fits between the nails at approximately 4000Hz. Thus as expected the

measured acceleration level of the nails and between the nails is the same up to these

frequencies and the coupling between the plates and frame may be assumed to be a line
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connection.

Fig 8.38 shows the measured and predicted acceleration level difference between the

front and back plates of a line connected double wall normalised for an airborne source.

The predicted sound transmission for the line connection, coupling the plates and the

frame, was calculated using the theory in Chapter 5 where the frame is modelled as a

plate. The agreement is good over the frequency range. The measured results are

negative at the low frequencies and this occurs at the mass-spring-mass frequency, fo.

However, Fig 8.39 shows the measured and predicted acceleration level difference

between two subpanels on the 100mm line connected double wall due to a structural

source, an acoustic hammer. The agreement is reasonable at the higher frequencies but

at the low frequencies the agreement is poor. This may be due to the aspect ratio of the

subpanels. The measured and predicted results for transmission between the inline plates

in Chapter 6 did not have good agreement and due to the aspect ratio of these smaller

panels it is not possible to accurately predict the distribution of energy on the source

side, thus the level difference cannot be predicted. However, for an airborne source there

is no such difficulty and it is possible to predict the level difference.

Fig 8.40 shows the SRI for a 100mm double wall with 50mm suspended absorption in

the cavity. Both the low and high frequencies predicted results are shown. The

agreement is very good over the entire frequency range. At the mass-spring-mass

resonance there is a significant transition in the measured SRI as the single subsystem

wall separates into numerous subsystems.

8.5	 Complete timber floor

As discussed in the previous chapters one of the applications of parallel plate structures

is in timber floors. Included in the experimental work for this study tests were carried

out on a 150mm timber floor which was built-in at one end of the joists to a 100mm

concrete block wall. Chapter 3 described the test facility for the timber floor structure.

Building in one end of the joists to the wall allowed the possibility of studying flanking

transmission past the end of a joist as shown in Fig 8.41.
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Fig 8.42 shows the SEA model for the 150mm timber floor. At low frequencies coupling

between the upper and lower parts of the wall, divided by the connection to the joists,

was calculated using a 'tee' structure model [13]. At high frequencies the coupling from

the seven joists to the wall was calculated using beam-plate theory developed by Cremer

[44] and Steel [86]. The coupling from the walls to the rooms was calculated using the

theory described in Chapter 2. The measured internal loss factor of the chipboard and

plasterboard was 0.018 and 0.01. The total loss factor (TLF) of the various plates and

walls was calculated by summing the CLF's and ILF. The TLF of the rooms and

cavities was measured using the standard decay method. The chipboard floor and

plasterboard ceiling were coupled to the joists by screws at 300mm centres and nails at

150mm centres respectively. No absorption was present in the cavities.

Fig 8.43 shows the acceleration level difference between the top and bottom plates of

the timber floor due to an airborne source. The agreement is good over the frequency

range. The lack of predicted data below 160Hz was due to the measured TLF of the

cavities being less than the sum of the CLF's and ILF and hence was not included.

Fig 8.44 shows the measured and predicted acceleration level difference between the top

and bottom plates of the timber floor due to a structural source. An acoustic hammer

was used to excite the floor. However, not only the plate was excited directly but so was

the joist as the hammer was striking at random over the floor area. Two predicted results

are shown, firstly for the plate being excited and secondly for a joist being excited. It

can be seen that there is much better agreement between the joist source predicted data

than the plate source predicted result.

Fig 8.45 shows the measured and predicted airborne level difference from a room to a

cavity in the 150mm timber floor and the agreement is good. When this result is

compared with 150mm double wall cavity in Fig 7.10, which also had good agreement,

this supports the findings in Chapters 7 and 8 that when the cavity is reasonably deep

the theory copes well. When the cavities were of a smaller depth the agreement was

poor and the error increased with decreasing frequency.

The room to room measured and predicted airborne level difference is shown in Fig
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8.46. It can be seen that there is good agreement at all frequencies. It is noticeable that

the agreement is better than that found for a similar depth structure shown in Fig 8.30,

the 150mm double wall. Fig 8.47 shows the predicted energy level difference from room

to room through the 150mm timber floor. The importance of including the flanking path

in this study is shown in Fig 8.47. The dominant path at the low to mid frequencies is

through the flanking wall, by as much as 4dB at 250Hz. There was attenuation of

approximately 7dB between the two parts of the wall divided by the connection with the

joists and it was assumed that the flanking wall could be modelled as two subsystems.

At the higher frequencies the resonant path through the plates and cavity is the dominant

path.

8.6	 Conclusions

The results of this chapter have shown that transmission through single walls, ribbed

walls, lightweight double walls, with point and line connection, and timber floors can

be predicted using statistical energy analysis.

At low frequencies the double walls behave as single subsystems. Using the mass-spring-

mass frequency as the transition between single and double walls works well, for both

point and line connected walls. The theory copes well when predicting the behaviour of

the wall as a single plate at low frequencies.

For point connected walls there is reasonable agreement between the measured and

predicted data when the cavities are deep and similar in behaviour to rooms. However,

there is an increasing error between the measured and predicted results as the cavity

depth decreases. This error factor is double that found for transmission into double wall

cavities and it is assumed that the error associated with transmission into the cavity is

also occurring for transmission out of the cavity. Further work is required for predicting

sound transmission into narrow cavities in double walls.

The structural coupling by point connection is well predicted as is the behaviour of the

plates due to an airborne or structural source. As the number of point connections are

increased so this increases the structural transmission path and increases the overall
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sound transmission and the theory copes well. It appears from the results that using XB/2

as the criteria for the transition between point and line works well. The dominant sound

transmission path has been predicted to be through the frame. But from the error

associated with transmission through the cavity to the receiving room it is assumed that

the cavity is the dominant transmission path for point connected walls.

When there are many nails and the spacing is smaller than X B/2 it is better to model the

double wall plates as line connected. The agreement between the measured and predicted

SRI is excellent. The predicted dominant sound transmission path for a line connected

wall is through the frame.

The SEA models allowed the contributions of the various SEA sound transmission paths

to be studied, including flanking paths. The timber floor results showed that the flanking

path through the wall could be dominant for most of the lower frequencies. Whilst

designers and architects specify floors and walls which they hope will fulfil the sound

requirements of the various building regulations, section 8.5 has shown that the sound

reduction may be significantly affected by a flanking transmission path. Specifying a

floor or wall with high sound insulation properties does not guarantee good sound

insulation if flanking paths are present.
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Chapter 9

Conclusions

9.1	 Introduction

The first section in this chapter draws together the important fmdings and conclusions

from this thesis. This includes a brief discussion of the implications that these have for

the performance of lightweight partition walls and timber floors. The final part of the

chapter gives proposals for further research.

9.2	 Conclusions

The aim of this thesis was to examine sound transmission through lightweight parallel

plate structures. Theoretical models were presented using Statistical Energy Analysis

(SEA) to provide predicted data to compare with measured results obtained from tests

on a variety of lightweight double wall constructions and a full scale timber floor.

Chapter 2 gave a review of the previous work on double walls. It was found that the

previous theories could not accurately predict the transmission through real lightweight

double walls or the behaviour of the various components. The best approach was to use

statistical energy analysis which could determine the individual sound transmission

mechanisms involved as well as predict the overall sound transmission due to the

contributions from the various transmission paths.

Chapter 3 described the experimental facilities used and test structures built for this work

including methods of determining the properties of the various subsystems. Two methods

were presented for measuring the total loss factor of the cavities, the standard decay

method and the power injection method. Using either method it was possible to calculate
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the total loss factor. When there was absorption placed in the cavity the measured

reverberation time was outwith the limits of the frequency filter of the equipment.

Chapter 4 examined the coupling between parallel plates for point connection. If the

nails are sufficiently spaced such that the spacing is greater than X B/2 then the coupling

may be assumed to be point connection. Where spacing between the point connections

is smaller than X.B/2 then it may be assumed that the plates are line connected to the

frame. Using mobility models theories were presented for coupling where the nails or

screws are directly opposite each other or are offset from one another. The predicted

acceleration level difference between the plates showed that for immediately opposite

point connections the coupling was very strong. However, when compared with

measured data for similar connections the results showed that the coupling was no

different to that for offset point connections.

Two principle theories were presented in Chapter 5 for predicting line connection

between parallel plates, where the frame may be modelled as a beam or as a finite plate.

Both theories included all wave types such as bending, longitudinal, transverse and

nearfield waves. From comparisons with measured data presented later in Chapter 6 it

was found that the plate model had the best agreement for transmission to plates 3 & 4.

In Chapter 6 measurements were carried out on suspended line connected plate

structures. To examine some of the effects of the parametric survey the depth of the

frame was varied and measurements were carried out to compare with the plate and

beam line prediction models. The beam model only worked well at the low frequencies

up to where the first half wavelength fitted into the depth of the frame. The agreement

between the plate model results and measured results was very good for transmission

from plate 1 to the offset plates 3 and 4. However, predicted data for transmission from

plate 1 to the inline plate 2 consistently under estimated the strength of coupling.

Chapter 7 examined the transmission into an isolated cavity and also for a double wall

cavity. No new theory was presented but existing theories were examined. It was found

that for transmission into an isolated cavity the existing theory and SEA models

compared well with measured data. For transmission into a double wall cavity where the
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cavity depth was sufficiently large that the cavity was similar in behaviour to a room the

agreement was good. However, when the cavity depth decreased and the parallel plates

were close together the agreement was not as good.

Chapter 8 brought together all the theories presented, from Chapter 2 to Chapter 7, into

an SEA framework so that comparisons could be made between predicted and measured

results for full scale double walls and a timber floor. Results were presented for single

plate walls, ribbed walls, point and line connected walls and finally results from a full

scale timber floor. Flanking transmission was also examined by building a timber floor

which was built into a flanking wall at one end. Generally there was very good

agreement between the measured and predicted acceleration level difference between the

plates, whether point or line connected.

At low frequencies below the mass-spring-mass frequency, fo, the double walls behave

as single plate subsystems. An SEA model was presented for this behaviour and

comparison between measured and predicted data showed good agreement. The transition

between the wall behaving as a single subsystem and dividing into multiple subsystems

was taken to be J . This predicted transition frequency agreed well with the measured

data.

Analysis was undertaken of the behaviour of a ribbed wall, on the ribbed and plain

sides. It was found that there was increased acceleration on the ribbed side due to the

increased perimeter length provided by the ribs. In the case of the point connected

double walls the overall measured and predicted sound reduction index had good

agreement when the cavity was sufficiently deep. As the cavity depth decreased the error

between the measured and predicted results at the lower to mid frequencies increased.

The quantity of error was double that for transmission into a double wall cavity,

discussed in Chapter 7. It was assumed that the error associated for transmission into the

cavity was also occurring for transmission out of the cavity, and thus this could explain

the larger error found for the overall sound transmission of the point connected double

walls. It was found that the transmission through point connected double walls was

dominated by the cavity. Measured and predicted data was also presented for a line

connected double wall. It was found that the transmission through these walls was
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dominated by structural transmission through the frame. There was good agreement

between the measured and predicted results over the entire frequency range. Although

the walls were connected by screws the spacing was smaller than X, B/2 and was assumed

to be line connect

The current Building Regulations [1,2] require the nail spacing in lightweight partitions

or timber floors to be at half the spacing required for screws. This results in a significant

increase in transmission at the lower frequencies due to the coupling behaving like a line

connection. After the MSM frequency the double walls subdivide into the various

components and the wall no longer behaves as single plate. From the standard spacings

stipulated in the Building Regulations if nails are used it is within the frequency range

of 100-500Hz that the reduction in sound insulation occurs. This is within the frequency

range required to be tested to identify if the partition or floor has passed. Therefore from

the finding of this work screws rather than nails should be used for coupling the plates

to the supporting frame. Varying the material properties can change the sound insulation

characteristics. If the frame has its depth or width increased this can assist in reducing

the overall sound transmission. However, this may not always be possible as the

designers and architects work within specified design heights and this increasing the

height of a three storey building by 200mm obviously involves costs.

The SEA models presented have been able to identify the primary mechanisms of sound

transmission through double walls. The agreement for most of the structures presented

was very good. These models could be adopted as useful design tools in helping

designers, architects and specifiers understand how the various components of the

structure effect the overall sound transmission. Also the fact that the entire structure can

be inserted into an SEA model allows early identification of the dominant sound

transmission paths. This allows these areas to be investigated further and the design

altered if required at an early stage in the design process.

9.3	 Suggestions for further research

The error associated with the measured and predicted results for transmission into

narrow double wall cavities is an important area of further work. It was found that when
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the cavities were deep, and similar in behaviour to a room, the theory coped well. But

as the cavity decreased in depth and the plates got closer the error increased.

Further work could also be undertaken on determining the total loss factor of narrow

cavities with and without absorption. This is an important area as most modern walls and

floors have absorption present in the cavities.

It was found that when there are point connections which are immediately opposite or

offset the measured data showed no difference. However, the predicted results showed

a significant increase in coupling when the point connections are immediately opposite.

It may be worthwhile to investigate this area again but this time using isotropic materials

to reduce the possible variables affecting the transmission.

In regard to complete buildings such as timber framed houses where all the principle

structures are lightweight parallel plates, if the sound transmission can be predicted for

one floor or wall, then it is possible to use SEA and the models presented in this work

for a study on a complete timber framed house.

The increased transmission due to the flanking path in the timber floor test structure via

the wall was significant. In domestic housing with concrete and masonry walls the floor

may often be of timber construction, built-in to the walls. This study has analysed the

effect of building in one end of the joists, but in reality both ends would be built-in. The

SEA models used in this study predicted the transmission well but further work is

required on the interaction between the joists (beams) and the walls (plates).
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